
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

© SANS Institute 2007, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 7

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Analyzing Attack Surface Code Coverage

Justin Seitz 1

Analyzing Attack Surface Code Coverage

GCIH Gold Certification

Author: Justin Seitz, jms@bughunter.ca

Advisor: Joey Niem, detoor@gmail.com

Accepted:

© SANS Institute 2007, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 7

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Analyzing Attack Surface Code Coverage

Justin Seitz 2

Outline

1. Introduction …………………………………..4

2. Attack Surface…………………………………………….…..5

3. Code Coverage……………………………………….………6

4. Testing and Code Coverage Methods……………….……..7

3.1 White Box Testing……………………………….……….7

3.2 White Box Code Coverage………………….…………..7

3.3 Black Box Testing……………………………………….10

3.4 Black Box Code Coverage……………………………..10

5. Attack Surface Determination………………………………15

5.1 Hooking Win32 Socket Operations……………………16

6. Measuring Attack Surface Code Coverage……………….17

6.1 Determining Overall Code Area..................................17

5.2 Determining Attack Surface Code Area......................19

5.3 Fuzzing for Attack Surface Coverage………………....20

 5.3.1 Genetic Fuzzing and Code Coverage............21

© SANS Institute 2007, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 7

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Analyzing Attack Surface Code Coverage

Justin Seitz 3

7. Attack Surface and Incident Handling…………………….23

8. Conclusion…………………………………………………...23

9. References ..24

© SANS Institute 2007, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 7

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Analyzing Attack Surface Code Coverage

Justin Seitz 4

1. Introduction

The art of analyzing a software system for security and robustness flaws can be a

daunting task, and often begs a question: when is the analysis complete? Commonly a

researcher or analyst answers this question by determining whether they have run out of

budget, time, or have found bugs. However, these are not empirical pieces of evidence, what

is really required is to understand how much of the software that is attackable was exercised.

Through this paper I will illustrate a theoretical means to determining how much of the

useable attack surface is exercised by an analyst. Using a method like this is far from failsafe,

as covering all pieces of code does not mean that there are no bugs, however it acts as a way

to measure how effective your testing process is. I will outline what the attack surface is, what

aspects of the surface are relevant (what I call the “useable attack surface”), current code

coverage techniques and a way to tie code coverage to an attack surface.

As most software systems that are in widespread use today are either networked

client/server applications or file parsing applications the paper will be based on testing

applications that fall into the networked class. The secondary reason is that the highest level

of risk is exposed by networked applications which can be accessed remotely and require no

user interaction for compromise. I will also focus on Windows applications for analysis;

© SANS Institute 2007, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 7

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Analyzing Attack Surface Code Coverage

Justin Seitz 5

however the technique can be applied to any operating system and architecture.

2. Attack Surface

A software system’s attack surface is the subset of resources that an attacker can use

to attack the system [1].It is important to differentiate the classic definition of attack surface

and what I call the useable attack surface.

The classic attack surface definition assumes all entry points into the software system;

this can include certain Windows registry keys, open handles to windowed objects, or

command-line parameters. The classic definition is an excellent means to track robustness

across the entire system and to determine to what level you are willing to grant access to

certain code areas to un-trusted users [2]. However, from a realistic perspective there would

be no business model that would accept additional development time to ensure that Windows

registry keys should be filtered before being used, for example, as this would become a very

time consuming and burdensome part of the development cycle. This is not to say that it

should not be done, rather there are very few circumstances where it is absolutely necessary.

The model of the classic attack surface makes it difficult to extract useful code

coverage information specifically for a surface. The notion of a “useable attack surface”

© SANS Institute 2007, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 7

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Analyzing Attack Surface Code Coverage

Justin Seitz 6

means that it is the portion of the attack surface that an attacker could use to crash the

software, access sensitive information or gain access to the host machine remotely. It is

these particular areas of code that we are interested in exercising as they pose the highest

degree of risk. It is also independent of configuration, and specification [3], as we are testing

the connected code to a particular input source.

