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1) STATEMENT OF PURPOSE
 
In this paper I will show how a company’s private network was hacked, with an 
attack that resulted in a Denial-of-Service situation. 
HACME StoX Markets Inc. has installed an electronic trading system and has 
deployed a 802.11b WLAN to provide brokers with a direct link allowing them to 
buy and sell stocks remotely from their offices, given brokers are physically 
distributed within a radius of no more than 3 miles from HACME headquarters. 
At the same time, HACME has deployed an electronic data-providing system to 
provide data vendors and other organizations that buy and sell electronic 
information from markets to investors with a direct link, allowing them to access 
the information remotely from their offices. Taking advantage from the fact that 
all these data vendors are in the same zone as HACME and the brokers, it has 
been decided to provide them too with wireless access to HACME systems. 
 
For security purposes, HACME implemented encryption on the links, the one 
provided with the IEEE 802.11b protocol implementation, based on the RC4 
algorithm. Knowing about the weakness of the WEP implementation, the people 
at HACME decided to implement a VPN over the already encrypted links, in 
order to provide more strength to the solution, specifically for the case of 
brokers, given live trading information is considered to be of utmost importance 
and its C. I. & A. must be assured. HACME handled this as a requirement for 
brokers to be able to trade over the system, and enforced it by providing them 
with already set “user-unserviceable” desktop computers including everything 
needed to run as requested.  
But with data vendors the situation is different, information provided to them is 
not exactly real-time information, it has a 5-minute delay so it wasn’t considered 
that it required so much protection, and then no VPN was deployed for the data 
vendors access.  
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For this service, HACME implemented a TCP/IP client-server mechanism in 
which a server process runs at a certain HACME known address and listens at 
a certain known port, waiting for clients to request for information.  
These clients are processes that run at the data vendors sites, on systems with 
addresses known to HACME and they start their communications from any 
ephemeral port.  Given this service uses no VPN, HACME as an additional 
security and management control, decided to implement a list of authorized 
clients to access the data-providing server, based on IP addresses and not 
allowing others to access it. 
 
In short, the server running at HACME only receives requests from certain 
known IP addresses belonging to authorized data vendors who have an 
agreement with HACME. Requests coming from other addresses will not be 
honored, and these communication attempts will be dropped by the HACME 
firewall. 
 
The purpose of this paper is to show how an attacker managed to exploit this 
situation, by dropping data vendor connections whenever s/he wanted, greatly 
interfering with the service providing information about the trading operations 
taking place in HACME electronic floor.  
It will be also shown that the attacker doesn’t need to be an external one, s/he 
could be another data vendor or someone working for a data vendor interfering 
with her/his colleagues businesses in her/his own benefit. 
There are basically two scenarios that could lead to such a situation: 
 

1. A data vendor who wants to interfere with other colleagues, preventing 
them from receiving HACME information properly; this could be just to 
stop others from having the information or at least delaying them in 
getting it and benefitting from being the first in having it, which could be a 
good marketing advantage. Another option for the same case is a 
disgruntled data vendor, who has been banned from receiving HACME 
information, let’s say, for lack of payment, or for some agreement 
violation, and still has the wireless link, but has been dropped from the 
access list allowed for the service. 

2. Somebody outside of the wireless network, not necessarily a data 
vendor, who breaks into the wireless security and manages to drop 
vendors communications. This could be someone hired by some vendor 
to make this job for the same reasons exposed in point 1, or just 
someone who wants to attack HACME or one or more data vendors. 

 
With this objective, in this paper I’ll do my best effort to demonstrate the 
capabilities of the TCP Reset attack, to explain what this attack is and why it 
works, and to describe the steps that must be followed to exploit this particular 
vulnerability existing in the TCP protocol; also, I’ll tell how the attacker in this 
story proceeded to achieve his/her goals, and finally, I’ll describe the incident 
handling process that took place once the situation was detected and the 
technical people at HACME started to work in solving it, as well as the lessons 
that should have been learnt as an aftermath. 
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The security breach that will be explained in first place, the wireless problem, by 
itself leads to a loss of Confidentiality, given data intended to be accessible only 
by the intervening parties suddenly gets exposed to whoever breaks the 
encrytion schema. Of course, this could lead too to lose Integrity, given the 
attacker could somehow manage to alter the data being transmitted, mounting 
different options of other attacks, for example of the kind of “Man-in-the-Middle”, 
where transmissions from point A to point B are intercepted by an intruder 
sitting somewhere in between the two points, who somehow alters the 
information flow, making point B receive something not exacly equal to what 
was sent by point A. 
Finally, Availability could be compromised, as we’ll see in the rest of this work. 
An attacker could manage to interfere with communications, making them 
temporarily or permanently unavailable to the parties involved. This is known as 
a “Denial-of-Service” attack, or DoS.  
Although a DoS attack can be implemented in many different ways, the concept 
behind the expression is always the same: depriving someone from accessing 
to something. The extent can be limited to a reduced group of people or it can 
reach a vast number of affected clients or users of the service, depending on 
this one and on the characteristics of the attack. For an everyday example 
consider the telephone service. Cutting the phone line at a house entrance is a 
DoS for the house dwellers, while cutting a trunk somewhere in the street could 
leave many blocks with no service, and blowing a central switch could render a 
whole town with no phoning capability. These are all different kinds of DoS 
attacks over the same system. 
 
The second exploit that will be studied in this work leads to a DoS situation, with 
an impact limited only to the involved parties. The TCP Reset attack doesn’t 
affect the server point nor the client, both of them keep on running, it’s just THE 
specific data link that gets dropped, and in most of the cases it can be 
restablished, except in those situations where the server side accepts just a 
limited number of reconnections from a certain client. 
Observe that this DoS attack has a limited span, given it doesn’t lead to a 
situation where all communications are dropped, but only those specifically 
attacked; following with the phone service example, it’s just as if, given a 
conversation between numbers X and Y, someone could tell the phone central 
to act as if X has hanged up, while really X is still talking to Y; this will drop the 
communication, and X will have to redial Y number to restablish it back again. 
So, it’s not a central switch bombing situation. 
 
 
2) THE EXPLOITS  
 
Two different vulnerabilities must be described in order to completely explain 
this situation and why this attack was successful.  
 
The one about the wireless technology involved could be skipped given the 
particular characteristics of this case, but it will be explained anyway just to 
provide a more general case and not to circumscribe the problem to such an 
specific situation, which will be explained later. 
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2.1) The wireless problem 
The 802.11b is a protocol for wireless communications that bases its security in 
the WEP (or Wireless Equivalent Privacy) protocol for encrypting the traffic, a 
basic set of instructions and rules which provides a certain level of privacy.  
The WEP protocol uses the RC4 (Rivest Code 4) algorithm to encrypt all the 
packets that are sent out from a transmitting device and to decrypt them at the 
receiving side.  But it’s flawed, and this is what this exploit is about. 
As a matter of fact, the RC4 is a secure algorithm in itself and it’s just the poor 
WEP implementation that makes it faulty. By the way, what we all know as the 
RC4 algorithm is something assumed to be the original algorithm, which is a 
trade secret of RSA Data Security. In 1994 there was an apparent “leak” in a 
newsgroup and so the algorithm was made public. Nobody can assure that 
what we know as the RC4 algorithm is the original one, and RSA never 
recognized the “leaked” algorithm was it, but they’re functionally equivalent. If 
the original RSA RC4 algorithm is to be used, then a license from RSA is 
needed, while nothing is needed if the public-domain algorithm known as RC4 
is used; this one is often known as ARC4 or “Assumed RC4”. 
The RC4 algorithm it’s a symmetric stream cipher. Although it’s beyond the 
scope of this paper, let’s briefly explain what this means. 
 
When thinking about protecting data, both in transit and stored, the two main 
technologies are symmetric and asymmetric key cryptography. In symmetric 
key cryptography, also known as secret key crypto, both parties, sender and 
receiver (in case of messages) must share a common key, preferably only 
known by them. This common key is used both to encrypt the original plaintext 
before being sent by the sender as well as to decrypt the final crypto-message 
once received by the receiver. That’s why it’s called symmetric, the same key is 
needed on both sides. 
In asymmetric key cryptography, or public key crypto, each one of both parties,  
has an exclusive pair of keys, a public one and a private one. This is based on 
complex and strong mathematical concepts and properties, but the idea is that 
what’s encrypted with one of them can only be decrypted with the other one. 
This way, each party only needs to know the public key of the other side, and 
public keys are what their name says, public, known to everybody, so there’s no 
need to protect them. On the contrary, the idea is to publish them so that 
everybody can encrypt messages with them that can only be decrypted by the 
legitimate receiver, who owns the private key. 
There are many encrypting techniques or ciphers, but all of them fall into one of 
two great groups: block and stream ciphers. The main difference between them 
is how they treat the original plaintext message; there’s a great analogy with 
storage devices, where we find some work with blocks of bytes while others 
work on a one-byte-at-a-time basis. Block ciphers take chunks or pieces of the 
original message of a certain predefined size and apply the encryption algorithm 
with the chosen key to each block, while stream ciphers operate on a byte-
based or bit-based way, this is, a transformation is applied to each character (or 
even each bit) in the message, one by one. 
 
