
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 1

Bymer Worm: Post Mortem Analysis of Malicious Code

[GCIH - Exploit in Action – Version 2.1]
SANS 2002 Orlando, Florida

Monty McDougal

September 20, 2002

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 2

Table of Contents

Abstract...3
Part 1 – The Exploit ..4

Background ...4
Name...4
Operating Systems..5
Protocols ...6
Brief Description of Bymer...6
Bymer Variants..6

W32/Msinit.worm ...7
W32/Msinit.worm.b ..7

References..7
Associated Common Vulnerability Exposure (CVE) Entries7
Associated CERT Advisory..8
Antivirus Vendors...8
Background on Bymer and Distributed.net Contests8
NetBIOS Protocol Information..8
Honeynet Project’s Bymer Paper “Know You Enemy: Worms at War”8
Honeynet Project’s Snort Logs and Bymer Worm Binaries (Both Variants)...8

Part 2 – The Attack ...9
Description and Diagram of Network...9
NetBIOS Protocol Description ...10
How Bymer Works...11
Description and Diagram of the Attack..12
Signature of Bymer..18
How to Protect Against Bymer (and Other NetBIOS Share Attacks)...............19

Part 3 – The Incident Handling Process..21
Preparation..21
Identification..22
Containment..24
Eradication ..25
Recovery ...29
Lessons Learned...38

Appendix A: Malicious Code Analysis..40
Static Analysis...40

Search Engine Analysis...40
Strings Analysis ...40
UPX Analysis...42

Dynamic Analysis..43
Network Analysis ...44
Run-Time Analysis...47
Memory Analysis ...50

Acknowledgements...53
References ...54

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 3

Abstract

A month before the SANS conference, I was starting to think about what might
make an interesting practical topic. The answer to this question cam totally by
chance as the Bymer worm infected the home network of one of my close
friends.

The Bymer worm is not a terribly malicious worm; it was written to cheat in the
Distributed.net cracking contest by infecting unsuspecting user’s PC and
installing the Distributed.net client with the malicious user’s credentials. The
worm spreads via open Windows drive shares using the win.ini file as a means to
start the worm after the infected PC is rebooted.

This paper is written with two goals in mind. First, it should serve as an
informative account of why Bymer was born and how it spreads. This will include
an in-depth analysis of exactly how the worm works along with a less than
perfect incident response (especially given all the new information I learned in
the SANS training). I hope this paper proves useful as an example of a “real
world” response to a malicious mobile code incident.

The second goal of the paper is to give an in-depth example of how one might
perform analysis on a piece of malicious code. While I don’t claim to be an
expert on the topic, I do think the reader will gain benefit from the techniques
presented in this paper (especially Appendix A) for analyzing malicious code both
statically (without running it) and dynamically (running it). Hopefully, the reader
can use this paper as a stepping-stone in performing his or her own malicious
code analysis.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 4

Part 1 – The Exploit

Background

I should probably go into a brief discussion of Distributed.net1 for those who may
be unfamiliar with them. The origins of the Bymer worm are directly linked to
their cracking contest because it was written to help one of their contestants
cheat in the contest. It is also worth pointing out that Distributed.net is in no way
responsible for Bymer or any of the other malicious code instances that are
installing the Distributed.net client without a user’s permission. Distributed.net
has been very active in disqualifying people who have employed such methods
in their contests.2

Distributed.net is a non-profit organization that is helping to organize millions of
computers which are put to use to solve a complex problem (usually
cryptographic in nature) by providing clients that cooperatively work with the
Distributed.net servers to divide the work required to crack some really ambitious
cryptographic challenges. The whole thing is often run as a contest with RSA
Labs usually offering $10,000 to the group who finds the keys in their contests
(but the winner will only see $1,000 - $2,000 of it with the rest going to
Distributed.net and charity).3 The way Distributed.net works is by splitting the
computations among thousands of machines running on nearly every platform
imaginable,4 including all versions of Windows. These clients download a group
of key blocks from a central key server, process them, and reports back the
results when retrieving more keys. The client itself uses an email address as
identifier so that credit for the work is given to the right individual or team. The
client can be run in a “hidden” mode that is not visible by users of the system
(which is important for discussion of the worm later).

Name

The most generic and common name used for the worm I am describing is the
Bymer worm. It exists under many different names depending on the antivirus
vendor, but the worm itself contains the string “bymer” as part of a host and email
address used by the worm. The names McAfee uses for the two variants they
document are W32/Msinit.worm and W32/Msinit.worm.b. Here is a list of the
other aliases for this worm taken from the McAfee Virus Information Library.5

Bymer (Norman), Bymer.C (Panda), I-Worm.Msinit.A (Softwin), I-
Worm.Msinit.B (Softwin), I-Worm/RC5.A (AVG) , I-Worm/RC5.B (AVG) , I-
Worm/RC5.C (AVG), TR.Worm.RC5.WinInit (AntiVir), TROJ_BYMER
(Trend), TROJ_MSINIT.A (Trend), TROJ_RC5.B (Trend),
Trojan.Win32.Bymer, Trojan/WIn32.Msini.A (RAV), W32.Bymer.A (Ikarus),
W32.Bymer.B (Ikarus), W32.Bymer.C (Ikarus), W32.HLLW.Bymer (NAV),
W32/Bymer-A (Sophos), W32/Bymer-B (Sophos), W32/Bymer-C

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 5

(Sophos), W32/Bymer.B (Norman), W32/MsInit.A (AntiVir) , W32/MSInit.A
(Panda), W32/MSInit.B (Panda), W32/MSInit.D (Panda),
W32/MsInit.worm.a, Win32.Bymer.A (CA/VET), Win32.Bymer.B (CA/VET),
Win32.Bymer.C (CA/VET), Win32.HLLW.RC5 (DrWeb),
Win32.MSInit.A@mm (Softwin), Win32.RC5.4096 (DrWeb),
Win32/Bymer.Worm (CA/InoculateIt), Win32/Bymera.C.unp (RAV),
Win32/Bymera.D@mm (RAV), Win32/MSInit.A (RAV), Win32/MSInit.A
worm (ESET), Win32/MSInit.B worm (ESET), Win32/MsInit.C (ESET),
Win32/MsInit.C worm (ESET), Win32/Rc5.B.Worm (CA/InoculateIT),
Win32/Rc5.C.Worm (CA/InoculateIT), Win32:MSInit-A1 [Wrm] (Alwil),
Win32:MSInit-A2 [Wrm] (Alwil), Win32:MSInit-B [Wrm] (Alwil), Worm-RC5
(Sophos), Worm.Bymer.a (KAV/AVP), Worm.Bymer.b (KAV/AVP),
Worm.Bymer.c (KAV/AVP), Worm.Dnet.A (VirusBuster), Worm.Dnet.B
(VirusBuster), Worm.Dnet.C (VirusBuster)i

The specific worm variant that was involved in the incident that I investigated was
the W32/Msinit.worm.b (using the McAfee name).

The Bymer worm does not have a Common Vulnerability Exposure (CVE)
number associated with it.6 There are currently three CVE Candidates that are
directly related to unprotected Windows drive shares used by the Bymer worm.

CAN-1999-0518 -- A NETBIOS/SMB share password is guessable.7

CAN-1999-0519 -- A NETBIOS/SMB share password is the default, null,
or missing.8

CAN-1999-0520 -- A system-critical NETBIOS/SMB share has
inappropriate access control.9

In addition to the CVE entries associated with unprotected Windows networking
shares, there have been at least two other significant advisories I would like to
point out.

SANS/FBI Top Twenty -- Open drive shares made the Top Twenty list
(as W4 - NETBIOS - unprotected Windows networking shares).10

CERT IN-2000-02 – Exploitation of unprotected Windows networking
shares.11

Operating Systems

The Bymer worm spreads across a network using an open file share named “c”
with a “windows” directory and the win.ini file inside. Because the worm is needs

i McAfee.com, “Virus Information Library”.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 6

the file structure c:\windows\win.ini, it would be able to spread to default
installations of the following OSes assuming they had the appropriate shares:

Windows 3.11
Windows 95
Windows 98
Windows ME
Windows XP

Additionally, the worm will work under other OSes (if run manually), but cannot
infect them remotely for a default configuration (because they use “WINNT” as
their default Windows directory). If a user performed a custom install using
“windows” the worm could function normally.

Windows NT 3.5
Windows NT 4.0
Windows 2000

Protocols

The protocol being exploited by the Bymer worm is NetBIOS, but more
specifically unprotected Windows network drive shares. It is not an attack on the
NetBIOS protocol; it is simply an attack on the insecure use of the protocol.

Brief Description of Bymer

The Bymer worm is an example of malicious mobile code (malicious in the sense
it uses computer resources without permission) that was written to help some
individual (presumably Bymer) win the Distributed.net encryption cracking
contest. It works by spreading to vulnerable machines that have unprotected
Windows network shares and installing itself along with the Distributed.net client
(dnetc.exe and dnetc.ini). Specifically the worm will copy itself to the
c:\windows\system\ folder and then update the c:\windows\win.ini such that it is
automatically started at boot up. Once the machine is rebooted, the worm will
run taking three actions. It will add itself to the registry to ensure it restarts on
boot up, install the Distributed.net client such that it will also restart “hidden” on
boot up, and start randomly scanning the Internet looking for other hosts to infect.
The actions taken by the worm are covered in much greater detail in Part 2 of
this paper.

Bymer Variants

There are two major variants of the Bymer worm. I say major because if you look
at the list of aliases provided on the McAfee web siteii (and included above) you
will note that some of the antivirus vendors are reporting three variants of the

ii McAfee.com, “Virus Information Library”.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 7

worm. I was not able to find an adequate description of a third variant at any of
the antivirus vendors sites. The minor variants seem to only differ in file naming
conventions and choice of registry keys for startup. Therefore, the two major
variants (using the McAfee names) of this worm are:

W32/Msinit.worm
The first major variant of the Bymer worm is known as W32/Msinit.worm and it is
slightly less evolved than the second version of the worm. There are a few traits
that make this major variant unique. First it is not a “dropper”12 like the second
one so the file size of the actual worm is significantly smaller (~22k). When this
worm spreads, it will manually copy each file (dnetc.exe and dnetc.ini) needed by
the worm individually to the victim machine. Second, the worm’s file name is
“random” because it will be either msiXXX.exe or msXXX.exe (depending on
minor variant) where XXX is a number matching the first segment of the IP
subnet for the remote machine. Finally, the first version can be identified by the
email address used in the dnetc.ini that will be bymer@inec.kiev.ua.

W32/Msinit.worm.b
The second major variant, W32/Msinit.worm.b, is a more evolved version of the
first worm. It is a “dropper” which makes the worm significantly larger than the
first variant (~220k) because it caries the other files needed by the worm
(dnetc.exe and dnetc.ini) inside the worm. When the worm is first executed, it
will “drop” the other files into the c:\windows\system\ directory and execute
dnetc.exe. The filename this version of the worm will use is wininit.exe (note
there is already a valid Windows file with this filename in the c:\windows\
directory). Finally, the first version can be identified by the email address used in
the dnetc.ini that will be bymer@ukrpost.net.

While there are only two known variants of the Bymer worm, there are fourteen
known worms, Trojans, and other malicious code that have been written
specifically for the purposes of cheating in the Distributed.net contestsiii. While
these malicious agents are generically variants of the Bymer worm because they
were written for the same purpose, they will not be considered variants for the
purpose of my analysis due to the differences in attack vectors used.

