
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC IHHE Practical Assignment:

BIND 8.2 NXT Remote Buffer Overflow Exploit

Prepared for:
SANS Global Incident Analysis Center

By:
Robert McMahon
rwm@mcmahoncpa.com

Aug 13, 2000

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC IHHE Practical Assignment

i

1. Exploit Details .. 2

2. Protocol Description.. 2

3. Description of Variants... 3

4. How the Exploit Works .. 3

5. How to Employ the Exploit .. 6

6. Attack Signature.. 8

7. How to Protect Against the Attack... 9

8. Source Code/Pseudo Code..10

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC IHHE Practical Assignment

2

1. Exploit Details

• Name: BIND 8.2 NXT remote buffer overflow exploit

• CVE Number: CVE-1999-0833

• CERT Advisories:

o http://www.cert.org/advisories/CA-2000-03.html
o http://www.cert.org/advisories/CA-99-14-bind.html

• Operating System: Systems running BIND 8.2, 8.2.1 with Linux, Solaris,
FreeBSD, OpenBSD, and NetBSD Unix operating systems. Prior versions of
BIND, including 4.x, are not vulnerable to this particular exploit.

• Protocols/Services: TCP/UDP, port 53

• Description: The early versions of BIND that introduced the NXT resource
record extension improperly validated these records inputs. This “ bug” permits
a remote attacker to execute a buffer overflow in order to gain access to a target
system at the same privilege level the named daemon is running at, e.g., root.

2. Protocol Description

The Domain Name System (DNS) is one of the most widespread protocols utilized on
the Internet because of its function - resolving domain names to IP addresses. Email
messaging and web browsing would be at best chaotic if DNS was denied to public use.
DNS is based on a client-server distributed architecture composed of resolvers and
name servers. Name servers that perform recursive resolution (as apposed to iterative
resolution) are of particular interest because of their vulnerable to the NXT remote
exploit on certain DNS implementations.1

DNS uses both UDP and TCP transport protocols. Resolvers and name servers query
other name servers using UDP, port 53 for almost all standard queries. TCP is used for
zone transfers and also for queries of “larger size” domain names (e.g., exceeding 512
Bytes), which has relevance to the subject exploit.
 Earlier versions of DNS were regarded as insecure since there was no ability to
authenticate name servers. In an attempt to make this protocol more secure and permit
authentication, DNS Security Extensions were developed. One of these extensions is
the NXT Resource Record (RR). The NXT RR provides the ability to “securely” deny
the existence of a queried resource record owner name and type. Ironically, it is this
security feature that opens the door for the subject buffer overflow attack and is the
reason why earlier versions of BIND were not exposed. The details of the NXT
Resource Record and associated data fields can be found in RFC 2065,
[http://www.freesoft.org/CIE/RFC/2065/index.htm].

1See DNS and BIND, 2nd Edition by Paul Albitz and Cricket Liu, O’Reilly & Associates, Inc., for a detailed
description on how DNS works.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC IHHE Practical Assignment

3

The BIND (Berkeley Internet Name Domain) implementation of DNS is the most popular
version deployed on the Internet. The BIND 8.2 implementation of the NXT RR was
developed with a programming bug in it that permits remote intruders (via another name
server) to execute arbitrary code with the privileges of the user running the named
daemon. The specifics on this programming bug are discussed in paragraph 4 below.

3. Description of Variants

The version of the NXT exploit addressed in this paper was written by Horizon and
Plaguez of the ADM CreW [ftp://freelsd.net/pub/ADM/exploits/t666.c]. This version has
successfully engaged several name servers.
Another version of the NXT remote exploit, Exploit for BIND-8.2/8.2.1 (NXT), was
written by the TESO group [http://teso.scene.at/releases.php3/teso-nxt.tar.gz]. Because
the author “z-“ gives thanks to Horizon, it is assumed this code was developed after the
ADM-NXT version.2 Some key differences that were noticed with a cursory
examination, other than the differences due to programming style, were the following.