The RC4 algorithm is a stream cipher based on a 3-byte initialization vector (IV 
for short) and a 5-byte or 13-byte password, that generates pseudo-random 
values which are used in the WEP implementation to encrypt a plaintext 
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message by combining them with the original bytes in the message through an 
XOR binary operation (the simple idea of the XOR is that it yields 0 if both 
operands are the same, and 1 if they’re different). 
The purpose of the IV is implementing the concept of “state” in both the 
encrypting and decrypting processes. This state can be represented by a value 
held for example in a vector which is cyclically walked-through from beginning 
to end during each encrypting loop, and it’s changed for every group of bytes or 
block that’s transmitted. The purpose of this is to run the algorithm for each 
transmitted packet or block with a different IV, to provide more security. But this 
implies that two things need to be known by the communicating parties: the pre-
shared password (the secret key of the symmetric cipher) and the IV for each 
block. And how is the IV shared? It’s transmitted in cleartext with each block, 
which is not secure at all. 
 
Now, not only the IV is transmitted in the clear, but also there’s a limited number 
of possible IVs, given it’s implemented in 3 bytes, each of them with 256 
possible values, which yields a total of 16.777.216 possible 3-tuples for the IV. 
This may seem to be a large number but in fact by its very random nature, 
collisions, or repeated IVs, can be expected to appear after about 5.000 times 
the IV changes. It must be considered that the IV changes with every 
transmitted packet, so depending on the traffic on the network, it would take 
more or less time to obtain a repeated IV. When a repeated IV appears, it 
means the same password has been used to produce the cyphertext being 
transmitted. So, in case of knowing the plaintext which produced one of the 
obtained cyphertext sequences, it could be possible to obtain the other 
plaintext, and what is worse, the password used to encrypt them, which would 
lead to a total exposure of the link, given this password is composed by 
concatenating the 3-byte IV with a secret key. If the password can be obtained 
for one encryption instance, given the IV is always transmitted in cleartext, the 
password for every other instance can be trivially deduced. 
All this works this way because of the properties of the XOR binary operation, 
the one used to turn plaintext into cyphertext and because of the small number 
of bytes chosen for the IV; if instead of 3 bytes a higher number had been 
considered, chances of repeating an IV would be much smaller than they are, 
making the guess part of this attack by far more difficult than it is. 
 
Here’s the basic binary math for this; given the same IV, the encrypting key, K,  
is the same.  Let’s call P1 and P2 to two original plaintext sequences, which after 
encryption with key K turned into cyphertext sequences, called C1 and C2. 
So, 

P1 xor K = C1   and  P2 xor K = C2

Given  
P1 xor K xor P1 = K = C1 xor P1    and 
P2 xor K xor P2 = K = C2 xor P2

Then,  
  C1 xor P1 = C2 xor P2
  C1 xor P1 xor C2 = C2 xor P2 xor C2

  C1 xor P1 xor C2 = P2

  C1 xor P1 xor C2 xor P1 = P2 xor P1 = P1 xor P2

  C1 xor C2 = P1 xor P2
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This way, it can be seen that if one of P1 or P2 is known, the other plaintext can 
be immediately deduced, given both cyphertexts are also known. The real fact 
is that hackers have more than an idea of what the original plaintext is at certain 
communication stages, given they know certain “signatures”, or proper byte 
sequences of standard procedures of well-known operating systems or 
programs, and even of the encrypting devices. Thus, they can search for 
instances in the data transmission that can lead them to success. 
All the math involved in this guessing task is too tedious and complex to be run 
by hand, but there are several freely downloadable tools out there that 
implement mechanisms that mask all this labour and complexity, making the 
exploit available to simple script-kiddies who don’t need to know anything about 
all these facts, all they need is a computer and a wireless network card running 
in promiscuous mode. 
 
2.2) The TCP problem, the main one 
It doesn’t have a fancy name, it’s just called the “TCP Reset attack”, and it’s 
independent of operating systems, applications and services. It just affects any 
implementation of TCP that complies with the IETF (for Internet Engineering 
Task Force) RFC-793 original TCP definition of September 1981, as well as 
those complying with the newer RFC-1323, of 1992. 
So, as Alan Paller from SANS Institute (at Bethesda, MD) has said,  “It’s a 
design flaw of TCP, so it’s as old as the Internet”.  This is true, but although 
Denial-of-Service attacks with properly crafted TCP packets were a well-known 
weakness of the TCP specification, until recently there was the wrong idea that 
an attack like this was very difficult to implement, or at least with very low 
propabilities of success (as low as 1/232), because, given a 32-bit sequence 
number is checked for every received packet, it was thought that the attacker 
had extremely low chances of guessing the right in-sequence number.  
But a very important concept had been forgotten or misconsidered, the TCP 
sliding window, and the loose specification of RFC-793 about how to handle 
reset packets. 
The discoverer of this conceptual mistake is Paul A. Watson, a security expert 
working for Rockwell Automation (an industry automation company) who clearly 
described it in his paper “Slipping in the Window: TCP Reset Attacks”, shaking 
both technical and vendors communities with his explanation of the problem. 
The MITRE Corporation CVE (Common Vulnerabilities and Exposures) gave 
this vulnerability the code name CAN-2004-0230, the US-CERT identified it as 
VU#415294, and the UK-NISCC called it Advisory 236929. 
 
Although the impact this vulnerability has varies from one situation to another, in 
several circumstances it’s critical. It’s very simple, and there’s not much left for 
any variants, given the plain basic nature of the attack. It consists in resetting 
any established TCP communication or conversation,  just by injecting a single 
properly handcrafted packet in the data stream, a RST (reset) packet telling one 
of the communicating partners to drop the link. 
The attack succeeds when the attacker guesses the packet-numbering 
sequence window that’s being used in the specific conversation s/he is trying to 
attack. This way, when one of the partners receives the spoofed packet with a 
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valid sequence number, this is, within the sequence window, it accepts it and 
processes it, in this case dropping the connection with the other valid partner. 
 
Now, why is this somehow exploitable? At first it can be thought that if there’s 
such a vast numbering universe as there is to number the packets (we’ll see 
this later), it would be very difficult for someone to guess at what number the 
sequence started, and as a second point, it’s even more difficult to guess 
exactly the next number to be used as to make the forged packet to fit 
unnoticed in sequence. Both things are true, but they’re not applicable in this 
case.  
We will see why this attack works, and what it exactly does to take advantage of 
what is more a characteristic of the TCP protocol than a vulnerability; this is so 
because the attack doesn’t benefit from a programming mistake nor a skipped 
control; it benefits from what today can be considered a conceptual mistake, a 
poor design. But when TCP was conceived, in the mid-70s, nobody was 
thinking about attacking communications and nobody worried for having to 
secure communications from attackers, they were not public domain, so 
security wasn’t a point. 
An introductory overview of what TCP is and a simple explanation of how TCP 
works as well as some related concepts will be given in order to provide the 
reader with a better explanation of how and why this exploit works. 
 
2.2.1) A very brief TCP primer 
Usually the term TCP/IP is used to refer to the inner mechanisms of most of 
nowadays network connections and all of Internet connections. But what is it? 
TCP/IP is a family of protocols developed in the 70s by the U.S. DoD 
(Department of Defense) in order to implement what we know today as the 
Internet. A protocol is a set of rules and conventions previously established 
between two or more parties, in order to be able to communicate on an orderly 
and unambiguous manner (“by following the protocol”). These rules describe 
the format that messages must have and the way they must be exchanged. 
In this family, two protocols are the most important and they give name to the 
group: they’re TCP (Transmission Control Protocol) and IP (Internet Protocol).  
TCP is a connection-oriented protocol, this is, that it allows establishing a logical 
connection providing it with flow control and error control between two partners 
needing to exchange data. This way, it manages to provide reliable links (over 
an unreliable environment as IP is) and guarantees the delivery of data. This 
reliability comes from the fact that TCP numbers all and each packet or piece of 
data it transmits, allowing the receiving end to control if all pieces have been 
received, and to reassemble them in their original ordering; moreover, the 
receiver can “tell” the sender if some of the pieces got lost on its way, so that 
the sender resends it until the receiver gets it and puts it in right place. TCP has 
many other characteristics, for example, it can control the speed packets are 
sent and received, this is, if the receiver is not fast enough as to process the 
packets as it receives them, it can “tell” the sender to slow down, so that it 
doesn’t choke with data, or if the receiver for some reason stops processing the 
received data, it can tell the sender to wait until operation is resumed. 
 
On the other side, IP is connectionless, and so it’s an unreliable protocol that 
doesn’t guarantee the delivery of data. It doesn’t control order nor if all packets 
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are received, so there are no retransmissions and no reassemblies. Of course 
it’s faster than TCP, but it’s not enough for communications where order and all 
packets matter; IP just keeps going, it doesn’t wait for success; it’s said to be a 
best-effort protocol, doing as best as possible to do the job, but not caring if 
something goes wrong. 
 
