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Abstract 

The Domain Name Service (DNS) is probably one of the most critical yet under-
appreciated services on the Internet.  Almost every Internet user today, 
consumer or business, is highly dependent upon its operation.  Until recent 
years, little attention was paid to the security of this important resource.  
Vulnerabilities in DNS span its architecture, protocol, and implementation.  This 
paper provides an overview of DNS, outlines the major vulnerabilities, and details 
a particular exploit where DNS itself can be used to launch a Denial of Service 
attack. 
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Targeted Port: TCP/UDP 53 

Introduction 

According to data obtained from the Consensus Intrusion Database on February 
12, 2003 port 53 was ranked 4th in the top 10 most-attacked ports on the Internet 
(Table 1 and Figure 1).   

 
Service 
Name 

Port 
Number 30 day history Explanation 

netbios-ns 137    

http 80  HTTP Web server 

ms-sql-m 1434    

domain 53  
Domain name system. Attack against old 
versions of BIND 

ms-sql-s 1433  Microsoft SQL Server 

microsoft-ds 445    

netbios-ssn 139  Windows File Sharing Probe 

ftp 21  FTP servers typically run on this port 

??? 4662  eDonkey P2P software 

smtp 25  Mail server listens on this port. 

Table 1  CID Top 10 Ports – February 12, 2003 
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Figure 1  CID graph of port 53 activity around February 12, 2003. 

Ports TCP/UDP 53 are commonly associated with the Domain Name Service 
(DNS).  DNS is used to resolve Internet Protocol (IP) addresses from hostnames 
and back again.  A numeric IP address is required to access a resource on an IP-
based network such as the Internet.  Each device on a network is assigned an IP 
address having the form x.x.x.x where each instance of “x” represents an 8-bit 
number (decimal ranging from 0 to 255).  Details of the IP protocol are beyond 
the scope of this assignment.  Several excellent tutorials on this topic exist.  A 
few are listed in the References section.  For the moment, assume that the IP 
addresses are properly constructed.  Users must know the mapping between the 
devices and the IP addresses to be productive on the network.  For example, 
they must know that 1.2.3.4 is the mail server, or that 1.2.3.5 hosts the 
company’s financial applications.  It is precisely the problem of this mapping that 
eventually led to the development of DNS. 

Before the existence of DNS, it was necessary to either remember all of the 
numeric addresses, or to assign names to the devices, and maintain hostname to 
IP address mappings in files on every device.  As the Internet grew, 
remembering all of the numbers was impossible.  The concept of naming the 
devices was much more appealing.  In general, humans are much better at 
remembering names than they are at remembering numbers.  However, 
maintenance of the mapping files was daunting even for a moderate sized 
network. 

The need for a naming system was recognized quite early in the Internet’s 
history.  In 1971, Peggy Karp conceived the concept of standardized host 
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designators or Internet names.  She followed this a year later with the creation of 
the HOSTS.TXT file which contained hostname to IP address mappings in a 
standardized text format.   System administrators were responsible for submitting 
their entries for inclusion in HOSTS.TXT to the Stanford Research Institute.  
Stanford maintained the authoritative copy of the file and made it available 
globally via FTP. 

By the early 1980’s, maintenance of HOSTS.TXT was becoming unwieldy.  In 
response, a series of RFC’s beginning with the work of Dr. David Mills 
collectively identified the basic building blocks of modern day DNS.  They defined 
concepts such as domain names, sub-domains, zones, authority, and delegation.  
In addition, as the network morphed from ARPAnet to NSFnet to, eventually, the 
Internet, components of the formal DNS infrastructure such as the governing 
bodies, top-level domains, and root name servers began to solidify.  In 1992, in 
what, in retrospect, could be considered to a landmark event, Network Solutions, 
Inc. was awarded the contract from the National Science Foundation for 
management of the entire domain system placing control of this vital resource 
into the hands of the private sector once and for all. 

Today, DNS is THE index to the Internet.  Its care and feeding is distributed on a 
global basis.  Most take for granted that DNS will be there to do its job.  Few are 
even aware of its existence at all.  When one types www.ebay.com into their web 
browser, it is expected that ebaY’s home page will magically appear.  There is no 
thought that the web browser had to query a DNS server to find out that 
www.ebay.com resolves to 66.135.192.83 (among 4 addresses at the time of this 
writing), or that their local DNS server probably had to make further queries on 
their behalf to figure this out.   

Without DNS, the Internet would become almost completely useless to a majority 
of the networked community.  Given the level of commercialization and the 
reliance on the Internet by businesses and consumers alike, DNS has 
undoubtedly become very important to the stability of the economy.  Arguably, it 
is as important as the Internet itself. 

Architecture 

The design goals of DNS center around a database that is stored and managed 
in a distributed fashion for the purpose of communicating hostname to IP address 
mappings on a global basis.  The components of DNS can be divided into two 
major categories: infrastructure and protocol.  The elements of the DNS 
infrastructure include the root name servers, top-level domain servers, The 
Internet Corporation for Assigned Names and Numbers (ICANN) and multiple 
domain registrars.  Beyond these there exists a multitude of resolvers and lower-
level name servers.  At the heart of all of these elements is the DNS protocol 
itself defining the name space and the rules by which it is stored and 
communicated. 
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Protocol 

Domain Name Space and Domains 

DNS defines a distributed database of domain names and IP addresses.  The 
structure of this database is commonly termed the Domain Name Space.  A 
sample of the Domain Name Space structure is depicted in Figure 1.  It is a nodal 
structure beginning with a single parent node, the root node, labeled by a period, 
“.”.  The root node has several children each of which may have children of their 
own.  Thus, with the exception of the root node, any node in the structure may 
simultaneously exist as both a parent and child. 

educom

Root Node
“.”

abc 123

defg 456

host1 host2

The abc.com Domain  
Figure 2  Domain Name Space structure. 

