
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 GCIH Practical Assignment Page 1

Title: GCIH Practical Assignment

DNS Security

Author: Thomas A. Greco

Version Number: 2.1a: Option 2 – Support for the Cyber Defense Initiative

Date: March 13, 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 DNS Security Page 2

Abstract

The Domain Name Service (DNS) is probably one of the most critical yet under-
appreciated services on the Internet. Almost every Internet user today,
consumer or business, is highly dependent upon its operation. Until recent
years, little attention was paid to the security of this important resource.
Vulnerabilities in DNS span its architecture, protocol, and implementation. This
paper provides an overview of DNS, outlines the major vulnerabilities, and details
a particular exploit where DNS itself can be used to launch a Denial of Service
attack.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 DNS Security Page 3

Contents

ABSTRACT.. 2
TARGETED PORT: TCP/UDP 53 .. 4

INTRODUCTION ... 4
ARCHITECTURE .. 6

Protocol .. 7
Domain Name Space and Domains... 7
Delegation, Authority and Zones .. 8
Class Types and Resource Records... 8
Message Formats and Transports.. 9

Infrastructure... 10
Name Servers, Resolvers and Resolution .. 10
Root Servers and Top-Level Domains .. 11
ICANN and Registrars ... 12

VULNERABILITIES ... 12
Systems ... 15
Implementation.. 15
Protocol ... 16

SPECIFIC EXPLOIT: DOS USING DNS ... 19
OVERVIEW ... 19
VARIANTS .. 19
EXPLOIT DETAILS ... 20

Protocol .. 20
The Attack .. 20
Defense... 25
Exploit Source Code.. 26
Additional Information .. 27

REFERENCES ... 28

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 DNS Security Page 4

Targeted Port: TCP/UDP 53

Introduction

According to data obtained from the Consensus Intrusion Database on February
12, 2003 port 53 was ranked 4th in the top 10 most-attacked ports on the Internet
(Table 1 and Figure 1).

Service
Name

Port
Number 30 day history Explanation

netbios-ns 137

http 80 HTTP Web server

ms-sql-m 1434

domain 53
Domain name system. Attack against old
versions of BIND

ms-sql-s 1433 Microsoft SQL Server

microsoft-ds 445

netbios-ssn 139 Windows File Sharing Probe

ftp 21 FTP servers typically run on this port

??? 4662 eDonkey P2P software

smtp 25 Mail server listens on this port.

Table 1 CID Top 10 Ports – February 12, 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 DNS Security Page 5

Figure 1 CID graph of port 53 activity around February 12, 2003.

Ports TCP/UDP 53 are commonly associated with the Domain Name Service
(DNS). DNS is used to resolve Internet Protocol (IP) addresses from hostnames
and back again. A numeric IP address is required to access a resource on an IP-
based network such as the Internet. Each device on a network is assigned an IP
address having the form x.x.x.x where each instance of “x” represents an 8-bit
number (decimal ranging from 0 to 255). Details of the IP protocol are beyond
the scope of this assignment. Several excellent tutorials on this topic exist. A
few are listed in the References section. For the moment, assume that the IP
addresses are properly constructed. Users must know the mapping between the
devices and the IP addresses to be productive on the network. For example,
they must know that 1.2.3.4 is the mail server, or that 1.2.3.5 hosts the
company’s financial applications. It is precisely the problem of this mapping that
eventually led to the development of DNS.

Before the existence of DNS, it was necessary to either remember all of the
numeric addresses, or to assign names to the devices, and maintain hostname to
IP address mappings in files on every device. As the Internet grew,
remembering all of the numbers was impossible. The concept of naming the
devices was much more appealing. In general, humans are much better at
remembering names than they are at remembering numbers. However,
maintenance of the mapping files was daunting even for a moderate sized
network.

The need for a naming system was recognized quite early in the Internet’s
history. In 1971, Peggy Karp conceived the concept of standardized host

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 DNS Security Page 6

designators or Internet names. She followed this a year later with the creation of
the HOSTS.TXT file which contained hostname to IP address mappings in a
standardized text format. System administrators were responsible for submitting
their entries for inclusion in HOSTS.TXT to the Stanford Research Institute.
Stanford maintained the authoritative copy of the file and made it available
globally via FTP.

By the early 1980’s, maintenance of HOSTS.TXT was becoming unwieldy. In
response, a series of RFC’s beginning with the work of Dr. David Mills
collectively identified the basic building blocks of modern day DNS. They defined
concepts such as domain names, sub-domains, zones, authority, and delegation.
In addition, as the network morphed from ARPAnet to NSFnet to, eventually, the
Internet, components of the formal DNS infrastructure such as the governing
bodies, top-level domains, and root name servers began to solidify. In 1992, in
what, in retrospect, could be considered to a landmark event, Network Solutions,
Inc. was awarded the contract from the National Science Foundation for
management of the entire domain system placing control of this vital resource
into the hands of the private sector once and for all.

Today, DNS is THE index to the Internet. Its care and feeding is distributed on a
global basis. Most take for granted that DNS will be there to do its job. Few are
even aware of its existence at all. When one types www.ebay.com into their web
browser, it is expected that ebaY’s home page will magically appear. There is no
thought that the web browser had to query a DNS server to find out that
www.ebay.com resolves to 66.135.192.83 (among 4 addresses at the time of this
writing), or that their local DNS server probably had to make further queries on
their behalf to figure this out.

Without DNS, the Internet would become almost completely useless to a majority
of the networked community. Given the level of commercialization and the
reliance on the Internet by businesses and consumers alike, DNS has
undoubtedly become very important to the stability of the economy. Arguably, it
is as important as the Internet itself.