So, how is that TCP protocol goes over IP protocol? According to the OSI 
model, TCP runs in layer 4, while IP runs in layer 3. In order to understand this, 
a brief explanation of models and layers must be given.  
Layers, when talking of communication protocols, is a powerful concept that 
divides the complex communications process into smaller logical groups, easier 
to understand and manage, as well as to enable interoperability between 
different technology providers by using industry-standard interfaces, and 
allowing changes and tuning at a certain level or layer without having to change 
all the rest of the implementation. 
In a layered communications model, data flows from the application at the 
sender, crossing downward through each layer, from highest to lowest, running 
along whatever media is used as a physical link (cable, satellite, wireless), and 
finally crossing upward from the lowest to the highest layer of the model, and 
finally to the application at the receiver. The idea is that at the sender, each 
layer receives data from a higher level layer and the protocol operating in it 
adds its own unique data, based on the information received, in order to 
contribute to deliver the original piece of information to the destination point. 
Once at the receiver, each protocol examines and “unwraps” the received 
packet coming from the immediate lower layer, removing only the data originally 
attached by its protocol counterpart at the sender, passing all the rest of the 
received packet to its immediate upper layer for processing. 
 
Two basic layered models are used as a reference to group and describe the 
complex steps and procedures involved in establishing and maintaining a data 
link between two partners. One of them was developed in the early 80s by the 
International Standards Organization (ISO), and was named the Open Systems 
Interconnection reference model, or OSI. It consists of 7 layers, named, from 
lowest to highest, physical (1), data link (2), network (3), transport (4), session 
(5), presentation (6) and application (7). 
Another layered representation was developed by the U.S. DoD in the 70s, and 
was named the TCP/IP model; it’s similar to the OSI model, except it has 4 
layers instead of 7. They’re named, from lowest to highest, network (1), 
internet(work) (2), host-to-host (3) and application (4).  
 
This figure tries to give a graphical representation of a data flow going from a 
sender to a receiver, piercing down through the layers in the sender and up 
through the same corresponding layers in the receiver: 
 

  SENDER    RECEIVER  
 layer N ↓  ↑ layer N  
 layer N-1 ↓  ↑ Layer N-1  
 layer N-2 ↓  ↑ Layer N-2  
  … … ↓  ↑  … …  
 layer 2 ↓ data flow ↑ layer 2  
 layer 1 → → → → → → → → → → → → layer 1  

   Figure #1    
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Conceptually these two models are similar in that they define layers; one of 
them divides the communication steps and tasks in more groups than the other, 
that’s the most “visible” conceptual difference.  Of course there are many other 
differences between them, but they’re beyond the scope of this work. 
 
So, TCP in the OSI model is considered to be running in layer 4, or transport 
layer, and IP in layer 3, or network layer. From the point of view of the TCP/IP 
model, TCP runs in layer 3 or host-to-host, and IP runs in layer 2, or internet. 
 
In any case the idea is simple: TCP receives bytes from the application layer 
(although OSI considers other layers in between, the original data always come 
from something running at the application layer), groups them into segments 
and passes them to IP for delivery; when IP time comes, it does its own data 
chopping, splitting the TCP segments as necessary into IP datagrams, and 
passes them down to the next lower layer to do its part, until the physical media 
is reached and data travels between sender and receiver. 
The IP protocol has as its main task, to move datagrams or packets from 
sender to receiver over a networked environment. As many machines can be in 
the same network, to achieve this goal addresses are used, and they’re part of 
the add-ons of the IP layer; both sender and receiver IP addresses are added to 
the data coming from TCP, as well as other elements, to conform the new 
travelling element, the IP datagram. 
At the TCP level, a different kind of addressing is needed, because many 
applications can be running on both sending and receiving machines, so TCP 
needs to know how to tell one application from another, and then the concept of 
data ports, or simply, ports, comes to rescue. The idea is simple: each 
application uses a port number, something like a parking lot or door number, 
just to differentiate the traffic from one application (such as a web browser) from 
the traffic of another (such as a telnet emulator). This information is part of the 
TCP segment, and tells about the port at the sender (source port) and the port 
at the receiver (destination port). 
 
The next two figures show graphical representations of the structures of TCP 
segments and IP datagrams (the information for creating these two figures was 
taken from the “IBM TCP/IP Tutorial and Technical Overview” manual, GC24-
3376-03). 
 
 
 0          1          2          3  
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           Figure #2 – the TCP segment            
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 0          1          2          3  
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 Version IP header 
length Type of service Total length 

 Flags 

 
Identification 

ze
ro

 

D
F 

M
F Fragment offset 

 TTL Protocol Header checksum 

 Source address 

 Destination address 

 Options (+padding) 

 Data bytes (variable) 
                                 
          Figure #3 – the IP datagram              
 
 
It can be seen in the TCP segment representation that source and destination 
ports are represented in 16 bits, so port numbers can go from 0 to 65535 (this is 
216-1).  When the TCP/IP model and protocols were conceived, a group of port 
numbers were reserved for some applications that are themselves protocols, 
such as telnet and ftp, so that they use the same ports in all implementations. 
These reserved ports are called the “well-known” ports and they range from 0 to 
1023. The rest of them (from 1024 to 65535) are not assigned to any particular 
usage, and can be used by common programs. 
 
From the IP datagram representation it can be seen that the addresses used to 
identify both sender and receiver, have 32 bits. It’s well beyond the scope of this 
work to explain how these addresses are formed; for our purpose of briefing 
about IP, let’s say these 32 bits are grouped in 4 sub-groups of 8 bits, each of 
them being able to be represented by a decimal number between 0 and 255, or 
what’s the same, by two hexadecimal digits, from 00 to FF. IP addresses have a 
“network” part and a “host” part, and depending on how many 8-bit sub-groups 
are considered in the network part (1,2 or 3) it’s said the address belongs to a 
class (A, B or C) or another. 
 
 
2.2.2) TCP and the sliding window concept 
Let’s focus a little bit more on TCP, as our exploit bases its action on the basic 
characteristics of this protocol.  
As it was mentioned above, TCP assigns a sequence number to each segment 
transmitted from the sender. This number is used to acknowledge reception 
from the receiver in a particular way; here appears the concept of the sliding 
window. 
This is a simple concept: a certain number of segments (the window size) can 
be transmitted all in a row without having to wait for them to be acknowledged 
from the receiver, something like a round of segments. The receiver sends back 
to the sender an acknowledgment (from now on we’ll use the TCP naming for it, 
ACK) referring to the segment following the last it received in-sequence, kind of 
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a “sofarsogood” signal, and then the sender “slides” its window forward, up to 
the segment referred in the last ACK; again, the “sofarsogood” concept.  
 
Let’s try to clarify this “window” idea with a simplified example: let’s say the 
window size is 10 segments; all of the ten first segments are transmitted, but 
segment #6 doesn’t make its way up to the receiver; then, the last ACK the 
receiver sends back refers to segment #6, although it has already received 
segments #7, #8, #9 and #10. Why? Because segment #5 was the last received 
in the complete sequence, and #6 is the next expected. The sender shifts the 
window up to the segment #6 reference, and after a certain time if it doesn’t 
receive the ACK telling segment #6 has arrived, it retransmits it, and then this 
time the destination receives it, sending back an ACK for #11. Why for #11 if the 
last properly received segment was #6? Shouldn’t it be referred to #7? No, 
because the ACK is sent with reference to the segment following the last one 
received in-sequence, and we said the receiver had already received 
segments #7, #8, #9 and #10, so #10 is the last in the complete sequence. 
Once this happens, the sender shifts its window to segment #11 and goes on 
with this same process. 
 
Actually, TCP implements the window size concept in terms of byte numbers, 
and not segment numbers as shown in the above example, but the idea is the 
same.  
The fact that the ACK refers to the sequence number of the first byte of the 
segment expected next by the receiver is called expectational acknowledgment. 
 
When a TCP dialog is established, each side defines independently from the 
other the window size (in bytes) to be used, and it can vary along time; every 
time one of the partners ACKs a certain segment, it includes information about 
the window size its working with, this is, how many bytes its ready to receive 
without choking. 
 
From the point of view of the partner sending information, the window size is 
how many bytes it can send to the receiver without having to wait for ACKs. 
Once the sender has sent these many bytes, it has to wait at least for an ACK 
before it can go on sending more segments. From this it can be deduced that a 
window size of 1 would force to have each transmitted byte to be 
ACKnowledged by the receiver, something highly inefficient. So, a larger 
window size improves performance, because it allows more bytes to be 
transmitted without having to wait for a confirmation. 
 
The next figure (extracted from the book “Cisco Networking Essentials, Vol. 1, 
Cisco Press, ISBN 1-587-13004-1) clearly shows what happens when the 
window size is 1 and when it’s 3, as an example of how performance is affected 
by this parameter.  
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Figure #4 – differences when window size is 1 and 3 

 
Of course for practical purposes neither 1 nor 3 are used as real window sizes. 
In real life we must think of window sizes for example of 16, 32 and up to 64 
Kbytes (any other arbitrary values between 1 and 65535 bytes can be used 
too). The example with 1 and 3 only tries to show the difference in performance 
that results from using a wider window instead of a narrow one. A wider window 
provides a better performance, allowing for a faster data transfer.  
 
2.2.3) The weakness in TCP, or why the RST exploit works 
In the TCP functional specification of Sept. 1981 (RFC-793) is clearly stated 
that given an established connection, if a packet with the RST or the URG bits 
set is received, it must be processed immediately even if it’s out of sequence, 
only requiring to verify that the sequence number falls within the window range. 
 