References

There are a few particularly useful sites for more information about the Bymer
worm (most of which are also listed in my formal references because I have
pulled information from them).

Associated Common Vulnerability Exposure (CVE) Entries
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-1999-0518
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-1999-0519

iii Distributed.net, “trojans, worms, viruses”.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 8

http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-1999-0520

Associated CERT Advisory
http://www.cert.org/incident_notes/IN-2000-02.html

Antivirus Vendors
http://vil.mcafee.com/dispVirus.asp?virus_k=98844
http://securityresponse.symantec.com/avcenter/venc/data/w32.hllw.bymer.html

Background on Bymer and Distributed.net Contests
http://www.distributed.net
http://www.distributed.net/trojans.html

NetBIOS Protocol Information
http://packetstorm.linuxsecurity.com/groups/rhino9/netbios.doc

Honeynet Project’s Bymer Paper “Know You Enemy: Worms at War”
http://project.honeynet.org/papers/worm/

Honeynet Project’s Snort Logs and Bymer Worm Binaries (Both Variants)
http://stan.ksni.net/~lance/win98.tar.gz

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 9

Part 2 – The Attack

Description and Diagram of Network

The network involved in the Bymer worm infection that I am documenting could
most likely be described as a variant of typical home network. At the time the
incident occurred, it consisted of three Windows based machines, an eight-port
network hub, and an SDSL modem (acting as a bridge). A diagram of the
network at the time of the incident is included below.

A more detailed description of the devices involved in this network is included
below.

PC_1 -- a typical home use machine running Windows 98. This machine had
drive sharing enabled at the root level for both the C drive with full access and no
passwords required. The only countermeasure in use on this machine was a
“reasonably” up-to-date copy (less than 30 days old) of McAfee VirusScan. This
machine was being used as a file and print server for PC_2 and PC_3.

PC_2 – another typical home use machine running Windows 98. This machine
also had drive sharing enabled at the root level for the C drive but had a
password required. This machine also had a “reasonably” up-to-date copy (less
than 30 days old) of McAfee VirusScan. This machine had also been further
hardened by the installation of Tiny Personal Firewall and was configured such
that it only allowed access to the NetBIOS access to machines in the private

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 10

network 192.168.0.x. When the SDSL installers had re-IPed the machines, they
had overlooked this (or more likely didn’t care) and had actually broken drive and
printer sharing for this machine because the other machines which accessed it
now had a public IP.

PC_3 – another typical home use machine running Windows 98. This machine
also had drive sharing enabled at the root level for the C drive with no password
required. This machine also had a “reasonably” up-to-date copy (less than 30
days old) of McAfee VirusScan

SDSL Modem – this modem is a little different than the typical DSL modem. It is
a SpeedStream 5251 Ethernet SDSL Modem manufactured by Efficient
Networks, Inc. It is configured such that the modem is acting as a bridge and the
three PC were assigned static IPs as part of the bridged network.

Hub – the hub in use is a typical home-network grade hub, in this case a
NetGear EN 108 8-port unmanaged hub.

It is also relevant to this discussion of this incident, that this network had never
been connected to the Internet as a whole prior to the incident that I am
documenting. The network itself had been primarily setup as a convenience for
the owner of the network in moving files between machines and allowing for
shared printers. Internet access prior to SDSL had been strictly limited to PC_2
and PC_3 via dial–up modem accounts.

This incident occurred less than 24-hours after the introduction of SDSL Internet
access into the network on 1 March 2002. As part of the installation process, the
company that installed the SDSL reconfigured the IPs of each machine on the
home network to use public IPs as opposed to the private IPs (192.168.0.x) that
were previously in use on the system (which is an important fact in the case of
PC_2).

NetBIOS Protocol Description13

The protocol the Bymer worm is using to make its connections to victim
machines is known as NetBIOS (Network Basic Input / Output System). The
NetBIOS protocol was originally developed by IBM and Sytek as a software API
allowing client software to access network resources. NetBIOS has since been
adopted as an industry standard for accessing network services. IBM later
extended the NetBIOS protocol with NetBEUI (Network Extended User Interface)
for use in its LAN Manager Server. Microsoft adopted both NetBIOS and
NetBEUI for use in its networking products (including file and printer sharing).
NetBIOS is supported on Ethernet, Token Ring, and IBM PC Networks. It can
operate as a connection-oriented protocol (TCP) or as a connectionless one
(UDP).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 11

The NetBIOS protocol is an API designed to link network operating systems
allowing inter-application communication and data transfer. Its intention is to
isolate application programs from hardware dependencies. It also handles error
recovery, low level addressing, and routing. In a NetBIOS LAN, computers are
known to each other by a name (discussed in more detail below).

Machines on a NetBIOS LAN communicate by using the NetBIOS session,
datagram, or broadcast method. One-on-one communication is handled through
sessions and allows for larger messages and error detection / correction.
Datagram and broadcast methods allow one-to-many communication, but are
limited in message size and lack error detection / correction.

NetBIOS names are used to identify resources on a network and applications
use these names to start and end sessions. NetBIOS names must be unique on
a network and can consist of up to 16 alphanumeric characters (although
Windows limits these name to 15 and uses the 16th character as a NetBIOS
suffix). Before a machine using NetBIOS can fully function on a network it must
register its NetBIOS name with the Master Browser on the network. This
process is handled by the NetBIOS as the machine becomes active. The
machine will broadcast the NetBIOS name it intends to use to the network
(several times to ensure it is received). If any other machine on the network is
using that name it will respond indicating the name is in use and the second
machine must pick a new name. If no other machines on the network are using
the given name then the second machine will finish the registration process.

On a Windows machine, NetBIOS and SMB (NetBIOS over TCP/IP) work closely
together and both use ports 137 (UDP), 138 (UDP), and 139 (TCP). Newer
versions of Windows (i.e. Windows 2000) also use port 445 (TCP). The SMB
(Server Message Block) protocol, also known as the Common Internet File
System (CIFS) enables file sharing over TCP/IP.

For more information on NetBIOS, see the paper “Understanding NetBIOS” by
NeonSurge as released by the rhino9 Team.

http://packetstorm.linuxsecurity.com/groups/rhino9/netbios.doc

How Bymer Works

Bymer works by spreading across unprotected Windows networking drive
shares. It is not exploiting the NetBIOS directly, just the insecure configuration of
Windows drive shares commonly found on many PCs. For the Bymer worm to
be able to successfully spread to a victim system, the victim must have drive
sharing enabled, the name of the drive share must be “c”, must contain the
Windows directory as “\windows”, and must allow read and write access without
a password. Sadly, this configuration is pretty common in many home and small
office networks.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 12

The Bymer worm propagates to other systems by copying itself to the victim
system and then modifying that systems c:\windows\win.ini file such that it will be
loaded on startup via the load= line in the win.ini. The worm simply has to wait
for a reboot and the worm will have been activated on the victim system. This
process is documented extensively in the next section and Appendix A.

The worm itself is not doing anything magical, and this exploit can easily be
carried out manually. The worm simply adds the element of doing it in an
automated fashion by randomly scanning the Internet for vulnerable hosts to
exploit. Assuming we have a vulnerable host 192.168.102 and a piece of
malicious code c:\foo.exe that we want to execute on the victim system, we could
use the following steps to achieve the same thing Bymer is doing.

First, copy the file c:\foo.exe to the victim system. Once this has been
completed, retrieve the c:\windows\win.ini file from the victim system.

C:\>copy c:\foo.exe \\192.168.0.102\c\windows\system\foo.exe
 1 file(s) copied.

C:\>copy \\192.168.0.102\c\windows\win.ini c:\winini.txt
 1 file(s) copied.

Next make a quick edit to the local file c:\winini.txt in notepad to add the code to
load foo.exe the next time the victim system starts. The relevant edits are shown
below.

[windows]
load=foo.exe

Once the changes have been made, copy the new win.ini file back to the victim
system.

C:\>copy c:\winini.txt \\192.168.0.102\c\windows\win.ini
Overwrite \\192.168.0.102\c\windows\win.ini? (Yes/No/All): y
 1 file(s) copied.

The next time the machine at address 192.168.0.102 is rebooted, the program
foo.exe will be executed.

Description and Diagram of the Attack

In this section of the paper I am going to briefly try to show how the Bymer worm
spreads at a network level. I have provided a much more thorough analysis of
the Bymer worm as part of Appendix A which I would encourage interested
readers to read. The excerpts from the Snort logsiv used in this section are taken

iv Honeynet Project, “win98.tar.gz”.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 13

from the Honeynet Project’s web site. The sections I am highlighting are pulled
from 4 days of entries documenting both Bymer variants attacking the same
machine. Do to the complexities of simulating the Internet in a lab (because
Bymer randomly chooses it’s target IPs) and the fact that I had “real” logs
available, I felt it was better to analyze these logs than the ones I could produce
in a lab by using NAT to manipulate the packets.

The diagram below is a pictorial representation of how the Bymer worm typically
spreads. Further details of each of these steps will be provided by the
paragraphs that follow.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 14

The Bymer worm’s attack begins when it starts randomly scanning the Internet
looking for a machine that has vulnerable Windows networking shares. The
initial discovery the worm is trying to make during the scan is to determine if the
worm is already installed on the target system. In the capture below you can see
Bymer looking for a copy of itself in the c:\windows\system\ directory.

11/02-21:41:09.754218 216.234.204.69:2021 -> 172.16.1.105:139
TCP TTL:113 TOS:0x0 ID:36827 DF
*****PA* Seq: 0x21CC068 Ack: 0xCE67344 Win: 0x21AC
00 00 00 40 FF 53 4D 42 08 00 00 00 00 00 01 00 ...@.SMB........
00 00 00 00 00 00 00 00 00 00 00 00 00 D0 4F 1F O.
00 00 04 EE 00 1D 00 04 5C 57 49 4E 44 4F 57 53 \WINDOWS
5C 53 59 53 54 45 4D 5C 57 49 4E 49 4E 49 54 2E \SYSTEM\WININIT.
45 58 45 00 EXE.

Assuming the worm is not already installed on the system, the worm will begin to
copy itself to the target machine. In the excerpt below you can see the first part
of this transfer in process.

11/02-21:41:17.287743 216.234.204.69:2021 -> 172.16.1.105:139
TCP TTL:113 TOS:0x0 ID:38619 DF
*****PA* Seq: 0x21CC0AC Ack: 0xCE6736B Win: 0x2185
00 00 00 5D FF 53 4D 42 2D 00 00 00 00 00 01 00 ...].SMB-.......
00 00 00 00 00 00 00 00 00 00 00 00 00 D0 4F 1F O.
00 00 84 EE 0F FF 00 00 00 07 00 91 00 16 00 20
00 20 BB 01 3A 10 00 00 00 00 00 00 00 00 00 00 . ..:...........
00 00 00 1C 00 5C 57 49 4E 44 4F 57 53 5C 53 59 \WINDOWS\SY
53 54 45 4D 5C 77 69 6E 69 6E 69 74 2E 65 78 65 STEM\wininit.exe
00 .

Next the worm begins the process of actually copying itself on to the target
system. Note the MZ – the first two characters of any valid Windows exe. The
PE that I have highlighted at the end of the example shows that this is a
Windows Portable Executable (PE) file.