In the case of a networked application we will focus our attention on the system’s

socket receive operations, and the resulting packet parsing routines. It is here that most

vulnerabilities, with the highest degree of risk, are found. In order to measure the total code

coverage of this particular area, we need to first determine what functions are responsible for

receiving packets on the network, and how the resulting data is passed along to the internal

routines of the software. We also need to fully understand what code coverage is and how to

apply it in this circumstance.

3. Code Coverage

Code coverage is a metric used in software testing that describes how much of the

code in a program has been executed or tested [4]. In most cases, code coverage is

considered a white box metric, as it involves instrumentation of the source code. However,

code coverage metrics can be applied in a black box testing scenario, which is the method

© SANS Institute 2007, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 7

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Analyzing Attack Surface Code Coverage

Justin Seitz 7

that will be discussed throughout the course of this paper. However, it is important for the

reader to fully understand code coverage techniques.

4. Testing and Code Coverage Methods

3.1 White-Box Testing

White-box testing involves the tester having internal knowledge, and source code of

the application. This gives the tester the ability to “see inside the box”, allowing them to fully

understand the internal workings of the system [5]. In a typical QA environment this means

that you have access to the source tree, and you are able to not only statically analyze the

source code but also build test cases around the known paths inside the software. White-box

testing is generally accepted as the primary method a QA team tests a product internally.

 Using a white-box testing methodology allows for the testing team to write test cases

based on units or components of the system that need to perform a certain task or function. It

also allows for a very high resolution overview of code coverage, stability, resource usage

and overall quality.

3.2 White-Box Code Coverage

White-box code coverage is the method of collecting a line-by-line code execution

metric. Most code coverage tools are integrated into the development environment, and

© SANS Institute 2007, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 7

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Analyzing Attack Surface Code Coverage

Justin Seitz 8

provide a detailed analysis of what areas of code have been hit and what lie untouched. The

white-box code coverage metric is useful for both QA and development teams to determine

refactoring points, areas of code that can be removed as well as areas of code that can be

improved in terms of performance. Although it is a useful metric for internal teams, it does not

indicate the likelihood that a bug will be present in any particular area but it does provide

excellent insight into the software the team is producing.

In white-box code coverage there are five primary metrics that can produce an overall

code coverage number: function coverage, statement coverage, condition coverage, path

coverage and entry/exit coverage. In function coverage the tester is try to determine how

many functions have been exercised. Statement coverage involves a line-by-line analysis of

how many lines of code have been executed. Condition coverage is a measure of how many

decision points have been exercised. For example in a code block if there is a statement to

test whether a number is higher than 0, condition coverage would be achieved with test cases

of -1,1. Path coverage is determining if every route through the application has been covered

and entry/exit coverage measures if every call and return from a function has been executed.

It is important to determine what type of coverage that you are attempting to achieve.

For example, the following code example from Wikipedia best illustrates this:

void foo(int bar)

© SANS Institute 2007, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 7

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Analyzing Attack Surface Code Coverage

Justin Seitz 9

{
 printf("This is ");
 if (bar <= 0)
 {
 printf("not ");
 }
 printf("a positive integer.\n");
 return;
}

If function “foo” was called with “1” as its parameter we would achieve 33% condition

coverage but only 80% statement coverage, as we would not hit the “printf (“not “);”. With a

parameter of -1 we would then achieve 100% statement coverage but only 33% condition

coverage. To achieve full statement and condition coverage we would then have to use three

test cases: foo(1),foo(0),foo(-1). This is a very simplified example but it shows that white-box

testing must have a clear target for a specific class of coverage in order to be effective.

It is helpful for the reader to understand that throughout the rest of this paper, we will

be exploring function level coverage from a black-box perspective. There are a multitude of

reasons why we are determining coverage in this way, all of which will be explained in the

next section.