Architecture

The design goals of DNS center around a database that is stored and managed
in a distributed fashion for the purpose of communicating hostname to IP address
mappings on a global basis. The components of DNS can be divided into two
major categories: infrastructure and protocol. The elements of the DNS
infrastructure include the root name servers, top-level domain servers, The
Internet Corporation for Assigned Names and Numbers (ICANN) and multiple
domain registrars. Beyond these there exists a multitude of resolvers and lower-
level name servers. At the heart of all of these elements is the DNS protocol
itself defining the name space and the rules by which it is stored and
communicated.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 DNS Security Page 7

Protocol

Domain Name Space and Domains

DNS defines a distributed database of domain names and IP addresses. The
structure of this database is commonly termed the Domain Name Space. A
sample of the Domain Name Space structure is depicted in Figure 1. It is a nodal
structure beginning with a single parent node, the root node, labeled by a period,
“.”. The root node has several children each of which may have children of their
own. Thus, with the exception of the root node, any node in the structure may
simultaneously exist as both a parent and child.

educom

Root Node
“.”

abc 123

defg 456

host1 host2

The abc.com Domain
Figure 2 Domain Name Space structure.

Domain names are constructed by starting at any node and following the
structure up to the root node. Simply concatenate the node labels using a period
as a separator. Referring to Figure 1, some examples of domain names would
be “defg.abc.com.” or “123.com.”. A domain name constructed by starting from a
node possessing no children is known as an absolute domain name or Fully
Qualified Domain Name (FQDN). Again referring to Figure 1, an example FQDN
would be “host1.defg.abc.com.”.

A group of nodes descendent from a single node comprise a domain. For
example, in Figure 1, “abc.com” represents a domain. It contains a sub-domain,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 DNS Security Page 8

“defg.abc.com”, that possesses two FQDN’s, “host1.defg.abc.com” and
“host2.defg.abc.com”.

Delegation, Authority and Zones

The actual content making up the domain name space did not spring
spontaneously from the vacuum of deep space. Various organizations are
responsible for defining the nodes at every level. Responsibility is assigned on a
domain basis. Specific organizations, such as ICANN, are responsible for the
very top-level domains. ICANN and the concept of top-level domains are
discussed further in the Infrastructure section. Below the top level, responsibility
is delegated to the organizations having direct interest in a particular domain.
This assignment of responsibility from a higher-level domain to a lower one is
called delegation.

A university would have responsibility for their domain (e.g. university.edu)
delegated to them from the keeper of the edu domain. The university and their
respective name servers thus have authority for the university.edu domain. In
this scenario, university.edu is also referred to as a zone. A zone, in other
words, is a domain for which authority has been delegated.

Class Types and Resource Records

The existence of nodes in a domain name space is not in itself a very useful
construct. Recall, however, that among other things DNS is a database.
Underlying the nodal structure of the name space are records holding the
relevant content of the associated domains. As is true for just about any
database, DNS has specific rules regarding the structure and content of the
records in its database.

In general, individual records are termed Resource Records (RR). Each
resource record contains the following information:

• Domain name

• Class

• RR type

• Time-To-Live (TTL)

• Resource data length

• Resource data (dependent upon Class and RR type)

The class types are Internet, Hesiod, and CHAOS. Hesiod and CHAOS are
rarely used anymore. The discussion from here forward will therefore be limited
to records of the class IN. The TTL parameter specifies the time interval for
which the record can be cached. Caching is discussed further in the
Infrastructure section below. The resource data length simply specifies the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 DNS Security Page 9

length of the resource data section of the RR. The resource data section itself
contains the specific information based upon both the class and RR type.

Although there are many more, Table 2 contains some commonly referenced RR
types of the IN class and their definitions.

RR TYPE DEFINITION PURPOSE

A Host address Identifies the IP address of a host.

CNAME Alias to a canonical
name.

Identifies an alias to the real name
(canonical name) of a host.

HINFO Host information Specifies additional, non-functional,
information pertaining to a host.

MX Mail exchange Identifies a host acting as the mail
server for the domain.

PTR Reverse Record Associates an IP address with a
canonical name.

SOA Start of Authority Specifies the start of a zone of
authority.

Table 2 Common RR types of the IN class.

For details of all RR types and their formats, refer to RFC 1035.

Message Formats and Transports

DNS functions based upon query and response messages. Regardless of the
message type, all DNS messages share a common high-level structure. Figure 2
shows the DNS message format adapted from RFC 1035.

Header

Additional

Authority

Answer

Question

Specifies which of the remaining sections are
present in the message.

Contains the question if this is a query message.

RR’s in response to the query.

RR’s pointing to an authoritative name server.

RR’s with additional info that relates to the query.

Figure 3 DNS message format.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 DNS Security Page 10

Not all sections are present in every message. The Header section must always
exist. The Header will specify the content of the message indicating which of the
other sections are actually present. A query, for example, will contain only the
Header and Question sections. Further details may be obtained from RFC
1035.

The transport mechanisms for DNS messages are the IP protocols UDP and
TCP utilizing port 53 in both cases for standard implementations. Queries are
typically handled via UDP because of its fire-and-forget nature. There is low
overhead with UDP, and response times will be minimized if everything is
working correctly. However, a retransmission mechanism is essential since
UDP-based queries and their responses may be lost. The DNS RFC’s do not
specify how the retransmission should function. This decision is left to the
developers of the particular implementation. The BIND resolver, for example, will
send a query 3 times at 0, 12, and 24 seconds.

TCP is recommended for DNS functions requiring a more reliable transport.
Copying all RR’s for an entire zone from one name server to another, known as a
zone transfer, is an example of a transaction best served by using TCP. It is
important to know in this case that the either the entire zone has been transferred
or that the communication as been severed at some point along the way. TCP is
also used when responses are truncated by the 512 byte limit of the DNS UDP
datagram.