Now, consider these two basic elements:  

a) the window size field in the TCP packet has 16 bits, so a maximum size 
of 216-1 (or 65,535) can be specified. This would yield for maximum 
performance with traditional TCP packets (later we’ll see there’s an 
extension described in RFC-1323 which leads to an even worse case for 
attack purposes). 

b) the sequence number field in the TCP packet has 32 bits, so packets can 
be numbered between 1 and 232-1 (or 4,294,967,295). 

 
Then, let’s do some simple math: how many adjacent groups of consecutive 
65,535 numbers are there between 1 and 4,294,967,295?  This is the same as 
calculating how many times [216-1] fits within [232-1]: [232-1] / [216-1] = [216+1], or 
65,537. So, independently of which the starting number is for any packet 
sequence, it would only take 65,537 guesses in the worst case (for the guesser) 
to find a number in the same 64k group as the starting number. 
In this way, someone trying to drop a TCP link between two partners with a 
window size of 64k, assuming that s/he knows the IP addresses and TCP ports 
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involved, would have to try at most with 65,537 spoofed packets, until s/he hits 
within the established range and drops the connection. 
Now some other elements must be considered; to begin with something, the 
attacker needs to produce the packets and needs to inject them in the carrying 
media, whatever it is, so it’s important what bandwidth the attacker has, in order 
to determine how long it would take him/her to drop a link.  
Another thing is the attacker’s packet size: s/he only needs to send a RST 
message, so the needed TCP segment can be conformed in only 20 bytes, 
according to Figure #2. These 20 bytes are the payload of the IP datagram to 
be sent, which in turn can be conformed with another 20 bytes (see Figure #3); 
so as a result, the attacker needs to transmit 40 bytes (or 320 bits) in each and 
every try. 
 
Then, depending on the bandwidth the attacker counts with, it would take 
him/her more or less time to drop a connection. The next table shows some 
estimations for the worst case for the attacker depending on the available 
bandwidth, this is, having to send 65,537 40-byte packets (or 2,621,480 bytes) 
to drop a link. 
Numbers in the third column assume and ideal line running at a theoretical 
transfer speed, something never achieved in real life; but let’s be realistic and 
say we can count on no more than a 60% of the nominal transfer rate; in this 
case we obtain the numbers shown in the fourth column. 
 
bandwidth in bits/sec bandwidth in 

bytes/sec 
theoretical time to 
drop link in secs 

realistic time to 
drop link in secs 

56K 7,168 366 610 
256K 32,768 80 133 
1M 131,072 20 33 

10M 1,310,720 2 3 
 
This shows an alarming result; someone from his/her home, with no more than 
a 56K dialup modem could drop a link (with a 64k TCP window size) between 
some two partners in the Internet in about ¡10 minutes! Of course this time 
decreases when bandwidth increases. In case of a 10M link, no more than 3 
seconds are necessary to drop such a link. So, exposure is great. 
Now, the previous calculations assume something very strong; the attacker 
knows a lot: both source and destination IP addresses, the destination TCP port 
number, and the source TCP port number.  
It can be considered that the first three elements are easily known, given the 
attacked link is established between two known-to-the-attacker devices, and the 
one acting as the server side is listening on a somehow ascertainable port, 
given it provides a standard service known by the attacker. 
Then, the remaining problem for the attacker is the source TCP port number, 
given it’s usually determined at random.  
At first, it can be thought that the guessing space is 216 possible port numbers, 
given the port number item has 16 bits in the TCP segment.  
But this is not so. To begin, the first 1024 port numbers are the well-known ports 
and are reserved for standard applications, or well-known services; they’re 
described in RFC-1700 and they’re controlled and assigned by the IANA 
(Internet Assigned Numbers Authority). Really, numbers below 255 are for 
public applications and numbers between 255 and 1023 are assigned to 
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companies for commercial applications (usually on most systems these well-
known ports are only used by system processes or by programs run under 
privileged accounts). 
Port numbers 1024 and above, the high-numbered ports, are unregulated. But 
there are some considerations; the IANA classified these ports in two groups: 
 

- from 1024 to 49151: they’re called registered ports, and the IANA 
maintains a list of services using ports in this range to minimize 
conflicting uses. Developers of TCP/UDP services can select a specific 
number in this range to be registered with IANA. 

- from 49152 to 65535: are called dynamic ports or private ports or 
ephemeral ports. These ports are not managed by any organization and 
have no usage restrictions. These ephemeral ports are temporary ports 
assigned by TCP implementations every time a client program tries to 
connect to a server, and they’re assigned from the designated range of 
ports for this purpose.  When the connection terminates, the port is 
available for reuse, although most IP stacks won't reuse that port number 
until the entire pool of ephemeral ports have been used.  This way, if the 
same client program reconnects or another client program starts a 
conversation with another server, in any case it will be assigned a 
different ephemeral port number for the client side of the new connection. 

  
So, according to IANA recommendations, TCP implementations should not 
assign short-lived ports from the range 1024 to 49151, given these are the 
registered ports, as well as they should reserve the well-known ports for their 
standard usage. This reduces enormously the chances a TCP implementation 
has for assigning these short-lived port numbers, and this is what the 
ephemeral ports are for, to be assigned for a short-lived conversation, such as 
those established between a client and a server. 
This leaves us with the range from 49152 to 65535 or 16,383 possible port 
numbers to choose from.  
It could be thought this is quite a nice quantity of possible port numbers from 
where to guess the right one, when trying to spoof a packet into an established 
conversation. But, through observational analysis, or by searching in providers 
documentation, it can be known which is the initial port number selection an OS 
makes, and the step it uses for obtaining the next selections. This way, the 
guessing task is greatly improved, reducing the time needed to find out the right 
port number, the one that will make the attacker succeed in spoofing a packet. 
To make things even worse for defenders and better for attackers, some TCP 
implementations differ from the IANA recommedations, and assign the 
ephemeral ports from other numeric ranges, reducing even more the universe 
of possibilities, such as in the case of the widely spread Microsoft Windows in 
its several versions, which assigns these ports from the range 1024 to 5000, a 
universe of only 3,976 numbers to choose from. 
A document written by Mike Gleason, contains good information about the 
ephemeral ports range assignment in some different TCP implementations. 
Moreover, information about this from some OSs development companies can 
be obtained. 
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Of particular interest is the fact that none of these two attacks has an easily 
detectable “signature”, something recognizable enough as to identify them by a 
controlling program or device, such as a firewall or an intrusion detector.  
The wireless vulnerability exploit could be prevented implementing additional 
controls, with software like AiroPeek (www.wildpackets.com) which could raise 
an alarm in case of detecting a rogue device accessing the network. 
The the TCP Reset attack has as its only signature the fact of a sequence 
number out-of-sequence in the segment. To watch this out is the only possible 
thing to do in order to avoid this attack. 
 
 
3) AFFECTED PLATFORMS and ENVIRONMENTS
 
According to product vendor information provided by vendors themselves, 
among the most well-known brands and products affected by the described 
vulnerability, we can find the following: 
 

• Cisco IOS all versions 
• Microsoft Windows all versions 
• Linux all versions 
• Nokia IPSO all versions 
• CheckPoint FireWall-1 all versions prior to R55 HFA-03 
• Hewlett-Packard HP-UX all versions 
• Cray UNICOS (including mk and mp) systems all versions 
• ISS Proventia M Series 1.5 

 
Clearly, the impact it has over the users’ community is huge, given the most 
widely used products are vulnerable. Of course, these are not the only affected 
brands and products. As it has already been largely explained, any TCP stack 
that follows the RFC-793 specification and loosely implements the RST bit 
handling, is exposed. Among these, many Lucent, Juniper, Nortel, Alcatel, 
Fujitsu and Hitachi products are also affected, just to name a few well-known 
brands more. 
Of course there are some exceptions, such as the Nortel Contivity Family and 
Nortel BayRS Router Family products, on which the TCP implementation 
requires an exact sequence number match to reset the TCP connection from its 
peer, thus frustrating the guessing game on which it’s based this exploit. 
Some applications that could suffer a higher impact from this kind of attacks are 
those relying on long lived connections. This is the case of some protocols 
(H.225 and H.245) used for voice and video signaling, which are established to 
negotiate parameters for content transfer, and they persist during the whole call, 
which is terminated if the signaling session is broken. 
Another affected application is network storage; in this case, depending on the 
characteristics of the implementation, the impact could be that users would 
notice accessing a device slower than usual, or in a worse case, to lose contact 
with the device. 
Some opinions are that any TCP connection during more than one minute is 
potentially exposed to this kind of attack. On the opposite, many vendors, 
although being some of their products vulnerable to this exploit, consider that 
the conditions needed for a successful attack require access levels to the 
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network not usually available in normal environments. Although this is a valid 
and respectable point of view, a situation like the one described in this work is 
not necessarily such a special situation as not to consider it normal, a wired or 
wireless deployment where members of a group access common resources, 
and where some of the members might have an interest in denying other 
members access to the shared resources without getting exposed and without 
rising suspicions about their acts. 
Now, for the effects of the case we’re trying to describe here in this paper, the 
data-providing service is running on a server with SuSE Linux 8.0.  
It’s listening at port 10000, and it’s placed behind a firewall, a CheckPoint FW-1 
NG AI FP3 with VPN-1 over a NOKIA IP-330 device, running 5 zones and doing 
both dynamic and static NAT. 
Given the characteristics of the studied vulnerability and exploit, the details of 
each of the different involved points are quite irrelevant, because any generic 
environment where the TCP stack implementation allows for a non-strict 
sequence numbering for RST and URG packets will do. Particularly, the two 
items involved in the case we’re describing, the data-providing server and the 
firewall, both are running TCP implementations sensitive to this kind of attack. 
For purposes of clearly describing the environment, it must be said that the 
wireless central and remote points are equipped with ORiNOCO RG-1100 
Broadband Gateways, from Agere Systems. These pieces of equipment are 
highly versatile and they provide several functions depending on the chosen 
firmware configuration. In this case it’s being used in the central place as an AP 
(or Access Point) and in the remote places as an EC (or Ethernet Converter), 
providing a physical interface between the 802.11b wireless and the wired 
worlds.  
The following diagram describes the network deployment at HACME: 
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In this deployment there are 5 zones clearly delimited: 