11/02-21:41:17.632426 216.234.204.69:2021 -> 172.16.1.105:139
TCP TTL:113 TOS:0x0 ID:38875 DF
******A* Seq: 0x21CC10D Ack: 0xCE673B0 Win: 0x2140
00 00 0B 68 FF 53 4D 42 1D 00 00 00 00 00 01 00 ...h.SMB........
00 00 00 00 00 00 00 00 00 00 00 00 00 D0 4F 1F O.
00 00 04 EF 0C 0E 00 F0 FF 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 2C 0B 3C 00 2D 0B 00 ,.<.-..
4D 5A 90 00 03 00 00 00 04 00 00 00 FF FF 00 00 MZ..............

0E 1F BA 0E 00 B4 09 CD 21 B8 01 4C CD 21 54 68 !..L.!Th
69 73 20 70 72 6F 67 72 61 6D 20 63 61 6E 6E 6F is program canno
74 20 62 65 20 72 75 6E 20 69 6E 20 44 4F 53 20 t be run in DOS
6D 6F 64 65 2E 0D 0D 0A 24 00 00 00 00 00 00 00 mode....$.......
EA 05 D3 58 AE 64 BD 0B AE 64 BD 0B AE 64 BD 0B ...X.d...d...d..

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 50 45 00 00 4C 01 03 00 PE..L...

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 15

Once the worm is through copying itself to the victim system, it uses the win.ini
file’s load line to ensure that the worm is started when the machine is booted. In
the example Snort logs below you can see that the worm is requesting the
c:\windows\win.ini file from the victim system.

11/02-21:41:47.754427 216.234.204.69:2021 -> 172.16.1.105:139
TCP TTL:113 TOS:0x0 ID:19932 DF
*****PA* Seq: 0x220213C Ack: 0xCE6751D Win: 0x1FD3
00 00 00 52 FF 53 4D 42 2D 00 00 00 00 00 01 00 ...R.SMB-.......
00 00 00 00 00 00 00 00 00 00 00 00 00 D0 4F 1F O.
00 00 84 F3 0F FF 00 00 00 07 00 A2 00 16 00 00
00 3E BB 01 3A 01 00 00 00 00 00 00 00 00 00 00 .>..:...........
00 00 00 11 00 5C 57 49 4E 44 4F 57 53 5C 77 69 \WINDOWS\wi
6E 2E 69 6E 69 00 n.ini.

Here we can see the victim system responding to the worm by sending a copy of
its win.ini file. Note that the load line already has an entry in it. Msi216.exe is
actually one of the other variants of the Bymer worm. In the case of the
Honeynet computer, it had already been infected with the earlier variant of the
worm.14

11/02-21:41:48.002536 172.16.1.105:139 -> 216.234.204.69:2021
TCP TTL:127 TOS:0x0 ID:9740 DF
******A* Seq: 0xCE67562 Ack: 0x22021C9 Win: 0x1E28
00 00 19 61 5B 77 69 6E 64 6F 77 73 5D 0D 0A 6C ...a[windows]..l
6F 61 64 3D 63 3A 5C 77 69 6E 64 6F 77 73 5C 73 oad=c:\windows\s
79 73 74 65 6D 5C 6D 73 69 32 31 36 2E 65 78 65 ystem\msi216.exe
0D 0A 72 75 6E 3D 0D 0A 4E 75 6C 6C 50 6F 72 74 ..run=..NullPort
3D 4E 6F 6E 65 0D 0A 0D 0A 5B 44 65 73 6B 74 6F =None....[Deskto
70 5D 0D 0A 57 61 6C 6C 70 61 70 65 72 3D 28 4E p]..Wallpaper=(N
6F 6E 65 29 0D 0A 54 69 6C 65 57 61 6C 6C 70 61 one)..TileWallpa
70 65 72 3D 31 0D 0A 57 61 6C 6C 70 61 70 65 72 per=1..Wallpaper
53 74 79 6C 65 3D 30 0D 0A 0D 0A 5B 69 6E 74 6C Style=0....[intl

The worm is done infecting the system once it has copied a newly modified
version of the win.ini file back to the victim’s computer. This ensures that the
worm will be executed the next time the system is rebooted. This is shown in the
example below. Note that in the Honeynet’s case, the new worm did not remove
the previous version of the worm.

11/02-21:41:48.538643 216.234.204.69:2021 -> 172.16.1.105:139
TCP TTL:113 TOS:0x0 ID:21212 DF
******A* Seq: 0x22021C9 Ack: 0xCE68EC7 Win: 0x1FA3
00 00 0B 68 FF 53 4D 42 1D 00 00 00 00 00 01 00 ...h.SMB........
00 00 00 00 00 00 00 00 00 00 00 00 00 D0 4F 1F O.
00 00 84 F4 0C 0F 00 7F 19 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 2C 0B 3C 00 2D 0B 00 ,.<.-..
5B 77 69 6E 64 6F 77 73 5D 0D 0A 6C 6F 61 64 3D [windows]..load=
63 3A 5C 77 69 6E 64 6F 77 73 5C 73 79 73 74 65 c:\windows\syste
6D 5C 77 69 6E 69 6E 69 74 2E 65 78 65 20 63 3A m\wininit.exe c:
5C 77 69 6E 64 6F 77 73 5C 73 79 73 74 65 6D 5C \windows\system\

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 16

6D 73 69 32 31 36 2E 65 78 65 0D 0A 72 75 6E 3D msi216.exe..run=
0D 0A 4E 75 6C 6C 50 6F 72 74 3D 4E 6F 6E 65 0D ..NullPort=None.
0A 0D 0A 5B 44 65 73 6B 74 6F 70 5D 0D 0A 57 61 ...[Desktop]..Wa
6C 6C 70 61 70 65 72 3D 28 4E 6F 6E 65 29 0D 0A llpaper=(None)..
54 69 6C 65 57 61 6C 6C 70 61 70 65 72 3D 31 0D TileWallpaper=1.
0A 57 61 6C 6C 70 61 70 65 72 53 74 79 6C 65 3D .WallpaperStyle=

The next part of the worm’s life cycle involves waiting for the machine to be
rebooted. Assuming a machine that had not been previously infected by another
Bymer variant (as shown above), the win.ini file would have a line that looks
something like the following. Note: Anything on the load line of the win.ini file will
be executed when Windows is started.

[windows]
load=c:\windows\system\wininit.exe

Once Windows has been restarted, Bymer will remove itself from the win.ini file’s
load line. This results in a win.ini file that will look something like the example
below.

[windows]
load=

After Bymer has removed itself from the win.ini, it adds itself to the registry to
start automatically when rebooted. You can see this in the screen capture from
regedit.exe below.

The wininit.exe version of Bymer caries it’s own copy of dnetc.exe and dnetc.ini,
which it drops in the c:\windows\system\ directory. The worm launches
dnetc.exe with the command line flags (-hide –install) that make dnetc.exe run
hidden and install itself as a service to start automatically (dnetc.exe will create
it’s own registry entry to start itself automatically). Once dnetc.exe is fully
configured, it will attempt to access the Internet and connect to one of the
Distributed.net key servers to download a block of keys to start cracking. You

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 17

can see the dnetc.exe client attempting to contact these servers in the screen
capture form TCPView.exe15 below.

The complete dnetc.ini file that the worm dropped is shown below. Note the
email address.

[parameters]
id=bymer@ukrpost.net

[misc]
project-priority=OGR,RC5,CSC,DES

[rc5]
fetch-workunit-threshold=64
randomprefix=222

[ogr]
fetch-workunit-threshold=16

[triggers]
restart-on-config-file-change=yes

The worm also creates a log file (wininit.log) that records how many systems the
worm has scanned while looking for new hosts to compromise (maintained
across reboots as shown below). You can see an example wininit.log file below.

Started at 10:36 3.03.2002
Stopped (scanned 5, found 0) at 10:38 3.03.2002
Started at 10:39 3.03.2002
Stopped (scanned 170, found 0) at 11:47 3.03.2002
Started at 11:48 3.03.2002

Finally, the worm will also try to connect to the web site bymer.boom.ru. This
address now resolves to the private address 192.168.0.1 due to the worm
author’s attempt (as suggested by the Honeynet team) to deactivate some

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 18

feature of the original worm. You can see that the name bymer.boom.ru does
indeed resolve to the private address shown in the partial nslookup output below.

Non-authoritative answer:
Name: bymer.boom.ru
Address: 192.168.0.1

This concludes the description of the Bymer worm’s attack. There is a much
more detailed explanation of Bymer in Appendix A.

Signature of Bymer

There are a number of things that could be used to conclusively identify the
presence of the Bymer worm (W32/Msinit.worm.b variant) on a system, while
attacking your network, or while present on your network.

First, identification of the worm on the local PC is trivial. Look for the presence of
the file wininit.exe in the c:\windows\system\ folder of the PC. Note that there is
a valid file of the same name in the c:\windows\ folder. The file size of the Bymer
worm is 220,672 bytes. It is also conceivable that this file might be located
somewhere else on the hard drive if it was infected by means other than the
automated scanning of the worm (i.e. a user double-clicked the worm). It is
probably safer to look for the presence of the Bymer worms registry key as
shown below from regedit.exe.

The Bymer worm also has a number of unique strings in its body that could be
used in a Snort16 signature (none exist in the Snort database). Consider the
highlighted section of the following Snort dump.

11/02-21:41:19.007539 216.234.204.69:2021 -> 172.16.1.105:139
TCP TTL:113 TOS:0x0 ID:42459 DF
******A* Seq: 0x21D0B35 Ack: 0xCE673D9 Win: 0x2117
E1 94 73 D9 5C 61 5F 61 01 6C C2 63 00 38 57 9E ..s.\a_a.l.c.8W.
EA 95 DD 8D 38 74 2A 2C 57 50 27 C1 9C 61 4A 8E 8t*,WP'..aJ.
0D B2 18 9B 8D D0 45 72 0C B1 81 59 44 00 80 2C Er...YD..,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 19

45 81 00 07 95 FF AF 82 62 79 6D 65 72 2E 73 63 E.......bymer.sc
61 6E 6E DF FD FF 5D 5E 53 6F 66 74 77 61 72 65 ann...]^Software
5C 4D 69 63 72 6F 73 0D 5C 57 69 6E 64 FB DF DE \Micros.\Wind...
FE 6F 77 73 5C 43 75 72 17 6E 74 56 27 73 69 6F .ows\Cur.ntV'sio
6E 5C 52 75 6E 53 0A BB 51 D8 6D 76 26 65 73 37 n\RunS..Q.mv&es7
2F 6D 73 F7 0F 50 6F 1D 69 74 00 2A 5D 30 40 00 /ms..Po.it.*]0@.
71 03 DB 2E 80 6E 06 00 02 01 7F 03 06 09 02 FF q....n..........