Infrastructure

Name Servers, Resolvers and Resolution

Generally speaking, the DNS infrastructure consists largely of a hierarchy of
servers that follows the hierarchy of the domain name space itself. These name
servers store domain (zone) information and respond to queries. Name servers
store RR’s of the zones for which they are authoritative by either reading them
from zone files located on a filesystem, or by transferring them from other name
servers that are authoritative for the same zone.

Queries originate from entities known as resolvers. Resolvers are available to
applications (e.g. telnet, ftp, web browser) on a host system through libraries or
other facilities. Resolvers are used to formulate the queries, send them to name
servers, and then interpret the responses.

Queries can be either iterative or recursive. If a resolver issues an iterative
query, the name server will respond with a referral to another name server if it
doesn’t know the answer. In this case, the resolver itself will have to initiate
further queries. If the resolver issues a recursive query, the name server will
assume responsibility for making further queries on behalf of the resolver. For
most implementations, the entire resolution process is both recursive and
iterative as show in Figure 3. The resolver will make a recursive query to its local

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 DNS Security Page 11

name server. The name server will, in turn, execute a series of iterative queries
in search of the answer and return the answer to the resolver.

Local
Name Server

Resolver

Name Server
C

Name Server
B

Name Server
A

1 Recursive Query

2
Iterative Query

3

Referral to B

4 Iterative Query

5Referral to C

6 Iterative Query

7

Response with RR’s

8Response with RR’s

Figure 4 Resolution process demonstrating iterative and recursive queries.

Name servers can also store information about zones for which they are not
authoritative through caching. As the name server executes the iterative queries
in Figure 3, it will store the responses it receives in cache. The name server will
retain these RR’s in its cache for the time period specified in the TTL parameter
that was included in each response it receives from the other name servers.
Subsequent responses to queries from the resolver for the same RR’s will be
read from cache. Caching is a performance-enhancing design element intended
to increase response times and reduce bandwidth utilization as well as the load
on the name servers.

Root Servers and Top-Level Domains

Just as the hierarchy of the domain name space is arranged in a “top-down”
fashion, so is the hierarchy of name servers. At the top of the domain name
space is the root domain. At the top of the domain name server hierarchy are the
root servers. Presently there are 13 root servers named x.ROOT-
SERVERS.NET where x ranges from A to M. The number of root servers is
limited to 13 because more would cause an NS response for the root servers to
be truncated (recall the 512 byte limitation of DNS UDP datagrams).

The root servers contain information about the name servers that are
authoritative for the top-level domains (TLD). TLD’s are nodes in the domain
name space that are direct descendants of the root node. They are split into two
categories. There are the 14 generic TLD’s (gTLD) such as .com, .org, .net, .mil,
and the over 240 country code TLD’s (ccTLD) as in .us, .de, .ch, .jp. The TLD

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 DNS Security Page 12

name servers are the registries containing RR’s of the name servers authoritative
for the second-level domains (e.g. icann.org, odu.edu).

Referring to Figure 3, in a basic resolution scenario, Name Server A would
represent a root server, Name Server B would represent a TLD name server, and
Name Server C would represent the name server authoritative for the domain
associated with the query. Note that there are alternate resolution scenarios.
Consult the references for more details.

ICANN and Registrars

Root servers, domain name space, top-level domains… but who’s in charge of it
all? The Internet Corporation for Assigned Names and Numbers (ICANN) is a
non-profit organization responsible for management of DNS at the highest level.
Among other things, ICANN establishes policies for DNS management, and
manages all aspects of the root zone. In addition, ICANN delegates
responsibility for operating the TLD name servers to various organizations often
referred to as registry operators. For example, Verisign, Inc. is responsible for
operating and maintaining the .com TLD name servers. A complete list can be
found at http://www.icann.org/tlds.

As anyone who has ever registered a domain would know, there are a multitude
of registrars working in conjunction with the TLD registry operators to provide
domain registration services. ICANN also has the responsibility of accrediting
registrars. The accreditation process can also be found on the ICANN web site.

Vulnerabilities

Consider a cursory business impact analysis using the following scenario:

Business Objective = Establish an e-business selling widgets over the Internet

 Task 1 = On-line research for widget marketing and sales strategy

 Asset 1.1 = Network infrastructure

 Asset 1.2 = Resolvers, widgets.com name servers

 Task 2 = Widget engineering and manufacturing

 Asset 2.1 = Network infrastructure

 Asset 2.2 = Engineering and manufacturing systems

 Asset 2.3 = CAD data

 Task 3 = Sell widgets

 Asset 3.1 = Network infrastructure

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 DNS Security Page 13

 Asset 3.2 = Web servers, application servers, database servers

 Asset 3.3 = Applications, data

Asset 3.4 = widgets.com external name servers, zone files (i.e.
DNS content pertaining to widgets.com zone)

Mapping objectives to tasks to assets demonstrates the impact that a particular
asset or set of assets has on the objectives. In this case, it is clear that the
organization’s DNS infrastructure is fairly critical since it facil itates two tasks
associated with the primary objective (Assets 1.2 and 3.4).

Using confidentiality, integrity, and availability as the review elements and a
simple High, Medium, Low rating scale the impact can be evaluated qualitatively.
Qualitative analysis is simple and the results are useful for prioritizing the
application of risk analysis and the subsequent implementation of controls.

Regarding confidentiality, ask the question:

What would be the impact on the business objective if DNS content pertaining to
widgets.com was disclosed to an unauthorized individual with or without
malicious intent?

Regarding integrity, ask the question:

What would be the impact on the business objective if the integrity of the DNS
content were compromised?

Regarding availability, ask the question:

What would be the impact on the business objective if the DNS content were
unavailable for one minute… one hour… one day… one week… or more?