Domain names are constructed by starting at any node and following the 
structure up to the root node.  Simply concatenate the node labels using a period 
as a separator.  Referring to Figure 1, some examples of domain names would 
be “defg.abc.com.” or “123.com.”.  A domain name constructed by starting from a 
node possessing no children is known as an absolute domain name or Fully 
Qualified Domain Name (FQDN).  Again referring to Figure 1, an example FQDN 
would be “host1.defg.abc.com.”. 

A group of nodes descendent from a single node comprise a domain.  For 
example, in Figure 1, “abc.com” represents a domain.  It contains a sub-domain, 
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“defg.abc.com”, that possesses two FQDN’s, “host1.defg.abc.com” and 
“host2.defg.abc.com”.  

Delegation, Authority and Zones 

The actual content making up the domain name space did not spring 
spontaneously from the vacuum of deep space.  Various organizations are 
responsible for defining the nodes at every level.  Responsibility is assigned on a 
domain basis.  Specific organizations, such as ICANN, are responsible for the 
very top-level domains.  ICANN and the concept of top-level domains are 
discussed further in the Infrastructure section.  Below the top level, responsibility 
is delegated to the organizations having direct interest in a particular domain.  
This assignment of responsibility from a higher-level domain to a lower one is 
called delegation.  

A university would have responsibility for their domain (e.g. university.edu) 
delegated to them from the keeper of the edu domain.  The university and their 
respective name servers thus have authority for the university.edu domain.  In 
this scenario, university.edu is also referred to as a zone.  A zone, in other 
words, is a domain for which authority has been delegated. 

Class Types and Resource Records 

The existence of nodes in a domain name space is not in itself a very useful 
construct.   Recall, however, that among other things DNS is a database.  
Underlying the nodal structure of the name space are records holding the 
relevant content of the associated domains.  As is true for just about any 
database, DNS has specific rules regarding the structure and content of the 
records in its database.  

In general, individual records are termed Resource Records (RR).  Each 
resource record contains the following information: 

• Domain name 

• Class 

• RR type 

• Time-To-Live (TTL) 

• Resource data length 

• Resource data (dependent upon Class and RR type) 

The class types are Internet, Hesiod, and CHAOS.  Hesiod and CHAOS are 
rarely used anymore.  The discussion from here forward will therefore be limited 
to records of the class IN.  The TTL parameter specifies the time interval for 
which the record can be cached.  Caching is discussed further in the 
Infrastructure section below.  The resource data length simply specifies the 
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length of the resource data section of the RR.  The resource data section itself 
contains the specific information based upon both the class and RR type. 

Although there are many more, Table 2 contains some commonly referenced RR 
types of the IN class and their definitions. 

 

RR TYPE DEFINITION PURPOSE 

A Host address Identifies the IP address of a host. 

CNAME Alias to a canonical 
name. 

Identifies an alias to the real name 
(canonical name) of a host. 

HINFO Host information Specifies additional, non-functional, 
information pertaining to a host. 

MX Mail exchange Identifies a host acting as the mail 
server for the domain. 

PTR Reverse Record Associates an IP address with a 
canonical name. 

SOA Start of Authority Specifies the start of a zone of 
authority. 

Table 2  Common RR types of the IN class. 

For details of all RR types and their formats, refer to RFC 1035. 

Message Formats and Transports 

DNS functions based upon query and response messages.  Regardless of the 
message type, all DNS messages share a common high-level structure.  Figure 2 
shows the DNS message format adapted from RFC 1035. 

 

Header

Additional

Authority

Answer

Question

Specifies which of the remaining sections are
present in the message.

Contains the question if this is a query message.

RR’s in response to the query.

RR’s pointing to an authoritative name server.

RR’s with additional info that relates to the query.
 

Figure 3  DNS message format. 
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Not all sections are present in every message.  The Header section must always 
exist.  The Header will specify the content of the message indicating which of the 
other sections are actually present.  A query, for example, will contain only the 
Header and Question sections.    Further details may be obtained from RFC 
1035. 

The transport mechanisms for DNS messages are the IP protocols UDP and 
TCP utilizing port 53 in both cases for standard implementations.  Queries are 
typically handled via UDP because of its fire-and-forget nature.  There is low 
overhead with UDP, and response times will be minimized if everything is 
working correctly.  However, a retransmission mechanism is essential since 
UDP-based queries and their responses may be lost.  The DNS RFC’s do not 
specify how the retransmission should function.  This decision is left to the 
developers of the particular implementation.  The BIND resolver, for example, will 
send a query 3 times at 0, 12, and 24 seconds. 

TCP is recommended for DNS functions requiring a more reliable transport.  
Copying all RR’s for an entire zone from one name server to another, known as a 
zone transfer, is an example of a transaction best served by using TCP.  It is 
important to know in this case that the either the entire zone has been transferred 
or that the communication as been severed at some point along the way.  TCP is 
also used when responses are truncated by the 512 byte limit of the DNS UDP 
datagram. 

Infrastructure 

Name Servers, Resolvers and Resolution 

Generally speaking, the DNS infrastructure consists largely of a hierarchy of 
servers that follows the hierarchy of the domain name space itself.  These name 
servers store domain (zone) information and respond to queries.  Name servers 
store RR’s of the zones for which they are authoritative by either reading them 
from zone files located on a filesystem, or by transferring them from other name 
servers that are authoritative for the same zone.   

Queries originate from entities known as resolvers.  Resolvers are available to 
applications (e.g. telnet, ftp, web browser) on a host system through libraries or 
other facilities.  Resolvers are used to formulate the queries, send them to name 
servers, and then interpret the responses. 