3.2 Black-box Testing

Black-box testing is the method whereby the tester has no knowledge of the inner

© SANS Institute 2007, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 7

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Analyzing Attack Surface Code Coverage

Justin Seitz 10

workings of the software they are testing [5]. However, the tester generally has a known

specification for testing the software, and can determine correct and incorrect behavior

based on that specification. Black-box testing is a necessary method to apply inside a QA

environment as it is generally much faster than testing at a white-box or source level, while

still having access to necessary internal information such as log files, error reports, etc.

In the case of vulnerability researchers, they are forced to approach the software

system in the purest of black-box forms, as they have no inner knowledge, and no access

to source should they need it. For the purpose of this paper it is essential to take this

perspective in order for black-box code coverage to be utilized correctly.

3.3 Black-box Code Coverage

Typically black-box code coverage is handled at the assembly level, and is completely

outside of the normal internal testing cycle. No tools currently exist, or are necessary, inside

of a development IDE that facilitate black-box code coverage, as one can get a much

higher resolution of coverage from a white-box perspective.

In order to understand black-box code coverage, one must first understand how a

binary is broken down from an assembly perspective. Inside of each binary’s code

segment, there are functions and basic blocks. Functions can be thought of just as their C

© SANS Institute 2007, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 7

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Analyzing Attack Surface Code Coverage

Justin Seitz 11

counterpart: you give parameters to a function, you call the function and it gives a return

value. There is not any difference from an assembly perspective either, although there are

subtle differences in how functions are called in some compiler implementations, but this is

beyond the scope of this paper.

Each function is comprised of one or more basic blocks. Basic blocks are small

portions of the function which are terminated by a branch instruction, a call or a return [6]. In

Figure 1. you see the addnum() function from the default calculator shipped with Windows

XP.

© SANS Institute 2007, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 7

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Analyzing Attack Surface Code Coverage

Justin Seitz 12

(Fig. 1. - IDA Pro 5.1 Representation of a function and its basic blocks)

 The top node in the graph is the head of the function, and you can see it takes in

parameters just like in C. Each of the nodes below it are the basic blocks of the function.

© SANS Institute 2007, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 7

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Analyzing Attack Surface Code Coverage

Justin Seitz 13

Black-box code coverage is measured in two different ways: function level coverage

and basic block level coverage. Using a function level coverage routine, the tester would

determine the addresses of each of the function heads inside of the binary, and then set

breakpoints on each address. Every time a breakpoint is hit, it is deemed a code coverage

hit, and then execution is allowed to continue [7]. Using this method, you are able to

determine a fairly high-level measure of the code coverage during a testing run. The

method for measuring basic block level code coverage is no different, however one must

first find all of the functions, and then determine all of the function’s basic blocks, and set

the breakpoints on the basic block heads. This provides a much higher resolution code

coverage metric, but also is a much more lengthy process as each breakpoint interrupts the

processor on the tester’s machine, and there can be tens of thousands of basic blocks in

even the simplest applications.

 Using our previous example for code coverage, where we had the function “foo()”

which accepted an integer as a parameter, it produces the following disassembly using IDA

Pro 5.1:

© SANS Institute 2007, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 7

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Analyzing Attack Surface Code Coverage

Justin Seitz 14

0x00401000 sub_401000

0x00401000 arg_0 = dword ptr 8

0x00401000 push ebp

0x00401001 mov ebp, esp

0x00401003 push offset aThisIs ; "This is "

0x00401008 call _printf

0x0040100D add esp, 4

0x00401010 cmp [ebp+arg_0], 0

0x00401014 jg short loc_401023

0x00401016 push offset aNot ; "not "

0x0040101B call _printf

0x00401020 add esp, 4

0x00401023 push offset aAPositiveInteg ; "a positive integer.\n"

0x00401028 call _printf

0x0040102D add esp, 4

0x00401030 pop ebp

0x00401031 retn

For this simple case, we can cross-reference the disassembly to the source code easily.
We see the function begins at 0x00401000, and that IDA has detected it takes a single
parameter (“arg_0 = dword ptr 8”). We can also clearly see the first printf() being called
exactly as it is shown in the source code.