Based upon the scenario above, these questions are easily answered. On a
name server intended for queries by the general public, RR’s are considered just
that, public. There is no restriction on who can query the external name servers.
Therefore, the concept of an “unauthorized individual” is difficult to define. An
individual without malicious intent might be a customer who, probably
unbeknownst to them, queries the widgets.com public name servers when
accessing the web site. For an e-business, this is certainly not an unauthorized
disclosure. An individual with malicious intent might be an attacker using the
public name servers for reconnaissance in the early stages of attack planning.
Still, the use by the attacker may not necessarily constitute unauthorized
disclosure. Using standard query tools and techniques, the attacker can execute
perfectly acceptable queries. Executing a zone transfer by circumventing access
controls is an entirely different story. Yet the zone transfer itself would not
disclose non-public information (unless RR’s for internal hosts were loaded onto
the external name servers). It merely provides an immediate aggregation of
information that would be more difficult to collect otherwise. Thus, the overall
impact due to a breach of confidentiality would be extremely low.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 DNS Security Page 14

In contrast, a breach of integrity or a lack of availability would have a High
impact. In both cases, business resources would be unreachable by customers,
suppliers, or other partners. Any disruption in DNS, even for a short period of
time, can be damaging to an e-business. A breach of integrity might even lead to
fraud or other hostile activity if an attacker were able to modify RR’s and direct
legitimate customers to his own site.

Focusing then on integrity and availability issues, a risk analysis can be
performed. First compile the list of threats.

 Possible threats to the integrity of widgets.com DNS content are:

• Intentional or accidental modification of RR’s stored in zone files.

• Intentional or accidental modification of RR’s in memory or cache.

• Forgery of responses to legitimate queries.

 Possible threats to the availabi lity of widgets.com DNS content are:

• Root servers inaccessible.

• .com TLD name servers inaccessible.

• widgets.com external name servers inaccessible.

The associated priority of these threats is evaluated based upon a combination of
their likelihood of occurrence and their impact if they were to actually occur.
Assume that all carry a high impact. It then remains to determine their likelihood
by judging how susceptible widgets.com would be to these threats in the
absence of compensating controls. Only then can the identification and
prioritization of controls be accomplished.

Regarding integrity, accidental modification of anything is probably a function of
procedures and awareness. Widgets.com system administrators are much too
professional for this to be a likely threat (or so we hope).

The remaining threats would all be realized either through vulnerabilities in the
systems hosting DNS (widgets.com name servers, root servers, etc.), the
applications that implement DNS (e.g. BIND), or the DNS protocol itself. Table 3
displays the correlations between these categories of vulnerabilities and the
threats listed above along with some examples.

Category Examples of Vulnerabilities Associated Threats
DNS Systems Remotely exploitable vulnerabilities resulting

in system access, execution of commands,
or denial of service

Locally exploitable vulnerabilities resulting in
elevation of privileges, execution of
commands, or denial of service

Modification of zone files

External name servers
inaccessible

Root servers inaccessible

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 DNS Security Page 15

.com TLD name servers
inaccessible

DNS Implementation Remotely exploitable buffer overf lows in
BIND

Modification of zone files

Modification of RR’s in
memory or cache

External name servers
inaccessible

Root servers inaccessible

.com TLD name servers
inaccessible

DNS Protocol Spoofing or hijacking

Cache poisoning

DDoS attack against name servers

Root servers inaccessible

.com TLD name servers
inaccessible

Injection of false
responses to legitimate
queries

Table 3 Vulnerabilities by category.

Systems

The range of potential vulnerabilities in the DNS systems in general is large.
With the high rate of discovery of new vulnerabilities in systems and applications,
there is certainly plausibility that a name server could be compromised. It’s
probably safe to say that the root and TLD servers are less likely to be
penetrated compared to corporate name servers such as widgets.com’s external
name servers. The root and TLD servers draw much attention for obvious
reasons and there has been a significant effort in the past couple of years to
harden these servers as well as strengthen the security procedures surrounding
their maintenance. Corporate name servers do not have the benefit of being
subject to stringent standards as a rule. While some corporations do an
excellent job with security standards a large number are still lacking. The high
rate of vulnerability discovery coupled with lapses in corporate security places
the probability of this family of vulnerabilities in the medium to high range for the
widgets.com external name servers. The low to medium range is more
appropriate for the root and TLD servers.

Implementation

Vulnerabilities in DNS implementation are essentially a subset of the
vulnerabilities in the DNS systems themselves since the implementation
represents and application or service on the system. DNS implementations such
as BIND are susceptible to the same flaws as any other system (e.g. buffer
overflows, command injection, misconfiguration). Their exploitation can result in
access to the system, a compromise of system integrity, or denial of service. Not

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 DNS Security Page 16

to pick on BIND, but seeing how it is currently the most widely used
implementation of DNS it lends itself to being a decent example. Reviewing the
BIND security page at http://www.isc.org/products/BIND/bind-security.html
reveals a variety of application-level vulnerabilities. The severity of these
vulnerabilities ranges from mild annoyance to possible remote root compromise.
Other DNS implementations will have their vulnerabili ties as well. However,
assuming that widgets.com is using BIND, the probability here could be classified
as medium to high.

Protocol

Regarding the DNS protocol, the top-down architecture it imposes places
significant criticality on upper-level servers. The root servers are certainly critical,
but perhaps not as critical as the TLD’s. Recall that the root servers provide the
locations of the TLD servers. In addition, responses from the root servers will be
cached for two days due to their TTL. Thus, it is highly probably that a local
name server will have the locations of the TLD servers (at least those for whom
the most queries are made) cached. Greater importance is then shifted to the
integrity and availability of the TLD servers since they provide direction to the
multitude of second-level domain servers. Denial of Service (DoS) and
Distributed Denial of Service (DDoS) attacks have captured much publicity in
recent months. Probability remains high that these types of attacks will continue
to be perpetrated against DNS. However, the root and TLD servers are definitely
going to be more resilient than the widgets.com external name servers.