Queries can be either iterative or recursive.  If a resolver issues an iterative 
query, the name server will respond with a referral to another name server if it 
doesn’t know the answer.  In this case, the resolver itself will have to initiate 
further queries.  If the resolver issues a recursive query, the name server will 
assume responsibility for making further queries on behalf of the resolver.  For 
most implementations, the entire resolution process is both recursive and 
iterative as show in Figure 3.  The resolver will make a recursive query to its local 
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name server.  The name server will, in turn, execute a series of iterative queries 
in search of the answer and return the answer to the resolver. 

Local
Name Server

Resolver

Name Server
C

Name Server
B

Name Server
A

1 Recursive Query

2
Iterative Query

3

Referral to B

4 Iterative Query

5Referral to C

6 Iterative Query

7

Response with RR’s

8Response with RR’s

 
Figure 4  Resolution process demonstrating iterative and recursive queries. 

Name servers can also store information about zones for which they are not 
authoritative through caching.  As the name server executes the iterative queries 
in Figure 3, it will store the responses it receives in cache.  The name server will 
retain these RR’s in its cache for the time period specified in the TTL parameter 
that was included in each response it receives from the other name servers.  
Subsequent responses to queries from the resolver for the same RR’s will be 
read from cache.  Caching is a performance-enhancing design element intended 
to increase response times and reduce bandwidth utilization as well as the load 
on the name servers. 

Root Servers and Top-Level Domains 

Just as the hierarchy of the domain name space is arranged in a “top-down” 
fashion, so is the hierarchy of name servers.  At the top of the domain name 
space is the root domain.  At the top of the domain name server hierarchy are the 
root servers.  Presently there are 13 root servers named x.ROOT-
SERVERS.NET where x ranges from A to M.  The number of root servers is 
limited to 13 because more would cause an NS response for the root servers to 
be truncated (recall the 512 byte limitation of DNS UDP datagrams).   

The root servers contain information about the name servers that are 
authoritative for the top-level domains (TLD).  TLD’s are nodes in the domain 
name space that are direct descendants of the root node.  They are split into two 
categories.  There are the 14 generic TLD’s (gTLD) such as .com, .org, .net, .mil, 
and the over 240 country code TLD’s (ccTLD) as in .us, .de, .ch, .jp.  The TLD 
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name servers are the registries containing RR’s of the name servers authoritative 
for the second-level domains (e.g. icann.org, odu.edu).   

Referring to Figure 3, in a basic resolution scenario, Name Server A would 
represent a root server, Name Server B would represent a TLD name server, and 
Name Server C would represent the name server authoritative for the domain 
associated with the query.  Note that there are alternate resolution scenarios.  
Consult the references for more details. 

ICANN and Registrars 

Root servers, domain name space, top-level domains… but who’s in charge of it 
all?  The Internet Corporation for Assigned Names and Numbers (ICANN) is a 
non-profit organization responsible for management of DNS at the highest level.  
Among other things, ICANN establishes policies for DNS management, and 
manages all aspects of the root zone.  In addition, ICANN delegates 
responsibility for operating the TLD name servers to various organizations often 
referred to as registry operators.  For example, Verisign, Inc. is responsible for 
operating and maintaining the .com TLD name servers.  A complete list can be 
found at http://www.icann.org/tlds.   

As anyone who has ever registered a domain would know, there are a multitude 
of registrars working in conjunction with the TLD registry operators to provide 
domain registration services.  ICANN also has the responsibility of accrediting 
registrars.  The accreditation process can also be found on the ICANN web site. 

Vulnerabilities 

Consider a cursory business impact analysis using the following scenario: 

Business Objective = Establish an e-business selling widgets over the Internet 

 Task 1 = On-line research for widget marketing and sales strategy 

  Asset 1.1 = Network infrastructure 

  Asset 1.2 = Resolvers, widgets.com name servers 

 Task 2 = Widget engineering and manufacturing 

  Asset 2.1 = Network infrastructure 

  Asset 2.2 = Engineering and manufacturing systems 

  Asset 2.3 = CAD data 

 Task 3 = Sell widgets 

  Asset 3.1 = Network infrastructure 
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  Asset 3.2 = Web servers, application servers, database servers 

  Asset 3.3 = Applications, data 

Asset 3.4 = widgets.com external name servers, zone files (i.e. 
DNS content pertaining to widgets.com zone) 

Mapping objectives to tasks to assets demonstrates the impact that a particular 
asset or set of assets has on the objectives.  In this case, it is clear that the 
organization’s DNS infrastructure is fairly critical since it facil itates two tasks 
associated with the primary objective (Assets 1.2 and 3.4). 

Using confidentiality, integrity, and availability as the review elements and a 
simple High, Medium, Low rating scale the impact can be evaluated qualitatively.  
Qualitative analysis is simple and the results are useful for prioritizing the 
application of risk analysis and the subsequent implementation of controls.  

Regarding confidentiality, ask the question: 

What would be the impact on the business objective if DNS content pertaining to 
widgets.com was disclosed to an unauthorized individual with or without 
malicious intent? 

Regarding integrity, ask the question: 

What would be the impact on the business objective if the integrity of the DNS 
content were compromised? 

Regarding availability, ask the question: 

What would be the impact on the business objective if the DNS content were 
unavailable for one minute… one hour… one day… one week… or more? 