• The ADM-NXT version was tampered with by the authors to make it harder for
“script kiddies” to employ.

• The TESO-NXT version was only designed to run against Linux and FreeBSD
operating systems memory stacks.

4. How the Exploit Works

The BIND 8.2 NXT exploit is based on a buffer overflow of the stack memory. This
buffer overflow is possible because of insecure coding practices. Many programmers
employ functions that use routines that do not check the bounds of input variables. The
reasons for this may be intentional (e.g., for performance reasons) or possibly just lacks
of understanding of secure programming techniques. At any rate, this is an all too
common practice and can be exploited by a hacker who has access to source code and
can run utilities like strings that find insecure routines. (An understanding of C and
assembly programming languages along with lots of patience would also be helpful.)
Of particular relevance to the BIND 8.2 NXT exploit as well as other buffer overflow
attacks, is stack memory manipulation. Stack memory is the type of memory that
programs use to store function local variables and parameters. An important concept
regarding stack memory exploitation is related to the return pointer. The return pointer
contains the address of the place in the calling program control is returned to after
completion of the function3. The following example is a simple illustration describing
how a buffer overflow attack can be used to overwrite the return pointer while inserting
executable machine code in the stack.

2 Based on research performed 12-13 August 2000, it could not be ascertained if the TESO-NXT version
has ever been successfully deployed.
3 Advanced Incident Handling and Hacker Exploits: Step-by-Step, Part 1 and 2, by Edward Skoudis, pg
183, SANS, July 5-10, 2000.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC IHHE Practical Assignment

4

Example 1: A given function has two variables defined, var1[20] and var2[12]. For
simplicity, the variables and the return point, ptr[0], are allocated addresses 00000000
through 00000020 as depicted in the figure 1.

To demonstrate the buffer overflow, if an input var2 exceeding 12 characters is entered
into the stack via a routine such as strcpy(), the return pointer, PTR[0] is overwritten by
the overflow data of var2* (see figure 2 below). In this case, var2* was carefully crafted
to be another return pointer that directs the flow of the function to address 00000024.
This new address is the location of the attack payload, which was delivered as part of
the overflow code. The payload can be machine executable code, such as /bin/sh –c,
which will run at the same privilege level of the program being exploited.

This example is a very simple demonstration on how a stack overflow can take control
of a function to execute hacker-defined executable code. In reality it can be quite an
endeavor to build a buffer overflow program, especially if the programmer has to predict
the specific arrangements of the stack. One of the best resources available that
describes stack memory concepts is the article “Smashing the Stack for Fun and Profit”
by Aleph One, in Phrack Magazine, Issue 49, Article 14,
[http://phrack.infonexus.com/search.phtml?view&article=p49-14].

STACK [9] 00000024

STACK [10] 00000028

STACK[8] = PTR[0] 00000020

STACK[7] = var2 0000001C

STACK[6] = var2 00000018

STACK[5] = var2 00000014

STACK[4] = var1 00000010

STACK[3] = var1 0000000C

STACK[2] = var1 00000008

STACK[1] = var1 00000004

STACK[0] = var1 00000000

Figure 1: Before Exploit

Addresses Contents

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC IHHE Practical Assignment

5

THE ADM-NXT BIND buffer overflow exploit works when the target name server
performs a recursive DNS query on a hacker host. The query basically fetches a
maliciously-constructed NXT record which contains the code that exploits the BIND
server memory stack. The exploit code can be successfully engaged against primary,
secondary, and even caching-only name servers. The next paragraph explains in more
detail how the attack is actually employed.