Another aspect of the DNS protocol, which makes it particularly susceptible to
certain types of attacks, is its use of UDP datagrams. UDP is connectionless and
therefore does not rely on mechanisms such as sequence numbers to maintain
the state of the connection. While sequence numbers are not meant to be a
strong form of security, if they are sufficiently random they do impose a hurdle
that must be cleared for spoofing or hijacking a connection. DNS queries using
UDP have no such protection clearing the way for spoofing and hijacking attacks.

Even though UDP cannot prevent spoofing or hijacking, DNS does present one
obstacle to such an attack. DNS employs a mechanism known as a query ID. It
is essentially a 16-bit number used for matching responses to their original
queries. However, the query ID has weaknesses that an attacker can leverage
fairly easily. Although the query ID itself makes them possible, a particularly
weak DNS implementation will ease the execution of these types of attacks.
Attacks using the query ID take advantage of the fact that the query ID is really
the only mechanism used to authenticate responses. Query ID attacks follow a
common pattern. Recursive queries are generated, either by legitimate or forged
requests. The attacker then injects the data of his choosing by formulating a
spoofed DNS response and sending it to the victim name server. With sufficient
knowledge of the query ID generation algorithm, or by using brute force
techniques involving the generation of hundreds of responses, the attacker can
trick the victim name server into accepting the bogus responses. Depending

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 DNS Security Page 17

upon the particular DNS implementation, this can be achieved with a surprisingly
high degree of success.

An attacker can also inject bogus data into a victim name server by configuring
his own name server and loading it with falsified RR’s. In this scenario, the
attacker sets up a name server for the attacker.com zone. In his zone files he
creates false RR’s including a mapping of www.victim.com to the IP address of
www.attacker.com. The attacker then sends recursive queries for RR’s in the
attacker.com zone to the victim.com name server. When the victim.com name
server queries the attacker.com name server, the bogus RR’s are returned as
additional data to the response and stored in the victim.com name server’s
cache. Now victim.com’s name server will resolve www.victim.com to the IP
address of www.attacker.com thereby sending all victim.com traffic to the
attacker’s site.

The concept of delegation could be considered a vulnerability in the DNS
protocol. Certainly, DNS would not be DNS without delegation. However, along
with delegating the responsibility of managing a lower-level domain comes the
delegation of responsibility for managing the security of its infrastructure. Below
the TLD’s, there are no set standards for operators of name servers. In other
words, due to delegation the security of DNS below the TLD’s rests in the hands
of the masses for which no security standard could realistically be imposed.
Given the number of second-level domains (thousands upon thousands), this set
of servers represents a target-rich environment for exploiting DNS.

Overall, the probability of attacks on the DNS protocol relating to availability is
relatively high. Query ID-based attacks directed toward integrity require slightly
more expertise and higher effort to execute, and therefore carry a medium
probability.

Using the priority model in Table 4, the threats can be prioritized as follows:

Threat Priority

Widgets.com external name servers inaccessible. A

Intentional or accidental modification of RR’s stored in zone files. A

Forgery of responses to legitimate queries. B

Intentional or accidental modification of RR’s in memory or cache. B

.com TLD name servers inaccessible. B

Root servers inaccessible. C

 High Vulnerability Medium Vulnerability Low Vulnerability

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 DNS Security Page 18

High Impact A B C

Medium Impact B B C

Low Impact C C D
Table 4 Threat priority model

For brevity, consider controls for the top 3 threats only. First and foremost, the
risks present due to the A-level threats can be reduced significantly through
configuration and change management along with tight security configuration
standards. After all, the best response to an incident is to have prevented it from
occurring in the first place. Configuration management ensures that security
configurations are applied according to the appropriate standards and are kept
recent through discovery efforts aimed at the particular systems in question.
Change management will preserve both integrity and availability when discovery
efforts necessitate configuration changes or the application of patches. These
activities reduce the risks associated with vulnerabil ities in both the DNS systems
in general and those in BIND.

One of the accepted practices for defending against spoofing and cache
poisoning attacks is to restrict recursive queries to trusted resolvers for RR’s
outside of the widgets.com zone. Queries from external name servers to the
widgets.com local name servers would never have a reason to query
widgets.com external name servers for any information other than that contained
in the widgets.com zone anyway. Any legitimate requests for RR’s outside of the
widgets.com zone would be coming from internal clients attempting to connect to
external resources on the Internet.

Taking into account DoS/DDoS threat scenarios during incident response
planning, centered on coordination with the widgets.com upstream ISP’s,
reduces the risk of the external name servers becoming inaccessible.

Risks due to weaknesses in the DNS protocol itself cannot necessarily be
reduced by widgets.com. However, DNS security protocols such as DNSSEC
attempt to address the vulnerabilities surrounding spoofing, forgery, and
hijacking. DNSSEC in particular, under development for many years now,
focuses on data integrity and data origin authentication. Transaction signatures
(TSIG) is another DNS security specification. TSIG is aimed at securing zone
transfers as well as data origin authentication. TSIG proposes the use of shared
secret keys to sign and authenticate communication between trusted name
servers.

And as always, a variety of system and intrusion monitoring systems should be
deployed to provide the early detection required for identifying and containing an
incident, and hopefully preventing any significant disruption in business
operations.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 DNS Security Page 19

Specific Exploit: DoS Using DNS

Overview

The previous section was devoted to analyzing the threats facing DNS.
Ironically, the exploit discussed in this section uses the DNS infrastructure to
realize one of these very same threats, DoS. As such, it could be used against
DNS itself or other portions of the Internet infrastructure.