Based upon the scenario above, these questions are easily answered.  On a 
name server intended for queries by the general public, RR’s are considered just 
that, public.  There is no restriction on who can query the external name servers.  
Therefore, the concept of an “unauthorized individual” is difficult to define.  An 
individual without malicious intent might be a customer who, probably 
unbeknownst to them, queries the widgets.com public name servers when 
accessing the web site.  For an e-business, this is certainly not an unauthorized 
disclosure.  An individual with malicious intent might be an attacker using the 
public name servers for reconnaissance in the early stages of attack planning.  
Still, the use by the attacker may not necessarily constitute unauthorized 
disclosure.  Using standard query tools and techniques, the attacker can execute 
perfectly acceptable queries.  Executing a zone transfer by circumventing access 
controls is an entirely different story.  Yet the zone transfer itself would not 
disclose non-public information (unless RR’s for internal hosts were loaded onto 
the external name servers).  It merely provides an immediate aggregation of 
information that would be more difficult to collect otherwise.  Thus, the overall 
impact due to a breach of confidentiality would be extremely low. 
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In contrast, a breach of integrity or a lack of availability would have a High 
impact.  In both cases, business resources would be unreachable by customers, 
suppliers, or other partners.  Any disruption in DNS, even for a short period of 
time, can be damaging to an e-business.  A breach of integrity might even lead to 
fraud or other hostile activity if an attacker were able to modify RR’s and direct 
legitimate customers to his own site.   

Focusing then on integrity and availability issues, a risk analysis can be 
performed.  First compile the list of threats. 

 Possible threats to the integrity of widgets.com DNS content are: 

• Intentional or accidental modification of RR’s stored in zone files. 

• Intentional or accidental modification of RR’s in memory or cache. 

• Forgery of responses to legitimate queries. 

 Possible threats to the availabi lity of widgets.com DNS content are: 

• Root servers inaccessible. 

• .com TLD name servers inaccessible. 

• widgets.com external name servers inaccessible. 

The associated priority of these threats is evaluated based upon a combination of 
their likelihood of occurrence and their impact if they were to actually occur.  
Assume that all carry a high impact.  It then remains to determine their likelihood 
by judging how susceptible widgets.com would be to these threats in the 
absence of compensating controls.  Only then can the identification and 
prioritization of controls be accomplished. 

Regarding integrity, accidental modification of anything is probably a function of 
procedures and awareness.  Widgets.com system administrators are much too 
professional for this to be a likely threat (or so we hope).   

The remaining threats would all be realized either through vulnerabilities in the 
systems hosting DNS (widgets.com name servers, root servers, etc.), the 
applications that implement DNS (e.g. BIND), or the DNS protocol itself.  Table 3 
displays the correlations between these categories of vulnerabilities and the 
threats listed above along with some examples. 

 

Category Examples of Vulnerabilities Associated Threats 
DNS Systems Remotely exploitable vulnerabilities resulting 

in system access, execution of commands, 
or denial of service 

Locally exploitable vulnerabilities resulting in 
elevation of privileges, execution of 
commands, or denial of service 

Modification of zone files 

External name servers 
inaccessible 

Root servers inaccessible 
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.com TLD name servers 
inaccessible 

DNS Implementation Remotely exploitable buffer overf lows in 
BIND 

Modification of zone files 

Modification of RR’s in 
memory or cache 

External name servers 
inaccessible 

Root servers inaccessible 

.com TLD name servers 
inaccessible 

DNS Protocol Spoofing or hijacking 

Cache poisoning 

DDoS attack against name servers 

Root servers inaccessible 

.com TLD name servers 
inaccessible 

Injection of false 
responses to legitimate 
queries 

Table 3  Vulnerabilities by category. 

Systems 

The range of potential vulnerabilities in the DNS systems in general is large.  
With the high rate of discovery of new vulnerabilities in systems and applications, 
there is certainly plausibility that a name server could be compromised.  It’s 
probably safe to say that the root and TLD servers are less likely to be 
penetrated compared to corporate name servers such as widgets.com’s external 
name servers.  The root and TLD servers draw much attention for obvious 
reasons and there has been a significant effort in the past couple of years to 
harden these servers as well as strengthen the security procedures surrounding 
their maintenance.  Corporate name servers do not have the benefit of being 
subject to stringent standards as a rule.  While some corporations do an 
excellent job with security standards a large number are still lacking.  The high 
rate of vulnerability discovery coupled with lapses in corporate security places 
the probability of this family of vulnerabilities in the medium to high range for the 
widgets.com external name servers.  The low to medium range is more 
appropriate for the root and TLD servers. 

Implementation 

Vulnerabilities in DNS implementation are essentially a subset of the 
vulnerabilities in the DNS systems themselves since the implementation 
represents and application or service on the system.  DNS implementations such 
as BIND are susceptible to the same flaws as any other system (e.g. buffer 
overflows, command injection, misconfiguration).  Their exploitation can result in 
access to the system, a compromise of system integrity, or denial of service.  Not 
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to pick on BIND, but seeing how it is currently the most widely used 
implementation of DNS it lends itself to being a decent example.  Reviewing the 
BIND security page at http://www.isc.org/products/BIND/bind-security.html 
reveals a variety of application-level vulnerabilities.  The severity of these 
vulnerabilities ranges from mild annoyance to possible remote root compromise.  
Other DNS implementations will have their vulnerabili ties as well.  However, 
assuming that widgets.com is using BIND, the probability here could be classified 
as medium to high.  

Protocol 

Regarding the DNS protocol, the top-down architecture it imposes places 
significant criticality on upper-level servers.  The root servers are certainly critical, 
but perhaps not as critical as the TLD’s.  Recall that the root servers provide the 
locations of the TLD servers.  In addition, responses from the root servers will be 
cached for two days due to their TTL.  Thus, it is highly probably that a local 
name server will have the locations of the TLD servers (at least those for whom 
the most queries are made) cached.  Greater importance is then shifted to the 
integrity and availability of the TLD servers since they provide direction to the 
multitude of second-level domain servers.  Denial of Service (DoS) and 
Distributed Denial of Service (DDoS) attacks have captured much publicity in 
recent months.  Probability remains high that these types of attacks will continue 
to be perpetrated against DNS.  However, the root and TLD servers are definitely 
going to be more resilient than the widgets.com external name servers. 