• the data vendors wireless LAN, with addresses in the range 10.11.0.x/24 
• the brokers wireless LAN, with addresses in the range 10.12.0.x/24 
• the internal servers segment, with addresses in the range 192.168.10.x/24 
• the internal users segment, with addresses in the range 192.168.1.x/24 
• the Internet 

 
In this specific case we’ll describe, both source and target networks are the 
same network, because the attacker is inside the trusted zone, within the 
security perimeter. In the other possible case, the attacker could be working 
from a stand-alone rogue system, at a nearby office or even a parked car, and 
then breaking into the trusted zone.  
 
The server running the data-providing service has the IP address 192.168.10.5, 
which is NATed by the firewall for the data vendors WLAN as 10.11.0.5, while 
the firewall port connecting with this WLAN has the IP 10.11.0.1, and it’s used 
by the machines in the WLAN as the default gateway. 
At the firewall, there are rules allowing the machines in the data vendors WLAN 
to access only the corresponding server with traffic for port 10000, and they 
look something like this: 
 

source destination service action audit 
10.11.0.x 10.11.0.5 10000 accept log 
10.11.0.x 10.11.0.5 any drop log 

 
 
Given the firewall processes its rules in a top-down mode, if it receives traffic 
from the data vendors segment, addressed to the data-providing server at 
10.11.0.5 and destination port 10000, it will allow the communication to go 
ahead, because of the first rule, but if it receives from the same segment an 
attempt to reach the same server with some other service, such as 23 (telnet) or 
80 (http), the firewall will drop that traffic, because of the second rule. 
 
It’s been said before that HACME has decided to manage authorizations to 
access the data-providing server with an access list based on the situation of 
each data vendor.  
For this purpose, a group has been defined with the name ”allwd_vendors”, 
and it’s composed of the addresses of those data vendors with clearance to 
access the information provided by the service. In case a data vendor doesn’t 
pay the monthly fees timely or something, he’s removed from this group and 
he’s automatically banned from accessing the server; for this to work, the 
access rules in the firewall are these:  
 

source destination service action audit 
allwd_vendors 10.11.0.5 10000 accept log 

10.11.0.x 10.11.0.5 any drop log 
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Now, any traffic coming addressed to the server at 10.11.0.5 would be dropped, 
no matter the destination port, if the source IP address is not included in the 
“allwd_vendors” group. 
For NAT to work as intended, the following translation rules were added to the 
firewall: 
 

original 
source 

original 
destination 

original 
service 

translated 
source 

translated 
destination 

translated
service 

allwd_vendors 10.11.0.5 10000 original 192.168.10.5 original 

192.168.10.5 allwd_vendors any 10.11.0.5 original original 

 
This way, HACME people ensured that nobody outside the ”allwd_vendors” 
group could reach the data-providing server, only allowing traffic to the specific 
service listening at port 10000, and protecting it from being accessed directly by 
hiding it behind a static NAT provided by the firewall. 
 
 
4) STAGES OF THE ATTACK
 
In a very active stocks market with highly volatile instruments, almost-instant 
information is vital for making a difference, and this may mean big money, 
earned or lost, depending on when the information is known. 
In this case we’re describing, the attacker was one data vendor who was trying 
to take advantage over all the big data vendors, by delaying their data reception 
and gaining a better position in the data market, by providing his customers with 
faster information.  
Given the objective was clearly predefined in this case, and there was no need 
for a target selection, this attack had basically two stages, starting with the 
information gathering phase.  
For his purposes, the attacking vendor hired a skillful hacker and explained him 
his idea, showing him the technical deployment used to access the information, 
no more than a desktop computer with a NIC connected to the wireless network 
through an antenna. This computer was provided by the vendor, but the 
software for collecting data was provided by HACME, as well as its 
configuration, about IP address (10.11.0.205), mask (255.255.255.0) and 
default gateway (10.11.0.1). 
 
This information was very valuable for the hacker in this story, it was almost all 
he needed to know to commit his bad purposes, because what he thought 
about, was making the HACME server to drop the connections with all other 
vendors, by sending it faked TCP packets with the RST flag on, as if they were 
being sent from the other vendors machines. He knew the addressing space for 
these machines, the only other things he needed were to identify the server 
address, as well as some specific data vendors addresses.  
 
To find this out, in the reconnaissance stage of the attack, he connected the 
UTP patchcord coming from the antenna, the one connecting the data-collecting 
computer and a third one connecting his intruder laptop, all of the three to a 
simple hub. This way, he was able to sniff all the traffic from his rogue 
computer, in which he set the NIC into promiscuous mode, this is, with no IP 
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assigned, not reporting about its presence to the rest of the network, and 
“reading” all packets arriving to the interface. This worked fine for what he was 
up to, because the transmissions going from the central point to the remote 
ones were kind of broadcasted through the omnidirectional antenna at the 
central point, providing a behavior similar to that of a hubbed network segment, 
where all NICs connected to the media receive all the traffic. He wasn’t able to 
receive the packets going from the other remote clients to the central point, but 
anyway he didn’t need them, it was enough for him to see just the server half of 
the conversations to obtain the information he was looking for. 
 

 
 
For his rogue sniffing purposes he used Ethereal, a well known useful software 
crafted to read the contents of packets arriving to a NIC, that can be 
downloaded for free from the Internet from the web site www.ethereal.com. 
 
This way and after a short analysis, he was able to discover that the HACME 
server address was 10.11.0.5, and that the port listening to the vendors 
requests was 10000. 
 
Moreover, and since he was “inside” the WEP-encryped network and traffic had 
no more encryption than that, everything was in plaintext for him, releasing him 
from the extra workload of port-guessing for the client side for every connection. 
These connections were usually kept all day long, so reading traffic for a while 
every morning provided our hacker with all the information he needed to start 
the attack.  He developed a simple program to read the traffic log from Ethereal 
in order to extract from it all the addresses, local ports and current sequence 
numbers of the other vendors.  
 
But he needed to know the specific IPs of certain data vendors, because the 
idea wasn’t to bring them all down but just a few big ones, and a couple or two 
of smaller ones, just to disguise the move. 
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Then, one day a young woman with a very charming and delightful voice called 
on the phone to the communications section of the IT department at HACME, 
telling she was a communications technician from a company that had been 
hired by ROUTERS and by many other data vendors, that she was doing a 
review of the networks at each of the organizations, and that she would be more 
than thankful if the kind gentleman that was on the line could tell her what the IP 
addresses of the client machines were for the several data-vendors that had 
hired her company, so that she could complete her work, which by the way was 
delayed, and her boss, a very disgusting guy, was about to reprehend her for 
that. Gary, the HACME guy at the phone, was more than eager to help the cute 
calling girl and to avoid her having to be observed for not finishing her work in 
time; immediately he checked in the system documentation and told her all the 
IP addresses she was needing, and he even asked her not to hesitate in 
contacting him again in case she needed something else. She thanked him very 
much, and told him perhaps some day they could meet for lunch or just to have 
a cup of coffee, an excuse to talk for a while and personally thank him for his 
kindness.  
 
When they hung up, Gary was walking up in the clouds and the hacker's 
girlfriend had all the information the hacker needed to finish his attack. 
Then he fed all these data to a script that used another program he didn’t even 
need to write it himself, he just downloaded it from the Internet from the site 
www.iamaphex.net, which allowed him to “fire” rounds of fake RST packets to 
the HACME server, as if sent from the other vendors’ machines (the Delphi 
code for this piece of logic is shown in the Extras Section of this paper). 
 
This way, the implementation or exploit phase of the attack was quite simple to 
deploy, its physical needs being just a hub and an additional computer.  
Then, every time the attack was to be launched, the program spent a while 
collecting data about the already established connections, specifically 
originating ports and sequence numbers, and then produced packets with the IP 
addresses of the other vendors as origin, the HACME server IP address as 
destination, the recently found out port number (for each case) as origin, 10000 
as destination port, and a sequence number within the sliding window in use.  
And a plus for the hacker, he had no access to keep nor tracks to cover; it could 
be said that this attack is a “hit-and-run” one; once committed, there’s no 
evidence left at all, and it can be repeated as many times as wanted, as long as  
the attacked target doesn’t change something to avoid it. 
 