The interesting part of the code begins at 0x00401010 where we see a “cmp
[ebp+arg_0],0”. In pseudocode this means “compare the value of the function parameter to
zero.” The CMP instruction in x86 assembly will set the zero-flag register depending upon the
evaluation. If the comparison is true (in our test case 0 or -1), it will set the ZFlag register to 1.
Likewise, if the comparison is false (in our test case 1), it will set the register to 0. The next

© SANS Institute 2007, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 7

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Analyzing Attack Surface Code Coverage

Justin Seitz 15

instruction at 0x00401016 “jg short loc_401023” tests whether the CMP instruction evaluated
to true or false by checking the ZFlag register. In pseudocode this would be “if the comparison
was true then continue executing, if the comparison was false then jump to the next printf()
call.”

 We can now see and understand the translation between what we see as source code,
and what we see in a black-box or disassembled format. Again, this is a very simple example,
but as the code complexity increases the gap between white-box and black-box widens and it
becomes more difficult to determine how to achieve 100% decision, statement, path and
entry/exit coverage. For example, in our source code, we really only have 5 lines of
executable code inside of the function foo() but the disassembly contains 14 lines of
executable code, this makes it difficult to accurately use statement coverage in a black-box
fashion. This is also why we choose function-level coverage, as we can easily decode the
beginning of a function, and measure when we have hit it by using breakpoints. In this case
we would set a breakpoint on 0x00401000 and when that breakpoint was hit we know that
function foo() had been executed.

As a side note, one could also pull in the functions and basic blocks for an application, and
using some simple heuristics determine decision coverage by the number of basic blocks that
were executed based on whether the basic block was reached by a conditional jump, but this
is a very slow and painstaking process, and does not lend itself to quickly measuring the
amount of code attached to an attack surface.

5. Attack Surface Determination

For the purpose of this paper we will determine the attack surface of an application,

based on the network port(s) that it is listening on. Using a tool called Immunity Debugger, we

can easily see what port a process listens on (see Figure 2).

© SANS Institute 2007, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 7

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Analyzing Attack Surface Code Coverage

Justin Seitz 16

(Fig. 2 – Immunity Debugger’s view of all running processes)

 This makes it very easy for us to attach to a process and know that we have a

particular port open and awaiting input. In order to make use of that particular piece of

information, we need to understand what an open and listening port really means at the

binary level, and where we want to monitor code coverage.

4.1 Hooking Win32 Socket Operations

 In order for us to focus solely on the network level attack surface, we have to begin

trapping code coverage metrics at the point when a packet has been received and is

traversing memory into the application’s logic. There are four standard Windows socket

© SANS Institute 2007, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 7

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Analyzing Attack Surface Code Coverage

Justin Seitz 17

routines that are generally used in networked applications: recv() (TCP), recvfrom() (UDP),

WSARecv() (TCP) and WSARecvFrom() (UDP). All four of these functions are exported from

the system library WS2_32.dll which is located in the C:\WINDOWS\system32\ directory.

 To hook any of these functions, we are merely setting a breakpoint at the function head

of those calls and then monitoring where the function returns. The return point of the function

will be the point at which we want to begin monitoring code-coverage, as it will be the main

application that has made the call to the receive functions in order to receive and process

packets from the network.

The addresses of both the call to the receive operation and the return from it are easily

accessible in IDA and Immunity Debugger, just by searching for the socket operation function

name and setting a breakpoint. If you are doing the hooking at runtime, then it is important to

set two hooks: the first hook is at the head of the receive operation, when that hook gets hit,

you then set a hook on the stack pointer ([ESP]) which points to the return address of the

calling function. You are now prepared to begin tracking code coverage from the point the

packet has been received off the network, and is about to be processed by the application.