Another aspect of the DNS protocol, which makes it particularly susceptible to 
certain types of attacks, is its use of UDP datagrams.  UDP is connectionless and 
therefore does not rely on mechanisms such as sequence numbers to maintain 
the state of the connection.  While sequence numbers are not meant to be a 
strong form of security, if they are sufficiently random they do impose a hurdle 
that must be cleared for spoofing or hijacking a connection.  DNS queries using 
UDP have no such protection clearing the way for spoofing and hijacking attacks. 

Even though UDP cannot prevent spoofing or hijacking, DNS does present one 
obstacle to such an attack.  DNS employs a mechanism known as a query ID.  It 
is essentially a 16-bit number used for matching responses to their original 
queries.  However, the query ID has weaknesses that an attacker can leverage 
fairly easily.  Although the query ID itself makes them possible, a particularly 
weak DNS implementation will ease the execution of these types of attacks.  
Attacks using the query ID take advantage of the fact that the query ID is really 
the only mechanism used to authenticate responses.  Query ID attacks follow a 
common pattern.  Recursive queries are generated, either by legitimate or forged 
requests. The attacker then injects the data of his choosing by formulating a 
spoofed DNS response and sending it to the victim name server.  With sufficient 
knowledge of the query ID generation algorithm, or by using brute force 
techniques involving the generation of hundreds of responses, the attacker can 
trick the victim name server into accepting the bogus responses.  Depending 
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upon the particular DNS implementation, this can be achieved with a surprisingly 
high degree of success.   

An attacker can also inject bogus data into a victim name server by configuring 
his own name server and loading it with falsified RR’s.  In this scenario, the 
attacker sets up a name server for the attacker.com zone.  In his zone files he 
creates false RR’s including a mapping of www.victim.com to the IP address of 
www.attacker.com.  The attacker then sends recursive queries for RR’s in the 
attacker.com zone to the victim.com name server.  When the victim.com name 
server queries the attacker.com name server, the bogus RR’s are returned as 
additional data to the response and stored in the victim.com name server’s 
cache.  Now victim.com’s name server will resolve www.victim.com to the IP 
address of www.attacker.com thereby sending all victim.com traffic to the 
attacker’s site. 

The concept of delegation could be considered a vulnerability in the DNS 
protocol.  Certainly, DNS would not be DNS without delegation.  However, along 
with delegating the responsibility of managing a lower-level domain comes the 
delegation of responsibility for managing the security of its infrastructure.    Below 
the TLD’s, there are no set standards for operators of name servers.   In other 
words, due to delegation the security of DNS below the TLD’s rests in the hands 
of the masses for which no security standard could realistically be imposed.  
Given the number of second-level domains (thousands upon thousands), this set 
of servers represents a target-rich environment for exploiting DNS. 

Overall, the probability of attacks on the DNS protocol relating to availability is 
relatively high.  Query ID-based attacks directed toward integrity require slightly 
more expertise and higher effort to execute, and therefore carry a medium 
probability.   

Using the priority model in Table 4, the threats can be prioritized as follows: 

 

Threat          Priority 

Widgets.com external name servers inaccessible.   A 

Intentional or accidental modification of RR’s stored in zone files. A 

Forgery of responses to legitimate queries.    B 

Intentional or accidental modification of RR’s in memory or cache. B 

.com TLD name servers inaccessible.     B 

Root servers inaccessible.       C 

 

 
 High Vulnerability Medium Vulnerability Low Vulnerability 
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High Impact A B C 

Medium Impact B B C 

Low Impact C C D 
Table 4  Threat priority model 

For brevity, consider controls for the top 3 threats only.  First and foremost, the 
risks present due to the A-level threats can be reduced significantly through 
configuration and change management along with tight security configuration 
standards.  After all, the best response to an incident is to have prevented it from 
occurring in the first place.  Configuration management ensures that security 
configurations are applied according to the appropriate standards and are kept 
recent through discovery efforts aimed at the particular systems in question.  
Change management will preserve both integrity and availability when discovery 
efforts necessitate configuration changes or the application of patches.  These 
activities reduce the risks associated with vulnerabil ities in both the DNS systems 
in general and those in BIND. 

One of the accepted practices for defending against spoofing and cache 
poisoning attacks is to restrict recursive queries to trusted resolvers for RR’s 
outside of the widgets.com zone.  Queries from external name servers to the 
widgets.com local name servers would never have a reason to query 
widgets.com external name servers for any information other than that contained 
in the widgets.com zone anyway.  Any legitimate requests for RR’s outside of the 
widgets.com zone would be coming from internal clients attempting to connect to 
external resources on the Internet. 

Taking into account DoS/DDoS threat scenarios during incident response 
planning, centered on coordination with the widgets.com upstream ISP’s, 
reduces the risk of the external name servers becoming inaccessible.   

Risks due to weaknesses in the DNS protocol itself cannot necessarily be 
reduced by widgets.com.  However, DNS security protocols such as DNSSEC 
attempt to address the vulnerabilities surrounding spoofing, forgery, and 
hijacking.  DNSSEC in particular, under development for many years now, 
focuses on data integrity and data origin authentication.  Transaction signatures 
(TSIG) is another DNS security specification.  TSIG is aimed at securing zone 
transfers as well as data origin authentication.  TSIG proposes the use of shared 
secret keys to sign and authenticate communication between trusted name 
servers. 