Attack_ Payload[1] 000000024

000000028

000000020

00000001C

000000018

000000014

000000010

00000000C

000000008

000000004

000000000

Attack_Payload[2]

STACK[8] = var2*

STACK[7] = var2

STACK[6] = var2

STACK[5] = var2

STACK[4] = var1

STACK[3] = var1

STACK[2] = var1

STACK[1] = var1

STACK[0] = var1

Figure 2: After Exploit

Addresses Contents

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC IHHE Practical Assignment

6

5. How to Employ the Exploit

The BIND 8.2 NXT remote buffer overflow exploit can be performed by a single
machine, however, for purposes of providing a clear understanding of the host
functions, the participating name server and hacker host (with NXT exploit code) will be
denoted as separate machines (see figure 3 below).

Figure 3: BIND 8.2 NXT Remote Exploit Geometry

firewall permits UDP and TCP
dest port 53; src port 53

Web Server

Name Server
[ns1.targetnet.com]

Hacker host
[rwm.hacknet.net]

name server
[ns1.xxx.net]

PUBLIC
INTERNET

2. Create and delegate
subdomain "aaa.xxx.net" to
rwm.hacnet.net via root acces to
name server

5. Performs recursive query of www.aaa.xxx.net
 - ns1.xxx.net: primary for top-level domain, delegates to
rwm.hacknet.net
 - queries rwm.hacnet.net to resolve www.aaa.xxx.net

1. IDs and negotiates DNS target
 - can accepts recursive queries
 - vulnerable version of BIND
3. Compile NXT BIND exploit
code - acts like NS.
4. Request ns1.targetnet.com to
do recursive query to resolve
www.aaa.xxx.net
6. Enagages ns1.targetnet.com
with a NXT buffer overflow attack
 - gains shell access as root
7. Sets up user account and back
channel

Step 1. Hacker host (rwm.hackernet.net) identifies and negotiates target name server.

• Determine if target name serve, ns1.targetnet.com, is vulnerable to NXT exploit
via dig or nslookup. Like most firewall configurations on the Internet, the
targetnet firewall permits DNS queries to UDP and TCP ports 53 from “any” host.

• Set up a resolver (/etc/resolv.conf) on rwm.hackernet.net to query ns1.xxx.net for
it name services.

• Perform DNS queries of ns1.target.com in order to determine if it takes on
burden of performing name queries – if so, then it performs recursive queries
(e.g., name server does not just refer the requesting name server to different
name server like it would for iterative query.)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC IHHE Practical Assignment

7

Step 2: Create and delegate subdomain

• Create following records on ns1.xxx.net:

 aaa.xxx.net NS A rwm.hackernet.net
 rwm.hackernet.net IN A 10.233.131.222

• Reinitialize in.named daemon…kill –HUP <in.named pid>

Step 3: Compile BIND 8.2 NXT exploit code (ADM-NXT version: t666.c) 4

• Edit source code to change /adm/sh to /bin/sh (in hex) by searching the source
code for 0x2f,0x61,0x64,0x6d,0x2f and replacing it with
0x2f,0x62,0x69,0x6e,0x2f. (The authors of the program, to put it in their words,
wanted to raise the bar a little to make it harder for script kiddies to blindly
execute this code.)

• Compile the t666.c source code with gnu C compiler and execute the bind_nxt
executable

rwm #/tmp gcc t666.c -o bind_nxt
rwm #/tmp ./bind_nxt

Step 4: Request ns1.targetnet.com to do recursive query in order to resolve
www.aaa.xxx.net - a host with subdomain delegated to rwm.hackernet.net as per NS
record.

 rwm #nslookup
 > server ns1.targetnet.com
 > www.aaa.xxx.net
Step 5: Target NS performs recursive queries to resolve www.aaa.xxx.net

• Queries ns1.xxx.net first since it is primary for top-level domain xxx.net.
Receives message from ns1.xxx.net to query rwm.hacknet.net that is primary for
subdomain aaa.xxx.net as per NS record.

• Queries rwm.hacnet.net to resolve www.aaa.xxx.net

• It should be noted that ns1.targetnet.net is running in. named with UID = 0

4 From the article, BIND 8.2 - 8.2.2 Remote root Exploit How-To by E-Mind,
[http://www.hack.co.za/daem0n/named/NXT-Howto.txt].