It was documented in AUSCERT Alert AL-1999.004 entitled, “Denial of Service
(DoS) attacks using the Domain Name System” as well as CIAC Advisory J-063
which just encapsulates AL-1999.004. A corresponding exploit was posted to
BUGTRAQ as a S0ftPr0ject advisory (SPJ-002-000 at www.s0ftpj.org). This
attack employs recursive DNS queries sent to multiple name servers with
spoofed source IP addresses in order to illicit DNS responses that represent the
DoS attack. The spoofed source IP is that of the desired target. Thus, the
resulting mass of DNS responses is directed at the target. The goal is to
saturate the target’s network resulting in denial of access to network resources.
The success is based upon the observation that, with DNS, you usually get more
out than you put in, and that many name servers are in a vulnerable configuration
that allows recursive queries from unknown sources. Also, it is not dependent
upon any particular operating system or application. Any semi-sophisticated
attacker with moderate available bandwidth could generate quite a storm.

Variants

There is one variant to this exploit termed Name Server Traffic Amplification This
variant is documented in Teso Security Advisory TESO-ADVISORY-003 found at
http://teso.scene.at/advisories.php.

In order to execute this attack, the attacker must first identify chains of forwarding
name servers. Like the DoS using DNS attack, it too relies upon name servers
that accept recursive queries from unknown sources and, in addition, is assisted
by those configured to execute multiple retry attempts. Spoofed queries are
sent to the first name servers in the identified chain and then amplified by
forwarding name servers.

In contrast to the DoS using DNS attack, the tricky part here is identifying a chain
of servers large enough to provide adequate amplification. The authors include a
tool for assisting in this purpose. Also, the attacker in this case needs only to
send queries to the first name servers in the chain. For DoS using DNS, the
attacker must send queries to every name server.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 DNS Security Page 20

Exploit Details

Protocol

A complete overview of the DNS protocol can be found in the Targeted Port
section above. A bit more detail regarding queries is given here in order to better
understand the DoS using DNS attack.

The high-level structure of a DNS message was shown in Figure 3. The
Question segment allows for the specification of the query type. The values for
the query type basically follow the definitions of the RR types (examples of RR
types are given in Table 2). The query type tells the name server what RR types
to return in the response. There are a couple of special query types that have no
RR type analog. One is the AFXR query type that signifies a request for a zone
transfer. The other is the ANY query type. The ANY query type initiates a
request for all RR’s regardless of their RR type. Logically, in a query message of
type ANY, the response often holds the greatest amount of data as compared to
other query types. The name server will load up the Answers, Authority, and
Additional info segments of the message with as many RR’s as it can find that
are associated with the domain in question.

The Attack

In concept, the DoS using DNS attack is akin to a DDoS attack. It uses the
technique of traffic amplification by exploiting multiple, vulnerable intermediary
systems in an attempt to saturate a target network. In DDoS-speak, these
intermediary hosts are called zombies. They are the nameless drones whose
only crime is having a security vulnerability that the attacker exploits and uses as
an entry point through which the DDoS zombie code is installed. The attacker
then installs a controller on another compromised host and sets it to run at his
leisure. The traffic amplification potential is enormous. With DDoS tools, it is
possible to achieve amplification in both the size and number of packets sent
from the zombies compared to those received by the controller.

Comparing DoS using DNS to DDoS, the multiple, vulnerable intermediary
systems (i.e. zombies) are the many name servers. Unlike DDoS, these servers
are not compromised and no code is loaded onto them. Rather, the state of their
configuration is exploited to generate the attack traffic. The flaw in their
configuration is that they allow recursive queries from untrusted or unknown
systems. How does this facilitate the attack? Recall the discussion about
recursive queries. If the resolver submits a recursive query, the name server will
fulfill the query on their behalf and return the answer. Thus, without recursion, it
would not be possible to trick the name server into answering the query and
sending that packet to the target.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 DNS Security Page 21

By virtue of its query-response nature, the attack only works if amplification of the
packet size can be achieved. The number of packets is not increased. The
attacker has to send out one request for every response sent to the target.
Therefore, the increase in the size of the packet is imperative to achieving DoS
against the target without doing the same to the attacker’s network. This attack
is neither elegant nor stealthy, but it could be effective under the right
circumstances.

DoS using DNS is distributed in the sense that the attacker seeks as many
vulnerable name servers as possible. The actual number and how “distributed”
they are is dependent upon the motivation of the attacker. The attacker must
also choose how to use them when developing his exploit code. He might
choose to cycle through them all in a round-robin fashion. Alternatively, he
might pick them randomly from a table and perhaps send a few queries to each
before moving to the next, or he might decide to send queries to all of them
simultaneously. Depending upon the number and location of the zombie name
servers, the characteristics of the resulting packet flood will vary.
Experimentation would be necessary in order to achieve optimal parameters.

To see the exploit in action, refer to Figure 5 below. The attacker would first
have to complete some homework. Namely, the pool of zombie DNS servers
needs to be identified. This could be accomplished in a variety of ways. Recall
that identifying name servers that will accept recursive queries from the Internet
at large is the goal. The attacker could use any number of methods. The ugliest
would be brute force searching. It is conceivable, armed with a list of domains, to
use the dig command and local resolvers to find name servers, and then send
recursive queries to these servers using the host command to see if they
respond. Dig and host are tools distributed by ISC (authors of BIND). For each
domain, the dig command would return an entry similar to the following:

bash-2.05$ dig google.com NS

; <<>> DiG 9.2.1 <<>> google.com NS
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 18112
;; flags: qr rd ra; QUERY: 1, ANSWER: 4, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;google.com. IN NS

;; ANSWER SECTION:
google.com. 344874 IN NS ns1.google.com.
google.com. 344874 IN NS ns2.google.com.
google.com. 344874 IN NS ns3.google.com.
google.com. 344874 IN NS ns4.google.com.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 DNS Security Page 22