And as always, a variety of system and intrusion monitoring systems should be 
deployed to provide the early detection required for identifying and containing an 
incident, and hopefully preventing any significant disruption in business 
operations. 
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Specific Exploit: DoS Using DNS 

Overview 

The previous section was devoted to analyzing the threats facing DNS.  
Ironically, the exploit discussed in this section uses the DNS infrastructure to 
realize one of these very same threats, DoS.  As such, it could be used against 
DNS itself or other portions of the Internet infrastructure. 

It was documented in AUSCERT Alert AL-1999.004 entitled, “Denial of Service 
(DoS) attacks using the Domain Name System” as well as CIAC Advisory J-063 
which just encapsulates AL-1999.004.  A corresponding exploit was posted to 
BUGTRAQ as a S0ftPr0ject advisory (SPJ-002-000 at www.s0ftpj.org).  This 
attack employs recursive DNS queries sent to multiple name servers with 
spoofed source IP addresses in order to illicit DNS responses that represent the 
DoS attack.  The spoofed source IP is that of the desired target.  Thus, the 
resulting mass of DNS responses is directed at the target.  The goal is to 
saturate the target’s network resulting in denial of access to network resources.  
The success is based upon the observation that, with DNS, you usually get more 
out than you put in, and that many name servers are in a vulnerable configuration 
that allows recursive queries from unknown sources.  Also, it is not dependent 
upon any particular operating system or application.  Any semi-sophisticated 
attacker with moderate available bandwidth could generate quite a storm.   

Variants 

There is one variant to this exploit termed Name Server Traffic Amplification This 
variant is documented in Teso Security Advisory TESO-ADVISORY-003 found at 
http://teso.scene.at/advisories.php.   

In order to execute this attack, the attacker must first identify chains of forwarding 
name servers.  Like the DoS using DNS attack, it too relies upon name servers 
that accept recursive queries from unknown sources and, in addition, is assisted 
by those configured to execute multiple retry attempts.    Spoofed queries are 
sent to the first name servers in the identified chain and then amplified by 
forwarding name servers.   

In contrast to the DoS using DNS attack, the tricky part here is identifying a chain 
of servers large enough to provide adequate amplification.  The authors include a 
tool for assisting in this purpose.  Also, the attacker in this case needs only to 
send queries to the first name servers in the chain.  For DoS using DNS, the 
attacker must send queries to every name server.   
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Exploit Details 

Protocol 

A complete overview of the DNS protocol can be found in the Targeted Port 
section above.  A bit more detail regarding queries is given here in order to better 
understand the DoS using DNS attack.   

The high-level structure of a DNS message was shown in Figure 3.  The 
Question segment allows for the specification of the query type. The values for 
the query type basically follow the definitions of the RR types (examples of RR 
types are given in Table 2).  The query type tells the name server what RR types 
to return in the response.  There are a couple of special query types that have no 
RR type analog.  One is the AFXR query type that signifies a request for a zone 
transfer.  The other is the ANY query type.  The ANY query type initiates a 
request for all RR’s regardless of their RR type.  Logically, in a query message of 
type ANY, the response often holds the greatest amount of data as compared to 
other query types.  The name server will load up the Answers, Authority, and 
Additional info segments of the message with as many RR’s as it can find that 
are associated with the domain in question.  

 

The Attack 

In concept, the DoS using DNS attack is akin to a DDoS attack.  It uses the 
technique of traffic amplification by exploiting multiple, vulnerable intermediary 
systems in an attempt to saturate a target network.  In DDoS-speak, these 
intermediary hosts are called zombies.  They are the nameless drones whose 
only crime is having a security vulnerability that the attacker exploits and uses as 
an entry point through which the DDoS zombie code is installed.  The attacker 
then installs a controller on another compromised host and sets it to run at his 
leisure.  The traffic amplification potential is enormous.  With DDoS tools, it is 
possible to achieve amplification in both the size and number of packets sent 
from the zombies compared to those received by the controller.   

Comparing DoS using DNS to DDoS, the multiple, vulnerable intermediary 
systems (i.e. zombies) are the many name servers.  Unlike DDoS, these servers 
are not compromised and no code is loaded onto them.  Rather, the state of their 
configuration is exploited to generate the attack traffic.  The flaw in their 
configuration is that they allow recursive queries from untrusted or unknown 
systems.  How does this facilitate the attack?  Recall the discussion about 
recursive queries.  If the resolver submits a recursive query, the name server will 
fulfill the query on their behalf and return the answer.  Thus, without recursion, it 
would not be possible to trick the name server into answering the query and 
sending that packet to the target.     
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By virtue of its query-response nature, the attack only works if amplification of the 
packet size can be achieved.  The number of packets is not increased.  The 
attacker has to send out one request for every response sent to the target.  
Therefore, the increase in the size of the packet is imperative to achieving DoS 
against the target without doing the same to the attacker’s network.  This attack 
is neither elegant nor stealthy, but it could be effective under the right 
circumstances. 

DoS using DNS is distributed in the sense that the attacker seeks as many 
vulnerable name servers as possible.  The actual number and how “distributed” 
they are is dependent upon the motivation of the attacker.  The attacker must 
also choose how to use them when developing his exploit code.  He might 
choose to cycle through them all in a round-robin fashion.   Alternatively, he 
might pick them randomly from a table and perhaps send a few queries to each 
before moving to the next, or he might decide to send queries to all of them 
simultaneously.  Depending upon the number and location of the zombie name 
servers, the characteristics of the resulting packet flood will vary.  
Experimentation would be necessary in order to achieve optimal parameters. 