It would be pretty safe to create a Snort signature (for Snort v1.8.7) that was
looking for NetBIOS traffic inbound to port 139 containing the string
“bymer.scann”. A possible Snort rule for this might be:

alert tcp $EXTERNAL_NET any -> $HOME_NET 139 (msg:"WORM – Possible
Bymer Worm Attack [Incoming]"; content:"bymer.scann";
flow:to_server,established; classtype:misc-activity; reference:url,
vil.mcafee.com/dispVirus.asp?virus_k=98844; rev:1;)

This rule could of course be reversed to detect attacks originating from the
internal network. Such a rule might be:

alert tcp $ HOME_NET any -> $ EXTERNAL_NET 139 (msg:"WORM – Possible
Bymer Worm Attack [Outgoing]"; content:"bymer.scann";
flow:to_server,established; classtype:misc-activity; reference:url,
vil.mcafee.com/dispVirus.asp?virus_k=98844; rev:1;)

A more generic (and useful) rule might be one that detected all NetBIOS traffic
that originated from a system outside the internal network. Such a rule might be:

alert tcp $EXTERNAL_NET any -> $HOME_NET 139 (msg:"NetBIOS – Possible
NetBIOS Access from External Network"; flow:to_server,established;
classtype:misc-activity; reference:url, www.sans.org/top20.htm; rev:1;)

The final method of detecting Bymer (and probably the most effective) is to
simply run an up-to-date virus scan. It will do the work for you.

How to Protect Against Bymer (and Other NetBIOS Share Attacks)

Because Bymer and many other NetBIOS attacks rely on the use of NetBIOS,
just denying access to these services can mitigate it fairly effectively.
Unfortunately, many users rely on these services for sharing files and printing, so
this is not always an option.

If Windows drive sharing is needed, the user should take some preventive
countermeasure to ensure it cannot be used to compromise the system. The
paragraphs that follow will address the countermeasures I feel to be most
beneficial in preventing these attacks.

First, the user should always require a strong password for their shares. This will
prevent most automated worms (which generally are using open shares with no

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 20

password enabled) and will severely limit the speed at which more sophisticated
worms can spread. Strong passwords really have little or no effect on the users
of these shares because most versions of Windows will save the passwords and
reconnect automatically. Additionally, it is important to ensure that the machine
is patched to current levels because there are known exploits against Windows
9x (including ME) machines that allow malicious users to connect to NetBIOS
shares with only part of the correct password.17

The Second thing that a user using drive shares should do is ensure that the
shares are restricted to the fullest extent possible. This includes such things as
sharing only a small portion of the hard drive that does not include the root of the
file system (i.e. the C Drive) or any other important files or directories (i.e.
Windows). This would also include limiting shares to read-only if the remote
users have no reason to write to them. Many versions of Windows (NT and 2000
variants) allow for the limiting of share access based on user accounts and this
option should be used when available.

Another option that is available for protecting Windows drive shares is personal
firewalls. I consider a personal firewall to be required equipment for most
machines in a small office or home environment (and highly recommend it in
other environments). These firewalls should be configured such that they allow
NetBIOS only to a “trusted” set of machines.

The next major step that can be taken to limit the spread of such worms and
attacks is to block NetBIOS at the border router or firewall for a network. There
are very few if any circumstances where the use of NetBIOS is appropriate
across the Internet. Filtering NetBIOS at the network boundary will reduce the
vulnerability to such attacks to machines that are located on the internal network.

Finally, when all other mechanisms fail, we rely on detection tools to alert us of
the problem. This could include things as sophisticated as Intrusion Detection
Systems (IDS) deployed on the network, to the simpler antivirus software
installed on the local machine. Up-to-date antivirus software will generally
prevent the spread of these automated worms once they have been detected
and included in the antivirus data files.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 21

Part 3 – The Incident Handling Process

The SANS incident handling process is comprised of six primary phases
designed to provide a roadmap for a complete incident handling methodology.
This part of my paper is going to cover the actual steps involved in my handling
of the Bymer worm. Because the incident that is being documented here
occurred on a home network, most of the preparatory steps that should have
been taken were absent. The actions shown here by no means are all inclusive
of the SANS incident handling methodology, but it is a real world example of how
an incident was handled. Also because the incident in question occurred at a
home, the steps shown a good example of what a typical home or small office
response might be to a malicious code attack (excluding my in-depth worm
analysis).

Preparation

The network involved in this incident was a home network. I had personally been
partially responsible for the building of the original network (the owner is a close
friend of mine), which was later modified by the installation of SDSL and the
owner of the network. The diagram below shows the network after SDSL was
installed.

While there was not a formal incident handling process in place (which is
probably appropriate for a home network), there were several steps taken by the
owner of this network and myself prior to the incident that occurred which helped

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 22

to reduce the impact of the Bymer worm on the network. PC_1 (which was
acting as a file and print server) had McAfee VirusScan installed locally and was
reasonably up-to-date (less than 30 days old). Prior to installation of SDSL, this
machine did not have Internet access and the owner was manually updating the
McAfee data files. PC_2 was the machine the owner primarily used for Internet
access. It had been also been protected by McAfee VirusScan (data file less
than 30 days old). Additionally, it had a copy of Tiny Personal Firewall (TPF) that
I had installed on it because it was the machine the owner was primarily using for
Internet access. The rule set in TPF had been configured such that it prompted
for nearly every access (incoming and outgoing), and had file sharing enabled for
the local network (which prior to the SDSL install was 192.168.0.x). When the
SDSL install had taken place, all the machines in the network were given public
IPs and this rule was broken disabling file and print sharing for PC_2. Finally,
PC_3 was also protected by a copy of McAfee VirusScan (data file less than 30
days old).

While there was no formal incident handling team, the owner of this network is
reasonably computer knowledgeable and had identified a more skilled person
(myself) to handle anything he did not feel comfortable with (including any
“incidents” that might occur). The introduction of SDSL into this network did not
happen without my knowledge, but sadly I did not realize how strong the threat
against home broadband users had actually become. The SDSL installation had
been scheduled for a Friday morning and I had told the owner of the network I
would come over and help him reconfigure / secure the network sometime that
weekend.

I thought surely, he would be safe for a couple of days until I had time to work on
securing his network. Unfortunately, I was wrong in this regard and the Bymer
worm came knocking less than 24 hours after the introduction of SDSL into the
home network.

Identification

The owner of the network identified the infection of the Bymer worm very quickly
because he happened to reboot all three machines on Saturday morning before
he started using his computers for the day. Sometime between the time when
SDSL was installed Friday morning and Saturday morning when the PC_1 was
rebooted, the Bymer worm had silently installed itself to his machine and
configured itself such that it would be started on boot up through the modification
of the win.ini file on the machine. This action had gone undetected by the virus
scan on PC_1 that was only configured to scan files as they were run (a definite
oversight for a machine acting as a file server).

When the machine was rebooted, the owner was greeted with a pop-up from
McAfee similar to the one shown below.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 23

The owner of this machine immediately picked up his phone and called me (as
his technical guru) to assess the situation. The first thing I ask to do for me when
he called was read me the exact name of the virus so I could write it down (for
further investigation). In this case, the name of the worm was
“W32/MsInit.worm.b” which is McAfee’s name for this particular variant of the
Bymer worm (although I did not realize it was the Bymer worm at the time).

I also ask the owner to explain to me exactly what he was doing at the time he
received the warning. When he told me he had received it when rebooting his
system, I suspected this was some sort of file sharing worm, because I knew he
was not running a web server on any of his PCs. I also ask him if he had
rebooted the other machines in his network, and he indicated that he had, but
had not received similar warnings when they were rebooted.

I decided I wanted to do a little research on “W32/MsInit.worm.b” to make sure I
knew what I was dealing with before taking any further action. I figured if McAfee
had detected the worm, then it would be included in their Virus Information
database. The information that follows was taken directly from the Bymer entry
from the McAfee page.

Virus Characteristics:
W32/Msinit has been seen with the filenames, "MSINIT.EXE" and
MS*.EXE [where * represents the first segment of the victim's IP subnet,
ie. MS216.EXE]. This worm spreads through open network shares like the
VBS/Netlog worm. It scans random IP address over NetBIOS for
computers that have shares named "C" and a Windows folder called
"Windows". When it finds one, it copies itself and the files "dnetc.exe" and
"dnetc.ini" to the "c:\windows\system\" folder of the remote computer. The
file "dnetc.exe" is an encryption-cracking program from
www.distributed.net, which is not the author of this worm. The samples
received by AVERT are packed with the UPX file-compression utility.

Method of Infection:
When it finds a computer with an open share, it copies itself directly to the
unprotected computer, and modifies the win.ini load= line to run the worm

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 24

on the next bootup. The next bootup, it creates the registry key
HKLM\Software\Microsoft\Windows\CurrentVersion\RunServices\msinit so
the worm and encryption-cracking program runs without any user
intervention. The worm them runs the command "dnetc -hide -install"
which causes the distributed.net client to install itself in the background.v

The above information along with the aliases for the worm (Bymer) was all I
needed to take action. I have been a long time supporter of the Distributed.net,
and I was aware of the Bymer worm, but not McAfee’s name for it. As indicated
by the information above, there was really no immediate threat to the owner’s
system being posed by this worm.

Containment

Based on this information gathered during identification, I provided him with my
initial plan of action until I could get there to assess the situation in person. The
initial action I had him take was to disconnect the affected PC (PC_1) from the
home network by removing its network cable from the hub. This action was
taken to prevent the further spread of the worm to his other PCs and the Internet
as a whole. Additionally, I told him not to do anything to this PC until I was there.
I also suggested to him that the other PCs did not seem to be infected at this
point, but I highly recommended that he run a complete virus scan on them as
well. This scan reported no virus. I also suggested that he might want to
consider disconnecting his other machines from the network until I could
respond. He decided he would do that as well.

I decided I would gather the resources necessary to properly secure his home
network for the threat of outside attack. This included gathering the tools
necessary to both deal with the current problem and prevent future ones.

The specific steps that I wanted to perform as part of my response were:

1. Capture a copy of the Bymer Worm for later offline analysis
2. Remove Bymer from the affected system (PC_1)
3. Verify that all three PCs were virus free
4. Add a hardware-based router firewall to the home network to protect the

perimeter and restore private addressing for the internal network using
NAT for Internet access

5. Install and configure Tiny Personal Firewall on all three machines to
further protect against future incidents

6. Restore Internet access for the network
7. Analyze the worm at my leisure for “fun” on my home test network

v McAfee.com, “Virus Information Library”.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 25

Following a quick trip to CompUSA to buy a hardware-based router/firewall, my
“jump kit” contained all the tools I needed to perform the seven steps indicated
above.

The specific contents of my “jump kit” for the initial response (steps 1 through 6
as indicated above) included the following:

• Write protected Windows 98 boot disk from a known clean system
• Command line version of McAfee VirusScan on a write protected disk (just

incase cleaning from within Windows failed)
• Blank floppy disk (for copying the virus)
• CD containing up-to-date copies of the McAfee data files
• CD containing most recent copy of Tiny Personal Firewall
• NetGear Web Safe Router (Model RP114)

The procedure to remove the Bymer worm was considered low risk so a backup
of the system was not made. Additionally, because this was an automated worm
that had attacked a home Windows 98, there was no evidence to preserve. This
decision was made based on the scope of the incident (a common worm
infection) and the fact that logging in Windows 98 is virtually non-existent.
Because there was no further containment necessary at this point, the decision
was made to move to the Eradication step.

Eradication

Removal of the worm was actually more difficult than I first expected. I wanted to
make sure I got a copy of the worm for analysis so I started my removal
operation by logging out of Windows and rebooting to DOS mode (by hitting F8
during the boot sequence). The commands I issued at the DOS prompt to get a
copy of the worm on the blank floppy I had brought are shown below.