 
5) THE INCIDENT HANDLING PROCESS
 
At HACME they had implemented a basic security schema, and they had no 
incident handling team, IT security was handled just as another more thing 
supported by the IT department; as PREVENTION measures they had 
installed a firewall properly configured watching all the traffic coming to and 
going from their network. The wireless network was encrypted with WEP and 
the brokers segment was protected by a IPSec VPN, which was not the case for 
the data-vendors segment.  
 

 
GIAC-GCIH v.3 – Hugo Köncke  - 20 - 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

All this has already been described in the previous section, as well as the attack 
process. Of course, this attack cycle could be repeated as many times as 
requested during the same day, and given the HACME-provided client program 
running at the vendors sites was programmed to automatically re-establish the 
connection after waiting for 30 seconds, this ensured that repeating the attack 
every 2 or 3 minutes during peak activity hours was a very effective way to 
erode the other vendors’ services to their clients. 
And all this was happening unnoticed!! Nobody at HACME was watching the 
packets arriving to the server, as well as nobody was watching the log records 
of the client program at the other vendors’ sites nor at the server itself. Since it 
all was an automatic process, both the data collection and the reset and 
reconnections, everything kept running smoothly for a long time. 
 
Then, as time went by, some data vendors started receiving claims from some 
of their customers, who supposedly had lost business opportunities because 
they had got delayed information about stock prices and then they late-reacted 
in consequence. This at first was taken by the vendors just as no more than 
isolated situations, where perhaps the client’s perception wasn’t as precise as 
he alleged.  
Moreover, competing vendors don’t usually talk to each other about the 
problems they might be having with their own customers. So, each situation 
was kept unknown to all the rest, and each vendor tried to cope with it as better 
as possible, until one day the bomb exploded, on the morning of the last Friday 
of May, the 28. PARALLEL Funds, a very important client of ROUTERS Inc., 
one of the biggest data vendors in the game, decided to immediately cancel 
their contract. The client had already complained several times about losing 
some good deals for receiving delayed information, until he waited no more. 
ROUTERS had done nothing when he had told them about this, and this time 
he had lost big money, very big money. “To hell with ROUTERS!!” - the 
managers at PARALLEL said.  
Of course the immediate reaction at ROUTERS was to call HACME and ask 
them for help, they had lost one of their biggest accounts.  
At first HACME people didn’t know what to do, because the situation was 
catching them by surprise. Then, on that same day, May 28, they decided to 
start an investigation and the security administrator (who wore many other hats 
as well, depending on the needs) and his staff were involved in it. 
 
Faced with this problem, the following Monday, May 31, they started by 
collecting a day-long log of the dialog between the server and the ROUTERS 
client machine, and then when they analysed it they found something very 
funny: the connection had been restarted almost 50 times during that day !!   
The client software running at the vendors’ sites was programmed so that in 
case of an interruption in the communication, it waited 30 seconds before trying 
again to contact the server, so 50 restarts meant 50 times in which information 
was received by ROUTERS with a 30-second delay. 
Now, how could that be possible? 
At first, the initial idea was there was a defective connection somewhere in the 
network path between ROUTERS offices and HACME headquarters. Just to 
decide where to begin from, HACME security people decided to collect the 
activity logs of the dialogs between the server and all the vendors’ client 
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machines, and then two more days went by. Then they saw almost all of the 
clients were restarting the connection many times a day, and the conclusion 
was immediate, there was no doubt about it: the problem was in some piece of 
equipment at HACME side, making the clients lose the connection at random. 
Or it could be some kind of interference, after all it was wireless. 
As it was supposed to be a single point that was failing, on June 3 (Thursday) 
they switched to the backup cable line between the firewall and switch at the 
roof (the one that concentrated the APs serving the connections from the 
different antennas linking to the vendors). They tested the situation again but 
nothing changed, vendors’ machines kept on restarting connections several 
times a day. Then, the next step was the switch itself; they replaced it on June 4 
(Friday) early in the morning; they tested again along that day, and nothing new 
happened. The last chance was the NIC at the firewall port where the link was 
connected to, but for this, all the system had to go down. They managed to 
coordinate the replacement for that weekend (June 5-6), then turned all the 
network down and changed the suspected offending NIC. The following 
Monday, June 7, the activity log was closely watched, and connections kept on 
restarting again and again. Things were beginning to turn weird. 
Then, they decided to have measured the radio signals between two known 
apparently problematic points and to look for some kind of random interference 
that could be somehow making the links go down; the test was performed 
between the HACME and the ROUTERS points on June 10 (Thursday), but 
again nothing was found. 
Meanwhile time kept on ticking; almost two weeks had gone by, the links went 
on getting reset and the situation wasn’t easy at all for the affected vendors, 
having to explain their clients about a problem they couldn’t understand and 
much less explain, and in many cases they even applied discounts up to a 50% 
to their monthly client fees. Vendors were losing image and money, vendors’ 
clients were losing money, and HACME people were losing calmness.  
On the evening of June 11 (Friday), almost in despair browsing the server 
activity logs, Ron, one of the guys at the HACME security department observed 
that all restarts were following what seemed to be a certain sequence pattern: 
every time vendor A restarted the communication, a few seconds later, vendor 
B restarted it too, and then C and D and some others, almost always in the 
same order, and they were always the same vendors. He called up his boss 
immediately, and he rushed back to the office and summoned all his staff for a 
“war council” next Saturday morning, June 12.  
How could this have gone unnoticed until then? The explanation was there was 
too much activity; if the trace facility was set on at the server for a vendor or 
group of vendors, it recorded all and every action generated by their client 
machines. So, finding and correlating specific actions was not easy by hand, 
and there was no tool for analysing the log records. 
After all what had been tried with no results, the problem was obviously hidden 
somewhere else and this finding could lead to something. It was decided to 
carefully study the log and then it was verified things were as suspected: 
definitely the restarts were following a sequence, this meaning the connection 
drops followed a sequence too. That wasn’t at random, someone was 
conducting the show, and it was programmed. 
It was observed that not all vendors were being affected, some of them were 
not having their connections restarted but they all were small ones, those with 
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an accumulated market share of no more than 15 to 20%. This meant someone 
was specifically attacking the bigger data vendors, perhaps trying to make them 
lose image and clients, who perhaps would turn to other options to get better 
information, and even more if these other options were cheaper. 
Somehow HACME had to stop this, but first they needed to know exactly what 
was happening, this is, they had to IDENTIFY what was going on.  
They decided to start studying the traffic itself arriving at the server, and to 
make this somehow easier, they focused their aim in the packets coming from 
the client machine at ROUTERS. 
For this, HACME people decided to use Ethereal, the same software the hacker 
had used to make his initial traffic study before crafting the attack process. So, 
next Monday morning (June 14) they connected an additional computer with 
Windows XP and Ethereal to the same network segment the server was in, 
although they could have installed the packet sniffer over Linux in the same 
server, but for some reason someone suggested not to use the affected 
machine for this purpose.  
That same day they started harvesting packets coming from the ROUTERS 
client to the server, so the origin IP address was 10.11.0.117 and the 
destination IP address was 10.11.0.5. Curiously, some of these packets looked 
like the next sample when analysed with Ethereal: 
 
Frame 4703 (54 bytes on wire, 54 bytes captured) 
Ethernet II, Src: 00:09:6b:d5:f5:53, Dst: 00:a0:8e:1c:a6:20 
Internet Protocol, Src Addr: 10.11.0.117 (10.11.0.117), Dst Addr: 10.11.0.5 (10.11.0.5) 
    Version: 4 
    Header length: 20 bytes 
    Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00) 
    Total Length: 40 
    Identification: 0x64dc (25820) 
    Flags: 0x00 
    Fragment offset: 0 
    Time to live: 128 
    Protocol: TCP (0x06) 
    Header checksum: 0xc162 (correct) 
    Source: 10.11.0.117 (10.11.0.117) 
    Destination: 10.11.0.5 (10.11.0.5) 
Transmission Control Protocol, Src Port: 3221 (3221), Dst Port: 10000 (10000), Seq: 74496000, Ack: 
74496000, Len: 0 
    Source port: 3221 (3221) 
    Destination port: 10000 (10000) 
    Sequence number: 74496000 
    Acknowledgement number: 74496000 
    Header length: 20 bytes 
    Flags: 0x0014 (RST, ACK) 
        0... .... = Congestion Window Reduced (CWR): Not set 
        .0.. .... = ECN-Echo: Not set 
        ..0. .... = Urgent: Not set 
        ...1 .... = Acknowledgment: Set 
        .... 0... = Push: Not set 
        .... .1.. = Reset: Set 
        .... ..0. = Syn: Not set 
        .... ...0 = Fin: Not set 
    Window size: 32830 
    Checksum: 0x0204 (correct) 
    SEQ/ACK analysis 
        TCP Analysis Flags 
            A segment before this frame was lost 
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By watching these packets they found something very interesting: they were 
arriving at the server from the ROUTERS client machine and they had the RST 
bit on !!  HACME people were able to correlate them with the reconnections, 
happening always 30 seconds after each RST packet.  At first they thought 
somehow someone had managed to infect the client machines so that a RST 
packet was sent every certain time, but then they realized the reconections (and 
obviously the RST packets too) were synchronized and always following the 
same source address sequence pattern, so the origin had to be the same for all 
of them: someone was faking these RST packets, making them seem as if 
coming from each of the client machines so that the server received them as 
part of the ongoing conversations. 
They needed a solution, but they also needed to CONTAIN the attack 
somehow while the solution wasn’t there.  
Based on the premise that someone had somehow found out the IP addresses 
of the affected data vendors and that the attack was mounted using these IP 
addresses and the server IP address, HACME people decided to try a 
containment measure, so they defined another NAT address for the server, and 
changed the client program configuration at the ROUTERS client machine so 
that it “talked” to a different server; this new NAT address for the server was 
10.11.0.6, and the ROUTERS client IP address (10.11.0.117) was taken from 
the ”allwd_vendors“ group, just in case. 
Then, the rules at the firewall were changed and looked like this: 
 

Source destination service action audit 
10.11.0.117 10.11.0.6 10000 accept log 

allwd_vendors 10.11.0.5 10000 accept log 

10.11.0.x 10.11.0.5 
10.11.0.6 any Drop log 

 
This way, traffic to port 10000 coming from the ROUTERS client addressed to 
the new server at 10.11.0.6 was accepted, traffic coming from the ROUTERS 
client addressed to the original server was to be dropped, and all the rest wasn’t 
changed. 
 