The “Name Server:” lines would be used in a host command. The host
command generates a recursive query by default. It would be sufficient to do a
query of type A (again the default). The actual RR requested is irrelevant. On
the command line, the attacker would see either

bash-2.05$ host www.ebay.com ns.domain1.com
Using domain server:
Name: ns.domain1.com
Address: X.X.X.X#53
Aliases:

www.ebay.com is an alias for pages.ebay.com.
pages.ebay.com has address 66.135.192.87
pages.ebay.com has address 66.135.192.88
pages.ebay.com has address 66.135.192.11
pages.ebay.com has address 66.135.192.83

or

bash-2.05$ host www.ebay.com ns.domain2.com
Using domain server:
Name: ns.domain2.com
Address: X.X.X.X#53
Aliases:

In these examples, the name server ns.domain1.com allows recursive queries
from untrusted sources and ns.domain2.com does not. Alternatively, the attacker
could have used host rather than dig (host –t NS ebay.com) to gather NS
records. However, dig can reveal other goodies (e.g. authority records,
additional RR’s) that wouldn’t necessarily be as evident when using host.

Another slightly more elegant method of collecting name servers requires that the
attacker have access to a caching name server that supports a large user
community. Dumping the cache on such a name server would reveal NS records
for many domains. It would then remain to test these for recursion in the same
manner as shown above. Either of these processes could be automated.
However, in the brute force method, the list of domain names used as input
would be hard to gather. The whois databases used to allow wildcard searches
that could dump lists of domains (e.g. *.com). For security and performance
reasons, that capability has been disabled.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 DNS Security Page 23

Internet/
Zombie DNS Servers

Target System/Network
1.2.3.4/24 5.6.7.8

UDP DNS Queries
Query Type: ANY
Source IP: 1.2.3.4

(or any 1.2.3.0/24 address)

UDP DNS Responses

ICMP Port Unreachable
(If using 1.2.3.4 as

spoofed IP)

Figure 5 DoS Using DNS exploit example.

Now, armed with a list of zombie name servers, the attacker can automate the
process of generating the spoofed queries. The query type ANY will undoubtedly
be used since it has the potential to generate the largest response. With an ANY
query of roughly 20-30 bytes, responses of >300 bytes have been observed. Of
course, the maximum would be 512 bytes. The input/output budget is therefore
favorable (~10x) for a DoS attack.

As discussed earlier, the design of the exploit requires a strategy for how to send
the queries (e.g. round-robin, random, all at once). Beyond this information, it is
a simple matter to write the exploit code, input the list of name servers, and fire
away at your favorite target. The exploit would generate the ANY query for a
given domain name. The value of the domain name needs only to be a valid
domain. For the purposes of coding the exploit, it could also be read from a list.
The query would then be sent to the zombie name servers following the chosen
strategy. The source IP address in the queries would be on the network of the
target. The zombie name servers would then send their large responses to the
target network creating the flood.

An exploit program does exist (refer to the Exploit Source Code section below).
And it functions in the same manner just described. The user is required to input
lists of name servers and domains. These are currently hard-coded lists so they

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 DNS Security Page 24

must be entered before compiling. Once compiled, the user executes the code
with the target host and the desired number of packets as input parameters.
Certainly, an attacker could execute the steps that are automated by the exploit
program. Generating UDP packets with spoofed source IP addresses is possible
using netcat, for example. However, he would have to be an awfully quick typist
to generate the number of requests in the short amount of time necessary to
achieve a packet flood!

At a minimum, the signature of this attack will be the increased DNS traffic on the
network. Naturally, a tell-tale sign of a DoS attack is degradation in performance.
Degradation in performance normally leads to network engineers running around
performing network captures. If the network is experiencing a DoS using DNS
attack, the network capture will look very similar to the following:

At the time of this writing, the exploit code obtained from s0ftpr0ject was not
functioning correctly. Although this screen shot is indicative of the traffic for this
attack, the queries were malformed. The result here is that the input traffic is
actually larger than the output since the query packets are larger than the Format
Error replies. This is not a good thing for a DoS attack!

In any case, analysis of the network capture shows the queries being directed at
two name servers, 10.20.14.205 and 10.20.14.206. The actual source IP of the
attacker was 10.20.45.7. However, the queries appear to originate from
192.168.60.129, the target. Subsequently, there are many responses and

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 DNS Security Page 25

corresponding ICMP unreachable messages. The responses are directed at the
spoofed source IP addresses, and that system is sending out the ICMP
unreachables because it is not listening for those replies. Note that the attacker
and the target were on the same network here. Normally, a trace on the target
network would not reveal any query messages. They are left in here for
illustration purposes.

If the network normally carries a large amount of DNS traffic, the differentiators
here would be the massive imbalance between DNS queries and responses as
well as, possibly, ICMP port unreachable messages correlated with the response
packets. Since the attacker is using spoofed source addresses, any host on the
target network that actually receives a response packet will generate an ICMP
port unreachable message and send it back to the originating name server. The
hosts on the target network did not initiate any communication with the name
servers and therefore will not be listening for the return packets. This is standard
UDP behavior.

The number of ICMP port unreachables will depend on the attacker’s algorithm
for generating the spoofed source IP addresses. For example, if the attacker is
using a single source address and that address is in use by a host system, there
will be one ICMP message for every DNS response. On the other hand, if the
attacker is randomizing the source IP’s, the presence of the ICMP messages will
be hit-or-miss depending upon the probability of generating an IP that is actually
assigned to a host. Further, if the attacker uses a single source that is not
assigned to a host, no ICMP unreachable messages will be present at all.

This is an interesting point. Note that the attacker does not have to use an IP
address that is actually assigned to one of the victim’s hosts. The attacker only
cares that the flood of responses is routed properly to the victim network. Using
actively assigned IP addresses does have the advantage that the ICMP port
unreachable messages add to the traffic flood. However, the ICMP messages
are small and are definitely a clue to identifying the attack. The attacker will have
to weigh these options during the planning stage.