6. Measuring Attack Surface Code Coverage

5.1 Determining Overall Code Area

© SANS Institute 2007, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 7

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Analyzing Attack Surface Code Coverage

Justin Seitz 18

To begin a code coverage run, it is generally useful to acquire the total number of

functions and basic blocks contained within the application. After we have determined the

overall code area, we can then move on to determining what portion of the code are is the

attack surface we are looking to analyze. Figure 3 depicts the usage of the Immunity

Debugger’s ability to analyze a binary and retrieve a total function count:

*** Immunity Debugger Python Shell v0.1 ***

Immlib instanciated as 'imm' PyObject

READY.

>>>main_module = imm.getModule(imm.getDebuggedName())

>>>imm.analyseCode(main_module.getCodebase())

>>>

>>>func_list = imm.getAllFunctions(main_module.getCodebase())

>>>print len(func_list)

145

(Fig. 3 – Immunity Debugger pyShell depicting a function count)

 From this small script we are able to see that the currently running process has 145

total functions that can be reached. To achieve code coverage on the binary as a whole, we

would then iterate that list and set a breakpoint on each address. Keep in mind this is only the

coverage information for the primary executable, if it includes other dynamic libraries (in the

© SANS Institute 2007, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 7

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Analyzing Attack Surface Code Coverage

Justin Seitz 19

case of Win32 these are DLLs) that are not system flagged, then we would have to make sure

to analyze and set breakpoints inside those libraries as well.

5.2 Determining Attack Surface Code Area

In order to determine the code area of the attack surface, we have to recursively

determine all code cross-references stemming from the reception of a packet. An illustrative

example would be this:

1) Address “A” is the return address from a WS2_32.recv call.

2) Determine the cross-references to the function where address “A” resides. Let’s say

that there are three function addresses that are cross-references, we will call them

X, Y, and Z.

3) Now begin recursively determining the cross-references to X,Y and Z, thus building

a list that would look like [X1,X2,X3…], [Y1,Y2,Y3…] and [Z1,Z2,Z3…]. For each of

the items in the resulting lists we then have to determine the cross-references to

them, and so on.

4) Adding up all of the cross-references gives us the total function count that is related

to the attack surface we are analyzing.

© SANS Institute 2007, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 7

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Analyzing Attack Surface Code Coverage

Justin Seitz 20

Now that we have determined how many functions comprise the attack surface we are

able to again simply add breakpoints for each of those addresses. We have completely

reduced the amount of code coverage area that we have to monitor. This is a very targeted

set of coverage points, as opposed to having to manually filter out extraneous function calls

which may not be related to the handling of received network data.

5.3 Fuzzing for Attack Surface Coverage

 Generally, code coverage data is useful from the perspective of a tester when they

want to ensure that they don’t have any extraneous code that needs re-factoring or is no

longer used. From the perspective of a security engineer, code coverage is more interesting

for measuring the effectiveness of a fuzzing run. One can measure the effectiveness of their

fuzzing tool not only by the number of bugs it finds, but also on the amount of code coverage

that was exercised during a fuzzing run. Again, the main caveat is that 100% code coverage

does not ensure there are no bugs.

 To gain an understanding of the code coverage before and after a fuzzing run, it is

important to first pass the application a piece of data that is correctly formed. By sending the

right packet and measuring the coverage we are able to determine the common path that a

© SANS Institute 2007, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 7

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Analyzing Attack Surface Code Coverage

Justin Seitz 21

normal packet will take through the application’s logic. Once we have determined the code

coverage count from a regular packet, we can then begin mutating that packet to see if we

can begin exercising other chunks of code that are not normally executed, for example error

handling routines, or logging functions. From personal experience, most developers put a lot

of time and effort into making sure the packet parsing is done correctly, but when displaying

an error message will blindly pass the user-supplied data into a buffer for display, which is

generally a bad idea.

5.3.1 Genetic Fuzzing and Code Coverage

 The newest form of fuzzing that has begun to take hold is genetic fuzzing. Genetic

fuzzing is the method of testing whereby the inputs are generated based on a genetic

algorithm that uses various metrics (for now only code coverage) to determine the fitness

level of the input being sent to the application. This enables the fuzzer to become “smarter”

over time and to provide inputs that cover greater amounts of code over each new generation.