To see the exploit in action, refer to Figure 5 below.  The attacker would first 
have to complete some homework.  Namely, the pool of zombie DNS servers 
needs to be identified.  This could be accomplished in a variety of ways.  Recall 
that identifying name servers that will accept recursive queries from the Internet 
at large is the goal.  The attacker could use any number of methods.  The ugliest 
would be brute force searching.  It is conceivable, armed with a list of domains, to 
use the dig command and local resolvers to find name servers, and then send 
recursive queries to these servers using the host command to see if they 
respond.  Dig and host are tools distributed by ISC (authors of BIND).  For each 
domain, the dig command would return an entry similar to the following: 

 
bash-2.05$ dig google.com NS 
 
; <<>> DiG 9.2.1 <<>> google.com NS 
;; global options:  printcmd 
;; Got answer: 
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 18112 
;; flags: qr rd ra; QUERY: 1, ANSWER: 4, AUTHORITY: 0, ADDITIONAL: 0 
 
;; QUESTION SECTION: 
;google.com.                    IN      NS 
 
;; ANSWER SECTION: 
google.com.             344874  IN      NS      ns1.google.com. 
google.com.             344874  IN      NS      ns2.google.com. 
google.com.             344874  IN      NS      ns3.google.com. 
google.com.             344874  IN      NS      ns4.google.com. 
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The “Name Server:” lines would be used in a host command.  The host 
command generates a recursive query by default.  It would be sufficient to do a 
query of type A (again the default ).  The actual RR requested is irrelevant.  On 
the command line, the attacker would see either  

 
bash-2.05$ host www.ebay.com ns.domain1.com 
Using domain server: 
Name: ns.domain1.com 
Address: X.X.X.X#53 
Aliases: 
 
www.ebay.com is an alias for pages.ebay.com. 
pages.ebay.com has address 66.135.192.87 
pages.ebay.com has address 66.135.192.88 
pages.ebay.com has address 66.135.192.11 
pages.ebay.com has address 66.135.192.83 

 

or 

 
bash-2.05$ host www.ebay.com ns.domain2.com 
Using domain server: 
Name: ns.domain2.com 
Address: X.X.X.X#53 
Aliases: 

In these examples, the name server ns.domain1.com allows recursive queries 
from untrusted sources and ns.domain2.com does not.  Alternatively, the attacker 
could have used host rather than dig (host –t NS ebay.com) to gather NS 
records.  However, dig can reveal other goodies (e.g. authority records, 
additional RR’s) that wouldn’t necessarily be as evident when using host. 

Another slightly more elegant method of collecting name servers requires that the 
attacker have access to a caching name server that supports a large user 
community.  Dumping the cache on such a name server would reveal NS records 
for many domains.  It would then remain to test these for recursion in the same 
manner as shown above.  Either of these processes could be automated.  
However, in the brute force method, the list of domain names used as input 
would be hard to gather.  The whois databases used to allow wildcard searches 
that could dump lists of domains (e.g. *.com).  For security and performance 
reasons, that capability has been disabled.   
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Internet/
Zombie DNS Servers

Target System/Network
1.2.3.4/24 5.6.7.8

UDP DNS Queries
Query Type: ANY
Source IP: 1.2.3.4

(or any 1.2.3.0/24 address)

UDP DNS Responses

ICMP Port Unreachable
(If using 1.2.3.4 as

spoofed IP)

 
Figure 5  DoS Using DNS exploit example. 

Now, armed with a list of zombie name servers, the attacker can automate the 
process of generating the spoofed queries.  The query type ANY will undoubtedly 
be used since it has the potential to generate the largest response.  With an ANY 
query of roughly 20-30 bytes, responses of >300 bytes have been observed.  Of 
course, the maximum would be 512 bytes.  The input/output budget is therefore 
favorable (~10x) for a DoS attack.   

As discussed earlier, the design of the exploit requires a strategy for how to send 
the queries (e.g. round-robin, random, all at once).  Beyond this information, it is 
a simple matter to write the exploit code, input the list of name servers, and fire 
away at your favorite target.  The exploit would generate the ANY query for a 
given domain name.  The value of the domain name needs only to be a valid 
domain.  For the purposes of coding the exploit, it could also be read from a list.  
The query would then be sent to the zombie name servers following the chosen 
strategy.  The source IP address in the queries would be on the network of the 
target.  The zombie name servers would then send their large responses to the 
target network creating the flood. 

An exploit program does exist (refer to the Exploit Source Code section below).  
And it functions in the same manner just described.  The user is required to input 
lists of name servers and domains.  These are currently hard-coded lists so they 
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must be entered before compiling.  Once compiled, the user executes the code 
with the target host and the desired number of packets as input parameters.  
Certainly, an attacker could execute the steps that are automated by the exploit 
program.  Generating UDP packets with spoofed source IP addresses is possible 
using netcat, for example.  However, he would have to be an awfully quick typist 
to generate the number of requests in the short amount of time necessary to 
achieve a packet flood! 

At a minimum, the signature of this attack will be the increased DNS traffic on the 
network.  Naturally, a tell-tale sign of a DoS attack is degradation in performance.  
Degradation in performance normally leads to network engineers running around 
performing network captures.  If the network is experiencing a DoS using DNS 
attack, the network capture will look very similar to the following: 

 
At the time of this writing, the exploit code obtained from s0ftpr0ject was not 
functioning correctly.  Although this screen shot is indicative of the traffic for this 
attack, the queries were malformed.  The result here is that the input traffic is 
actually larger than the output since the query packets are larger than the Format 
Error replies.  This is not a good thing for a DoS attack! 