Defense

The defense against this attack is very basic. A name server can’t be used as an
amplifier if it doesn’t respond to recursive queries. Most name servers are
configured to support recursion. It is a useful thing. In these cases, the name
server is probably in the TCP/IP configuration of many resolvers. A good
example would be the corporate name server that is distributed to DHCP clients
on a corporate LAN. Recursion is usually necessary for a couple of reasons.
First, the resolvers on the LAN will only have access to this single name server
through the firewall. This is common security policy these days. Second,
allowing an upstream name server to handle the multiple queries required to
resolve a domain keeps all of that traffic off of the LAN. The trick, then, is to
allow recursive queries only from those systems and networks that the name
server considers to be trusted.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 DNS Security Page 26

Most DNS implementations today have this capability. BIND is no exception. In
BIND, access control lists can be defined in the configuration file and used in
statements that will limit recursive queries. The commands are

acl acl-name { x.x.x.x/xx; x.x.x.x/xx; };

where acl-name is a unique user-assigned name for the list and x.x.x.x/xx are the
networks that you wish to use in the access control statements. Recursion can
then be limited to the networks in the acl list by including the following in the
config file:
 allow-recursion { acl-name; };

In terms of what the vendor should do to help with this vulnerability, ALL DNS
implementation vendors should include facili ties for limiting recursive queries. In
addition, they should make the configuration of this option a common part of the
installation procedure. This will raise the awareness that the problem exists.
The user can always opt out of configuring it if they so choose.

Exploit Source Code

The source code of an exploit for this attack can be found at:

http://www.s0ftpj.org/docs/spj-002-000.txt

The code requires that the user fill two character arrays before compiling:

dns_def = the list of zombie name servers

domains = the list of domains to use in the queries.

It can be compiled on most Unix platforms (I used gcc on Linux: gcc -o doomdns
doomdns.c). It is executed by issuing the command

 doomdns target [n]

where target is the hostname or IP address of the target and n is an optional
parameter specifying the number of packets to send. By default the program
sends 100 packets.

Most of the work is carried out by the functions main(), doomzone() and forge().
The main() routine the calling arguments and spits out usage syntax if necessary.
If the input is correct, it runs the main loop which iterates calling the doomzone()
function, and then printing out a “.” on the screen. It does this either 100 or n
times depending upon the calling arguments.

Doomzone() first checks to see if the end of the name server list has been
reached. If so, it resets the counter to start back at the beginning of the list. So it
cycles through the defined name servers in a round-robin fashion. It then
resolves the name server hostname if necessary (through a call to another
routine, nameResolve()). Finally it generates the source and destination

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 DNS Security Page 27

portnumbers and calls the forge function with the name server ip, the source port,
and the destination port as arguments.

Forge() generates the DNS query message, constructs the UDP datagram and
sends it to the name server. It then increments the counter that causes the next
name server and domain in their respective lists to be used for the next iteration.

Running the program produces the following screen output:

/usr/local/doomdns# ./doomdns 10.20.44.141 10

D00M DNS
DNS Flooder by FuSyS
Inithints by |scacco|

……….

/usr/local/doomdns#

Additional Information

The CIAC advisory describing the vulnerability is at:

http://www.ciac.org/ciac/bulletins/j-063.shtml

As mentioned above, exploit code can be found here:

http://www.s0ftpj.org/docs/spj-002-000.txt

CERT brought up the topic almost a year after the original post. Their discussion
is at:

http://www.cert.org/incident_notes/IN-2000-04.html

Vern Paxson included this topic as a subset of the content in his more general
paper on reflectors. Read the paper here:

http://www.icir.org/vern/papers/reflectors.CCR.01/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 DNS Security Page 28

References

Rader, Ros W. “Alphabet Soup: The History of DNS.” June 2001. URL:
http://www.whmag.com/content/0601/dns (21 Feb. 2003)

ICANN Security and Stability Advisory Committee. “ICANN DNS Security
Update #1.” 4 January 2002. URL:
http://www.icann.org/committees/security/dns-security-update-1.htm (21 Feb.
2003)

Albitz, Paul & Liu, Cricket. DNS and BIND. Sebastopal: O’Reilly, 1998.

Men & Mice. “On-line DNS Glossary.” URL:
http://www.menandmice.com/online_docs_and_faq/glossary/index.htm (21 Feb.
2003)

Mockapetris, P. “RFC 1034.” November 1987. URL: http://www.cis.ohio-
state.edu/cgi-bin/rfc/rfc1034.html (27 Feb. 2003)

Mockapetris, P. “RFC 1035.” November 1987. URL: http://www.cis.ohio-
state.edu/cgi-bin/rfc/rfc1034.html (27 Feb. 2003)

Unkown. “DNS Abuse.” URL:
http://www.ussrback.com/docs/papers/protocols/mi004en.htm (28 Feb. 2003)

Farrow, Rik. “DNS Root Servers: Protecting the Internet.” January 6, 2003.
URL:
http://www.networkmagazine.com/article/printableArticle?doc_id=NMG20021223
S0008 (28 Feb. 2003)

Stewart, Joe. “DNS Cache Poisoning – The Next Generation.” January 27,
2003. URL: http://www.securityfocus.com/guest/17905 (28 Feb. 2003)

CIAC. “J-063: “Domain Name System (DNS) Denial of Service Attacks (DoS).”
September 1, 1999. URL: http://www.ciac.org/ciac/bulletins/j-063.shtml (1 Mar.
2003)

Scacco. “Possible Denial of Service using DNS.” July 19, 1999. URL:
http://www.s0ftpj.org/docs/spj-002-000.txt (1 Mar. 2003)

TESO. “Many name servers are vulnerable to traffic amplification and NS route
discovery.” February 15, 2000. URL:
http://www.securiteam.com/exploits/5YP0E1F0KU.html (1 Mar. 2003)