 An excellent example of a genetic fuzzer is EFS [8]. EFS fully utilizes a reverse

engineering framework called PaiMei to trap code coverage data on each packet that is sent

to the target application. It then uses this code coverage information to create the best

packets that will drive the deepest into the application’s logic, and this has been proven to be

a very powerful method for robustness testing a software application.

© SANS Institute 2007, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 7

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Analyzing Attack Surface Code Coverage

Justin Seitz 22

 An interesting way to make the EFS system even more powerful would be to apply our

attack surface code coverage method to the PaiMei framework, which is responsible for the

function resolution and breakpoints. This would generate a very small subset of the total code

coverage paths and EFS would then have a fine-grained list of coverage points that would

only be relevant to the attack surface we wish to test. This would also alleviate the current

problem where you have to do pre-test runs using PaiMei to manually determine what code

coverage hits should be filtered out before EFS fires up.

7. Attack Surface and Incident Handling

Typically, an incident handler is not working in close association with the QA or

development teams in terms of testing metrics, coverage and other software development

lifecycle areas. In the case of attack surface, it can be useful for an incident handler during

their preparation phase to be able to determine what an application’s attack surface looks like

(what network ports does it listen on, does it read environment variables, etc.). It can also be

very useful for a handler to have an idea of how well the development team has exercised the

attack surface, and to understand where they can obtain further information about the

application’s health should an attack or incident occur.

© SANS Institute 2007, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 7

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Analyzing Attack Surface Code Coverage

Justin Seitz 23

We may soon see the gap being bridged between incident handlers, application testers

and development staff. It is crucial that there is no knowledge gap between all teams, and the

attack surface of deployed applications is a very relevant nugget of information that should be

shared.

8. Conclusion

We have demonstrated an easy, and repeatable method for not only determining the

amount of code attached to a particular attack surface, but also how to practically use that

information as a testing metric to find bugs in software applications. The attack surface itself

is a difficult to define part of an application, but using the approach as outlined in this paper,

we can begin honing in on only the most interesting (and risky) parts of an application.

In the future, we should expect to see fuzzers more heavily relying on code coverage

metrics, and the black-box methods may soon overtake the white-box methods. Software

security testing is an interesting and exciting field, and I hope that there is a continued effort

to develop smarter methodologies for finding bugs.

© SANS Institute 2007, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 7

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Analyzing Attack Surface Code Coverage

Justin Seitz 24

9. References

[1] Manadhata, P. K., Wing, J. M., Flynn, M. A., & McQueen, M. A. (2006). Measuring the
Attack Surfaces of Two FTP Daemons. 2.

[2] Howard, M. (2004). Mitigate Security Risks by Minimizing the Code You Expose To

Untrusted Users. Retrieved September 30, 2007, from Attack Surface: Mitigate
Security Risks by Minimizing the Code You Expose to Untrusted Users Web site:
http://msdn.microsoft.com/msdnmag/issues/04/11/AttackSurface/

[3] Guruswamy, K. (2007, Jan 14). Attack Surface Coverage. Retrieved October 01, 2007,

from Attack Surface Coverage Web site: http://labs.musecurity.com/2007/01/14/attack-
surface-coverage/

[4] Code coverage. (2007, October 26). In Wikipedia, The Free Encyclopedia. Retrieved

22:44, October 30, 2007, from
http://en.wikipedia.org/w/index.php?title=Code_coverage&oldid=167310512

[5] Patton, R. (2000). Software Testing. Sams Publishing.

[6] Eilam, E. (2005). Reversing: Secrets of Reverse Engineering. Wiley Publishing.

[7] Sutton, M., Greene, A., & Amini, P. (2007). Fuzzing: Brute Force Vulnerability

Discovery. Addison Wesley.

[8] DeMott, J. (2007, Aug 1). Evolutionary Fuzzing System. Retrieved September 30,

2007, from Evolutionary Fuzzing System Web site: http://vdalabs.com/tools/efs.html