C:\>cd windows

C:\WINDOWS>cd system

C:\WINDOWS\SYSTEM>copy wininit.exe a:\wininit.mmc
 1 file(s) copied

Changing the extensions to mmc is a convention I use anytime I store malicious
mobile code for later analysis. Additionally, I clearly labeled the disk as
containing the Bymer worm.

Once I had captured a copy of the worm for later analysis, I was ready to remove
it. I considered doing this manually, but I wanted to see how well McAfee would
handle it so I went ahead and rebooted the machine and let it enter into Windows
normally. When Windows was fully loaded, I again got a warning from McAfee
that looked like the one shown below.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 26

This time I planned on letting McAfee get rid of the file for me, so I clicked the
Delete button. McAfee responded with the window shown below indicating that
the worm had been removed.

Unfortunately, McAfee is not capable of removing this worm (at least not while
Windows is running). McAfee must remove the virus and it’s startup entries and
then issues a signal to terminate the running program. The problem with this
approach is whenever Bymer is unloaded, it checks to ensure it is configured to
restart. If it is not, it will create another registry entry, copy itself out to the hard
drive, and then run itself again before exiting. When the worm takes this action,
the whole process starts over and McAfee again pops-up warning the user.
Based on my observations of this worm in Windows 98, it is impossible to kill this
worm manually from within Windows due to the fact it is not visible in the task
bar.

While I am quite sure McAfee could have removed this worm from DOS
automatically, I decided to just deal with it myself. I again rebooted the machine
and entered DOS mode issuing the commands shown below.

C:\>cd windows

C:\WINDOWS>cd system

C:\WINDOWS\SYSTEM>del wininit.exe

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 27

I rebooted into Windows, and verified that McAfee did not pop-up again alerting
me of the worm. I also wanted to verify that none of the mechanisms the worm
had used to start were still present. The first thing I wanted to check was the
win.ini to verify that the load= line was clean. I did this by running sysedit.exe (by
clicking Start | Run and typing sysedit.exe) to get the window shown below. As
you can see, the load= line is blank.

I also wanted to check to make sure the worm did not have an entry in the
registry. I did this by running regedit.exe (by clicking Start | Run and typing
regedit.exe). The window show below indicates that the worm’s registry entry is
still present. This line was removed by highlighting it and hitting the Delete key.

At this point, I had removed the worm from the computer but I had done nothing
to verify the method of infection and had taken no actions to prevent the infection
from reoccurring. The first thing that I need to do was verify that the system was
indeed vulnerable to the suspected infection method. I did this by opening

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 28

Windows Explorer and highlighting the C drive as shown below. Note the hand
below the drive indicates that this drive is indeed being shared.

Once the C drive was selected, I right-clicked it and went down to Sharing. This
opened the file share dialog as seen below.

You can see from this dialog that the C drive is shared as “C” with full access and
no password required. This is obviously an insecure setting that needs to be
changed during the Recovery phase.

The final step of the Eradication phase was to update the McAfee VirusScan
signatures on all the machines and to run a complete system scan of all the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 29

machines on the network. This scan was completed without identifying any
further instance of malicious code.

Recovery

At this point of the incident response, I was satisfied that the machines had been
returned to normal, but I needed to address some of the major security holes
which were open before reconnecting the machines back to the Internet.

The first thing that was needed was to ensure that all available drive shares were
properly secured. This was handled by going to the file sharing screen (using the
method above) and enabling a strong password on the full access share. This
can be seen below and was repeated for each machine on the network. Note
you will be prompted to confirm this password, but it is not shown here.

The machines on this network had also been reconfigured to use public IP
addresses by the SDSL installer. I preferred to go back to the private addressing
scheme, and hide the whole network behind the NetGear Web Safe Router
purchased for this purpose. This device also serves as a NAT enabled firewall
allowing all machines to connect to the outside world through a single IP address
while virtually eliminating the threat of outside attacks on the network. The
diagram of the new network that was built is shown below.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 30

While I am not going to document the process required to configure the NetGear
Router (very straightforward), I will document briefly the changes made to one of
the PCs network configuration. I changed the network settings on each
computer by going to Start | Settings | Control Panel and then opening Control
Panel as shown below.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 31

From this window, I double-clicked Network to open the Network Configuration
dialog shown below.

From this screen, I selected the TCP/IP settings for the Ethernet adapter (TCP/IP
-> Intel 21040 based Ethernet Controller) and hit the Properties button. On the
IP Address tab, I set the network properties for each machine as shown. The IPs
used for the three machines were 192.168.0.101 (PC_1), 192.168.0.102 (PC_2),
192.168.0.103 (PC_3).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 32

The Gateway for each of the machines was configured to be the IP address of
the inside interface of the NetGear router. The IP of this interface is 192.168.0.1
as shown below.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 33

The DNS Configuration for each of the machines was also set to point to the
owner’s ISP for DNS resolution. Note the values here have been changed from
those actually used (and is not even valid).

Now that the machines had been properly reconfigured, the machines were
rebooted to allow the networking changes to take place.

Third, I installed Tiny Personal Firewall on each of the three machines. I am not
going to document the install process for the firewall, but it is relevant to discuss
the rules that were put in place to further protect the Windows drive sharing
exploited by the Bymer worm. Windows file sharing was protected using the
steps I am about to outline. The process starts by right-clicking the Tiny
Personal Firewall icon in the system tray (the are in the right hand corner with the
clock) and selecting Firewall Administration from the menu. When this is done,
the following screen will be displayed.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 34

The next step is to click the Advanced button which takes the user to the Firewall
Configuration dialog as shown below.

From this screen the Microsoft Networking tab should be selected resulting in the
screen shown below.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 35

The next step in this process is to check the boxes as indicated above and then
click the Add button. The Address dialog shown below will be displayed.

This dialog shows the settings to allow file and printer sharing for all local
machines (192.168.0.x). This could be further restricted, but in this instance I
chose to open up the entire private class C. When OK is clicked, the user is
returned to a dialog box as indicated below.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 36

By clicking OK, the Tiny Personal Firewall is fully configured to only allow file and
printer sharing to the trusted local network.

The final thing I wanted to do is make sure that the machine’s McAfee VirusScan
was properly configured. Consider the “System Scan” tab shown below
(available after right-clicking the VShield icon in the tray, selecting Status, then
clicking the Properties button) which shows a “secure” configuration.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 37

The original VirusScan settings were not configured to scan files on “Copy”,
“Delete”, or “Rename” (just “Run”). The new settings are more secure. I also
changed “What to scan” to “All files” and unchecked the “System scan can be
disabled” option. Once these changes were complete, I clicked the next tab --
“E-Mail Scan”.

I checked “Enable Scanning of e-mail attachments” and enabled “Internet Mail”
before moving to the next tab – “Download Scan”.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 38

On “Download Scan”, I configured VirusScan to “Enable Internet download
scanning” for “All files” including compressed files. Next, I moved on to the
“Internet Filter” tab.

Finally, to finish the VirusScan configuration, I clicked “Enable Java & ActiveX
filter” including “ActiveX Controls” and “Java-classes”. The other two options are
enabled but not being used at this time. When configuration was complete, I
clicked OK to enable the changes.

Lessons Learned

There were numerous lessons learned in the handling of the incident, the
analysis of the worm, and in preparing this paper. Probably, the single most
important lesson I learned from handling this incident is you can never let your
guard down – not even for a couple of days or you can live to regret it.

I was aware of the fact that SDSL was being installed well before (at least a
couple of weeks) before the installation occurred. Had this been a “paying” job, I
would have definitely been more apt to be proactive in making sure the network
was secured in preparation of the broadband installation. I was also ignorant of
the extreme dangers posed by the Internet to the home user community and how
fast these threats can become real attacks.

While I would hardly consider two compromises to be enough to generate a
statistical average, both the Honeynet Project’s network and the one involved in
this incident were compromised in less than 24 hours of being online. The fact
that the incident I am documenting occurred on 1 March 2002 shows the worm

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 39

had been going strong for 17 months (as of March). The sheer speed at which
these machines were infected leads me to believe there is a fairly significant
installed base of these worms already on the Internet. The following graph18
from the Internet Storm Center (17 September 2002) shows that NetBIOS scans
(ranking 4th) account for between 5 and 10 percent of the daily reported activity.
Automated worms, like Bymer, account for most of this traffic.

Internet Storm Centervi (17 September 2002)

This event taught me that the Internet threat is real, even for the home user. You
have to take action to secure the network now, because a few days from now
when you have the time, it could be too late. It was lucky the Bymer worm was
not too malicious, but it could have just as easily been a worm that was more
malicious.

I hope you as the reader have enjoyed reading this paper as much as I did
writing it. I learned a lot along the way and hope that in some way I have helped
you to have a better understanding of how the Bymer worm (and other similar
malicious mobile code) operates. The analysis, techniques, and tools presented
in Appendix A will hopefully help you to better understand the Bymer worm and
also provide an example how one might go about analyzing malicious mobile
code.

vi Internet Storm Center. “Port Reports”. 17 Sep 2002.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 40

Appendix A: Malicious Code Analysis

One of my goals with the capture of the Bymer worm was to use it as an
opportunity to further my understanding of malicious code analysis by taking it
through a full analysis of the worm (or at least as much as I have the facilities to
do). In doing so, I planned to do both a Static (without running the code) and
Dynamic (running the code but not allowing to get to the Internet) Analysis of the
worm. In doing this analysis I have relied on the works of others (notably the
Snortvii logs captured by the Honeynet Project).19 I also had a pretty good idea of
what this code was going to be doing based on the information gathered from
McAfeeviii and Norton20 summaries of the worm. I would also like to caveat this
analysis by saying I am not a professional malicious code analyzer, but I hope
this example will prove useful to someone who is getting started in malicious
code analysis.

Static Analysis

There are a number of things you can find out about malicious code by hitting the
search engines and the major anti-virus vendor websites. In the case of the
Bymer worm it had been around for a while, so finding information on it using a
search engine to be pretty effective.

Search Engine Analysis
I started my static analysis of the worm by doing additional research on the
Internet about the worm. The best sources of information on the Bymer worm
ended up being the McAfee and Norton websites, the Honeynet Project, and the
Distributed.net site. Information from all these sites has been liberally referenced
in completing this paper.

Strings Analysis
The second step in my static analysis was to run strings.exe against the
wininit.exe binary to dump any strings that might be found in the executable that
might provide clues as to how the code operates. The specific command I used
was as follows and dumps the output to a file named strings.txt.

strings.exe wininit.exe > strings.txt

I went through the output of the previous command manually to see if there was
anything “interesting” in the output that might provide further clues or guide my
further analysis. I am going to show some of this output here that I felt was
relevant to this investigation and discuss the implications of each.

vii Sourcefire, “Snort The Open Source Network Intrusion Detection System”.
viii McAfee.com, “Virus Information Library”.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 41

This block of output from strings provides a wealth of information to the
investigator. The first line tells us this is indeed a Windows program (but there
are more accurate ways to identify this which I will describe later). The text
indicating this executable has been packed with UPX 0.84 should alert an
investigator to two things. First, because this executable has been compressed,
a strings analysis is not going to be as beneficial to us as it would have been if
the code were not compressed. We will be able to pick a few useful strings out
of the output (as I will show), but most of the useful text is going to be obscured
through the compression (but we will address this limitation later). Second, if the
program that compressed the executable is known, then we can often go get the
same executable and use it to decompress the malicious code. At this point, I
just made a note of the UPX compression in the example below and continued
on with my analysis using strings.