For NAT to work, the translation rules were changed like this: 
 

original 
source 

original 
destination 

original 
service 

translated 
source 

translated 
destination 

translated
Service 

10.11.0.117 10.11.0.6 10000 original 192.168.10.5 Original 

192.168.10.5 10.11.0.117 any 10.11.0.6 original Original 

allwd_vendors 10.11.0.5 10000 original 192.168.10.5 Original 

192.168.10.5 allwd_vendors any 10.11.0.5 original Original 

 
These translation rules allowed the ROUTERS client to “talk” to the server at 
HACME though a different IP address from the one the hacker knew. By 
controlling and studying during a couple of days the activity log at the server, 
they knew they were on the right way; ROUTERS communication was started 
only once a day, while the firewall started to drop packets apparently coming 
from the ROUTERS client but addressed to the original server NAT address. 
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This proved HACME suspicions: somewhere in the network there was a 
program running that was “broadcasting” RST faked packets based on the 
original IP addressing schema. 
They applied the same solution to all the other affected vendors, except to a 
couple of small ones, suspecting there could be some kind of collusion between 
smaller vendors against bigger ones, and that these two smaller vendors could 
be some kind of decoy.  
 
So, by the end of Monday, June 14, they had contained the problem. They 
created another group at the firewall, “clean_vendors” they named it, they 
included in it all the big affected vendors, and they altered the firewall rules to 
make it work. 
 

source destination service action audit 
clean_vendors 10.11.0.6 10000 accept log 
allwd_vendors 10.11.0.5 10000 accept log 

10.11.0.x 10.11.0.5 
10.11.0.6 any drop log 

 
For the NAT translation, they altered the rules like this: 
 

original 
source 

original 
Destination 

original 
service 

translated 
source 

translated 
destination 

translated
Service 

clean_vendors 10.11.0.6 10000 original 192.168.10.5 Original 

192.168.10.5 clean_vendors any 10.11.0.6 original Original 

allwd_vendors 10.11.0.5 10000 original 192.168.10.5 Original 

192.168.10.5 allwd_vendors any 10.11.0.5 original Original 

 
 
But they only had contained the situation; perhaps it was only a matter of time 
before the attacker realized what was going on, and somehow managed to find 
out how to go on making communications go down at will. 
They didn’t know where the attack was being launched from, because there 
were many vendors not being affected, so it could be coming from any of them, 
or even from many of them in a kind of DDoS, a distributed denial of service. 
 
Among the confusion of the situation, Gary remembered the sweet girl that one 
day a long time ago had called him up, seizing the information of the IP 
addresses of several vendors, among them the ROUTERS one. He tried to 
remember what her name was, but he couldn’t. Had she told him it after all? He 
didn’t remember. Neither she had ever called him back again. Everyone 
realized that Gary had been duped, they had “social-engineered” him. 
At HACME they realized they had no incriminating evidences at all about 
anything as to prove someone was specifically involved in the plot, nothing that 
could lead to a prosecution and a service cancellation. So, they decided there 
was no point in losing time and effort in trying to find out who was the offending 
vendor.  
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The solution was not finding someone to blame (although HACME would have 
liked this), but implementing better controls that somehow prevented this kind of 
attack. After finding out a little bit about it, they learnt that many equipment and 
software providers were releasing versions of their products which avoided 
these situations. Particularly, they read from CheckPoint the following notice 
(this is a verbatim copy of the alert published in CheckPoint web site and users 
lists): 
 
TCP RFC Alert  
April 20, 2004 
 
Overview: 
A recently published NISCC advisory (236929/TCP) describes a potential RST attack 
on any operating system or software that has implemented TCP based on RFC 793 
and RFC 1323. While the practical application of this vulnerability is very remote 
(because an attacker must know both IP addresses of a valid, currently connected pair 
of computers), if exploited, this vulnerability could allow an attacker to create a Denial 
of Service condition against existing TCP connections, resulting in premature session 
termination. For more information about the vulnerability, see the NISCC advisory. 
 
Check Point VPN-1/FireWall-1 can protect your entire network against this attack by 
enforcing that RST packet sequence numbers exactly match the expected sequence 
within the TCP connection window. 
 
Solution: 
By upgrading to Check Point VPN-1/FireWall-1 R55 HFA-03 or newer, customers are 
able to protect their entire network from this vulnerability; thus providing additional time 
and security until other systems and software can be patched. 
Customers using older versions of NG or NG with Application Intelligence should apply 
NG FP3 HFA-325 or R54 HFA-410. 
 
They laughed at the observation of “this vulnerability is very remote”, because 
they happened to be in that marginal percentage affected by the vulnerability, in 
their case all the conditions were given for the attacker to succeed. Worst of all 
was that they had received the notice about the upgrade, it was just they didn’t 
pay attention, nobody was in charge of upgrades, so they had to pay the price. 
 
As an ERADICATION measure, on June 15 (Tuesday) HACME upgraded 
the firewall software from NG AI FP3 to R55 HFA-03 and more recently to the 
last R55 HFA-08, which already solved this vulnerability by controlling the 
sequence number of all the arriving packets, even the RST ones. 
These new implementations raise the bar too much for a Reset attack to be 
successful, because the very exact next sequence number to be sent should be 
guessed by the attacker, otherwise the firewall will drop the faked packet 
because of an “out-of-sequence” condition.  
Moreover, they decided to implement VPNs between the desktops at the data 
vendors offices and the HACME site, just like they did from the beginning with 
brokers. For this, on the last two weeks of June they installed the newest 
CheckPoint VPN software client available at the moment (CheckPoint 
SecuRemote NG AI R56) at the remote machines and they set the rules at the 
firewall to only accept encrypted communications with these remote users. 
Recently they upgraded it to its last release, Build 311. 
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An additional control they might have adopted was to activate the MAC 
addresses filtering at the involved access points. This is a tedious thing to 
implement, and it doesn’t scale well. In the specific case of the products being 
used by HACME (the ORiNOCO RG-1100), they should specify one by one 
each and every communication path allowed to be established through each 
AP, giving the MAC addresses of the two connecting points, this is, for points A 
and B, both paths, AB and BA should be specified if two-way traffic is to be 
established, as in any TCP link. 
Moreover, wireless MAC addresses can be spoofed so this is not a safe 
solution. 
 
For real, at HACME they didn’t know where the attack had been coming from, 
the chances were too vast to find. It could have been someone from inside the 
encrypted WLAN, a kind of “insider”, as it really was, or it could have been 
someone from outside the protected environment, an outsider with the skills and 
means enough as to break the weak WEP algorithm and find out how to 
surpass the encryption as to fake traffic as if coming from a site inside the 
protected network; for a practical example of this, it can be consulted the paper 
“War Driving Exploits on Wireless Systems” by George S. Smith, dated August  
2003 (http://www.giac.org/practical/GCIH/George_Smith_GCIH.pdf). 
Because of this, HACME people have started thinking about the convenience of 
going on working with the 802.11b technology or not, although they solved this 
specific situation; there are some other safer wireless alternatives in the market, 
but they’re more expensive too.  They learnt about the LEAP Cisco option, a 
solution that automatically changes the WEP key every a certain time, but 
adopting this technology would imply higher costs.  
Right now, they’re waiting to see what the industry produces for implementing 
the new 802.11i protocol but because of the money involved and the periodic 
technological upgrading needs, they’re also considering the possibility of 
moving onto digital leased lines and abandoning the wireless solution, with such 
a high TCO (Total Cost of Ownership). 
 
There was no place for a RECOVERY stage, because this was a DoS attack 
in which nothing was altered in the involved systems or the additional 
networking components, the attacker performed from outside of them all the 
time, so there was nothing to be brought back to an original state. 
Finally, on the last days of June the HACME security people considered this 
case as closed. The attacker was not identified, but his or her actions were 
neutralized with the installation of the new release of the firewall software. 
 