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC IHHE Practical Assignment

8

Step 6: rwm.hacnet.net engages ns1.targetnet.com with a NXT buffer overflow attack

• rwm.hacnet.net sends a large NXT record containing code that exploits the
remote BIND server memory stack with a buffer overflow (will use TCP instead of
UDP because of the size of the transaction.)

• Hacker on rwm.hacnet.net gains shell access with privileges as root since
in.named on target was running as root.

Step 7. Sets up user account and back channel

• Set up user account and backdoor (e.g., netcat listener) before exiting shell
account (since buffer overflow caused DNS to crash).

• Come back and set up favorite rootkit.

6. Attack Signature

There are a number of signatures that the BIND 8.2 NXT remote buffer overflow (ADM-
NXT) has. In many of the signatures, the two authors of the exploit source code,
Horizon and Plaguez, deliberately leave their “signature” in various portions of the
character array definitions portion. The ASCII and HEX versions of the code shown
below can be easily retrieved by promiscuous-mode packet analyzers such as tcpdump,
Snort, and Solaris’ Snoop. With regard to the seven signatures listed, there is a strong
likelihood more exist.
Signature 1: The recursive query request of a domain name that is not associated with
the domain name of the server being queried. This could possibly be explained by a
mistake in typing the domain name in the DNS query. However, it is assessed that this
probability would become exponentially lower for domain names with characters
exceeding four.
Signature 2: Some of the compromised systems had one of the following empty
directories on systems where the NXT record vulnerability was successfully exploited
[http://www.cert.org/advisories/CA-2000-03.html]:

/var/named/ADMROCKS
/var/named/O

Signature 3: On the BSD code version of the exploit, an empty file is created. The
following came from the “char bsdcode[]=” portion of the source code:
0x74,0x6f,0x75,0x63,0x68,0x20,0x2f,0x74,0x6d,0x70,0x2f,0x59,0x4f,0x59,0x4f,
0x59,0x4f,0x0};
The above code yields the ASCII characters… touch /tmp/YOYOYO
Signature 4: On all versions of the exploit, the “unpatched” version of the exploit would
execute the “/adm/sh –c” command. The following came from character array
definitions portion of the source code:
0x2f,0x61,0x64,0x6d,0x2f,0x6b,0x73,0x68,0x0,0x2d,0x63

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC IHHE Practical Assignment

9

Conversely, the patch as prescribed by E-Mind, would change this code such that
“/bin/sh –c” would be executed in the stack instead. Horizon himself provides a clue to
this in his comments.
Signature 5: In all versions of the exploit, the ASCII characters “ADMRocks” is visible.
The following line came from the character array definitions portion of source code:
0x41,0x44,0x4d,0x52,0x4f,0x43,0x4b,0x53

Signature 6: The following came from the “char linuxcode[]=” and “char bsdcode[]=”
portion of the source code:
0x70,0x6c,0x61,0x67,0x75,0x65,0x7a,0x5b,0x41,0x44,0x4d,0x5d
The above code yields the ASCII characters… plaguez[ADM] .5
Signature 7: The following came from the “char linuxcode[]=” portion of the ADM-NXT
version by Horizon and Plaguez:
 0x0,0x0,0x0,0x10,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x74,0x68,0x69,0x73,0x69,0x73,
 0x73,0x6f,0x6d,0x65,0x74,0x65,0x6d,0x70,0x73,0x70,0x61,0x63,0x65,0x66,0x6f,
 0x72,0x74,0x68,0x65,0x73,0x6f,0x63,0x6b,0x69,0x6e,0x61,0x64,0x64,0x72,0x69,
 0x6e,0x79,0x65,0x61,0x68,0x79,0x65,0x61,0x68,0x69,0x6b,0x6e,0x6f,0x77,0x74,
 0x68,0x69,0x73,0x69,0x73,0x6c,0x61,0x6d,0x65,0x62,0x75,0x74,0x61,0x6e,0x79,
 0x77,0x61,0x79,0x77,0x68,0x6f,0x63,0x61,0x72,0x65,0x73,0x68,0x6f,0x72,0x69,
 0x7a,0x6f,0x6e,0x67,0x6f,0x74,0x69,0x74,0x77,0x6f,0x72,0x6b,0x69,0x6e,0x67,
 0x73,0x6f,0x61,0x6c,0x6c,0x69,0x73,0x63,0x6f,0x6f,0x6c,0xeb,0x86,0x5e,0x56,
Lance Spitnzer’s forensics was able to obtain the following readible ASCII code”