!This program cannot be run in DOS mode.
Rich
UPX0
UPX1
.rsrc
$Info: This file is packed with the UPX executable packer $
$Id: UPX 0.84 Copyright (C) 1996-1999 Laszlo Molnar & Markus Oberhumer
$
$Id: NRV 0.61 Copyright (C) 1996-1999 Markus F.X.J. Oberhumer $
$License: NRV for UPX is distributed under special license $
UPX!

This next section of output from strings is also useful. Here we can see a partial
registry key entry that the Bymer worm is going to be using to start itself up when
Windows loads.

bymer.scann
]^Software\Micros
\Wind
ows\Cur
ntV'sion\RunS

Here we can see a possible URL that may be important later in our investigation.

http://
boom.ru/

Next, we can see another header for a program that has also been compressed
with UPX. It is highly unusual to see this kind of behavior in a “normal” program.
This is a good indication that this program may also function as some sort of
dropper (the program has another program inside of it that it will extract and run
when the dropper is executed). Because we already know the Bymer worm
installs a copy of the dnetc.exe program, we have a pretty good idea that this is
the file is being carried inside this worm.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 42

LThisV
qbe
DOS mode.
T@*}
Rich
NUPX0
w `3
Id: , 0.72 Copyv
h5(C) 1996-
zlo Molnar &

Here we can see some of the DLLs being used by the worm. We can make an
educated guess about two things based on this list. First, Bymer is probably
written in a high level language like C++ (no VB runtime files in this list) and that
it will be accessing the Internet (WININET.dll and WS2_32.dll).

KERNEL32.DLL
ADVAPI32.dll
USER32.dll
WININET.dll
WS2_32.dll

UPX Analysis
The third step in my static analysis of the worm was to follow up on the
information acquired in step two. Specifically, I knew from previous experience
that UPX has a decompress option. If I could decompress the worm, I knew I
might be able to find much more useful information using strings. I figured I
would have the best luck with UPX version 0.84 (the one it was compressed with)
so I found a copy of version 0.84 using a search on the Internet. I ran it with no
arguments to get the command line options and have shown the output below.

 Ultimate Packer for eXecutables
 Copyright (C) 1996, 1997, 1998, 1999
UPX v0.84 Markus F.X.J. Oberhumer & Laszlo Molnar Oct
4th 1999

Usage: upx_84 [-123456789dlthVL] [-qvfk] [-o file] file..

Commands:
 -1 compress faster -9 compress better
 -d decompress -l list compressed exe
 -t test compressed exe -V display version number
 -h give more help -L display software
license
Options:
 -q be quiet -v be verbose
 -oFILE write output to `FILE'
 -f force overwrite of output files
 -k keep backup files
 file.. executables to (de)compress

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 43

This version supports: dos/exe, dos/com, dos/sys, djgpp2/coff,
watcom/le,
 win32/pe, rtm32/pe, tmt/adam, atari/tos,
linux/i386

UPX comes with ABSOLUTELY NO WARRANTY; for details type `upx -L'.

Seeing the –d flag was great. Now I knew that I would be able to extract the
original file from the compressed worm. I ran the command to extract the original
exe.

upx.exe –d –o wininit2.exe wininit.exe

 Ultimate Packer for eXecutables
 Copyright (C) 1996, 1997, 1998, 1999
UPX v0.84 Markus F.X.J. Oberhumer & Laszlo Molnar Oct
4th 1999

 File size Ratio Format Name
 ------------------- ------ ----------- -----------
upx_84: wininit.exe: CantUnpackException: not yet implemented

Unpacked 1 file: 0 ok, 1 error.

Well, as you can see, decompression had not been implemented in UPX 0.84. I
went to the UPX website21 and downloaded the latest version of UPX (which was
version 1.20). I again tried to decompress the worm with the following results.

 Ultimate Packer for eXecutables
 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001
UPX 1.20w Markus F.X.J. Oberhumer & Laszlo Molnar May
23rd 2001

 File size Ratio Format Name
 -------------------- ------ ----------- -----------
upx_120: wininit.exe: CantUnpackException: this program is packed with
an obsole
te version and cannot be unpacked

Unpacked 0 files.

Not giving up, I went back to the UPX website and started reading their FAQs
and forums. Buried several levels down in their website under the downloads
section for obsolete versions, I found the following message. “Unpacking of
win32/pe programs packed with the obsolete versions has never been
implemented, so they won't help you here either”.22 At this point, the static
analysis portion of my investigation had pretty much ended. In order to gain any
further data that would be useful, I needed to perform my dynamic analysis.

Dynamic Analysis

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 44

A dynamic analysis is very important to understanding the specifics of what a
piece of malicious code does. Sure the search engines can provide a lot of
useful information, but unless someone has done an in depth analysis of the
worm and posted their results, it is probably going to be lacking the details. The
first thing I want to document was the method the Bymer worm was using to
spread. To fully document this, I really wanted to show the output from Snort as
the worm was copying itself between two machines. Unfortunately, I do not have
access to an adequate test network where I could simulate a network large
enough to get the worm to pick one of my own random IPs (and I wasn’t going to
let this worm loose on the Internet). I considered using NAT to manipulate the
packets, but didn’t see the point with real world Snort logs available (see below).

Network Analysis
Fortunately for me, the Honeynet Projectix had been compromised by the Bymer
worm(s) and had posted their logs and the worm binaries23 to their website, so I
was able to use four days of their Snort logs in my analysis. They have posted
an excellent, but somewhat limited, analysis and paperx of their experience with
the worms on their website. Note that the Honeynet Project was actually
attacked by two variants of the Bymer worm. The version that attacked the
network used in my incident is the second and more sophisticated of the two –
the one named wininit.exe that carries a copy of dnetc.exe and it’s dnetc.ini file
inside the worm. Additionally, I verified that the worm I am analyzing is the same
as the one that attacked them by verifying the MD5 checksum for the worm.

The Bymer worm begins it’s attack by scanning the Internet using random IP
addresses looking for machines that have open C drive shares. In the Honeynet
Snort logs shown below, you can see the wininit.exe variant of the worm using an
open drive share to connect to a vulnerable system. In this example, the worm is
looking to see if the worm is already installed in the c:\windows\system\ directory.

11/02-21:41:09.754218 216.234.204.69:2021 -> 172.16.1.105:139
TCP TTL:113 TOS:0x0 ID:36827 DF
*****PA* Seq: 0x21CC068 Ack: 0xCE67344 Win: 0x21AC
00 00 00 40 FF 53 4D 42 08 00 00 00 00 00 01 00 ...@.SMB........
00 00 00 00 00 00 00 00 00 00 00 00 00 D0 4F 1F O.
00 00 04 EE 00 1D 00 04 5C 57 49 4E 44 4F 57 53 \WINDOWS
5C 53 59 53 54 45 4D 5C 57 49 4E 49 4E 49 54 2E \SYSTEM\WININIT.
45 58 45 00 EXE.

If the worm is not already installed on the system, it will copy itself on to the
system using the open drive share. In the example below, you can see the worm
starting the process of copying itself to the victim system.

11/02-21:41:17.287743 216.234.204.69:2021 -> 172.16.1.105:139
TCP TTL:113 TOS:0x0 ID:38619 DF

ix Honeynet Project, “The Honeynet Project”.
x Honeynet Project, “Know Your Enemy: Worms at War”.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 45

*****PA* Seq: 0x21CC0AC Ack: 0xCE6736B Win: 0x2185
00 00 00 5D FF 53 4D 42 2D 00 00 00 00 00 01 00 ...].SMB-.......
00 00 00 00 00 00 00 00 00 00 00 00 00 D0 4F 1F O.
00 00 84 EE 0F FF 00 00 00 07 00 91 00 16 00 20
00 20 BB 01 3A 10 00 00 00 00 00 00 00 00 00 00 . ..:...........
00 00 00 1C 00 5C 57 49 4E 44 4F 57 53 5C 53 59 \WINDOWS\SY
53 54 45 4D 5C 77 69 6E 69 6E 69 74 2E 65 78 65 STEM\wininit.exe
00 .

Next the worm begins the process of actually copying itself on to the target
system. In the next example we can see a number of things. First, note the MZ
– the first two characters of any valid Windows exe. You can also see the DOS
headers indicating this program cannot be run in DOS. The PE that I have
highlighted at the end of the example shows that this is a Windows Portable
Executable (PE) file.

11/02-21:41:17.632426 216.234.204.69:2021 -> 172.16.1.105:139
TCP TTL:113 TOS:0x0 ID:38875 DF
******A* Seq: 0x21CC10D Ack: 0xCE673B0 Win: 0x2140
00 00 0B 68 FF 53 4D 42 1D 00 00 00 00 00 01 00 ...h.SMB........
00 00 00 00 00 00 00 00 00 00 00 00 00 D0 4F 1F O.
00 00 04 EF 0C 0E 00 F0 FF 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 2C 0B 3C 00 2D 0B 00 ,.<.-..
4D 5A 90 00 03 00 00 00 04 00 00 00 FF FF 00 00 MZ..............

0E 1F BA 0E 00 B4 09 CD 21 B8 01 4C CD 21 54 68 !..L.!Th
69 73 20 70 72 6F 67 72 61 6D 20 63 61 6E 6E 6F is program canno
74 20 62 65 20 72 75 6E 20 69 6E 20 44 4F 53 20 t be run in DOS
6D 6F 64 65 2E 0D 0D 0A 24 00 00 00 00 00 00 00 mode....$.......
EA 05 D3 58 AE 64 BD 0B AE 64 BD 0B AE 64 BD 0B ...X.d...d...d..

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 50 45 00 00 4C 01 03 00 PE..L...

Also note that you can see all the strings that were captured earlier in the static
analysis in the Snort logs. I have put three examples of the strings being shown
in the Snort logs as the binary worm is being transferred to the victim system
below.