From a LESSONS LEARNED point of view, they learnt to be more careful, 
they modified the data-providing application for always generating a log of every 
request received from the client software and they implemented procedures to 
control this log everyday.  A log is almost useless if nobody watches it. Now if 
something abnormal starts to happen, it won’t take long before it’s noticed. 
 
Something else they learnt was to be more aware about the current 
vulnerabilities, particularly about those directly related to the products they were 
working with. For this, they subscribed to several lists, among others, the CERT 
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Bulletin (at http://www.cert.org) the SearchSecurity TechTarget News (at 
http://searchsecurity.techtarget.com) and the SANS Newsletters and SANS 
@Risk (at http://www.sans.org). This way, they started to receive daily 
information about the newest discovered vulnerabilities and problems with 
systems, programs and devices in almost no time after the news go public. 
 
And another thing they learnt, perhaps one of the most important (specially for 
Gary), was not to provide information about anything to anybody, it doesn’t 
matter the voice, face or gaze of the requester.  On July they started many 
security awareness activities oriented to the whole organization, with different 
levels according to who they were addressed to, but always with the global 
purpose of making people aware of the many risks involved when working with 
information. 
They established that all requests for information and for cooperation must be 
formally issued and received. Once the situation is checked and cleared then 
information can be released, but it never can be shared with someone unknown 
or unchecked, with no management approval. It doesn’t matter if the request is 
done by phone or in person, social engineers work in very effective ways, by 
phone, mail or personally, so all the staff working at an organization must be 
aware about this and should not be freely helpful with strangers or even known 
people asking for not publicly available information without clear (and if possible 
documented) management involvement. 
 
A final report was written by the IT security departament and raised to HACME’s 
managers, with a description of the whole situation as well as the process 
followed to solve it and most important, a list of recommendations to be followed 
by HACME and its personnel. The most relevant items in this list were: 
 

1. Have someone assigned to keep patches updated. 
2. Have someone assigned to be aware of new exploit and problems. 
3. Have someone assigned to logs watching and better yet, provide him/her with a 

log analysis tool, to ease and improve the task. 
4. Run a security awareness program to educate and train people. 
5. Implement a VPN on every external communication, no matter the media. 
6. Create an incident handling team, trained and properly equipped. 
7. Reconsider keeping a wireless solution; 802.11i promises to be a lot safer than 

11b, but high costs might be involved. Leased lines are a good option. 
8. If going on wireless, consider deploying an analyzer such as AiroPeek. 

 
 
6) EXTRAS
 
There are some other countermeasures that could be implemented to avoid this 
attack to be successful. 
For example, it could be adopted the solution proposed in RFC-2385 (by Andy 
Heffernan, from Cisco Systems) to protect BGP sessions; it consists in signing 
every TCP segment with an MD5 digest. This solution can be seen as quite 
good in fighting most kind of faked-packet attacks, and indeed it is, given the 
MD5 algorithm produces only a 16-byte digest, and although it can be 
potentially broken it has no known attacks at the moment. Some other stronger 

 
GIAC-GCIH v.3 – Hugo Köncke  - 28 - 



©
 S

A
N

S 
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

hash algorithms take much more time to compute, making them unsuitable for 
these purposes. 
However, this solution has some other more concrete drawbacks that could 
render it objectable for pervasively using it. To begin, there’s an additional time 
at the sender for calculating the digest before sending the segment; once at the 
receiver, some more time has to be added for calculating the digest again, and 
then comparing it to the one sent together with the segment, as to prove its 
validity in case they match, and to discard it as faked in case they don’t match. 
Depending on the nature of the link this additional delays could be inadequate. 
Some other problems with this solution are connectionless resets, which are 
generated for example when trying to connect to a port with no listener, or when 
sending segments on a stale connection. In these cases, connections will time-
out instead of being refused, because reset responses would be “unsigned”. 
 
To take a look at what other people is working at about this right now, the 
document at http://www.ietf.org/ietf/1id-abstracts.txt lists many works in 
progress about Internet technology problems; among them it can be found the 
document draft-ietf-tcpm-tcpsecure-00.txt (published on April 19, 2004) and its 
review, draft-ietf-tcpm-tcpsecure-01.txt (effective as of June 2, 2004) written by 
Mitesh Dalal from Cisco Systems, where he describes some solutions for this 
TCP Reset problem as well as for some other problems, all consequences of 
the RFC-793 loose specifications for TCP. 
By the way, this draft was commented about by Paul Watson (the same security 
expert who made public the TCP Reset problem), and he has said that the 
solution proposed by Cisco could be worse than the original problem, given the 
device receiving the spoofed RST packet would have to respond to it with an 
ACK packet, making this way possible to generate a flood of ACK packets going 
from the receiver device to the supposed origin of the RST packets, nothing but 
another flavor of a DoS attack. 
Cisco Systems has started actions to patent their proposed solution, so that any 
vendor implementing what they suggest should have to pay some royalties to 
Cisco for that.  
Watson has said that a better solution is included in the standard definition of 
TCP (RFC-793), given it’s enough that vendors implement their TCP solutions 
so that they verify the sequence of the reset packets before terminating a 
connection, something that doesn’t contravene what’s established in the 
standard. This avoids having to pay any royalties to anyone and it’s a better 
solution after all. 
 
Now, just to provide the reader with a better understanding of the TCP Reset 
attack described in this paper, here’s a piece of the Delphi code that 
implements it, specifically the main program section is shown and analysed.  
The whole exploit (code included) can be downloaded from the site 
www.iamaphex.net or from http://www.packetstormsecurity.org/0404-exploits 
and its author is identified as Aphex. 
Its command line syntax is: reset <src ip> <src port> <dest ip> 
<dest port> <window size> <send delay> [begin seq num], but it 
could be adapted as to be embedded into some more complex program, as the 
hacker in this story did. 
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... 
begin 
if Length(ParamStr(1)) < 1 then DoExit; 
if Length(ParamStr(2)) < 1 then DoExit; 
if Length(ParamStr(3)) < 1 then DoExit; 
if Length(ParamStr(4)) < 1 then DoExit; 
if Length(ParamStr(5)) < 1 then DoExit; 
SourceHost := ParamStr(1); 
SourcePort := StrToInt(ParamStr(2)); 
TargetHost := ParamStr(3); 
TargetPort := StrToInt(ParamStr(4)); 
WindowSize := StrToInt(ParamStr(5)); 
Delay := StrToInt(ParamStr(6)); 
Randomize; 
WindowPos := Random(4294967295); 
if Length(ParamStr(7)) > 0 then WindowPos := StrToInt(ParamStr(7)); 
Odds := 4294967295 div WindowSize; 
WindowCount := 0; 
Init; 
while WindowCount < Odds do 
begin 
if WindowPos > 4294967295 then WindowPos := 0; 
Send(TargetHost, TargetPort, SourceHost, SourcePort, WindowPos, WindowSize); 
Inc(WindowCount); 
Inc(WindowPos, WindowSize); 
Sleep(Delay); 
end; 
end. 

 
There’s no need to be highly proficient in Delphi to understand the idea behind 
this coding. It first checks the received parameters and then processes them 
and initializes some internal variables with the provided values for source IP 
address (SourceHost), source port (SourcePort), destination IP address 
(TargetHost), destination port (TargetPort), window size (WindowSize) 
and delay between sends (Delay). If a sequence number to start from was 
provided, it’s considered too (WindowPos). If not, a random number is chosen. 
Next it divides 232 -1 between WindowSize, to determine the number of tries it 
should fire a faked packet to drop the objective connection, as to ensure it hits 
the window in use (variable Odds). If needed, see point 2.2.3 of this paper to 
understand why this is done. 
 
After this the show begins; a loop is started to cycle Odds times, controlling 
every loop that the sequence number to use (WindowPos) is not out of the 
window space, and in case this is so, it resets it back to zero. 
Then a packet is fired from the Send() procedure (not shown here), using the 
specified addresses and ports for source and destination, with the WindowPos 
sequence number. Immediately, the loop counter (WindowCount) is increased 
by one and the window is shifted right by incrementing the sequence number 
(WindowPos) by the size of the window (WindowSize).  This loop is repeated 
as many times as the window size in use fits into the sequence number space, 
this is Odds times, as already was said, and then the procedure ends. 
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Some generic exploit implementation samples for TCP Reset (as well as for 
many other vulnerabilities) can be found altogether at the PacketStormSecurity 
site (http://www.packetstormsecurity.org), a non-profit organization devoted to 
be a resource of security tools, exploits and advisories: 

• http://www.packetstormsecurity.org/0404-exploits/reset.zip  
• http://www.packetstormsecurity.org/0404-exploits/reset-tcp.c  
• http://www.packetstormsecurity.org/0404-exploits/reset-tcp_rfc31337-compliant.c  
• http://www.packetstormsecurity.org/cisco/ttt-1.3r.tar.gz  
• http://www.packetstormsecurity.org/0404-exploits/bgp-dosv2.pl  
• http://www.packetstormsecurity.org/0404-exploits/Kreset.pl  
• http://www.packetstormsecurity.org/0404-exploits/disconn.py  
• http://www.packetstormsecurity.org/0404-exploits/tcp_reset.c  
• http://www.packetstormsecurity.org/0405-exploits/autoRST.c  
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