00 00 00 10 00 00 00 00 00 00 00 74 68 69 73 69 thisi
73 73 6F 6D 65 74 65 6D 70 73 70 61 63 65 66 6F ssometempspacefo
72 74 68 65 73 6F 63 6B 69 6E 61 64 64 72 69 6E rthesockinaddrin
79 65 61 68 79 65 61 68 69 6B 6E 6F 77 74 68 69 yeahyeahiknowthi
73 69 73 6C 61 6D 65 62 75 74 61 6E 79 77 61 79 sislamebutanyway
77 68 6F 63 61 72 65 73 68 6F 72 69 7A 6F 6E 67 whocareshorizong
6F 74 69 74 77 6F 72 6B 69 6E 67 73 6F 61 6C 6C otitworkingsoall
69 73 63 6F 6F 6C EB 86 5E 56 8D 46 08 50 8B 46 iscool..^V.F.P.F

7. How to Protect Against the Attack

• Upgrading to BIND version 8.2.2 patch level 5, or higher, is strongly
recommended for all users of BIND. With regard to the subject exploit, this is the
easiest and best way to mitigate this attack.

• Change UID and GID of in.named daemon to a non-root UID and GID. This is
analogous to why web server run as “nobody”.

• A more holistic approach to counter buffer overflows in general, is to practice
secure coding practices that employ argument validation routines and “safe”
compilers. Also the use of secure routines such as fget(), strncpy(), and

5 A White Paper, authored by Lance Spitzner, Know Your Enemy: A Forensics Analysis , focuses on how
SNORT was used as a forensics tool to piece together the actions of a real intruder. This paper greatly
facilitated the analysis of the ADM-NXT exploit with regard to signatures 6 and 7.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC IHHE Practical Assignment

10

strncat() will reduce the likelihood of buffer overflows. 6 Security representation
on configuration control boards is also necessary and should be a matter of
routine whenever any code is modified.

8. Source Code/Pseudo Code

Source code for both the ADM and TESO versions of the BIND 8.2 NXT remote buffer
overflow attack can be found in paragraph 3 above.
Pseudo code for this exploit is as follows:

1. Determine if target name serve is vulnerable to NXT exploit via dig or
nslookup

2. Perform DNS queries of target name server in order to determine if target
name server performs recursive queries

3. Create subdomain delegation records on name server that is an accomplice
to the attack and reinitialize in.named daemon…kill –HUP <in.named pid>

4. Edit source code to change /adm/sh to /bin/sh (in hex) by searching the
source code for 0x2f,0x61,0x64,0x6d,0x2f and replacing it with
x2f,0x62,0x69,0x6e,0x2f on hacker_host

5. Compile the t666.c source code with C compiler on hacker_host

6. Execute the compiled and linked executable on hacker_host
7. Request target name server to perform recursive query in order to resolve a

hostname with subdomain that was delegated to hacker_host.
8. hacker_host sends a large NXT record containing code that exploits the

remote BIND server memory stack with a buffer overflow.
9. hacker_host gains shell access with privileges as in.named daemon on target

name server.
10. Attacker sets up user account and back channel on name server; exits shell.

6 Hacking Exposed, by Stuart McClure, Joel Scambray, and George Kurtz, pp 215-216,
Osborne/McGraw Hill, 1999.