00 00 00 00 00 00 00 00 0A 00 24 49 6E 66 6F 3A $Info:
20 54 68 69 73 20 66 69 6C 65 20 69 73 20 70 61 This file is pa
63 6B 65 64 20 77 69 74 68 20 74 68 65 20 55 50 cked with the UP
58 20 65 78 65 63 75 74 61 62 6C 65 20 70 61 63 X executable pac
6B 65 72 20 24 0A 00 24 49 64 3A 20 55 50 58 20 ker $..$Id: UPX
30 2E 38 34 20 43 6F 70 79 72 69 67 68 74 20 28 0.84 Copyright (
43 29 20 31 39 39 36 2D 31 39 39 39 20 4C 61 73 C) 1996-1999 Las
7A 6C 6F 20 4D 6F 6C 6E 61 72 20 26 20 4D 61 72 zlo Molnar & Mar
6B 75 73 20 4F 62 65 72 68 75 6D 65 72 20 24 0A kus Oberhumer $.
00 24 49 64 3A 20 4E 52 56 20 30 2E 36 31 20 43 .$Id: NRV 0.61 C
6F 70 79 72 69 67 68 74 20 28 43 29 20 31 39 39 opyright (C) 199
36 2D 31 39 39 39 20 4D 61 72 6B 75 73 20 46 2E 6-1999 Markus F.
58 2E 4A 2E 20 4F 62 65 72 68 75 6D 65 72 20 24 X.J. Oberhumer $

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 46

11/02-21:41:19.007539 216.234.204.69:2021 -> 172.16.1.105:139
TCP TTL:113 TOS:0x0 ID:42459 DF
******A* Seq: 0x21D0B35 Ack: 0xCE673D9 Win: 0x2117
E1 94 73 D9 5C 61 5F 61 01 6C C2 63 00 38 57 9E ..s.\a_a.l.c.8W.
EA 95 DD 8D 38 74 2A 2C 57 50 27 C1 9C 61 4A 8E 8t*,WP'..aJ.
0D B2 18 9B 8D D0 45 72 0C B1 81 59 44 00 80 2C Er...YD..,
45 81 00 07 95 FF AF 82 62 79 6D 65 72 2E 73 63 E.......bymer.sc
61 6E 6E DF FD FF 5D 5E 53 6F 66 74 77 61 72 65 ann...]^Software
5C 4D 69 63 72 6F 73 0D 5C 57 69 6E 64 FB DF DE \Micros.\Wind...
FE 6F 77 73 5C 43 75 72 17 6E 74 56 27 73 69 6F .ows\Cur.ntV'sio
6E 5C 52 75 6E 53 0A BB 51 D8 6D 76 26 65 73 37 n\RunS..Q.mv&es7
2F 6D 73 F7 0F 50 6F 1D 69 74 00 2A 5D 30 40 00 /ms..Po.it.*]0@.
71 03 DB 2E 80 6E 06 00 02 01 7F 03 06 09 02 FF q....n..........

52 22 04 00 00 00 00 00 74 00 00 80 00 00 00 00 R"......t.......
4B 45 52 4E 45 4C 33 32 2E 44 4C 4C 00 41 44 56 KERNEL32.DLL.ADV
41 50 49 33 32 2E 64 6C 6C 00 55 53 45 52 33 32 API32.dll.USER32
2E 64 6C 6C 00 57 49 4E 49 4E 45 54 2E 64 6C 6C .dll.WININET.dll
00 57 53 32 5F 33 32 2E 64 6C 6C 00 00 00 4C 6F .WS2_32.dll...Lo
61 64 4C 69 62 72 61 72 79 41 00 00 47 65 74 50 adLibraryA..GetP

Once the worm is through copying itself to the victim system, it needs some way
of making sure it gets run. In the case of the Bymer worm, it uses the win.ini
file’s load line to ensure that the worm is started when the machine is booted. In
the example Snort logs below you can see that the worm is requesting the
c:\windows\win.ini file from the victim system.

11/02-21:41:47.754427 216.234.204.69:2021 -> 172.16.1.105:139
TCP TTL:113 TOS:0x0 ID:19932 DF
*****PA* Seq: 0x220213C Ack: 0xCE6751D Win: 0x1FD3
00 00 00 52 FF 53 4D 42 2D 00 00 00 00 00 01 00 ...R.SMB-.......
00 00 00 00 00 00 00 00 00 00 00 00 00 D0 4F 1F O.
00 00 84 F3 0F FF 00 00 00 07 00 A2 00 16 00 00
00 3E BB 01 3A 01 00 00 00 00 00 00 00 00 00 00 .>..:...........
00 00 00 11 00 5C 57 49 4E 44 4F 57 53 5C 77 69 \WINDOWS\wi
6E 2E 69 6E 69 00 n.ini.

Here we can see the victim system responding to the worm by sending a copy of
its win.ini file. Note that the load line already has an entry in it. Msi216.exe is
actually one of the other variants of the Bymer worm. In the case of the
Honeynet computer, it had already been infected with the earlier variant of the
wormxi.

11/02-21:41:48.002536 172.16.1.105:139 -> 216.234.204.69:2021
TCP TTL:127 TOS:0x0 ID:9740 DF
******A* Seq: 0xCE67562 Ack: 0x22021C9 Win: 0x1E28
00 00 19 61 5B 77 69 6E 64 6F 77 73 5D 0D 0A 6C ...a[windows]..l
6F 61 64 3D 63 3A 5C 77 69 6E 64 6F 77 73 5C 73 oad=c:\windows\s
79 73 74 65 6D 5C 6D 73 69 32 31 36 2E 65 78 65 ystem\msi216.exe
0D 0A 72 75 6E 3D 0D 0A 4E 75 6C 6C 50 6F 72 74 ..run=..NullPort

xi Honeynet Project, “Know Your Enemy: Worms at War”.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 47

3D 4E 6F 6E 65 0D 0A 0D 0A 5B 44 65 73 6B 74 6F =None....[Deskto
70 5D 0D 0A 57 61 6C 6C 70 61 70 65 72 3D 28 4E p]..Wallpaper=(N
6F 6E 65 29 0D 0A 54 69 6C 65 57 61 6C 6C 70 61 one)..TileWallpa
70 65 72 3D 31 0D 0A 57 61 6C 6C 70 61 70 65 72 per=1..Wallpaper
53 74 79 6C 65 3D 30 0D 0A 0D 0A 5B 69 6E 74 6C Style=0....[intl

Bymer is done infecting the system once it has copied a newly modified version
of the win.ini file back to the victim’s computer. This ensures that the worm will
be executed the next time the system is rebooted. This is shown in the example
below. Note that in the Honeynet’s case, the new worm did not remove the
previous version of the worm.

11/02-21:41:48.538643 216.234.204.69:2021 -> 172.16.1.105:139
TCP TTL:113 TOS:0x0 ID:21212 DF
******A* Seq: 0x22021C9 Ack: 0xCE68EC7 Win: 0x1FA3
00 00 0B 68 FF 53 4D 42 1D 00 00 00 00 00 01 00 ...h.SMB........
00 00 00 00 00 00 00 00 00 00 00 00 00 D0 4F 1F O.
00 00 84 F4 0C 0F 00 7F 19 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 2C 0B 3C 00 2D 0B 00 ,.<.-..
5B 77 69 6E 64 6F 77 73 5D 0D 0A 6C 6F 61 64 3D [windows]..load=
63 3A 5C 77 69 6E 64 6F 77 73 5C 73 79 73 74 65 c:\windows\syste
6D 5C 77 69 6E 69 6E 69 74 2E 65 78 65 20 63 3A m\wininit.exe c:
5C 77 69 6E 64 6F 77 73 5C 73 79 73 74 65 6D 5C \windows\system\
6D 73 69 32 31 36 2E 65 78 65 0D 0A 72 75 6E 3D msi216.exe..run=
0D 0A 4E 75 6C 6C 50 6F 72 74 3D 4E 6F 6E 65 0D ..NullPort=None.
0A 0D 0A 5B 44 65 73 6B 74 6F 70 5D 0D 0A 57 61 ...[Desktop]..Wa
6C 6C 70 61 70 65 72 3D 28 4E 6F 6E 65 29 0D 0A llpaper=(None)..
54 69 6C 65 57 61 6C 6C 70 61 70 65 72 3D 31 0D TileWallpaper=1.
0A 57 61 6C 6C 70 61 70 65 72 53 74 79 6C 65 3D .WallpaperStyle=

Run-Time Analysis
The next step of my analysis of the worm was to determine what the worm does
once it is activated on the target system. In the case of the Bymer worm, it is
easy to simulate this event. I simply copied wininit.exe to
c:\windows\system\wininit.exe just like the worm would have done. I added my
own win.ini entry to start the worm automatically and rebooted. The change I
made is documented below.

[windows]
load=c:\windows\system\wininit.exe

When the machine rebooted, the worm made a number of changes to the
system. The first thing I noticed it did was removing itself from the win.ini file’s
load line. When the worm was done, the win.ini file looked like the example
below.

[windows]
load=

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 48

The worm is not going to disable its only way of starting, so it also added itself to
the registry to start automatically when rebooted. You can see where the worm
added itself in the screen capture from regedit.exe below. Note the name of the
registry key that is highlighted.

 As mentioned previously, the wininit.exe version of Bymer caries it’s own copy of
dnetc.exe and dnetc.ini, which it then drops in the c:\windows\system\ directory.
The worm launches dnetc.exe with the command line flags (shown later in
analysis) that make dnetc.exe run hidden and install itself as a service to start
automatically (dnetc.exe will create it’s own registry entry to start itself
automatically). Once dnetc.exe is fully configured it will attempt to access the
Internet and connect to one of the Distributed.net key servers to download a
block of keys to start cracking. You can see the dnetc.exe client attempting to
contact these servers in the screen capture form TCPView.exexii below.

If you examine the dnetc.ini file that the worm dropped, you can see another one
of the reasons this worm is called the Bymer worm. Notice the email address
that is in the dnetc.ini file below. This is the person who will get credit for the

xii Sysinternals, “TCPview”.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 49

work done by any of the Distributed.net clients (at least until Distributed.net
banned his / her email address for life).xiii

[parameters]
id=bymer@ukrpost.net

Another thing the worm did, was create a log (wininit.log) that would record how
many systems the worm scanned while looking for new hosts to compromise
(maintained across reboots as shown below). You can see a capture from my
wininit.log file below. Note the worm cannot find hosts to compromise because
it’s Internet connection is being blocked by Tiny Personal Firewall24 running on
my test machine.

Started at 10:36 3.03.2002
Stopped (scanned 5, found 0) at 10:38 3.03.2002
Started at 10:39 3.03.2002
Stopped (scanned 170, found 0) at 11:47 3.03.2002
Started at 11:48 3.03.2002

Another very curious behavior I saw exhibited by the worm was that it tries to
make a connection to 192.168.0.1 on port 80 (which happens to be the default
gateway for my home network’s DSL firewall / router). The popup from Tiny
Personal Firewall is shown below.

I was actually quite confused by this behavior until I saw the analysis made by
the Honeynet teamxiv (I had not figured out how to do a memory dump yet). The

xiii Honeynet Project, “Know Your Enemy: Worms at War”.
xiv Honeynet Project, “Know Your Enemy: Worms at War”.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 50

worm is not actually trying to connect to 192.168.0.1, it trying to connect to
bymer.boom.ru (you may remember we saw the boom.ru in the strings output
earlier). This address now resolves to the private address 192.168.0.1 due to the
worm author’s attempt (as suggested by the Honeynet team) to deactivate some
feature of the original worm. You can see that the name bymer.boom.ru does
indeed resolve to the private address shown in the partial nslookup output below.

Non-authoritative answer:
Name: bymer.boom.ru
Address: 192.168.0.1

Memory Analysis
I continued my analysis of the Bymer worm by taking a look at what the exe was
doing in memory. Because the worm was compressed, a lot of useful
information was not available for static analysis but it could be available in
memory while the worm is running. The first thing I tried was to get a list of all
the DLLs that the worm was using the freeware utility ListDLLs.exe.25 This list is
shown below.