In any case, analysis of the network capture shows the queries being directed at 
two name servers, 10.20.14.205 and 10.20.14.206.  The actual source IP of the 
attacker was 10.20.45.7.  However, the queries appear to originate from 
192.168.60.129, the target.  Subsequently, there are many responses and 
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corresponding ICMP unreachable messages.  The responses are directed at the 
spoofed source IP addresses, and that system is sending out the ICMP 
unreachables because it is not listening for those replies.  Note that the attacker 
and the target were on the same network here.  Normally, a trace on the target 
network would not reveal any query messages.  They are left in here for 
illustration purposes. 

If the network normally carries a large amount of DNS traffic, the differentiators 
here would be the massive imbalance between DNS queries and responses as 
well as, possibly, ICMP port unreachable messages correlated with the response 
packets.  Since the attacker is using spoofed source addresses, any host on the 
target network that actually receives a response packet will generate an ICMP 
port unreachable message and send it back to the originating name server.  The 
hosts on the target network did not initiate any communication with the name 
servers and therefore will not be listening for the return packets.  This is standard 
UDP behavior.   

The number of ICMP port unreachables will depend on the attacker’s algorithm 
for generating the spoofed source IP addresses.  For example, if the attacker is 
using a single source address and that address is in use by a host system, there 
will be one ICMP message for every DNS response.  On the other hand, if the 
attacker is randomizing the source IP’s, the presence of the ICMP messages will 
be hit-or-miss depending upon the probability of generating an IP that is actually 
assigned to a host.   Further, if the attacker uses a single source that is not 
assigned to a host, no ICMP unreachable messages will be present at all. 

This is an interesting point.  Note that the attacker does not have to use an IP 
address that is actually assigned to one of the victim’s hosts.  The attacker only 
cares that the flood of responses is routed properly to the victim network.  Using 
actively assigned IP addresses does have the advantage that the ICMP port 
unreachable messages add to the traffic flood.  However, the ICMP messages 
are small and are definitely a clue to identifying the attack.  The attacker will have 
to weigh these options during the planning stage. 

Defense 

The defense against this attack is very basic.  A name server can’t be used as an 
amplifier if it doesn’t respond to recursive queries.  Most name servers are 
configured to support recursion.  It is a useful thing.  In these cases, the name 
server is probably in the TCP/IP configuration of many resolvers.  A good 
example would be the corporate name server that is distributed to DHCP clients 
on a corporate LAN.  Recursion is usually necessary for a couple of reasons.  
First, the resolvers on the LAN will only have access to this single name server 
through the firewall.  This is common security policy these days.  Second, 
allowing an upstream name server to handle the multiple queries required to 
resolve a domain keeps all of that traffic off of the LAN.  The trick, then, is to 
allow recursive queries only from those systems and networks that the name 
server considers to be trusted.   
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Most DNS implementations today have this capability.  BIND is no exception.  In 
BIND, access control lists can be defined in the configuration file and used in 
statements that will limit recursive queries.  The commands are 

acl acl-name { x.x.x.x/xx; x.x.x.x/xx; }; 

where acl-name is a unique user-assigned name for the list and x.x.x.x/xx are the 
networks that you wish to use in the access control statements.  Recursion can 
then be limited to the networks in the acl list by including the following in the 
config file: 
 allow-recursion { acl-name; }; 

In terms of what the vendor should do to help with this vulnerability, ALL DNS 
implementation vendors should include facili ties for limiting recursive queries.  In 
addition, they should make the configuration of this option a common part of the 
installation procedure.  This will raise the awareness that the problem exists.  
The user can always opt out of configuring it if they so choose.  

Exploit Source Code 

The source code of an exploit for this attack can be found at: 

http://www.s0ftpj.org/docs/spj-002-000.txt 

The code requires that the user fill  two character arrays before compiling: 

dns_def = the list of zombie name servers 

domains = the list of domains to use in the queries. 

 

It can be compiled on most Unix platforms (I used gcc on Linux: gcc  -o doomdns 
doomdns.c).  It is executed by issuing the command  

 doomdns target [n] 

where target is the hostname or IP address of the target and n is an optional 
parameter specifying the number of packets to send.  By default the program 
sends 100 packets. 

Most of the work is carried out by the functions main(), doomzone() and forge().  
The main() routine the calling arguments and spits out usage syntax if necessary.  
If the input is correct, it runs the main loop which iterates calling the doomzone() 
function, and then printing out a “.” on the screen.  It does this either 100 or n 
times depending upon the calling arguments. 

Doomzone() first checks to see if the end of the name server list has been 
reached.  If so, it resets the counter to start back at the beginning of the list.  So it 
cycles through the defined name servers in a round-robin fashion.  It then 
resolves the name server hostname if necessary (through a call to another 
routine, nameResolve()).  Finally it generates the source and destination 
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portnumbers and calls the forge function with the name server ip, the source port, 
and the destination port as arguments. 

Forge() generates the DNS query message, constructs the UDP datagram and 
sends it to the name server.  It then increments the counter that causes the next 
name server and domain in their respective lists to be used for the next iteration. 

Running the program produces the following screen output: 

 
/usr/local/doomdns# ./doomdns 10.20.44.141 10 
 
D00M DNS 
DNS Flooder by FuSyS 
Inithints by |scacco| 
 
………. 
 
/usr/local/doomdns# 

 

Additional Information 

The CIAC advisory describing the vulnerability is at: 

http://www.ciac.org/ciac/bulletins/j-063.shtml 

As mentioned above, exploit code can be found here: 

http://www.s0ftpj.org/docs/spj-002-000.txt 

CERT brought up the topic almost a year after the original post.  Their discussion 
is at: 

http://www.cert.org/incident_notes/IN-2000-04.html 

Vern Paxson included this topic as a subset of the content in his more general 
paper on reflectors.  Read the paper here: 

http://www.icir.org/vern/papers/reflectors.CCR.01/ 
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