C:\WINDOWS\SYSTEM\WININIT.EXE pid: FFFD0EC5
 Base Size Version Path
 0x7f990000 0x5000 4.10.0000.1998 C:\WINDOWS\SYSTEM\NETAPI32.DLL
 0x7f840000 0x8000 C:\WINDOWS\SYSTEM\NETBIOS.DLL
 0x7fb90000 0x52000 4.71.2900.0002 C:\WINDOWS\SYSTEM\RPCRT4.DLL
 0x77c50000 0x9000 5.00.2614.3500 C:\WINDOWS\SYSTEM\SHFOLDER.DLL
 0x7b410000 0xb000 4.10.0000.1998 C:\WINDOWS\SYSTEM\MSAFD.DLL
 0x75fa0000 0xa000 4.10.0000.1998 C:\WINDOWS\SYSTEM\WSOCK32.DLL
 0x794d0000 0x15000 4.10.0000.2222 C:\WINDOWS\SYSTEM\MSWSOCK.DLL
 0x783c0000 0xf000 4.10.0000.2222 C:\WINDOWS\SYSTEM\RNR20.DLL
 0x00400000 0x43000 1.00.0000.0001 C:\WINDOWS\SYSTEM\WININIT.EXE
 0x76000000 0x12000 4.10.0000.2222 C:\WINDOWS\SYSTEM\WS2_32.DLL
 0x75fe0000 0x6000 4.10.0000.1998 C:\WINDOWS\SYSTEM\WS2HELP.DLL
 0x78000000 0x40000 6.00.8397.0000 C:\WINDOWS\SYSTEM\MSVCRT.DLL
 0x76280000 0x70000 5.00.2614.3500 C:\WINDOWS\SYSTEM\WININET.DLL
 0x70bd0000 0x44000 5.00.2614.3500 C:\WINDOWS\SYSTEM\SHLWAPI.DLL
 0xbff50000 0x11000 4.10.0000.2222 C:\WINDOWS\SYSTEM\USER32.DLL
 0xbff20000 0x26000 4.10.0000.1998 C:\WINDOWS\SYSTEM\GDI32.DLL
 0xbfe80000 0x10000 4.80.0000.1675 C:\WINDOWS\SYSTEM\ADVAPI32.DLL
 0xbff70000 0x73000 4.10.0000.2222 C:\WINDOWS\SYSTEM\KERNEL32.DLL

I also attempted to dump the contents of memory from the worm in Windows
2000 using the freeware utility pmdump.exe.26 This proved to be of some value,
but the file it dumped was over 12 megs in size. Most of this was Microsoft DLLs
in use by the program. I was able to extract some interesting information using
strings and egrep – notably a number of the host IPs the worm was trying to
attack and the Windows connection strings it was using in the attacks. A partial
listing of some of the information I extracted is in the example below.

C:\Windows\System\WININIT.EXE
\??\UNC\100.140.34.212\c\windows\system\wininit.exe

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 51

\??\UNC\110.21.239.81\c\windows\system\wininit.exe
\??\UNC\192.94.81.176\c\windows\system\wininit.exe
\??\UNC\228.182.57.27\c\windows\system\wininit.exe
\??\UNC\55.57.142.171\c\windows\system\wininit.exe
\\100.140.34.212\c\windows\system\wininit.exe
\\110.21.239.81\c\windows\system\wininit.exe
\\192.94.81.176\c\windows\system\wininit.exe
\\228.182.57.27\c\windows\system\wininit.exe
\\55.57.142.171\c\windows\system\wininit.exe
bymer.scanner
2\dnetc.ex
dnetc
dnetc.exe
distributed.net: dnetware

I also finally figured out how to dump the running program pack to a PE file so
that I could view the file without the compression (it is not executable after
dumping). The tool I used to do this is LordPE.27 When it was done dumping the
running program, I had a file named dumped.exe that was 274,432 bytes in size
(compared to the original wininit.exe that was 220,672 bytes in size). I have
included a capture of the LordPE window showing the running wininit.exe before
it was dumped.

There is some really useful information that makes up these additional bytes
retrieved by using LordPE. I ran the strings command

strings.exe dumped.exe > dumped.txt

and some of the more interesting output is shown in the excerpts below. I would
like to comment on a few of these lines and what they mean. First, you can see
two registry keys in the exe. I have never seen it register itself as a service, but it
obviously has some capability to do so.

bymer.scanner
Software\Microsoft\Windows\CurrentVersion\RunServices
Software\Microsoft\Windows\CurrentVersion\Run

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 52

msinit

Also, we see the Visual C++ Runtime Library header – that is a pretty good
indicator that the worm was written in Visual C++.

Microsoft Visual C++ Runtime Library
Runtime Error!
Program:

You can see the dnetc.ini file is contained within the executable (and it is not
shown here but the other UPX block shown earlier is the compressed version of
dnetc.exe).

[parameters]
id=bymer@ukrpost.net
[misc]
project-priority=OGR,RC5,CSC,DES
[rc5]
fetch-workunit-threshold=64
[ogr]
fetch-workunit-threshold=16
[triggers]
restart-on-config-file-change=yes

The two http lines are pretty interesting. It appears this worm is trying to
download some type of .ini file (project.ini) as well. There was obvious some
other capability this worm had before the author disabled the DNS names being
used by the worm. I have never seen the worm try to connect to the second
address (xq.chat.ru), but this name now also resolves to a private address, in this
case 127.0.0.1 (which is the private loop-back address for a machine).

http://bymer.boom.ru/project.ini
http://xq.chat.ru/project.ini

You can also see the command line switches being sent in to dnetc.exe to make
it run hidden and install itself as a service.

dnetc.exe -hide
 -install

The dump also has the complete path to the wininit.log file that is produced by
the worm along with the string formatting instructions for the log file entries.

%s at %d:%02d %d.%02d.%d
Stopped (scanned %d, found %d)
\\%d.%d.%d.%d\c\windows\
C:\WINNT2\System32\wininit.log

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 53

Acknowledgements

I would like to give credit to two people who helped me as I was learning the
basics of malicious code analysis. While I didn’t rely on any of their information
directly in writing my paper, the techniques and tools that I picked up from them
proved invaluable to me in doing my analysis.

Lenny Zeltser

Lenny Zelester is actively involved in the SANS community (including co-
authoring on of the newest SANS books). He holds several SANS
certifications, and his GCIH practical “Reverse-Engineering Malware”
(http://www.zeltser.com/sans/gcih-practical/) is an extremely useful paper
on for continuing Malware analysis beyond what my paper presents. I
was fortunate enough to be in attendance at his SANS 2002 (Orland,
Florida) presentation, also titled “Reverse-Engineering Malware”, and was
able to talk to him in person after the presentation. I would personally like
to thank him for turning me on to LordPE and answering a few other
questions I had about dealing with compressed/encrypted code analysis;
without his suggestions for tools to use, much of my analysis would have
been impossible.

Professor Thomas C. Ervin

Professor Ervin teaches the NS677 Malicious Software as part of the
Capitol College (http://www.capitol-college.edu/academics/grad/) Masters
of Science in Network Security curriculum. His lectures, presentations,
and labs provided incredible insight into the inner workings of malicious
code and malicious code analysis.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 54

References

1 Distributed.net. “the organization”. 20 Jun 2002. URL:
http://www.distributed.net/ (20 Sep 2002).

2 Distributed.net. “trojans, worms, viruses”. 17 Jul 2002. URL:
http://www.distributed.net/trojans.html (20 Sep 2002).

3 Distributed.net. “project rc5”. 3 Oct 2000. URL: http://www.distributed.net/rc5/
(20 Sep 2002).

4 Distributed.net. “client download”. 7 Dec 2001. URL:
http://www.distributed.net/download/clients.html (20 Sep 2002).

5 McAfee.com. “Virus Information Library”. 28 Sep 2000. URL:
http://vil.mcafee.com/dispVirus.asp?virus_k=98844 (20 Sep 2002).

6 MITRE Corporation. “Common Vulnerabilities and Exposures”. 6 Sep 2002.
URL: http://www.cve.mitre.org/ (20 Sep 2002).

7 MITRE Corporation. “CAN-1999-0518 (under review)”. URL:
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-1999-0518 (20 Sep
2002).

8 MITRE Corporation. “CAN-1999-0519 (under review)”. URL:
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-1999-0519 (20 Sep
2002).

9 MITRE Corporation. “CAN-1999-0520 (under review)”. URL:
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-1999-0520 (20 Sep
2002).

10 SANS Institute. “The Twenty Most Critical Internet Security Vulnerabilities
(Updated): The Experts’ Consensus”. 2 May 2002. URL:
http://www.sans.org/top20.htm (20 Sep 2002).

11 CERT Coordination Center (Carnegie Mellon University). “Exploitation of
Unprotected Windows Networking Shares”. 7 Apr 2000. URL:
http://www.cert.org/incident_notes/IN-2000-02.html (20 Sep 2002).

12 Grimes, Roger A. “Malicious Mobile Code”. Sebastopol. O’Reilly &
Associates, Inc. 2001. 1 - 128, 180 – 225.

13 NeonSurge. “Understanding NetBIOS”. URL:
http://packetstorm.linuxsecurity.com/groups/rhino9/netbios.doc (20 Sep 2002).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Monty McDougal Bymer Worm 55

14 Honeynet Project. “Know Your Enemy: Worms at War”. 9 Nov 2000. URL:
http://project.honeynet.org/papers/worm/ (20 Sep 2002).

15 Sysinternals. “TCPview”. 10 Aug 2002. URL:
http://www.sysinternals.com/ntw2k/source/tcpview.shtml (20 Sep 2002).

16 Sourcefire. “Snort The Open Source Network Intrusion Detection System”.
URL: http://www.snort.org (20 Sep 2002).

17 Microsoft Corporation. “Microsoft Security Bulletin (MS00-072)”. 10 Oct 2000.
URL:
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulle
tin/MS00-072.asp (20 Sep 2002).

18 Internet Storm Center. “Port Reports”. 17 Sep 2002. URL:
http://isc.incidents.org/port_details.html?port=139 (17 Sep 2002).

19 Honeynet Project. “The Honeynet Project”. URL: http://project.honeynet.org
(20 Sep 2002).

20 Symantec. “Symantec Security Response: W32.HLLW.Bymer”. 9 Oct 2000.
URL:
http://securityresponse.symantec.com/avcenter/venc/data/w32.hllw.bymer.html
(20 Sep 2002).

21 Oberhumer, Markus F.X.J. & Molnár, László. “UPX: the Ultimate Packer for
eXecutables”. 6 Sep 2002. URL: http://upx.sourceforge.net (20 Sep 2002).

22 Oberhumer, Markus F.X.J. & Molnár, László. “Index of /download/00-OLD-
VERSIONS/obsolete”. URL: http://upx.sourceforge.net/download/00-OLD-
VERSIONS/obsolete/ (20 Sep 2002).

23 Honeynet Project. “win98.tar.gz” (Snort Logs and Worm Binaries). 9 Nov 2000.
URL: http://stan.ksni.net/~lance/win98.tar.gz (20 Sep 2002).

24 Tiny Software. “Tiny Personal Firewall”. http://www.tinysoftware.com (20 Sep
2002).

25 Sysinternals. “ListDLLs”. 27 Jun 2000. URL:
http://www.sysinternals.com/ntw2k/freeware/listdlls.shtml (20 Sep 2002).

26 Ntsecurity.nu. “PMDump”. URL: http://ntsecurity.nu/toolbox/pmdump/ (20 Sep
2002).

27 Reverser’s Fortress. “Utilities: EXE utilities” URL:
http://linux20368.dn.net/protools/utilities.htm#lordpe (20 Sep 2002).

